WO2022036838A1 - 一种石油树脂加氢的微界面反应系统及方法 - Google Patents

一种石油树脂加氢的微界面反应系统及方法 Download PDF

Info

Publication number
WO2022036838A1
WO2022036838A1 PCT/CN2020/122805 CN2020122805W WO2022036838A1 WO 2022036838 A1 WO2022036838 A1 WO 2022036838A1 CN 2020122805 W CN2020122805 W CN 2020122805W WO 2022036838 A1 WO2022036838 A1 WO 2022036838A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
hydrogen
interface
hydrogenation
hydrogenation reactor
Prior art date
Application number
PCT/CN2020/122805
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022036838A1 publication Critical patent/WO2022036838A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23764Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction

Definitions

  • the invention relates to the field of petroleum resin hydrogenation, in particular to a micro-interface reaction system and method for petroleum resin hydrogenation.
  • Petroleum resin is an important basic chemical raw material and one of the important organic chemical products that has developed rapidly in recent years. Because C9 petroleum resin contains high unsaturated bonds, it is easy to react under the action of oxygen and other chemical substances, which greatly limits the application of petroleum resin, so it is necessary to hydrogenate petroleum resin.
  • the relative molecular weight of C9 petroleum resin is relatively large (200-3000). Usually, under the catalysis of high-activity catalyst, the better hydrogenation effect can be achieved when the operating conditions reach 10-20MPa and 230-300°C. In addition, there are toxic impurities such as sulfur and nitrogen in the C9 petroleum resin, and the catalyst is easily deactivated. Therefore, the industrialization of the C9 petroleum resin is difficult.
  • C9 petroleum resin hydrogenation process there are three main hydrogenation processes for C9 petroleum resin, namely slurry bed hydrogenation process, trickle bed hydrogenation process and spray bed hydrogenation process.
  • the traditional C9 petroleum resin hydrogenation process generally has the following problems:
  • reaction pressure of the trickle bed hydrogenation process is high (about 20MPa), the investment cost and operating cost of the device are high, and the intrinsic safety is reduced.
  • the first object of the present invention is to provide a micro-interface reaction system for hydrogenation of petroleum resin.
  • the micro-interface reaction system is based on the micro-interface reaction strengthening technology, uses C9 resin and solvent as continuous phases, and efficiently crushes hydrogen through a micro-interface generator. It forms micron-sized bubbles and disperses into the resin solution to form a micro-interface system, so as to increase the gas-liquid interface area in the hydrogenation reactor dozens of times, and greatly improve the mass transfer rate of the gas phase to the reaction liquid and the macro-hydrogenation rate.
  • the original reaction pressure, reaction temperature and catalyst usage can be reduced, so as to develop an efficient and energy-saving micro-interface reaction system for the hydrogenation of C9 petroleum resin enhanced by micro-interface.
  • the second object of the present invention is to provide a reaction method for carrying out the hydrogenation of petroleum resin using the above-mentioned micro-interface reaction system.
  • the hydrogenated petroleum resin obtained by the reaction is environmentally friendly, clean, and has a wide range of applications. Promote the application.
  • the invention provides a micro-interface reaction system for hydrogenation of petroleum resin, comprising a pre-hydrogenation reactor provided with two catalyst beds, a circulating hydrogen channel and a new hydrogen channel; the side wall of the pre-hydrogenation reactor A raw material inlet and a hydrogen inlet are respectively provided, and a micro-interface generator is respectively provided between the two catalyst beds and the bottom of the pre-hydrogenation reactor;
  • the circulating hydrogen channel and the new hydrogen channel are aggregated into a total hydrogen channel.
  • the total hydrogen channel is divided into three branch channels.
  • the first branch channel is mixed with the raw material petroleum resin solution and is preheated by the raw material preheater. After being heated, it enters the micro-interface generator from the raw material inlet; the second branch channel enters the micro-interface generator from the hydrogen inlet after being preheated by the hydrogen preheater; the third branch channel directly into the micro-interface generator in the pre-hydrogenation reactor, and the hydrogen and the petroleum resin solution are dispersed and broken in the micro-interface generator to form micro-bubbles;
  • the hydrogenated product reacted from the pre-hydrogenation reactor is passed into the first hot high-pressure separator for gas-liquid phase separation, the separated liquid phase enters the refining hydrogenation reactor for further hydrogenation, and the separated gas phase is recycled.
  • the micro-interface reaction system for hydrogenation of petroleum resin of the present invention is provided with a micro-interface generator inside the hydrogenation reactor to disperse and break the incoming hydrogen into micro-bubbles, thereby improving the mass transfer effect.
  • the main function of the introduced petroleum resin is to cooperate with the dispersion and crushing of the gas, which is equivalent to the role of the medium.
  • the upper micro-interface generator in the pre-hydrogenation reactor receives hydrogen from the third branch channel
  • the micro-interface generator located in the lower part of the pre-hydrogenation reactor receives hydrogen from the second branch
  • two catalyst beds are arranged in the refining and hydrogenation reactor, and a micro-interface generator is respectively arranged between the two catalyst beds and the bottom of the refining and hydrogenation reactor;
  • the upper micro-interface generator in the refining and hydrogenation reactor receives hydrogen from the third branch channel, and the micro-interface generator located in the lower part of the refining and hydrogenation reactor receives the liquid phase from the bottom of the first hot high-pressure separator. , and the hydrogen preheated by the hydrogen preheater from the second branch passage.
  • the micro-interface generator is arranged inside the pre-hydrogenation reactor and the refining hydrogenation reactor, and the hydrogen enters the inside of the reactor in three branches due to the way of entering hydrogen, which causes the hydrogen to enter the micro-interface generator.
  • the way of the reactor is also different, especially in the pre-hydrogenation reactor and the refining hydrogenation reactor, since the number of catalyst beds set inside is two, it is just the micro-interface set between the catalyst bed and the bottom of the reactor.
  • the number of generators is exactly two, arranged in order from top to bottom.
  • the micro-interface generator at the upper part mainly enters the unpreheated gas phase, and the micro-interface generator at the bottom mainly enters the preheated hydrogen gas.
  • the liquid phase because the micro-interface generator at the bottom is more convenient to feed the liquid phase, so mixing the preheated gas phase and the liquid phase together can improve the mass transfer effect.
  • the liquid-phase feed mainly plays the role of assisting the micro-interface generator at the bottom to jointly improve the dispersing and crushing effect, so the gas-phase feed adopts the gas phase that does not require preheating, so that the upper and lower micro-interface generators work together to play a role in micro-interface.
  • the effect of interface fragmentation and dispersion mainly plays the role of assisting the micro-interface generator at the bottom to jointly improve the dispersing and crushing effect, so the gas-phase feed adopts the gas phase that does not require preheating, so that the upper and lower micro-interface generators work together to play a role in micro-interface.
  • the micro-interface generator at the bottom forms a primary micro-interface system, which mainly realizes the mixing of hydrogen and the petroleum resin solution to strengthen the reaction, and then the upper micro-interface generator forms a secondary micro-interface system to realize the reaction with the unreacted petroleum resin. Solution mixing enhances the reaction.
  • the way of entering hydrogen in the pre-hydrogenation reactor is the same as the way of entering hydrogen in the refining hydrogenation reactor.
  • a part of the hydrogen enters without preheating, and the other part of the hydrogen needs to be preheated. This way not only reduces energy consumption, but also reduces energy consumption. It also ensures the effect of micro-interface fragmentation and dispersion.
  • a part of the hydrogen enters from the first branch channel to be mixed with the raw material petroleum resin solution to enhance the effect of the hydrogenation reaction.
  • micro-interface generators arranged in the above-mentioned pre-hydrogenation reactor and refining hydrogenation reactor are pneumatic type. By passing hydrogen and petroleum resin into the micro-interface generator and then dispersing and crushing, the subsequent hydrogenation reaction is strengthened, and sulfur and nitrogen are removed. and other impurities to improve the mass transfer effect.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119. Patents of CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 records that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and it is also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
  • the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
  • the catalyst for the above-mentioned hydrogenation reaction is generally a nickel-based catalyst.
  • the catalyst can be a supported nickel-based catalyst, or a nickel-based catalyst modified with an alkaline earth metal oxide or a rare earth metal oxide. Silicon or Alumina.
  • the active components of the catalyst for cracking and hydrogenation are oxides of nickel, cobalt, and molybdenum
  • the carrier is alumina, silicon-alumina oxide or molecular sieve.
  • the function of pre-hydrogenation and refining hydrogenation is to remove impurities such as sulfur and nitrogen, and improve the quality of petroleum resin products.
  • the micro-interface reaction system further comprises a second hot high pressure separator, and the reacted product of the refining hydrogenation reactor is passed from the top of the refining hydrogenation reactor to the second hot high pressure separator for gas separation.
  • the liquid phase is separated, and the separated liquid phase is cooled by the high pressure cooler and sent to the cold low pressure separator for further separation.
  • the gas phase separated from the cold low pressure separator is returned to the circulating hydrogen channel for reuse, and the liquid phase separated from the cold low pressure separator is directly collected as a product.
  • the gas phase separated from the first hot high pressure separator and the gas phase separated from the second hot high pressure separator are combined to go to the cold low pressure separator.
  • the micro-interface reaction system includes a raw material tank for storing raw petroleum resin solution, and the raw material tank is connected with the raw material preheater.
  • the products from the pre-hydrogenation reactor and the products from the refining hydrogenation reactor are separated from gas and liquid by a hot high-pressure separator located at the top of the reactor.
  • the outgoing liquid phase is finally merged into the cold low-pressure separator for further gas-liquid separation, and the separated gas phase is also finally merged into the cold low-pressure separator for further gas-liquid separation.
  • the gas phase can be reused as circulating hydrogen, and the liquid phase can be collected directly as a product.
  • the first thermal high-pressure separator separates the reacted product from gas and liquid, and the obtained liquid phase mixture is mixed with preheated hydrogen and petroleum resin, and then enters the micro-interface generator to form a micro-interface system, and the petroleum resin hydrogenation reaction is carried out again.
  • the resulting product is sent to a second hot high pressure separator to separate the gas phase and liquid phase products.
  • the liquid phase product is cooled by a high pressure cooler and then sent to a cold low pressure separator to obtain the final product hydrogenated petroleum resin.
  • the present invention also provides a reaction method of the petroleum resin hydrogenation micro-interface reaction system, comprising:
  • micro-interface of petroleum resin and hydrogen is dispersed and broken, and then hydrogenation reaction is carried out, followed by separation, hydrocracking, gas-liquid separation and fractionation.
  • the temperature of the hydrogenation reaction is 230-290° C.
  • the pressure of the hydrogenation reaction is 5-18 MPa.
  • the hydrogen gas is broken into micro-scale micro-bubbles through the micro-interface, and the micro-bubbles are released into the reactor, so as to increase the relationship between the hydrogen and the petroleum resin during the hydrogenation of the petroleum resin.
  • the mass transfer area of the phase boundary between the two makes the hydrogen fully contact with the resin solution in the state of micro-bubble, and the formed micro-interface system enters the catalyst bed and conducts the hydrogenation reaction of the petroleum resin.
  • the product obtained by the hydrogenation reaction of the petroleum resin of the invention has good quality and high yield.
  • the reaction method of hydrogenation of petroleum resin has the advantages of low reaction temperature, greatly reduced pressure and high liquid hourly space velocity, which is equivalent to increasing the production capacity.
  • the micro-interface reaction system of petroleum resin hydrogenation of the present invention is provided with the micro-interface generator that is connected with the gas-liquid phase feed pipeline in the reactor, so that before hydrogen and petroleum resin carry out the petroleum resin hydrogenation reaction, the micro-interface generator is
  • the interface generator breaks the hydrogen into micro-bubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm, so that the hydrogen is in contact with methanol in the state of micro-bubbles, so as to increase the phase boundary between the hydrogen and the petroleum resin during the hydrogenation reaction of the petroleum resin.
  • the mass transfer area is fully mixed and then the petroleum resin hydrogenation reaction is carried out, thereby solving the problem that the reaction efficiency of the system is reduced because the petroleum resin and hydrogen cannot be fully mixed in the reactor in the prior art;
  • the micro-interface reaction system of the present invention returns the finally separated hydrogen to the circulating hydrogen channel for reuse, thereby further saving the production cost;
  • the entire micro-interface reaction system of the present invention has undergone two gas-liquid separation processes to obtain high-purity hydrogenated petroleum resin.
  • FIG. 1 is a schematic structural diagram of a micro-interface reaction system for petroleum resin hydrogenation provided in an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 it is a micro-interface reaction system of petroleum resin hydrogenation according to an embodiment of the present invention, which mainly includes a pre-hydrogenation reactor 100 and a refining hydrogenation reactor 120;
  • the pre-hydrogenation reactor 100 is a fixed-bed reactor, and two catalyst beds are arranged inside it, and a micro-interface generator 140 is arranged between the catalyst bed and the bottom of the pre-hydrogenation reactor 100.
  • the micro-interface generator 140 is two, two catalyst beds are arranged in the refining hydrogenation reactor 120, and a micro-interface generator 140 is respectively arranged between the two catalyst beds and the bottom of the refining hydrogenation reactor 120.
  • the number of micro-interface generators 140 arranged inside the refining hydrogenation reactor 120 is the same as the number of micro-interface generators arranged inside the pre-hydrogenation reactor 100 , both being two.
  • the above-mentioned micro-interface reaction system includes a circulating hydrogen channel 50 and a new hydrogen channel 40.
  • the circulating hydrogen channel 50 and the new hydrogen channel 40 are aggregated into a total hydrogen channel.
  • the total hydrogen channel is divided into three branch channels, which is equivalent to being divided into three branches.
  • the side wall of the pre-hydrogenation reactor 100 is respectively provided with a raw material inlet and a hydrogen inlet.
  • the first branch channel 70 is connected to the raw material petroleum resin. After the solution is mixed, it is preheated by the raw material preheater 20 and then enters the micro-interface generator 140 below the pre-hydrogenation reactor 100 from the raw material inlet.
  • the raw petroleum resin solution is stored in the raw material tank 10 , and is sent to the raw material preheater 20 for preheating and finally sent to the micro-interface generator 140 when used.
  • the second branch channel 80 is preheated by the hydrogen preheater 30 and then enters the micro-interface generator 140 below the pre-hydrogenation reactor 100 from the hydrogen inlet, and at the same time branches into the refining hydrogenation reactor 120 in the lower micro-interface generator 140.
  • the third branch channel 90 directly leads to the upper micro-interface generator 140 in the pre-hydrogenation reactor 100 , and at the same time, a branch channel 90 directly leads to the micro-interface generator located in the upper part of the refining hydrogenation reactor 120 140 in.
  • the pre-hydrogenation reactor 100 and the refining hydrogenation reactor 120 are used to receive the petroleum resin solution and hydrogen, and the catalyst bed is used as the place for the hydrogenation reaction of the petroleum resin, and the micro-interface generator 140 arranged inside the reactor is used to Before the hydrogenation reaction of the petroleum resin, the hydrogen is broken into a micro-interface system, and the pressure energy of the gas and/or the kinetic energy of the liquid is converted into the surface energy of the bubbles and transferred to the bubbles, so that the bubbles are broken into diameters greater than or equal to 1 ⁇ m and less than or equal to 1 ⁇ m.
  • the micro-interface generator 140 is driven by gas, and the input gas volume is much larger than the liquid volume.
  • the first thermal high-pressure separator 110 is connected to the pre-hydrogenation reactor 100
  • the second thermal high-pressure separator 130 is connected to the refining hydrogenation reactor 120
  • the first thermal high-pressure separator 110 and the second thermal high-pressure separator 130 are used for separation
  • the gas phase and the liquid phase are mixed
  • the liquid phase separated by the first hot high pressure separator 110 enters the refining hydrogenation reactor 120 for further hydrogenation reaction
  • the gas phase separated by the high pressure separator 130 is combined and sent to the cold low pressure separator 160 for separating the raw material hydrogen and the product hydrogenated petroleum resin to finally obtain the product hydrogenated petroleum resin
  • the hydrogen is returned to the circulating hydrogen channel 50 for reuse.
  • the liquid phase separated by the second hot high pressure separator 130 goes to the high pressure cooler 150 for cooling and then goes to the cold low pressure separator 160 to separate the product from the gas phase.
  • micro-interface generators 140 can also be added.
  • the installation position is not limited.
  • the side walls of the micro-interface generators 140 are opposite to each other, so that the micro-bubbles coming out of the outlet of the micro-interface generator 140 can be hedged.
  • the types of the pre-hydrogenation reactor 100 and the refining hydrogenation reactor 120 can be other types such as a fixed-bed reactor and an ebullated-bed reactor. Unlimited.
  • the total hydrogen pipeline is connected with the circulating hydrogen channel 50 and the new hydrogen channel 40, and the total hydrogen pipeline is divided into three branches.
  • the petroleum resin solution is transported from the raw material tank 10 into the micro-interface reaction system, and the catalyst is filled into the pre-hydrogenation reactor 100. , refine the catalyst bed of the hydrogenation reactor 120, start the system, set the reaction temperature to 230°C, and set the pressure to 5MPa.
  • the petroleum resin solution from the raw material tank 10 is first mixed with a small amount of mixed hydrogen (the mixture of new hydrogen and circulating hydrogen), then heated by the raw material preheater 20, and then enters the micro-interface generator from the bottom of the pre-hydrogenation reactor 100 140, and mixed with another mixed hydrogen heated by the hydrogen preheater 30 in the micro-interface generator 140 to form a micro-interface system. It is released into the interior of the pre-hydrogenation reactor 100, so that the hydrogen gas is fully contacted with the petroleum resin solution in the state of microbubbles, and the petroleum resin hydrogenation reaction is carried out in the catalyst bed of the pre-hydrogenation reactor 100. Unpreheated cold hydrogen is added in the middle section of the catalyst, and the cold hydrogen enters the micro-interface generator 140 and is mixed with the petroleum resin solution to form a micro-interface system again.
  • a small amount of mixed hydrogen the mixture of new hydrogen and circulating hydrogen
  • the reacted mixture enters the first hot high pressure separator 110 for separation, and the separated liquid phase enters the micro-interface generator 140 from the bottom of the refining hydrogenation reactor 120, and forms a micro-interface with the mixed hydrogen heated by the hydrogen preheater 30.
  • the micro-interface generator 140 breaks the hydrogen into micro-sized micro-bubbles, and releases the micro-bubbles into the interior of the refining hydrogenation reactor 120, so that the hydrogen is fully contacted with the petroleum resin solution in the state of micro-bubbles.
  • the catalyst bed of the hydrogenation reactor 120 performs the hydrogenation reaction of petroleum resin. Cold hydrogen is added to the catalyst bed of the refining hydrogenation reactor 120, and the cold hydrogen enters the micro-interface generator 140 and is mixed with the petroleum resin solution to form a micro-interface system again.
  • the reacted mixture from the refining hydrogenation reactor 120 enters the second hot high pressure separator 130 for separation, the separated gas phase components enter the subsequent system for recycling, and the liquid phase components enter the high pressure cooler 150 for cooling and then are transported to the cold low pressure separator 160 for separation.
  • the separated gas phase product enters the subsequent system for recycling, and the liquid phase component is the product hydrogenated petroleum resin.
  • the content of hydrogenated petroleum resin was detected, and the purity was 90%.
  • reaction temperature is set to 260° C. and the pressure is set to 12 MPa, the purity reaches 95%.
  • the purity of the hydrogenated petroleum resin is improved, and the purity can reach more than 95%.
  • the micro-interface reaction system for hydrogenation of petroleum resin of the present invention has few equipment components, small footprint, low energy consumption, low cost and high safety. , The reaction is controllable and the conversion rate of raw materials is high, which is equivalent to providing a micro-interface reaction system with stronger operability for the field of petroleum resin hydrogenation, which is worthy of widespread application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供了一种石油树脂加氢的微界面反应系统及方法,微界面反应系统包括:设置有两个催化剂床层的预加氢反应器,以及循环氢气通道、新氢通道;所述预加氢反应器的侧壁分别设置有原料进口以及氢气进口,在两个所述催化剂床层、以及所述预加氢反应器的底部之间分别设置有微界面发生器。本发明提供的微界面反应系统通过与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率,尤其是提高氢气的利用率,同时有效的提高了产能。

Description

一种石油树脂加氢的微界面反应系统及方法 技术领域
本发明涉及石油树脂加氢领域,具体而言,涉及一种石油树脂加氢的微界面反应系统及方法。
背景技术
石油树脂是一种重要的基本化工原料,是近年来发展较快的重要有机化工产品之一。由于C9石油树脂中含有较高的不饱和键,在氧和其他化学物质作用下易发生反应,大大限制了石油树脂的应用,所以要对石油树脂进行加氢处理。
C9石油树脂相对分子量(200~3000)较大,通常在高活性催化剂的催化作用下,操作条件达到10~20MPa、230~300℃时,才能实现较好的加氢效果。此外,C9石油树脂中还存在硫、氮等有毒杂质,催化剂很容易失活,因此,C9石油树脂工业化的难度较大。
目前C9石油树脂的加氢工艺主要有三种,分别为浆态床加氢工艺、滴流床加氢工艺和喷淋床加氢工艺。传统C9石油树脂加氢工艺普遍存在以下问题:
(1)使用浆态床环流反应器加氢技术,适合小规模生产,反应产品和催化剂的分离难度较大,且分离出来的催化剂会吸附部分产品,催化剂损耗较大。
(2)滴流床加氢工艺反应压力较高(约20MPa),装置投资费用、运行费用高,本质安全性下降。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种石油树脂加氢的微界面反应系统,该微界面反应系统基于微界面反应强化技术,以C9树脂和溶剂为连续相,通过微界面发生器将氢气高效破碎成微米级气泡,并分散到树脂溶液中形成微界面体系,以数十倍地提高加氢反应器内的气液相界面积,大幅提高气相向反应液的传质速率及宏观加氢速率,进而可以降低原有的反应压力、反应温度和催化剂使用量,从而开发出高效、节能的微界面强化C9石油树脂加氢的微界面反应系统。
本发明的第二目的在于提供一种采用上述微界面反应系统进行石油树脂加氢的反应方法,反应得到的加氢石油树脂环保、清洁,应用广泛,提高了石油树脂本身的适用面,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种石油树脂加氢的微界面反应系统,包括设置有两个催化剂床层的预加氢反应器,以及循环氢气通道、新氢通道;所述预加氢反应器的侧壁分别设置有原料进口以及氢气进口,在两个所述催化剂床层、以及所述预加氢反应器的底部之间分别设置有微界面发生器;
所述循环氢气通道以及所述新氢通道汇总成总氢通道,所述总氢通道分为三个支路通道,第一支路通道与所述原料石油树脂溶液混合后经过原料预热器预热后从所述原料进口进入到所述微界面发生器中;第二支路通道通过氢气预热器预热后从所述氢气进口进入到所述微界面发生器中;第三支路通道直接通入到预加氢反应器中的微界面发生器中,氢气与石油树脂溶液在所述微界面发生器中进行分散破碎形成微气泡;
从所述预加氢反应器反应后的加氢产物通入第一热高压分离器中进行气液相分离,分离的液相进入精制加氢反应器进行进一步加氢,分离的气相回收利用。
本发明的石油树脂加氢的微界面反应系统,通过在加氢反应器内部设置有 微界面发生器,将进入的氢气进行分散破碎成微气泡,从而提高传质效果,在微界面发生器内部通入的石油树脂主要作用是配合气体的分散破碎,相当于介质的作用。
优选地,位于所述预加氢反应器内靠上的微界面发生器接受来自第三支路通道的氢气,位于预加氢反应器内靠下的微界面发生器接受来自第二支路从氢气进口进来的气相,以及从原料进口进来的所述原料石油树脂溶液与氢气的混合溶液。
优选地,所述精制加氢反应器内设置有两个催化剂床层,在两个所述催化剂床层、以及所述精制加氢反应器的底部之间分别设置有微界面发生器;位于所述精制加氢反应器内靠上的微界面发生器接受来自第三支路通道的氢气,位于精制加氢反应器内靠下的微界面发生器接受来自第一热高压分离器底部的液相,以及来自第二支路通道经过氢气预热器预热后的氢气。
本发明是将微界面发生器设置在预加氢反应器、以及精制加氢反应器的内部,且由于氢气进入的方式分三个支路进入反应器内部的,导致其氢气进入微界面发生器的方式也是不同的,尤其在预加氢反应器以及精制加氢反应器中,由于其内部设置的催化剂床层个数为两个,所以正好催化剂床层与反应器底部之间设置的微界面发生器个数正好是两个,从上到下依次排布,位于上部的微界面发生器主要是进入未经过预热的气相,位于底部的微界面发生器主要进入的是经过预热的氢气以及液相,因为底部的微界面发生器液相进料比较方便,所以将预热后的气相与液相共同混合后更能提高传质效果,位于上部的微界面发生器其侧部不设置液相进料,主要是起到辅助底部的微界面发生器共同提高分散破碎效果的作用,所以其气相进料是采用的不需要预热的气相,从而上下微界面发生器共同配合起到微界面破碎分散的效果。这样相当于在底部的微界面发生器形成一次微界面体系,主要实现氢气与石油树脂溶液的混合加强反应,然后上部的微界面发生器形成二次微界面体系,以实现与未反应的石油树脂溶液混合加强反应。
另外,预加氢反应器中氢气进入的方式与精制加氢反应器氢气进入的方式是一样的,一部分氢气进入不预热,另一部分氢气进入需要预热,这样的方式既降低了能耗,也同样保证了微界面破碎分散的效果。此外为了提高氢气与原料混合的效果,还有一部分氢气从第一支路通道进入与原料石油树脂溶液混合以加强加氢反应效果。
上述预加氢反应器、精制加氢反应器内设置的微界面发生器为气动式,通过将氢气与石油树脂通入微界面发生器后分散破碎,以加强后续加氢反应,脱除硫、氮等杂质,提高传质效果。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属 于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
上述加氢反应的催化剂一般采用的镍基催化剂,优选地催化剂可以为负载型的镍基催化剂,或者采用碱土金属氧化物或稀土金属氧化物改性过的镍基催化剂更优,载体选择为氧化硅或者氧化铝。
优选地,进行裂化加氢反应催化剂的活性成分为镍、钴、钼的氧化物,载体为氧化铝、硅铝氧化物或分子筛。预加氢以及精制加氢的作用在于脱除硫、氮等杂质,提高石油树脂产品的质量。
优选地,所述微界面反应系统还包括第二热高压分离器,所述精制加氢反应器反应后的产物从所述精制加氢反应器的顶部通入到第二热高压分离器进行气液相分离,分离出的液相经过高压冷却器冷却后去往冷低压分离器进行进一步分离。
优选地,从所述冷低压分离器分离出的气相返回到所述循环氢气通道进行重复利用,从所述冷低压分离器分离出的液相直接作为产品收集。
优选地,从所述第一热高压分离器中分离出的气相以及从第二热高压分离器分离出的气相汇合后去往所述冷低压分离器。
优选地,所述微界面反应系统包括用于储存原料石油树脂溶液的原料罐,所述原料罐与所述原料预热器连接。
从预加氢反应器出来的产物以及从精制加氢反应器出来的产物均经过位于反应器顶部的热高压分离器进行气液分离,分离器根据分离的产品不同会调整加压的压力,分离出的液相最后汇入到冷低压分离器进行进一步气液分离,分离出的气相也同样最终汇入到冷低压分离器进行进一步气液分离,经过冷低压分离器的气液分离,最终形成的气相可以作为循环氢气重复利用,液相则直接作为产品收集。
第一热高压分离器对反应后的产物进行气液分离,得到的液相混合物与预热后的氢气及石油树脂混合后进入微界面发生器形成微界面体系,再次进行石油树脂加氢反应,将所得产物输送至第二热高压分离器,分离气相和液相产物。将液相产物经高压冷却器冷却后输送至冷低压分离器,得到最终产品加氢石油树脂。
本发明还提供了一种石油树脂加氢微界面反应系统的反应方法,包括:
将石油树脂与氢气混合微界面分散破碎后进行加氢反应,再进行分离、加 氢裂化后,气液分离以及分馏。
优选地,所述加氢反应的温度230-290℃,所述加氢反应的压力为5-18MPa。
具体地,该反应方法通过微界面将氢气打碎成微米尺度的微气泡,并将微气泡释放到所述反应器内部,以增大石油树脂加氢过程中所述氢气与所述石油树脂之间的相界传质面积,使得氢气以微气泡的状态与树脂溶液充分接触,形成的微界面体系进入催化剂床层并进行石油树脂加氢反应。
采用本发明石油树脂加氢反应得到的产品品质好、收率高。石油树脂加氢的反应方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能。
与现有技术相比,本发明的有益效果在于:
(1)本发明的石油树脂加氢的微界面反应系统通过在反应器内部设置与气液相进料管道相连的微界面发生器,使得在氢气与石油树脂进行石油树脂加氢反应之前,微界面发生器将氢气破碎成直径为大于等于1μm、小于1mm的微气泡,使得氢气以微气泡的状态与甲醇接触,以增大石油树脂加氢反应过程中,氢气与石油树脂之间的相界传质面积,并进行充分混合后再进行石油树脂加氢反应,从而解决了现有技术中由于石油树脂和氢气在反应器中无法充分混合,导致系统反应效率降低的问题;
(2)本发明的微界面反应系统将最终分离得到的氢气重新返回到循环氢气通道再次利用,从而进一步节约了生产成本;
(3)本发明的整个微界面反应系统进行了两次气液分离过程,可以得到高纯度的加氢石油树脂。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的 部件。在附图中:
图1为本发明实施例提供的石油树脂加氢的微界面反应系统的结构示意图。
附图说明:
10-原料罐;                     20-原料预热器;
30-氢气预热器;                 40-新氢通道;
50-循环氢气通道;
70-第一支路通道;               80-第二支路通道;
90-第三支路通道;               100-预加氢反应器;
110-第一热高压分离器;          120-精制加氢反应器;
130-第二热高压分离器;          140-微界面发生器;
150-高压冷却器;                160-冷低压分离器。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的 装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的石油树脂加氢的微界面反应系统,其主要包括预加氢反应器100以及精制加氢反应器120;
预加氢反应器100为固定床反应器,在其内部设置有两个催化剂床层,在催化剂床层、以及预加氢反应器100底部之间设置有微界面发生器140,微界面发生器140为2个,精制加氢反应器120内设置有两个催化剂床层,在两个所述催化剂床层、以及所述精制加氢反应器120的底部之间分别设置有微界面发生器140,精制加氢反应器120内部设置的微界面发生器140的个数与预加氢反应器100内部设置的微界面发生器个数一样,均为2个。
上述微界面反应系统包括循环氢气通道50以及新氢通道40,循环氢气通道50以及所述新氢通道40汇总成总氢通道,循环氢气通道50以及所述新氢通道40均呈细长圆管型,总氢通道分为三个支路通道,相当于分成三个支路,预加氢反应器100的侧壁分别设置有原料进口以及氢气进口,第一支路通道70与所述原料石油树脂溶液混合后经过原料预热器20预热后从原料进口进入到预 加氢反应器100靠下的微界面发生器140中。原料石油树脂溶液储存在原料罐10中,使用时将其输送至原料预热器20预热并最终输送至微界面发生器140中。
第二支路通道80通过氢气预热器30预热后从氢气进口进入到预加氢反应器100靠下的微界面发生器140中,同时分出一路进入到位于精制加氢反应器120内靠下的微界面发生器140中。
第三支路通道90直接通入到预加氢反应器100内部靠上的微界面发生器140中,同时分出一路直接通入到位于精制加氢反应器120内靠上的微界面发生器140中。
预加氢反应器100以及精制加氢反应器120用于接收石油树脂溶液和氢气,并在催化剂床层作为石油树脂加氢反应的场所,设置在反应器内部的微界面发生器140用于在石油树脂加氢反应之前,将所述氢气破碎形成微界面体系,通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给气泡,使气泡破碎成直径为大于等于1μm、小于1mm的微米级别的微气泡,微界面发生器140采用气体驱动,输入气量远大于液体量。
第一热高压分离器110与预加氢反应器100连接,第二热高压分离器130与精制加氢反应器120连接,第一热高压分离器110以及第二热高压分离器130用于分离石油树脂加氢反应后气相和液相混合物,第一热高压分离器110分离的液相进入精制加氢反应器120进行进一步加氢反应,第一热高压分离器110分离的气相与第二热高压分离器130分离的气相合并后去往冷低压分离器160,用于分离原料氢气和产品加氢石油树脂,最终得到产品加氢石油树脂,氢气返回循环氢气通道50重复利用。第二热高压分离器130分离的液相去往高压冷却器150冷却后也去往冷低压分离器160进行产品与气相的分离。
在上述实施例中,为了增加分散、传质效果,也可以多增设额外的微界面发生器140,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生器140的出口出来的 微气泡发生对冲。
在上述实施例中,预加氢反应器100、精制加氢反应器120的类型除了可以是固定床反应釜以外,还可以是沸腾床反应釜等其他类型,除此之外进出料的方式也不限。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
以下简要说明本发明的石油树脂加氢微界面反应系统的工作过程和原理:
总氢管道与循环氢气通道50以及新氢通道40连接,并将总氢管道分成三个支路,石油树脂溶液从原料罐10输送进入微界面反应系统,将催化剂填入预加氢反应器100、精制加氢反应器120的催化剂床层,启动系统,反应温度设置为230℃,压力设置为5MPa。
将来自原料罐10的石油树脂溶液先与少部分混氢(新氢与循环氢的混合物)混合,再经原料预热器20加热,然后从预加氢反应器100的底部进入微界面发生器140,并与另一路经氢气预热器30加热的混氢在微界面发生器140中混合,形成微界面体系,微界面发生器140将氢气打碎成微米尺度的微气泡,并将微气泡释放到预加氢反应器100的内部,使得氢气以微气泡的状态与石油树脂溶液充分接触,在预加氢反应器100的催化剂床层进行石油树脂加氢反应。催化剂中间段增设未预热的冷氢,冷氢进入微界面发生器140与石油树脂溶液混合,再一次形成微界面体系。
反应后的混合物进入第一热高压分离器110分离,分离出的液相从精制加氢反应器120底部进入微界面发生器140,并与另一路经氢气预热器30加热的混氢形成微界面体系,微界面发生器140将氢气打碎成微米尺度的微气泡,并将微气泡释放到精制加氢反应器120的内部,使得氢气以微气泡的状态与石油树脂溶液充分接触,在精制加氢反应器120的催化剂床层进行石油树脂加氢反应。精制加氢反应器120的催化剂床层中增设冷氢,冷氢进入微界面发生器140与石油树脂溶液混合,再一次形成微界面体系。
从精制加氢反应器120反应后的混合物进入第二热高压分离器130分离,分离出的气相组分进入后续系统循环使用,液相组分进入高压冷却器150冷却后输送至冷低压分离器160进行分离。分离出的气相产物进入后续系统循环使用,液相组分即产品加氢石油树脂。检测加氢石油树脂含量,纯度达90%。
在上述反应过程中,其他操作条件不变,当反应温度设置为260℃,压力设置为12MPa,纯度达95%。
在上述反应过程中,其他操作条件不变,当反应温度设置为290℃,压力设置为18MPa,纯度达98%。
通过采用本发明的加氢反应工艺,提高了加氢石油树脂的纯度,纯度可达95%以上。
此外,通过铺设微界面发生器降低了加氢反应釜的压力以及温度,充分降低了能耗。
总之,与现有技术的石油树脂加氢的微界面反应系统相比,本发明的石油树脂加氢的微界面反应系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为石油树脂加氢领域提供了一种操作性更强的微界面反应系统,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种石油树脂加氢的微界面反应系统,其特征在于,包括设置有两个催化剂床层的预加氢反应器,以及循环氢气通道、新氢通道;所述预加氢反应器的侧壁分别设置有原料进口以及氢气进口,在两个所述催化剂床层、以及所述预加氢反应器的底部之间分别设置有微界面发生器;
    所述循环氢气通道以及所述新氢通道汇总成总氢通道,所述总氢通道分为三个支路通道,第一支路通道与所述原料石油树脂溶液混合后经过原料预热器预热后从所述原料进口进入到所述微界面发生器中;第二支路通道通过氢气预热器预热后从所述氢气进口进入到所述微界面发生器中;第三支路通道直接通入到预加氢反应器中的微界面发生器中,氢气与石油树脂溶液在所述微界面发生器中进行分散破碎形成微气泡;
    从所述预加氢反应器反应后的加氢产物通入第一热高压分离器中进行气液相分离,分离的液相进入精制加氢反应器进行进一步加氢,分离的气相回收利用。
  2. 根据权利要求1所述的微界面反应系统,其特征在于,位于所述预加氢反应器内靠上的微界面发生器接受来自第三支路通道的氢气,位于预加氢反应器内靠下的微界面发生器接受来自第二支路从氢气进口进来的气相,以及从原料进口进来的所述原料石油树脂溶液与氢气的混合溶液。
  3. 根据权利要求1所述的微界面反应系统,其特征在于,所述精制加氢反应器内设置有两个催化剂床层,在两个所述催化剂床层、以及所述精制加氢反应器的底部之间分别设置有微界面发生器;位于所述精制加氢反应器内靠上的微界面发生器接受来自第三支路通道的氢气,位于精制加氢反应器内靠下的微界面发生器接受来自第一热高压分离器底部的液相,以及来自第二支路通道经过氢气预热器预热后的氢气。
  4. 根据权利要求2所述的微界面反应系统,其特征在于,所述微界面反应系统还包括第二热高压分离器,所述精制加氢反应器反应后的产物从所述精 制加氢反应器的顶部通入到第二热高压分离器进行气液相分离,分离出的液相经过高压冷却器冷却后去往冷低压分离器进行进一步分离。
  5. 根据权利要求4所述的微界面反应系统,其特征在于,从所述冷低压分离器分离出的气相返回到所述循环氢气通道进行重复利用,从所述冷低压分离器分离出的液相直接作为产品收集。
  6. 根据权利要求4所述的微界面反应系统,其特征在于,从所述第一热高压分离器中分离出的气相以及从第二热高压分离器分离出的气相汇合后去往所述冷低压分离器。
  7. 根据权利要求1-6任一项所述的微界面反应系统,其特征在于,所述微界面反应系统包括用于储存原料石油树脂溶液的原料罐,所述原料罐与所述原料预热器连接。
  8. 采用权利要求1-7任一项所述的石油树脂加氢微界面反应系统的反应方法,其特征在于,包括如下步骤:
    将原料石油树脂溶液与氢气混合微界面分散破碎后进行加氢反应,再气液分离、冷却得到产品进行收集。
  9. 根据权利要求8所述的反应方法,其特征在于,所述加氢反应的温度230-290℃,所述加氢反应的压力为5-18MPa。
PCT/CN2020/122805 2020-08-18 2020-10-22 一种石油树脂加氢的微界面反应系统及方法 WO2022036838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010828509.0 2020-08-18
CN202010828509.0A CN112011366A (zh) 2020-08-18 2020-08-18 一种石油树脂加氢的微界面反应系统及方法

Publications (1)

Publication Number Publication Date
WO2022036838A1 true WO2022036838A1 (zh) 2022-02-24

Family

ID=73506080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122805 WO2022036838A1 (zh) 2020-08-18 2020-10-22 一种石油树脂加氢的微界面反应系统及方法

Country Status (2)

Country Link
CN (1) CN112011366A (zh)
WO (1) WO2022036838A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707811A (zh) * 2020-12-28 2021-04-27 南京延长反应技术研究院有限公司 一种粗对苯二甲酸加氢精制的反应系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3484421A (en) * 1965-07-20 1969-12-16 Exxon Research Engineering Co Two stage hydrogenation process (ii)
US4540480A (en) * 1982-10-23 1985-09-10 Arakawa Kagaku Kogyo Kabushiki Kaisha Process for preparing hydrogenated petroleum resin
CN105175633A (zh) * 2015-09-08 2015-12-23 胡平 一种组合式石油树脂加氢处理方法及处理系统
CN105367714A (zh) * 2015-12-03 2016-03-02 大连理工大学 一种制备氢化dcpd树脂的方法
CN110396425A (zh) * 2019-08-20 2019-11-01 中国石油化工股份有限公司 微界面强化液相循环加氢的装置及方法
CN111359556A (zh) * 2019-03-15 2020-07-03 南京延长反应技术研究院有限公司 一种微界面强化加氢反应系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3484421A (en) * 1965-07-20 1969-12-16 Exxon Research Engineering Co Two stage hydrogenation process (ii)
US4540480A (en) * 1982-10-23 1985-09-10 Arakawa Kagaku Kogyo Kabushiki Kaisha Process for preparing hydrogenated petroleum resin
CN105175633A (zh) * 2015-09-08 2015-12-23 胡平 一种组合式石油树脂加氢处理方法及处理系统
CN105367714A (zh) * 2015-12-03 2016-03-02 大连理工大学 一种制备氢化dcpd树脂的方法
CN111359556A (zh) * 2019-03-15 2020-07-03 南京延长反应技术研究院有限公司 一种微界面强化加氢反应系统
CN110396425A (zh) * 2019-08-20 2019-11-01 中国石油化工股份有限公司 微界面强化液相循环加氢的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU MINGHUI: "Development and Application of Hydrogenated Petroleum Resin", PETROCHEMICAL TECHNOLOGY, vol. 20, no. 8, 29 August 1991 (1991-08-29), pages 567 - 571, XP055902451 *

Also Published As

Publication number Publication date
CN112011366A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022036837A1 (zh) 一种石油树脂加氢的反应系统及方法
WO2022041426A1 (zh) 一种环状碳酸酯的微界面制备系统及方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
WO2022011867A1 (zh) 一种柴油加氢的微界面反应系统及方法
JP3238823U (ja) 石炭からエタノールを製造する反応システム
WO2021227135A1 (zh) 一种苯选择性加氢反应系统及方法
WO2022011865A1 (zh) 一种采用合成气制乙醇的反应系统及方法
WO2022036838A1 (zh) 一种石油树脂加氢的微界面反应系统及方法
WO2022011869A1 (zh) 一种蒽油加氢的微界面反应系统及方法
CN106479562B (zh) 一种强化氢气在重整生成油中的溶解方法及应用
WO2022110871A1 (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN113061461B (zh) 一种提高柴油品质的装置及方法
CN112774592B (zh) 一种粗对苯二甲酸加氢精制的微界面反应系统及方法
WO2022105300A1 (zh) 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
WO2021227136A1 (zh) 一种苯选择性加氢制备环己酮的强化反应系统及方法
CN112011365A (zh) 一种石油树脂加氢的微界面强化反应系统及方法
WO2022011866A1 (zh) 一种柴油加氢的反应系统及方法
WO2020155506A1 (zh) 下置式气液强化乳化固定床反应装置及方法
WO2022142326A1 (zh) 一种粗对苯二甲酸加氢精制的反应系统及方法
WO2022198874A1 (zh) 一种柴油加氢的微界面反应系统及方法
CN116041290B (zh) 一种顺酐加氢方法及顺酐加氢系统
CN214612318U (zh) 一种柴油加氢的微界面反应系统
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950042

Country of ref document: EP

Kind code of ref document: A1