WO2022105300A1 - 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法 - Google Patents

一种二氧化碳加氢制甲酸的强化微界面反应系统及方法 Download PDF

Info

Publication number
WO2022105300A1
WO2022105300A1 PCT/CN2021/109737 CN2021109737W WO2022105300A1 WO 2022105300 A1 WO2022105300 A1 WO 2022105300A1 CN 2021109737 W CN2021109737 W CN 2021109737W WO 2022105300 A1 WO2022105300 A1 WO 2022105300A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface
distillation column
reactive
reactive distillation
Prior art date
Application number
PCT/CN2021/109737
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
胡兴邦
杨建�
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022105300A1 publication Critical patent/WO2022105300A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the field of formic acid reaction preparation, in particular to an enhanced micro-interface reaction system and method for producing formic acid by hydrogenation of carbon dioxide.
  • Formic acid (CAS No.: 64-18-6), also known as formic acid, is the carboxylic acid with the least carbon number and strong acidity. It is an important raw material for modern organic chemical industry. Formic acid is synthesized in many ways, including (1) methanol oxo synthesis, where methanol and carbon monoxide are reacted with catalysts to generate methyl formate, and then hydrolyzed to obtain formic acid and methanol; (2) formamide method, where carbon monoxide and amines in methanol solution are catalyzed by catalysts. Formamide is generated in the ethanol, and then the formamide is hydrolyzed under acidic conditions to obtain formic acid; (3) carbon dioxide method, formic acid is directly prepared by hydrogenation of carbon dioxide catalyzed by a catalyst.
  • the reaction needs to react with formic acid with excess triethylamine or triethanolamine to promote the process.
  • the catalysts reported by the existing methods are not stable under the condition of formic acid, resulting in rapid deactivation of the catalysts.
  • the first object of the present invention is to provide an enhanced micro-interface reaction system.
  • the enhanced micro-interface reaction system promotes the smooth progress of the reaction by setting a reactive distillation column, thereby avoiding the need to add organic or inorganic bases to promote the reaction preparation.
  • the process of formic acid improves the reaction efficiency and simplifies the reaction operation.
  • by setting up a micro-interface generator in the reactive distillation column the incoming gas phase is efficiently broken into micron-sized bubbles, and dispersed into the solvent and catalyst to form a micro-interface system. , to increase the gas-liquid interface area in the reaction gas-liquid dozens of times, and greatly improve the mass transfer rate of the gas phase to the liquid phase.
  • the second object of the present invention is to provide a reaction method for producing formic acid using the above-mentioned enhanced micro-interface reaction system.
  • the reaction method is easy to operate, and the obtained formic acid has high purity and high product quality, and is worthy of widespread application.
  • the invention provides an enhanced micro-interface reaction system for producing formic acid by hydrogenation of carbon dioxide, comprising: a first reactive rectification tower, a second reactive rectification tower and a refining reactor, the first reactive rectification tower and the second reactive rectification tower Two reactive rectification towers are connected in parallel with each other; the side walls of the first reactive rectification tower and the second reactive rectification tower are sequentially provided with a hydrogen inlet, a carbon dioxide inlet and a solvent and catalyst mixing inlet from top to bottom;
  • the first reactive rectification tower, the second reactive rectification tower, and the fine reactor are provided with a split-flow type micro-interface generator, and the split-flow type micro-interface generator is on the body of the micro-interface generator.
  • a plurality of shunt channels are provided, and the hydrogen inlet and the carbon dioxide inlet are connected to any of the shunt-type micro-interface generators arranged inside the first reactive rectification tower and the second reactive rectification tower.
  • the split-flow micro-interface generator is arranged in the downcomers of the first reactive distillation column and the second reactive distillation column;
  • the mixed inlet of the solvent and catalyst is arranged at the bottom of the first reactive rectification tower and the second reactive rectification tower, so as to fill the entire first reactive rectification tower and the catalyst with the incoming solvent and catalyst.
  • the tops of the first reactive distillation column and the second reactive distillation column are provided with a formic acid outlet for the discharge of product formic acid, and the formic acid from the formic acid outlet subsequently enters the refining reactor for refining reaction , the second reactive distillation column.
  • the reaction needs to react with formic acid with excessive triethylamine or triethanolamine etc. to promote the process, it can be seen that a certain amount of organic or inorganic bases need to be added to promote the reaction in the prior art, the present invention is in order to solve the above-mentioned technology.
  • the problem provides a new type of enhanced micro-interface reaction system.
  • the previous reaction method is replaced by the use of reactive distillation column equipment, and the reaction and rectification are directly achieved in the reactive distillation column.
  • the reaction efficiency is improved, the mass transfer rate is greatly increased, and the temperature and pressure of the hydrogenation reaction are reduced.
  • a split-flow micro-interface generator is specially arranged in the first reactive distillation column, the second reactive distillation column and the fine reactor.
  • the shunt channel is preferably curved, and is arranged at the outlet of the body of the micro-interface generator.
  • the number of the split-flow micro-interface generators in the first reactive distillation column is 3, and the three split-flow micro-interface generators are arranged in order from top to bottom, and the split-flow type generators located in the upper part are
  • the micro-interface generator is arranged between the trays in the first reactive distillation column, and communicates with the hydrogen inlet for dispersing and crushing the incoming hydrogen, and the two split-flow micro-interface generators located at the bottom are arranged at Near the bottom of the first reactive rectification column, both are connected with the carbon dioxide inlet for dispersing and crushing the incoming carbon dioxide.
  • the upper part of the first reactive distillation column is opposite to the split channel on the split-flow micro-interface in the middle part, and the split channel of the split-flow micro-interface generator at the bottom faces the first reaction bottom of the distillation column.
  • the number of split-flow micro-interface generators inside the second reactive rectification column is two, which are respectively arranged between adjacent trays inside the second reactive rectification column.
  • the split-flow micro-interface generator located in the upper part communicates with the hydrogen inlet
  • the split-flow micro-interface generator located in the lower part communicates with the carbon dioxide inlet
  • the setting direction of the split channel on the split-flow type micro-interface generator located in the upper part of the second reactive rectification column is downward, and the setting direction of the split-flow channel on the split-flow type micro-interface generator located at the lower part is upward.
  • the setting directions of the two shunt channels are exactly opposite, which on the one hand has the effect of hedging, and on the other hand, has the effect of dispersing and collecting the air bubbles.
  • the reactive rectification column of the present invention whether it is the first reactive rectification column or the second reactive rectification column, there are several trays. Generally, catalysts and solvents enter from the tower kettle, and hydrogen and carbon dioxide are removed from the first reactive rectification column. The distillation column and the middle section of the second reactive distillation column enter. In order to improve the reaction effect, the number of micro-interface generators in the first reactive distillation column is three, and the direction of the split channels set by the three split-flow micro-interface generators is different.
  • the relative setting of the top and the middle is to better play a hedging effect
  • the bottom is set at the position of the tower kettle of the first reactive distillation column to be close to the solvent and catalyst mixing inlet, and the micro-interface generator at the bottom.
  • Choose to communicate with the carbon dioxide inlet because this can make the carbon dioxide introduced first to react better with the liquid phase
  • the downward direction of the shunt channel is also to improve the contact with the bottom liquid phase, and to strengthen the subsequent injection with the liquid contact between the devices.
  • the type of the micro-interface generator set in the second reactive distillation column is also a split-flow type micro-interface generator, which is consistent with the type of the micro-interface generator set in the first reactive distillation column, and can play the role of generating from the micro-interface generator.
  • the microbubbles coming out of the device are optimally distributed to improve the effect of reaction efficiency.
  • the shunt channel of the shunt-type micro-interface generator inside the fine reactor is set toward the side wall of the fine reactor, and the product outlet is just opposite to the gas dispersion and crushing outlet of the micro-interface generator, so that a plurality of The shunt channel is arranged at the gas dispersing and crushing outlet, so that the dispersed bubbles can be distributed, so that more micro-bubbles can be gathered around the product outlet, and the reaction effect can be improved. Therefore, it can be seen that the invention innovatively combines the micro-interface The combined application of the generator and the shunt channel improves the application effect of the micro-interface generator itself.
  • the micro-interface generators in the first reactive distillation column, the second reactive distillation column, and the refining reactor break the gas phase into micro-sized micro-bubbles and release the micro-bubbles into the reactive distillation column and the refining reactor.
  • the two phases In order to increase the mass transfer area of the phase boundary between the gas phase and the liquid phase in the hydrogenation reaction, make the two phases fully contact, improve the reaction efficiency, shorten the reaction time, and fully reduce the reaction pressure and temperature.
  • each micro-interface generator set in the enhanced micro-interface reaction system of the present invention is of the same type, the micro-interface generator body of the split-flow micro-interface generator is a pneumatic micro-interface generator.
  • the second reactive distillation column is also for the purpose of supplementing and enhancing the reaction effect of the first reactive distillation column, and in order to achieve a better reaction effect.
  • a micro-interface generator with a special structure of a shunt channel is used.
  • the enhanced micro-interface reaction system of the present invention is precisely because the two incoming gas-phase raw materials need to be dispersed and broken by the micro-interface generator, so it is necessary to adjust the micro-interface according to the type of the incoming gas phase and the specific function of each micro-interface generator.
  • the setting position, specific type and injection method of the interface generator can achieve the best reaction effect.
  • fixing rods are installed on both sides of the split-flow micro-interface generator to be fixed on the inner wall of the reactive distillation column.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the previous patent 201710766435.0 recorded that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different. To sum up, the micro-interface generator of the present invention belongs to the prior art.
  • both the first reactive rectification tower and the second reactive rectification tower are provided with a liquid injector, and the liquid injector communicates with the solvent and catalyst mixing inlet.
  • the liquid injector has a semicircular shape
  • the bottom surface of the liquid injector is closely attached to the side walls of the first reactive rectification tower and the second reactive rectification tower, and a plurality of The liquid ejection pipe is connected with ejection heads, and the ejection heads are evenly distributed on the semicircular surface.
  • the bottom surface of the liquid injector communicates with the solvent and catalyst mixing inlet.
  • the incoming liquid phase is mainly catalyst and solvent.
  • the catalyst is dispersed into the interior of the reactive distillation column by spraying the liquid injector, which can improve its reaction effect.
  • the liquid injector There are a plurality of liquid spray pipes, each liquid spray pipe is equivalent to a micro-channel, and the interaction with the gas phase is strengthened by arranging the liquid phase in multiple pipes and spraying it out in a spraying manner. Therefore, the ejector pipes arranged inside the liquid ejector play a good guiding role, so that after better distribution of the liquid phase, the micro-interface generator is used to disperse and crush the gas phase, and at the same time, the The liquid phase carries out the corresponding micromanipulation purpose.
  • the fine reactor is connected with a gas-liquid separation tank, and the reactant after the reaction from the fine reactor enters the gas-liquid separation tank for gas-liquid separation and purification.
  • a gas-phase return pipeline is connected to the top of the gas-liquid separation tank, so as to separate the gas phase in the formic acid and return it to the first reactive rectification tower and the second reactive rectification tower.
  • the gas-liquid separation tank is connected with a separation tower for further purification and separation of the materials extracted from the gas-liquid separation tank.
  • the top of the separation tower and the fine reactor is provided with a pipeline that communicates with the gas phase return pipeline, so as to return the gas phase to the first reactive rectification tower and the second reactive rectification tower after separation .
  • a purification tower is connected to the bottom of the gas-liquid separation tank, so as to purify the bottom material in the purification tower and send it to the separation tower.
  • the function of the fine reactor is to further react the materials from the top of the tower to increase the yield, and then enter the gas-liquid separation tank.
  • the gas phase separated from the gas-liquid separation tank mainly includes carbon dioxide and hydrogen, and returns to the gas-liquid separation tank. In the reactive distillation column, the reaction can be reused.
  • the gas phase separated from the top of the separation tower is mainly carbon dioxide and hydrogen, which can also be returned for reuse.
  • the material coming out from the bottom of the gas-liquid separation tank also contains part of the target product formic acid.
  • the present invention also provides a purification tower, which is purified by rectification in the purification tower.
  • the formic acid-collected components are returned to the final separation tower for mixing, purification and separation with the materials from the gas-liquid separation tank, and finally the target product is obtained and stored in the product tank.
  • the present invention also provides a kind of reaction method for producing formic acid by hydrogenation of carbon dioxide, comprising the steps:
  • the hydrogen, carbon dioxide, solvent and catalyst mixed micro-interface are dispersed and broken to carry out hydrogenation reaction, and then purified to obtain formic acid.
  • the solvent is a linear or branched alkane containing 10-16 carbons
  • the catalyst is formate, including one or more of copper formate, iron formate, cobalt formate, manganese formate, and nickel formate;
  • the mass ratio of the solvent to the catalyst is (10:1)-(1000:1).
  • the method of the present invention uses a very stable formate in formic acid as a catalyst, thereby ensuring the stability of the catalyst in long-term use, thereby improving the reaction efficiency. stability.
  • the present invention promotes the smooth progress of the reaction by setting two reactive distillation towers at the same time, thereby avoiding the need to add organic or inorganic bases to promote the reaction, and the process of preparing formic acid by formate acidification improves the reaction efficiency and simplifies the reaction operation;
  • the enhanced micro-interface reaction system of the present invention efficiently crushes the gas phase entering into micro-level bubbles through the micro-interface generators arranged inside the two reactive distillation towers, and disperses them into a solvent and a catalyst to form a micro-interface system, so as to form a micro-interface system.
  • the gas-liquid interface area in the anti-gas-liquid is increased dozens of times, and the mass transfer rate from the gas phase to the liquid phase is greatly improved;
  • the method of the present invention uses a very stable formate in formic acid as a catalyst, thereby ensuring the stability of the catalyst in long-term use, thereby improving the stability of the reaction.
  • Fig. 1 is the structural representation of the enhanced micro-interface reaction system of carbon dioxide hydrogenation to formic acid provided in Example 1 of the present invention
  • Example 2 is a schematic structural diagram of the liquid injector of the enhanced micro-interface reaction system for the hydrogenation of carbon dioxide to formic acid provided in Example 1 of the present invention.
  • 701-split-type micro-interface generator 7011-micro-interface generator body
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the enhanced micro-interface reaction system for producing formic acid by hydrogenation of carbon dioxide mainly includes a first reactive distillation column 10, a second reactive distillation column 110, a refining reactor 70, a gas
  • Mixing inlet 103, solvent and catalyst mixing inlet 103 are arranged at the bottom of the first reactive rectifying tower 10 and the second reactive rectifying tower 110 to fill the entire first reactive rectifying tower 10,
  • the tops of the second reactive distillation column 110, the first reactive distillation column 10, and the second reactive distillation column 110 are provided with a formic acid outlet 105 for discharging the product formic acid, and the formic acid coming out of the formic acid outlet 105 subsequently enters Further purification is carried out in the gas-liquid separation tank 20, the hydrogen from the hydrogen inlet 101 is stored in the hydrogen storage tank 40, the carbon dioxide from the carbon dioxide inlet 102 is stored in the carbon dioxide storage tank 50, and the solvent and the catalyst are mixed from the inlet 103.
  • the catalyst is stored in the solvent, catalyst storage tank 60 .
  • the interior of the first reactive distillation column 10 is provided with three shunt-type micro-interface generators 701 arranged in sequence from top to bottom.
  • Channel 7012, the split-flow micro-interface generator 701 located in the upper part is arranged between the trays, and communicates with the hydrogen inlet 101 for dispersing and crushing the incoming hydrogen, and the two split-flow micro-interface generators 701 located in the lower part are arranged close to each other.
  • the bottom of the first reactive distillation column 10 is connected with the carbon dioxide inlet 102 for dispersing and crushing the incoming carbon dioxide.
  • the upper part of the first reactive distillation column 10 is opposite to the split channel 7012 on the split flow micro interface generator 701 in the middle part, and the split channel 7012 of the split flow micro interface generator 701 at the bottom faces the first reactive distillation column 10 bottom of.
  • the shunt channel 7012 is used to uniformly distribute and collect the bubbles coming out of the micro-interface generator body 7011, and the direction of the shunt channel 7012 is adjusted to improve the effect of convection and strengthening with the liquid phase.
  • the second reactive distillation column 110 is provided with a split-flow type micro-interface generator 701, and the number of split-flow type micro-interface generators 701 is two, which are respectively arranged on the adjacent trays inside the second reactive distillation column 110.
  • the shunt channel 7012 on the upper shunt-type micro-interface generator 701 is set downward, and the shunt channel 7012 on the lower shunt-type micro-interface generator 701 is set upward.
  • the shunt channels 7012 provided on the two micro-interface generator bodies 7011 are oriented opposite to improve the effect of distribution and hedging.
  • a liquid injector 106 is provided in the first reactive rectification tower 10 and the second reactive rectification tower 110, the liquid injector 106 communicates with the solvent and catalyst mixing inlet 103, and the liquid injector 106 is semicircular.
  • the bottom surface of the liquid injector 106 is in close contact with the side walls of the first reactive rectification tower 10 and the second reactive rectification tower 110, and a plurality of liquid injection pipes 1061 are arranged in the liquid injector 106, and the liquid injection pipes 1061
  • a spray head 1062 is connected, the spray head 1062 is evenly distributed on the semicircular surface, and the bottom surface of the liquid injector 106 communicates with the solvent and catalyst mixing inlet 103 .
  • the split channel 7012 of the split-flow micro-interface generator 701 at the bottom of the first reactive rectification column 10 faces downwards, which is also to strengthen the interaction with the liquid phase ejected from the liquid injector 106 .
  • the formic acid product from the formic acid outlet 105 passes through the fine reactor 70 and the gas-liquid separation tank 20 in turn, and the reactant after the reaction from the fine reactor 70 enters the gas-liquid separation tank 20 for gas-liquid separation and purification.
  • the top is connected with a gas phase return pipeline 90 for separating the gas phase in the formic acid and returning to the first reactive distillation column 10 and the second reactive distillation column 110, and the gas-liquid separation tank 20 is connected with a separation column 80 for
  • the material extracted from the gas-liquid separation tank 20 is further purified and separated, and the tops of the separation tower 80 and the fine reactor 70 are both provided with pipes communicating with the gas-phase return pipe 90, so as to return the gas phase to the first
  • the bottom of the reactive distillation column 10 , the second reactive distillation column 110 , and the gas-liquid separation tank 20 are connected with a purification column 100 for purifying the bottom material in the purification column 100 and sending it to the separation column 80 .
  • the fine reactor 70 is provided with a split-flow micro-interface generator 701, and the split-flow micro-interface generator 701 is preferably arranged at the bottom of the fine reactor 70, below the catalyst bed, so that it is relatively close to the product outlet It is more conducive to improve the reaction efficiency of the product, and the direction of the distribution channel 7012 is set toward the side wall of the fine reactor 70, which is more conducive to further improving the reaction efficiency.
  • Example 2 3 4 5 catalyst Iron formate cobalt formate Manganese formate Nickel formate Top liquid (g) 2.8 4.4 1.6 2.0 Formic acid content (%) 98.5 98.3 98.8 98.9
  • Example 6 7 8 9 10 solvent n-decane Isododecane n-tetradecane isotetradecane n-hexadecane Top liquid (g) 3.4 3.8 3.7 3.7 3.9 Formic acid content (%) 96.6 98.7 98.6 98.6 98.9
  • Example 11 12 13 temperature(°C) 130 140 160 Top liquid (g) 2.3 2.9 3.3 Formic acid content (%) 99.2 98.9 98.7
  • the installation position is not limited. It can be external or built-in. When built-in, it can also be installed in the first reactive distillation column 10. .
  • the side walls of the second reactive distillation column 110 are arranged opposite to each other, so as to realize the hedging of the micro-bubbles coming out of the outlet of the micro-interface generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种二氧化碳加氢制甲酸的强化微界面反应系统及方法,二氧化碳加氢制甲酸的强化微界面反应系统包括:包括:第一反应精馏塔、第二反应精馏塔、精反应器,第一反应精馏塔与第二反应精馏塔相互并联;第一反应精馏塔与第二反应精馏塔的侧壁由上至下依次设置有氢气进口、二氧化碳进口以及溶剂、催化剂混合进口;第一反应精馏塔、第二反应精馏塔、以及精反应器内设置有分流型微界面发生器,分流型微界面发生器为在微界面发生器本体上设置有多个分流通道,氢气进口以及所述二氧化碳进口与设置在第一反应精馏塔、第二反应精馏塔内部的任意分流型微界面发生器连接。本发明的强化微界面反应系统降低了加氢反应的温度、压力。

Description

一种二氧化碳加氢制甲酸的强化微界面反应系统及方法 技术领域
本发明涉及甲酸反应制备领域,具体而言,涉及一种二氧化碳加氢制甲酸的强化微界面反应系统及方法。
背景技术
甲酸(CAS号:64-18-6),又名蚁酸,是含碳数最少的羧酸,具有较强的酸性,是现代有机化工的重要原料。甲酸合成方法众多,包括(1)甲醇羰基合成法,通过催化剂催化甲醇和一氧化碳反应生成甲酸甲酯,然后再水解得到甲酸和甲醇;(2)甲酰胺法,通过催化剂催化一氧化碳和胺在甲醇溶液中生成甲酰胺,然后甲酰胺在酸性条件下水解得到甲酸;(3)二氧化碳法,通过催化剂催化二氧化碳加氢直接制备甲酸。
在以上甲酸合成方法中,近20年兴起的二氧化碳加氢制备甲酸具有最高的理论原子经济性,是一条非常有潜力的甲酸合成路径。但由于二氧化碳和氢气反应生成甲酸在热力学上受限,现有的过程均需要在反应体系中加入有机或无机碱来和甲酸反应生成甲酸盐,以推动反应朝生成甲酸的方向移动。比如,Nature Catal.(2018,1,743-747)报道了一种以卡宾铜为催化剂催化二氧化碳和氢气反应制备甲酸的方法,但反应需加入过量的强有机碱二氮杂二环来和甲酸反应;Angew.Chem.Int.Ed.(2019,58,722-726)报道了一种以三(五氟苯基)硼为催化剂催化二氧化碳和氢气反应制备甲酸的方法,但反应需加入过量的无机碱碳酸钾和甲酸反应;专利CN201810255395.8中报道了以钌配合物为催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的KHCO 3来和甲酸反应以推动过程进行;专利CN105367404B中报道了以纳米多孔钯催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的氢氧化钠或叔丁醇钠来和甲酸反应以推 动过程进行;专利CN106622224A中报道了以纳米金基催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的三乙胺或三乙醇胺等来和甲酸反应以推动过程进行。此外,由于甲酸酸性较强,能和许多有机金属化合物发生反应,现有方法报道的催化剂在甲酸条件下并不稳定,使得催化剂快速失活。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种强化微界面反应系统,该强化微界面反应系统一方面通过设置反应精馏塔来推动反应的顺利进行,从而避免了需要添加有机或者无机碱来推动反应制备甲酸的过程,提高了反应效率简化了反应操作,另一方面通过在反应精馏塔内设置微界面发生器将进入的气相高效破碎成微米级气泡,并分散到溶剂、催化剂中形成微界面体系,以数十倍地提高反应气液内的气液相界面积,大幅提高气相向液相的传质速率。
本发明的第二目的在于提供一种采用上述强化微界面反应系统进行制甲酸的反应方法,该反应方法操作简便,得到的甲酸纯度高,产品品质高,值得广泛推广进行应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种二氧化碳加氢制甲酸的强化微界面反应系统,包括:第一反应精馏塔、第二反应精馏塔、精反应器,所述第一反应精馏塔与所述第二反应精馏塔相互并联;所述第一反应精馏塔与所述第二反应精馏塔的侧壁由上至下依次设置有氢气进口、二氧化碳进口以及溶剂、催化剂混合进口;
所述第一反应精馏塔、所述第二反应精馏塔、以及所述精反应器内设置有分流型微界面发生器,所述分流型微界面发生器为在微界面发生器本体上设置有多个分流通道,所述氢气进口以及所述二氧化碳进口与设置在所述第一反应精馏塔、所述第二反应精馏塔内部的任意所述分流型微界面发生器连接,所述 分流型微界面发生器设置在第一反应精馏塔以及第二反应精馏塔的降液管内;
所述溶剂、催化剂混合进口设置在所述第一反应精馏塔与所述第二反应精馏塔的塔底,以用于将进入的溶剂、催化剂充满整个所述第一反应精馏塔与所述第二反应精馏塔;
所述第一反应精馏塔与所述第二反应精馏塔的塔顶设置有甲酸出口以用于产品甲酸的排出,从所述甲酸出口出来的甲酸后续进入所述精反应器进行精反应,所述第二反应精馏塔。
现有技术中的甲酸合成方法中,由于二氧化碳和氢气反应生成甲酸在热力学上受限,现有的过程均需要在反应体系中加入有机或无机碱来和甲酸反应生成甲酸盐,以推动反应朝生成甲酸的方向移动。比如,Nature Catal.(2018,1,743-747)报道了一种以卡宾铜为催化剂催化二氧化碳和氢气反应制备甲酸的方法,但反应需加入过量的强有机碱二氮杂二环来和甲酸反应;Angew.Chem.Int.Ed.(2019,58,722-726)报道了一种以三(五氟苯基)硼为催化剂催化二氧化碳和氢气反应制备甲酸的方法,但反应需加入过量的无机碱碳酸钾和甲酸反应;专利CN201810255395.8中报道了以钌配合物为催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的KHCO 3来和甲酸反应以推动过程进行;专利CN105367404B中报道了以纳米多孔钯催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的氢氧化钠或叔丁醇钠来和甲酸反应以推动过程进行;专利CN106622224A中报道了以纳米金基催化剂催化二氧化碳加氢制甲酸的方法,反应需以过量的三乙胺或三乙醇胺等来和甲酸反应以推动过程进行,可见现有技术中均需要添加一定量的有机或无机碱来推动反应的进行,本发明为了解决上述技术问题提供了一种新型的强化微界面反应系统,在该强化微界面反应系统中通过采用了反应精馏塔设备替代了以往的反应方式,直接在反应精馏塔内达到边反应边精馏的目的,并且通过在反应精馏塔内设置微界面发生器提高了反应效率,大幅度提高传质速率,降低了加氢反应温度与压力。
本发明之所以反应精馏塔设置为两个,且两个之间相互并联同时进行操 作,是为了提高处理量,也相应的提高了反应效率。
在实际加氢操作时,先通入二氧化碳至反应精馏塔内真空置换2-3次后,然后通入二氧化碳至一定的压力,二氧化碳先通入到分流型微界面发生器中分散破碎,后续通入氢气至一定压力,氢气同样的通入到分流型微界面发生器中进行分散破碎,两种气相均经过分散破碎后,能够显著提高后续加氢反应的反应效果,加热至反应温度后,一般反应8-10h,从塔顶收集产品甲酸溶液。
本发明在第一反应精馏塔、第二反应精馏塔、精反应器中特意设置了分流型微界面发生器,所谓分流型微界面发生器的具体结构为在微界面发生器本体上设置有多个分流通道。分流通道最好成弯曲状,设置在微界面发生器本体的出口处。
优选地,所述第一反应精馏塔内的分流型微界面发生器的个数为3个,3个所述分流型微界面发生器由上至下依次排列,位于上部的所述分流型微界面发生器设置在所述第一反应精馏塔内的塔板之间,与氢气进口相通用于将进入的氢气进行分散破碎,位于下部的两个所述分流型微界面发生器设置在靠近所述第一反应精馏塔的底部,均与二氧化碳进口相通用于将进入的二氧化碳进行分散破碎。
优选地,所述第一反应精馏塔内部的上部与中部的所述分流型微界面上的分流通道方向相对,位于底部的所述分流型微界面发生器的分流通道朝向所述第一反应精馏塔的底部。
优选地,所述第二反应精馏塔内部的分流型微界面发生器的个数为两个,分别设置在所述第二反应精馏塔内部的相邻塔板之间。
优选地,所述第二反应精馏塔内部,位于上部的分流型微界面发生器与所述氢气进口相通,位于下部的分流型微界面发生器与所述二氧化碳进口连通。
优选地,所述第二反应精馏塔内部的位于上部的分流型微界面发生器上的分流通道设置方向朝下,位于下部的分流型微界面发生器上的分流通道设置方向朝上。这样两个分流通道的设置方向正好相对,一方面起到了对冲的效果, 另外一方面对气泡进行分散布集的效果。
对于本发明的反应精馏塔,无论是第一反应精馏塔还是第二反应精馏塔内均设置有若干的塔板,一般催化剂以及溶剂从塔釜进入,氢气以及二氧化碳从第一反应精馏塔以及第二反应精馏塔的中段进入,为了提高反应效果,第一反应精馏塔的微界面发生器为三个,且三个分流型微界面发生器设置的分流通道朝向是不一样的,顶部的与中部的相对设置是为了更好的起到对冲效果,底部的设置在第一反应精馏塔的塔釜位置以靠近所述溶剂、催化剂混合进口,并且底部的微界面发生器选择与所述二氧化碳进口相通,因为这样可以使得先通入的二氧化碳与液相更好的进行反应,其分流通道的朝向向下也是为了提高与底部液相的接触,更能加强后续与液体喷射器之间的互相接触。第二反应精馏塔内部设置的微界面发生器类型也同样为分流型微界面发生器,与第一反应精馏塔内部设置的微界面发生器的类型本身一致,能起到从微界面发生器出来的微气泡进行优化布集,提高反应效率的效果。
优选地,所述精反应器内部的分流型微界面发生器的分流通道设置方向朝向所述精反应器的侧壁,产物出口正好对着微界面发生器的气体分散破碎出口,这样将多个分流通道设置在气体分散破碎出口这样可以对出来的分散气泡进行布集的作用,从而可以使比较多的微气泡聚集在产物出口周围,提高反应效果,所以可见本发明创新性的将微界面发生器与分流通道进行结合应用,提高了本身微界面发生器的应用效果。
总之,第一反应精馏塔、第二反应精馏塔以及精反应器内的微界面发生器将气相破碎成微米尺度的微气泡,并将微气泡释放到反应精馏塔以及精反应器的内部,以增大加氢反应中气相与液相之间的相界传质面积,使得两相充分接触,提高反应效率,缩短反应时间,充分降低反应压力、温度。
需要注意的是,本发明的强化微界面反应系统中所设置的每个微界面发生器虽然本身类型是相同的,且分流型微界面发生器的微界面发生器本体为气动式微界面发生器。但是通入的气相类型与具体功能作用均是不同的,第二反应 精馏塔也是为了对第一反应精馏塔的反应效果起到补充增效的效果,并且为了起到更好的反应效果,特采用了具有分流通道的特殊结构的微界面发生器。
可见,本发明的强化微界面反应系统正是由于进入的两种气相原料均需要采用微界面发生器进行分散破碎,所以需要根据进入的气相类型、每个微界面发生器的具体作用来调整微界面发生器的设置位置、具体类型以及进样方式,从而达到最优的反应效果。为了对分流型微界面发生器在反应精馏塔内部进行很好的固定,特在分流型微界面发生器的两侧安装固定杆,以固定在反应精馏塔的内壁上。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属 于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
优选地,第一反应精馏塔、第二反应精馏塔内均设置有液体喷射器,所述液体喷射器与所述溶剂、催化剂混合进口相通。
优选地,所述液体喷射器呈半圆型,所述液体喷射器的底面紧贴在第一反应精馏塔、第二反应精馏塔的侧壁上,所述液体喷射器内布设有多根液体喷射管,所述液体喷射管连接有喷射头,所述喷射头均匀分布在半圆面上。
优选地,所述液体喷射器的底面与所述溶剂、催化剂混合进口相通。
进入的液相主要是催化剂和溶剂,为了提高催化剂的催化效果,将催化剂 通过液体喷射器喷射的方式分散到反应精馏塔的内部,更能提高其反应效果,尤其在液体喷射器内部布设有多根液体喷射管,每个液体喷射管相当于一个微通道,通过将液相进行多管道布设并以喷射的方式喷洒出去,加强了与气相的相互作用。所以,在液体喷射器内部布设的喷射管起到很好的导流作用,从而通过对液相更好的布集后,在采用微界面发生器对气相进行分散破碎的同时,也实现了对液相进行相应的微操作的目的。
优选地,所述精反应器连接有气液分离罐,从所述精反应器进行反应后的反应物进入气液分离罐进行气液分离纯化。
优选地,所述气液分离罐的顶部连接有气相返回管道,以用于将甲酸中的气相分离后返回第一反应精馏塔、第二反应精馏塔。
优选地,所述气液分离罐连接有分离塔以用于从所述气液分离罐采出的物料进行进一步纯化分离。
优选地,所述分离塔以及所述精反应器的顶部均设置有与所述气相返回管道相连通的管道,以用于将气相分离后返回第一反应精馏塔、第二反应精馏塔。
优选地,所述气液分离罐的底部连接有纯化塔,以用于在所述纯化塔中将底部物料纯化后送入所述分离塔中。
精反应器设置的作用是为了对从塔顶出来的物料进行进一步的反应提高产率,然后进入到气液分离罐中,从气液分离罐中分离出来的气相主要有二氧化碳与氢气,返回到所述反应精馏塔中可以重新进行反应利用。同样的,进入到分离塔中从顶部分离出来的气相也主要是二氧化碳与氢气,也可以返回进行重复利用。
另外,从气液分离罐底部出来的物质也含有部分的目的产物甲酸,为了将这部分物质中的甲酸进行分离收集,本发明还设置了纯化塔,通过纯化塔的精馏提纯,将其中富集了甲酸的组分返回到最后的分离塔中与气液分离罐来的物料进行混合提纯分离,最终得到目的产物储存在产品罐中。
此外,本发明还提供了一种二氧化碳加氢制甲酸的反应方法,包括如下步 骤:
将氢气、二氧化碳、溶剂以及催化剂混合微界面分散破碎后进行加氢反应,再进行纯化得到甲酸,加氢反应的温度为120-160℃,加氢反应的压力为0.05-2MPa。
优选地,所述溶剂为含10-16个碳的直链或支链烷烃;
所述催化剂为甲酸盐,包括甲酸铜、甲酸铁、甲酸钴、甲酸锰、甲酸镍中的一种或几种;
所述溶剂与所述催化剂的质量比为(10:1)-(1000:1)。
与现有技术中的二氧化碳加氢制备甲酸的方法相比,本发明的方法使用在甲酸中非常稳定的甲酸盐为催化剂,从而确保了催化剂在长期使用中的稳定性,进而提高了反应的稳定性。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过同时设置两个反应精馏塔来推动反应的顺利进行,从而避免了需要添加有机或者无机碱来推动反应,通过甲酸盐酸化制备甲酸的过程,提高了反应效率简化了反应操作;
(2)本发明的强化微界面反应系统通过设置在两个反应精馏塔内部的微界面发生器将进入的气相高效破碎成微米级气泡,并分散到溶剂、催化剂中形成微界面体系,以数十倍地提高反气液内的气液相界面积,大幅提高气相向液相的传质速率;
(3)本发明的方法使用在甲酸中非常稳定的甲酸盐为催化剂,从而确保了催化剂在长期使用中的稳定性,进而提高了反应的稳定性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并 不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的二氧化碳加氢制甲酸的强化微界面反应系统的结构示意图;
图2为本发明实施例1提供的二氧化碳加氢制甲酸的强化微界面反应系统的液体喷射器的结构示意图。
附图说明:
10-第一反应精馏塔;                 101-氢气进口;
102-二氧化碳进口;                  103-溶剂、催化剂混合进口;
105-甲酸出口;                      106-液体喷射器;
1061-液体喷射管;                   1062-喷射头;
20-气液分离罐;                     30-产品罐;
40-氢气储罐;                       50-二氧化碳储罐;
60-溶剂、催化剂储罐;               70-精反应器;
701-分流型微界面发生器;            7011-微界面发生器本体;
7012-分流通道;                     80-分离塔;
90-气相返回管道;                   100-纯化塔;
110-第二反应精馏塔。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所 获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例1
参阅图1所示,为本发明实施例提供的二氧化碳加氢制甲酸的强化微界面反应系统,其主要包括第一反应精馏塔10、第二反应精馏塔110、精反应器70、气液分离罐20、分离塔80、以及纯化塔100;第一反应精馏塔10、第二反应精馏塔110的侧壁由上至下依次设置有氢气进口101、二氧化碳进口102以及溶剂、催化剂混合进口103,溶剂、催化剂混合进口103设置在第一反应精馏塔10、第二反应精馏塔110的塔底,以用于将进入的溶剂、催化剂充满整个第一反应精馏塔10、第二反应精馏塔110,第一反应精馏塔10、第二反应精馏塔 110的塔顶设置有甲酸出口105以用于产品甲酸的排出,从所述甲酸出口105出来的甲酸后续进入到气液分离罐20中进行进一步的纯化,氢气进口101进来的氢气储存在氢气储罐40中,二氧化碳进口102进来的二氧化碳储存在二氧化碳储罐50中,溶剂、催化剂混合进口103进来的溶剂、催化剂储存在溶剂、催化剂储罐60里面。
第一反应精馏塔10的内部均设置有由上至下依次排列的3个分流型微界面发生器701,分流型微界面发生器701为在微界面发生器本体7011上设置有多个分流通道7012,位于上部的分流型微界面发生器701设置在塔板之间,与氢气进口101相通用于将进入的氢气进行分散破碎,位于下部的两个分流型微界面发生器701设置在靠近第一反应精馏塔10的底部,均与二氧化碳进口102相通用于将进入的二氧化碳进行分散破碎。
第一反应精馏塔10内部的上部与中部的分流型微界面发生器701上的分流通道7012方向相对,位于底部的分流型微界面发生器701的分流通道7012朝向第一反应精馏塔10的底部。分流通道7012是为了对从微界面发生器本体7011出来的气泡进行均匀布集的作用,通过分流通道7012朝向的调整以提高对流以及与液相之间加强的效果。
第二反应精馏塔110内部设置有分流型微界面发生器701,分流型微界面发生器701的个数为2个,分别设置在所述第二反应精馏塔110内部的相邻塔板之间,位于上部的分流型微界面发生器701上的分流通道7012设置方向朝下,位于下部的分流型微界面发生器701上的分流通道7012设置方向朝上。两个微界面发生器本体7011上设置的分流通道7012朝向相对以提高分布加对冲的效果。
另外,在第一反应精馏塔10、第二反应精馏塔110内设置有液体喷射器106,所述液体喷射器106与所述溶剂、催化剂混合进口103相通,液体喷射器106呈半圆型,所述液体喷射器106的底面紧贴在第一反应精馏塔10、第二反应精馏塔110的侧壁上,液体喷射器106内布设有多根液体喷射管1061,液 体喷射管1061连接有喷射头1062,所述喷射头1062均匀分布在半圆面上,液体喷射器106的底面与所述溶剂、催化剂混合进口103相通。尤其第一反应精馏塔10底部的分流型微界面发生器701的分流通道7012朝向向下,也是为了与液体喷射器106喷出来的液相互相加强作用。
从甲酸出口105出来的甲酸产物依次经过精反应器70以及气液分离罐20,从精反应器70进行反应后的反应物进入气液分离罐20进行气液分离纯化,气液分离罐20的顶部连接有气相返回管道90,以用于将甲酸中的气相分离后返回所述第一反应精馏塔10、第二反应精馏塔110,气液分离罐20连接有分离塔80以用于从所述气液分离罐20采出的物料进行进一步纯化分离,分离塔80以及精反应器70的顶部均设置有与气相返回管道90相连通的管道,以用于将气相分离后返回第一反应精馏塔10、第二反应精馏塔110,气液分离罐20的底部连接有纯化塔100,以用于在纯化塔100中将底部物料纯化后送入分离塔80中。
其中,在精反应器70中设置有分流型微界面发生器701,该分流型微界面发生器701优选设置在所述精反应器70内的底部,催化剂床层的下方,这样比较靠近产物出口更有利于提高产物的反应效率,分流通道7012设置方向朝向所述精反应器70的侧壁,这样更有利于进一步提高反应效率。
具体反应过程中,在第一反应精馏塔10、第二反应精馏塔110的塔釜中均加入200ml正十二烷,10g甲酸铜,通过二氧化碳和真空置换3次,然后通入二氧化碳至2MPa,再通入氢气至2MPa,加热塔釜至120℃,反应8h,第一反应精馏塔10在塔顶收集到液体3.7g,经核磁标定含甲酸98.9%,塔顶收集的液体依次经过精反应器70、气液分离罐20进行气液分离,气液分离得到的产物经过分离塔后储存在产品罐30里面。
实施例2-5
其他操作步骤与实施例1一致,区别在于采用不同催化剂进行反应,结果 如表1所示:
表1.使用不同催化剂反应结果
实施例 2 3 4 5
催化剂 甲酸铁 甲酸钴 甲酸锰 甲酸镍
塔顶液体(g) 2.8 4.4 1.6 2.0
甲酸含量(%) 98.5 98.3 98.8 98.9
实施例6-10
其他操作步骤与实施例1一致,区别在于使用不同溶剂进行反应,结果如表2所示:
表2.使用不同溶剂反应结果
实施例 6 7 8 9 10
溶剂 正癸烷 异十二烷 正十四烷 异十四烷 正十六烷
塔顶液体(g) 3.4 3.8 3.7 3.7 3.9
甲酸含量(%) 96.6 98.7 98.6 98.6 98.9
实施例11-13
其他操作步骤与实施例1一致,区别在于使用不同温度进行反应,结果如表3所示:
表3.使用不同温度反应结果
实施例 11 12 13
温度(℃) 130 140 160
塔顶液体(g) 2.3 2.9 3.3
甲酸含量(%) 99.2 98.9 98.7
实施例14
其他操作步骤与实施例1一致,只是先通入二氧化碳至0.05MPa,再通入 氢气至0.05MPa,在塔顶收集到液体3.3g,经核磁标定含甲酸97.5%。
在上述实施例中,标定的仅仅是从第一反应精馏塔10出来的物质中甲酸的具体含量,实际操作时,第二反应精馏塔110出来的物质中甲酸的具体含量要略高于第一反应精馏塔10,因为其通过采用设置了分流通道的微界面发生器提高了反应效率,至于后续通过精反应器70后出来的产物中,其甲酸含量必然高于从第一反应精馏塔10、第二反应精馏塔110塔顶出来的物质中的甲酸含量。此外,为了增加分散、传质效果,也可以多增设额外的微界面发生器,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在第一反应精馏塔10、第二反应精馏塔110内的侧壁上相对设置,以实现从微界面发生器的出口出来的微气泡发生对冲。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种二氧化碳加氢制甲酸的强化微界面反应系统,其特征在于,包括:第一反应精馏塔、第二反应精馏塔、精反应器,所述第一反应精馏塔与所述第二反应精馏塔相互并联;所述第一反应精馏塔与所述第二反应精馏塔的侧壁由上至下依次设置有氢气进口、二氧化碳进口以及溶剂、催化剂混合进口;
    所述第一反应精馏塔、所述第二反应精馏塔、以及所述精反应器内设置有分流型微界面发生器,所述分流型微界面发生器为在微界面发生器本体上设置有多个分流通道,所述氢气进口以及所述二氧化碳进口与设置在所述第一反应精馏塔、所述第二反应精馏塔内部的任意所述分流型微界面发生器连接,所述分流型微界面发生器设置在第一反应精馏塔以及第二反应精馏塔的降液管内;
    所述溶剂、催化剂混合进口设置在所述第一反应精馏塔与所述第二反应精馏塔的塔底,以用于将进入的溶剂、催化剂充满整个所述第一反应精馏塔与所述第二反应精馏塔;
    所述第一反应精馏塔与所述第二反应精馏塔的塔顶设置有甲酸出口以用于产品甲酸的排出,从所述甲酸出口出来的甲酸后续进入所述精反应器进行精反应,所述第二反应精馏塔。
  2. 根据权利要求1所述的强化微界面反应系统,其特征在于,所述第一反应精馏塔内的分流型微界面发生器的个数为3个,3个所述分流型微界面发生器由上至下依次排列,位于上部的所述分流型微界面发生器设置在所述第一反应精馏塔内的塔板之间,与氢气进口相通用于将进入的氢气进行分散破碎,位于下部的两个所述分流型微界面发生器设置在靠近所述第一反应精馏塔的底部,均与二氧化碳进口相通用于将进入的二氧化碳进行分散破碎。
  3. 根据权利要求2所述的强化微界面反应系统,其特征在于,所述第一反应精馏塔内部的上部与中部的所述分流型微界面发生器上的分流通道方向相对,位于底部的所述分流型微界面发生器的分流通道朝向所述第一反应精馏塔的底部。
  4. 根据权利要求1所述的强化微界面反应系统,其特征在于,所述第二反应精馏塔内部的分流型微界面发生器的个数为2个,分别设置在所述第二反应精馏塔内部的相邻塔板之间。
  5. 根据权利要求4所述的强化微界面反应系统,其特征在于,所述第二反应精馏塔内部的位于上部的分流型微界面发生器上的分流通道设置方向朝下,位于下部的分流型微界面发生器上的分流通道设置方向朝上。
  6. 根据权利要求5所述的强化微界面反应系统,其特征在于,所述精反应器内部的分流型微界面发生器的分流通道设置方向朝向所述精反应器的侧壁。
  7. 根据权利要求1-6任一项所述的强化微界面反应系统,其特征在于,所述第一反应精馏塔与所述第二反应精馏塔内设置有液体喷射器,所述液体喷射器与所述溶剂、催化剂混合进口相通。
  8. 根据权利要求7所述的强化微界面反应系统,其特征在于,所述液体喷射器呈半圆型,所述液体喷射器的底面紧贴在所述第一反应精馏塔与所述第二反应精馏塔的侧壁上,所述液体喷射器内布设有多根液体喷射管,所述液体喷射管连接有喷射头,所述喷射头均匀分布在半圆面上。
  9. 采用权利要求1-8任一项所述的二氧化碳加氢制甲酸的强化微界面反应系统的反应方法,其特征在于,包括如下步骤:
    将氢气、二氧化碳、溶剂以及催化剂混合微界面分散破碎后进行加氢反应,再进行纯化得到甲酸,加氢反应的温度为120-160℃,加氢反应的压力为0.05-2MPa。
  10. 根据权利要求9所述的反应方法,其特征在于,所述溶剂为含10-16个碳的直链或支链烷烃;
    所述催化剂为甲酸盐,包括甲酸铜、甲酸铁、甲酸钴、甲酸锰、甲酸镍中的一种或几种;
    所述溶剂与所述催化剂的质量比为(10:1)-(1000:1)。
PCT/CN2021/109737 2020-11-20 2021-07-30 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法 WO2022105300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011309701.5A CN112403006A (zh) 2020-11-20 2020-11-20 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
CN202011309701.5 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105300A1 true WO2022105300A1 (zh) 2022-05-27

Family

ID=74774833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109737 WO2022105300A1 (zh) 2020-11-20 2021-07-30 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法

Country Status (2)

Country Link
CN (1) CN112403006A (zh)
WO (1) WO2022105300A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112403006A (zh) * 2020-11-20 2021-02-26 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
CN113041962B (zh) * 2021-04-01 2023-05-26 南京延长反应技术研究院有限公司 一种丙烯羰基化制丁醛的反应系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331573A1 (en) * 2009-06-26 2010-12-30 Basf Se Process for preparing formic acid
WO2020101413A1 (ko) * 2018-11-16 2020-05-22 한국과학기술연구원 이산화탄소의 수소화 반응에 의한 포름산 제조 방법 및 제조 장치
CN111569454A (zh) * 2020-03-31 2020-08-25 南京延长反应技术研究院有限公司 对二甲苯制备对苯二甲酸的内置微界面氧化系统及方法
CN112321409A (zh) * 2020-11-20 2021-02-05 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的反应系统及方法
CN112403006A (zh) * 2020-11-20 2021-02-26 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
CN112457187A (zh) * 2020-11-20 2021-03-09 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的智能微界面反应系统及方法
CN112479852A (zh) * 2020-11-20 2021-03-12 南京延长反应技术研究院有限公司 一种甲酸的制备系统及方法
CN112657430A (zh) * 2020-11-20 2021-04-16 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的微界面反应系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100331573A1 (en) * 2009-06-26 2010-12-30 Basf Se Process for preparing formic acid
WO2020101413A1 (ko) * 2018-11-16 2020-05-22 한국과학기술연구원 이산화탄소의 수소화 반응에 의한 포름산 제조 방법 및 제조 장치
CN111569454A (zh) * 2020-03-31 2020-08-25 南京延长反应技术研究院有限公司 对二甲苯制备对苯二甲酸的内置微界面氧化系统及方法
CN112321409A (zh) * 2020-11-20 2021-02-05 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的反应系统及方法
CN112403006A (zh) * 2020-11-20 2021-02-26 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
CN112457187A (zh) * 2020-11-20 2021-03-09 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的智能微界面反应系统及方法
CN112479852A (zh) * 2020-11-20 2021-03-12 南京延长反应技术研究院有限公司 一种甲酸的制备系统及方法
CN112657430A (zh) * 2020-11-20 2021-04-16 南京延长反应技术研究院有限公司 一种二氧化碳加氢制甲酸的微界面反应系统及方法

Also Published As

Publication number Publication date
CN112403006A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022105300A1 (zh) 一种二氧化碳加氢制甲酸的强化微界面反应系统及方法
CN112321409A (zh) 一种二氧化碳加氢制甲酸的反应系统及方法
WO2022198873A1 (zh) 一种辛醇的产生系统及方法
CN112479852A (zh) 一种甲酸的制备系统及方法
EP4316642A1 (en) Reaction system and method for preparing butyraldehyde by propylene carbonylation
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
CN113061081A (zh) 一种丙烯羰基化制丁醛的微界面强化反应系统及方法
WO2022011865A1 (zh) 一种采用合成气制乙醇的反应系统及方法
CN103007862A (zh) 一种乙炔羰基化法合成丙烯酸及酯的气液搅拌反应器
CN113061080A (zh) 一种丙烯羰基化制丁醛的微界面反应系统及方法
CN112409158A (zh) 一种甲酸的强化微界面制备系统及方法
WO2022110871A1 (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN111087378A (zh) 一种制备碳酸乙烯酯的方法
CN112774592B (zh) 一种粗对苯二甲酸加氢精制的微界面反应系统及方法
CN112028768A (zh) 一种草酸酯加氢制备乙醇酸酯的反应系统及方法
CN112452268A (zh) 一种草酸酯法制备乙二醇的微界面反应系统及方法
CN112657430A (zh) 一种二氧化碳加氢制甲酸的微界面反应系统及方法
CN112321411A (zh) 一种甲酸的微界面制备系统及方法
CN112457187A (zh) 一种二氧化碳加氢制甲酸的智能微界面反应系统及方法
WO2023284024A1 (zh) 正丁醛缩合制辛烯醛的微界面强化系统及制备方法
WO2022142326A1 (zh) 一种粗对苯二甲酸加氢精制的反应系统及方法
CN216024790U (zh) 一种正丁醛缩合制辛烯醛的微界面强化系统
CN112774579B (zh) 一种粗对苯二甲酸加氢精制的智能微界面反应系统及方法
CN214060374U (zh) 一种二氧化碳加氢制甲酸的反应系统
WO2022036838A1 (zh) 一种石油树脂加氢的微界面反应系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893452

Country of ref document: EP

Kind code of ref document: A1