WO2022198874A1 - 一种柴油加氢的微界面反应系统及方法 - Google Patents

一种柴油加氢的微界面反应系统及方法 Download PDF

Info

Publication number
WO2022198874A1
WO2022198874A1 PCT/CN2021/109752 CN2021109752W WO2022198874A1 WO 2022198874 A1 WO2022198874 A1 WO 2022198874A1 CN 2021109752 W CN2021109752 W CN 2021109752W WO 2022198874 A1 WO2022198874 A1 WO 2022198874A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
hydrogen
hydrogenation
reaction
tank
Prior art date
Application number
PCT/CN2021/109752
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
李磊
张锋
孟为民
王宝荣
杨高东
罗华勋
田洪舟
杨国强
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022198874A1 publication Critical patent/WO2022198874A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/72Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the invention relates to the field of diesel hydrogenation, in particular to a micro-interface reaction system and method for diesel hydrogenation.
  • Diesel oil is a product obtained by fractional distillation of petroleum at atmospheric pressure. If it is obtained directly from petroleum refining, the content of sulfur, nitrogen and oxygen in diesel oil is relatively high, and the content of olefins is relatively high. The high content of olefin in the product is prone to discoloration, and it will also affect the service life of the motor vehicle, and the degree of air pollution is relatively large.
  • the first object of the present invention is to provide a micro-interface reaction system for diesel hydrogenation.
  • the micro-interface reaction system reduces the reaction pressure by setting the No. 1 micro-interface unit and the No. 2 micro-interface unit outside the hydrogenation reactor. , the reaction temperature, the consumption of circulating hydrogen, improve the utilization rate of raw materials and hydrogen, improve product quality and yield, and save costs.
  • the second object of the present invention is to provide a method for diesel hydrogenation using the above-mentioned micro-interface reaction system.
  • the hydrogenated diesel oil obtained by the reaction is environmentally friendly and clean.
  • the invention provides a micro-interface reaction system for diesel hydrogenation, comprising a hydrogenation reactor, wherein a micro-interface generator is arranged inside the hydrogenation reactor to crush and disperse the incoming hydrogen;
  • the micro-interface generator is connected with a catalyst bed, and a shunt pipe is evenly arranged on the catalyst bed to uniformly disperse the feedstock oil into the hydrogenation reactor;
  • the No. 1 micro-interface unit and the No. 2 micro-interface unit are arranged outside the hydrogenation reactor to crush and disperse the hydrogen before entering the hydrogenation reactor;
  • the reaction material from the bottom of the hydrogenation reactor is used to separate the gas phase containing hydrogen sulfide and hydrogen through the high-pressure separation tank and the low-pressure separation tank, and the remaining desulfurized diesel oil is sent from the low-pressure separation tank to the rectification tower for desulfurization.
  • gas is separated from the reflux tank set at the top of the rectification column, naphtha is separated from the side line of the rectification column, and hydrogenated diesel oil is separated from the bottom of the rectification column.
  • the diesel hydrogenation reaction process has high energy consumption, large consumption of circulating hydrogen, high pressure and high temperature of the hydrogenation reactor, and relatively low production capacity.
  • a micro-interface generator is arranged inside the hydrogenation reactor to break and disperse the hydrogen into hydrogen micro-bubbles, thereby increasing the mass transfer area of the phase boundary between the hydrogen and the raw oil. Because the density of hydrogen is small and the density of raw oil is high, the micro-interface generator is set at the bottom of the hydrogenation reactor, and the hydrogen from the bottom is mixed with the raw oil from bottom to top, which prolongs the mixing time of hydrogen and raw oil.
  • the outlet of the micro-interface generator is connected to the catalyst bed, and a shunt pipe is arranged on the catalyst bed to evenly disperse the raw materials and hydrogen microbubbles from the micro-interface generator to the hydrogenation process inside the reactor.
  • a circulating fan blade is arranged inside the No. 1 micro-interface unit to circulate and stir the raw material liquid and hydrogen in the No. 1 micro-interface unit.
  • the No. 1 micro-interface unit is divided into two upper and lower micro-interface generators.
  • the upper micro-interface generator feeds the raw oil
  • the lower micro-interface generator is connected with a hydrogen gas inlet pipe.
  • the middle of the two micro-interface generators is a circulating fan blade, and the circulating fan blade is preferably three fan blades.
  • the raw oil flows from top to bottom and drives the circulation fan blades to rotate.
  • the micro-interface generator below breaks and disperses the hydrogen into hydrogen micro-bubbles. Due to the low density of hydrogen, the hydrogen micro-bubbles collide with the raw material oil from bottom to top, which increases the mass transfer area of the phase boundary and improves the utilization rate of hydrogen.
  • a water cooler and a cooling circulation pump are arranged in series outside the No. 2 micro-interface unit to cool and pressurize the reaction material in the high-pressure separation tank and then return it to the hydrogenation reactor.
  • the No. 2 micro-interface unit is provided with two micro-interface generators in parallel.
  • the two micro-interface generators are also connected in series with a water cooler and a cooling circulation pump.
  • the cooling circulation pump is used to pump the circulating oil separated from the high-pressure separation tank back to the No. 2
  • the water cooler cools the circulating oil
  • the two micro-interface generators break and disperse the hydrogen with the circulating oil as the medium and return it to the hydrogenation reactor.
  • the cooled circulating oil can control the temperature inside the hydrogenation reactor. Prevent hydrocracking reaction and catalyst carbon deposition due to high temperature.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different. To sum up, the micro-interface generator of the present invention belongs to the prior art.
  • the reaction system of the present invention further includes a hydrogen gas inlet pipe, the hydrogen from the hydrogen gas inlet pipe passes through the hydrogen diverter tank, and a part enters the hydrogenation feed heating furnace to be mixed with the raw materials to prevent the raw materials from being in the Coking is formed in the hydrogenation feed heating furnace, and the other part enters the No. 1 micro-interface unit or the No. 2 micro-interface unit.
  • the reaction system of the present invention further includes a raw material tank, the raw material tank is sequentially connected with a raw material booster pump and a raw material buffer tank, and the raw material buffer tank is connected with the hydrogenation feed heating furnace for mixing with hydrogen mix.
  • the reason why the raw material booster pump and the raw material buffer tank are arranged after the raw material tank is because if the flow rate of the raw material is slow, coking will occur in the fluidized bed reactor, which will affect the reaction efficiency, increase the overall flow in the reaction system, and increase the raw material oil.
  • the turbulent flow in the fluidized bed reactor reduces the residence time of the raw oil, prevents the adhesion of gums on the reaction system, and further prevents coking in the reaction system.
  • the reason why the heat exchanger and the feed heating furnace are installed before the feedstock oil passes through the fluidized bed reactor is that the temperature of the feedstock inlet of the fluidized bed reactor should be high enough to exceed the starting temperature of the catalyst in the fluidized bed reactor. live temperature.
  • part of the reaction material separated from the high-pressure separation tank is returned to the No. 2 micro-interface unit for mixing, dispersion and crushing with hydrogen.
  • a water cooling tank is arranged between the rectification tower and the reflux tank to liquefy the condensable gas.
  • a reboiler is arranged at the bottom of the rectification column to heat the reaction material from the bottom of the rectification column and return it to the rectification column.
  • the present invention also provides a method for adopting the above reaction system, comprising the steps of:
  • the raw material oil is mixed with hydrogen and heated, and then mixed with hydrogen to disperse and crush the micro-interface, and then carry out hydrogenation reaction. After separation and rectification, gas, naphtha and hydrogenated diesel oil are obtained.
  • the temperature of the hydrogenation reaction is 350-380° C.
  • the pressure of the hydrogenation reaction is 3.5-4.5 MPa.
  • the hydrogen is pre-dispersed and broken into hydrogen microbubbles before the hydrogenation reaction, which increases the mass transfer area of the camera, inhibits the occurrence of condensation reactions of olefinic substances, colloidal substances and active radical substances, and reduces the occurrence of condensation reactions.
  • the pressure and temperature during the hydrogenation reaction are reduced, the energy consumption is reduced, and the reaction efficiency is improved.
  • the reaction system of diesel hydrogenation of the present invention is provided with a micro-interface generator on the outside of the hydrogenation reactor, and the hydrogen is broken and dispersed into hydrogen microbubbles in advance, which reduces the reaction temperature and pressure, thereby reducing energy consumption and improving The reaction yield is improved, and the utilization rate of the raw material oil is improved;
  • reaction system of the diesel hydrogenation of the present invention cooperates with each other by arranging a circulating fan and a micro-interface generator, thereby better improving the utilization rate of the raw oil;
  • the reaction method for diesel hydrogenation of the present invention has a low reaction temperature and a significant drop in pressure, thereby reducing energy consumption and increasing production capacity.
  • Fig. 1 is the structural representation of a kind of micro-interface reaction system of diesel hydrogenation provided in the embodiment of the present invention
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 it is a schematic structural diagram of a micro-interface reaction system for diesel hydrogenation provided by an embodiment of the present invention, which mainly includes a hydrogen gas inlet pipe 10, a raw material tank 11, a hydrogenation reactor 30, and a micro-interface No. 1.
  • Unit 20 No. 2 micro-interface unit 21 , high pressure separation tank 40 , low pressure separation tank 41 and rectification tower 50 .
  • the raw material oil from the raw material tank 11 first passes through the raw material booster pump 12, which can increase the flow rate of the raw material in the reaction system, prevent the raw material from coking in the pipeline of the reaction system, the hydrogenation reactor 30 or other reactors, and affect the reaction rate.
  • the raw material oil passing through the raw material booster pump 12 enters the raw material buffer tank 13.
  • the raw material buffer tank 13 can control the pressure in the system and relieve the problem of excessive pressure and explosion in the reaction system. After that, the raw oil is sent to the hydrogenation reaction heat exchanger 14 to be mixed with hydrogen.
  • the hydrogen from the hydrogen inlet pipe 10 is divided into three routes and enters the hydrogenation system after passing through the hydrogen splitter tank 15.
  • the first route of hydrogen is mixed with the raw material oil from the raw material tank 11 and enters the hydrogenation reaction heat exchanger 14 together. Preheating, the preheated feedstock oil and hydrogen enter the hydrogenation feed heating furnace 17 to be heated to the reaction temperature.
  • the second route of hydrogen is sent to the No. 1 micro-interface unit 20 through the hydrogen filter 18 .
  • the hydrogen filter 18 can filter out the impurity air to ensure that the raw material oil in the No. 1 micro-interface unit 20 is mixed with high-purity hydrogen.
  • the second path of hydrogen is connected to the micro-interface generator 301 at the bottom of the No. 1 micro-interface unit 20.
  • the third route of hydrogen enters the No. 2 micro-interface unit 21 , is mixed with the mixed oil in advance, and is water-cooled by the water cooler 212 .
  • the first-path hydrogen and the raw material oil are mixed in the hydrogenation heat exchanger and then preheated, and the preheated raw material oil and hydrogen are sent to the hydrogenation feed heating furnace 17 for heating.
  • the main function of the first route of hydrogen is to prevent the raw material furnace from coking in the hydrogenation feed heating furnace 17, damage the hydrogenation feed heating furnace 17, and affect the reaction rate.
  • the heated feedstock oil is sent to the micro-interface generator 301 above the No. 1 micro-interface unit 20 .
  • micro-interface generators 301 there are two micro-interface generators 301 in the No. 1 micro-interface unit 20, the upper micro-interface generator 301 is fed with feed oil, and the lower micro-interface generator 301 is fed with hydrogen.
  • the two micro-interface generators 301 are connected by a pipeline, and a circulation fan blade 201 is also arranged in the pipeline. When the raw material oil flows from top to bottom, it drives the circulating fan blade 201 to rotate, and the circulating fan blade 201 rolls back the hydrogen and the raw material oil below the No. 1 micro-interface unit 20 to the top, increasing the content of hydrogen.
  • the No. 1 micro-interface unit 20 is connected with a hydrogenation reactor 30 , and the feedstock oil is passed into the hydrogenation reactor 30 .
  • the second path of hydrogen enters the micro-interface generator 301 below the micro-interface unit 20 through the hydrogen pressurizer 16 and the hydrogen filter 18.
  • the hydrogen is broken and dispersed into hydrogen micro-bubbles through the micro-interface generator 301.
  • Mixing with the raw material oil from top to bottom increases the mass transfer surface of the phase boundary between the raw material oil and hydrogen, and the circulating fan blade 201 rotates to send the hydrogen micro-bubbles to the micro-interface generator 301 above the No. 1 micro-interface unit 20 to perform the micro-interface again. Reaction to break up and disperse unreacted hydrogen.
  • the raw material oil fully mixed with hydrogen is sent to the fluidized bed reactor 40 for hydrogenation reaction, the reaction temperature is 350-380°C, and the reaction pressure is 3.5-4.5MPa.
  • the oil from the hydrogenation reactor 30 is sent back to the No. 2 micro-interface unit 21 after passing through the high-pressure separation tank 40, and the No. 2 micro-interface unit 21 crushes and disperses the hydrogen and circulating oil. After cooling, it is sent back to the hydrogenation reactor 30 to reduce the temperature in the hydrogenation reactor 30 .
  • the No. 2 micro-interface unit 21 includes two series-connected micro-interface generators 301, and is also provided with a cooling circulation pump 211 and a water cooler 212 in series.
  • the cooling circulation pump 211 draws the circulating oil in the high-pressure separation tank 40 back to the No.
  • the micro-interface unit 21 and the water cooler 212 cool the circulating oil.
  • the reactant from the high-pressure separation tank 40 enters into the low-pressure separation tank 41 , and the low-pressure separation tank 41 separates the low fraction gas, and the rest is sent to the rectification tower 50 .
  • the bottom of the rectifying tower 50 is provided with a reboiler 51, a reboiler 51 circulating pump and a diesel output device 53, and the reboiler 51 circulating pump extracts the reactants from the bottom of the rectifier 50, and a part is sent to the reboiler. 51 is reboiled and returned to the rectification tower 50, and the other part enters the hydrogenated diesel oil collection tank 62 after passing through the diesel oil outlet device 53.
  • the side line of the rectification tower 50 is directly connected with a naphtha collection tank 61 for collecting naphtha.
  • the top of the rectification tower 50 is provided with a water cooling tank 54, a reflux pump and a reflux tank 56.
  • the gas from the top of the rectification tower 50 is cooled to a certain temperature through the water cooling tank 54, and after passing through the reflux tank 56, the unliquefied gas enters the In the gas collection tank 60, the liquefied gas is returned to the rectification tower 50 for reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供了一种柴油加氢的微界面反应系统,包括加氢反应器,所述加氢反应器内部设置有微界面发生器用以将进入的氢气进行破碎分散;所述加氢反应器外部设置有一号微界面机组和二号微界面机组用以将氢气在进入加氢反应器之前破碎分散;所述加氢反应器底部出来的反应物料通过高压分离罐和低压分离罐用以将含硫化氢、氢气的气相分离后,剩下的脱硫柴油从低压分离罐送往精馏塔以用于脱硫柴油的纯化,所述精馏塔顶部设置的回流罐分离出瓦斯气,所述精馏塔侧线分离出石脑油,所述精馏塔底部分离出加氢柴油。本发明降低了反应压力、反应温度、循环氢的消耗量,提高了原料和氢气的利用率,提高了产品品质以及收率,节约了成本。

Description

一种柴油加氢的微界面反应系统及方法 技术领域
本发明涉及柴油加氢领域,具体而言,涉及一种柴油加氢的微界面反应系统及方法。
背景技术
柴油是石油经过常压分馏后得到的产物。如果直接由石油炼制得到,柴油中的硫、氮、氧含量较高,烯烃的含量也比较高。产品中烯烃的含量高则容易出现变色现象,而且还会影响机动车的使用寿命,对大气污染程度也相对大些。
随着人们环保意识的提高以及环保法规的日益严格,生产和使用清洁车用燃料越来越成为一种发展趋势,柴油深度加氢脱硫技术的开发则成为了目前研究的热点。目前,大多柴油加氢精制装置操作流程是原料油通过同精制柴油、反应产物换热,并经加热炉加热至反应要求温度后进行加氢,这种加氢过程虽然操作方便,容易产业化,但是能耗高,循环氢的消耗量大、加氢反应器压力高、温度高,产能也比较低。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种柴油加氢的微界面反应系统,该微界面反应系统通过在加氢反应器的外部设置了一号微界面机组和二号微界面机组,降低了反应压力、反应温度、循环氢的消耗量,提高了原料和氢气的利用率,提高了产品品质以及收率,节约了成本。
本发明的第二目的在于提供一种采用上述微界面反应系统进行柴油加氢的方法,反应得到的加氢柴油环保、清洁,作为燃料动力足,应用广泛,提高了加氢柴油的适用面。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种柴油加氢的微界面反应系统,包括加氢反应器,所述加氢反应器内部设置有微界面发生器用以将进入的氢气进行破碎分散;
所述微界面发生器连接有催化剂床层,所述催化剂床层上均匀设置有分流管用以将原料油均匀分散到所述加氢反应器内部;
所述加氢反应器外部设置有一号微界面机组和二号微界面机组用以将氢气在进入加氢反应器之前破碎分散;
所述加氢反应器底部出来的反应物料通过高压分离罐和低压分离罐用以将含硫化氢、氢气的气相分离后,剩下的脱硫柴油从低压分离罐送往精馏塔以用于脱硫柴油的纯化,所述精馏塔顶部设置的回流罐分离出瓦斯气,所述精馏塔侧线分离出石脑油,所述精馏塔底部分离出加氢柴油。
现有技术中柴油加氢反应过程能耗高,循环氢的消耗量大、加氢反应器压力高、温度高,产能也比较低。
本发明的柴油加氢的微界面反应通过在加氢反应器内部设置有微界面发生器用以将氢气破碎分散为氢气微气泡,增大了氢气与原料油的相界传质面积。因为氢气的密度小,原料油密度大,所以将微界面发生器设置在加氢反应器的底部,底部出来的氢气自下而上与原料油混合,增长了氢气与原料油混合的时间。为了更好地将氢气分散,微界面发生器的出料口与催化剂床层相连,催化剂床层上设置有分流管,将微界面发生器里出来的原料和氢气微气泡均匀的分散到加氢反应器内部。
优选的,所述一号微界面机组内部设置有循环扇叶用以将所述一号微界面机组里的原料液和氢气循环搅拌。
一号微界面机组分为上下两个微界面发生器,上方的微界面发生器进原料油,下方的微界面发生器连接有氢气进气管道。两个微界面发生器的中间是循环扇叶,循环扇叶优选为3个扇叶。原料油自上而下流动带动循环扇叶转动,循环扇叶转动时将一部分含有分散破碎的氢气通过送入至加氢反应器,另一部 分通过管道返回至上方的微界面发生器。下方的微界面发生器将氢气破碎分散为氢气微气泡,由于氢气的密度小,所以氢气微气泡自下而上的原料油发生碰撞,增大相界传质面积,提高氢气的利用率。
优选的,所述二号微界面机组外部串联设置有水冷器和冷却循环泵用以将所述高压分离罐中的反应物料冷却加压后送回至所述加氢反应器。
二号微界面机组并联设置有两个微界面发生器,两个微界面发生器还串联有水冷器和冷却循环泵,冷却循环泵用以将高压分离罐分离出来的循环油抽回至二号微界面机组,水冷器将循环油降温,两个微界面发生器将以循环油为介质的氢气破碎分散后返回至加氢反应器,冷却后的循环油可以控加氢反应器内部的温度,防止因为温度过高而产生加氢裂化反应和催化剂积碳现象。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进 口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
优选的,本发明的反应系统还包括氢气进气管道,所述氢气进气管道中出来的氢气经过氢气分流罐,一部分进入到加氢进料加热炉与原料进行混合用以抑制原料在所述加氢进料加热炉里结焦,另一部分进入到所述一号微界面机组或所述二号微界面机组。
优选的,本发明的反应系统还还包括原料罐,所述原料罐依次连接有原料升压泵、原料缓冲罐,所述原料缓冲罐连接有所述加氢进料加热炉以用于和氢气混合。
之所以要在原料罐之后设置有原料升压泵和原料缓冲罐,是因为原料如果流速慢会在流化床反应釜产生结焦,影响反应效率,增加反应系统中的总体流动,增加原料油在流化床反应釜中的湍流,降低原料油的停留时间,防止胶质在反应系统上的粘附,进一步防止在反应系统内结焦。
之所以在原料油经过流化床反应釜之前设置换热器和进料加热炉,是因为流化床反应釜的进原料入口的温度要足够高,要超过流化床反应釜内催化剂的起活温度。
优选的,所述高压分离罐分离出的部分反应物料返回至所述二号微界面机组用以与氢气混合分散破碎。
优选的,所述精馏塔与所述回流罐之间设置有水冷槽用以将可凝结气体液化。
优选的,所述精馏塔底部设置有重沸炉用以将所述精馏塔的塔底出来的反应物料加热后返回至所述精馏塔。
另外,本发明还提供了采用上述反应系统的方法,包括如下步骤:
将原料油与氢气混合后加热,之后再与氢气混合微界面分散破碎后进行加氢反应,在经过分离、精馏得到瓦斯气、石脑油和加氢柴油。
优选的,所述加氢反应的温度为350-380℃,所述加氢反应的压力为3.5-4.5MPa。
上述反应方法中,加氢反应之前将氢气预先分散破碎为氢气微气泡,增大了相机传质面积,抑制了烯烃类物质、胶质类物质物质、活泼自由基类物质缩合反应的发生,降低了加氢反应时的压力和温度,降低了能耗,提高了反应效率。
与现有技术相比,本发明的有益效果在于:
(1)本发明的柴油加氢的反应系统通过在加氢反应器外侧设置有微界面发生器,将氢气预先破碎分散为氢气微气泡,降低了反应温度和压力,从而降低了能耗、提高了反应产率、提高了原料油的利用率;
(2)本发明的柴油加氢的反应系统通过设置循环风扇和微界面发生器相互配合,从而更好地提高了原料油的利用率;
(3)本发明的柴油加氢的反应方法反应温度低,压力大幅下降,降低了能耗,提高了产能。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的一种柴油加氢的微界面反应系统的结构示意图;
其中:
10-氢气进气管道;         11-原料罐;
12-原料升压泵;           13-原料缓冲罐;
14-加氢反应换热器;       15-氢气分流罐;
16-氢气加压器;           17-加氢进料加热炉;
18-氢气过滤器;           20-一号微界面机组;
201-循环扇叶;            30-加氢反应器;
301-微界面发生器;        302-分流管;
21-二号微界面机组;       211-冷却循环泵;
212-水冷器;              40-高压分离罐;
41-低压分离罐;           50-精馏塔;
51-重沸炉;               52-重沸炉循环泵;
53-出柴油装置;           54-水冷槽;
55-回流循环泵;           56-回流罐;
60-瓦斯气收集罐;         61-石脑油收集罐;
62-加氢柴油收集罐。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例提供的一种柴油加氢的微界面反应系统的结构示意图,其主要包括氢气进气管道10、原料罐11、加氢反应器30、一号微界面机组20、二号微界面机组21、高压分离罐40、低压分离罐41和精馏塔50。
原料罐11出来的原料油首先经过原料升压泵12,这样可以增加反应系统中原料的流速,防止原料在反应系统的管道、加氢反应器30或者其他反应器中结焦,影响反应速率。经过原料升压泵12的原料油之后进入到原料缓冲罐13,原料缓冲罐13可以控制系统内的压力,缓解反应系统中压力过大而爆炸等问题。之后原料油被送往加氢反应换热器14与氢气混合。
氢气进气管道10出来的氢气经过氢气分流罐15之后被分成三路进入加氢系统,第一路氢气与来自原料罐11的原料油进行混合,一同进入到加氢反应换热器14里进行预热,预热后的原料油和氢气进入到加氢进料加热炉17加热至反应温度。第二路氢气通过氢气过滤器18被送往一号微界面机组20。氢气过滤器18可以过滤掉杂质空气,保证一号微界面机组20里的原料油和纯度高的氢气混合。第二路氢气连接到一号微界面机组20底部的微界面发生器301,因为氢气的密度小,氢气从一号微界面机组20中出来后自下而上与原料油进行碰撞,增大相界传质面积。第三路氢气进入到二号微界面机组21,预先与混合油混合并通过水冷器212进行水冷。
第一路氢气与原料油在加氢换热器中混合后进行预热,经过预热的原料油与氢气被送往加氢进料加热炉17进行加热。第一路氢气的主要作用是防止原料炉在加氢进料加热炉17中产生结焦,损坏加氢进料加热炉17、影响反应速率。经过加热的原料油被送往一号微界面机组20上方的微界面发生器301。
一号微界面机组20里有两个微界面发生器301,上边的微界面发生器301通入原料油,下方的微界面发生器301通入氢气。两个微界面发生器301之间通过管道连接,这个管道内还设置有循环扇叶201。当原料油自上而下流动时 带动循环扇叶201转动,循环扇叶201将一号微界面机组20下方的氢气和原料油卷回上方,提高了氢气的含量。一号微界面机组20连接有加氢反应器30,原料油通进入到加氢反应器30中。
第二路氢气经过氢气加压器16和氢气过滤器18进入到一号微界面机组20下方的微界面发生器301,氢气经过微界面发生器301被破碎分散为氢气微气泡,氢气微气泡自上而下与原料油混合,增大了原料油与氢气的相界传质面,循环扇叶201转动将氢气微气泡送至一号微界面机组20上方的微界面发生器301再次进行微界面反应,将未反应的氢气破碎分散。
将与氢气充分混合的原料油送至流化床反应釜40进行加氢反应,反应温度为350-380℃,反应的压力为3.5-4.5MPa。
为了防止加氢反应器30中的温度过高,加氢反应器30出来的油料经过高压分离罐40后送回到二号微界面机组21,二号微界面机组21将氢气和循环油破碎分散并冷却后送回至加氢反应器30,降低加氢反应器30中的温度。
二号微界面机组21里包含两个串联的微界面发生器301,并且还串联设置有冷却循环泵211和水冷器212,冷却循环泵211将高压分离罐40中的循环油抽取回至二号微界面机组21,水冷器212将循环油进行冷却。当氢气以循环油为介质通过两个串联的微界面发生器301时被破碎分散为氢气微气泡,增大了相界传质面积。之后含有氢气微气泡的循环油被送回至加氢反应器30。
从高压分离罐40中出来的反应物进入到低压分离罐41中,低压分离罐41再将低分气分离出去,剩下的送往精馏塔50。
精馏塔50的底部设置有重沸炉51、重沸炉51循环泵和出柴油装置53,重沸炉51循环泵将精馏塔50底部出来的反应物抽取出来,一部分送往重沸炉51进行重沸后返回至精馏塔50,另一部分经过出柴油装置53后进入到加氢柴油收集罐62。
精馏塔50的侧线直接连接有石脑油收集罐61用以收集石脑油。
精馏塔50的顶部设置有水冷槽54、回流泵和回流罐56,精馏塔50顶部 出来的气体经过水冷槽54冷却到一定温度,在经过回流罐56,未被液化的瓦斯气进入到瓦斯气收集罐60,被液化的气体重新回到精馏塔50里进行反应。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种柴油加氢的微界面反应系统,其特征在于,包括加氢反应器,所述加氢反应器内部设置有微界面发生器用以将进入的氢气进行破碎分散;
    所述微界面发生器连接有催化剂床层,所述催化剂床层上均匀设置有分流管用以将原料油均匀分散到所述加氢反应器内部;
    所述加氢反应器外部设置有一号微界面机组和二号微界面机组用以将氢气在进入加氢反应器之前破碎分散;
    所述加氢反应器底部出来的反应物料通过高压分离罐和低压分离罐用以将含硫化氢、氢气的气相分离后,剩下的脱硫柴油从低压分离罐送往精馏塔以用于脱硫柴油的纯化,所述精馏塔顶部设置的回流罐分离出瓦斯气,所述精馏塔侧线分离出石脑油,所述精馏塔底部分离出加氢柴油。
  2. 根据权利要求1所述的反应系统,其特征在于,所述一号微界面机组内部设置有循环扇叶用以将所述一号微界面机组里的原料液和氢气循环搅拌。
  3. 根据权利要求1所述的反应系统,其特征在于,所述二号微界面机组外部串联设置有水冷器和冷却循环泵用以将所述高压分离罐中的反应物料冷却加压后送回至所述加氢反应器。
  4. 根据权利要求1所述的反应系统,其特征在于,包括氢气进气管道,所述氢气进气管道中出来的氢气经过氢气分流罐,一部分进入到加氢进料加热炉与原料进行混合用以抑制原料在所述加氢进料加热炉里结焦,另一部分进入到所述一号微界面机组或所述二号微界面机组。
  5. 根据权利要求4所述的反应系统,其特征在于,还包括原料罐,所述原料罐依次连接有原料升压泵、原料缓冲罐,所述原料缓冲罐连接有所述加氢进料加热炉以用于和氢气混合。
  6. 根据权利要求1所述的反应系统,其特征在于,所述高压分离罐分离出的部分反应物料返回至所述二号微界面机组用以与氢气混合分散破碎。
  7. 根据权利要求1所述的反应系统,其特征在于,所述精馏塔与所述回 流罐之间设置有水冷槽用以将可凝结气体液化。
  8. 根据权利要求1所述的反应系统,其特征在于,所述精馏塔底部设置有重沸炉用以将所述精馏塔的塔底出来的反应物料加热后返回至所述精馏塔。
  9. 采用权利要求1-8任一项所述反应系统的方法,其特征如下,包括如下步骤:
    将原料油与氢气混合后加热,之后再与氢气混合微界面分散破碎后进行加氢反应,在经过分离、精馏得到瓦斯气、石脑油和加氢柴油。
  10. 根据权利要求9所述的反应方法,其特征在于,所述加氢反应的温度为350-380℃,所述加氢反应的压力为3.5-4.5MPa。
PCT/CN2021/109752 2021-03-25 2021-07-30 一种柴油加氢的微界面反应系统及方法 WO2022198874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110319727.6 2021-03-25
CN202110319727.6A CN113061460A (zh) 2021-03-25 2021-03-25 一种柴油加氢的微界面反应系统及方法

Publications (1)

Publication Number Publication Date
WO2022198874A1 true WO2022198874A1 (zh) 2022-09-29

Family

ID=76561819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109752 WO2022198874A1 (zh) 2021-03-25 2021-07-30 一种柴油加氢的微界面反应系统及方法

Country Status (2)

Country Link
CN (1) CN113061460A (zh)
WO (1) WO2022198874A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061460A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049220A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种强化沸腾床加氢反应器气液传质的方法
CN111359547A (zh) * 2019-03-15 2020-07-03 南京延长反应技术研究院有限公司 一种油煤共加氢微界面强化乳化床反应系统
CN111871337A (zh) * 2020-07-16 2020-11-03 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统及方法
CN113061462A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种精制柴油的产生系统及方法
CN113061461A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种提高柴油品质的装置及方法
CN113061460A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871333B (zh) * 2020-07-16 2023-06-27 南京延长反应技术研究院有限公司 一种蒽油加氢的微界面反应系统及方法
CN214612318U (zh) * 2021-03-25 2021-11-05 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049220A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 一种强化沸腾床加氢反应器气液传质的方法
CN111359547A (zh) * 2019-03-15 2020-07-03 南京延长反应技术研究院有限公司 一种油煤共加氢微界面强化乳化床反应系统
CN111871337A (zh) * 2020-07-16 2020-11-03 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统及方法
CN113061462A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种精制柴油的产生系统及方法
CN113061461A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种提高柴油品质的装置及方法
CN113061460A (zh) * 2021-03-25 2021-07-02 南京延长反应技术研究院有限公司 一种柴油加氢的微界面反应系统及方法

Also Published As

Publication number Publication date
CN113061460A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应系统及方法
CN210045217U (zh) 上下对冲式渣油加氢乳化床微界面强化反应装置
WO2022011867A1 (zh) 一种柴油加氢的微界面反应系统及方法
WO2022036837A1 (zh) 一种石油树脂加氢的反应系统及方法
WO2022198874A1 (zh) 一种柴油加氢的微界面反应系统及方法
CN113061461B (zh) 一种提高柴油品质的装置及方法
WO2023284030A1 (zh) 一种即时脱水的dmc制备系统及制备方法
CN102120934A (zh) 一种循环液相加氢方法
CN113061462A (zh) 一种精制柴油的产生系统及方法
WO2022011870A1 (zh) 一种煤制乙醇的反应系统及方法
WO2022011865A1 (zh) 一种采用合成气制乙醇的反应系统及方法
WO2022205717A1 (zh) 一种丙烯羰基化制丁醛的反应系统及方法
JP2023521195A (ja) ベンゼンの選択的水素添加反応システム及び方法
WO2021227136A1 (zh) 一种苯选择性加氢制备环己酮的强化反应系统及方法
WO2020155503A1 (zh) 下置式渣油加氢乳化床微界面强化反应装置及方法
WO2023284031A1 (zh) 一种内置式即时脱水微界面强化dmc制备系统及方法
WO2022110871A1 (zh) 一种草酸酯法制备乙二醇的强化微界面反应系统及方法
CN214612318U (zh) 一种柴油加氢的微界面反应系统
WO2020155505A1 (zh) 低压气液强化乳化床反应装置及方法
WO2022011869A1 (zh) 一种蒽油加氢的微界面反应系统及方法
CN108587684A (zh) 一种联合芳烃生产线连续重整单元
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化系统及方法
WO2020155506A1 (zh) 下置式气液强化乳化固定床反应装置及方法
CN112410069A (zh) 一种催化裂化粗汽油加氢精制工艺
WO2022011866A1 (zh) 一种柴油加氢的反应系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932486

Country of ref document: EP

Kind code of ref document: A1