WO2022011869A1 - 一种蒽油加氢的微界面反应系统及方法 - Google Patents
一种蒽油加氢的微界面反应系统及方法 Download PDFInfo
- Publication number
- WO2022011869A1 WO2022011869A1 PCT/CN2020/122726 CN2020122726W WO2022011869A1 WO 2022011869 A1 WO2022011869 A1 WO 2022011869A1 CN 2020122726 W CN2020122726 W CN 2020122726W WO 2022011869 A1 WO2022011869 A1 WO 2022011869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- interface
- oil
- hydrogenation
- reaction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
Definitions
- the invention relates to the field of anthracene oil hydrogenation, in particular to a micro-interface reaction system and method for anthracene oil hydrogenation.
- Anthracene oil is a part of coal tar components. The fractions at 280-360 °C are cut from the tar by distillation. It is generally a yellow-green oily liquid. At room temperature, crystals are precipitated. The crystals are yellow and have blue fluorescence. It is soluble in ethanol and ether. Insoluble in water, partially soluble in hot benzene, chlorobenzene and other organic solvents, with strong irritation. It is flammable in case of high temperature and open fire. The main components are anthracene, phenanthrene, fluorene, acenaphthene, carbazole, etc.
- the hydrogenation process of anthracene oil can effectively achieve desulfurization, unsaturated hydrocarbon saturation, denitrogenation reaction and aromatic hydrocarbon saturation, thereby improving the stability of anthracene oil, reducing the content of sulfur and nitrogen and reducing the content of aromatic hydrocarbons, and obtaining high-quality naphtha and diesel blend ingredients.
- anthracene oil hydrogenation processes are two-stage hydrogenation processes of hydrorefining, hydrocracking or a combination of the two.
- the hydrogenation process is easy to operate and easy to industrialize, it has high energy consumption, and the pressure of the hydrogenation reactor is high. High temperature, high temperature, and low production capacity.
- the first object of the present invention is to provide a micro-interface reaction system for hydrogenation of anthracene oil.
- the micro-interface reaction system reduces energy consumption and reaction temperature by combining a hydrogenation reactor and a micro-interface generator.
- the reaction yield is improved, the utilization rate of raw materials is improved, especially the utilization rate of hydrogen is increased, and the production capacity is effectively increased, thereby improving the quality and yield of the product, and also saves equipment costs and equipment area. effect of area.
- the second object of the present invention is to provide a reaction method for hydrogenating anthracene oil by adopting the above-mentioned micro-interface reaction system.
- the hydrogenated anthracene oil obtained by the reaction is environmentally friendly, clean, and widely used, which improves the applicability of the anthracene oil itself and is worthy of extensive Promote the application.
- the invention provides a micro-interface reaction system for hydrogenation of anthracene oil, comprising: a micro-interface generator and a hydrogenation reactor connected in sequence;
- Hydrogen and anthracene oil are introduced into the micro-interface generator; a hydrogenation product outlet is provided on the side wall of the hydrogenation reactor, and the product from the hydrogenation product outlet is passed into the first separation tank for separation Hot high-separation gas and hot high-separation oil, the hot high-separation gas goes to the second separation tank to be separated into cold high-separation gas and cold high-separation oil; the hot high-separation oil enters the cracking reaction tower for cracking reaction, and obtains The described cracking reaction product is sent to the fractionation tower for fractionation, and the cold high fraction gas and the cold high fraction oil are collected and discharged respectively;
- the cracking reaction tower is provided with multi-layer catalyst beds, each catalyst bed is filled with catalyst, and the micro-interface generator is provided between adjacent catalyst beds.
- a micro-interface generator is arranged inside the hydrogenation reactor to disperse and break the incoming hydrogen into micro-bubbles, thereby improving the mass transfer effect.
- the main function of the introduced anthracene oil is to cooperate with the dispersion and crushing of the gas, which is equivalent to the role of the medium.
- a micro-interface generator is arranged on the top of the outer side of the cracking reaction tower, and the micro-interface generator located at the top of the cracking reaction tower is passed into the hydrogen from the hydrogen main pipeline, and the hot high fraction oil is generated from the micro-interface generator located at the top of the cracking reaction tower. Interface generator side entry.
- the setting position of the micro-interface generator of the present invention has been specifically designed.
- the micro-interface generator is arranged outside the hydrogenation reactor, but for the cracking reaction tower, it is selected to be installed outside and inside the cracking reaction tower at the same time, which is equivalent to combining the external and internal micro-interface generators.
- the interface generators are used in combination at the same time, and the cracking reaction tower itself is a fixed-bed reactor, so the micro-interface generators inside the cracking reaction tower are preferably arranged in a straight line in the vertical direction and evenly arranged between the adjacent fixed beds.
- this setting method can ensure better cracking and hydrogenation effect in the gap between the two fixed beds, and improve the effect of cracking macromolecular substances into small molecular substances, which is equivalent to dispersing and crushing.
- the reaction is carried out at the same time, which also makes the dispersion and crushing operation more closely related to the reaction, and through the action of the micro-interface generator set on the outside of the top of the cracking reaction tower, the feed can be fully broken into micro-bubbles at the source, so that After entering the reactor, the pulverization effect will be more sufficient, and it will play a synergistic effect. Therefore, the setting position of the micro-interface generator is also obtained through practical design, and it needs to be designed according to the different characteristics of different reactions.
- the catalyst bed is preferably 4 sections, and the number of the micro-interface generators located inside the cracking reaction tower is preferably 3, so that each micro-interface generator is arranged in two adjacent catalyst beds. between layers.
- the number of 3 micro-interface generators can already ensure the effect of dispersion and crushing.
- the micro-interface generator set before the above-mentioned hydrogenation reactor is a pneumatic type. By passing hydrogen and anthracene oil into the micro-interface generator and then dispersing and crushing, the subsequent hydrogenation reaction is strengthened, impurities such as sulfur and nitrogen are removed, and the mass transfer effect is improved. .
- micro-interface generators inside and outside the above-mentioned cracking reaction tower are pneumatic, and the mass transfer effect is improved by passing hydrogen into the micro-interface generator and then directly contacting with the hot low-separation oil and then breaking into micro-bubbles.
- micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119. Patents of CN205833127U and CN207581700U. In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
- the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
- the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open An annular channel is formed between the through holes of the micro-bubble generator.
- the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
- the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
- the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
- the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
- both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
- the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
- the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
- the previous patent 201710766435.0 records that "the principle of the bubble breaker is to achieve high-speed jets to achieve gas collision", and it is also stated that it can be used in micro-interface enhanced reactors to verify the relationship between the bubble breaker and the micro-interface generator.
- the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
- the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
- the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
- micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
- the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different.
- the micro-interface generator of the present invention belongs to the prior art, although some bubble breakers belong to the type of pneumatic bubble breakers, some belong to the type of hydraulic bubble breakers, and some belong to the type of gas bubble breakers.
- the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
- the connection between the micro-interface generator and the reactor and other equipment, including the connection structure and connection position depends on the micro-interface generator. It depends on the structure of the interface generator, which is not limited.
- the type of the hydrogenation reactor for the hydrogenation reaction is a fixed bed reactor, the catalyst in the fixed bed reactor is fixed on the bed layer, and the catalyst for the hydrogenation reaction is generally a nickel-based catalyst, preferably the catalyst can be a supported catalyst
- the nickel-based catalyst of the type, or the nickel-based catalyst modified with an alkaline earth metal oxide or a rare earth metal oxide is more preferable, and the carrier is selected as silicon oxide or aluminum oxide.
- the active components of the catalyst for cracking and hydrogenation are oxides of nickel, cobalt, and molybdenum
- the carrier is alumina, silicon-alumina oxide or molecular sieve.
- the function of the hydrogenation reactor is to remove impurities such as sulfur and nitrogen to improve the quality of anthracene oil products.
- the function of the cracking reaction tower is to process the heavy oil, so that under the action of the catalyst, the macromolecules are cracked into small molecules, and most of the slag can be cracked.
- the oil is converted into fuel oil, liquefied gas, etc., so as to improve the utilization rate of oil products, and the olefin content in the products will be relatively high.
- the product from the hydrogenation reactor is separated by the first separation tank and the second separation tank.
- the separation tank will adjust the pressurized pressure according to the different products to be separated, and the separated hot high fraction oil is separated from the top of the cracking reaction tower.
- the micro-interface generators located between adjacent catalyst beds are provided with a hot high fraction oil inlet and a hydrogen inlet, the hot high fraction oil inlet is connected to the bottom of the first separation tank, and the hydrogen gas inlet is connected to the bottom of the first separation tank.
- the inlet is connected with the hydrogen main pipeline.
- the inlet of the hot high fraction oil and the hydrogen inlet are respectively arranged on the micro-interface generator, so that after being dispersed and broken by the micro-interface generator first, it is more conducive to the effective progress of the catalytic cracking reaction.
- the bottom of the cracking reaction tower is provided with a cracking reaction product outlet for discharging the cracking reaction product
- the cracking reaction product outlet is connected to a fourth separation tank for oil and gas separation, and the bottom of the fourth separation tank separates The oil phase goes to the fractionation column.
- the gas phase separated from the top of the fourth separation tank is pre-compressed by a compressor, and then returned to communicate with the hydrogen main pipeline.
- the hydrogen from the hydrogen main pipeline is divided into two parts, one part is the freshly replenished hydrogen, and the other part is the gas phase from the top of the fourth separation tank. This part is compressed by the compressor first, and then goes from the hydrogen main pipeline to the cracking tank. In the micro-interface generator at the top of the reaction tower, and many branches go to the micro-interface generator located inside the cracking reaction tower.
- the cold high fraction gas from the top of the second separation tank goes to the fourth separation tank for further separation.
- the cold high fraction oil from the bottom of the second separation tank is sent to the fractionation tower for fractionation.
- the cracking reaction products from the cracking reaction tower will pass through the fourth separation tank for different degrees of gas-liquid separation.
- the products in the previous separation tank can also enter the subsequent separation tank for re-separation to improve the separation effect.
- the fractionation tower is provided with multi-layer trays, the trays are filled with packings that contribute to the effect of fractionation, and the overhead gas from the top of the fractionation tower is discharged through a pipeline, and the The tail oil from the bottom of the column is discharged through the pipeline, and the different fractions from the middle part of the column section of the fractionation column are collected separately.
- the function of the fractionation column is to collect different fractions for corresponding applications according to different purposes.
- the fractions in the middle column section are fuel oil, naphtha and liquefied gas.
- the present invention also provides a reaction method of anthracene oil hydrogenation micro-interface reaction system, comprising:
- the anthracene oil and hydrogen are mixed with hydrogen and the micro-interface is dispersed and broken, and then hydrogenation reaction is carried out, and then separation, micro-interface is dispersed and broken, and then hydrocracking, gas-liquid separation and fractionation are carried out.
- the pressure of the hydrogenation reaction is 8-10MPa, and the temperature of the hydrogenation reaction is 220-230°C;
- the pressure of the hydrocracking is 8-10MPa, and the temperature is 220-230°C.
- the hydrogenation reaction and the cracking hydrogenation reaction both reduce the energy consumption, simultaneously improve the reaction effect, and improve the utilization rate of raw materials, especially the utilization rate of hydrogen.
- the oil product obtained by the hydrogenation reaction of the anthracene oil of the invention has good quality and high yield, and the desulfurization rate can reach 99.95%.
- the anthracene oil hydrogenation reaction method of the invention has low reaction temperature, greatly reduced pressure and high liquid hourly space velocity, which is equivalent to increasing the production capacity, and the final desulfurization rate is close to 100%, which is nearly 1 percentage point higher than the previous one.
- micro-interface reaction system of anthracene oil hydrogenation of the present invention reduces the energy consumption, reduces the reaction temperature, improves the reaction yield, and improves the utilization of raw materials by combining the hydrogenation reactor and the micro-interface generator. Rate;
- micro-interface reaction system for hydrogenation of anthracene oil of the present invention is most advantageous for improving the mass transfer effect by setting the micro-interface generator at a specific position;
- the reaction method for hydrogenating anthracene oil of the present invention has low reaction temperature, greatly reduced pressure and high liquid hourly space velocity, which is equivalent to increasing the production capacity, and the final desulfurization rate is close to 100%, which is nearly 1 percentage point higher than before.
- FIG. 1 is a schematic structural diagram of a micro-interface reaction system for hydrogenation of anthracene oil provided in an embodiment of the present invention.
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
- installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
- FIG. 1 it is a micro-interface reaction system for hydrogenation of anthracene oil according to an embodiment of the present invention, which mainly includes a micro-interface generator 20, a hydrogenation reactor 50 and a cracking reaction tower 80;
- Hydrogen and anthracene oil are simultaneously introduced into the micro-interface generator 20, the anthracene oil is transported from the anthracene oil storage tank 30, and the hydrogen is transported from the hydrogen storage tank 10 to be preheated by the hydrogen preheater 40 and then passed into the micro-interface generator 20.
- the micro-interface generator 20 after the hydrogen is dispersed and broken into small molecules, the mixture of anthracene oil and hydrogen after the dispersed and broken treatment is jointly transported to the hydrogenation reactor 50 for hydrogenation reaction;
- the oil after hydrodesulfurization and denitrification comes out of the hydrogenation reactor 50 and is first separated into hot high fraction gas and hot high fraction oil through the first separation tank 60, and the hot high fraction oil goes to the subsequent cracking reaction tower for hydrogenation
- the hot high fraction gas continues to be separated through the second separation tank 70, and is separated into cold high fraction gas and cold high fraction oil, and the cold high fraction gas at the top of the second separation tank 70 goes to the subsequent fourth separation tank 90 for
- the cold high fraction oil at the bottom of the second separation tank 70 is directly sent to the subsequent fractionation tower for fractionation.
- the top of the cracking reaction tower 80 is provided with a micro-interface generator 20, and the micro-interface generator is fed with hydrogen through the hydrogen main pipeline 805, a part of which is new hydrogen, and the other part is the gas phase returned from the top of the fourth separation tank 90, which is passed through first.
- the compressor 806 After being compressed by the compressor 806, it is passed into the cracking reaction tower 80, and the hot high fraction oil from the bottom of the first separation tank 60 enters the micro-interface generator at the top of the cracking reaction tower 80 for hydrocatalytic cracking. In this way, both hydrogen and hot high fraction oil are dispersed and broken from the micro-interface generator at the top, and then enter into the cracking reaction tower 80 to carry out the cracking catalytic reaction.
- the cracking reaction tower 80 is provided with multi-layer catalyst beds 801, preferably four catalyst beds 801, and each catalyst bed 801 is filled with catalysts.
- the phase in the cracking reaction tower 80 is There are micro-interface generators 20 between adjacent catalyst beds 801, the number of micro-interface generators is 3, and each micro-interface generator is provided with a hot high-separation oil inlet 803 and a hydrogen inlet 804 , the hot high fraction oil inlet 803 is connected to the bottom of the first separation tank 60 , and the hydrogen inlet 804 is connected to the hydrogen main pipeline 805 .
- the hot high fraction oil from the bottom of the first separation tank 60 enters the micro-interface generator 20 located at the top of the cracking reaction tower 80 and the micro-interface generator 20 located inside the cracking reaction tower 80 at the same time.
- the hydrogen from the main pipeline 805 enters the micro-interface generator 20 located at the top of the cracking reaction tower 80 and the micro-interface generator 20 located inside the cracking reaction tower 80, and is pre-dispersed and crushed before the catalytic cracking reaction, which can significantly improve the reaction efficiency. quality effect.
- the type of the micro-interface generator 20 is the same as the type of the micro-interface generator 20 set before the hydrogenation reactor 50, and both are selected as the pneumatic type micro-interface generator 20.
- the synergistic effect of the device 20 can improve the mass transfer effect of the whole reaction.
- a cracking reaction product outlet 802 for discharging the cracking reaction product is provided at the bottom of the cracking reactor, and the material from the cracking reaction product outlet 802 goes to the fourth separation tank 90 for oil and gas separation,
- the oil phase separated from the bottom of the fourth separation tank 90 is sent to the fractionation tower for fractionation treatment.
- the gas phase separated from the top of the fourth separation tank 90 is returned to the cracking reaction tower 80 and reused as a raw material for the cracking reaction.
- the fractionation tower 100 is provided with a multi-layer tray 1001, and the tray 1001 is filled with packings that contribute to the fractionation effect, and commonly used packings may be Raschig rings, Pall rings, and the like.
- the overhead gas from the top of the tower is discharged through the pipeline
- the tail oil from the bottom of the fractionation tower 100 is discharged through the pipeline
- the different fractions from the middle of the column section of the fractionation tower 100 are collected separately, and the different fractions Mainly for liquefied gas, naphtha, fuel oil and so on.
- micro-interface generators 20 can also be added, and the installation position is not limited.
- the side walls of the micro-interface generators 20 are arranged opposite to each other, so as to realize the hedge of the micro-bubbles coming out of the outlet of the micro-interface generator 20 .
- the type of the hydrogenation reactor 50 can be not only a fixed-bed reactor, but also other types such as a ebullated-bed reactor.
- the way of feeding and discharging materials is not limited, and can be fed from below.
- the top discharging method can also be used for the top feeding and the bottom discharging method, but the method of side feeding and top discharging is more preferable.
- Hydrogen and anthracene oil are firstly hydrogenated in the hydrogenation reactor 50.
- hydrogen and anthracene oil are first introduced into the micro-interface.
- the gas forms micro-bubbles, which is more conducive to the efficient reaction.
- the reaction product is separated by the separation tank and then goes to the cracking reaction tower 80, and first passes through the top of the cracking reaction tower. And after the internal micro-interface generator is dispersed and broken, the cracking reaction is carried out, and the obtained cracking reaction product is separated and sent to the fractionation tower 100 for fractionation to obtain the final product.
- the pressure of the above hydrogenation reaction is 8-10MPa, and the temperature of the hydrogenation reaction is 220-230°C.
- the pressure of cracking and hydrogenation is 8-10MPa, and the temperature is 220-230°C.
- the removal rate of desulfurization can reach 99.95%, which is increased by nearly 1 percentage point compared with the previous hydrogenation reaction process.
- the micro-interface reaction system for hydrogenation of anthracene oil of the present invention has few equipment components, small footprint, low energy consumption, low cost and high safety. , The reaction is controllable and the conversion rate of raw materials is high, which is equivalent to providing a micro-interface reaction system with stronger operability for the field of anthracene oil hydrogenation, which is worthy of widespread application.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明提供了一种蒽油加氢的微界面反应系统及方法,微界面反应系统包括:依次连接的微界面发生器、加氢反应器;微界面发生器内通入氢气与蒽油;加氢反应器的侧壁设置有加氢产物出口,从加氢产物出口出来的产物通入第一分离罐以用于分离热高分气和热高分油,热高分气去往第二分离罐分离成冷高分气和冷高分油;热高分油进入裂化反应塔进行裂化反应后,得到的裂化反应产物去往分馏塔进行分馏,冷高分气以及冷高分油分别收集排出。本发明提供的微界面反应系统通过与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率,尤其是提高氢气的利用率,同时有效的提高了产能。
Description
本发明涉及蒽油加氢领域,具体而言,涉及一种蒽油加氢的微界面反应系统及方法。
蒽油是煤焦油组分的一部分,通过蒸馏焦油切取280~360℃的馏分,一般为黄绿色油状液体,室温下有结晶析出,结晶为黄色、有蓝色荧光,能溶于乙醇和乙醚,不溶于水,部分溶于热苯、氯苯等有机溶剂,有强烈刺激性。遇高温明火可燃,主要组成物有蒽、菲、芴、苊、咔唑等。
通过采用蒽油加氢工艺可有效实现脱硫、不饱和烃饱和化、脱氮反应以及芳烃饱和化,从而改善蒽油的安定性、降低硫氮含量和降低芳烃含量,获得高品质的石脑油和柴油调和成分。
目前,大多蒽油加氢工艺均是采用加氢精制、加氢裂化或者两者的结合两段加氢工艺,虽然加氢过程操作方便,容易产业化,但是能耗高,加氢反应器压力高、温度高,产能也比较低。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种蒽油加氢的微界面反应系统,该微界面反应系统通过将加氢反应器与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率,尤其是提高氢气的利用率,同时有效的提高了产能,进而提高了产品的品质以及收率,此外也起到了节省设备成本,节约设备占地面积的作用。
本发明的第二目的在于提供一种采用上述微界面反应系统进行蒽油加氢的反应方法,反应得到的加氢蒽油环保、清洁,应用广泛,提高了蒽油本身的适用面,值得广泛推广应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种蒽油加氢的微界面反应系统,包括:依次连接的微界面发生器、加氢反应器;
所述微界面发生器内通入氢气与蒽油;所述加氢反应器的侧壁设置有加氢产物出口,从所述加氢产物出口出来的产物通入第一分离罐以用于分离热高分气和热高分油,所述热高分气去往第二分离罐分离成冷高分气和冷高分油;所述热高分油进入裂化反应塔进行裂化反应后,得到的所述裂化反应产物去往分馏塔进行分馏,所述冷高分气以及所述冷高分油分别收集排出;
所述裂化反应塔内设置有多层催化剂床层,每个所述催化剂床层上装填有催化剂,相邻催化剂床层之间设置有所述微界面发生器。
本发明的蒽油加氢的微界面反应系统,通过在加氢反应器内部设置有微界面发生器,将进入的氢气进行分散破碎成微气泡,从而提高传质效果,在微界面发生器内部通入的蒽油主要作用是配合气体的分散破碎,相当于介质的作用。
优选地,在裂化反应塔外侧的顶部设置有微界面发生器,将位于裂化反应塔顶部的微界面发生器通入从氢气总管道来的氢气,热高分油从位于裂化反应塔顶部的微界面发生器侧部进入。
本发明的微界面发生器的设置位置是进行过具体设计的。该微界面发生器相对于加氢反应器是设置在其外部,但是对于裂化反应塔来说,其选择了同时设置在裂化反应塔的外部以及内部的设置方式,相当于将外部以及内部的微界面发生器同时结合应用,并且裂化反应塔本身为固定床反应器,因此在裂化反应塔内部的微界面发生器是最好沿垂直方向呈一条直线依次均匀设置在相邻 所述固定床层之间,这样的设置方式可以在加氢裂化反应进行的同时,以保证两个固定床层间隙的裂化加氢效果更佳,提高了大分子物质裂化为小分子物质的效果,相当于分散破碎与反应同时进行,也使得分散破碎操作与反应的进行联系更加紧密,并且通过设置在裂化反应塔顶部外侧的微界面发生器的作用,使得进料在源头上就能够实现充分破碎成微米气泡,这样进到反应器内部后的粉碎效果就会更加充分,起到了协同配合的效果,因此微界面发生器的设置位置也是经过实践设计所得到的,需要根据不同反应的不同特点进行特定的设计。
更优选地,所述催化剂床层最好为4段,位于所述裂化反应塔内部的所述微界面发生器最好为3个,这样每个微界面发生器设置在相邻两段催化剂床层之间。3个微界面发生器的数量已经可以保证分散破碎的效果。
上述加氢反应器之前设置的微界面发生器为气动式,通过将氢气与蒽油通入微界面发生器后分散破碎,以加强后续加氢反应,脱除硫、氮等杂质,提高传质效果。
上述裂化反应塔内部以及外部的微界面发生器为气动式,通过将氢气通入微界面发生器后与热低分油直接触后破碎形成微气泡的方式,提高传质效果。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括 进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
优选地,进行加氢反应的加氢反应器的类型为固定床反应釜,固定床反应釜内催化剂固定在床层上,加氢反应的催化剂一般采用的镍基催化剂,优选地催化剂可以为负载型的镍基催化剂,或者采用碱土金属氧化物或稀土金属氧化物改性过的镍基催化剂更优,载体选择为氧化硅或者氧化铝。
优选地,进行裂化加氢反应催化剂的活性成分为镍、钴、钼的氧化物,载体为氧化铝、硅铝氧化物或分子筛。
加氢反应器的作用在于脱除硫、氮等杂质,提高蒽油产品的质量,裂化反应塔的作用在于加工重油,使其在催化剂作用下,大分子裂化成小分子,可以将大部分渣油转化成为燃料油、液化气等,从而提高油品的利用率,产品中的烯烃含量也会比较高。
从加氢反应器出来的产物经过第一分离罐、第二分离罐的分离,分离罐根据分离的产品不同会调整加压的压力,分离出的热高分油从所述裂化反应塔的顶部进入与氢气共同进行裂化加氢,通过将加氢反应与加氢裂化循环并联的方式,提高了加氢效果,也相应的提高了反应深度。
优选地,位于相邻催化剂床层之间的微界面发生器上均设置有热高分油进口以及氢气进口,所述热高分油进口与所述第一分离罐的底部连接,所述氢气进口与所述氢气总管道连接。热高分油的进口与氢气进口分别设置在微界面发生器上,这样先通过微界面发生器的分散破碎后,更有利于催化裂化反应的有效进行。热高分油的进口、氢气进口的个数与设置的微界面发生器的个数是一一对应的关系,这样可以保证多条支路同时进入氢气与热高分油进行催化裂化。
优选地,所述裂化反应塔的底部设置有用于将所述裂化反应产物排出的裂化反应产物出口,所述裂化反应产物出口连接用于油气分离的第四分离罐,第四分离罐底部分离出的油相去往所述分馏塔。
优选地,第四分离罐的顶部分离出的气相预先经过压缩机压缩后,返回与所述氢气总管道连通。
氢气总管道来的氢气总共分为两部分,一部分为新鲜补充的氢气,另外一部分为第四分离罐顶部来的气相,这部分的先进行压缩机压缩后,再从氢气总管道去往位于裂化反应塔顶部的微界面发生器内,以及分出很多支路去往位于裂化反应塔内部的微界面发生器中。
优选地,从所述第二分离罐顶部出来的冷高分气去往所述第四分离罐进行继续分离。
优选地,从所述第二分离罐底部出来的冷高分油去往所述分馏塔进行分馏。
从裂化反应塔出来的裂化反应产物会通过第四分离罐进行不同程度的气液分离,同时前面分离罐中的产物也可以进入到后续的分离罐中进行再分离,以提高分离效果。
优选地,所述分馏塔内设置有多层塔板,所述塔板内装填有助于分馏效果的填料,从所述分馏塔的塔顶出来的塔顶气通过管道排出,从所述分馏塔底部出来的尾油通过管道排出,从所述分馏塔的塔段中间部位出来的不同馏分分别收集。分馏塔的作用在于根据不同的用途收集不同的馏分进行相应的应用。中间塔段的馏分为燃料油、石脑油以及液化气等成分。
本发明还提供了一种蒽油加氢微界面反应系统的反应方法,包括:
将蒽油与氢气混合微界面分散破碎后进行加氢反应,再进行分离、微界面分散破碎后加氢裂化,气液分离以及分馏。
优选地,所述加氢反应的压力8-10MPa,所述加氢反应的温度为220-230℃;
优选地,所述加氢裂化的压力8-10MPa,温度为220-230℃。
上述反应方法中,加氢反应与裂化加氢反应较以往的反应相比,均降低了能耗,并同时提高了反应效果,提高了原料利用率,尤其是氢气的利用率。
采用本发明蒽油加氢反应得到的油品品质好、收率高,脱硫率可以达到99.95%。
本发明的蒽油加氢的反应方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能,最终的脱硫率接近100%,较以往提高了近1个百分点。
与现有技术相比,本发明的有益效果在于:
(1)本发明蒽油加氢的微界面反应系统通过将加氢反应器与微界面发生器进行组合后,降低了能耗,降低了反应温度,提高了反应产率,提高了原料的利用率;
(2)本发明的蒽油加氢的微界面反应系统通过将微界面发生器设置在特定的位置,从而对于提高传质效果是最为有利的;
(3)本发明的蒽油加氢的反应方法反应温度低、压力大幅度下降,液时空速高,相当于提高了产能,最终的脱硫率接近100%,较以往提高了近1个百分点。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的蒽油加氢的微界面反应系统的结构示意图。
附图说明:
10-储氢罐; 20-微界面发生器;
30-蒽油储罐; 40-氢气预热器;
50-加氢反应器; 60-第一分离罐;
70-第二分离罐; 80-裂化反应塔;
90-第四分离罐; 100-分馏塔;
801-催化剂床层; 802-裂化反应产物出口;
803-热高分油进口; 804-氢气进口;
805-氢气总管道; 806-压缩机;
1001-塔板;
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸 连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的蒽油加氢的微界面反应系统,其主要包括微界面发生器20、加氢反应器50以及裂化反应塔80;
微界面发生器20内同时通入氢气与蒽油,蒽油从蒽油储罐30输送过来,氢气从储氢罐10输送过来先经过氢气预热器40预热后再通入微界面发生器20中,在微界面发生器20内氢气经过分散破碎成小分子后,分散破碎处理后的蒽油与氢气的混合物共同输送到加氢反应器50内进行加氢反应;
经过加氢脱硫、脱氮后的油从加氢反应器50出来先经过第一分离罐60分离成热高分气和热高分油,热高分油去往后续的裂化反应塔进行加氢裂化反应,热高分气继续通过第二分离罐70进行分离,分离成冷高分气和冷高分油,第二分离罐70顶部的冷高分气去往后续的第四分离罐90进行进一步的分离,第二分离罐70底部的冷高分油直接去往后续的分馏塔进行分馏。
裂化反应塔80的顶部设置有微界面发生器20,该微界面发生器通过氢气总管道805通入氢气,一部分为新氢,另一部分为从第四分离罐90顶部重新返回的气相,先通过压缩机806压缩后再通入到裂化反应塔80内,第一分离罐60底部出来的热高分油从裂化反应塔80的顶部的微界面发生器进入进行加氢催化裂化。这样氢气和热高分油均从顶部的微界面发生器分散破碎后,再进入到裂化反应塔80内,以进行裂化催化反应。
裂化反应塔80内设置有多层催化剂床层801,优选为4层催化剂床层801, 在每个催化剂床层801上装填有催化剂,为了提高传质效果,在裂化反应塔80的内的相邻催化剂床层801之间均设置有微界面发生器20,所设置的微界面发生器的个数为3个,每个微界面发生器上均设置有热高分油进口803以及氢气进口804,热高分油进口803与第一分离罐60的底部连接,氢气进口804与氢气总管道805连接。
这样一来,从第一分离罐60底部出来的热高分油同时进入到位于裂化反应塔80顶部的微界面发生器20以及位于裂化反应塔80内部的微界面发生器20,同时,从氢气总管道805来的氢气进入到位于裂化反应塔80顶部的微界面发生器20以及位于裂化反应塔80内部的微界面发生器20,预先分散破碎后再进行催化裂化反应,可以显著的提高反应传质效果。
该微界面发生器20的类型与加氢反应器50之前所设置的微界面发生器20类型是一致的,均选择为气动式类型的微界面发生器20,通过设置在不同位置的微界面发生器20的协同配合作用,以提高整个反应的传质效果。
经过了加氢裂化催化反应后,在裂化反应器的底部设置有用于将裂化反应产物排出的裂化反应产物出口802,从裂化反应产物出口802出来的物质去往第四分离罐90进行油气分离,从第四分离罐90底部分离出的油相去往分馏塔进行分馏处理。第四分离罐90的顶部分离出的气相重新返回到裂化反应塔80作为裂化反应的原料再利用。
分馏塔100内设置有多层塔板1001,塔板1001内装填有助于分馏效果的填料,常用的填料可以为拉西环、鲍尔环等等。
经过分馏塔100的分馏后,塔顶出来的塔顶气通过管道排出,从分馏塔100底部出来的尾油通过管道排出,从分馏塔100的塔段中间部位出来的不同馏分分别收集,不同馏分主要为液化气、石脑油、燃料油等等。
在上述实施例中,为了增加分散、传质效果,也可以多增设额外的微界面发生器20,安装位置其实也是不限的,可以外置也可以内置,内置时还可以采用安装在釜内的侧壁上相对设置,以实现从微界面发生器20的出口出来的微 气泡发生对冲。
在上述实施例中,加氢反应器50的类型除了可以是固定床反应釜以外,还可以是沸腾床反应釜等其他类型,除此之外进出料的方式也不限,可以从下方进料上方出料,也可以采用上方进料下方出料的方式,但是比较优选地是侧方进料,上方出料的方式。
在上述实施例中,泵体的个数并没有具体要求,可根据需要在相应的位置设置。
以下简要说明本发明的蒽油加氢微界面反应系统的工作过程和原理:
氮气吹扫微界面反应系统中的各个设备,然后开车进行操作,氢气与蒽油先在加氢反应器50内进行加氢反应,进行加氢反应之前,将氢气与蒽油先通入到微界面发生器20中进行分散破碎后使得气体形成微气泡,更有利于反应高效的进行,加氢反应后,反应产物经过分离罐的分离后去往裂化反应塔80,先通过位于裂化反应塔顶部以及内部的微界面发生器分散破碎后,再进行裂化反应,所得到的裂化反应产物出来后经过分离去往分馏塔100进行分馏,得到最终的产品。
其中,上述加氢反应的压力8-10MPa,所述加氢反应的温度为220-230℃。
裂化加氢的压力8-10MPa,温度为220-230℃。通过设置了微界面发生器20后相应的降低了操作压力、温度,降低了能耗,提高了产能。
以上各个工艺步骤循环往复,以使整个合成系统平稳的运行。
通过采用本发明的加氢反应工艺,脱硫的脱除率可以达到99.95%,较以往的加氢反应工艺,其脱除率提高了近1个百分点。
此外,通过铺设微界面发生器降低了加氢反应釜的压力以及温度,充分降低了能耗。
总之,与现有技术的蒽油加氢的微界面反应系统相比,本发明的蒽油加氢的微界面反应系统设备组件少、占地面积小、能耗低、成本低、安全性高、反应可控,原料转化率高,相当于为蒽油加氢领域提供了一种操作性更强的微界 面反应系统,值得广泛推广应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
- 一种蒽油加氢的微界面反应系统,其特征在于,包括:依次连接的微界面发生器、加氢反应器;所述微界面发生器内通入氢气与蒽油;所述加氢反应器的侧壁设置有加氢产物出口,从所述加氢产物出口出来的产物通入第一分离罐以用于分离热高分气和热高分油,所述热高分气去往第二分离罐分离成冷高分气和冷高分油;所述热高分油进入裂化反应塔进行裂化反应后,得到的所述裂化反应产物去往分馏塔进行分馏,所述冷高分气以及所述冷高分油分别收集排出;所述裂化反应塔内设置有多层催化剂床层,每个所述催化剂床层上装填有催化剂,相邻催化剂床层之间设置有所述微界面发生器。
- 根据权利要求1所述的微界面反应系统,其特征在于,在所述裂化反应塔外侧的顶部设置有所述微界面发生器,将位于所述裂化反应塔顶部的微界面发生器通入从氢气总管道来的氢气,所述热高分油从位于所述裂化反应塔顶部的微界面发生器侧部进入。
- 根据权利要求2所述的微界面反应系统,其特征在于,位于相邻催化剂床层之间的微界面发生器上均设置有热高分油进口以及氢气进口,所述热高分油进口与所述第一分离罐的底部连接,所述氢气进口与所述氢气总管道连接。
- 根据权利要求1所述的微界面反应系统,其特征在于,所述催化剂床层为4个,位于所述裂化反应塔内部的微界面发生器为3个。
- 根据权利要求2所述的微界面反应系统,其特征在于,所述裂化反应塔的底部设置有用于将所述裂化反应产物排出的裂化反应产物出口,所述裂化反应产物出口连接用于油气分离的第四分离罐,第四分离罐底部分离出的油相去往所述分馏塔。
- 根据权利要求5所述的微界面反应系统,其特征在于,所述第四分离罐的顶部分离出的气相预先经过压缩机压缩后,返回与所述氢气总管道连通。
- 根据权利要求5所述的微界面反应系统,其特征在于,从所述第二分离罐顶部出来的冷高分气去往所述第四分离罐进行继续分离。
- 根据权利要求5所述的微界面反应系统,其特征在于,从所述第二分离罐底部出来的冷高分油去往所述分馏塔进行分馏。
- 采用权利要求1-8任一项所述的蒽油加氢的微界面反应系统的反应方法,其特征在于,包括:将蒽油与氢气混合微界面分散破碎后进行加氢反应,再进行分离、微界面分散破碎后加氢裂化,最后经过分离以及分馏处理。
- 根据权利要求9所述的反应方法,其特征在于,所述加氢反应的压力8-10MPa,所述加氢反应的温度为220-230℃;优选地,所述加氢裂化的压力8-10MPa,温度为220-230℃。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010683555.6A CN111871333B (zh) | 2020-07-16 | 2020-07-16 | 一种蒽油加氢的微界面反应系统及方法 |
CN202010683555.6 | 2020-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022011869A1 true WO2022011869A1 (zh) | 2022-01-20 |
Family
ID=73155432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122726 WO2022011869A1 (zh) | 2020-07-16 | 2020-10-22 | 一种蒽油加氢的微界面反应系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111871333B (zh) |
WO (1) | WO2022011869A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061460A (zh) * | 2021-03-25 | 2021-07-02 | 南京延长反应技术研究院有限公司 | 一种柴油加氢的微界面反应系统及方法 |
CN113387332A (zh) * | 2021-07-16 | 2021-09-14 | 南京延长反应技术研究院有限公司 | 一种制备双氧水的微界面氧化系统以及氧化方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155294A1 (en) * | 2006-12-29 | 2010-06-24 | Uop Llc | Hydrocarbon conversion process |
CN101892077A (zh) * | 2010-02-23 | 2010-11-24 | 何巨堂 | 一种高压部分串联的两段法烃氢化方法 |
CN102041073A (zh) * | 2009-10-16 | 2011-05-04 | 中国石油化工股份有限公司 | 蒽油的加氢裂化方法 |
KR20150076313A (ko) * | 2013-12-26 | 2015-07-07 | 주식회사 포스코 | 탄화수소 유분으로부터 고부가 방향족 제품을 제조하는 방법 |
CN105462610A (zh) * | 2015-11-23 | 2016-04-06 | 华电重工股份有限公司 | 一种蒽油加氢方法 |
CN105647577A (zh) * | 2014-11-13 | 2016-06-08 | 中国石油天然气股份有限公司 | 一种烃类连续液相加氢工艺方法及其装置 |
CN110396425A (zh) * | 2019-08-20 | 2019-11-01 | 中国石油化工股份有限公司 | 微界面强化液相循环加氢的装置及方法 |
CN111359556A (zh) * | 2019-03-15 | 2020-07-03 | 南京延长反应技术研究院有限公司 | 一种微界面强化加氢反应系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990013612A1 (en) * | 1989-05-10 | 1990-11-15 | Davy Mckee (London) Limited | Multi-step hydrodesulphurisation process |
US6299759B1 (en) * | 1998-02-13 | 2001-10-09 | Mobil Oil Corporation | Hydroprocessing reactor and process with gas and liquid quench |
CN101597516A (zh) * | 2009-07-22 | 2009-12-09 | 中国石油化工集团公司 | 一种控制固定床加氢反应器床层温度的方法 |
CN101993721B (zh) * | 2009-08-25 | 2016-04-13 | 中国石油化工股份有限公司 | 液相循环加氢处理方法和反应系统 |
CN102465032B (zh) * | 2010-11-04 | 2014-07-23 | 中国石油化工股份有限公司 | 重烃原料加氢处理方法 |
FR2969642B1 (fr) * | 2010-12-22 | 2012-12-28 | IFP Energies Nouvelles | Production de carburants paraffiniques a partir de matieres renouvelables par un procede d'hydrotraitement en continu |
CN103509599B (zh) * | 2012-06-29 | 2015-10-28 | 中国石油化工股份有限公司 | 一种生产中间馏分油的并流式加氢方法 |
CN103131461A (zh) * | 2013-03-11 | 2013-06-05 | 中国寰球工程公司辽宁分公司 | 一种烃油加氢方法 |
CN105586087B (zh) * | 2014-10-24 | 2017-06-30 | 中国石油化工股份有限公司 | 一种加氢裂化的方法 |
CN105647580B (zh) * | 2016-03-25 | 2017-06-20 | 武汉凯迪工程技术研究总院有限公司 | 费托合成全馏分油生产低凝中间馏分油系统及方法 |
CN109777512B (zh) * | 2017-11-14 | 2021-08-06 | 中国石油化工股份有限公司 | 一种提高重石脑油收率的加氢裂化方法 |
CN111359542A (zh) * | 2019-03-15 | 2020-07-03 | 南京延长反应技术研究院有限公司 | 一种微界面强化柴油加氢精制反应系统及方法 |
-
2020
- 2020-07-16 CN CN202010683555.6A patent/CN111871333B/zh active Active
- 2020-10-22 WO PCT/CN2020/122726 patent/WO2022011869A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155294A1 (en) * | 2006-12-29 | 2010-06-24 | Uop Llc | Hydrocarbon conversion process |
CN102041073A (zh) * | 2009-10-16 | 2011-05-04 | 中国石油化工股份有限公司 | 蒽油的加氢裂化方法 |
CN101892077A (zh) * | 2010-02-23 | 2010-11-24 | 何巨堂 | 一种高压部分串联的两段法烃氢化方法 |
KR20150076313A (ko) * | 2013-12-26 | 2015-07-07 | 주식회사 포스코 | 탄화수소 유분으로부터 고부가 방향족 제품을 제조하는 방법 |
CN105647577A (zh) * | 2014-11-13 | 2016-06-08 | 中国石油天然气股份有限公司 | 一种烃类连续液相加氢工艺方法及其装置 |
CN105462610A (zh) * | 2015-11-23 | 2016-04-06 | 华电重工股份有限公司 | 一种蒽油加氢方法 |
CN111359556A (zh) * | 2019-03-15 | 2020-07-03 | 南京延长反应技术研究院有限公司 | 一种微界面强化加氢反应系统 |
CN110396425A (zh) * | 2019-08-20 | 2019-11-01 | 中国石油化工股份有限公司 | 微界面强化液相循环加氢的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111871333B (zh) | 2023-06-27 |
CN111871333A (zh) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101747935B (zh) | 一种从重质烃生产低碳烯烃和单环芳烃的方法 | |
WO2022011869A1 (zh) | 一种蒽油加氢的微界面反应系统及方法 | |
CN102517071B (zh) | 一种洗油和煤直接液化油混合加工方法 | |
WO2022036837A1 (zh) | 一种石油树脂加氢的反应系统及方法 | |
CN101724453B (zh) | 一种重烃多段沸腾床加氢方法 | |
CN113025378B (zh) | 一种多产烯烃的原油加工方法及系统 | |
WO2022011867A1 (zh) | 一种柴油加氢的微界面反应系统及方法 | |
CN102344828B (zh) | 一种劣质渣油的加工方法 | |
CN103773452A (zh) | 一种多产优质化工原料的加氢裂化方法 | |
CN100443572C (zh) | 一种由高氮含量重质原料油多产柴油的加氢裂化方法 | |
CN101280221A (zh) | 一种劣质柴油馏分加氢转化方法 | |
CN104194830A (zh) | 煤直接液化循环溶剂、其加工方法以及利用其的煤直接液化方法 | |
TWI811819B (zh) | 多相態組合的反應系統和反應方法 | |
CN105925304B (zh) | 煤直接液化循环溶剂及其制备方法 | |
CN102041082B (zh) | 一种重油原料加氢转化的工艺方法 | |
WO2022011868A1 (zh) | 一种蒽油加氢的反应系统及方法 | |
CN102344829A (zh) | 一种渣油加氢处理、催化裂化重油加氢和催化裂化的组合方法 | |
WO2022036838A1 (zh) | 一种石油树脂加氢的微界面反应系统及方法 | |
CN103571536B (zh) | 催化裂化与加氢生产清洁汽油并增产丙烯的装置及方法 | |
WO2022011866A1 (zh) | 一种柴油加氢的反应系统及方法 | |
CN104650970B (zh) | 一种降低轻馏分产品硫含量的加氢裂化工艺方法 | |
CN100419044C (zh) | 一种从煤液化油最大量生产大比重航空煤油的方法 | |
CN105623724A (zh) | 一种高芳烃产低碳数单六元环烃的加氢热裂化方法 | |
CN102443429B (zh) | 一种生产超低硫柴油的加氢处理方法 | |
CN112011365A (zh) | 一种石油树脂加氢的微界面强化反应系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20945144 Country of ref document: EP Kind code of ref document: A1 |