WO2022034995A1 - 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 - Google Patents
전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 Download PDFInfo
- Publication number
- WO2022034995A1 WO2022034995A1 PCT/KR2020/018686 KR2020018686W WO2022034995A1 WO 2022034995 A1 WO2022034995 A1 WO 2022034995A1 KR 2020018686 W KR2020018686 W KR 2020018686W WO 2022034995 A1 WO2022034995 A1 WO 2022034995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- negative electrode
- positive electrode
- tab
- active material
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000011149 active material Substances 0.000 claims abstract description 58
- 238000005520 cutting process Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 40
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 239000007773 negative electrode material Substances 0.000 claims description 7
- 239000007774 positive electrode material Substances 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 6
- 230000037431 insertion Effects 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 5
- 101100133200 Gallus gallus NTN3 gene Proteins 0.000 claims description 4
- 235000015110 jellies Nutrition 0.000 claims description 3
- 239000008274 jelly Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 36
- 238000003475 lamination Methods 0.000 description 19
- 230000002457 bidirectional effect Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 9
- 239000011888 foil Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 102000009065 Netrin-1 Human genes 0.000 description 2
- 108010074223 Netrin-1 Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
- G01B7/08—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
- G01B7/087—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring of objects while moving
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0409—Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0583—Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4285—Testing apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/55—Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
- H01M50/557—Plate-shaped terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an electrode assembly including a negative electrode sheet and a negative electrode having improved stacking characteristics of the electrode, and a method for manufacturing the same.
- secondary batteries are sometimes classified into lithium ion batteries, lithium ion polymer batteries, lithium polymer batteries, etc. depending on the composition of the electrode and electrolyte. is increasing
- secondary batteries include a cylindrical battery and a prismatic battery in which an electrode assembly is embedded in a cylindrical or prismatic metal can, and a pouch-type battery in which the electrode assembly is embedded in a pouch-type case of an aluminum laminate sheet, depending on the shape of the battery case. classified as
- the electrode assembly built into the battery case is a power generating element that can be charged and discharged with a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. It is classified into a wound jelly-roll type and a stack type in which a plurality of positive and negative electrodes of a predetermined size are sequentially stacked in a state in which a separator is interposed.
- FIG. 1 is a schematic diagram of a manufacturing process of a conventional stacked electrode assembly.
- the stacked electrode assembly 10 is formed between a positive electrode plate 1, a negative electrode plate 2, and a separator 5 interposed between the positive electrode plate 1 and the negative electrode plate 2 between unit cells.
- the electrode assembly 10 is constituted by stacking two separators, and a protruding positive electrode tab 3 and a negative electrode tab 4 are electrically attached to one side of the positive electrode plate 1 and the negative electrode plate 2 .
- the above configuration also corresponds to a jelly roll type electrode assembly.
- the electrode tab formed through notching is formed only with a metal foil, it may not be suitable as a reference line for the subsequent process due to problems such as folding and light reflection.
- FIG. 10 is a cross-sectional view of an electrode assembly according to the prior art.
- the electrode assembly constituting the pouch-type battery cell has a structure in which a separator 5 is interposed between the positive electrode 10 and the negative electrode 20 , and the negative electrode sheet 200 and the positive electrode as a current collector A positive electrode mixture layer 11 and a negative electrode mixture layer 21 including an electrode active material are respectively coated on one or both surfaces of the sheet 400 .
- FIG. 11 is a detailed view of an electrode current collector in which an electrode sheet coated with an electrode active material on both sides and a separator are laminated.
- an electrode active material is applied between the positive electrode sheet, which is a current collector.
- the negative electrode mixture layer 21 has an electrode active material applied between the negative electrode sheets as a current collector. ) is composed of
- the thickness (t N ) of the negative electrode mixture layer should be thicker than the thickness (t P ) of the positive electrode mixture layer to maintain the capacity characteristics of the battery and improve safety.
- the positive electrode and the negative electrode are coated with a positive or negative electrode active material on a sheet in the form of a metal foil as a current collector, and a sliding part in which a difference occurs in the coated thickness at both ends of the coating part due to physical and chemical properties such as viscosity and composition of the active material can be formed.
- the angle ⁇ of the negative slope is smaller than the angle ⁇ of the positive slope.
- the reason why the inclination of the negative slope is more gentle than that of the positive slope is that the viscosity of the active material of the positive electrode is higher than that of the negative electrode, so that the slope of the negative slope is relatively gentle.
- the negative pole direction length (L N ) of the negative polarity portion is greater than the positive pole direction length ( LP ) of the positive electrode slope portion.
- the negative electrode to positive electrode capacitance inverting unit 500 in which the negative electrode to positive electrode capacity ratio (N/P ratio) is reversed exists.
- the existence of such a negative electrode to positive electrode capacity reversal part causes a shortage of space inside the negative electrode 20 into which lithium ions desorbed from the positive electrode 10 can be inserted during repeated charging and discharging, so that lithium ions are transferred from the surface of the negative electrode to lithium metal.
- metal impurity precipitated as a metal or mixed in the battery manufacturing process is recrystallized, safety problems may be caused due to an internal short circuit caused by penetrating the separator and contacting the positive electrode.
- the thickness of the electrode tab is thicker than that of the existing electrode tab to change the cutting standard of the electrode, improve the alignment accuracy during stacking, and increase the effect of positive and negative ACOH (Anode Cathode Overhang) gap inspection.
- ACOH Anode Cathode Overhang
- An object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
- an object of the present invention is to change the cutting standard of the electrode in the lamination process, improve alignment accuracy during stacking, and increase the effect of positive and negative electrode gap inspection. It is to provide an electrode assembly including a negative electrode sheet and a negative electrode having improved lamination characteristics of electrodes based on a shoulder portion coated with no light reflection, and a method for manufacturing the same.
- a method of manufacturing a negative electrode for securing an ACOH (Anode Cathode Overhang) gap comprising: a first step of manufacturing a negative electrode roll having an active material coating portion and an uncoated portion formed in a full-length direction (Y-axis direction); a second step of performing notching to form a negative electrode tab including the active material coated portion and the uncoated portion and a shoulder portion including the active material coated portion at a predetermined interval (A) in the full width direction (X-axis direction) of the negative electrode roll; A third step of cutting with a predetermined interval (B) in the full width direction (X-axis direction) based on the shoulder portion; may be a negative electrode manufacturing method comprising a.
- center line in the longitudinal direction of the shoulder portion may be formed at a level coincident with the center line of the positive electrode tab of the positive electrode.
- the height of the shoulder portion in the overall length direction based on the outer peripheral end of the negative electrode may be equal to or lower than the height of the active material application portion of the negative electrode tab.
- the full width W6 of the shoulder portion may include an ACOH gap on both sides of the positive electrode tab and the positive electrode tab.
- the overall length L6 of the shoulder portion may be 0.1 to 3 mm or more from the outer end of one side of the negative electrode.
- the R value of the shoulder portion may be 0.1 to 3R or more.
- a negative electrode tab including the active material application portion and the uncoated portion and a shoulder portion including the active material application portion are formed at a predetermined interval (A) according to the present invention to achieve this object, and the shoulder portion faces the positive electrode tab when stacked with the positive electrode It may be a cathode formed in position.
- the full width W6 of the shoulder portion may include the full width of the positive electrode tab and the ACOH gap
- the full length (L6) of the normal shoulder portion may include the length of the active material application portion of the positive electrode tab and the ACOH gap.
- the negative electrode height ratio of the height (H NTN2 ) from the negative electrode end 215 to the negative electrode tab neck 214 and the height from the starting point where the shoulder portion is formed at the negative electrode end to the active material application portion (H NS ) may be 5.0 to 1.
- a positive electrode tab according to the present invention for achieving this object is protruded from one side of the outer end, the positive electrode mixture layer comprising a positive electrode active material is coated on the lower portion of the positive electrode tab and on the current collector; a negative electrode having a negative electrode tab protruding from an outer end of one side and having a negative electrode mixture layer including a negative electrode active material coated on a lower portion of the negative electrode tab and on a current collector; and a separator positioned between the positive electrode and the negative electrode, wherein the negative electrode includes a negative electrode tab including the active material coating part and the uncoated part at a predetermined interval (A) along the full width direction (X-axis direction) and the active material coating part A shoulder portion may be formed, and the shoulder portion may be an electrode assembly formed at a position facing the positive electrode tab when stacked with the positive electrode.
- the negative electrode tab and the shoulder portion of the negative electrode may be formed together at one end of the negative electrode in the longitudinal direction (Y-axis direction) or formed at both ends of the negative electrode.
- an electrode assembly manufacturing method for securing an ACOH (Anode Cathode Overhang) gap comprising: vision-sensing the shoulder portion of a negative electrode; laminating so that the positive electrode tab of the positive electrode sheet is positioned based on the full width or the full length of the shoulder portion; By measuring the ACOH gap of the stacked positive electrode tab and the shoulder portion, the electrode assembly stacking distortion is prevented, and the negative electrode includes the active material coated portion and the uncoated portion at a predetermined interval (A) along the full width direction (X-axis direction).
- a shoulder portion including only a tab and the active material application portion is formed, and the full width of the shoulder portion may be an electrode assembly manufacturing method including a negative electrode including an ACOH gap on both sides of the positive electrode tab and the full width of the positive electrode tab.
- the electrode assembly may have a stack type, a zigzag type, a jelly roll type, or a stack/folding type structure.
- the electrode assembly may be composed of a single electrode plate, a bicell having the same polarity of the electrode plates on both outer surfaces, or unit cells consisting of full cells having different polarities of the electrode plates on both outer surfaces.
- the positive electrode tab and the negative electrode tab may be formed in the same direction or opposite directions with respect to the electric length direction (Y-axis direction).
- the electrode assembly manufactured by the method of manufacturing the electrode assembly may be a battery cell that is embedded in a battery case together with an electrolyte.
- it may be a battery pack including one or more of the battery cells.
- it may be a device including the battery pack.
- the present invention provides a battery cell in which the electrode assembly is embedded together with an electrolyte in a battery case.
- the present invention also provides a battery pack including one or more of the battery cells, and a device including the battery pack.
- the present invention provides a first step of preparing an electrode sheet including an electrode mixture layer
- the negative electrode sheet may be an electrode mixture layer thickness measuring method in which a negative electrode tab including the active material application portion and the uncoated portion and a shoulder portion including the active material application portion are formed at a predetermined interval (A).
- the device may be selected from a computer, a mobile phone, a wearable electronic device, a power tool, an electric vehicle (EV), a hybrid electric vehicle, an electric two-wheeled vehicle, an electric golf cart, or a system for power storage. .
- a computer a mobile phone, a wearable electronic device, a power tool, an electric vehicle (EV), a hybrid electric vehicle, an electric two-wheeled vehicle, an electric golf cart, or a system for power storage.
- the electrode assembly including the negative electrode and the negative electrode having improved stacking characteristics of the electrode according to the present invention and the method for manufacturing the same reduce the occurrence of errors by changing the cutting of the electrode based on the negative electrode shoulder portion in the lamination process.
- FIG. 1 is a schematic diagram illustrating a conventional stacked unidirectional electrode assembly and a folding phenomenon of an electrode tab thereof.
- FIG. 2 is a schematic diagram showing a comparison between the conventional bidirectional electrode plates and the bidirectional electrode plates according to an embodiment of the present invention.
- FIG 3 is a schematic diagram showing a comparison between the conventional unidirectional electrode plates and the unidirectional electrode plates according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram illustrating bidirectional electrode plates including a cathode including a shoulder portion according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram showing the step of notching the negative electrode with respect to the shoulder portion of the press on which the mold is formed according to an embodiment of the present invention.
- FIG. 6 is a cross-sectional view illustrating a step in which the press according to an embodiment of the present invention notches the negative electrode with respect to the shoulder portion.
- FIG. 7 is a schematic diagram comparing problems in the conventional unidirectional electrode stacking and the improvement in accuracy by stacking them based on a shoulder according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram comparing problems in the conventional unidirectional electrode stacking and improvement in measurement accuracy of anode and cathode gaps according to an embodiment of the present invention.
- FIG. 9 is a schematic view in which a shoulder portion is formed in a bidirectional electrode assembly according to an embodiment of the present invention.
- FIG. 10 is a cross-sectional view of a conventional electrode assembly.
- FIG. 11 is an enlarged cross-sectional view in which a cathode-to-anode capacitance inversion portion of a conventional electrode assembly exists.
- FIG. 13 is a plan view of a conventional electrode assembly in which the negative electrode to positive capacitance inverted portion exists and a plan view of an electrode assembly having a shoulder portion in which the negative electrode to positive capacitance inverting portion is removed in a unidirectional electrode assembly according to an embodiment of the present invention.
- ACOH Anode Cathode Overhang
- the electrode tab neck refers to a holding part area on the electrode tab formed on the electrode sheet through notching.
- the electrode tab neck may include an active material coating inclined portion and a flat portion.
- the electrode sheet is a unit electrode that has been notched and cut in an electrode roll.
- An electrode assembly refers to a unit cell in which an anode, a separator, and a cathode are stacked.
- the bidirectional electrode assembly refers to a medium and large-sized battery such as for electric vehicles
- the unidirectional electrode assembly refers to an electrode assembly applied to a small battery such as a mobile device.
- the electrode assembly of the present invention may have a stack type, a zigzag type (refer to KR 10-1634772B1), or a stack/folding type structure.
- the electrode roll is generally a unit body in which an electrode sheet having a single active material coated portion and an uncoated portion is rolled by slitting a sheet having a plurality of active material coated portions and an uncoated portion.
- the shoulder portion of the present invention is configured to be formed in a portion overlapping the portion where the positive electrode tab of the positive electrode is formed on the negative electrode when the electrode assembly is formed.
- the shoulder portion is formed including the active material application portion of the negative electrode roll when the negative electrode sheet is formed.
- the numerical value or reference value suggested is a design value, and it is naturally expected that there is a process error when the actual process is applied.
- FIG. 1 is a schematic diagram illustrating a conventional stacked unidirectional electrode assembly and a folding phenomenon of an electrode tab thereof.
- FIG. 2 is a schematic diagram showing a comparison between the conventional bidirectional electrode plates and the bidirectional electrode plates according to an embodiment of the present invention.
- FIG 3 is a schematic diagram showing a comparison between the conventional unidirectional electrode plates and the unidirectional electrode plates according to an embodiment of the present invention.
- the electrode assembly according to the present invention has a structure in which a separator 5 is interposed between a positive electrode plate 1 and a negative electrode plate 2, and a positive electrode plate 1, a negative electrode plate 2, and a separator ( 5) is included.
- the configuration of the conventional electrode plates 1 and 2 is disclosed on the left side of FIGS. 2 and 3 , and the configuration of the electrode plates according to one embodiment of the present invention is disclosed on the right side.
- the electrode plates of the present invention have a square shape in plan view, and FIG. 4 is an enlarged view of some of the electrode plates of the present invention.
- the positive electrode tab 3 protrudes from one outer peripheral end in the electric length direction (Y-axis direction), and the positive electrode mixture layer 11 including the positive electrode active material protrudes from the positive electrode tab under the positive electrode tab 1 . (31) and is applied on the positive electrode current collector.
- the negative electrode tab 4 protrudes from the outer peripheral end of one side in the electric length direction (Y-axis direction), and the negative electrode mixture layer 21 including the negative electrode active material protrudes from the negative electrode plate 2 . (41) and applied on the negative electrode current collector.
- the negative electrode plate 2 has a relatively larger area than the positive electrode plate 1 , and the positive electrode tab 3 and the negative electrode tab 4 are formed in the same direction (Y-axis direction) so that the protruding ends have the same length.
- the length (L 1 ) of the negative electrode plate is the length (L 2 ) of the positive electrode plate and the length of the upper end (L 11 ) and the lower end length (L 12 ) of the negative electrode plate extending longer than the outer peripheral ends of the positive electrode plate It has the size of the sum.
- the negative electrode plate and the positive electrode plate have a structure in which they are stacked in a state aligned with the center line C-C' so that their centers coincide with each other.
- the upper end length L 11 of the negative electrode plate may be formed to extend 0.1 mm or more from the upper end of the positive electrode plate.
- a short circuit may occur due to a process error when forming the electrode assembly through the lamination and stacking processes.
- each side of the square shape of the negative electrode plate respectively extend 0.1 mm longer than the outer peripheral ends of each side of the positive electrode plate, and the manufacturing process error range is included in this range.
- L11, L12, W11, and W12 values are 0.1 mm or more.
- Normal international standards require a value of 0.1 mm or more.
- a short circuit may occur due to a process error when forming the electrode assembly through the lamination and stacking processes.
- the length (UNIDI-L11) extending longer than the upper end of the conventional unidirectional positive plate from the upper end (the direction in which the electrode tab is formed) of the conventional unidirectional negative plate is unidirectional from the lower end of the unidirectional negative plate (the direction in which the electrode tab is not formed) It is greater than the extended length (UNIDI-L12) longer than the lower end of the bipolar plate. That is, UNIDI-L11 > UNIDI-L12.
- the length of the unidirectional positive plate according to the present invention is compared with that of the conventional unidirectional positive plate, the length of the unidirectional positive plate according to the present invention is larger, resulting in a difference in length, and the effect of increasing capacity due to this difference can be exhibited.
- the length (L22) of the bidirectional positive plate according to the present invention is compared with the length (L2) of the conventional bidirectional positive plate, the length (L22) of the bidirectional positive plate according to the present invention is larger, resulting in a difference in length (L22-2), The effect of increasing the dose due to this difference can be exerted .
- the length (L12) in which the lower end of the bidirectional negative plate according to the present invention is extended longer than the upper end of the bidirectional positive plate according to the present invention is smaller than the extended length (BIDI-L12) of the corresponding conventional bidirectional negative plate, and less than the upper end
- the longer extended length L11 is equal to the extended length BIDI-L12.
- FIG. 4 is a schematic diagram illustrating bidirectional electrode plates including a cathode including a shoulder portion according to an embodiment of the present invention.
- the shoulder portion 6 has a planar rectangular shape, and the protruding length L6 of the shoulder portion 6 is longer than the positive electrode tab lower portion 31 to which the positive electrode mixture layer 11 is applied.
- the shoulder portion 6 is formed on the negative electrode plate facing the positive electrode tab, and the negative electrode mixture layer is applied to the negative electrode plate portion corresponding to the positive electrode tab lower portion 31 on which the positive electrode mixture layer is applied.
- the shoulder portion 6 has a relatively larger area than the positive electrode tab lower portion 13 on which the positive electrode mixture layer is applied.
- the outer peripheral ends of the shoulder portion 6 have a full length L61 and a full width W6 of the shoulder portion extending 0.1 mm or more in the full width direction and in the full length direction than the outer peripheral ends of the lower portion of the positive electrode tab to which the positive electrode mixture layer is applied.
- the total length L6 of the shoulder portion 6, which is the protrusion length of the shoulder portion 6, is relatively longer than the lower portion of the positive electrode tab, and the total width W6 of the shoulder portion 6 is relatively longer than the width W31 of the lower portion of the positive electrode tab. formed large.
- the area on which the negative electrode mixture layer is coated on the negative electrode plate including the negative electrode tab lower portion 41 and the shoulder portion 6 is larger than the area on which the positive electrode mixture layer is coated on the positive electrode plate.
- the thickness of the electrode tab is thicker than that of the existing electrode tab to change the cutting standard of the electrode in the lamination process, improve the alignment accuracy during stacking, and increase the effect of positive and negative ACOH (Anode Cathode Overhang) gap inspection.
- the electrode and electrode assembly process are presented based on the shoulder portion that is coated and does not reflect light.
- FIG. 5 is a schematic diagram showing the step of notching the negative electrode with respect to the shoulder portion of the press on which the mold is formed according to an embodiment of the present invention.
- a roll press process is a process in which heated rollers are placed on upper and lower surfaces of an electrode workpiece to which an electrode slurry containing an electrode active material is applied, and the heated rollers compress the electrode slurry in a direction in which the electrode workpiece is positioned.
- the roll press process evaporates the solvent remaining in the electrode slurry, and compresses and hardens the electrode slurry on the electrode to form an electrode mixture layer having improved energy density. Thereafter, processes of processing the set external shape of the electrode are performed.
- the electrode current collector made of a long metal sheet in one direction coated with the electrode mixture is slitted using a cutter, and thus the electrode It is divided and machined in the form of a strip.
- the Y direction which is the full length direction of the metal foil
- the overall width which is the longitudinal direction, of the metal foil are set in the X direction.
- a method of manufacturing an anode for securing an Anode Cathode Overhang (ACOH) gap comprising: a first step of manufacturing an anode roll in which an active material coating part and an uncoated part are formed in a full length direction (Y-axis direction); a second step of notching a negative electrode tab including the active material coated portion and the uncoated portion and a shoulder portion including only the active material coated portion at a predetermined interval (A) in the full width direction (X-axis direction) of the negative electrode sheet; and a third step of cutting with a predetermined interval (B) in the full width direction (X-axis direction) based on the shoulder portion.
- It may be a negative electrode plate in which the negative electrode tab protrudes from the outer peripheral end of one side, and the negative electrode mixture layer including the negative electrode active material is coated on the lower portion of the negative electrode tab and on the current collector.
- the negative electrode tab protrudes in the electric length direction (Y-axis direction) from one outer peripheral end, and the negative electrode mixture layer including the negative electrode active material is coated on the lower portion of the negative electrode tab protruding from the negative electrode plate and on the negative electrode current collector.
- the predetermined interval A may be the full width of a single negative electrode.
- the overall width of the negative electrode may be 1 to 500 mm, preferably 10 to 200 mm.
- the predetermined interval A may vary depending on the design capacity of the battery.
- the predetermined interval B may be a distance from one end of the shoulder portion to a boundary line cut to form a single cathode in the full width direction.
- the predetermined interval (B) may be 1 to 300 mm, preferably 5 to 100 mm. In this case, it is obvious that the predetermined interval B may vary depending on the design capacity of the battery.
- FIG. 6 is a cross-sectional view illustrating a step in which the press according to an embodiment of the present invention notches the negative electrode with respect to the shoulder portion.
- the electrode workpieces manufactured through the slitting process are subjected to a notching process for processing the shape of the electrode tab using a mold or a laser. Specifically, by cutting the electrode processing body using molds, the shape of the electrode tab and the shape of the holding part coated with the electrode mixture are processed.
- the shape of the shoulder portion including the negative electrode mixture layer of the present invention can be processed.
- This continuous feeding type notching process is characterized in that the press simultaneously feeds and punches the electrode sheet, and the punched electrode sheet is continuously supplied without stopping.
- a continuous feeding method it includes a press 100 for punching the negative electrode sheet 200 into a predetermined shape and a feeder 300 for supplying the negative electrode sheet to the press, and the press also partially operates as a feeder. That is, the press plays a role of piercing the negative electrode sheet and transporting half of the transport length at the same time, and the negative electrode sheet is continuously transported at a constant speed in the form that the waiting feeder transports the other half.
- FIG. 7 is a schematic diagram comparing problems in the conventional unidirectional electrode stacking and the improvement in accuracy by stacking them based on a shoulder according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram comparing problems in the conventional unidirectional electrode stacking and improvement in measurement accuracy of anode and cathode gaps according to an embodiment of the present invention.
- the lamination process accuracy was measured by measuring the gap between the anode and the cathode during lamination to form the left existing unidirectional electrode assembly. At this time, it was necessary to measure the gap between the anode and the cathode by measuring at least two corners of the stacked electrode.
- a center line of the shoulder portion in the longitudinal direction may coincide with a center line of the positive electrode tab of the positive electrode.
- the coincidence of the center line of the full length direction with the center line of the positive electrode tab of the positive electrode may correspond to the center value of process dispersion in the actual mass production process as a design criterion. Accordingly, the formation of the negative electrode sheet in which the shoulder portion is partially out of coincidence with the center line can be sufficiently expected.
- the positive electrode tab may be a positive electrode plate in which a positive electrode tab protrudes from an outer end of one side and a positive electrode mixture layer including a positive electrode active material is applied on a current collector under the positive electrode tab.
- a positive electrode tab protrudes from an outer peripheral end of one side in the electric length direction (Y-axis direction), and a positive electrode tab having a positive electrode mixture layer including a positive electrode active material protrudes from the positive electrode plate is coated on the lower portion and on the positive electrode current collector.
- the height of the shoulder portion in the overall length direction based on the outer peripheral end of the negative electrode plate may be equal to or lower than the height of the active material application portion of the negative electrode tab.
- the height of the shoulder portion in the overall length direction based on the outer peripheral end of the negative electrode plate may be higher than the height of the active material application portion of the positive electrode tab.
- the full width of the shoulder portion may include the full width of the positive electrode tab and ACOH gaps at both sides of the positive electrode tab.
- the overall length L6 of the shoulder portion may be 0.1 to 3 mm from the outer end of one side of the negative electrode to serve as a reference when stacking the electrode assembly. If it is outside the lower limit, safety problems may occur due to the possibility of being formed above the negative electrode tab, and the overall length of the shoulder portion must be greater than or equal to the lower limit in order to secure an ACOH gap and become a standard when stacking electrodes. If it is out of the upper limit, the coating may exceed the separator and unnecessary electrode loss may occur.
- the R value of the shoulder portion may be 0.1R to 3R for the electrode-to-electrode connection. If it is out of the range of the R value, electrode quality may be deteriorated.
- a shoulder portion including only the negative electrode tab and the active material application portion including the active material coated portion and the uncoated portion is formed at a predetermined interval (A) along the full width direction (X-axis direction) of the negative electrode, and the center line in the full width direction of the shoulder portion is the positive electrode tab coincides with the center line of , and the full width of the shoulder portion may be a negative electrode including the full width of the positive electrode tab and an ACOH gap at both sides of the positive electrode tab.
- the negative electrode tab and the shoulder portion may be a negative electrode formed at one end of the negative electrode in the overall length direction (Y-axis direction) or formed at both ends of the negative electrode.
- Vision sensing the shoulder portion of the negative electrode laminating so that the positive electrode tab of the positive electrode is positioned based on the full width and the total length of the shoulder portion; By measuring the ACOH gap of the stacked positive electrode tab and the shoulder portion, the electrode assembly stacking distortion is prevented, and the negative electrode includes the active material coated portion and the uncoated portion at a predetermined interval (A) along the full width direction (X-axis direction).
- a shoulder portion including only a tab and the active material application portion is formed, the center line in the full length direction of the shoulder portion coincides with the center line of the positive electrode tab, and the full width of the shoulder portion includes an ACOH gap on both sides of the positive electrode tab and the positive electrode tab It may be a method of manufacturing an electrode assembly including a negative electrode.
- An electrode assembly manufacturing method for determining the caps of the positive electrode and the negative electrode by measuring the gap between the one end of the positive electrode and the one end of the negative electrode in the stacked overall length direction (Y-axis direction) and the ACOH gap of the stacked positive electrode tab and the shoulder portion can be
- the electrode assembly may be a method of manufacturing an electrode assembly having a stack type or stack/folding type structure.
- the electrode assembly may be an electrode assembly manufacturing method in which bicells having the same polarity of the electrode plates on both outer surfaces or unit cells made of full cells having different polarities of the electrode plates on both outer surfaces are used.
- the positive electrode tab and the negative electrode tab may be formed in the same direction or opposite directions with respect to the electric length direction (Y-axis direction).
- the electrode assembly manufactured by the method of manufacturing the electrode assembly may be a battery cell in which an electrolyte is embedded in a battery case.
- It may be a battery pack including one or more of the battery cells.
- cross-sectional capacity of the negative inclined portion of the active material application portion of the shoulder portion may be higher than the cross-sectional capacity of the positive electrode inclined portion of the active material application portion of the positive electrode tab.
- the height of the negative electrode tab to the active material application part (H NTN ) and the height from the starting point where the shoulder part is formed to the active material application part (H NS ) of the negative electrode height may be 5.0 to 1.
- the negative electrode sheet including the shoulder portion may be notched by moving the negative electrode sheet including the shoulder portion in the electrical length direction from the input position of the negative electrode sheet forming the notch in the conventional negative electrode sheet.
- the notching condition may be performed 0.1 to 1.5 mm above the existing conditions.
- the shoulder portion may be in contact with the neck of the positive electrode tab, and when the negative electrode and the positive electrode having the shoulder portion formed thereon are stacked, the shoulder portion may be overlapped with a holding portion that is an active material application portion of the positive electrode.
- the shoulder portion formed on the negative electrode must be formed on the holding portion.
- shoulder portion formed on the negative electrode should be larger than the positive electrode tab neck.
- the height of the shoulder portion cannot be greater than the lower limit of the negative electrode tab neck.
- the reason for this is to prevent a short circuit due to contact between the foil, which is the metal sheet constituting the electrode, and the contact between the uncoated area on which the active material of the positive electrode and the negative electrode is not coated causes a short circuit, which increases the risk of fire. .
- FIG. 13 is a plan view of FIG. 11 before and after application of the present invention.
- the top view before application of the present invention is a plan view of the negative electrode and the positive electrode of FIG. 11 , showing that the height (H NTN1 ) from the negative electrode tab neck 214 to the active material application portion and the negative electrode to positive electrode capacity inversion portion 500 exist can be checked
- the height (H NS ) from the starting point where the shoulder portion 6 is formed on the negative electrode to the active material application portion is formed from the negative electrode flat portion to the negative electrode inclined portion.
- the height from the negative electrode tab neck 214 to the active material application portion before application of the present invention (H NTN1 ) is the height from the negative electrode tab neck 214 to the active material application portion after application of the present invention (H NTN2 ) smaller than Accordingly, it is possible to eliminate the formation of the cathode-to-anode capacitance inversion portion.
- the negative electrode after application of the present invention may move in the longitudinal direction (Y-axis direction) than the negative electrode before application to form a shoulder portion.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 노칭, 단일전극 커팅 및 스태킹을 포함하는 전극조립체 형성시 기존 전극탭보다 두께가 두꺼워 견고하고 활물질이 도포되어 빛반사가 없는 숄더부를 기준으로 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법이다.
Description
본 출원은 2020년 8월 14일자 한국 특허 출원 제2020-0102132호 및 2020년 12월 15일자 한국 특허 출원 제2020-0175841호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법에 관한 것으로 상세하게는 노칭, 단일전극 커팅 및 스태킹을 포함하는 전극조립체 형성시 기존 전극탭보다 두께가 두꺼워 견고하고 활물질이 도포되어 빛반사가 없는 숄더부를 기준으로 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다. 따라서, 이차전지를 사용하는 애플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다.
이러한 이차전지는 전극과 전해액의 구성에 따라 리튬이온 전지, 리튬이온 폴리머 전지, 리튬 폴리머 전지 등으로 분류되기도 하며, 그 중 전해액의 누액 가능성이 적으며, 제조가 용이한 리튬이온 폴리머 전지의 사용량이 늘어나고 있다. 일반적으로, 이차전지는 전지케이스의 형상에 따라, 전극조립체가 원통형 또는 각형의 금속 캔에 내장되어 있는 원통형 전지 및 각형 전지와, 전극조립체가 알루미늄 라미네이트 시트의 파우치형 케이스에 내장되어 있는 파우치형 전지로 분류된다.
전지케이스에 내장되는 전극조립체는 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막 구조로 이루어져 충방전이 가능한 발전소자로서, 활물질이 도포된 긴 시트형의 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형과, 소정 크기의 다수의 양극과 음극을 분리막에 개재된 상태에서 순차적으로 적층한 스택형으로 분류된다.
도 1은 종래의 적층식 전극조립체의 제조과정에 대한 모식도들이다.
도 1을 참고하면, 적층식 전극조립체(10)는, 양극판(1), 음극판(2), 및 양극판(1)과 음극판(2) 사이에 분리막(5)이 개재된 단위셀들 사이에 제 2 분리막을 적층하여 전극조립체(10)를 구성하고 있으며, 양극판(1) 및 음극판(2)의 일측에는 돌출된 양극탭(3) 및 음극탭(4)이 전기적으로 부착되어 있는 구조이다. 상기 구성은 젤리롤 형태 전극조립체에도 해당한다.
종래의 적층식 전극조립체 구조에서는 이차전지의 용량을 증가시키기 어려우므로 디바이스의 소형화 또는 슬림화에 따른 고용량의 이차전지에 대한 요구를 충족하지 못한다는 단점이 있다.
더욱이, 전극판들의 일면 또는 양면에 전극 합제층이 도포되어 있는 전극 시트로부터 다수의 전극들을 노칭하는 노칭 공정, 또는 전극들의 정렬 공정 등의 제조 공정들에서 오차가 발생하는 경우에 용량을 저하시킬 뿐만 아니라 전지의 수명을 단축시키는 원인이 된다.
특히, 도 1의 종래의 음극탭의 접힌 사진과 같이, 노칭을 통해 형성된 전극탭은 금속 호일만으로 형성되기 때문에 접힘, 빛 반사등의 문제때문에 후단 공정의 기준선으로 적절하지 않은 경우가 있다.
일반적인 노칭공정 또는 라미네이션 공정에서는 전극탭을 기준으로 커팅이나, 적층을 진행하나 금속호일로만 구성되어 전극활물질이 도포된 합제층에 비하여 얇은 두께로 인하여, 공정효율 및 불량율이 높은 상황이다.
추가적으로 도 10은 종래 기술에 따른 전극조립체의 단면도이다. 도 10을 참조하면, 파우치형 전지 셀을 구성하는 전극조립체는 양극(10)과 음극(20) 사이에 분리막(5)이 개재되어 있는 구조로 이루어져 있으며, 집전체인 음극시트(200) 및 양극시트(400)의 일면 또는 양면에 전극 활물질을 포함하는 양극합제층(11) 및 음극합제층(21)이 각 도포되어 있다.
도 11은 전극 활물질이 양면에 도포된 전극시트 및 분리막이 적층된전극집전체의 상세도면이다. 상기 도면을 살펴보면 양극합제층(11)은 집전체인 양극시트사이에 전극 활물질이 도포되는데 상기 양극시트에 균일한 두께로 도포되는 양극평탄부(111)과 경사를 가지고 도포되는 양극경사부(112)로 구성된다. 상기 도면을 살펴보면 음극합제층(21)은 집전체인 음극시트사이에 전극 활물질이 도포되는데 상기 음극시트에 균일한 두께로 도포되는 음극평탄부(211)과 경사를 가지고 도포되는 음극경사부(212)로 구성된다.
상기 음극합제층의 두께(t
N)은 상기 양극합제층의 두께(t
P)보다 두껍게 형성되어야 전지의 용량특성이 유지되고 안전성도 향상된다.
양극과 음극은 집전체인 금속 호일형태의 시트에 양극 또는 음극 활물질이 코팅되며, 상기 활물질의 점성, 조성 등의 물리, 화학적 특성에 의해서 코팅부의 양끝단에서 코팅된 두께에 차이가 발생하는 슬라이딩부분이 형성될 수 있다.
상기 음극경사부의 각도(β)는 상기 양극경사부의 각도(α)보다 작다. 상기 음극경사부의 경사도가 양극경사부 대비 완만한 이유는 음극보다 양극의 활물질 소재 점성이 높아서 음극경사부의 경사도가 상대적으로 완만하게 형성되기 때문이다. 상기 음극경사부의 음극방향 길이(L
N)은 상기 양극경사부의 양극방향 길이(L
P)보다 크다.
상기와 같은 합제층 형성의 특성 때문에 음극 대 양극의 용량비(N/P ratio)가 역전되는 음극 대 양극 용량 역전부(500)가 존재하게 된다. 이러한 음극 대 양극 용량 역전부의 존재는 반복적인 충방전 과정에서, 양극(10)으로부터 탈리된 리튬이온이 삽입될 수 있는 음극(20) 내부의 공간이 부족하게 되어, 리튬이온이 음극 표면에서 리튬 금속으로 석출되거나, 전지 제조과정에서 혼입된 금속성분 불순물이 재결정화되면서, 분리막을 관통하여 양극에 접촉됨으로써 발생하는 내부 단락으로 인한 안전성의 문제가 유발될 수 있다.
도12는 이러한 음극 대 양극 용량 역전부의 발생하는 위치별 음극 대 양극의 용량비를 측정한 실험결과를 나타낸 것이다. 상기 실험은 박막두께 측정장치(Rotary Caliper, MAYSUN IN JAPAN, RC-1W-1000)로 실험한 것으로 전극 삽입 롤러를 구동하고, 세척한 후 캘리브레이션을 완료하고, 박막두께를 측정하고자 하는 전극을 상기 전극 삽입 롤러 사이에 삽입하면 전극이 이동하면서 두께가 측정된다. 상기 양극평탄부와 양극경사부로 구성된 상기 양극활물질 도포부와 상기 음극평탄부와 음극경사부로 구성된 상기 음극활물질 도포부를 확인할 수 있다. 상기 양극경사부와 상기 음극경사부의 소정부에 음극대양극 용량 역전부(500)을 확인할 수 있다.
이를 최대한 억제하고자 하는 측면에서, 음극과 양극이 분리막을 사이에 두고 대면하는 위치에서 음극의 단면용량이 양극의 단면용량보다 크도록 구성하는 방식을 채용하고 있으나, 에너지밀도 향상과 관련하여 전극들의 가장자리 부분에 도포 내지 코팅되는 단면 용량 조절과 관련하여서는 연구가 진행되었으나, 공정상 제어에 어려움이 있다.
따라서, 라미네이션 공정에서 전극의 커팅 기준의 변경, 스태킹(Stacking)시 얼라인먼트 정확도 향상 및 양극 및 음극 ACOH(Anode Cathode Overhang) 갭 검사의 효과를 높이기 위한 기존 전극탭보다 두께가 두꺼워 견고하고 활물질이 도포되어 빛반사가 없는 숄더부를 기준으로 전극의 적층 특성을 개선한 음극시트, 및 음극을 포함하는 전극조립체 및 그 제조방법의 기술개발이 요구되고 있다.
[선행기술문헌]
일본 공개특허공보 제2009-123752호
한국 공개특허공보 제2015-0033933호
일본 공개특허공보 제2010-086813호
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 목적은 라미네이션 공정에서 전극의 커팅 기준의 변경, 스태킹(Stacking)시 어라인먼트 정확도 향상 및 양극 및 음극 갭 검사의 효과를 높이기 위한 기존 전극탭보다 두께가 두꺼워 견고하고 활물질이 도포되어 빛반사가 없는 숄더부를 기준으로 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법을 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 ACOH(Anode Cathode Overhang) 갭을 확보하기 위한 음극 제조방법으로서, 전장 방향(Y축방향)으로 활물질 도포부 및 무지부가 형성된 음극롤을 제조하는 제1단계; 상기 음극롤의 전폭 방향(X축방향)의 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부를 형성하기 위한 노칭을 수행하는 제2단계; 상기 숄더부를 기준으로 전폭 방향(X축방향)으로 소정 간격(B)을 가지고 커팅하는 제3단계;를 포함하는 음극 제조방법일 수 있다.
또한, 상기 숄더부의 전장 방향 중심선은 양극의 양극탭 중심선과 일치하는 수준에서 형성될 수 있다.
또한, 상기 음극의 외주단부를 기준으로 상기 숄더부의 전장 방향의 높이는 상기 음극탭의 상기 활물질 도포부의 높이와 일치하거나 낮게 할 수 있다.
또한, 상기 숄더부 전폭(W6)은 상기 양극탭 전폭 및 상기 양극탭 전폭의 양측으로 ACOH 갭을 포함할 수 있다.
또한, 상기 숄더부 전장(L6)은 상기 음극 일측 외부 단부로부터 0.1 내지 3mm 이상일 수 있다.
또한, 상기 숄더부의 R값은 0.1 내지 3R 이상일 수 있다.
이러한 목적을 달성하기 위한 본 발명에 따른 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성되며, 상기 숄더부는 양극과 적층시 양극탭과 대면하는 위치에 형성되는 음극 일 수 있다.
또한, 상기 숄더부의 전폭(W6)은 상기 양극탭 전폭 및 ACOH 갭을 포함하고, 상시 숄더부의 전장((L6)은 상기 양극탭의 활물질 도포부의 길이 및 ACOH 갭을 포함할 수 있다.
또한, 상기 숄더부의 활물질 도포부 중 음극경사부의 단면용량은 양극탭의 활물질 도포부 중 양극경사부의 단면용량보다 높은 음극 대 양극 용량 역전부가 없을 수 있다.
또한, 상기 음극끝단(215)에서 음극탭 넥(214)까지의 높이(H
NTN2)와 상기 음극끝단에서 상기 숄더부가 형성되는 시작점에서 상기 활물질 도포부까지의 높이(H
NS)의 음극높이비(H
NTN/ H
NS)는 5.0 내지 1일 수 있다.
이러한 목적을 달성하기 위한 본 발명에 따른 양극탭이 일측 외부 단부로부터 돌출되어 있고, 양극활물질을 포함하는 양극합제층이 상기 양극탭의 하부와 집전체 상에 도포되어 있는 양극; 음극탭이 일측 외부 단부로부터 돌출되어 있고, 음극활물질을 포함하는 음극합제층이 상기 음극탭의 하부와 집전체 상에 도포되어 있는 음극; 및 상기 양극 및 음극 사이에 위치하는 분리막;을 포함하며, 상기 음극은 전폭 방향(X축방향)을 따라서 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성되며, 상기 숄더부는 상기 양극과 적층시 양극탭과 대면하는 위치에 형성되는 전극조립체일 수 있다.
또한, 상기 음극의 상기 음극탭 및 상기 숄더부는 상기 음극의 전장 방향(Y축 방향) 일측 단부에 같이 형성되거나 양측 단부에 형성될 수 있다.
이러한 목적을 달성하기 위한 본 발명에 따른 ACOH(Anode Cathode Overhang) 갭을 확보하기 위한 전극조립체 제조방법은, 음극의 상기 숄더부를 비젼센싱하는 단계; 상기 숄더부의 전폭 또는 전장을 기준으로 양극시트의 양극탭이 위치하도록 적층하는 단계; 상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 전극조립체 적층 틀어짐을 방지하며, 상기 음극은 전폭 방향(X축방향)을 따라서 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함하여 음극탭 및 상기 활물질 도포부만 포함하는 숄더부가 형성되며, 상기 숄더부의 전폭은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함하는 음극을 포함하는 전극조립체 제조방법일 수 있다.
또한, 상기 숄더부의 전폭 또는 전장을 기준으로 양극시트의 양극탭이 위치하도록 적층하는 단계; 상기 양극시트의 상기 양극탭 아래에 적층된 상기 음극의 상기 숄더부를 비젼센싱하는 단계; 적층된 전장 방향(Y축방향)의 상기 양극시트 일측단부와 상기 음극 일측단부간의 간격 및 상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 상기 양극시트 및 상기 음극의 캡을 파악할 수 있다.
또한, 상기 상기 전극조립체는 스택형, 지그재그형, 젤리롤형 또는 스택/폴딩형 구조로 이루어질 수 있다.
또한, 상기 전극조립체는, 단일 극판, 양측 외면의 극판들의 극성이 동일한 바이셀, 또는 양측 외면의 극판들의 극성이 서로 다른 풀셀들로 이루어진 단위셀들로 구성될 수 있다.
또한, 상기 양극탭 및 음극탭은 전장 방향(Y축방향)을 기준으로 동일한 방향 또는 반대 방향에 형성될 수 있다.
또한, 상기 전극조립체 제조방법으로 제조된 전극조립체가 전지케이스에 전해액과 함께 내장되어 있는 전지셀일 수 있다.
또한, 상기 전지셀을 하나 이상 포함하고 있는 전지팩일 수 있다.
또한, 상기 전지팩을 포함하는 디바이스일 수 있다.
본 발명은, 상기 전극조립체가 전지케이스에 전해액과 함께 내장되어 있는 전지셀을 제공한다.
본 발명은 또한, 상기 전지셀을 하나 이상 포함하고 있는 전지팩, 및 상기 전지팩을 포함하고 있는 디바이스를 제공한다.
본 발명은 전극 합제층을 포함하는 전극시트를 준비하는 제1단계;
상기 전극시트를 하나 이상의 쌍으로 구성된 전극 삽입 롤러에 삽입하는 제2단계;
삽입된 상기 전극시트가 쌍으로 구성된 상기 전극 삽입 롤러가 회전하면서 상기 전극시트를 일방향으로 이동시키는 제3단계 및
상기 전극시트가 이동하면서 전극시트에 형성된 전극 합제층의 두께 측정을 통해 음극의 두께비, 양극의 두께비 및 음극 대 양극의 용량비를 포함하는 측정값을 얻는 제4단계를 포함하며,
상기 전극시트 중 음극시트는 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성된 전극합제층 두께 측정 방법일 수 있다.
상기 디바이스는 컴퓨터, 휴대폰, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle: EV), 하이브리드 전기자동차, 전기 이륜차, 전기 골프 카트, 또는 전력저장용 시스템 등으로부터 선택되는 것일 수 있다.
이러한 디바이스의 구조 및 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
이상에서 설명한 바와 같이, 본 발명에 따른 전극의 적층 특성을 개선한 음극 및 음극을 포함하는 전극조립체 및 그 제조방법은 라미네이션 공정에서 전극의 커팅을 음극 숄더부를 기준으로 변경함으로써 오차 발생을 감소하는 효과가 있다.
또한, 전극조립체 형성을 위한 적층시 전극의 코너를 기준으로 적층시 틀어짐에 따른 오차를 줄이는 효과가 있다.
또한, 전극조립체 형성을 위한 적층시 상기 숄더부의 측정으로 ACOH 갭 측정의 공정성 및 정확도가 향상되는 효과가 있다.
또한, 전극판의 부피의 증가 없이 전극 활물질을 포함하는 전극 합제층을 보다 넓은 면적에 효율적으로 도포하여 전극조립체의 용량을 증대시킬 수 있는 효과를 제공한다.
또한, 전극조립체 형성시 상기 양극과 음극의 끝단으로 갈수록 전극 활물질을 포함하는 전극 합체층의 두께가 얇아져서 발생하는 음극 대 양극 용량 역전부가 발생하는 것을 방지하는 효과가 있다.
따라서, 이차전지의 안정성, 용량 증대 및 수명을 향상시킬 수 있는 효과를 제공한다.
도 1은 종래의 적층식 단방향 전극조립체 및 그 전극탭의 접힘 현상을 나타낸 모식도이다.
도 2는 종래의 양방향 전극판들 및 본 발명의 하나의 실시예에 따른 양방향 전극판들을 비교하여 나타내는 모식도이다.
도 3은 종래의 단방향 전극판들 및 본 발명의 하나의 실시예에 따른 단방향 전극판들을 비교하여 나타내는 모식도이다.
도 4은 본 발명의 하나의 실시예에 따른 숄더부를 포함하는 음극을 포함하는 양방향 전극판들을 나타내는 모식도이다.
도 5는 본 발명의 하나의 실시예에 따른 금형이 형성된 플레스가 숄더부를 기준으로 음극을 노칭하는 단계를 나타내는 모식도이다.
도 6은 본 발명의 하나의 실시예에 따른 프레스가 숄더부를 기준으로 음극을 노칭하는 단계를 나타내는 단면도이다.
도 7은 종래의 단방향 전극 적층시 문제점 및 본 발명의 하나의 실시예에 따른 숄더부를 기준으로 적층하여 정확도를 향상을 비교하는 모식도이다.
도 8은 종래의 단방향 전극 적층시 문제점 및 본 발명의 하나의 실시예에 따른 양극 및 음극 갭의 측정정확도를 향상을 비교하는 모식도이다.
도 9는 본 발명의 하나의 실시예에 따른 양방향 전극조립체에 숄더부가 형성되어 있는 모식도이다.
도 10은 종래의 전극조립체 단면도이다.
도 11은 종래의 전극조립체의 음극 대 양극 용량 역전부가 존재하는 단면 확대도이다.
도 12는 종래의 전극조립체의 음극 대 양극 용량비에 따른 음극 대 양극 용량 역전부의 존재를 확인할 수 있는 실험결과이다.
도 13은 종래의 전극조립체의 음극 대 양극 용량 역전부가 존재하는 평면도와 본 발명의 하나의 실시예에 따른 단방향 전극조립체에 음극 대 양극 용량 역전부가 제거된 숄더부를 형성된 전극조립체의 평면도의 비교도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
ACOH(Anode Cathode Overhang)은 이차전지 전지 구성시, 음극과 양극의 전지 안정성을 위해 확보하여야 하는 양극과 음극간 간격을 의미한다.
전극탭 넥은 노칭을 통해 전극시트에 형성되는 전극탭에 유지부 영역을 의미한다. 상기 전극탭 넥은 활물질 코팅 경사부와 평탄부를 포함할 수 있다.
전극시트는 전극롤에서 노칭 및 커팅이 진행된 단위전극이다.
전극조립체는 음극, 분리막, 양극이 적층된 단위셀을 지칭한다.
본 발명에서는 양방향 전극조립체는 전기자동차용 등 중대형 전지를 의미하며, 단방향 전극조립체는 모바일 등 소형 전지에 적용되는 전극조립체를 의미한다.
본 발명의 전극조립체는 스택형, 지그재그형(KR 10-1634772B1참고) 또는 스택/폴딩형 구조로 이루어질 수 있다.
전극롤은 일반적으로 복수의 활물질 도포부와 무지부를 갖는 시트를 슬리팅하여 단일 활물질 도포부와 무지부를 갖는 전극시트를 롤링한 단위체이다.
본 발명의 숄더부는 음극에 양극의 양극탭이 형성되는 부분에 전극조립체 형성시 겹쳐지는 부분에 형성되는 구성이다.
상기 숄더부는 음극시트 형성시 음극롤의 활물질 도포부를 포함하여 형성된다.
상기 숄더부는 상기 양극탭과 적층을 통해 겹쳐질 때 전폭 및 전장방향으로 ACOH를 갖는다.
본 발명에서는 제시하는 수치값 또는 기준값은 설계치로 실제 공정 적용시 공정오차가 존재하는 것은 당연히 예상되는 것이다.
도 1은 종래의 적층식 단방향 전극조립체 및 그 전극탭의 접힘 현상을 나타낸 모식도이다.
도 2는 종래의 양방향 전극판들 및 본 발명의 하나의 실시예에 따른 양방향 전극판들을 비교하여 나타내는 모식도이다.
도 3은 종래의 단방향 전극판들 및 본 발명의 하나의 실시예에 따른 단방향 전극판들을 비교하여 나타내는 모식도이다.
도 1 내지 3을 함께 참조하면, 본 발명에 따른 전극조립체는 양극판(1)과 음극판(2) 사이에 분리막(5)이 개재되어 있는 구조로 양극판(1), 음극판(2), 및 분리막(5)을 포함하여 구성되어 있다.
도 2 및 3의 좌측에는 종래의 전극판들(1, 2)의 구성이 개시되어 있고, 우측에는 본 발명의 하나의 실시예에 따른 전극판들의 구성이 개시되어 있다. 본 발명의 전극판들은 평면상으로 정사각형의 형상을 이루고 있고, 도 4에는 본 발명의 전극판들의 일부 확대도가 도시되어 있다.
양극판(1)에는 양극탭(3)이 일측 외주 단부로부터 전장 방향(Y축 방향)으로 돌출되어 있고, 양극 활물질을 포함하는 양극 합제층(11)이 양극판(1)으로부터 돌출되어 있는 양극탭하부(31)와 양극 집전체 상에 도포되어 있다.
음극판(2)에는 음극탭(4)이 일측 외주 단부로부터 전장 방향(Y축 방향)으로 돌출되어 있고, 음극 활물질을 포함하는 음극 합제층(21)이 음극판(2)으로부터 돌출되어 있는 음극탭하부(41)와 음극 집전체 상에 도포되어 있다.
음극판(2)은 양극판(1)보다 상대적으로 큰 면적으로 이루어져 있고, 양극탭(3) 및 음극탭(4)은 돌출된 단부 길이가 동일하도록 동일한 방향(Y축 방향)으로 형성되어 있다.
음극판의 길이(L
1)는 양극판의 길이(L
2)에 양극판의 외주 단부들보다 길게 연장되어 있는 음극판의 상측 단부 길이(L
11)와 하측 단부 길이(L
12)의 합의 크기를 가지고 있다.
음극판 및 양극판은 상호 중심들이 서로 일치하도록 중심선인 C-C'선을 기준으로 정렬된 상태로 적층되는 구조이다.
음극판의 상측 단부 길이(L
11)는 양극판의 상측 단부보다 0.1 mm 이상으로 연장되어 형성될 수 있다. 상기 수치값보다 작아지면 라미네이션 및 스테킹공정을 통한 전극조립체 형성시 공정오차에 기인하는 단락현상이 발생할 수 있다.
음극판의 정사각형 형상의 각 면의 외주 단부들은 양극판의 각 면의 외주 단부들보다 각각 0.1 mm 더 길게 연장되어 있고, 이 범위에 제조 공정 오차 범위가 포함되어 있다.
이는 L11, L12, W11, W12 값이 0.1 mm이상인 것을 의미한다. 통상적인 국제규격에서는 0.1mm 이상의 값을 요구하고 있다. 상기 수치값보다 작아지면 라미네이션 및 스테킹공정을 통한 전극조립체 형성시 공정오차에 기인하는 단락현상이 발생할 수 있다.
종래의 단방향 음극판의 상측 단부(전극탭이 형성된 방향)에서 종래의 단방향 양극판의 상측 단부보다 더 길게 연장된 길이(UNIDI-L11)는 단방향 음극판의 하측 단부(전극탭이 형성되지 않은 방향)에서 단방향 양극판의 하측 단부보다 더 길게 연장된 길이(UNIDI-L12)보다 크다. 즉 UNIDI-L11>UNIDI-L12이다.
본 발명에 따른 단방향 양극판의 길이와 종래의 단방향 양극판의 길이를 비교하면, 본 발명에 따른 단방향 양극판의 길이가 더 커서 길이 차이가 발생하고, 이러한 차이로 인한 용량 증대의 효과를 발휘할 수 있다.
종래의 양방향 음극판의 하측 단부(음극탭이 형성되지 않은 방향)에서 양방향 양극판의 상측 단부보다 더 길게 연장된 길이(BIDI-L
12)는 양방향 음극판의 하측 단부에서 양방향 양극판의 하측 단부보다 더 길게 연장된 길이(BIDI-L
11)보다 같거나 또는 작다. 상기 길이값의 차이는 설계치에 대한 실제 공정적용을 통한 슬리팅, 노칭 및 커팅시 발생하는 공정오차에 기인하는 것은 자명하다.
본 발명에 따른 양방향 양극판의 길이(L22)와 종래의 양방향 양극판의 길이(L2)를 비교하면, 본 발명에 따른 양방향 양극판의 길이(L22)가 더 커서 길이(L22-2) 차이가 발생하고, 이러한 차이로 인한 용량 증대의 효과를 발휘할 수 있다
.
본 발명에 따른 양방향 음극판의 하측 단부가 본발명에 따른 양방향 양극판의 상단부보다 더 길게 연장된 길이(L12)는, 이에 대응하는 종래의 양방향 음극판의 연장된 길이(BIDI-L12)보다 작고, 상단부보다 더 길게 연장된 길이(L11)는 연장된 길이(BIDI-L12)와 같다.
도 4은 본 발명의 하나의 실시예에 따른 숄더부를 포함하는 음극을 포함하는 양방향 전극판들을 나타내는 모식도이다.
숄더부(6)은 평면상의 직사각형 형상으로, 숄더부(6)의 돌출 길이(L6)는 양극 합제층(11)이 도포되어 있는 양극탭하부(31)보다 긴 길이를 가지고 있다.
숄더부(6)는, 양극탭에 대면하는 음극판에 형성되며, 양극합제층이 도포되어 있는 양극탭하부(31)에 대응하는 음극판 부위에 음극합제층이 도포되어 있다.
숄더부(6)는 양극합제층이 도포되어 있는 양극탭하부(13)보다, 상대적으로 큰 면적으로 이루어져 있다.
숄더부(6)의 외주 단부들은 양극합제층이 도포되어 있는 양극탭하부의 외주 단부들보다 전폭 방향 및 전장방향에서 0.1 mm 이상 연장된 숄더부 전장(L61) 및 숄더부 전폭(W6)을 갖을 수 있다. 상기 수치범위를 만족하지 못하면 라미네이팅 및 스테킹 공정을 통한 전극조립체 형성시 단락등의 문제가 발생할 수 있다.
숄더부(6)의 돌출 길이인 숄더부 전장(L6)은 양극탭하부 영역보다 상대적으로 길게 연장되어 있고, 숄더부(6) 전폭(W6)은 양극탭하부의 폭(W31)에 비해 상대적으로 크게 형성되어 있다.
음극탭하부(41)와 숄더부(6)를 포함하여 음극판의 음극합제층이 도포된 면적은 양극판의 양극합제층이 도포된 면적보다 넓다.
전극탭이 기준인 일반적인 노칭공정 또는 라미네이션 공정에서는 전극탭을 기준으로 커팅이나, 적층을 진행하나 금속호일로만 구성되어 전극활물질이 도포된 합제층에 비하여 얇은 두께로 인하여, 공정효율 및 불량율이 높은 상황이다.
따라서, 라미네이션 공정에서 전극의 커팅 기준의 변경, 스태킹(Stacking)시 어라인먼트 정확도 향상 및 양극 및 음극 ACOH(Anode Cathode Overhang) 갭 검사의 효과를 높이기 위한 기존 전극탭보다 두께가 두꺼워 견고하고 활물질이 도포되어 빛반사가 없는 숄더부를 기준으로 전극 및 전극조립체 공정을 제시한다.
도 5는 본 발명의 하나의 실시예에 따른 금형이 형성된 플레스가 숄더부를 기준으로 음극을 노칭하는 단계를 나타내는 모식도이다.
일반적으로 롤 프레스(roll press) 공정은 전극 활물질을 포함하는 전극 슬러리가 도포된 전극 가공물에 가열된 롤러들 상하면에 위치시키고, 상기 가열된 롤러들이 전극 가공물이 위치하는 방향으로 전극 슬러리를 압착하는 공정을 실시하게 된다. 이러한 롤 프레스 공정은 전극 슬러리에 남아 있는 용매를 증발시키고, 전극 슬러리를 전극 상에서 압축 경화시켜 에너지 밀도를 향상시킨 전극 합제층을 형성시킨다. 이후, 설정된 전극의 외형을 가공하는 공정들을 실시하게 된다.
롤프레스공정의 전극 가공체를 슬리팅하는 공정은 전극합제가 코팅된 한쪽 방향으로 긴 금속시트로 이루어진 전극 집전체를 컷터(cutter)를 사용하여 슬리팅(slitting, 세로 째기)하고, 이에 따라 전극용 스트립 형태로 분할 가공된다. 이때, 금속 호일의 전장 방향인 Y방향이고, 금속 호일의 길이 방향인 전폭을 X방향으로 설정한다.
ACOH(Anode Cathode Overhang) 갭을 확보하기 위한 음극 제조방법으로서, 전장 방향(Y축방향)으로 활물질 도포부 및 무지부가 형성된 음극롤을 제조하는 제1단계; 상기 음극 시트 전폭 방향(X축방향)의 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부만 포함하는 숄더부를 노칭하는 제2단계; 및 상기 숄더부를 기준으로 전폭 방향(X축방향)으로 소정 간격(B)을 가지고 커팅하는 제3단계;를 포함하는 음극 제조방법을 제공할 수 있다.
음극탭이 일측 외주 단부로부터 돌출되어 있고, 음극 활물질을 포함하는 음극 합제층이 상기 음극탭의 하부와 집전체 상에 도포되어 있는 음극판일 수 있다.
음극판에는 음극탭이 일측 외주 단부로부터 전장 방향(Y축방향)을 돌출되어 있고, 음극 활물질을 포함하는 음극합제층이 음극판으로부터 돌출되어 있는 음극탭의 하부와 음극 집전체 상에 도포되어 있다.
상기 소정간격(A)는 단일 음극의 전폭일 수 있다.
상기 음극의 전폭은 1 내지 500 mm 일 수 있으며, 바람직하게는 10 내지 200 mm일 수 있다. 이때 소정간격(A)는 전지의 설계 용량에 따라 가변될 수 있음은 자명하다.
상기 소정간격(B)는 전폭방향으로 상기 숄더부의 일측단부에서 단일 음극을 형성하기 위해서 커팅되는 경계선까지 거리일 수 있다.
상기 소정간격(B)는 1 내지 300 mm 일 수 있으며, 바람직하게는 5 내지 100 mm일 수 있다. 이때 소정간격(B)는 전지의 설계 용량에 따라 가변될 수 있음은 자명하다.
도 6은 본 발명의 하나의 실시예에 따른 프레스가 숄더부를 기준으로 음극을 노칭하는 단계를 나타내는 단면도이다.
도 5 및 6을 참조하면, 슬리팅 공정을 통해 제조된 전극 가공체들은 금형 또는 레이저 등을 이용하여 전극탭의 형상을 가공하는 노칭 공정을 실시하게 된다. 구체적으로 금형들을 이용해 전극가공체를 절삭하여 전극 탭의 형상과 전극 합제가 코팅되어 있는 유지부의 형상을 가공하게 된다.
또한, 본원 발명의 음극합제층을 포함하는 숄더부의 형상을 가공할 수 있다.
이러한 연속 피딩 방식의 노칭 공정은 프레스가 전극 시트를 이송하면서 동시에 타발하는 방식으로, 타발하는 전극 시트가 멈춤없이 계속 공급된다는 점에서 특징이 있다. 이 같은 연속 피딩 방식을 참조하면, 음극시트(200)를 일정한 형상으로 타발하는 프레스(100)와 음극시트를 프레스에 공급하는 피더(300)를 포함하고 있으며, 프레스 역시 피더로서 일부 동작한다. 즉, 프레스는 음극시트를 타발함과 동시에 이송길이 중 절반을 이송하는 역할을 하며, 대기하던 피더가 나머지 절반을 이송시키는 형태로, 음극시트를 일정한 속도로 연속적으로 이송한다.
도 7은 종래의 단방향 전극 적층시 문제점 및 본 발명의 하나의 실시예에 따른 숄더부를 기준으로 적층하여 정확도를 향상을 비교하는 모식도이다.
좌측의 기존 단방향 전극조립체를 형성하기 위한 전극 적층시 정확도를 높이기 위해 전극의 모서리부를 스캔하여 x, y, Θ를 조절하였다. 그러나 그림과 같이 적층이 진행될 수 록 X는 X', X''으로, Y는 Y', Y''으로 틀어짐이 발생하고 값의 변화도 발생하였다. 본 발명의 숄더부와 양극택이 적층되는 부분을 스캔하여 X, Y, Θ를 조절하였고 그 결과, 적층 정확도가 향상되는 결과를 얻었다.
도 8은 종래의 단방향 전극 적층시 문제점 및 본 발명의 하나의 실시예에 따른 양극 및 음극 갭의 측정정확도를 향상을 비교하는 모식도이다.
좌측의 기존 단방향 전극조립체를 형성하기 위한 적층시 양극 및 음극의 갭을 측정하여 적층 공정 정확도를 측정하였다. 이때 적층 전극의 모서리부를 2군데 이상 측정하여 양극 및 음극 갭을 측정하여야만 하였다.
본원 발명의 경우, 숄더부와 양극탭이 형성된 부분만 스캔하여 양극 및 음극 갭을 측정하여 적층 공정 정확도를 향상시킬 수 있었다.
상기 숄더부의 전장 방향 중심선은 양극의 양극탭 중심선과 일치할 수 있다.
상기 전장 방향 중심선의 상기 양극의 양극탭 중심선과의 일치는 설계기준으로 실제 양산 공정상에서는 공정산포의 중심값에 해당될 수 있음은 자명하다. 따라서 일부 상기 중심선의 일치에 벗어난 숄더부가 형성된 음극시트의 형성은 충분히 예상될 수 있다.
양극탭이 일측 외부 단부로부터 돌출되어 있고, 양극 활물질을 포함하는 양극 합제층이 상기 양극탭의 하부에 집전체 상에 도포되어 있는 양극판일 수 있다.
양극판에는 양극탭이 일측 외주 단부로부터 전장 방향(Y축방향)으로 돌출되어 있고, 양극 활물질을 포함하는 양극합제층이 양극판으로부터 돌출되어 있는 양극탭이 하부와 양극집전체 상에 도포되어 있다.
상기 음극판의 외주단부를 기준으로 상기 숄더부의 전장 방향의 높이는 상기 음극탭의 상기 활물질 도포부의 높이와 일치하거나 낮게할 수 있다.
상기 음극판의 외주단부를 기준으로 상기 숄더부의 전장 방향의 높이는 상기 양극탭의 상기 활물질 도포부의 높이보다 높게 할 수 있다.
상기 숄더부의 전폭은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함할 수 있다.
상기 수치값이 확보되지 않으면 제품 양산성 측면 및 공정성 향상을 기대할 수 없다. 또한 전극탭의 용접시 불량율이 증가될 수 있다.
상기 숄더부의 전장(L6)은 전극조립체 스태킹시 기준이 되기 위해 상기 음극 일측 외부 단부로부터 0.1 내지 3mm 일 수 있다. 상기 하한을 벗어나면 음극탭보다 위에 형성될 가능성 때문에 안전성에 문제가 발생할 수 있고 상기 숄더부의 전장은 ACOH 갭을 확보하고, 전극 적층시 기준이 되기 위해 하한 이상이어야 한다. 상기 상한을 벗어나면 코팅부가 분리막을 넘어설 수 있고 불필요한 전극손실이 발생할 수 있다.
상기 숄더부의 R값은 전극간 연결을 위해 0.1R 내지 3R 일 수 있다. 상기 R값의 범위를 벗어나면 전극 품질이 저하될 수 있다.
음극의 전폭 방향(X축방향)을 따라서 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함하여 음극탭 및 상기 활물질 도포부만 포함하는 숄더부가 형성되며, 상기 숄더부의 전폭 방향 중심선은 양극탭의 중심선과 일치하고, 상기 숄더부의 전폭은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함하는 음극일 수 있다.
상기 음극탭 및 상기 숄더부는 상기 음극의 전장 방향(Y축 방향) 일측 단부에 같이 형성되거나 양측 단부에 형성되는 음극일 수 있다.
음극의 상기 숄더부를 비젼센싱하는 단계; 상기 숄더부의 전폭 및 전장을 기준으로 양극의 양극탭이 위치하도록 적층하는 단계; 상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 전극조립체 적층 틀어짐을 방지하며, 상기 음극은 전폭 방향(X축방향)을 따라서 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함하여 음극탭 및 상기 활물질 도포부만 포함하는 숄더부가 형성되며, 상기 숄더부의 전장 방향 중심선은 양극탭의 중심선과 일치하고, 상기 숄더부의 전폭은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함하는 음극을 포함하는 전극조립체 제조방법일 수 있다.
상기 숄더부의 전폭 및 전장을 기준으로 양극의 양극탭이 위치하도록 적층하는 단계; 상기 양극의 상기 양극탭 아래에 적층된 상기 음극의 상기 숄더부를 비젼센싱하는 단계; 적층된 전장 방향(Y축방향)의 상기 양극 일측단부와 상기 음극 일측단부간의 간격 및 상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 상기 양극 및 상기 음극의 캡을 파악하는 전극조립체 제조방법일 수 있다.
상기 전극조립체는 스택형 또는 스택/폴딩형 구조로 이루어진 전극조립체 제조방법일 수 있다.
상기 전극조립체는, 양측 외면의 극판들의 극성이 동일한 바이셀, 또는 양측 외면의 극판들의 극성이 서로 다른 풀셀들로 이루어진 단위셀들로 구성되어 있는 전극조립체 제조방법일 수 있다.
상기 양극 탭 및 음극 탭은 전장 방향(Y축방향)을 기준으로 동일한 방향 또는 반대 방향에 형성되어 있는 전극조립체 제조방법일 수 있다.
상기 전극조립체 제조방법으로 제조된 전극조립체가 전지케이스에 전해액과 함께 내장되어 있는 전지셀일 수 있다.
상기 전지셀을 하나 이상 포함하고 있는 전지팩일 수 있다.
상기 전지팩을 포함하는 디바이스일 수 있다.
또한, 상기 숄더부의 활물질 도포부 중 음극경사부의 단면용량은 양극탭의 활물질 도포부 중 양극경사부의 단면용량보다 높을 수 있다.
또한, 상기 음극탭 넥(214)을 시작점으로, 상기 음극탭의 상기 활물질 도포부까지의 높이(H
NTN)와 상기 숄더부가 형성되는 시작점에서 상기 활물질 도포부까지의 높이(H
NS)의 음극높이비(H
NTN/ H
NS)는 5.0 내지 1일 수 있다.
즉, 통상적인 음극시트에 노칭을 형성하는 음극시트의 투입위치에서 전장방향으로 상기 숄더부를 포함하는 상기 음극시트를 전장방향 윗쪽 또는 아래쪽으로 이동해서 노칭할 수 있다. 상기 노칭 조건은 기존 조건에서 0.1 내지 1.5mm 위쪽에서 수행할 수 있다.
이러한 개선을 통해서 전극조립체의 안정성평가, 공정능력 및 ACOH 갭을 개선할 수 있다.
상기 숄더부는 양극탭 넥에 맞닿을 수 있으며, 상기 숄더부가 형성된 상기 음극과 양극을 적층시 양극의 활물질도포부인 유지부 부분에 겹쳐질 수 있다.
상기 음극에 형성되는 숄더부는 유지부에 형성되어야 만한다.
또한, 상기 음극에 형성되는 숄더부는 상기 양극 탭넥보다는 커야한다.
따라서, 상기 숄더부의 높이는 상기 음극 탭넥의 하한값보다 커질 수 없다. 이 이유는 상기 전극을 구성하는 금속시트인 호일간의 접촉에 의한 쇼트를 방지하기 위한 것으로 상기 양극 및 음극의 활물질이 도포되지 않은 무지부간의 접촉은 쇼트가 발생하고 이를 통한 화재 위험성이 크기 때문이다.
도 13은 본 발명의 적용전과 적용후인 도 11의 평면도이다. 본 발명의 적용전인 상부도면은 도 11의 음극 및 양극의 평면도로 상기 음극탭 넥(214)에서 상기 활물질 도포부까지의 높이(H
NTN1) 및 음극 대 양극 용량 역전부(500)이 존재하는 것을 확인할 수 있다.
본 발명의 적용후인 하부도면은 음극에 숄더부(6)가 형성되는 시작점에서 상기 활물질 도포부까지의 높이(H
NS)는 상기 음극평탄부에서 형성되어 상기 음극경사부까지 형성됨을 확인할 수 있다.
상기 본 발명의 적용전의 상기 음극탭 넥(214)에서 상기 활물질 도포부까지의 높이(H
NTN1)는 본 발명의 적용후의 상기 음극탭 넥(214)에서 상기 활물질 도포부까지의 높이(H
NTN2)보다 작다. 따라서 상기 음극 대 양극 용량 역전부의 형성을 제거할 수 있다.
상기 본 발명의 적용후의 음극이 적용전의 음극보다 전장방향(Y축방향)으로 이동하여 숄더부를 형성할 수 있다.
상기 범위를 벗어나면 전지의 안전성에 문제가 발생하는 음극대양극 용량 역전부가 발생할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
[부호의 설명]
1: 양극판
10: 양극
11: 양극합제층
111: 양극평탄부
112: 양극경사부
113: 양극무지부
114: 양극탭 넥
2: 음극판
20: 음극
21: 음극합제층
211: 음극평탄부
212: 음극경사부
213: 음극무지부
214: 음극탭 넥
3: 양극탭
31: 양극탭하부
4: 음극탭
41: 음극탭하부
5: 분리막
6: 숄더부
100: 프레스
110: 하부프레스
200: 음극시트
210: 금형
220: 음극탭 금형부
230: 숄더부 금형부
300: 시트 피더
400: 양극시트
500: 음극대양극 용량 역전부
Claims (20)
- ACOH(Anode Cathode Overhang) 갭을 확보하기 위한 음극 제조방법으로서,전장 방향(Y축방향)으로 활물질 도포부 및 무지부가 형성된 음극롤을 제조하는 제1단계;상기 음극롤의 전폭 방향(X축방향)의 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부를 형성하기 위한 노칭을 수행하는 제2단계;상기 숄더부를 기준으로 전폭 방향(X축방향)으로 소정 간격(B)을 가지고 커팅하는 제3단계;를 포함하는 음극 제조방법.
- 제1항에 있어서,상기 숄더부의 전장 방향 중심선은 양극의 양극탭 중심선과 일치하는 수준에서 형성된 음극 제조방법.
- 제1항에 있어서,음극의 외주단부를 기준으로 상기 숄더부의 전장 방향의 높이는 상기 음극탭의 상기 활물질 도포부의 높이와 일치하거나 낮게 할 수 있는 음극 제조방법.
- 제2항에 있어서,상기 숄더부 전폭(W6)은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함하는 음극 제조방법.
- 제2항에 있어서,상기 숄더부 전장(L6)은 상기 음극 일측 외부 단부로부터 0.1 내지 3 mm 이상인 음극 제조방법.
- 제2항에 있어서,상기 숄더부의 R값은 0.1 내지 3R 인 음극 제조방법.
- 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성되며,상기 숄더부는 양극과 적층시 양극탭과 대면하는 위치에 형성하는 음극.
- 제7항에 있어서,상기 숄더부의 활물질 도포부 중 음극경사부의 단면용량은 양극탭의 활물질 도포부 중 양극경사부의 단면용량보다 높은 음극 대 양극 용량 역전부가 없는 음극.
- 제7항에 있어서,상기 음극끝단(215)에서 음극탭 넥(214)까지의 높이(H NTN2)와 상기 음극끝단에서 상기 숄더부가 형성되는 시작점에서 상기 활물질 도포부까지의 높이(H NS)의 음극높이비(H NTN2/ H NS)는 5.0 내지 1인 음극.
- 양극탭이 일측 외부 단부로부터 돌출되어 있고, 양극활물질을 포함하는 양극합제층이 상기 양극탭의 하부와 집전체 상에 도포되어 있는 양극;음극탭이 일측 외부 단부로부터 돌출되어 있고, 음극활물질을 포함하는 음극합제층이 상기 음극탭의 하부와 집전체 상에 도포되어 있는 음극; 및상기 양극 및 음극 사이에 위치하는 분리막;을 포함하며,상기 음극은 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성되며,상기 숄더부는 상기 양극과 적층시 양극탭과 대면하는 위치에 형성하는 음극인 전극조립체.
- 제10항에 있어서,상기 음극의 상기 음극탭 및 상기 숄더부는 상기 음극의 전장 방향(Y축 방향) 일측 단부에 같이 형성되거나 양측 단부에 형성되는 전극조립체.
- 음극의 숄더부를 비젼센싱하는 단계;상기 숄더부의 전폭 또는 전장을 기준으로 양극시트의 양극탭이 위치하도록 적층하는 단계;상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 전극조립체 적층 틀어짐을 방지하며,상기 음극은 전폭 방향(X축방향)을 따라서 소정 간격(A)으로 활물질 도포부 및 무지부를 포함하는 음극탭 및 상기 활물질 도포부만 포함하는 상기 숄더부가 형성되며,상기 숄더부의 전폭은 상기 양극탭 전폭 및 상기 양극탭의 양측으로 ACOH 갭을 포함하는 전극조립체 제조방법.
- 제12항에 있어서,상기 숄더부의 전폭 또는 전장을 기준으로 상기 양극의 상기 양극탭이 위치하도록 적층하는 단계;상기 양극의 상기 양극탭 아래에 적층된 상기 음극의 상기 숄더부를 비젼센싱하는 단계;적층된 전장 방향(Y축방향)의 상기 양극 일측단부와 상기 음극 일측단부간의 간격 및 상기 적층된 양극탭과 상기 숄더부의 ACOH 갭을 측정하여 상기 양극 및 상기 음극의 갭을 파악하는 전극조립체 제조방법.
- 제12항에 있어서,상기 전극조립체는 스택형, 지그재그형, 젤리롤형 또는 스택/폴딩형 구조로 이루어진 전극조립체 제조방법.
- 제12항에 있어서,상기 전극조립체는, 단일 극판, 양측 외면의 극판들의 극성이 동일한 바이셀, 또는 양측 외면의 극판들의 극성이 서로 다른 풀셀들로 이루어진 단위셀들로 구성되어 있는 전극조립체 제조방법.
- 제12항에 있어서,상기 양극 탭 및 상기 음극 탭은 전장 방향(Y축방향)을 기준으로 동일한 방향 또는 반대 방향에 형성되어 있는 전극조립체 제조방법.
- 제12항 내지 제16항 중 어느 하나에 따른 전극조립체 제조방법으로 제조된 전극조립체가 전지케이스에 전해액과 함께 내장되어 있는 전지셀.
- 제17항에 있어서,상기 전지셀을 하나 이상 포함하고 있는 전지팩.
- 제18항에 있어서,상기 전지팩을 포함하는 디바이스.
- 전극 합제층을 포함하는 전극시트를 준비하는 제1단계;상기 전극시트를 하나 이상의 쌍으로 구성된 전극 삽입 롤러에 삽입하는 제2단계;삽입된 상기 전극시트가 쌍으로 구성된 상기 전극 삽입 롤러가 회전하면서 상기 전극시트를 일방향으로 이동시키는 제3단계 및상기 전극시트가 이동하면서 전극시트에 형성된 전극 합제층의 두께 측정을 통해 음극의 두께비, 양극의 두께비 및 음극 대 양극의 용량비를 포함하는 측정값을 얻는 제4단계를 포함하며,상기 전극시트 중 음극시트는 소정 간격(A)으로 상기 활물질 도포부 및 무지부를 포함한 음극탭 및 상기 활물질 도포부를 포함하는 숄더부가 형성된 전극합제층 두께 측정 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20949624.9A EP4106035A4 (en) | 2020-08-14 | 2020-12-18 | ELECTRODE ASSEMBLY WITH ANODE AND ANODE SHEET WITH IMPROVED ELECTRODE STACKING CHARACTERISTICS AND PRODUCTION METHODS THEREFOR |
US17/914,573 US20230223509A1 (en) | 2020-08-14 | 2020-12-18 | Electrode Assembly Comprising Anode Sheet and Anode Having Improved Stacking Characteristics of Electrode, and Method of Manufacturing the Same |
JP2022561110A JP7484071B2 (ja) | 2020-08-14 | 2020-12-18 | 電極の積層特性を改善した負極シート及び負極を含む電極組立体及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0102132 | 2020-08-14 | ||
KR20200102132 | 2020-08-14 | ||
KR10-2020-0175841 | 2020-12-15 | ||
KR1020200175841A KR20220021841A (ko) | 2020-08-14 | 2020-12-15 | 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022034995A1 true WO2022034995A1 (ko) | 2022-02-17 |
Family
ID=80247024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018686 WO2022034995A1 (ko) | 2020-08-14 | 2020-12-18 | 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230223509A1 (ko) |
EP (1) | EP4106035A4 (ko) |
JP (1) | JP7484071B2 (ko) |
CN (2) | CN114079039A (ko) |
WO (1) | WO2022034995A1 (ko) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001035477A (ja) * | 1999-07-23 | 2001-02-09 | Yuasa Corp | 扁平型電池とその製造方法 |
JP2009123752A (ja) | 2007-11-12 | 2009-06-04 | Mitsubishi Electric Corp | 電力貯蔵デバイスおよびその製造方法 |
JP2010086813A (ja) | 2008-09-30 | 2010-04-15 | Toshiba Corp | 非水電解質二次電池 |
JP2013218819A (ja) * | 2012-04-05 | 2013-10-24 | Toyota Industries Corp | 蓄電装置及び二次電池並びに蓄電装置用電極体の製造方法 |
KR20150033933A (ko) | 2013-09-25 | 2015-04-02 | 엘지디스플레이 주식회사 | 액정 디스플레이 장치와 이의 제조 방법 |
KR101569798B1 (ko) * | 2014-01-28 | 2015-11-17 | 주식회사 디에이테크놀로지 | 이차전지의 전극 노칭장치 |
KR101634772B1 (ko) | 2013-10-07 | 2016-06-29 | 주식회사 엘지화학 | 지그재그형 전극조립체를 포함하고 있는 전지셀 |
KR20170026769A (ko) * | 2015-08-27 | 2017-03-09 | 삼성에스디아이 주식회사 | 전극 조립체 및 그 제조 방법과 이차 전지 |
KR20200074613A (ko) * | 2018-12-17 | 2020-06-25 | 주식회사 엘지화학 | 전극, 전극의 제조방법 및 제조장치 |
KR20200102132A (ko) | 2019-02-21 | 2020-08-31 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6041394B2 (ja) * | 2011-08-31 | 2016-12-07 | Necエナジーデバイス株式会社 | 非水電解液二次電池 |
DE102011083830A1 (de) * | 2011-09-30 | 2013-04-04 | Carl Zeiss Ag | Verfahren zur Dickenmessung eines bahnförmigen Materials und Messgerät nach einem solchen Verfahren |
KR101393530B1 (ko) * | 2012-11-21 | 2014-05-12 | 주식회사 엘지화학 | 노칭부를 포함하는 전극 시트 |
CN105378970B (zh) * | 2013-06-06 | 2018-09-07 | Nec 能源元器件株式会社 | 电池模块 |
KR101587323B1 (ko) * | 2013-09-25 | 2016-01-20 | 주식회사 엘지화학 | 전극 조립체 및 이를 포함하는 이차전지 |
KR101810025B1 (ko) * | 2016-04-14 | 2017-12-18 | 씨아이에스(주) | 이차전지용 전극의 코팅부 두께 측정방법 |
JP6911654B2 (ja) * | 2017-09-08 | 2021-07-28 | 株式会社豊田自動織機 | 蓄電装置及び蓄電装置の製造方法 |
JP2019212461A (ja) * | 2018-06-04 | 2019-12-12 | 株式会社豊田自動織機 | 電極製造方法、及び電極製造装置 |
-
2020
- 2020-12-18 US US17/914,573 patent/US20230223509A1/en active Pending
- 2020-12-18 WO PCT/KR2020/018686 patent/WO2022034995A1/ko unknown
- 2020-12-18 EP EP20949624.9A patent/EP4106035A4/en active Pending
- 2020-12-18 JP JP2022561110A patent/JP7484071B2/ja active Active
-
2021
- 2021-07-30 CN CN202110870414.XA patent/CN114079039A/zh active Pending
- 2021-07-30 CN CN202121770841.2U patent/CN216054795U/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001035477A (ja) * | 1999-07-23 | 2001-02-09 | Yuasa Corp | 扁平型電池とその製造方法 |
JP2009123752A (ja) | 2007-11-12 | 2009-06-04 | Mitsubishi Electric Corp | 電力貯蔵デバイスおよびその製造方法 |
JP2010086813A (ja) | 2008-09-30 | 2010-04-15 | Toshiba Corp | 非水電解質二次電池 |
JP2013218819A (ja) * | 2012-04-05 | 2013-10-24 | Toyota Industries Corp | 蓄電装置及び二次電池並びに蓄電装置用電極体の製造方法 |
KR20150033933A (ko) | 2013-09-25 | 2015-04-02 | 엘지디스플레이 주식회사 | 액정 디스플레이 장치와 이의 제조 방법 |
KR101634772B1 (ko) | 2013-10-07 | 2016-06-29 | 주식회사 엘지화학 | 지그재그형 전극조립체를 포함하고 있는 전지셀 |
KR101569798B1 (ko) * | 2014-01-28 | 2015-11-17 | 주식회사 디에이테크놀로지 | 이차전지의 전극 노칭장치 |
KR20170026769A (ko) * | 2015-08-27 | 2017-03-09 | 삼성에스디아이 주식회사 | 전극 조립체 및 그 제조 방법과 이차 전지 |
KR20200074613A (ko) * | 2018-12-17 | 2020-06-25 | 주식회사 엘지화학 | 전극, 전극의 제조방법 및 제조장치 |
KR20200102132A (ko) | 2019-02-21 | 2020-08-31 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4106035A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2023521720A (ja) | 2023-05-25 |
CN114079039A (zh) | 2022-02-22 |
JP7484071B2 (ja) | 2024-05-16 |
CN216054795U (zh) | 2022-03-15 |
EP4106035A1 (en) | 2022-12-21 |
EP4106035A4 (en) | 2024-09-25 |
US20230223509A1 (en) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013180378A1 (ko) | 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스 | |
WO2013176533A1 (ko) | 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스 | |
WO2014209054A1 (ko) | 세퍼레이터 절단공정을 포함하는 전극조립체의 제조방법 | |
WO2013176534A1 (ko) | 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스 | |
WO2022139451A1 (ko) | 전극 조립체 및 이를 포함하는 이차전지 | |
WO2021118160A1 (ko) | 이차전지 제조방법 및 이차전지 제조용 프리 디개스 장치 | |
WO2022108080A1 (ko) | 이차 전지 및 이의 제조 방법 | |
WO2016093590A1 (ko) | 개선된 출력 특성을 가진 이차 전지 | |
WO2022034995A1 (ko) | 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 | |
KR20220021841A (ko) | 전극의 적층 특성을 개선한 음극시트 및 음극을 포함하는 전극조립체 및 그 제조방법 | |
WO2023013929A1 (ko) | 전극 조립체, 배터리 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022191674A1 (ko) | 전해액 함침성이 우수한 전극 조립체 및 이를 포함하는 배터리, 배터리 팩 및 자동차 | |
WO2023282721A1 (en) | Electrode assembly | |
WO2022177179A2 (ko) | 전극 조립체 및 그 제조 방법, 전극 조립체를 포함하는 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2022177355A1 (ko) | 이차 전지 및 이를 포함하는 배터리 팩 및 자동차 | |
WO2020091283A1 (ko) | 전해액 이온 농도 측정부를 포함하는 전지셀 및 이를 이용한 전해액 농도 측정 방법 | |
WO2021182656A1 (ko) | 이차전지의 전극판 제조장치 및 제조방법 | |
WO2024010357A1 (ko) | 전극 조립체, 전극 조립체 제조방법, 이차 전지, 배터리 팩 및 자동차 | |
WO2023043180A1 (ko) | 전극 조립체, 이의 제조 장치, 및 이의 제조 방법 | |
WO2023043176A1 (ko) | 전극 조립체, 이의 제조 장치, 및 이의 제조 방법 | |
WO2023140638A1 (ko) | 단락 방지 구조를 구비한 전극 조립체 | |
WO2023043177A1 (ko) | 전극 조립체, 이의 제조 장치, 및 이의 제조 방법 | |
WO2024162736A1 (en) | Pouch type battery case, secondary battery, and battery forming apparatus | |
WO2024034994A1 (ko) | 전극조립체, 이를 포함하는 리튬 이차전지, 전극조립체의 제조방법 및 전극 슬라이딩 규격의 관리방법 | |
WO2022177356A1 (ko) | 전극 단자의 리벳팅 구조 및 이를 포함하는 이차 전지, 배터리 팩 및 자동차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20949624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020949624 Country of ref document: EP Effective date: 20220916 |
|
ENP | Entry into the national phase |
Ref document number: 2022561110 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |