WO2022032943A1 - 一种埃克替尼的制备方法 - Google Patents

一种埃克替尼的制备方法 Download PDF

Info

Publication number
WO2022032943A1
WO2022032943A1 PCT/CN2020/134800 CN2020134800W WO2022032943A1 WO 2022032943 A1 WO2022032943 A1 WO 2022032943A1 CN 2020134800 W CN2020134800 W CN 2020134800W WO 2022032943 A1 WO2022032943 A1 WO 2022032943A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reagent
icotinib
amino
preparation
Prior art date
Application number
PCT/CN2020/134800
Other languages
English (en)
French (fr)
Inventor
张晓红
吕习周
陆建刚
张慧慧
Original Assignee
苏州富士莱医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州富士莱医药股份有限公司 filed Critical 苏州富士莱医药股份有限公司
Publication of WO2022032943A1 publication Critical patent/WO2022032943A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/056Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring

Definitions

  • the invention belongs to the technical field of medicinal chemical synthesis, in particular to a preparation method of icotinib.
  • Icotinib is an innovative drug for anti-tumor targeted therapy independently developed by Zhejiang Betta Pharmaceuticals in China. It is the first small-molecule anti-tumor drug with independent intellectual property rights in my country. The tablet was approved by the State Food and Drug Administration in June 2011 for the treatment of advanced non-small cell lung cancer (NSCLC).
  • NSCLC non-small cell lung cancer
  • the chemical name of icotinib is 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4quinazoline, and the English chemical name is 4-[(3-ethynylphenyl) amino]-6,7-benzo-12-crown-4-quinazoline, the trade name is Conmana, the structural formula is as follows:
  • Icotinib is a highly effective and specific epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), which has obvious inhibitory effects on FGFR, PDGFR and VEGFR in addition to EGFR-TKIs.
  • EGFR-TKI epidermal growth factor receptor tyrosine kinase inhibitor
  • icotinib is similar in chemical structure, molecular-level mechanism of action, indications and efficacy, etc., but has the lowest toxicity.
  • the side chain structure of cyclic dodecacrown ether and high selectivity for EGFR-TKI are the basis of its good safety, so icotinib has a unique advantage and position in the new anti-tumor drug market.
  • Route 1 (patent CN1305860C) is the original research patent route of Betta Pharmaceuticals. Using 2-amino-4,5-dimethoxybenzoic acid as the starting material, the quinazoline structure is obtained by cyclization, and then chlorinated, combined with Aromatic amine is condensed, and finally a dodeca crown ether structure is constructed to generate icotinib.
  • the synthetic route is as follows:
  • Route 2 is based on the above-mentioned route 1, changing the access structure of the condensation reaction with arylamine, that is, after cyclization and chlorination, first nucleophilic docking with m-bromoaniline, and after completing the construction of dodecacrown ether. , and finally coupled with ethynyltrimethylsilane to obtain icotinib, as shown below:
  • Route three is a patent route disclosed by Betta Pharmaceuticals. This method uses triethylene glycol as the starting material, reacts with p-toluenesulfonyl chloride to obtain dihydroxyl After protection, 3,4-dihydroxybenzoic acid ethyl ester is used to construct a dodecone ether structure, and then icotinib is obtained through nitration, reduction, cyclization, chlorination, and condensation reactions, as shown below:
  • Route 4 is another new patent route disclosed by Betta Pharmaceuticals, using triethylene glycol as the starting material, after being protected by hydroxyl groups, and condensing with 3,4-dihydroxyphenylacetonitrile for ten years.
  • the purpose of the present invention is to provide a preparation method of icotinib, the method has a reasonable process route, simple operation, easy-to-obtain reagents, low preparation cost and good environmental friendliness. safety.
  • the object of the present invention is to reach like this, a kind of preparation method of icotinib, comprises the steps:
  • the cyclization reagent is trimethyl orthoformate, triethyl orthoformate, formic acid, formamide, ammonium formate or formamidine;
  • the molar ratio of 2-amino-4,5-difluorobenzoic acid, amidation reagent, and catalyst described in step (1) is 1.0:3.0-10.0:0.01-0.10
  • the amidation reaction is carried out in a high-pressure reaction kettle with temperature rising, the reaction temperature is 70 ⁇ 100°C, and the reaction time is 6 ⁇ 24h.
  • the solution of the amidation reagent is ammonia water, ammonia ethanol solution or ammonia methanol solution;
  • the catalyst is copper sulfate, copper nitrate, copper acetate, copper chloride, Copper bromide, cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous acetate, copper triflate, copper propionate, copper isobutyrate or copper powder.
  • the molar ratio of the 2-amino-4,5-difluorobenzamide and the cyclization reagent described in step (2) is 1.0:1.0-1.5; the The temperature of the cyclization reaction is 80 ⁇ 125°C, and the reaction time is 6 ⁇ 24h.
  • the solvent described in step (2) is methanol, ethanol, isopropanol or n-propanol.
  • the molar ratio of the 6,7-difluoro-3,4-dihydroquinazolin-4-one described in step (3) to the chlorinating reagent is 1.0 : 1.0 ⁇ 1.6; the temperature of the chlorination reaction is 30 ⁇ 100°C, and the reaction time is 3 ⁇ 8h.
  • the chlorinating reagent described in step (3) is phosphorus oxychloride, thionyl chloride, sulfonyl chloride, phosphorus pentachloride or phosphorus trichloride; the The solvent used is tetrahydrofuran, methyl tert-butyl ether, N,N-dimethylformamide, N,N-diethylformamide, 1,4-dioxane or acetonitrile.
  • the molar ratio of 4-chloro-6,7-difluoroquinazoline, 3-ethynylaniline and alkali reagent described in step (4) is 1.0:1.3 ⁇ 1.8:1.8 ⁇ 2.5; the temperature of the condensation reaction is 50 ⁇ 100°C, and the reaction time is 6 ⁇ 12h; the alkali reagent is sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate or cesium carbonate; Described solvent is dichloromethane, 1,2-dichloroethane, chloroform, toluene, N,N-dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, methyl tert-butyl ether, acetonitrile or 1, 4-Dioxane.
  • the 4-[(3-ethynylphenyl)amino]-6,7-difluoroquinazoline, triethyldiacetate described in step (5) The molar ratio of diol and alkali reagent is 1.0:1.0 ⁇ 1.3:1.3 ⁇ 1.8; the temperature of the etherification reaction is 60 ⁇ 100°C, and the reaction time is 4 ⁇ 24h; the solvent is dichloromethane, 1 ,2-dichloroethane, chloroform, toluene, N,N-dimethylformamide, N-methylpyrrolidone, methyl tert-butyl ether, 1,4-dioxane, acetonitrile, tetrahydrofuran or 2- Methyltetrahydrofuran.
  • the alkali reagent is sodium metal, sodium hydride, potassium hydride, sodium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide, potassium tert-butoxide, isopropanol Sodium, potassium isopropoxide or potassium tert-amylate.
  • the technical solution provided by the present invention has the following technical effects: firstly, since only conventional post-processing and purification are performed after each step of the reaction is completed, and no chromatography column purification is required, the impurities are less and controllable, and the next step reaction can be directly carried out , so the operation is simplified, and at the same time, good yield can be obtained in each step; secondly, the starting materials and reagents used in the process route of the present invention are easy to obtain, the technical scheme of the synthesis reaction is reasonable, the process flow is significantly simplified, and the safety and reliability are guaranteed.
  • Environmentally friendly it can be mass-produced to meet the needs of APIs, and is suitable for industrial scale-up production.

Abstract

提供了一种埃克替尼的制备方法,其步骤为:将2-氨基-4,5-二氟苯甲酸与酰胺化试剂的溶液充分混合,加入催化剂,进行酰胺化反应;将得到的2-氨基-4,5-二氟苯甲酰胺与环化试剂溶于溶剂中,在高温下进行环化反应;将得到的6,7-二氟-3,4-二氢喹唑啉-4-酮与氯化试剂在溶剂体系中进行氯化反应;将得到的4-氯-6,7-二氟喹唑啉与3-乙炔基苯胺在碱试剂和溶剂体系中进行缩合反应;将得到的4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉与二缩三乙二醇在碱试剂和溶剂体系中进行醚化反应,得到埃克替尼。所述方法杂质较少、可控,可直接进行下一步反应,简化操作,每一步都能获得良好的收率;简化工艺流程,保障安全与环保。

Description

一种埃克替尼的制备方法 技术领域
本发明属于药物化学合成技术领域,具体涉及一种埃克替尼的制备方法。
背景技术
埃克替尼(Icotinib)是由我国浙江贝达药业自主研发的一种抗肿瘤靶向治疗的创新药物,是我国第一个具有自主知识产权的小分子抗肿瘤药,盐酸埃克替尼片已于2011年6月由国家食品药品监督管理局批准用于治疗进展性非小细胞肺癌(NSCLC)。埃克替尼的化学名是4-[(3-乙炔基苯基)氨基]-6,7-苯并-12-冠-4喹唑啉,英文化学名为4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-4-quinazoline,商品名为凯美纳(Conmana),结构式如下:
Figure PCTCN2020134800-appb-000001
埃克替尼是一种高效特异性的表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI),除了对EGFR-TKIs作用外,对FGFR、PDGFR和VEGFR均有明显的抑制作用。与吉非替尼(Gifitinib)、厄洛替尼(Erlotinib)相比,埃克替尼在化学结构、分子水平上的作用机制以及适应症和疗效等方面类似,但具有毒性最低的特点,其环状十二冠醚侧链结构和对EGFR-TKI具有高选择性是其良好安全性的基础,因而埃克替尼在抗肿瘤新药市场具有独特的优势和地位。
有关埃克替尼的制备方法,已有文献和专利报道的不同工艺路线,均涉及了构建十二冠醚结构和喹唑啉环的构建,各有特色及优缺点。
路线一(专利CN1305860C)是贝达药业的原研专利路线,以2-氨基-4,5-二甲氧基苯甲酸为起始原料,通过环化得到喹唑啉结构,然后氯化、与芳胺缩合,最后构建十二冠醚结构,生成埃克替尼,其合成路线如下所示:
Figure PCTCN2020134800-appb-000002
Figure PCTCN2020134800-appb-000003
路线二是在上述路线一的基础上,改变了与芳胺缩合反应的接入结构,即在环化和氯化之后,先与间溴苯胺亲核对接,在完成了构建十二冠醚之后,最后与乙炔基三甲基硅烷进行偶联反应得到埃克替尼,如下所示:
Figure PCTCN2020134800-appb-000004
路线三(专利CN101878218B、CN102911179B、CN103254204B、CN104530061B、CN104592242B)是贝达药业公开的一条专利路线,该方法以二缩三乙二醇为起始原料,经过与对甲苯磺酰氯反应,得到双羟基保护后,和3,4-二羟基苯甲酸乙酯构建十二冠醚结构,再经硝化、还原、环化、氯化、缩合反应得到埃克替尼,如下所示:
Figure PCTCN2020134800-appb-000005
Figure PCTCN2020134800-appb-000006
路线四(专利CN104024262B和CN105237510A)是贝达药业公开的另一条新专利路线,以二缩三乙二醇为起始原料,经羟基保护后,和3,4-二羟基苯乙腈缩合进行十二冠醚的构建,然后进行硝化,铁粉还原,和N,N-二甲基甲酰胺二甲基缩醛进行缩合,再与间氨基苯乙炔反应得埃克替尼,和路线三的工艺相比,虽然环化反应不涉及氯化工序,可避免使用三氯氧膦等剧毒试剂,但是其环化步骤的收率降低,对整个工艺路线导致成本增加,其合成路线如下所示:
Figure PCTCN2020134800-appb-000007
以上埃克替尼的合成路线预先对起始原料进行羟基保护,增加了反应步骤,导致操作复杂繁琐,不利于提高效率和降低成本。为了寻求更加有效简便地制备埃克替尼的途径,因此对于探索工艺流程短、操作简单、成本低廉、安全环保而得以适合工业化生产的埃克替尼的制备方法具有积极意义,下面将要介绍的技术方案便是在这种背景下产生的。
发明内容
针对现有技术中存在的不足和缺陷,本发明的目的是提供一种埃克替尼的制备方法,该方法工艺路线合理、操作简洁、试剂易得并且具有制备成本低以及对环境具有良好的安全性。
本发明的目的是这样来达到的,一种埃克替尼的制备方法,包括如下步骤:
(1)将2-氨基-4,5-二氟苯甲酸与酰胺化试剂的溶液充分混合,加入催化剂,进行酰胺化反应, 得到2-氨基-4,5-二氟苯甲酰胺,反应式为:
Figure PCTCN2020134800-appb-000008
(2)2-氨基-4,5-二氟苯甲酰胺与环化试剂溶于溶剂中,在高温下进行环化反应,得到6,7-二氟-3,4-二氢喹唑啉-4-酮,反应式为:
Figure PCTCN2020134800-appb-000009
所述的环化试剂为原甲酸三甲酯、原甲酸三乙酯、甲酸、甲酰胺、甲酸铵或甲脒;
(3)6,7-二氟-3,4-二氢喹唑啉-4-酮与氯化试剂在溶剂体系中进行氯化反应,得到4-氯-6,7-二氟喹唑啉,反应式为:
Figure PCTCN2020134800-appb-000010
(4)4-氯-6,7-二氟喹唑啉与3-乙炔基苯胺在碱试剂和溶剂体系中进行缩合反应,得到4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉,反应式为:
Figure PCTCN2020134800-appb-000011
(5)4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉与二缩三乙二醇在碱试剂和溶剂体系中进行醚化反应,得到埃克替尼(Icotinib),反应式为:
Figure PCTCN2020134800-appb-000012
在本发明的一个具体的实施例中,步骤(1)中所述的2-氨基-4,5-二氟苯甲酸、酰胺化试剂、催化剂的摩尔比为1.0∶3.0~10.0∶0.01~0.10;所述的酰胺化反应在高压反应釜内升温进行,反应温度为70~100℃,反应时间为6~24h。
在本发明的另一个具体的实施例中,所述酰胺化试剂的溶液为氨水、氨的乙醇溶液或氨的甲醇溶液;所述的催化剂为硫酸铜、硝酸铜、醋酸铜、氯化铜、溴化铜、氯化亚铜、溴化亚铜、碘化亚 铜、氰化亚铜、醋酸亚铜、三氟甲磺酸铜、丙酸铜、异丁酸铜或铜粉。
在本发明的又一个具体的实施例中,步骤(2)中所述的2-氨基-4,5-二氟苯甲酰胺、环化试剂的摩尔比为1.0∶1.0~1.5;所述的环化反应的温度为80~125℃,反应时间为6~24h。
在本发明的再一个具体的实施例中,步骤(2)中所述的溶剂为甲醇、乙醇、异丙醇或正丙醇。
在本发明的还有一个具体的实施例中,步骤(3)中所述的6,7-二氟-3,4-二氢喹唑啉-4-酮与氯化试剂的摩尔比为1.0∶1.0~1.6;所述的氯化反应的温度为30~100℃,反应时间为3~8h。
在本发明的更而一个具体的实施例中,步骤(3)中所述的氯化试剂为三氯氧磷、氯化亚砜、磺酰氯、五氯化磷或三氯化磷;所述的溶剂为四氢呋喃、甲基叔丁基醚、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、1,4-二氧六环或乙腈。
在本发明的进而一个具体的实施例中,步骤(4)中所述的4-氯-6,7-二氟喹唑啉、3-乙炔基苯胺、碱试剂的摩尔比为1.0∶1.3~1.8∶1.8~2.5;所述的缩合反应的温度为50~100℃,反应时间为6~12h;所述的碱试剂为氢氧化钠、氢氧化钾、碳酸钾、碳酸钠或碳酸铯;所述的溶剂为二氯甲烷、1,2-二氯乙烷、氯仿、甲苯、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、四氢呋喃、甲基叔丁基醚、乙腈或1,4-二氧六环。
在本发明的又更而一个具体的实施例中,步骤(5)中所述的4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉、二缩三乙二醇与碱试剂的摩尔比为1.0∶1.0~1.3∶1.3~1.8;所述的醚化反应的温度为60~100℃,反应时间为4~24h;所述的溶剂为二氯甲烷、1,2-二氯乙烷、氯仿、甲苯、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、甲基叔丁基醚、1,4-二氧六环、乙腈、四氢呋喃或2-甲基四氢呋喃。
在本发明的又进而一个具体的实施例中,所述的碱试剂为金属钠、氢化钠、氢化钾、甲醇钠、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、异丙醇钠、异丙醇钾或叔戊醇钾。
本发明提供的技术方案具有以下技术效果:其一,由于各步反应完成之后只作常规性的后处理和纯化而不需要层析柱纯化,杂质较少、可控,可直接进行下一步反应,因此简化了操作,同时每一步都能获得良好的收率;其二,本发明的工艺路线起始原料和所用的试剂易得,合成反应的技术方案合理,显著简化工艺流程,保障安全与环保,可以大量生产来满足原料药的使用需求,适用于工业化放大生产要求。
具体实施方式
以下结合数个较佳实施例对本发明技术方案作进一步非限制性的详细说明。
实施例1:
(1)制备2-氨基-4,5-二氟苯甲酰胺:
在2L高压反应釜中,加入2-氨基-4,5-二氟苯甲酸(50.0g,0.29mol)与28%氨水溶液(60mL,0.90mol),充分混合,加入硫酸铜(0.5g,3.1mmol),反应釜封闭,升温至70℃反应24h,降至室 温,反应混合物减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到2-氨基-4,5-二氟苯甲酰胺,类白色固体(44.0g),收率89%,本步骤的反应式为:
Figure PCTCN2020134800-appb-000013
(2)制备6,7-二氟-3,4-二氢喹唑啉-4-酮:
2-氨基-4,5-二氟苯甲酰胺(44.0g,0.26mol)溶于甲醇(700mL),冰浴冷却,缓慢加入原甲酸三甲酯(27.5g,0.26mol),80℃反应24h,降至室温,减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到6,7-二氟-3,4-二氢喹唑啉-4-酮,类白色固体(42.0g),收率90%,本步骤的反应式为:
Figure PCTCN2020134800-appb-000014
(3)制备4-氯-6,7-二氟喹唑啉:
6,7-二氟-3,4-二氢喹唑啉-4-酮(42.0g,0.23mol)溶于四氢呋喃(600mL),冰浴冷却,缓慢加入三氯氧磷(36.0g,0.23mol),30℃反应8h,降至室温,减压旋蒸至干,二氯甲烷萃取,依次用食盐水、饱和碳酸氢钠溶液洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-氯-6,7-二氟喹唑啉,类白色固体(43.0g),收率93%,本步骤的反应式为:
Figure PCTCN2020134800-appb-000015
(4)制备4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉:
4-氯-6,7-二氟喹唑啉(43.0g,0.21mol)溶于二氯甲烷(600mL),冰浴冷却,缓慢加入3-乙炔基苯胺(33.0g,0.28mol)和氢氧化钠(16g,0.4mol),50℃反应12h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉,类白色至浅黄色固体(55.0g),收率91%,本步骤的反应式为:
Figure PCTCN2020134800-appb-000016
(5)制备埃克替尼:
4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉(55.0g,0.20mol)溶于二氯甲烷(600mL),冰浴冷却,缓慢加入二缩三乙二醇(30.0g,0.20mol)和氢化钠(6.0g,0.25mol),60℃反应24h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到埃克替尼,类白色固体(73.0g),收率95%,本步骤的反应式为:
Figure PCTCN2020134800-appb-000017
实施例2:
(1)制备2-氨基-4,5-二氟苯甲酰胺:
在2L高压反应釜中,加入2-氨基-4,5-二氟苯甲酸(80.0g,0.46mol)与15%氨的乙醇溶液(340mL,2.40mol),充分混合,加入氯化铜(3.0g,22.3mmol),反应釜封闭,升温至90℃反应9h,降至室温,反应混合物减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到2-氨基-4,5-二氟苯甲酰胺,类白色固体(70.0g),收率88%;
(2)制备6,7-二氟-3,4-二氢喹唑啉-4-酮:
2-氨基-4,5-二氟苯甲酰胺(70.0g,0.41mol)溶于乙醇(1000mL),冰浴冷却,缓慢加入原甲酸三乙酯(78.0g,0.53mol),100℃反应12h,降至室温,减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到6,7-二氟-3,4-二氢喹唑啉-4-酮,类白色固体(66.0g),收率89%;
(3)制备4-氯-6,7-二氟喹唑啉:
6,7-二氟-3,4-二氢喹唑啉-4-酮(66.0g,0.36mol)溶于N,N-二甲基甲酰胺(1000mL),冰浴冷却,缓慢加入五氯化磷(100.0g,0.48mol),100℃反应3h,降至室温,减压旋蒸至干,二氯甲烷萃取,依次用食盐水、饱和碳酸氢钠溶液洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-氯-6,7-二氟喹唑啉,类白色固体(63.0g),收率87%;
(4)制备4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉:
4-氯-6,7-二氟喹唑啉(63.0g,0.31mol)溶于甲苯(1000mL),冰浴冷却,缓慢加入3-乙炔基苯胺(56.0g,0.48mol)和氢氧化钾(35.0g,0.62mol),90℃反应9h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉,类白色至浅黄色固体(82.0g),收率93%;
(5)制备埃克替尼:
4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉(82.0g,0.29mol)溶于甲苯(1000mL),冰浴冷却,缓慢加入二缩三乙二醇(52.0g,0.35mol)和叔丁醇钾(58.0g,0.52mol),100℃反应4h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到埃克替尼,类白色固体(102.0g),收率89%。
由于本实施例2的步骤(1)至(5)的反应式分别与实施例1的步骤(1)至(5)的反应式相同,因此省略。
实施例3:
(1)制备2-氨基-4,5-二氟苯甲酰胺:
在2L高压反应釜中,加入2-氨基-4,5-二氟苯甲酸(120.0g,0.69mol)与15%氨的甲醇溶液(1020mL,6.92mol),充分混合,加入溴化亚铜(9.5g,66.3mmol),反应釜封闭,升温至100℃反应6h,降至室温,反应混合物减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到2-氨基-4,5-二氟苯甲酰胺,类白色至浅黄色固体(113.0g),收率95%;
(2)制备6,7-二氟-3,4-二氢喹唑啉-4-酮:
2-氨基-4,5-二氟苯甲酰胺(113.0g,0.66mol)溶于异丙醇(1800mL),冰浴冷却,缓慢加入甲酸(45.0g,0.98mol),125℃反应6h,降至室温,减压旋蒸至干,二氯甲烷萃取,食盐水洗,无水硫酸钠干燥,减压旋蒸至干,粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到6,7-二氟-3,4-二氢喹唑啉-4-酮,类白色至浅黄色固体(108.0g),收率90%;
(3)制备4-氯-6,7-二氟喹唑啉:
6,7-二氟-3,4-二氢喹唑啉-4-酮(108.0g,0.59mol)溶于N,N-二甲基甲酰胺(1400mL),冰浴冷却,缓慢加入氯化亚砜(112.0g,0.94mol),90℃反应5h,降至室温,减压旋蒸至干,二氯甲烷萃取,依次用食盐水、饱和碳酸氢钠溶液洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-氯-6,7-二氟喹唑啉,类白色至浅黄色固体(106.0g),收率0.89%;
(4)制备4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉:
4-氯-6,7-二氟喹唑啉(106.0g,0.53mol)溶于1,2-二氯乙烷(1300mL),冰浴冷却,缓慢加入3-乙炔基苯胺(111.0g,0.95mol)和碳酸钾(182.0g,1.32mol),100℃反应6h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉,类白色至浅黄色固体(140.0g),收率94%;
(5)制备埃克替尼:
4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉(140.0g,0.50mol)溶于1,2-二氯乙烷(1300mL),冰浴冷却,缓慢加入二缩三乙二醇(97.0g,0.65mol)和乙醇钠(60.0g,0.88mol),80℃反应14h,降至室温,减压旋蒸至干,二氯甲烷萃取,用食盐水洗,无水硫酸钠干燥,减压旋蒸至干,得到的粗品经乙酸乙酯-石油醚混合溶剂重结晶,得到埃克替尼,类白色(175.0g),收率90%。
由于本实施例3的步骤(1)至(5)的反应式分别与实施例1的步骤(1)至(5)的反应式相同,因此省略。

Claims (10)

  1. 一种埃克替尼的制备方法,其特征在于包括如下步骤:
    (1)将2-氨基-4,5-二氟苯甲酸与酰胺化试剂的溶液充分混合,加入催化剂,进行酰胺化反应,得到2-氨基-4,5-二氟苯甲酰胺;
    (2)2-氨基-4,5-二氟苯甲酰胺与环化试剂溶于溶剂中,在高温下进行环化反应,得到6,7-二氟-3,4-二氢喹唑啉-4-酮,所述的环化试剂为原甲酸三甲酯、原甲酸三乙酯、甲酸、甲酰胺、甲酸铵或甲脒;
    (3)6,7-二氟-3,4-二氢喹唑啉-4-酮与氯化试剂在溶剂体系中进行氯化反应,得到4-氯-6,7-二氟喹唑啉;
    (4)4-氯-6,7-二氟喹唑啉与3-乙炔基苯胺在碱试剂和溶剂体系中进行缩合反应,得到4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉;
    (5)4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉与二缩三乙二醇在碱试剂和溶剂体系中进行醚化反应,得到埃克替尼。
  2. 根据权利要求1所述的一种埃克替尼的制备方法,其特征在于步骤(1)中所述的2-氨基-4,5-二氟苯甲酸、酰胺化试剂、催化剂的摩尔比为1.0∶3.0~10.0∶0.01~0.10;所述的酰胺化反应在高压反应釜内升温进行,反应温度为70~100℃,反应时间为6~24h。
  3. 根据权利要求1或2所述的一种埃克替尼的制备方法,其特征在于所述酰胺化试剂的溶液为氨水、氨的乙醇溶液或氨的甲醇溶液;所述的催化剂为硫酸铜、硝酸铜、醋酸铜、氯化铜、溴化铜、氯化亚铜、溴化亚铜、碘化亚铜、氰化亚铜、醋酸亚铜、三氟甲磺酸铜、丙酸铜、异丁酸铜或铜粉。
  4. 根据权利要求1所述的一种埃克替尼的制备方法,其特征在于步骤(2)中所述的2-氨基-4,5-二氟苯甲酰胺、环化试剂的摩尔比为1.0∶1.0~1.5;所述的环化反应的温度为80~125℃,反应时间为6~24h。
  5. 根据权利要求1或4所述的一种埃克替尼的制备方法,其特征在于步骤(2)中所述的溶剂为甲醇、乙醇、异丙醇或正丙醇。
  6. 根据权利要求1所述的一种埃克替尼的制备方法,其特征在于步骤(3)中所述的6,7-二氟-3,4-二氢喹唑啉-4-酮与氯化试剂的摩尔比为1.0∶1.0~1.6;所述的氯化反应的温度为30~100℃,反应时间为3~8h。
  7. 根据权利要求1或6所述的一种埃克替尼的制备方法,其特征在于所述的氯化试剂为三氯氧磷、氯化亚砜、磺酰氯、五氯化磷或三氯化磷;所述的溶剂为四氢呋喃、甲基叔丁基醚、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、1,4-二氧六环或乙腈。
  8. 根据权利要求1所述的一种埃克替尼的制备方法,其特征在于步骤(4)中所述的4-氯-6,7-二氟喹唑啉、3-乙炔基苯胺、碱试剂的摩尔比为1.0∶1.3~1.8∶1.8~2.5;所述的缩合反应的温度为50~100℃,反应时间为6~12h;所述的碱试剂为氢氧化钠、氢氧化钾、碳酸钾、碳酸钠或碳酸铯;所述的溶剂为二氯甲烷、1,2-二氯乙烷、氯仿、甲苯、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、四氢呋喃、甲基叔丁基醚、乙腈或1,4-二氧六环。
  9. 根据权利要求1所述的一种埃克替尼的制备方法,其特征在于步骤(5)中所述的4-[(3-乙炔基苯基)氨基]-6,7-二氟喹唑啉、二缩三乙二醇与碱试剂的摩尔比为1.0∶1.0~1.3∶1.3~1.8;所述的醚化反应的温度为60~100℃,反应时间为4~24h;所述的溶剂为二氯甲烷、1,2-二氯乙烷、氯仿、甲苯、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、甲基叔丁基醚、1,4-二氧六环、乙腈、四氢呋喃或2-甲基四氢呋喃。
  10. 根据权利要求1或9所述的一种埃克替尼的制备方法,其特征在于所述的碱试剂为金属钠、氢化钠、氢化钾、甲醇钠、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、异丙醇钠、异丙醇钾或叔戊醇钾。
PCT/CN2020/134800 2020-08-10 2020-12-09 一种埃克替尼的制备方法 WO2022032943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010794011.7A CN111763214B (zh) 2020-08-10 2020-08-10 一种埃克替尼的制备方法
CN202010794011.7 2020-08-10

Publications (1)

Publication Number Publication Date
WO2022032943A1 true WO2022032943A1 (zh) 2022-02-17

Family

ID=72728789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134800 WO2022032943A1 (zh) 2020-08-10 2020-12-09 一种埃克替尼的制备方法

Country Status (2)

Country Link
CN (1) CN111763214B (zh)
WO (1) WO2022032943A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111763214B (zh) * 2020-08-10 2022-03-15 苏州富士莱医药股份有限公司 一种埃克替尼的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534026A (zh) * 2002-03-28 2004-10-06 �Ϳ���ҽҩ��˾ 新型作为酪氨酸激酶抑制剂的稠合的喹唑啉衍生物
WO2013064128A1 (zh) * 2011-10-31 2013-05-10 浙江贝达药业有限公司 埃克替尼和盐酸埃克替尼的制备方法及其中间体
CN103254204A (zh) * 2008-07-08 2013-08-21 浙江贝达药业有限公司 埃克替尼盐酸盐晶型、药物组合物和用途
CN107200715A (zh) * 2017-06-22 2017-09-26 陕西师范大学 喹唑啉衍生物及其在制备抗肿瘤药物中的应用
CN111763214A (zh) * 2020-08-10 2020-10-13 苏州富士莱医药股份有限公司 一种埃克替尼的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017208A (zh) * 2014-04-28 2015-11-04 宁波文达医药科技有限公司 一种改进的埃克替尼及其中间体的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534026A (zh) * 2002-03-28 2004-10-06 �Ϳ���ҽҩ��˾ 新型作为酪氨酸激酶抑制剂的稠合的喹唑啉衍生物
CN103254204A (zh) * 2008-07-08 2013-08-21 浙江贝达药业有限公司 埃克替尼盐酸盐晶型、药物组合物和用途
WO2013064128A1 (zh) * 2011-10-31 2013-05-10 浙江贝达药业有限公司 埃克替尼和盐酸埃克替尼的制备方法及其中间体
CN107200715A (zh) * 2017-06-22 2017-09-26 陕西师范大学 喹唑啉衍生物及其在制备抗肿瘤药物中的应用
CN111763214A (zh) * 2020-08-10 2020-10-13 苏州富士莱医药股份有限公司 一种埃克替尼的制备方法

Also Published As

Publication number Publication date
CN111763214B (zh) 2022-03-15
CN111763214A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
US20100267949A1 (en) Method of Synthesizing 6,7-Substituted 4-Anilino Quinazoline
CN102659716B (zh) 4-甲氧基-2-胺基-3-[3-(4-吗啉基)丙氧基]苯腈的制备方法及吉非替尼的制备工艺
CN107936029B (zh) 一种合成瑞博西尼的方法
CN102146060B (zh) 制备吉非替尼及其中间体的方法
CN106632271A (zh) 具有抗肿瘤活性的厄洛替尼衍生物及其制备方法和应用
WO2022032943A1 (zh) 一种埃克替尼的制备方法
Kovacevic et al. An alternative synthesis of the non-small cell lung carcinoma drug afatinib
CN106045983A (zh) 阿法替尼的制备方法
US9845315B2 (en) Method for preparing Afatinib and intermediate thereof
CN105218445B (zh) 一种酪氨酸激酶抑制剂Foretinib的制备方法
CN106045980B (zh) 一种喹唑啉衍生物及其制备方法
CN104072426B (zh) 一种抗癌药物的制备方法
CN102659629B (zh) 化合物及其在制备埃罗替尼中的用途
CN107759596A (zh) 一种合成帕博西尼的方法
CN107118215A (zh) 一种治疗乳腺癌药物瑞博西尼中间体的制备方法
CN105646374A (zh) 一种盐酸厄洛替尼的制备方法
CN102863395A (zh) 一种厄洛替尼的合成新方法
CN109721552B (zh) 一种吉非替尼的制备方法
CN103396371A (zh) 一种盐酸埃罗替尼晶型a的制备方法
CN106083740A (zh) 一种含1,2,3‑三氮唑的4‑苯胺基喹唑啉衍生物及制备方法
CN112851670A (zh) 一种3-多氟烷基化取代咪唑[1,2-a]并吡啶的简易合成方法
CN110551065B (zh) 氘代Lucitanib化合物及其用途
WO2013020461A1 (zh) 一种吉非替尼中间体的制备方法
CN106008336A (zh) 4-氯-6,7-二甲氧基喹啉的制备方法
CN107337648A (zh) 一种合成厄洛替尼的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949435

Country of ref document: EP

Kind code of ref document: A1