WO2022032897A1 - 一种城轨列车的制动力分配方法,装置及系统 - Google Patents

一种城轨列车的制动力分配方法,装置及系统 Download PDF

Info

Publication number
WO2022032897A1
WO2022032897A1 PCT/CN2020/126915 CN2020126915W WO2022032897A1 WO 2022032897 A1 WO2022032897 A1 WO 2022032897A1 CN 2020126915 W CN2020126915 W CN 2020126915W WO 2022032897 A1 WO2022032897 A1 WO 2022032897A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking force
car
total
train
braking
Prior art date
Application number
PCT/CN2020/126915
Other languages
English (en)
French (fr)
Inventor
刘中华
陈磊
唐立国
孙会智
焦东明
闫晓庚
罗铁军
魏润龙
申云彤
白春新
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Priority to EP20949391.5A priority Critical patent/EP4194287A4/en
Publication of WO2022032897A1 publication Critical patent/WO2022032897A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1705Braking or traction control means specially adapted for particular types of vehicles for rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61HBRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
    • B61H11/00Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types
    • B61H11/06Applications or arrangements of braking or retarding apparatus not otherwise provided for; Combinations of apparatus of different kinds or types of hydrostatic, hydrodynamic, or aerodynamic brakes

Definitions

  • the present application relates to the technical field of urban rail trains, and in particular, to a braking force distribution method, device and system for urban rail trains.
  • the sticking state is the state in which the train is actually operating.
  • the wheels roll on the rail, and due to the gravity of the vehicle, the contact between the vehicle and the rail is a small oval area.
  • the wheel-rail contact is neither a static state nor a sliding state, but a state of "slight movement in stillness” or “slight slippage in rolling", which is called “sticking" in railway terms.
  • the phenomenon of keeping the rollers in contact with the rail relatively stationary due to positive pressure is called “sticking”.
  • the static friction force in the sticking state is also called the sticking force.
  • the braking of the train is realized by the adhesion between the sticking wheel and the sticking point of the rail, which is called sticky braking. When the train adopts adhesive braking, the maximum braking force that can be obtained will not be greater than the adhesive force.
  • the coasting state is the state that the train tries to avoid.
  • the wheels slide on the rails. After the train appears to be in a sliding state, the wheels are locked by the brake shoes before the train stops and slide on the rails. Since the coefficient of kinetic friction is much smaller than the coefficient of static friction, once this condition occurs, the braking force will be greatly reduced and the braking distance will be extended; at the same time, the long-distance sliding of the wheel on the rail will cause scratches on the wheel tread, so , is an accident state that must be avoided.
  • the urban rail train has a high probability of sliding, which is a technical problem that those skilled in the art urgently need to solve.
  • the embodiments of the present application provide a braking force distribution method, device and system for urban rail trains, to solve the technical problem that the urban rail train has a high probability of sliding.
  • the embodiment of the present application provides a braking force distribution method for an urban rail train, comprising the following steps:
  • the total braking force target of the train and the total electric braking capacity that can be provided by all the trains wherein, the total braking force target is calculated by the train braking system, and the total electric braking capacity is calculated by the train traction system;
  • the train braking system allocates the total electric braking capacity to all the trains, and the train braking system evenly distributes the primary air braking force to the intermediate cars; The difference between the total braking force target and the total electric braking capacity.
  • a braking force distribution device for an urban rail train comprising:
  • an acquisition module used to acquire the total braking force target of the train and the total electric braking capability that all the trains can provide; wherein, the total braking force target is calculated by the train braking system, and the total electric braking capability is determined by the train
  • the traction system calculates;
  • the first-level air braking force distribution module is used to distribute the total electric braking capacity to all motor cars and evenly distribute the first-level air braking force to the intermediate cars when the total electric braking capacity is less than the total braking force target; Power is equal to the difference between the total braking force target and the total electric braking capacity.
  • a braking force distribution system for an urban rail train comprising:
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the above-described braking force distribution method.
  • the adhesion coefficient of the middle car using the urban rail train is greater than that of the lead car, that is, the middle car is less likely to slide than the lead car.
  • the train traction system allocates the total electric braking capacity to all the trains, and the train braking system evenly distributes the first-level air braking force to the intermediate cars. Because the adhesion coefficient of the intermediate car is larger than that of the leading car, in the case where the leading car and the trailing car are trailers, in the braking force distribution method of the urban rail train in the embodiment of the present application, the leading car that is prone to coasting neither applies the electric braking force nor the electric braking force.
  • the electric braking force and the air braking force are applied to the intermediate car that is not prone to taxiing without applying air braking force, thus reducing the probability of taxiing of the urban rail train and preventing the taxiing.
  • the leading car and the trailing car are moving trains
  • the braking force distribution method of the urban rail train in the embodiment of the present application the leading car that is prone to coasting only applies electric braking force instead of air braking force, and the middle of the coasting is not easy to occur.
  • the electric braking force and/or the air braking force are applied to the train, thus reducing the chance of the urban rail train sliding and preventing the sliding.
  • the braking force distribution method of the urban rail train in the embodiment of the present application reduces the probability of the urban rail train sliding, and achieves the purpose of preventing the sliding.
  • FIG. 1 is a flowchart of braking force distribution of a braking force distribution method for urban rail trains according to an embodiment of the application
  • Fig. 2 is the flow chart of the anti-skid when the leading car and the trailing car of a kind of braking force distribution method of the urban rail train according to the embodiment of the application are the leading car of the trailer when air brake taxiing occurs;
  • FIG. 3 is a schematic diagram illustrating that the braking force distribution method of an urban rail train according to an embodiment of the present application is applicable to urban rail trains where the leading car and the trailing car are trailers.
  • FIG. 1 is a flowchart of braking force distribution of a braking force distribution method for urban rail trains according to an embodiment of the application. As shown in FIG. 1 , a braking force distribution method for an urban rail train according to an embodiment of the present application includes the following steps:
  • Step S100 Obtain the total braking force target of the train and the total electric braking capability that can be provided by all the trains; wherein, the total braking force target is calculated by the train braking system, and the total electric braking capability is determined by the train traction system Calculate;
  • the train traction system feeds back the total electric braking capacity to the train braking system through the train network system;
  • the train braking system compares the total electric braking capacity and the total braking force target. After the comparison, there are two situations:
  • Step S210 the first case: when the total electric braking capacity is less than the total braking force target, the train braking system allocates the total electric braking capacity to all the trains, and the train braking system evenly allocates the first-level air braking force to the intermediate cars; Among them, the primary air braking force is equal to the difference between the total braking force target and the total electric braking capacity.
  • Step S220 the second case: when the total electric braking capacity is greater than or equal to the total braking force target, the train braking system allocates the total braking force target to all the motor cars, and all the motor cars are braked according to the total braking force target, and no air is required. The braking is supplemented; that is, at this time, all the motor vehicles can provide enough electric braking force to achieve the total braking force target, and all the motor vehicles can brake.
  • the total electric braking capacity provided by all the EMUs at this time cannot reach the total braking force target, and the air braking force needs to be supplemented.
  • the braking force distribution method of the urban rail train in the embodiment of the present application utilizes that the adhesion coefficient of the intermediate car of the urban rail train is greater than that of the lead car, that is, the intermediate car is less likely to slide than the lead car.
  • the train traction system allocates the total electric braking capacity to all the trains, and the train braking system evenly distributes the first-level air braking force to the intermediate cars.
  • the leading car that is prone to coasting neither applies the electric braking force nor the electric braking force.
  • the electric braking force and the air braking force are applied to the intermediate car that is not prone to taxiing without applying air braking force, thus reducing the probability of taxiing of the urban rail train and preventing the taxiing.
  • the braking force distribution method of the urban rail train in the embodiment of the present application In the case where the leading car and the trailing car are moving trains, the braking force distribution method of the urban rail train in the embodiment of the present application, the leading car that is prone to coasting only applies electric braking force instead of air braking force, and the middle of the coasting is not easy to occur.
  • the electric braking force and/or the air braking force are applied to the train, thus reducing the chance of the urban rail train sliding and preventing the sliding.
  • the braking force distribution method of the urban rail train in the embodiment of the present application reduces the probability of the urban rail train sliding, and achieves the purpose of preventing the sliding.
  • the urban rail train allocates the total electric braking capacity to all the motor trains, and evenly allocates the first-level air braking force to the intermediate trains to perform braking, as the braking progresses.
  • the braking force distribution method further includes the following steps:
  • Step S310 When the actual total braking force of the train cannot reach the total braking force target of the train, the train braking system evenly distributes the secondary air braking force to the end cars, so that the actual total braking force of the train reaches the total braking force of the train target; where the secondary air braking force is equal to the difference between the total braking force target and the actual total braking force.
  • the intermediate car performs air braking and supplementary air braking in a way that the first-level air braking force is evenly distributed to each intermediate car, the actual total braking force of the train cannot reach the total braking force target of the train, and the The secondary air braking force is evenly distributed to the end cars, and the end cars continue to perform supplementary air braking. That is to say, the supplementary air braking is preferentially performed by the intermediate car, and when the supplementary air braking of the intermediate car still cannot reach the total braking force target of the train, the end car will further supplement the air braking. It reduces the chance of the urban rail train sliding, and plays the purpose of preventing the sliding.
  • Step S320 When the actual total braking force of the train is equal to the target total braking force of the train, keep the total electric braking capacity allocated to all the motor cars, and keep the first-level air braking force evenly allocated to the intermediate cars.
  • the braking force distribution method for the urban rail train according to the embodiment of the present application is a braking force distribution method for reducing the probability of the urban rail train sliding. That is, the braking force distribution method with the function of preventing coasting, which can avoid coasting as much as possible.
  • the following is a method for distributing the braking force of the urban rail train according to the embodiment of the present application, and the method for eliminating the taxiing when the taxiing has occurred.
  • the method can not only eliminate the taxiing, but also realize that the actual total braking force of the train reaches the total braking force of the train. target, so as to ensure the braking distance of the train.
  • the braking force distribution method of the urban rail train according to the embodiment of the present application further includes the following steps:
  • the braking force of the taxiing vehicle is reduced to eliminate the taxiing, and other vehicles distribute the braking force according to the preset braking force distribution rules during taxiing, so as to maintain the actual total braking force of the train to reach the total braking force of the train Target.
  • the braking force of the taxiing vehicle shall be reduced first to eliminate the taxiing, that is, the taxiing shall be eliminated at the first time.
  • other vehicles shall distribute the braking force according to the preset braking force distribution rules during taxiing.
  • the preset braking force distribution rule during coasting is to keep the actual total braking force of the train to reach the total braking force target of the train. In this way, the braking distance of the train can be guaranteed.
  • the train network system transmits the braking command to the train traction system and the train braking system respectively after collecting the braking command of the brake handle.
  • the two are then converted into braking deceleration a according to the braking command, and the train traction system calculates the total electric braking capacity that all the trains can provide.
  • the train braking system calculates the total braking force target of the train according to the deceleration a and the current vehicle weight.
  • the train traction system feeds back the actual electric braking force applied to the braking system through the network system.
  • the braking force distribution method of the urban rail train in the embodiment of the present application utilizes that the adhesion coefficient of the intermediate car of the urban rail train is greater than that of the lead car, that is, the intermediate car is less likely to slide than the lead car.
  • the traction system of the train In the process of detecting taxiing, the traction system of the train generally detects the taxiing of the vehicle faster than the braking system of the train.
  • the braking force distribution method of the urban rail train in the embodiment of the present application is a braking force distribution method based on the first embodiment of the present application.
  • the embodiment of the present application is a braking force distribution method in the case that the leading car and the trailing car of the urban rail train are trailers.
  • the braking force distribution method is executed until the total electric braking capacity is less than the total braking force target, the total electric braking capacity is allocated to all the motor cars, and the middle car is evenly distributed.
  • the step of level air braking the actual braking force of the train is provided by the middle car, and the leading and trailing cars do not provide actual braking force.
  • the secondary air braking force is evenly distributed to the end cars, including:
  • the maximum value of the total adhesion force of the middle N is obtained, and the maximum value of the total adhesion force of the middle N is the actual maximum value of the total adhesion force of the middle car when the middle of ⁇ is actually equal to the maximum value of ⁇ ; among them, ⁇
  • the middle actual is the actual adhesion coefficient of the middle car
  • the maximum value of ⁇ is the preset maximum value of the adhesion coefficient
  • the actual total braking force of the train is equal to the maximum value of the N middle total adhesion force ; that is, the actual total braking force of the train at this time is determined by the middle car.
  • the actual total braking force of the train is equal to the maximum value of the total adhesion force in the middle of N;
  • the braking force distribution method reduces the probability of the urban rail train sliding, and plays the purpose of preventing the sliding.
  • Fig. 2 is a flow chart of the anti-skid when the head car and the tail car of a method for distributing the braking force of an urban rail train according to the embodiment of the application are the head car of the trailer when the air brake slides;
  • Fig. 3 is an embodiment of the application.
  • the braking force distribution method for urban rail trains is suitable for the schematic diagram of urban rail trains where the leading and trailing cars are trailers. When the lead car and the trailing car are trailers, and the leading car and the trailing car supplement the air braking force: at this time, the leading car only applies the air braking force.
  • the braking force of the taxiing vehicle is reduced to eliminate the taxiing, and other vehicles distribute the braking force according to the preset braking force distribution rules during taxiing, so as to maintain the actual total braking force of the train.
  • the steps to achieve the train's total braking force target include:
  • Step S520 The train braking system allocates the reduction of the air braking force F of the leading car to the trailing car
  • the ⁇ anti-slip value is the preset sticky anti-slip value of the train. When preset, this value is set to a small value to ensure that the lead car can definitely stop sliding when the train runs at the preset sticky anti-slip value. In this way, the reduced air braking force F of the leading car is reduced and supplemented to the trailing car. In this way, the air braking force of the leading vehicle that is sliding is reduced to a certain extent that can eliminate the sliding; the braking force distribution method of the embodiment of the present application, as an invention point, is to reduce the air braking force F of the leading vehicle to reduce the leading vehicle. Adding to the tail car, the advantage of this is to maintain the actual total braking force of the train to reach the total braking force target of the train and ensure the braking distance.
  • Step S531 When the ⁇ tail car actually increases to the ⁇ maximum value , obtain the maximum value of the N tail car adhesion force , and the N tail car adhesion force maximum value is the actual total adhesion force exerted by the tail car when the ⁇ tail car is actually equal to the ⁇ maximum value
  • Step S532 When the ⁇ trailing vehicle actually increases and is always smaller than the ⁇ maximum value , it is sufficient to keep allocating the reduced air braking force of the leading vehicle to the trailing vehicle.
  • K intermediate air brake Z target
  • the electric braking force H allocated to the taxiing intermediate motor car is matched with the adhesion coefficient requirement of the taxiing intermediate motor car, so that the adhesion requirements of each vehicle are equal.
  • the braking force distribution method further includes the following steps:
  • the braking force distribution is performed according to the corresponding steps when the leading vehicle applying the air braking force is detected to be coasting.
  • the priority of the steps corresponding to the occurrence of taxiing of the lead vehicle applying the air braking force is higher.
  • the braking force distribution method of the urban rail train in the embodiment of the present application is a braking force distribution method based on the first embodiment of the present application.
  • the embodiment of the present application is a method for distributing the braking force when the head and tail cars of the urban rail train are moving trains. Then, after the steps of the method for distributing the braking force in the first embodiment of the present application, the braking force of the urban rail train starts from Car, tail car and intermediate car are provided together.
  • the braking force distribution method of the urban rail train in the embodiment of the present application is a braking force distribution method based on the first embodiment of the present application.
  • the braking force distribution method allocates the total electric braking capacity to all motor cars when the total electric braking capacity is less than the total braking force target, and is the middle After the step of evenly distributing the first-level air braking force, the braking force of the urban rail train is all provided by the head car, the tail car and the middle car.
  • the secondary air braking force is evenly distributed to the end cars, including:
  • the sum of the actual electric braking force applied by the end car and the actual total adhesion force applied by the middle car is still less than the Z target total braking , that is, the actual electric braking force applied by the end car and the actual total braking force exerted by the middle car cannot be reached.
  • the braking target Z target total braking the leading car and the trailing car continue to supplement the air braking force.
  • the maximum value of ⁇ is the maximum value of the adhesion coefficient preset by the train.
  • the middle of ⁇ actually exceeds the maximum value of ⁇ , it is considered that there is a risk of skidding.
  • the braking force of the taxiing vehicle is reduced to eliminate the taxiing, and other vehicles are distributed according to the preset braking force distribution rules during taxiing. Power, the steps to maintain the actual total braking force of the train to reach the target of the total braking force of the train, including:
  • the train braking system supplements the reduction of the braking force F of the leading car to the trailing car
  • the ⁇ anti-slip value is the preset sticky anti-slip value of the train. When preset, this value is set to a small value to ensure that the lead car can definitely stop sliding when the train runs at the preset sticky anti-slip value. In this way, the reduced braking force F of the leading car is reduced and supplemented to the trailing car. In this way, the braking force of the leading vehicle that is sliding is reduced to a level that can eliminate the sliding; the braking force distribution method of the embodiment of the present application, as an invention point, is to reduce the braking force F of the leading vehicle reduced by the amount of the leading vehicle . The advantage of this is to maintain the actual total braking force of the train to reach the total braking force target of the train and ensure the braking distance. When the braking force of the leading car is reduced, the electric braking force of the leading car will be reduced first, and if it is insufficient, the air braking force of the leading car will be reduced.
  • the train braking system supplements the reduction of the braking force F of the leading car to the trailing car, and also includes the following steps:
  • the actual adhesion maximum value of the N tail car is obtained ; among them, the ⁇ tail car is actually the actual adhesion coefficient of the tail car, and the actual adhesion maximum value of the N tail car is that the ⁇ tail car is actually equal to ⁇
  • the maximum value of the actual total adhesion force exerted by the tail car at the maximum value, the actual maximum value of the actual adhesion of the F tail car ⁇ maximum ⁇ M head car ⁇ g;
  • the head car and the tail car are moving cars, after the electric braking force is applied first, the remaining air braking force is redistributed to the middle car.
  • the adhesion coefficient of the middle car will not reach the maximum value.
  • the leading car slides and the adhesion coefficient of the trailing car reaches the preset maximum value, which can be calculated according to the above formula.
  • the middle car directly reaches the preset maximum adhesion coefficient at this time, the remaining air braking force is distributed to the leading car and the trailing car.
  • the leading car slides at this time, only the braking force of the leading car can be reduced. Supplement to the tail car until the tail car reaches the maximum value of the adhesion coefficient. If it exceeds the maximum value of the adhesion coefficient of the rear car, it will no longer be distributed to the middle car, and only the total braking force of the whole car will be partially reduced.
  • leading vehicle and the trailing vehicle are motor vehicles
  • K intermediate air brake Z target
  • the electric braking force H allocated to the taxiing intermediate motor car is matched with the adhesion coefficient requirement of the taxiing intermediate motor car, so that the adhesion requirements of each vehicle are equal.
  • the braking force distribution method further includes the following steps:
  • the braking force distribution is performed according to the corresponding steps when the leading vehicle applying the air braking force is detected to be coasting.
  • an acquisition module used to acquire the total braking force target of the train and the total electric braking capability that all the trains can provide; wherein, the total braking force target is calculated by the train braking system, and the total electric braking capability is determined by the train
  • the traction system calculates;
  • the first-level air braking force distribution module is used to distribute the total electric braking capacity to all motor cars and evenly distribute the first-level air braking force to the intermediate cars when the total electric braking capacity is less than the total braking force target; Power is equal to the difference between the total braking force target and the total electric braking capacity.
  • the braking force distribution device also includes:
  • the secondary air braking force distribution module is used to evenly distribute the secondary air braking force to the end cars when the actual total braking force of the train cannot reach the total braking force target of the train; wherein, the secondary air braking force is equal to the total braking force The difference between the power target and the actual total braking force.
  • the braking force distribution device also includes:
  • the skid elimination module is used to reduce the braking force of the taxiing vehicle to eliminate the taxiing when it is detected that the vehicle of the urban rail train is taxiing.
  • Other vehicles distribute the braking force according to the preset braking force distribution rules during taxiing to maintain the actual total braking force of the train The total braking force target of the train is reached.
  • leading and trailing vehicles are trailers:
  • the braking force distribution device also includes:
  • the secondary air brake force distribution module includes:
  • the first sub-module for obtaining the actual total braking force is used to obtain the maximum value of the total adhesion force in the middle N and the total adhesion force in the middle N when the middle ⁇ actually increases to the maximum value of ⁇ when the leading car and the tail car are trailers.
  • the maximum value is the maximum value of the actual total adhesion force of the intermediate car when ⁇ middle is actually equal to the ⁇ max value ; among them, ⁇ middle is the actual adhesion coefficient of the intermediate car, ⁇ max is the preset maximum value of the adhesion coefficient, and the actual total value of the train.
  • the braking force is equal to the maximum value of the total adhesion force in the middle of N;
  • the skid elimination module includes:
  • the first sub-module is allocated to the sliding head car, which is used for the air brake applied by the head car when the head car braking system detects that the head car applying the air braking force has an air brake coasting under the condition that the head car and the tail car are moving cars.
  • the first sub-module of tail car allocation is used for allocating the reduction of the air braking force F of the head car to the tail car,
  • the sliding elimination module also includes:
  • the first sub-module for obtaining the adhesion of the tail car is used to obtain the maximum value of the adhesion force of the N tail car when the ⁇ tail car actually increases to the maximum value of ⁇ .
  • the maximum value of the adhesion force of the N tail car is that the ⁇ tail car is actually equal to the ⁇ maximum value
  • the maximum value of the actual total adhesion force exerted by the tail car, where ⁇ tail car is actually the actual adhesion coefficient of the tail car, F maximum value of tail car adhesion ⁇ maximum value ⁇ M head car ⁇ g;
  • the sliding elimination module also includes:
  • the intermediate car allocates the first sub-module, which is used for the train network system to calculate the electric braking force of the taxiing intermediate motor car when the intermediate car traction system detects that the intermediate motor car has electric braking coasting.
  • H taxiing intermediate motor car ⁇ intermediate sliding ⁇ M taxiing intermediate motor vehicle ⁇ g; where ⁇ intermediate sliding is the adhesion coefficient requirement of the taxiing intermediate motor vehicle, and M taxiing vehicle is the mass of the taxiing vehicle;
  • leading and trailing vehicles are moving vehicles:
  • the secondary air brake force distribution module includes:
  • the second sub-module for obtaining the actual total braking force is used to obtain the actual electric braking of the T-end car + the maximum value of the adhesion force in the middle of N when the middle ⁇ actually increases to the maximum value of ⁇ when the leading car and the tail car are moving cars.
  • ⁇ middle is actually the actual adhesion coefficient of the middle car
  • ⁇ max is the preset maximum value of the adhesion coefficient
  • the actual electric brake of the T end car is the actual electric braking force applied by the end car
  • the maximum value of the N middle adhesion force is The maximum value of the actual total adhesion force exerted by the intermediate vehicle when ⁇ middle is actually equal to ⁇ max;
  • the skid elimination module includes:
  • the sliding head car is assigned a second sub-module, which is used to reduce the electric braking force of the head car to
  • the second sub-module is allocated to the tail car, which is used to supplement the reduction of the braking force F of the head car to the tail car.
  • the sliding elimination module also includes:
  • the second sub-module for obtaining the adhesion force of the tail car is used to obtain the actual adhesion maximum value of the N tail car when the ⁇ tail car actually increases to the ⁇ maximum value; where, the ⁇ tail car is actually the actual adhesion coefficient of the tail car, and the N tail car
  • the maximum actual adhesion of the car is the maximum value of the actual total adhesion force exerted by the tail car when the ⁇ tail car is actually equal to the ⁇ maximum value
  • the actual adhesion maximum value of the F tail car ⁇ maximum value ⁇ M head car ⁇ g;
  • the sliding elimination module also includes:
  • the intermediate car allocates the second sub-module, which is used when the traction system of the intermediate car detects that the electric braking coasting of the intermediate motor car occurs; the train network system calculates the electric braking force of the taxiing intermediate motor car.
  • H taxiing intermediate motor car ⁇ intermediate sliding ⁇ M taxiing intermediate motor vehicle ⁇ g; where ⁇ intermediate sliding is the adhesion coefficient requirement of the taxiing intermediate motor vehicle, and M taxiing vehicle is the mass of the taxiing vehicle;
  • processors one or more processors
  • a storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the braking force distribution method described in the first embodiment.
  • connection can also be a detachable connection or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection or an indirect connection through an intermediate medium, and it can be internal communication between two components or the interaction of two elements.
  • connection can also be a detachable connection or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection or an indirect connection through an intermediate medium, and it can be internal communication between two components or the interaction of two elements.
  • the first feature "on” or “under” the second feature may include direct contact between the first and second features, or may include the first feature. and the second feature is not in direct contact but through another feature between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • a first feature “below”, “below” and “beneath” a second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种城轨列车的制动力分配方法,装置及系统。制动力分配方法包括以下步骤:获取列车的总制动力目标和列车全部动车能够提供的总电制动能力(S100);其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;在总电制动能力小于总制动力目标时(S210),列车制动系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。由此解决了城轨列车出现滑行的几率较高的技术问题。

Description

一种城轨列车的制动力分配方法,装置及系统 技术领域
本申请涉及城轨列车技术领域,具体地,涉及一种城轨列车的制动力分配方法,装置及系统。
背景技术
粘着状态是列车实际运用中的状态。列车制动时车轮在钢轨上滚动,由于车辆重力的作用,车辆与钢轨的接触处为一椭圆形的小面积。此时轮轨接触处既不是静止状态也不是滑动状态,而是“静中有微动”或“滚中有微滑”的状态,在铁路术语中用“粘着”来称呼这种状态。由于正压力而保持动轮与钢轨接触处相对静止的现象称为“粘着”。粘着状态下的静摩擦力又称为粘着力。依靠粘着的车轮与钢轨粘着点之间的粘着力来实现列车的制动,称为粘着制动。列车采用粘着制动时,能够获得的最大制动力不会大于粘着力。
滑行状态是列车极力避免的状态。车轮在钢轨上滑行,列车出现滑行状态后,车轮在列车未停住前即被闸瓦抱死,在钢轨上滑行。由于动摩擦系数远小于静摩擦系数,因此,一旦发生这种工况,制动力将大大减小,制动距离就会延长;同时,车轮在钢轨上长距离滑行,将导致车轮踏面的划伤,因此,是必须杜绝的事故状态。
因此,城轨列车发现滑行的几率较高,是本领域技术人员急需要解决的技术问题。
在背景技术中公开的上述信息仅用于加强对本申请的背景的理解,因此其可能包含没有形成为本领域普通技术人员所知晓的现有技术的信息。
发明内容
本申请实施例提供了一种城轨列车的制动力分配方法,装置及系统,以解 决城轨列车发现滑行的几率较高的技术问题。
本申请实施例提供了一种城轨列车的制动力分配方法,包括如下步骤:
获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
在总电制动能力小于总制动力目标时,列车制动系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
本申请实施例还提供以下技术方案:
一种城轨列车的制动力分配装置,包括:
获取模块,用于获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
一级空气制动力分配模块,用于在总电制动能力小于总制动力目标时,为全部动车分配总电制动能力,为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
本申请实施例还提供以下技术方案:
一种城轨列车的制动力分配系统,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现上述的制动力分配方法。
本申请实施例由于采用以上技术方案,具有以下技术效果:
利用了城轨列车的中间车的粘着系数大于头车的粘着系数,即中间车比头车更不易发生滑动。在总电制动能力小于总制动力目标时,列车牵引系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力。 因为中间车的粘着系数比头车大,在头车和尾车是拖车的情况下,本申请实施例的城轨列车的制动力分配方法,容易发生滑行的头车既没有施加电制动力也没有施加空气制动力,不容易发生滑行的中间车施加电制动力和空气制动力,因而,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。在头车和尾车是动车的情况下,本申请实施例的城轨列车的制动力分配方法,容易发生滑行的头车仅仅施加电制动力而不施加空气制动力,不容易发生滑行的中间车施加电制动力和/或空气制动力,因而,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。本申请实施例的城轨列车的制动力分配方法,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的一种城轨列车的制动力分配方法的制动力分配的流程图;
图2为本申请实施例的一种城轨列车的制动力分配方法的头车和尾车是拖车头车发生空气制动滑行时的止滑的流程图;
图3是本申请实施例的一种城轨列车的制动力分配方法适用于头车和尾车是拖车城轨列车的示意图。
具体实施方式
为了使本申请实施例中的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例一
图1为本申请实施例的一种城轨列车的制动力分配方法的制动力分配的流程图。如图1所示,本申请实施例的一种城轨列车的制动力分配方法,包括如下步骤:
步骤S100:获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
列车牵引系统通过列车网络系统将总电制动能力反馈给列车制动系统;
列车制动系统比较总电制动能力和总制动力目标,比较之后会出现两种情况:
步骤S210:第一种情况:在总电制动能力小于总制动力目标时,列车制动系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
步骤S220:第二种情况:在总电制动能力大于等于总制动力目标时,列车制动系统将总制动力目标分配给全部动车,全部动车按照总制动力目标进行制动,不需要空气制动进行补充;即此时全部动车能够提供足够的电制动力能够达到总制动力目标,由全部动车实现制动即可。
即此时全部动车提供的总电制动能力达不到总制动力目标,需要空气制动力进行补充,补充的方式是将一级空气制动力平均分配到各个中间车。
本申请实施例的城轨列车的制动力分配方法,利用了城轨列车的中间车的粘着系数大于头车的粘着系数,即中间车比头车更不易发生滑动。在总电制动能力小于总制动力目标时,列车牵引系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力。因为中间车的粘着系数比头车大,在头车和尾车是拖车的情况下,本申请实施例的城轨列车的制动力分配方法,容易发生滑行的头车既没有施加电制动力也没有施加空气制动力,不容易发生滑行的中间车施加电制动力和空气制动力,因而,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。在头车和尾车是动车的情况下,本申请实 施例的城轨列车的制动力分配方法,容易发生滑行的头车仅仅施加电制动力而不施加空气制动力,不容易发生滑行的中间车施加电制动力和/或空气制动力,因而,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。本申请实施例的城轨列车的制动力分配方法,降低了城轨列车发生滑行的几率,起到了预防滑行的目的。
此时,城轨列车按照为全部动车分配总电制动能力,为中间车平均分配一级空气制动力,进行制动,随着制动的进行。如图1所示,制动力分配方法还包括以下步骤:
比较列车的实际总制动力和总制动力目标,比较之后会出现两种情况:
步骤S310:在列车的实际总制动力达不到列车的总制动力目标时,列车制动系统将二级空气制动力平均分配到端车,使得列车的实际总制动力达到列车的总制动力目标;其中,二级空气制动力等于总制动力目标和实际总制动力的差值。
这样,在中间车按照一级空气制动力平均分配给各个中间车的方式进行空气制动进行补充空气制动的情况下,列车的实际总制动力达不到列车的总制动力目标,继续将二级空气制动力平均分配到端车,端车继续进行补充空气制动。即补充空气制动优先由中间车进行,在中间车补充空气制动仍不能达到列车的总制动力目标时,再由端车进行进一步的补充空气制动。降低了城轨列车发生滑行的几率,起到了预防滑行的目的。
步骤S320:在列车的实际总制动力等于列车的总制动力目标时,保持为全部动车分配总电制动能力,保持为中间车平均分配一级空气制动力。
此时,头车和尾车不需要补充空气制动。
以上,本申请实施例的城轨列车的制动力分配方法,是降低城轨列车发生滑行的几率的制动力分配方法。即具有预防滑行功能的制动力分配方法,最大 可能的避免滑行。
下面对本申请实施例的城轨列车的制动力分配方法,在已经发生滑行的情况下的消除滑行的方法,该方法既能消除滑行,又能实现列车的实际总制动力达到列车的总制动力目标,从而保证列车的制动距离。本申请实施例的城轨列车的制动力分配方法,还包括如下步骤:
在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标。
在检测到城轨列车的车辆发生滑行时,首先要降低滑行车辆的制动力消除滑行,即第一时间消除滑行,之后,其他车辆按照预设的滑行时制动力分配规则分配制动力,在这个预设的滑行时制动力分配规则中,是要保持列车的实际总制动力达到列车的总制动力目标。这样,才能保证列车的制动距离。
具体的,在城轨列车正常的时候,列车网络系统在采集到制动手柄的制动指令后,将制动指令分别传输给列车牵引系统和列车制动系统。两者再根据制动指令转换为制动减速度a,列车牵引系统计算出列车全部动车能够提供的总电制动能力。列车制动系统则根据减速度a和当前的车重,计算出列车的总制动力目标。
具体的,列车牵引系统将施加的实际电制动力通过网络系统反馈给制动系统。
在滑行过程中,由于车轮与轨道之间的相对摩擦,相应地改变了轨道的恶劣环境,从而使轮轨之间的黏着系数相应增大。一般来说,在运行过程中,前进方向的头车轮轨粘着系数最差,而中间车的粘着系数由于头车轮轨摩擦的改善,要相对较好。本申请实施例的城轨列车的制动力分配方法,利用的正是城轨列车的中间车的粘着系数大于头车的粘着系数,即中间车比头车更不易发生 滑动。
而在检测滑行过程中,列车牵引系统一般会较快于列车制动系统检测到车辆的滑行。
实施例二
本申请实施例的城轨列车的制动力分配方法,是在本申请实施例一基础之上的制动力分配方法。
本申请实施例是在城轨列车的头车和尾车是拖车的情况下的制动力分配方法。
实施中,在头车和尾车是拖车的情况下,制动力分配方法执行到在总电制动能力小于总制动力目标时,为全部动车分配总电制动能力,为中间车平均分配一级空气制动力这一步骤时,列车的实际制动力都是由中间车提供的,头车和尾车不提供实际制动力。
在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车,具体包括:
在λ 中间实际增大到λ 最大值时,获取N 中间总粘着力最大值,N 中间总粘着力最大值是λ 中间实际等于λ 最大值时中间车实际的总粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,列车的实际总制动力等于N 中间总粘着力最大值;即此时列车的实际总制动力是由中间车提供的,列车的实际总制动力等于N 中间总粘着力最大值
在N 中间总粘着力最大值<Z 总制动力目标时,列车制动系统将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 总制动力目标-N 中间总粘着最大值,Z 总制动力目标是列车的总制动力目标。
以上,是针对城轨列车的头车和尾车是拖车的情况下,制动力分配方法降低了城轨列车发生滑行的几率,起到了预防滑行的目的。
下面,针对城轨列车的头车和尾车是拖车的情况下,发生滑行后制动力分 配方法对制动力的分配。
头车和尾车是拖车,且头车和尾车不补充空气制动力的情况:此时头车和尾车既不施加电制动力,也不施加空气制动力,头车不会发生滑行。
图2为本申请实施例的一种城轨列车的制动力分配方法的头车和尾车是拖车头车发生空气制动滑行时的止滑的流程图;图3是本申请实施例的一种城轨列车的制动力分配方法适用于头车和尾车是拖车城轨列车的示意图。头车和尾车是拖车,且头车和尾车补充空气制动力的情况:此时头车仅仅施加空气制动力。在这种情况下,在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标的步骤,具体包括:
步骤S510:在头车制动系统检测到施加空气制动力的头车发生空气制动滑行时,头车制动系统将头车施加的空气制动力降低至头车的止滑空气制动力K 头车止滑;其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
步骤S520:列车制动系统将头车减少的空气制动力F 头车减少分配给尾车,
Figure PCTCN2020126915-appb-000001
λ 止滑值是列车预设的粘着止滑值,在预设时,将该值设置的较小,保证在列车预设的粘着止滑值运行时,头车一定能够停止滑动。这样,头车减少的空气制动力F 头车减少补充到尾车。这样,就是将滑行的头车空气制动力降低,降低到一定能消除滑行的程度;本申请实施例的制动力分配方法,作为一个发明点,就是将头车减少的空气制动力F 头车减少补充到尾车,这样做的好处在于保持列车的实际总制动力达到列车的总制动力目标,保证制动距离。
实施中,列车制动系统将头车减少的空气制动力F 头车减少分配给尾车的步骤之后,还包括如下步骤;
步骤S531:在λ 尾车实际增大到λ 最大值时,获取N 尾车粘着力最大值,N 尾车粘着力最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,其中,λ 尾车实际是尾车的实际粘着系数,F 尾车粘着力最大值=λ 最大值×M 头车×g;
列车制动系统将止滑一级空气制动力K 止滑一级平均分配给中间车,其中K 止滑一级=Z 总制动力目标-D 总电制动能力-K 头车止滑空气制动-N 尾车粘着力最大值
这样,保持列车的实际总制动力达到列车的总制动力目标。这样,才能保证列车的制动距离。
步骤S532:在λ 尾车实际增大且始终小于λ 最大值时,保持将头车减少的空气制动力分配给尾车即可。
实施中,在头车和尾车是拖车的情况下,还包括如下步骤:
在中间车牵引系统检测到中间动车发生电制动滑行时,列车网络系统计算出为滑行的中间动车分配的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g,发送至列车牵引系统和列车制动系统;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;具体的,在中间车牵引系统检测到中间动车发生电制动滑行时,则反馈给列车网络系统;列车网络系统则根据当前的制动减速度a,计算出当前的粘着着系数需求λ 中间滑=a/g,然后再计算H 滑行中间动车=λ 中间滑×M 滑行中间动车×g,并将该电制动力分别发送给列车牵引系统和列车制动系统,当前的制动减速度a是列车网络系统根据当前的制动指令计算得到的;
列车牵引系统为各个动车分配取值H 滑行中间动车的电制动力,列车制动系统为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
中间动车发生滑行时,为滑行的中间动车分配的电制动力H 滑行中间动车,是与滑行的中间动车的粘着系数需求相匹配的,使得各个车辆的粘着需求均相等。
实施中,制动力分配方法还包括如下步骤:
在检测到施加空气制动力的头车发生滑行按照对应步骤进行制动力分配的过程中,又检测到中间动车发生滑行时,按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配;
在检测到中间动车发生滑行按照对应步骤进行制动力分配的过程中,又检测到施加空气制动力的头车发生滑行时,先按照检测到中间动车发生滑行对应的步骤进行制动力分配,再按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配。
即到施加空气制动力的头车发生滑行对应步骤的优先级较高。
实施例三
本申请实施例的城轨列车的制动力分配方法,是在本申请实施例一基础之上的制动力分配方法。
本申请实施例是在城轨列车的头车和尾车是动车的情况下,制动力分配方法,那么,在本申请实施例一的制动力分配方法的步骤之后,城轨列车的制动力由头车,尾车和中间车共同提供。
本申请实施例的城轨列车的制动力分配方法,是在本申请实施例一基础之上的制动力分配方法。
本申请实施例是在城轨列车的头车和尾车是动车的情况下,制动力分配方法在总电制动能力小于总制动力目标时,为全部动车分配总电制动能力,为中间车平均分配一级空气制动力的步骤之后,城轨列车的制动力全部是由头车,尾车和中间车共同提供的。
实施中,在头车和尾车是动车的情况下,在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车,具体包括:
λ 中间实际增大到λ 最大值时,获取T 端车实际电制动+N 中间粘着力最大值;其中,λ 中间实际是中间 车的实际粘着系数,λ 最大值是预设的粘着系数最大值,T 端车实际电制动是端车施加的实际电制动力,N 中间粘着力最大值是λ 中间实际等于λ 最大值时中间车施加的实际总粘着力最大值;
在T 端车实际电制动+N 中间粘着力最大值<Z 目标总制动,列车制动系统将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 目标总制动力-N 中间粘着力最大值-T 端车实际电制动
在端车施加的实际电制动力和中间车施加的实际总粘着力最大值之和仍小于Z 目标总制动,就是端车施加的实际电制动力和中间车施加的实际总制动力无法达到制动目标Z 目标总制动时,则头车和尾车继续补充空气制动力,补充的方式是将二级空气制动力K 二级平均分配到头车和尾车。
具体的,λ 最大值是列车预设的粘着系数最大值。λ 中间实际超过λ 最大值时,被认为是有产生滑行的风险。
实施中,在头车和尾车是动车的情况下,在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标的步骤,具体包括:
在头车牵引系统检测到头车发生电制动滑行,头车牵引系统将头车的电制动力降低至头车的止滑制动力K 头车止滑,其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
列车制动系统将头车减少的制动力F 头车减少补充到尾车其中,
Figure PCTCN2020126915-appb-000002
λ 止滑值是列车预设的粘着止滑值,在预设时,将该值设置的较小,保证在列车预设的粘着止滑值运行时,头车一定能够停止滑动。这样,头车减少的制动力F 头车减少补充到尾车。这样,就是将滑行的头车制动力降低,降低到一定能消 除滑行的程度;本申请实施例的制动力分配方法,作为一个发明点,就是将头车减少的制动力F 头车减少补充到尾车,这样做的好处在于保持列车的实际总制动力达到列车的总制动力目标,保证制动距离。头车减少的制动力时,优先减少头车的电制动力,不足的,再减少头车的空气制动力。
实施中,列车制动系统将头车减少的制动力F 头车减少补充到尾车之后,还包括如下步骤:
在λ 尾车实际增大到λ 最大值时,获取N 尾车实际粘着最大值;其中,λ 尾车实际是尾车的实际粘着系数,N 尾车实际粘着最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,F 尾车实际粘着最大值=λ 最大值×M 头车×g;
列车制动系统将止滑一级空气制动力K 止滑一级平均分配给中间车,K 一级止滑=Z 目标总制动力-K 头车止滑-N 尾车实际粘着最大值-N 中间粘着实际值;其中,N 中间粘着实际值是中间车的实际粘着系数对应的中间车施加的实际总粘着力。
这样,保持列车的实际总制动力达到列车的总制动力目标。这样,才能保证列车的制动距离。头车和尾车为动车时,优先施加电制动力后,剩余的空气制动力再分配到中间车。第一种情况,一般来说,中间车的粘着系数不会达到最大值,此时头车滑行,尾车的粘着系数达到预设的粘着系数最大值后,则可以按照上述公式进行计算。第二种情况,如果此时中间车直接到了预设的粘着系数最大值,那么剩余的空气制动力则分配到头车和尾车,如果此时头车滑行,只能将头车减少的制动力补充到尾车,直至尾车达到粘着系数最大值。如果还超出尾车的粘着系数最大值,则将无法再分配到中间车,只能是整车的总制动力会有部分减少。
实施中,在头车和尾车是动车的情况下,还包括如下步骤:
在中间车牵引系统检测到中间动车发生电制动滑行时;列车网络系统计算出为滑行的中间动车分配的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g,发送至列车牵引系统和列车制动系统;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
列车牵引系统为各个动车分配取值H 滑行中间动车的电制动力,列车制动系统为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
中间动车发生滑行时,为滑行的中间动车分配的电制动力H 滑行中间动车,是与滑行的中间动车的粘着系数需求相匹配的,使得各个车辆的粘着需求均相等。
实施中,制动力分配方法还包括如下步骤:
在检测到施加空气制动力的头车发生滑行按照对应步骤进行制动力分配的过程中,又检测到中间动车发生滑行时,按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配;
在检测到中间动车发生滑行按照对应步骤进行制动力分配的过程中,又检测到施加空气制动力的头车发生滑行时,先按照检测到中间动车发生滑行对应的步骤进行制动力分配,再按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配。
实施例四
本申请实施例的一种城轨列车的制动力分配装置,包括:
获取模块,用于获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
一级空气制动力分配模块,用于在总电制动能力小于总制动力目标时,为全部动车分配总电制动能力,为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
实施中,制动力分配装置,还包括:
二级空气制动力分配模块,用于在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车;其中,二级空气制动力等于 总制动力目标和实际总制动力的差值。
实施中,制动力分配装置,还包括:
消除滑行模块,用于在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标。
在头车和尾车是拖车的情况下:
实施中,制动力分配装置,还包括:
所述二级空气制动力分配模块包括:
实际总制动力获取第一子模块,用于在头车和尾车是拖车的情况下,在λ 中间实际增大到λ 最大值时,获取N 中间总粘着力最大值,N 中间总粘着力最大值是λ 中间实际等于λ 最大值时中间车实际的总粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,列车的实际总制动力等于N 中间总粘着力最大值
二级空气制动力分配第一子模块,用于在N 中间总粘着力最大值<Z 总制动力目标时,将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 总制动力目标-N 中间总粘着最大值,Z 总制动力目标是列车的总制动力目标。
实施中,所述消除滑行模块包括:
滑动头车分配第一子模块,用于在头车和尾车是动车的情况下,在头车制动系统检测到施加空气制动力的头车发生空气制动滑行时,头车施加的空气制动力降低至头车的止滑空气制动力K 头车止滑;其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
尾车分配第一子模块,用于在将头车减少的空气制动力F 头车减少分配给尾车,
Figure PCTCN2020126915-appb-000003
实施中,所述消除滑行模块还包括:
尾车粘着力获取第一子模块,用于在λ 尾车实际增大到λ 最大值时,获取 N 尾车粘着力最大值,N 尾车粘着力最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,其中,λ 尾车实际是尾车的实际粘着系数,F 尾车粘着力最大值=λ 最大值×M 头车×g;
止滑一级分配第一子模块,用于将止滑一级空气制动力K 止滑一级平均分配给中间车,其中K 止滑一级=Z 总制动力目标-D 总电制动能力-K 头车止滑空气制动-N 尾车粘着力最大值
实施中,所述消除滑行模块还包括:
中间车分配第一子模块,用于在中间车牵引系统检测到中间动车发生电制动滑行时,列车网络系统计算出为滑行的中间动车的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
各车分配第一子模块,用于为各个动车分配取值H 滑行中间动车的电制动力,为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
在头车和尾车是动车的情况下:
实施中,所述二级空气制动力分配模块包括:
实际总制动力获取第二子模块,用于在头车和尾车是动车的情况下,λ 中间实际增大到λ 最大值时,获取T 端车实际电制动+N 中间粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,T 端车实际电制动是端车施加的实际电制动力,N 中间粘着力最大值是λ 中间实际等于λ 最大值时中间车施加的实际总粘着力最大值;
二级空气制动力分配第二子模块,用于在T 端车实际电制动+N 中间粘着力最大值<Z 目标总制动,将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 目标总制动力-N 中间粘着力最大值-T 端车实际电制动
实施中,所述消除滑行模块包括:
滑动头车分配第二子模块,用于在头车和尾车是动车的情况下,在头车牵引系统检测到头车发生电制动滑行,头车牵引系统将头车的电制动力降低至头车的止滑制动力K 头车止滑,其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘 着止滑值,M 头车是头车的质量,g是重力加速度;
尾车分配第二子模块,用于在将头车减少的制动力F 头车减少补充到尾车。
实施中,所述消除滑行模块还包括:
尾车粘着力获取第二子模块,用于在λ 尾车实际增大到λ 最大值时,获取N 尾车实际粘着最大值;其中,λ 尾车实际是尾车的实际粘着系数,N 尾车实际粘着最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,F 尾车实际粘着最大值=λ 最大值×M 头车×g;
止滑一级分配第二子模块,将止滑一级空气制动力K 止滑一级平均分配给中间车,K 一级止滑=Z 目标总制动力-*-N 头车止滑空气制动-N 尾车实际粘着最大值
实施中,所述消除滑行模块还包括:
中间车分配第二子模块,用于在中间车牵引系统检测到中间动车发生电制动滑行时;列车网络系统计算出为滑行的中间动车的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
各车分配第二子模块,用于为各个动车分配取值H 滑行中间动车的电制动力,为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
实施例五
本申请实施例的一种城轨列车的制动力分配系统,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如实施例一所述的制动力分配方法。
在本申请及其实施例的描述中,需要理解的是,术语“顶”、“底”、“高度” 等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请及其实施例中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请及其实施例中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种城轨列车的制动力分配方法,其特征在于,包括如下步骤:
    获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
    在总电制动能力小于总制动力目标时,列车制动系统为全部动车分配总电制动能力,列车制动系统为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
  2. 根据权利要求1所述的制动力分配方法,其特征在于,还包括如下步骤:
    在列车的实际总制动力达不到列车的总制动力目标时,列车制动系统将二级空气制动力平均分配到端车;其中,二级空气制动力等于总制动力目标和实际总制动力的差值。
  3. 根据权利要求2所述的制动力分配方法,其特征在于,还包括如下步骤:
    在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标。
  4. 根据权利要求3所述的制动力分配方法,其特征在于,在头车和尾车是拖车的情况下,在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车,具体包括:
    在λ 中间实际增大到λ 最大值时,获取N 中间总粘着力最大值,N 中间总粘着力最大值是λ 中间实际等于λ 最大值时中间车实际的总粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,列车的实际总制动力等于N 中间总粘着力最大值
    在N 中间总粘着力最大值<Z 总制动力目标时,列车制动系统将二级空气制动力K 二级平均分 配到头车和尾车;其中,K 二级=Z 总制动力目标-N 中间总粘着最大值,Z 总制动力目标是列车的总制动力目标。
  5. 根据权利要求4所述的制动力分配方法,其特征在于,在头车和尾车是拖车的情况下,在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标的步骤,具体包括:
    在头车制动系统检测到施加空气制动力的头车发生空气制动滑行时,头车制动系统将头车施加的空气制动力降低至头车的止滑空气制动力K 头车止滑;其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
    列车制动系统将头车减少的空气制动力F 头车减少分配给尾车,
    Figure PCTCN2020126915-appb-100001
  6. 根据权利要求5所述的制动力分配方法,其特征在于,列车制动系统将头车减少的制动力F 头车减少补充到尾车的步骤之后,还包括如下步骤;
    在λ 尾车实际增大到λ 最大值时,获取N 尾车粘着力最大值,N 尾车粘着力最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,其中,λ 尾车实际是尾车的实际粘着系数,F 尾车粘着力最大值=λ 最大值×M 头车×g;
    列车制动系统将止滑一级空气制动力K 止滑一级平均分配给中间车,其中K 止滑一级=Z 总制动力目标-D 总电制动能力-K 头车止滑空气制动-N 尾车粘着力最大值
  7. 根据权利要求6所述的制动力分配方法,其特征在于,还包括如下步骤:
    在中间车牵引系统检测到中间动车发生电制动滑行时;列车网络系统计算出滑行的中间动车的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g,发送至列车牵引系统和列车制动系统;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
    列车牵引系统为各个动车分配取值H 滑行中间动车的电制动力,列车制动系统为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
  8. 根据权利要求7所述的制动力分配方法,其特征在于,还包括如下步骤:
    在检测到施加空气制动力的头车发生滑行按照对应步骤进行制动力分配的过程中,又检测到中间动车发生滑行时,按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配;
    在检测到中间动车发生滑行按照对应步骤进行制动力分配的过程中,又检测到施加空气制动力的头车发生滑行时,先按照检测到中间动车发生滑行对应的步骤进行制动力分配,再按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配。
  9. 根据权利要求3所述的制动力分配方法,其特征在于,在头车和尾车是动车的情况下,在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车,具体包括:
    λ 中间实际增大到λ 最大值时,获取T 端车实际电制动+N 中间粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,T 端车实际电制动是端车施加的实际电制动力,N 中间粘着力最大值是λ 中间实际等于λ 最大值时中间车施加的实际总粘着力最大值;
    在T 端车实际电制动+N 中间粘着力最大值<Z 目标总制动,列车制动系统将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 目标总制动力-N 中间粘着力最大值-T 端车实际电制动
  10. 根据权利要求9所述的制动力分配方法,其特征在于,在头车和尾车是动车的情况下,在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标的步骤,具体包括:
    在头车牵引系统检测到头车发生电制动滑行,头车牵引系统将头车的电制 动力降低至头车的止滑制动力K 头车止滑,其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
    列车制动系统将头车减少的制动力F 头车减少补充到尾车;其中,
    Figure PCTCN2020126915-appb-100002
  11. 根据权利要求10所述的制动力分配方法,其特征在于,列车制动系统将头车减少的制动力F 头车减少补充到尾车之后,还包括如下步骤:
    在λ 尾车实际增大到λ 最大值时,获取N 尾车实际粘着最大值;其中,λ 尾车实际是尾车的实际粘着系数,N 尾车实际粘着最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,F 尾车实际粘着最大值=λ 最大值×M 头车×g;
    列车制动系统将止滑一级空气制动力K 止滑一级平均分配给中间车,K 一级止滑=Z 目标总制动力-K 头车止滑-N 尾车实际粘着最大值-N 中间粘着实际值;其中,N 中间粘着实际值是中间车的实际粘着系数对应的中间车施加的实际总粘着力。
  12. 根据权利要求11所述的制动力分配方法,其特征在于,在头车和尾车是动车的情况下,还包括如下步骤:
    在中间车牵引系统检测到中间动车发生电制动滑行时;列车网络系统计算出为滑行的中间动车分配的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g,发送至列车牵引系统和列车制动系统;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
    列车牵引系统为各个动车分配取值H 滑行中间动车的电制动力,列车制动系统为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
  13. 根据权利要求12所述的制动力分配方法,其特征在于,还包括如下步骤:
    在检测到施加空气制动力的头车发生滑行按照对应步骤进行制动力分配的过程中,又检测到中间动车发生滑行时,按照检测到施加空气制动力的头车 发生滑行对应步骤进行制动力分配;
    在检测到中间动车发生滑行按照对应步骤进行制动力分配的过程中,又检测到施加空气制动力的头车发生滑行时,先按照检测到中间动车发生滑行对应的步骤进行制动力分配,再按照检测到施加空气制动力的头车发生滑行对应步骤进行制动力分配。
  14. 一种城轨列车的制动力分配装置,其特征在于,包括:
    获取模块,用于获取列车的总制动力目标和列车全部动车能够提供的总电制动能力;其中,所述总制动力目标由列车制动系统计算出,所述总电制动能力由列车牵引系统计算出;
    一级空气制动力分配模块,用于在总电制动能力小于总制动力目标时,为全部动车分配总电制动能力,为中间车平均分配一级空气制动力;其中,一级空气制动力等于总制动力目标与总电制动能力的差值。
  15. 根据权利要求14所述的制动力分配装置,其特征在于,还包括:
    二级空气制动力分配模块,用于在列车的实际总制动力达不到列车的总制动力目标时,将二级空气制动力平均分配到端车;其中,二级空气制动力等于总制动力目标和实际总制动力的差值。
  16. 根据权利要求15所述的制动力分配装置,其特征在于,还包括:
    消除滑行模块,用于在检测到城轨列车的车辆发生滑行时,降低滑行车辆的制动力消除滑行,其他车辆按照预设的滑行时制动力分配规则分配制动力,保持列车的实际总制动力达到列车的总制动力目标。
  17. 根据权利要求16所述的制动力分配装置,其特征在于,所述二级空气制动力分配模块包括:
    实际总制动力获取第一子模块,用于在头车和尾车是拖车的情况下,在λ 中间实际增大到λ 最大值时,获取N 中间总粘着力最大值,N 中间总粘着力最大值是λ 中间实际等于λ 最大值时中间车实际的总粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,列车的实际总制动力等于N 中间总粘着力最大值
    二级空气制动力分配第一子模块,用于在N 中间总粘着力最大值<Z 总制动力目标时,将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 总制动力目标-N 中间总粘着最大值,Z 总制动力目标是列车的总制动力目标。
  18. 根据权利要求17所述的制动力分配装置,其特征在于,所述消除滑行模块包括:
    滑动头车分配第一子模块,用于在头车和尾车是动车的情况下,在头车制动系统检测到施加空气制动力的头车发生空气制动滑行时,头车施加的空气制动力降低至头车的止滑空气制动力K 头车止滑;其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
    尾车分配第一子模块,用于在将头车减少的空气制动力F 头车减少分配给尾车,
    Figure PCTCN2020126915-appb-100003
  19. 根据权利要求18所述的制动力分配装置,其特征在于,所述消除滑行模块还包括:
    尾车粘着力获取第一子模块,用于在λ 尾车实际增大到λ 最大值时,获取N 尾车粘着力最大值,N 尾车粘着力最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,其中,λ 尾车实际是尾车的实际粘着系数,F 尾车粘着力最大值=λ 最大值×M 头车×g;
    止滑一级分配第一子模块,用于将止滑一级空气制动力K 止滑一级平均分配给中间车,其中K 止滑一级=Z 总制动力目标-D 总电制动能力-K 头车止滑空气制动-N 尾车粘着力最大值
  20. 根据权利要求19所述的制动力分配装置,其特征在于,所述消除滑行模块还包括:
    中间车分配第一子模块,用于在中间车牵引系统检测到中间动车发生电制动滑行时,列车网络系统计算出滑行的中间动车的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
    各车分配第一子模块,用于为各个动车分配取值H 滑行中间动车的电制动力,为 各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
  21. 根据权利要求16所述的制动力分配装置,其特征在于,所述二级空气制动力分配模块包括:
    实际总制动力获取第二子模块,用于在头车和尾车是动车的情况下,λ 中间实际增大到λ 最大值时,获取T 端车实际电制动+N 中间粘着力最大值;其中,λ 中间实际是中间车的实际粘着系数,λ 最大值是预设的粘着系数最大值,T 端车实际电制动是端车施加的实际电制动力,N 中间粘着力最大值是λ 中间实际等于λ 最大值时中间车施加的实际总粘着力最大值;
    二级空气制动力分配第二子模块,用于在T 端车实际电制动+N 中间粘着力最大值<Z 目标总制动,将二级空气制动力K 二级平均分配到头车和尾车;其中,K 二级=Z 目标总制动力-N 中间粘着力最大值-T 端车实际电制动
  22. 根据权利要求21所述的制动力分配装置,其特征在于,所述消除滑行模块包括:
    滑动头车分配第二子模块,用于在头车和尾车是动车的情况下,在头车牵引系统检测到头车发生电制动滑行,头车牵引系统将头车的电制动力降低至头车的止滑制动力K 头车止滑,其中,K 头车止滑=λ 止滑值×M 头车×g,λ 止滑值是列车预设的粘着止滑值,M 头车是头车的质量,g是重力加速度;
    尾车分配第二子模块,用于在将头车减少的制动力F 头车减少补充到尾车。
  23. 根据权利要求22所述的制动力分配装置,其特征在于,所述消除滑行模块还包括:
    尾车粘着力获取第二子模块,用于在λ 尾车实际增大到λ 最大值时,获取N 尾车实际粘着最大值;其中,λ 尾车实际是尾车的实际粘着系数,N 尾车实际粘着最大值是λ 尾车实际等于λ 最大值时尾车施加的实际总粘着力最大值,F 尾车实际粘着最大值=λ 最大值×M 头车×g;
    止滑一级分配第二子模块,将止滑一级空气制动力K 止滑一级平均分配给中间车,K 一级止滑=Z 目标总制动力-*-N 头车止滑空气制动-N 尾车实际粘着最大值
  24. 根据权利要求23所述的制动力分配装置,其特征在于,所述消除滑 行模块还包括:
    中间车分配第二子模块,用于在中间车牵引系统检测到中间动车发生电制动滑行时;列车网络系统计算出滑行的中间动车的电制动力H 滑行中间动车=λ 中间滑×M 滑行中间动车×g;其中,λ 中间滑是滑行的中间动车的粘着系数需求,M 滑行动车是滑行动车的质量;
    各车分配第二子模块,用于为各个动车分配取值H 滑行中间动车的电制动力,为各个车辆根据等粘着制动力分配方式分配空气制动力K 中间空气制动,K 中间空气制动=Z 目标总制动-n×H 滑行中间动车,使各个车辆的粘着需求均相等。
  25. 一种城轨列车的制动力分配系统,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至13任一所述的制动力分配方法。
PCT/CN2020/126915 2020-08-10 2020-11-06 一种城轨列车的制动力分配方法,装置及系统 WO2022032897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20949391.5A EP4194287A4 (en) 2020-08-10 2020-11-06 BRAKE FORCE DISTRIBUTION METHOD, DEVICE AND SYSTEM FOR URBAN RAILWAY TRAIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010797634.X 2020-08-10
CN202010797634.XA CN111994056B (zh) 2020-08-10 2020-08-10 一种城轨列车的制动力分配方法,装置及系统

Publications (1)

Publication Number Publication Date
WO2022032897A1 true WO2022032897A1 (zh) 2022-02-17

Family

ID=73463030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126915 WO2022032897A1 (zh) 2020-08-10 2020-11-06 一种城轨列车的制动力分配方法,装置及系统

Country Status (3)

Country Link
EP (1) EP4194287A4 (zh)
CN (1) CN111994056B (zh)
WO (1) WO2022032897A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604211A (zh) * 2022-03-11 2022-06-10 中车株洲电力机车有限公司 城轨车辆及其踏面清扫控制方法、系统
CN114604210A (zh) * 2022-03-11 2022-06-10 中车株洲电力机车有限公司 重联车辆及适用于城轨车辆重联运行的制动力控制方法
CN117734649A (zh) * 2024-01-05 2024-03-22 兰州交通大学 装配风阻制动系统的高速列车混合制动控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721886B (zh) * 2021-01-11 2022-03-01 中车唐山机车车辆有限公司 列车制动力分配方法、装置及终端设备
CN113044017B (zh) * 2021-03-02 2022-03-08 交控科技股份有限公司 一种匹配永磁同步牵引系统的轴控制动方法及系统
CN113044016B (zh) * 2021-03-02 2022-03-08 交控科技股份有限公司 一种基于融合控制的制动控制方法及系统
CN113879355A (zh) * 2021-11-18 2022-01-04 中车青岛四方机车车辆股份有限公司 一种列车制动控制方法及相关组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712259A (zh) * 2010-01-21 2012-10-03 三菱电机株式会社 制动控制装置及制动控制方法
WO2013034692A2 (de) * 2011-09-09 2013-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zum abbremsen eines schienenfahrzeuges mit rädern
CN106364333A (zh) * 2016-10-12 2017-02-01 南京中车浦镇海泰制动设备有限公司 轨道交通车辆的制动控制装置及其电空混合制动控制方法
CN107487308A (zh) * 2017-07-20 2017-12-19 中车唐山机车车辆有限公司 动车组制动力分配方法及装置
CN109094547A (zh) * 2018-07-27 2018-12-28 中车唐山机车车辆有限公司 城铁车辆制动力分配方法及装置
CN109795518A (zh) * 2017-11-17 2019-05-24 中车唐山机车车辆有限公司 一种轨道列车制动控制系统及列车

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9703356D0 (en) * 1997-02-18 1997-04-09 Lucas Ind Plc Trailer brake control
US20070084682A1 (en) * 2001-07-31 2007-04-19 Griffith T T Parking brake adjustment for an aircraft having an electric brake system
WO2010139339A1 (en) * 2009-06-04 2010-12-09 Mahmoud Talat Wahba Samak Nabil Cooling method as generator with anti rotation blocking brake force recovery in vehicles
CN202320262U (zh) * 2011-12-30 2012-07-11 克诺尔车辆设备(苏州)有限公司 用于车辆的制动系统和适于高速运行的铁路车辆
JP6236672B2 (ja) * 2013-09-26 2017-11-29 日立オートモティブシステムズ株式会社 電動車両の制御装置
DE102013226966A1 (de) * 2013-12-20 2015-07-09 Siemens Aktiengesellschaft Schienenfahrzeugverband
CN104071143B (zh) * 2014-07-10 2016-03-16 南京浦镇海泰制动设备有限公司 一种轨道车辆制动控制单元
US9827955B2 (en) * 2015-03-06 2017-11-28 Ford Global Technologies, Llc Systems and methods to improve fuel economy using adaptive cruise in a hybrid electric vehicle when approaching traffic lights
CN105015524B (zh) * 2015-07-09 2017-11-10 中车株洲电力机车研究所有限公司 一种多辆编组列车制动力分配方法及系统
JP6366553B2 (ja) * 2015-09-18 2018-08-01 三菱電機株式会社 ブレーキ制御システム
US10053070B2 (en) * 2016-05-19 2018-08-21 General Electric Company System and method for traction control
CN106249144B (zh) * 2016-08-16 2019-01-08 株洲中车时代电气股份有限公司 双馈风力发电机匝间短路故障诊断方法及故障监测方法
CN107697056B (zh) * 2017-08-30 2020-03-27 中车青岛四方车辆研究所有限公司 轨道列车制动控制系统及控制方法
CN110091847B (zh) * 2018-01-29 2021-08-03 湖南工业大学 一种高速列车制动力优化分配方法
CN110155006B (zh) * 2019-05-09 2020-06-23 中车青岛四方机车车辆股份有限公司 一种列车保持制动缓解的系统、方法及列车
CN111301375B (zh) * 2019-12-14 2021-11-16 中车大连电力牵引研发中心有限公司 一种用于轨道车辆的制动力管理系统及方法
CN111976693A (zh) * 2020-07-28 2020-11-24 中车长春轨道客车股份有限公司 一种高速轨道列车制动力优化分配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712259A (zh) * 2010-01-21 2012-10-03 三菱电机株式会社 制动控制装置及制动控制方法
WO2013034692A2 (de) * 2011-09-09 2013-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zum abbremsen eines schienenfahrzeuges mit rädern
CN106364333A (zh) * 2016-10-12 2017-02-01 南京中车浦镇海泰制动设备有限公司 轨道交通车辆的制动控制装置及其电空混合制动控制方法
CN107487308A (zh) * 2017-07-20 2017-12-19 中车唐山机车车辆有限公司 动车组制动力分配方法及装置
CN109795518A (zh) * 2017-11-17 2019-05-24 中车唐山机车车辆有限公司 一种轨道列车制动控制系统及列车
CN109094547A (zh) * 2018-07-27 2018-12-28 中车唐山机车车辆有限公司 城铁车辆制动力分配方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194287A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604211A (zh) * 2022-03-11 2022-06-10 中车株洲电力机车有限公司 城轨车辆及其踏面清扫控制方法、系统
CN114604210A (zh) * 2022-03-11 2022-06-10 中车株洲电力机车有限公司 重联车辆及适用于城轨车辆重联运行的制动力控制方法
CN114604211B (zh) * 2022-03-11 2023-01-20 中车株洲电力机车有限公司 城轨车辆及其踏面清扫控制方法、系统
CN117734649A (zh) * 2024-01-05 2024-03-22 兰州交通大学 装配风阻制动系统的高速列车混合制动控制方法

Also Published As

Publication number Publication date
CN111994056A (zh) 2020-11-27
EP4194287A4 (en) 2024-02-21
CN111994056B (zh) 2022-01-07
EP4194287A1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
WO2022032897A1 (zh) 一种城轨列车的制动力分配方法,装置及系统
CN105235689B (zh) 一种缓解轨道列车启动冲动的方法
CN202320262U (zh) 用于车辆的制动系统和适于高速运行的铁路车辆
CN103648865A (zh) 控制或调节车辆制动系统的方法和控制装置
US20130261924A1 (en) Method for controlling an antislip-regulated friction brake system of a rail vehicle
CN111619594A (zh) 一种轨道交通列车安全起动控制系统及方法
CN107512276A (zh) 一种基于tcms系统的列车启动冲击限制控制方法
CN107472292A (zh) 基于速度的分段制动力控制方法
CN111216700B (zh) 一种齿轨列车的制动控制方法及设备
CN105292123A (zh) 一种城轨车辆起动控制方法
CN111942354B (zh) 智轨车辆制动力分配方法及终端设备
CN113997913B (zh) 货运列车自动起车控制方法及相关装置
CN107539298B (zh) 一种列车的空气制动控制的方法及系统
CN114506306B (zh) 一种列车下坡空气制动调节方法、系统
CN114348067B (zh) 一种最严格目标速度和最严格目标位置确定方法、系统
US20190359189A1 (en) Method for maintaining total braking power of a train while taking the available friction conditions into consideration
CN109466572A (zh) 一种列车无传感器载荷计算方法
CN115892077A (zh) 列车的控制方法、装置、电子设备及存储介质
CN112193224B (zh) 车辆制动力分配方法、终端设备及存储介质
CN114348068B (zh) 一种列车下坡运行控制方法、系统
CN112046554A (zh) 一种驼峰溜放车辆的速度控制方法及系统
Imai et al. Real-time distribution control of torque reference of commuter train for fine re-adhesion contol
CN114506366B (zh) 一种列车下坡参考速度曲线确定方法、系统
CN112046553A (zh) 一种控制减速器制动的方法及系统
JP6715680B2 (ja) 鉄道車両用ブレーキ制御装置および鉄道車両用ブレーキ制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020949391

Country of ref document: EP

Effective date: 20230310