WO2022032819A1 - 一种触觉反馈器件及其制备方法、电子设备 - Google Patents

一种触觉反馈器件及其制备方法、电子设备 Download PDF

Info

Publication number
WO2022032819A1
WO2022032819A1 PCT/CN2020/117595 CN2020117595W WO2022032819A1 WO 2022032819 A1 WO2022032819 A1 WO 2022032819A1 CN 2020117595 W CN2020117595 W CN 2020117595W WO 2022032819 A1 WO2022032819 A1 WO 2022032819A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
insulating layer
high molecular
mixed solution
feedback device
Prior art date
Application number
PCT/CN2020/117595
Other languages
English (en)
French (fr)
Inventor
张愉
江淼
姚江波
陈黎暄
张鑫
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2022032819A1 publication Critical patent/WO2022032819A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present application relates to the field of display panels, and in particular, to a haptic feedback device, a preparation method thereof, and an electronic device.
  • the five senses are the media through which humans perceive the world, namely sight, hearing, smell, taste and touch. Haptics make the feeling more real, but the development of haptic direction in the current interaction field only accounts for 15%, which is still in its infancy.
  • Haptic feedback is to sense the shape, texture and other tactile features of visual objects by touching the screen with bare fingers, and use human tactile perception channels to improve the authenticity and immersion of human-computer interaction. Therefore, superimposing the haptic feedback function on the display panel will expand the application field of the display panel and enhance the audience's experience, such as virtual keyboards, VR merchandise displays, blind readers, etc.
  • the classic electrostatic force tactile feedback model consists of three layers, namely the substrate, the conductive layer and the insulating layer. , the formula is as follows:
  • V(t) is the voltage between the two electrodes of the capacitor
  • d is the thickness of the insulating layer
  • A is the area of the electrode
  • ⁇ 0 is the dielectric constant in vacuum
  • is the dielectric constant of the insulating layer
  • F is the static electricity felt by the user. electricity.
  • the stimulation can be increased by increasing the voltage, but the increase of the voltage will bring about a safety problem.
  • One object of the present invention is to provide a tactile feedback device, which can solve the problem in the prior art that in order to make the audience feel stronger tactile feedback, the stimulation is increased by increasing the voltage, but the increase of the voltage will bring about safety sexual issues.
  • the present invention provides a tactile feedback device, comprising a substrate; a conductive layer, arranged on the substrate; an insulating layer, arranged on the conductive layer;
  • the high molecular polymer material is doped with nanoparticles, and the dielectric constant of the nanoparticles is greater than 8 and less than 1100.
  • High-dielectric nanoparticles are doped into high-molecular polymers to form an insulating layer with high-dielectric properties, thereby improving the sensitivity and safety of haptic feedback devices.
  • the insulating layer can reach the micron level, and it can still have a strong touch at a lower voltage.
  • nanoparticles are titanium oxide rutile nanoparticles, barium titanate nanoparticles, barium strontium titanate nanoparticles, zirconium dioxide nanoparticles, tantalum pentoxide nanoparticles, One or more of hafnium oxide nanoparticles, aluminum oxide nanoparticles, or lanthanum oxide nanoparticles.
  • the dielectric constant of titanium oxide rutile phase nanoparticles is 110, the dielectric constant of barium titanate nanoparticles is 145, the dielectric constant of barium strontium titanate nanoparticles is 1000, and the dielectric constant of zirconia nanoparticles is 25 , the dielectric constant of tantalum pentoxide nanoparticles is 18.5-27.5, the dielectric constant of hafnium dioxide nanoparticles is 21, and the dielectric constant of aluminum oxide nanoparticles is 9.
  • the high molecular polymer material is polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), polyvinyl alcohol (PVA), polystyrene ( One or more of PS), polyvinyl phenol (PVP), poly-tert-butyl methacrylate (PMBA), polyethylene terephthalate (PET), or propylene glycol methyl ether acetate (PGMEA) .
  • PMMA polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • PVA polyvinyl alcohol
  • PS polystyrene
  • PVP polyvinyl phenol
  • PMBA poly-tert-butyl methacrylate
  • PET polyethylene terephthalate
  • PMEA propylene glycol methyl ether acetate
  • PMMA can be selected as the high-molecular polymer material. If better elasticity is required, PMBA can be selected as the high-molecular polymer material.
  • the conductive layer is a single-electrode circuit or a double-electrode circuit
  • the material of the conductive layer is copper metal, silver metal, or indium tin oxide semiconductor.
  • the thickness of the insulating layer is 4nm-20000nm; the electrostatic force felt by the user is proportional to the dielectric constant of the insulating layer and inversely proportional to the thickness of the insulating layer;
  • the safety is proportional to the thickness of the insulating layer, and the greater the thickness of the insulating layer, the stronger the safety. Therefore, the present invention increases the dielectric constant of the insulating layer while ensuring the thickness of the insulating layer, so as to maintain a higher electrostatic force.
  • the present invention also provides a preparation method for preparing the tactile feedback device involved in the present invention.
  • the preparation method includes the following steps: providing a substrate; preparing a conductive layer on the substrate; mixing nanoparticles with nanoparticles
  • the mixed solution is mixed with the high molecular polymer to form a mixed solution; the mixed solution is coated on the conductive layer to form an insulating layer.
  • the step of doping the nanoparticles into the high molecular polymer to form a mixed solution includes performing a surface hydrophobization treatment on the nanoparticles, and dispersing the surface hydrophobized nanoparticles in a mixed solution.
  • a mixed solution is formed in the trichlorotoluene solution containing the high molecular polymer.
  • the nanoparticles are dispersed in the trichlorotoluene solution containing the high molecular polymer by means of stirring or ultrasonic dispersion.
  • the conductive layer is prepared on the substrate by means of laser laser or in-situ reduction or film-forming etching.
  • the mixed solution is coated on the conductive layer by spin coating, blade coating or inkjet printing, and after the mixed solution is coated on the conductive layer, , and then perform ultraviolet curing or high temperature curing on the mixed solution to form a solid insulating layer.
  • the substrate is made of glass.
  • the present invention also provides an electronic device, including the haptic feedback device involved in the present invention.
  • a display device includes a lower polarizer; a liquid crystal display panel, arranged on the lower polarizer; the tactile feedback device involved in the present invention, arranged on the liquid crystal display panel; an upper polarizer, arranged on the lower polarizer on the haptic feedback device.
  • the haptic feedback device is placed on the display panel and is an external hanging structure.
  • the present invention provides a tactile feedback device, a preparation method thereof, and an electronic device, in which high-dielectric nanoparticles are doped into high-molecular polymers, and the composition has high-dielectric properties.
  • the insulating layer of the tactile feedback device improves the sensitivity and safety of the haptic feedback device.
  • the electrostatic force experienced by the user is proportional to the dielectric constant of the insulating layer and inversely proportional to the thickness of the insulating layer; however, the safety is proportional to the thickness of the insulating layer. The greater the thickness of the insulating layer, the stronger the safety. Therefore, the present invention increases the dielectric constant of the insulating layer while ensuring the thickness of the insulating layer, so that the haptic feedback device still maintains a high electrostatic force.
  • the nanoparticles are doped into the high molecular polymer, and then coated on the conductive layer by spin coating, blade coating or inkjet printing to form an insulating layer, the method is simple, easy to operate, and conducive to large-scale mass production. use.
  • FIG. 1 is a schematic structural diagram of a haptic feedback device provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for preparing a haptic feedback device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • Haptic feedback device-100
  • Insulation layer-30 High molecular polymer material-31;
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the thickness of the insulating layer is increased, which is beneficial to the life of the singing tactile feedback device, thereby improving the stability of the device.
  • the strength of the force on the finger is inversely proportional to the film thickness of the insulating layer, and the dielectric The constant is proportional, therefore, changing the properties of the insulating layer can adjust the surface feel under the same voltage condition.
  • FIG. 1 is a schematic structural diagram of the haptic feedback device 100 provided in this embodiment.
  • the haptic feedback device 100 includes a substrate 10 , a conductive layer 20 and an insulating layer 30 .
  • the substrate 10 is a glass substrate, the conductive layer 20 is provided on the substrate 10 , and the insulating layer 30 is provided on the conductive layer 20 .
  • the conductive layer 20 can be a single-electrode circuit or a double-electrode circuit, and the material of the conductive layer 20 is copper metal, silver metal, or indium tin oxide semiconductor.
  • the insulating layer 30 includes a high molecular polymer 31 material and nanoparticles 32 doped in the high molecular polymer 31 material.
  • Polymer 31 materials are polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), polyvinyl alcohol (PVA), polystyrene (PS), polyvinylphenol (PVP), One or more of poly-tert-butyl methacrylate (PMBA), polyethylene terephthalate (PET) or propylene glycol methyl ether acetate (PGMEA).
  • PMMA polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • PVA polyvinyl alcohol
  • PS polystyrene
  • PVP polyvinylphenol
  • PMBA poly-tert-butyl methacrylate
  • PET polyethylene terephthalate
  • PMEA propylene glycol methyl ether acetate
  • PMMA can be selected as the material of the high-molecular polymer 31
  • PMBA can be selected as the material of the high-molecular polymer 31 .
  • the dielectric constant of the nanoparticles 32 is greater than 8 and less than 1100, and the nanoparticles 32 are made of titanium oxide rutile nanoparticles, barium titanate nanoparticles, barium strontium titanate nanoparticles, zirconium dioxide nanoparticles, tantalum pentoxide nanoparticles, One or more of hafnium dioxide nanoparticles, aluminum oxide nanoparticles, or lanthanum oxide nanoparticles.
  • Insulating layers with different dielectric constants can be obtained by selecting different types and proportions of nanoparticles.
  • the dielectric constant of titanium oxide rutile phase nanoparticles is 110, the dielectric constant of barium titanate nanoparticles is 145, the dielectric constant of barium strontium titanate nanoparticles is 1000, and the dielectric constant of zirconia nanoparticles is 25 , the dielectric constant of tantalum pentoxide nanoparticles is 18.5-27.5, the dielectric constant of hafnium dioxide nanoparticles is 21, and the dielectric constant of aluminum oxide nanoparticles is 9.
  • the high-dielectric nanoparticles 32 are doped into the high-molecular polymer 31 to form the insulating layer 30 with high dielectric properties, thereby improving the sensitivity and safety of the haptic feedback device 100 .
  • the insulating layer 30 can reach the micron level, and can still have a strong touch feeling at a lower voltage.
  • the thickness of the insulating layer 30 is 4nm-20000nm; the electrostatic force felt by the user is proportional to the dielectric constant of the insulating layer 30 and inversely proportional to the thickness of the insulating layer 30; however, the safety is proportional to the thickness of the insulating layer 30, the insulating The greater the thickness of the layer 30, the greater the security. Therefore, the present invention increases the dielectric constant of the insulating layer 30 while ensuring the thickness of the insulating layer 30, so as to maintain a higher electrostatic force.
  • the embodiment of the present invention also provides a preparation method for preparing the haptic feedback device 100 involved in the embodiment of the present invention. Please refer to FIG. 2 , which is a flowchart of the method for preparing the haptic feedback device provided by the embodiment of the present invention. The method includes steps 1-4.
  • Step 1 Provide a substrate 10, and the substrate 10 is made of glass.
  • Step 2 preparing a conductive layer 20 on the substrate 10, the conductive layer 20 can be a single-electrode circuit or a double-electrode circuit, and the material of the conductive layer 20 is copper metal, silver metal or indium tin oxide semiconductor.
  • the conductive layer 20 is prepared on the substrate 10 by means of laser laser or in-situ reduction or film-forming etching.
  • Step 3 Doping the nanoparticles 32 into the high molecular polymer 31 to form a mixed solution.
  • the surface hydrophobization treatment is performed on the nanoparticles 32, and the nanoparticles 32 with the surface hydrophobization treatment are dispersed in the chlorotoluene solution containing the high molecular polymer 31 by means of machine stirring, and 180 Stir at rpm to form a mixed solution.
  • the nanoparticles 32 can also be dispersed in the trichlorotoluene solution containing the high molecular polymer 31 by means of ultrasonic dispersion to form a mixed solution.
  • the doping ratio of the nanoparticles 32 in the mixed solution is 1%-10%.
  • Polymer 31 materials are polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), polyvinyl alcohol (PVA), polystyrene (PS), polyvinylphenol (PVP), One or more of poly-tert-butyl methacrylate (PMBA), polyethylene terephthalate (PET) or propylene glycol methyl ether acetate (PGMEA).
  • PMMA polymethyl methacrylate
  • PDMS polydimethylsiloxane
  • PVA polyvinyl alcohol
  • PS polystyrene
  • PVP polyvinylphenol
  • PMBA poly-tert-butyl methacrylate
  • PET polyethylene terephthalate
  • PMEA propylene glycol methyl ether acetate
  • PMMA can be selected as the material of the high molecular polymer 31, and the doping ratio of PMMA in the mixed solution is 5%-20%; PMBA is selected as the high molecular polymer 31 material, and the doping ratio of PMBA in the mixed solution is 2%-10%.
  • Nanoparticles 32 are titanium oxide rutile phase nanoparticles, barium titanate nanoparticles, barium strontium titanate nanoparticles, zirconium dioxide nanoparticles, tantalum pentoxide nanoparticles, hafnium dioxide nanoparticles, aluminum oxide nanoparticles or lanthanum oxide one or more of the nanoparticles.
  • Step 4 apply the mixed solution on the conductive layer 20 to form the insulating layer 30 .
  • the mixed solution is coated on the conductive layer 20 by spin coating, blade coating or inkjet printing, and after the mixed solution is coated on the conductive layer 20, the mixed solution is then cured by ultraviolet light or high temperature to form a solid insulation.
  • Layer 30 The mixed solution is coated on the conductive layer 20 by spin coating, blade coating or inkjet printing, and after the mixed solution is coated on the conductive layer 20, the mixed solution is then cured by ultraviolet light or high temperature to form a solid insulation.
  • Layer 30 The mixed solution is coated on the conductive layer 20 by spin coating, blade coating or inkjet printing, and after the mixed solution is coated on the conductive layer 20, the mixed solution is then cured by ultraviolet light or high temperature to form a solid insulation.
  • Nanoparticles are doped into a high molecular polymer, and then coated on the conductive layer by spin coating, blade coating or inkjet printing to form an insulating layer.
  • the method is simple, easy to operate, and beneficial to large-scale mass production.
  • the embodiment of the present invention further provides an electronic device, including the haptic feedback device 100 involved in the present invention.
  • FIG. 3 is a schematic structural diagram of the display device 200 provided in this embodiment.
  • the display device 200 includes a lower polarizer 110 , a liquid crystal display panel 120 , a tactile feedback device 100 and an upper polarizer 130 .
  • the liquid crystal display panel 120 is arranged on the lower polarizer 110 ; the haptic feedback device 100 is arranged on the liquid crystal display panel 120 ; the upper polarizer 130 is arranged on the haptic feedback device 100 .
  • the haptic feedback device 100 is placed on the display panel and is an external hanging structure.
  • the present invention provides a tactile feedback device, a preparation method thereof, and an electronic device, in which high-dielectric nanoparticles are doped into high-molecular polymers, and the composition has high-dielectric properties.
  • the insulating layer of the tactile feedback device improves the sensitivity and safety of the haptic feedback device.
  • the electrostatic force felt by the user is proportional to the dielectric constant of the insulating layer and inversely proportional to the thickness of the insulating layer 30 ; however, the safety is proportional to the thickness of the insulating layer, and the greater the thickness of the insulating layer, the stronger the safety. Therefore, the present invention improves the dielectric constant of the insulating layer while ensuring the thickness of the insulating layer, so that the haptic feedback device still maintains a high electrostatic force.
  • the nanoparticles are doped into the high molecular polymer, and then coated on the conductive layer by spin coating, blade coating or inkjet printing to form an insulating layer, the method is simple, easy to operate, and conducive to large-scale mass production. use.
  • a tactile feedback device, a preparation method, and an electronic device provided by the embodiments of the present application have been introduced in detail above.
  • the principles and implementations of the present application are described with specific examples. The descriptions of the above embodiments are only used for To help understand the technical solutions of the present application and their core ideas; those of ordinary skill in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements on some of the technical features; and these Modifications or substitutions do not make the essence of the corresponding technical solutions deviate from the scope of the technical solutions of the embodiments of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请公开了一种触觉反馈器件及其制备方法、电子设备,触觉反馈器件包括基板;导电层,设于所述基板上;绝缘层,设于所述导电层上;所述绝缘层采用高分子聚合物材料,所述高分子聚合物材料中掺杂有纳米颗粒,所述纳米颗粒的介电常数大于8小于1100。

Description

一种触觉反馈器件及其制备方法、电子设备 技术领域
本申请涉及显示面板领域,尤其地涉及一种触觉反馈器件及其制备方法、电子设备。
背景技术
五感是人类感知世界的媒介,分别是视觉、听觉、嗅觉、味觉和触觉。触觉使感受更加真实,但目前交互领域中,触觉方向的开发只占15%,仍处于起步阶段。触觉反馈,是通过裸指触摸屏幕来感知视觉对象的形状、纹理等触觉特征,利用人类的触觉感知通道提高人机交互操作的真实性和沉浸感。因此,叠加触觉反馈功能在显示面板上,将会拓展显示面板的应用领域,并提升受众感受,如虚拟键盘、VR商品展示、盲人阅读器等。
Hugh等人报道关于表面触感的形成原因,并利用静电力设备控制激励信号幅度等参量,从而改变表面触感,经典的静电力触觉反馈模型,由三层构成,分别为基板、导电层和绝缘层,公式如下:
Figure PCTCN2020117595-appb-000001
其中V(t)为电容两极之间的电压,d为绝缘层的厚度,A为电极的面积,ε 0为真空中介电常数,ε为绝缘层的介电常数,F为用户所感受的静电力。
为了保持具有较高的静电力,可通过增大电压来增大刺激,但电压的增大,会带来安全性的问题。
因此,确有必要来开发一种新型的触觉反馈器件,以克服现有技术的缺陷。
技术问题
本发明的一个目的是提供一种触觉反馈器件,其能够解决现有技术中为了使受众感受到较强的触觉反馈,通过增大电压来增大刺激,但电压的增大,会带来安全性的问题。
技术解决方案
为实现上述目的,本发明提供一种触觉反馈器件,包括基板;导电层,设于所述基板上;绝缘层,设于所述导电层上;所述绝缘层采用高分子聚合物材料,所述高分子聚合物材料中掺杂有纳米颗粒,所述纳米颗粒的介电常数大于8小于1100。
将高介电纳米颗粒掺杂在高分子聚合物当中,组成具有高介电性质的绝缘层,从而提升触觉反馈器件敏感度及安全性。采用高介电绝缘层,可使绝缘层达到微米级,较低电压下 仍可具有较强的触感。
进一步的,在其他实施方式中,其中,所述纳米颗粒采用氧化钛金红石相纳米颗粒、钛酸钡纳米颗粒、钛酸锶钡纳米颗粒、二氧化锆纳米颗粒、五氧化二钽纳米颗粒、二氧化铪纳米颗粒、氧化铝纳米颗粒或氧化镧纳米颗粒中的一种或多种。
其中氧化钛金红石相纳米颗粒的介电常数为110,钛酸钡纳米颗粒的介电常数为145,钛酸锶钡纳米颗粒的介电常数为1000,二氧化锆纳米颗粒的介电常数为25,五氧化二钽纳米颗粒的介电常数为18.5-27.5,二氧化铪纳米颗粒的介电常数为21,氧化铝纳米颗粒的介电常数为9。
进一步的,在其他实施方式中,其中所述高分子聚合物材料采用聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚乙烯基苯酚(PVP)、聚甲基丙烯酸叔丁酯(PMBA)、聚对苯二甲酸乙二醇酯(PET)或丙二醇甲醚醋酸酯(PGMEA)中的一种或多种。
当需要绝缘层刚性较强时,可选择PMMA作为高分子聚合物材料,如需要具有较好的弹性,可选择PMBA作为高分子聚合物材料。
进一步的,在其他实施方式中,其中所述导电层为单电极电路或双电极电路,所述导电层的材料采用铜金属或银金属或铟锡氧化物半导体。
进一步的,在其他实施方式中,其中所述绝缘层的厚度为4nm-20000nm;用户所感受的静电力,与所述绝缘层的介电常数呈正比,与所述绝缘层的厚度呈反比;然而安全性与所述绝缘层的厚度呈正比,所述绝缘层的厚度越大,安全性越强。因此本发明在保证所述绝缘层的厚度的同时,提高所述绝缘层的介电常数,使得保持具有较高的静电力。
为实现上述目的,本发明还提供一种制备方法,用以制备本发明涉及的所述触觉反馈器件,制备方法包括以下步骤:提供一基板;制备导电层于所述基板上;将纳米颗粒掺杂于高分子聚合物形成混合溶液;将所述混合溶液涂布于所述导电层上形成绝缘层。
进一步的,在其他实施方式中,其中将纳米颗粒掺杂于高分子聚合物形成混合溶液的步骤包括对所述纳米颗粒进行表面疏水化处理,将表面疏水化处理过的所述纳米颗粒分散在含有所述高分子聚合物的三氯甲苯溶液中形成混合溶液。
进一步的,在其他实施方式中,其中采用搅拌或超声分散的方式将所述纳米颗粒分散在含有所述高分子聚合物的三氯甲苯溶液中。
进一步的,在其他实施方式中,其中采用激光镭射或原位还原或成膜刻蚀的方式制备导电层于所述基板上。
进一步的,在其他实施方式中,其中将所述混合溶液采用旋涂或刮涂或喷墨打印的方式涂布于所述导电层上,将所述混合溶液涂布于所述导电层上后,然后对所述混合溶液进行紫外线固化或高温固化,形成固态的绝缘层。
进一步的,在其他实施方式中,其中所述基板采用玻璃。
为实现上述目的,本发明还提供一种电子设备,包括本发明涉及的所述触觉反馈器件。
具体地,一种显示装置,包括下偏光片;液晶显示面板,设于所述下偏光片上;本发明涉及的所述触觉反馈器件,设于所述液晶显示面板上;上偏光片,设于所述触觉反馈器件上。所述触觉反馈器件放置在显示面板上,为外挂式结构。
有益效果
相对于现有技术,本发明的有益效果在于:本发明提供一种触觉反馈器件及其制备方法、电子设备,将高介电纳米颗粒掺杂在高分子聚合物当中,组成具有高介电性质的绝缘层,从而提升触觉反馈器件敏感度及安全性。用户所感受的静电力,与绝缘层的介电常数呈正比,与绝缘层的厚度呈反比;然而安全性与所述绝缘层的厚度呈正比,绝缘层的厚度越大,安全性越强。因此本发明在保证所述绝缘层的厚度的同时,提高所述绝缘层的介电常数,使得触觉反馈器件仍保持具有较高的静电力。
进一步地,将纳米颗粒掺杂于高分子聚合物中,再采用旋涂或者刮涂或者喷墨打印的方法涂布于导电层上形成绝缘层,方法简便,易于操作,有利于大尺寸量产使用。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本发明实施例提供的触觉反馈器件的结构示意图;
图2为本发明实施例提供的触觉反馈器件的制备方法的流程图;
图3为本发明实施例提供的显示装置的结构示意图。
附图说明:
触觉反馈器件-100;
基板-10;                         导电层-20;
绝缘层-30;                       高分子聚合物材料-31;
纳米颗粒-32;
显示装置-200;                    下偏光片-110;
液晶显示面板-120;                上偏光片-130。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
现有技术中,绝缘层的厚度增大,有利于演唱触觉反馈器件的寿命,从而提升器件稳定性,手指所受力的强弱,与绝缘层的膜厚成反比,与绝缘层的介电常数成正比,因此,改变绝缘层的特性,可在相同电压条件下,对表面触感进行调节。
本实施例提供一种触觉反馈器件,请参阅图1,图1所示为本实施例提供的触觉反馈器件100的结构示意图。触觉反馈器件100,包括基板10、导电层20和绝缘层30。
基板10采用玻璃基板,导电层20设于基板10上,绝缘层30设于导电层20上。
导电层20可以为单电极电路或双电极电路,导电层20的材料采用铜金属或银金属或铟锡氧化物半导体。
绝缘层30包括高分子聚合物31材料以及掺杂在高分子聚合物31材料中的纳米颗粒32。
高分子聚合物31材料采用聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚乙烯基苯酚(PVP)、聚甲基丙烯酸叔丁酯(PMBA)、聚对苯二甲酸乙二醇酯(PET)或丙二醇甲醚醋酸酯(PGMEA)中的一种或多种。
当需要绝缘层30刚性较强时,可选择PMMA作为高分子聚合物31材料,如需要具有较好的弹性,可选择PMBA作为高分子聚合物31材料。
其中纳米颗粒32的介电常数大于8小于1100,纳米颗粒32采用氧化钛金红石相纳米颗粒、钛酸钡纳米颗粒、钛酸锶钡纳米颗粒、二氧化锆纳米颗粒、五氧化二钽纳米颗粒、二氧化铪纳米颗粒、氧化铝纳米颗粒或氧化镧纳米颗粒中的一种或多种。
通过选择不同类型和不同比例的纳米颗粒可以得到不同介电常数的绝缘层。
其中氧化钛金红石相纳米颗粒的介电常数为110,钛酸钡纳米颗粒的介电常数为145,钛酸锶钡纳米颗粒的介电常数为1000,二氧化锆纳米颗粒的介电常数为25,五氧化二钽纳米颗粒的介电常数为18.5-27.5,二氧化铪纳米颗粒的介电常数为21,氧化铝纳米颗粒的介电常数为9。
将高介电纳米颗粒32掺杂在高分子聚合物31当中,组成具有高介电性质的绝缘层30,从而提升触觉反馈器件100敏感度及安全性。采用高介电绝缘层30,可使绝缘层30达到微米级,较低电压下仍可具有较强的触感。
绝缘层30的厚度为4nm-20000nm;用户所感受的静电力,与绝缘层30的介电常数呈正比,与绝缘层30的厚度呈反比;然而安全性与绝缘层30的厚度呈正比,绝缘层30的厚度越大,安全性越强。因此本发明在保证绝缘层30的厚度的同时,提高绝缘层30的介电常数,使得保持具有较高的静电力。
本发明实施例还提供一种制备方法,用以制备本发明实施例涉及的触觉反馈器件100,请参阅图2,图2为本发明实施例提供的触觉反馈器件的制备方法的流程图,制备方法包括步骤1-步骤4。
步骤1:提供一基板10,基板10采用玻璃。
步骤2:制备导电层20于基板10上,导电层20可以为单电极电路或双电极电路,导电层20的材料采用铜金属或银金属或铟锡氧化物半导体。
其中,采用激光镭射或原位还原或成膜刻蚀的方式制备导电层20于基板10上。
步骤3:将纳米颗粒32掺杂于高分子聚合物31形成混合溶液。
具体地,对纳米颗粒32进行表面疏水化处理,将表面疏水化处理过的纳米颗粒32利用机器搅拌的方式将纳米颗粒32分散在含有高分子聚合物31的三氯甲苯溶液中,并采用180转/分钟的转速进行搅拌,形成混合溶液。
在其他实施方式中,也可以采用超声分散的方式将纳米颗粒32分散在含有高分子聚合物31的三氯甲苯溶液中形成混合溶液。
其中纳米颗粒32在所述混合溶液中的掺杂比例为1%-10%。
高分子聚合物31材料采用聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)、聚乙烯醇(PVA)、聚苯乙烯(PS)、聚乙烯基苯酚(PVP)、聚甲基丙烯酸叔丁酯(PMBA)、聚对苯二甲酸乙二醇酯(PET)或丙二醇甲醚醋酸酯(PGMEA)中的一种或多种。
当需要绝缘层30刚性较强时,可选择PMMA作为高分子聚合物31材料,此时PMMA在所述混合溶液中的掺杂比例为5%-20%;如需要具有较好的弹性,可选择PMBA作为高分子聚合物31材料,此时PMBA在所述混合溶液中的掺杂比例为2%-10%。
纳米颗粒32采用氧化钛金红石相纳米颗粒、钛酸钡纳米颗粒、钛酸锶钡纳米颗粒、二氧化锆纳米颗粒、五氧化二钽纳米颗粒、二氧化铪纳米颗粒、氧化铝纳米颗粒或氧化镧纳米颗粒中的一种或多种。
步骤4:将混合溶液涂布于导电层20上形成绝缘层30。
将混合溶液采用旋涂或刮涂或喷墨打印的方式涂布于导电层20上,将混合溶液涂布于导电层20上后,然后对混合溶液进行紫外线固化或高温固化,形成固态的绝缘层30。
将纳米颗粒掺杂于高分子聚合物中,再采用旋涂或者刮涂或者喷墨打印的方法涂布于导电层上形成绝缘层,方法简便,易于操作,有利于大尺寸量产使用。
本发明实施例还提供一种电子设备,包括本发明涉及的触觉反馈器件100。
具体地,请参阅图3,图3为本实施例提供的显示装置200的结构示意图。显示装置200包括下偏光片110、液晶显示面板120、触觉反馈器件100和上偏光片130。
液晶显示面板120设于下偏光片110上;触觉反馈器件100设于液晶显示面板120上;上偏光片130设于触觉反馈器件100上。
其中触觉反馈器件100放置在显示面板上,为外挂式结构。
相对于现有技术,本发明的有益效果在于:本发明提供一种触觉反馈器件及其制备方法、电子设备,将高介电纳米颗粒掺杂在高分子聚合物当中,组成具有高介电性质的绝缘层,从而提升触觉反馈器件敏感度及安全性。用户所感受的静电力,与绝缘层的介电常数呈正比,与绝缘层30的厚度呈反比;然而安全性与绝缘层的厚度呈正比,绝缘层的厚度越大,安全性越强。因此本发明在保证绝缘层的厚度的同时,提高绝缘层的介电常数,使得触觉反馈器件仍保持具有较高的静电力。
进一步地,将纳米颗粒掺杂于高分子聚合物中,再采用旋涂或者刮涂或者喷墨打印的方法涂布于导电层上形成绝缘层,方法简便,易于操作,有利于大尺寸量产使用。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分, 可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种触觉反馈器件及其制备方法、电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (13)

  1. 一种触觉反馈器件,其中,包括
    基板;
    导电层,设于所述基板上;
    绝缘层,设于所述导电层上;
    所述绝缘层采用高分子聚合物材料,所述高分子聚合物材料中掺杂有纳米颗粒,所述纳米颗粒的介电常数大于8小于1100。
  2. 根据权利要求1所述的触觉反馈器件,其中,所述纳米颗粒采用氧化钛金红石相纳米颗粒、钛酸钡纳米颗粒、钛酸锶钡纳米颗粒、氧化锆纳米颗粒、五氧化二钽纳米颗粒、二氧化铪纳米颗粒、氧化铝纳米颗粒或氧化镧纳米颗粒中的一种或多种。
  3. 根据权利要求1所述的触觉反馈器件,其中,所述高分子聚合物材料采用聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚乙烯醇、聚苯乙烯、聚乙烯基苯酚、聚甲基丙烯酸叔丁酯、聚对苯二甲酸乙二醇酯或丙二醇甲醚醋酸酯中的一种或多种。
  4. 根据权利要求1所述的触觉反馈器件,其中,所述绝缘层的厚度为4nm-20000nm。
  5. 一种制备方法,用以制备如权利要求1所述的触觉反馈器件,其中,包括以下步骤:
    提供一基板;
    制备导电层于所述基板上;
    将纳米颗粒掺杂于高分子聚合物中形成混合溶液;
    将所述混合溶液涂布于所述导电层上形成绝缘层。
  6. 根据权利要求5所述的制备方法,其中,将纳米颗粒掺杂于高分子聚合物形成混合溶液的步骤包括
    对所述纳米颗粒进行表面疏水化处理,将表面疏水化处理过的所述纳米颗粒分散在含有所述高分子聚合物的溶液中形成所述混合溶液。
  7. 根据权利要求6所述的制备方法,其中,采用搅拌或超声分散的方式将所述纳米颗粒分散在含有所述高分子聚合物的三氯甲苯溶液中。
  8. 根据权利要求6所述的制备方法,其中,所述纳米颗粒在所述混合溶液中的掺杂比例为1%-10%。
  9. 根据权利要求5所述的制备方法,其中,将所述混合溶液采用旋涂或刮涂或喷墨打印的方式涂布于所述导电层上,将所述混合溶液涂布于所述导电层上后,然后对所述混合溶液进行紫外线固化或高温固化,形成固态的绝缘层。
  10. 一种电子设备,其中,包括如权利要求1所述的触觉反馈器件。
  11. 根据权利要求10所述的电子设备,其中,所述纳米颗粒采用氧化钛金红石相纳米颗粒、钛酸钡纳米颗粒、钛酸锶钡纳米颗粒、氧化锆纳米颗粒、五氧化二钽纳米颗粒、二氧化铪纳米颗粒、氧化铝纳米颗粒或氧化镧纳米颗粒中的一种或多种。
  12. 根据权利要求10所述的电子设备,其中,所述高分子聚合物材料采用聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚乙烯醇、聚苯乙烯、聚乙烯基苯酚、聚甲基丙烯酸叔丁酯、聚对苯二甲酸乙二醇酯或丙二醇甲醚醋酸酯中的一种或多种。
  13. 根据权利要求10所述的电子设备,其中,所述绝缘层的厚度为4nm-20000nm。
PCT/CN2020/117595 2020-08-11 2020-09-25 一种触觉反馈器件及其制备方法、电子设备 WO2022032819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010799294.4 2020-08-11
CN202010799294.4A CN112051922A (zh) 2020-08-11 2020-08-11 一种触觉反馈器件及其制备方法、电子设备

Publications (1)

Publication Number Publication Date
WO2022032819A1 true WO2022032819A1 (zh) 2022-02-17

Family

ID=73601388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117595 WO2022032819A1 (zh) 2020-08-11 2020-09-25 一种触觉反馈器件及其制备方法、电子设备

Country Status (2)

Country Link
CN (1) CN112051922A (zh)
WO (1) WO2022032819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705225A (zh) * 2022-03-28 2022-07-05 中国科学院深圳先进技术研究院 一种三维景深触觉传感器及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112612381A (zh) 2020-12-29 2021-04-06 深圳市华星光电半导体显示技术有限公司 传感器件及显示装置
CN116731543B (zh) * 2023-07-24 2024-07-02 无锡普天铁心股份有限公司 一种环保取向硅钢绝缘涂液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202818155U (zh) * 2012-09-26 2013-03-20 华中科技大学 一种柔性发电装置
CN103374207A (zh) * 2012-04-18 2013-10-30 国家纳米科学中心 一种环氧复合材料及其制备方法
CN110231891A (zh) * 2019-07-24 2019-09-13 蓝思科技(长沙)有限公司 一种柔性盖板及其制备方法、柔性oled显示屏
US20190328296A1 (en) * 2017-11-21 2019-10-31 Uxn Co., Ltd. Glucose sensor apparatus addressing interference of ascorbic acid and acetaminophen
CN111221417A (zh) * 2020-01-07 2020-06-02 北京航空航天大学 一种具有表面触觉反馈功能的柔性薄膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902128A (zh) * 2014-04-10 2014-07-02 芜湖长信科技股份有限公司 一种触觉式电容屏及其制造方法
US20160124548A1 (en) * 2014-11-03 2016-05-05 Northwestern University Materials and structures for haptic displays with simultaneous sensing and actuation
SE1551288A1 (en) * 2015-06-08 2016-12-09 Fingerprint Cards Ab Fingerprint sensing device with interposer structure
CN106595940A (zh) * 2016-12-30 2017-04-26 电子科技大学 一种柔性多功能传感器及其制备方法
CN107478360B (zh) * 2017-08-18 2020-05-19 北京纳米能源与系统研究所 电容式柔性压力传感器及其制备方法
US20190247649A1 (en) * 2018-02-09 2019-08-15 University Of North Texas Nano-devices for skin and mucosal macromolecule delivery and detection
CN111248878A (zh) * 2018-11-30 2020-06-09 中国科学院苏州纳米技术与纳米仿生研究所 柔性压力传感器及脉象测量装置
CN111248873A (zh) * 2018-11-30 2020-06-09 中国科学院苏州纳米技术与纳米仿生研究所 柔性压力传感器及脉象测量装置
CN109813467A (zh) * 2019-03-25 2019-05-28 南方科技大学 一种压力传感器及其制备方法和用途
TWI710945B (zh) * 2019-07-31 2020-11-21 友達光電股份有限公司 觸控顯示裝置及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374207A (zh) * 2012-04-18 2013-10-30 国家纳米科学中心 一种环氧复合材料及其制备方法
CN202818155U (zh) * 2012-09-26 2013-03-20 华中科技大学 一种柔性发电装置
US20190328296A1 (en) * 2017-11-21 2019-10-31 Uxn Co., Ltd. Glucose sensor apparatus addressing interference of ascorbic acid and acetaminophen
CN110231891A (zh) * 2019-07-24 2019-09-13 蓝思科技(长沙)有限公司 一种柔性盖板及其制备方法、柔性oled显示屏
CN111221417A (zh) * 2020-01-07 2020-06-02 北京航空航天大学 一种具有表面触觉反馈功能的柔性薄膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705225A (zh) * 2022-03-28 2022-07-05 中国科学院深圳先进技术研究院 一种三维景深触觉传感器及其制备方法和应用
CN114705225B (zh) * 2022-03-28 2024-08-20 中国科学院深圳先进技术研究院 一种三维景深触觉传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN112051922A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022032819A1 (zh) 一种触觉反馈器件及其制备方法、电子设备
JP6042863B2 (ja) 複合材料
CN107092384B (zh) 透明层叠体、静电电容型输入装置及图像显示装置
TW521227B (en) Electrode substrate, method for producing the same and display device including the same
JP6480407B2 (ja) 電子的に切り替え可能なプライバシー装置
US9933896B2 (en) Touch panel and method of manufacturing a touch panel
EP1837931A2 (en) Conductive transparent material, manufacturing method thereof and display device comprising the same
WO2013103104A1 (ja) 透明導電性フィルム
TWI637671B (zh) 轉印膜、轉印膜的製造方法、透明積層體、透明積層體的製造方法、靜電電容型輸入裝置及圖像顯示裝置
US20180196538A1 (en) Method for manufacturing touch screen, touch screen and display device
WO2014134894A1 (zh) 触摸屏及其制造方法
CN108388379A (zh) 触控面板、其制作方法及显示装置
JP2015513751A (ja) タッチパネルおよびその製造方法
KR101420541B1 (ko) 전도성 고분자 조성물 및 이를 이용한 전도성 필름
CN104407734B (zh) 触控屏的制造方法及触控屏
WO2020200164A1 (en) A selectively erasable liquid crystal writing board
US20200125209A1 (en) Touch-control panel, a manufacturing method thereof, and a display device
CN203117930U (zh) 触控电极结构
TWI683039B (zh) 透明電極之形成方法及透明電極層壓體
KR20170123173A (ko) 액정캡슐을 포함하는 액정표시장치 및 그 제조방법
WO2016165202A1 (zh) 可弯曲透明导电电极及其制备方法
CN108919998A (zh) 触控面板及其制作方法
KR20160060223A (ko) 미세 패턴 형성 방법
CN107256924A (zh) 阻变器件及其制作方法、显示基板的制作方法、显示装置
US20160060467A1 (en) Formulation and method for fabricating a transparent force sensing layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949316

Country of ref document: EP

Kind code of ref document: A1