WO2016165202A1 - 可弯曲透明导电电极及其制备方法 - Google Patents

可弯曲透明导电电极及其制备方法 Download PDF

Info

Publication number
WO2016165202A1
WO2016165202A1 PCT/CN2015/080727 CN2015080727W WO2016165202A1 WO 2016165202 A1 WO2016165202 A1 WO 2016165202A1 CN 2015080727 W CN2015080727 W CN 2015080727W WO 2016165202 A1 WO2016165202 A1 WO 2016165202A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
ionic liquid
gel
transparent electrode
ion gel
Prior art date
Application number
PCT/CN2015/080727
Other languages
English (en)
French (fr)
Inventor
苏彬
江雷
Original Assignee
北京天恒盛通科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天恒盛通科技发展有限公司 filed Critical 北京天恒盛通科技发展有限公司
Publication of WO2016165202A1 publication Critical patent/WO2016165202A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to the field of preparation and application of electronic devices, and relates to a flexible transparent conductive electrode prepared by using an organic ion gel on a flexible substrate and a method for preparing the same.
  • Transparent electrodes play an important role in many contemporary electronic and optoelectronic components, and are indispensable photoelectric functional materials. However, in this field, both in industrial applications and in basic research, it is a key moment for upgrading.
  • indium tin oxide (IT 0) has encountered severe challenges of depletion of indium resources and expensive energy consumption by vacuum magnetron sputtering.
  • the current components are transitioning from traditional hard chips to flexible, flexible, wearable devices, and the market is exploding, and there is no doubt that new requirements have been placed on transparent electrodes.
  • a bendable transparent conductive electrode comprising a transparent ion gel, a flexible bendable transparent polymer film; characterized in that: the transparent ion gel is by chemical polymerization or physics The prepared ion gel is blended, and wherein the metal nanomaterial and/or the semiconductor nanomaterial are uniformly mixed; the flexible bendable transparent polymer film serves as a support layer of the bendable transparent conductive electrode.
  • the method of the present invention for preparing a flexible transparent conductive electrode on a flexible substrate using an organic ion gel comprises the following steps:
  • the transparent ionic sol formed in the step (1) is uniformly coated on the flexible bendable transparent polymer film.
  • an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed, as shown in FIG.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding a metal/semiconductor nanomaterial.
  • the method of addition is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the prepared ion gel transparent electrode can be used to prepare flexible electronic display screens, such as mobile phones, computer monitors, watches, visualization glasses, and the like. It can also be used to make flexible LEDs or bendable solar cells.
  • 1.1 chemical polymerization is: the ionic liquid and the polymer monomer are dissolved in a solvent in a certain ratio, uniformly stirred, and then the monomer polymerization initiator is added, and the stirring is continued until the state is uniform. . It is then reacted in a heated state to form a transparent sol. Such a sol is used in the next step to prepare an ion gel transparent electrode.
  • 1.2 Physical blending is: The polymer is dissolved in the solvent, and the ionic liquid is added after uniform stirring, and stirring is continued to form a transparent sol. Such a sol is used in the next step to prepare an ion gel transparent electrode.
  • the ionic liquid in the present invention is one or more of an imidazole, a pyridine, a pyrrolidine and a piperidine ionic liquid.
  • Imidazoles such as 1-butyl-3-methylimidazolium trifluoroacetate; pyridines such as N-butyl-pyridine bromide; Pyrroles such as N-butyl-N-methylpyrrolidine bromide; piperidines such as N-butyl-N-methylpiperidine bromide.
  • the polymer monomer in the present invention is one or more of acrylic acid, methyl methacrylate, styrene, and vinyl chloride.
  • the solvent described in the present invention is one or more of water, chloroform, n-hexane, toluene, and acetone.
  • the weight ratio of the ionic liquid/solvent in the present invention is from 1/1000 to 1000/1000.
  • the monomer initiator described in the present invention is one or more of benzoyl peroxide, di-tert-butyl peroxide, and azobisisobutyronitrile.
  • the heating temperature in the present invention is 20 to 90 °C.
  • the weight ratio of the initiator/polymer monomer in the present invention is from 1/1000 to 5/1000.
  • the polymer physically blended with the ionic liquid in the present invention is one or more of polypropylene, polyethylene, polydimethylsiloxane, polytetrafluoroethylene, and silicone resin.
  • the weight ratio of the ionic liquid/polymer (or polymer monomer) in the present invention is 1/1000-1000/1
  • the flexible and flexible polymer film used in the preparation of the flexible electrode according to the present invention is polystyrene, polypropylene, polyethylene, polydimethylsiloxane, polyethylene terephthalate. One or more of the diesters.
  • the metal/semiconductor nanomaterial that changes the resistance of the ion gel layer in the present invention is one or more of a thin layer of gold nanowires, silver nanowires, copper nanowires, carbon nanotubes, and graphene. .
  • the weight ratio of the ionic liquid/added nanomaterial in the present invention is 1000/1-1000/1000.
  • the ion gel transparent electrode provided by the invention overcomes the defects of high cost, complicated process and scarce raw materials in the prior transparent electrode technology, and has excellent processability.
  • the present invention can adjust the electrical resistance of the ion-gel conductive layer by adding a metal nanomaterial to the ion gel.
  • the ion gel transparent electrode obtained by the invention does not damage or has a low conductivity after being placed for one year, and has no influence on the formation after a small amount of ultraviolet light, and the generated conductive layer is stable in properties.
  • the method of the invention is simple in operation, easy to control, simple in equipment required, and capable of mass production.
  • the transparent electrode is particularly suitable for preparing a screen of a visible electronic device, a wearable electronic device, a flexible solar cell, a flexible light emitting diode. Brief description of the drawing
  • FIG. 1 is a schematic view of a bendable ionotropic gel transparent electrode of the present invention.
  • the transparent ionic sol formed in the step (1) is uniformly coated on the flexible bendable polystyrene transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding a gold nanowire (the weight ratio of the ionic liquid/gold nanowire is 1000/1).
  • the method of addition is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible mobile phone display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the transparent ionic sol formed in the step (1) was uniformly coated on a flexible bendable polypropylene transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding silver nanowires (the weight ratio of the ionic liquid/silver nanowires is 1000/250).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible eyeglass display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • N-butyl-N-methylpyrrolidine bromide and styrene are dissolved in toluene at a weight ratio of 750/1000 (ionic liquid/toluene in a weight ratio of 500/1000), uniformly stirred and then added to the monomer polymerization.
  • the initiator azobisisobutyronitrile (initiator/polymer monomer weight ratio is 4/1000) and stirring is continued to a uniform state. Then, it was reacted under heating at 60 ° C to form a transparent sol. Such a sol is used in the next step to prepare an ionic gel transparent electrode.
  • the transparent ionic sol formed in the step (1) is uniformly coated on the flexible bendable polyethylene transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed. (3) Method for adjusting the resistance of an ion gel transparent electrode
  • the resistance of the ionic gel is in the order of mega ohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding copper nanowires (the weight ratio of the ionic liquid/copper nanowires is 1000/500).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible light emitting diode, which can maintain a stable state, and the electrical response time is 0.1 ms, which is 0.1 ms less than the response time of ordinary ITO.
  • N-butyl-N-methyl piperidinium bromide and vinyl chloride are dissolved in acetone at a weight ratio of 1000/1000 (the weight ratio of ionic liquid / acetone is 1000/1000), and uniformly stirred to add monomer polymerization.
  • the initiator benzoyl peroxide (initiator/polymer monomer weight ratio is 1/1000), continue to stir to a uniform state. It is then reacted in a heated state at 90 ° C to form a transparent sol. Such a sol is used in the next step to prepare an ionic gel transparent electrode.
  • the transparent ionic sol formed in the step (1) was uniformly coated on the flexible bendable polydimethylsiloxane transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the electric resistance of the ionic gel is in the order of megaohms
  • the electric resistance of the transparent electrode of the ion gel can be adjusted by adding carbon nanotubes (the weight ratio of the ionic liquid/carbon nanotubes is 1000/750).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible solar cell, and can maintain a stable state with an electrical response of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • N-butyl-N-methyl piperidinium bromide and vinyl chloride are dissolved in acetone at a weight ratio of 1000/1000 (ionic liquid / acetone weight ratio is 1000/1000), uniformly stirred and added to the monomer polymerization
  • the initiator benzoyl peroxide (initiator/polymer monomer weight ratio is 1/1000), continue to stir to a uniform state. It is then reacted in a heated state at 90 ° C to form a transparent sol. Such a sol is used in the next step to prepare an ionic gel transparent electrode.
  • the transparent ionic sol formed in the step (1) was uniformly coated on a flexible bendable polyethylene terephthalate transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding a thin layer of graphene (the weight ratio of the ionic liquid/graphene thin layer is 1 000 /1 000 ).
  • the method of addition is to add the metal/semiconductor nanomaterial to the transparent sol formed in step (1) and continue to stir to a uniform state. Then step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible mobile phone display screen, which can maintain a stable state, and the electrical response time is 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • N-butyl-N-methylpiperidine bromide and vinyl chloride are dissolved in acetone at a weight ratio of 1000/1000 (the weight ratio of ionic liquid/acetone is 1000/1000), and uniformly stirred to add monomer polymerization.
  • the initiator benzoyl peroxide (initiator/polymer monomer weight ratio is 1/1000), continue to stir to a uniform state. It is then reacted in a heated state at 90 ° C to form a transparent sol. Such a sol is used in the next step to prepare an ionic gel transparent electrode.
  • the transparent ionic sol formed in the step (1) is uniformly coated on the flexible bendable polyethylene terephthalate transparent polymer film. After the solvent is completely evaporated in the sol, the conductive layer is formed into an ionic liquid/polymer The blend and the support layer are ion-gel transparent electrodes of a flexible bendable transparent polymer film.
  • the ion gel transparent electrode prepared above can be used for preparing a flexible mobile phone display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the transparent ionic sol formed in the step (1) is uniformly coated on the flexible bendable polystyrene transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding a gold nanowire (the weight ratio of the ionic liquid/gold nanowire is 1000/1).
  • the method of addition is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible mobile phone display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the polyethylene is dissolved in water, and uniformly stirred, and 1-butyl-3-methylimidazolium trifluoroacetate is added (the weight ratio of the ionic liquid/7 is 250/1000; the weight ratio of the ionic liquid/polymer is 250/1000), continue to stir to form a transparent sol.
  • Such a sol is used in the next step to prepare an ion gel transparent electrode.
  • the resistance of the ionic gel is in the order of mega ohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding silver nanowires (the weight ratio of the ionic liquid/silver nanowires is 1000/250).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used for preparing a flexible eyeglass display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • Polydimethylsiloxane was dissolved in toluene, and uniformly stirred, and 1-butyl-3-methylimidazolium trifluoroacetate was added (the weight ratio of ionic liquid/toluene was 500/1000; ionic liquid/polymerization) The weight ratio of the material is 500/1000) and stirring is continued to form a transparent sol. Such a sol is used in the next step to prepare an ion gel transparent electrode.
  • the transparent ionic sol formed in the step (1) was uniformly coated on the flexible bendable polyethylene transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding copper nanowires (the weight ratio of the ionic liquid/copper nanowires is 1000/500).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible light emitting diode, which can maintain a stable state, and the electrical response time is 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the transparent ionic sol formed in the step (1) was uniformly coated on the flexible bendable polydimethylsiloxane transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding carbon nanotubes (the weight ratio of the ionic liquid/carbon nanotubes is 1000/750).
  • the addition method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then, step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible solar cell, and can maintain a stable state with an electrical response of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the silicone resin is dissolved in acetone, and uniformly stirred, and 1-butyl-3-methylimidazolium trifluoroacetate is added (the weight ratio of ionic liquid/acetone is 1/1000; the weight ratio of ionic liquid/polymer) It is 1/1000) and continues to stir to form a transparent sol.
  • a sol is used in the next step to prepare an ion gel transparent electrode.
  • the transparent ionic sol formed in the step (1) was uniformly coated on a flexible bendable polyethylene terephthalate transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the resistance of the ionic gel is in the order of megaohms
  • the resistance of the transparent electrode of the ion gel can be adjusted by adding a thin layer of graphene (the weight ratio of the ionic liquid/graphene thin layer is 1 000 /1 000 ).
  • the method is to add the metal/semiconductor nanomaterial to the transparent sol formed in the step (1) and continue to stir to a uniform state. Then step (2) is performed to form an ion gel transparent electrode.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible mobile phone display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.
  • the transparent ionic sol formed in the step (1) was uniformly coated on a flexible bendable polyethylene terephthalate transparent polymer film. After the solvent is completely evaporated in the sol, an ion-gel transparent electrode in which the conductive layer is an ionic liquid/polymer blend and the support layer is a flexible bendable transparent polymer film is formed.
  • the ion gel transparent electrode prepared above can be used to prepare a flexible mobile phone display screen, and can maintain a stable state with an electrical response time of 0.1 ms, which is 0.1 ms less than that of ordinary ITO.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种可弯曲透明导电电极及利用离子液体-聚合物凝胶在柔性基底上制备该可弯曲透明导电电极的方法。该离子液体-聚合物凝胶由离子液体和聚合物经化学聚合或物理共混而成。由该离子液体-聚合物制备的导电凝胶包括聚合物、离子液体和导电纳米材料,其中的导电纳米材料可以调节凝胶导电层的电阻。该离子液体-聚合物凝胶透明电极,克服了现有技术中成本高,工艺复杂,原料稀缺的缺陷,具有优良的可加工性能,该透明电极尤其适用于制备可视电子设备的屏幕、可穿戴电子设备、可弯曲太阳能电池、可弯曲发光二极管。

Description

有机离子凝胶在柔性基底上制备可弯曲透明导电电极的 方法
技术领域
[0001] 本发明属于电子器件制备与应用领域, 涉及利用有机离子凝胶在柔性基底上制 备的可弯曲透明导电电极及其制备的方法。
背景技术
[0002] 透明电极在当代众多电子与光电子元器件中发挥着重要的作用, 是不可缺少的 光电功能材料。 但是, 该领域无论是在产业应用还是基础研究方面, 都到了升 级换代的关键吋刻。 一方面, 作为当前市场的主导透明电极材料, 氧化铟锡 (IT 0)已经遭遇了铟资源枯竭、 真空磁控溅射耗能昂贵的严峻挑战。 另一方面, 当 前的元器件正由传统的硬质芯片向柔性、 弹性、 可穿戴器件过渡, 这方面市场 正在爆发式增长, 毫无疑问就对其中的透明电极提出了新的要求。 目前替代 ITO 透明导电玻璃的方式主要是利用银纳米线作为透明导电层, 得到了研究机构和 工业界的广泛关注 (Hu et al,AcsNano,4:2955-2963(2010); Tokuno, Nano
Res,4: 1215-1222 (2011); Kim et al, AcsNano, 7: 1081-1091 (2013).)° 但是现存的 一些合成银纳米线的方法不得不使用微乳泵缓慢滴加前驱液来减少副产物和获 得超长的银纳米线, 该工艺较复杂而且不能获得高的产量, 因此不适于工业化 生产。 更为重要的若银纳米线薄膜直接裸露与基底表面, 很容易被硬物划伤。 另外, 银纳米线长吋间直接暴露在空气中, 容易被硫化从而降低导电性。 因此 需要探索一种新型透明电极既可以保证高的透光性、 导电性和可弯曲性能, 又 能实现较好的耐磨性和环境稳定性。
技术问题
[0003] 本发明的目的在于提供一种利用有机离子凝胶在柔性基底上制备可弯曲透明导 电电极的方法。 该方法能够调节离子凝胶导电层的电阻。
问题的解决方案 技术解决方案
[0004] 本发明中还提供了一种可弯曲透明导电电极, 其包括透明的离子凝胶、 柔性可 弯曲透明聚合物薄膜; 其特征在于: 透明的所述离子凝胶为通过化学聚合或物 理共混制备的离子凝胶, 且其中均匀地混合有金属纳米材料和 /或半导体纳米材 料; 所述柔性可弯曲透明聚合物薄膜作为所述可弯曲透明导电电极的支撑层。
[0005] 本发明的在利用有机离子凝胶在柔性基底上制备可弯曲透明导电电极的方法包 括以下步骤:
[0006] (1) 透明离子凝胶的制备方法 (化学聚合或物理共混)
[0007] (2) 离子凝胶透明电极的制备方法
[0008] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲透明聚合物薄膜上。
在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支撑层为柔 性可弯曲透明聚合物薄膜的离子凝胶透明电极, 如图 1所示。
[0009] (3) 调节离子凝胶透明电极电阻的方法
[0010] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入金属 /半导体纳米材料 的方式调节离子凝胶透明电极的电阻。 加入方法为在步骤 (1) 形成的透明的溶 胶中加入金属 /半导体纳米材料继续搅拌至均匀状态。 然后执行步骤 (2) , 形成 离子凝胶透明电极。
[0011] (4) 离子凝胶透明电极的应用
[0012] 制备的离子凝胶透明电极可用于制备可弯曲电子显示器屏幕, 比如手机、 电脑 显示器、 手表、 可视化眼镜等。 也可用于制备可弯曲发光二极管或者可弯曲太 阳能电池。
[0013] 本发明中的上述步骤 (1) 中, 1.1化学聚合为: 离子液体和聚合物单体以一定 比例溶解于溶剂中, 均匀搅拌后加入单体聚合的引发剂, 继续搅拌至均匀状态 。 然后在加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶 透明电极。 1.2物理共混为: 聚合物溶于溶剂, 均匀搅拌后加入离子液体, 继续 搅拌形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。 本发明中 的所述的离子液体为咪唑类、 吡啶类、 吡咯烷类和哌啶类离子液体中的一种或 几种。 咪唑类如 1-丁基 -3-甲基咪唑三氟乙酸盐; 吡啶类如 N-丁基 -吡啶溴盐; 吡 咯烷类如 N-丁基 -N-甲基吡咯烷溴盐; 哌啶类如 N-丁基 -N-甲基哌啶溴盐。
[0014] 本发明中的所述的聚合物单体为丙烯酸、 甲基丙烯酸甲酯、 苯乙烯、 氯乙烯中 的一种或几种。
[0015] 本发明中的所述的溶剂是水、 氯仿、 正己烷、 甲苯、 丙酮中的一种或几种。
[0016] 本发明中的所述的离子液体 /溶剂的重量比例是 1/1000-1000/1000。
[0017] 本发明中的所述的单体引发剂是过氧化苯甲酰、 过氧化二叔丁基、 偶氮二异丁 腈中的一种或几种。
[0018] 本发明中的所述的加热温度是 20-90 °C。
[0019] 本发明中的所述的引发剂 /聚合物单体的重量比例是 1/1000-5/1000。
[0020] 本发明中的所述的与离子液体物理共混的聚合物是聚丙烯、 聚乙烯、 聚二甲基 硅氧烷、 聚四氟乙烯、 聚硅树脂中的一种或几种。
[0021] 本发明中的所述的离子液体 /聚合物 (或聚合物单体)的重量比例是 1/1000-1000/1
000。
[0022] 本发明中的所述的在柔性电极制备过程中, 所用柔性可弯曲透明聚合物薄膜为 聚苯乙烯、 聚丙烯、 聚乙烯、 聚二甲基硅氧烷、 聚对苯二甲酸乙二酯中的一种 或几种。
[0023] 本发明中的所述的改变离子凝胶层电阻的金属 /半导体纳米材料是金纳米线、 银纳米线、 铜纳米线、 碳纳米管、 石墨烯薄层中的一种或几种。
[0024] 本发明中的所述的离子液体 /添加纳米材料的重量比例是 1000/1-1000/1000。
发明的有益效果
有益效果
[0025] 本发明提供的离子凝胶透明电极, 克服了现有透明电极技术中成本高, 工艺复 杂, 原料稀缺的缺陷, 具有优良的可加工性能。 通过向离子凝胶中添加金属纳 米材料, 本发明可以调节离子凝胶导电层的电阻。 本发明得到的离子凝胶透明 电极经过长达一年的放置不会损坏或者导电性下降, 且经过一小吋的紫外光照 对其形成无影响, 生成的导电层性质稳定。 本发明的方法操作简便、 易于控制 、 所需设备简单、 能够大规模生产, 该透明电极尤其适用于制备可视电子设备 的屏幕、 可穿戴电子设备、 可弯曲太阳能电池、 可弯曲发光二极管。 对附图的简要说明
附图说明
[0026] 图 1是本发明的可弯曲离子凝胶透明电极的示意图
本发明的实施方式
[0027] 以下实施例仅是对本发明的技术方案作进一步的说明, 而不是对本发明的技术 方案进行限制。
[0028] 实施例 1
[0029] (1) 透明离子凝胶的制备方法 (化学聚合)
[0030] 1-丁基 -3-甲基咪唑三氟乙酸盐和丙烯酸以 1/1000重量比溶解于氯仿中 (离子液 体 /氯仿的重量比例是 1/1000) , 均匀搅拌后加入单体聚合的引发剂过氧化苯甲 酰 (引发剂 /聚合物单体的重量比例是 1/1000) , 继续搅拌至均匀状态。 然后在 2 0 °c加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电 极。
[0031] (2) 离子凝胶透明电极的制备方法
[0032] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚苯乙烯透明聚合物 薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支 撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0033] (3) 调节离子凝胶透明电极电阻的方法
[0034] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入金纳米线 (离子液体 / 金纳米线的重量比例是 1000/1) 的方式调节离子凝胶透明电极的电阻。 加入方法 为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀状 态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0035] (4) 离子凝胶透明电极的应用
[0036] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0037] 实施例 2
[0038] (1) 透明离子凝胶的制备方法 (化学聚合) [0039] N-丁基-吡啶溴盐和甲基丙烯酸甲酯以 250/1000重量比溶解于正己烷中 (离子液 体 /正己烷的重量比例是 250/1000) , 均匀搅拌后加入单体聚合的引发剂过氧化 二叔丁基 (引发剂 /聚合物单体的重量比例是 2/1000) , 继续搅拌至均匀状态。 然后在 40 °C加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝 胶透明电极。
[0040] (2) 离子凝胶透明电极的制备方法
[0041] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚丙烯透明聚合物薄 膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支撑 层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0042] (3) 调节离子凝胶透明电极电阻的方法
[0043] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入银纳米线 (离子液体 / 银纳米线的重量比例是 1000/250) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0044] (4) 离子凝胶透明电极的应用
[0045] 上述制备的离子凝胶透明电极可用于制备可弯曲眼镜显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0046] 实施例 3
[0047] (1) 透明离子凝胶的制备方法 (化学聚合)
[0048] N-丁基 -N-甲基吡咯烷溴盐和苯乙烯以 750/1000重量比溶解于甲苯中 (离子液体 /甲苯的重量比例是 500/1000) , 均匀搅拌后加入单体聚合的引发剂偶氮二异丁 腈 (引发剂 /聚合物单体的重量比例是 4/1000) , 继续搅拌至均匀状态。 然后在 6 0 °c加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电 极。
[0049] (2) 离子凝胶透明电极的制备方法
[0050] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚乙烯透明聚合物薄 膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支撑 层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。 [0051] (3) 调节离子凝胶透明电极电阻的方法
[0052] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入铜纳米线 (离子液体 / 铜纳米线的重量比例是 1000/500) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0053] (4) 离子凝胶透明电极的应用
[0054] 上述制备的离子凝胶透明电极可用于制备可弯曲发光二极管, 能很好地保持稳 定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0055] 实施例 4
[0056] (1) 透明离子凝胶的制备方法 (化学聚合)
[0057] N-丁基 -N-甲基哌啶溴盐和氯乙烯以 1000/1000重量比溶解于丙酮中 (离子液体 / 丙酮的重量比例是 1000/1000) , 均匀搅拌后加入单体聚合的引发剂过氧化苯甲 酰 (引发剂 /聚合物单体的重量比例是 1/1000) , 继续搅拌至均匀状态。 然后在 9 0 °c加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电 极。
[0058] (2) 离子凝胶透明电极的制备方法
[0059] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚二甲基硅氧烷透明 聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混 物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0060] (3) 调节离子凝胶透明电极电阻的方法
[0061] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入碳纳米管 (离子液体 / 碳纳米管的重量比例是 1000/750) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0062] (4) 离子凝胶透明电极的应用
[0063] 上述制备的离子凝胶透明电极可用于制备可弯曲太阳能电池, 能很好地保持稳 定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0064] 实施例 5 [0065] (1) 透明离子凝胶的制备方法 (化学聚合)
[0066] N-丁基 -N-甲基哌啶溴盐和氯乙烯以 1000/1000重量比溶解于丙酮中 (离子液体 / 丙酮的重量比例是 1000/1000) , 均匀搅拌后加入单体聚合的引发剂过氧化苯甲 酰 (引发剂 /聚合物单体的重量比例是 1/1000) , 继续搅拌至均匀状态。 然后在 9 0 °c加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电 极。
[0067] (2) 离子凝胶透明电极的制备方法
[0068] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚对苯二甲酸乙二酯 透明聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物 共混物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0069] (3) 调节离子凝胶透明电极电阻的方法
[0070] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入石墨烯薄层 (离子液体 /石墨烯薄层的重量比例是 1000/1000) 的方式调节离子凝胶透明电极的电阻。 加 入方法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至 均匀状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0071] (4) 离子凝胶透明电极的应用
[0072] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0073] 实施例 6
[0074] (1) 透明离子凝胶的制备方法 (化学聚合)
[0075] N-丁基 -N-甲基哌啶溴盐和氯乙烯以 1000/1000重量比溶解于丙酮中 (离子液体 / 丙酮的重量比例是 1000/1000) , 均匀搅拌后加入单体聚合的引发剂过氧化苯甲 酰 (引发剂 /聚合物单体的重量比例是 1/1000) , 继续搅拌至均匀状态。 然后在 9 0 °c加热状态下反应形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电 极。
[0076] (2) 离子凝胶透明电极的制备方法
[0077] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚对苯二甲酸乙二酯 透明聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物 共混物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0078] (3) 离子凝胶透明电极的应用
[0079] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0080] 实施例 7
[0081] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0082] 聚丙烯溶于氯仿, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离子液体 / 氯仿的重量比例是 1/1000; 离子液体 /聚合物的重量比例是 1/1000) , 继续搅拌形 成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0083] (2) 离子凝胶透明电极的制备方法
[0084] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚苯乙烯透明聚合物 薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支 撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0085] (3) 调节离子凝胶透明电极电阻的方法
[0086] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入金纳米线 (离子液体 / 金纳米线的重量比例是 1000/1) 的方式调节离子凝胶透明电极的电阻。 加入方法 为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀状 态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0087] (4) 离子凝胶透明电极的应用
[0088] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0089] 实施例 8
[0090] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0091] 聚乙烯溶于水, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离子液体 /7 的重量比例是 250/1000; 离子液体 /聚合物的重量比例是 250/1000) , 继续搅拌形 成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0092] (2) 离子凝胶透明电极的制备方法
[0093] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚丙烯透明聚合物薄 膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支撑 层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0094] (3) 调节离子凝胶透明电极电阻的方法
[0095] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入银纳米线 (离子液体 / 银纳米线的重量比例是 1000/250) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0096] (4) 离子凝胶透明电极的应用
[0097] 上述制备的离子凝胶透明电极可用于制备可弯曲眼镜显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0098] 实施例 9
[0099] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0100] 聚二甲基硅氧烷溶于甲苯, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离 子液体 /甲苯的重量比例是 500/1000; 离子液体 /聚合物的重量比例是 500/1000) , 继续搅拌形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0101] (2) 离子凝胶透明电极的制备方法
[0102] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚乙烯透明聚合物薄 膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混物、 支撑 层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0103] (3) 调节离子凝胶透明电极电阻的方法
[0104] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入铜纳米线 (离子液体 / 铜纳米线的重量比例是 1000/500) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0105] (4) 离子凝胶透明电极的应用
[0106] 上述制备的离子凝胶透明电极可用于制备可弯曲发光二极管, 能很好地保持稳 定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0107] 实施例 10 [0108] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0109] 聚四氟乙烯溶于正己烷, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离子 液体 /正己烷的重量比例是 750/1000; 离子液体 /聚合物的重量比例是 750/1000) , 继续搅拌形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0110] (2) 离子凝胶透明电极的制备方法
[0111] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚二甲基硅氧烷透明 聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物共混 物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0112] (3) 调节离子凝胶透明电极电阻的方法
[0113] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入碳纳米管 (离子液体 / 碳纳米管的重量比例是 1000/750) 的方式调节离子凝胶透明电极的电阻。 加入方 法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至均匀 状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0114] (4) 离子凝胶透明电极的应用
[0115] 上述制备的离子凝胶透明电极可用于制备可弯曲太阳能电池, 能很好地保持稳 定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0116] 实施例 11
[0117] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0118] 聚硅树脂溶于丙酮, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离子液体 /丙酮的重量比例是 1/1000; 离子液体 /聚合物的重量比例是 1/1000) , 继续搅拌 形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0119] (2) 离子凝胶透明电极的制备方法
[0120] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚对苯二甲酸乙二酯 透明聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物 共混物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0121] (3) 调节离子凝胶透明电极电阻的方法
[0122] 由于离子凝胶的电阻为兆欧姆级别, 所以可以通过加入石墨烯薄层 (离子液体 /石墨烯薄层的重量比例是 1000/1000) 的方式调节离子凝胶透明电极的电阻。 加 入方法为在步骤 (1) 形成的透明的溶胶中加入金属 /半导体纳米材料继续搅拌至 均匀状态。 然后执行步骤 (2) , 形成离子凝胶透明电极。
[0123] (4) 离子凝胶透明电极的应用
[0124] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。
[0125] 实施例 12
[0126] ( 1) 透明离子凝胶的制备方法 (物理共混)
[0127] 聚丙烯溶于氯仿, 均匀搅拌后加入 1-丁基 -3-甲基咪唑三氟乙酸盐 (离子液体 / 氯仿的重量比例是 1000/1000; 离子液体 /聚合物的重量比例是 1000/1000) , 继续 搅拌形成透明的溶胶。 此类溶胶用于下一步制备离子凝胶透明电极。
[0128] (2) 离子凝胶透明电极的制备方法
[0129] 将步骤 (1) 形成的透明离子溶胶均匀涂覆在柔性可弯曲聚对苯二甲酸乙二酯 透明聚合物薄膜上。 在溶胶中溶剂挥发完全后, 形成导电层为离子液体 /聚合物 共混物、 支撑层为柔性可弯曲透明聚合物薄膜的离子凝胶透明电极。
[0130] (3) 离子凝胶透明电极的应用
[0131] 上述制备的离子凝胶透明电极可用于制备可弯曲手机显示器屏幕, 能很好地保 持稳定状态, 电响应吋间为 0.1 ms, 比普通 ITO的响应吋间要减少 0.1 ms。

Claims

权利要求书 一种可弯曲透明导电电极的方法, 其特征在于, 该方法包括以下步骤 (1) 制备透明的离子凝胶; (2) 调节离子凝胶透明电极的电阻, 在步骤 (1) 制备的透明的溶胶 中加入金属纳米材料和 /或半导体纳米材料继续搅拌至均匀状态;(3) 离子凝胶透明电极的制备, 将步骤 (2) 形成的所述溶胶均匀涂 覆在柔性可弯曲透明聚合物薄膜上; 在溶胶中的溶剂挥发完全后, 形 成导电层为离子液体 /聚合物共混物、 支撑层为柔性可弯曲透明聚合 物薄膜的离子凝胶透明电极; 所述离子凝胶透明电极构成所述导电电极。 根据权利要求 1所述的方法, 其特征在于, 在所述步骤 (1) 中, 通过 化学聚合或物理共混制备透明的离子凝胶; 其中
1.1所述化学聚合的步骤包括:
离子液体和聚合物单体以一定比例溶解于溶剂中, 均匀搅拌后加入引 发聚合物单体聚合的引发剂, 继续搅拌至均匀状态; 然后在加热状态 下反应形成透明的溶胶以用于制备离子凝胶透明电极;
1.2所述物理共混的步骤包括:
聚合物溶于溶剂, 均匀搅拌后加入离子液体, 继续搅拌形成透明的溶 胶以用于制备离子凝胶透明电极。
根据权利要求 1或 2所述的方法, 其特征是: 所述离子液体为咪唑类、 吡啶类、 吡咯烷类和哌啶类离子液体中的一种或多种。
根据权利要求 2所述的方法, 其特征在于, 所述引发剂是过氧化苯甲 酰、 过氧化二叔丁基、 偶氮二异丁腈中的一种或多种。
根据权利要求 2所述的方法, 其特征在于, 与离子液体物理共混的聚 合物是聚丙烯、 聚乙烯、 聚二甲基硅氧烷、 聚四氟乙烯、 聚硅树脂中 的一种或多种。
根据权利要求 1、 2、 4或 5所述的方法, 其特征在于, 所述可弯曲透明 聚合物薄膜为聚苯乙烯、 聚丙烯、 聚乙烯、 聚二甲基硅氧烷、 聚对苯 二甲酸乙二酯中的一种或多种。
[权利要求 7] 根据权利要求 1、 2、 4或 5所述的方法, 其特征在于, 所述纳米材料是 金纳米线、 银纳米线、 铜纳米线、 碳纳米管、 石墨烯薄层中的一种或 多种; 所述离子凝胶透明电极可用于制备可弯曲电子显示器屏幕、 可 弯曲发光二极管、 可弯曲太阳能电池。
[权利要求 8] 根据权利要求 3所述的方法, 其特征在于, 所述咪唑类离子液体为 1- 丁基 -3-甲基咪唑三氟乙酸盐; 所述吡啶类离子液体为 N-丁基-吡啶溴 盐; 所述吡咯烷类离子液体为 N-丁基 -N-甲基吡咯烷溴盐; 所述哌啶 类离子液体为 N-丁基 -N-甲基哌啶溴盐。
[权利要求 9] 一种可弯曲透明导电电极, 包括透明的离子凝胶、 柔性可弯曲透明聚 合物薄膜; 其特征在于: 所述透明的所述离子凝胶中均匀地混合有金 属纳米材料和 /或半导体纳米材料; 所述柔性可弯曲透明聚合物薄膜 作为所述可弯曲透明导电电极的支撑层。
[权利要求 10] 根据权利要求 9所述的可弯曲透明导电电极, 其特征在于, 所述可弯 曲透明导电电极采用权利要求 1-8中任一项所述的方法制备。
PCT/CN2015/080727 2015-04-17 2015-06-03 可弯曲透明导电电极及其制备方法 WO2016165202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510185186.7 2015-04-17
CN201510185186 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016165202A1 true WO2016165202A1 (zh) 2016-10-20

Family

ID=54304580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080727 WO2016165202A1 (zh) 2015-04-17 2015-06-03 可弯曲透明导电电极及其制备方法

Country Status (2)

Country Link
CN (1) CN104992778A (zh)
WO (1) WO2016165202A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269644A (zh) * 2017-01-04 2018-07-10 北京赛特超润界面科技有限公司 一种金属纳米线@离子液体凝胶复合柔性透明电极的制备方法
CN109029801B (zh) * 2018-05-25 2020-04-28 苏州大学 一种金属纳米线复合膜压力传感器及其制备方法
CN110459366B (zh) * 2019-07-30 2020-11-13 哈尔滨工业大学(深圳) 超高透光率电极的制备方法和电子皮肤、机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647049A (zh) * 2013-12-04 2014-03-19 合肥国轩高科动力能源股份公司 一种磷酸铁锂薄膜电极的制备方法
CN103647042A (zh) * 2013-11-30 2014-03-19 孙永平 尖晶石型锂离子薄膜电极的制备方法
CN103762014A (zh) * 2013-12-24 2014-04-30 苏州大学 一种基于丝素蛋白的柔性透明电极薄膜及其制备方法和应用
CN104159985A (zh) * 2012-03-08 2014-11-19 东进世美肯株式会社 透明电极形成用导电性油墨组合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199126A (zh) * 2013-03-19 2013-07-10 上海理工大学 石墨烯-氧化锌透明导电薄膜及其制备方法
CN103938210B (zh) * 2014-04-10 2016-08-17 三峡大学 一种azo透明导电薄膜的制备方法
CN104393194A (zh) * 2014-12-10 2015-03-04 京东方科技集团股份有限公司 一种柔性电极、其制作方法、电子皮肤及柔性显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104159985A (zh) * 2012-03-08 2014-11-19 东进世美肯株式会社 透明电极形成用导电性油墨组合物
CN103647042A (zh) * 2013-11-30 2014-03-19 孙永平 尖晶石型锂离子薄膜电极的制备方法
CN103647049A (zh) * 2013-12-04 2014-03-19 合肥国轩高科动力能源股份公司 一种磷酸铁锂薄膜电极的制备方法
CN103762014A (zh) * 2013-12-24 2014-04-30 苏州大学 一种基于丝素蛋白的柔性透明电极薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN104992778A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
CN102270524A (zh) 基于热塑性透明聚合物的银纳米线透明导电薄膜及其制备方法
CN105140408A (zh) 柔性透明复合离子液体凝胶导电电极的制备方法
CN204028877U (zh) 一种基于纳米银线的双层电容式触摸屏用透明导电薄膜组
WO2014134894A1 (zh) 触摸屏及其制造方法
CN103545053B (zh) 透明导电薄膜的制备方法及具有该导电薄膜的cf基板的制备方法
KR20120021451A (ko) 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
CN103000245B (zh) 一种石墨烯金属混合电极材料、其制备方法、应用及基板
US11106107B2 (en) Ultra-flexible and robust silver nanowire films for controlling light transmission and method of making the same
CN106082693A (zh) 一种制备石墨烯透明导电薄膜的方法
CN111128443B (zh) 一种透明导电膜及其制备方法
CN107765451A (zh) 透明导电膜及其制备方法和光传输控制装置及其制备方法
WO2016165202A1 (zh) 可弯曲透明导电电极及其制备方法
CN108735349B (zh) 一种含离子液体的银纳米线透明导电薄膜及其制备方法
CN107481801A (zh) 一种银纳米线网格透明电极的制备方法
CN107680707B (zh) 一种核壳结构的复合金属纳米线及其制备方法与应用
CN104993057B (zh) 一种采用石墨烯薄膜与金属网复合的透明电极的生产方法
CN107887076A (zh) 一种石墨烯导电薄膜的制备方法
US20180321538A1 (en) Copper-reduced graphene oxide core-shell transparent conductor for controlling light transmission and method of making the same
CN205334442U (zh) 一种复合型纳米银线柔性透明导电电极结构
CN106024200A (zh) 一种制备石墨烯导电薄膜的方法
CN106252382A (zh) 显示装置及其制作方法
CN109417108A (zh) 透明电极及其制备方法、显示面板、太阳能电池
CN102544388A (zh) 一种基于碳纳米管/银/掺铝氧化锌结构的柔性电极
CN105489313A (zh) 高导电性基板及其制作方法
CN104485177B (zh) 一种摩擦制备柔性透明导电膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888906

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15888906

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888906

Country of ref document: EP

Kind code of ref document: A1