WO2022032732A1 - 一种提高ZnTe晶体掺杂元素均匀性的方法 - Google Patents

一种提高ZnTe晶体掺杂元素均匀性的方法 Download PDF

Info

Publication number
WO2022032732A1
WO2022032732A1 PCT/CN2020/111644 CN2020111644W WO2022032732A1 WO 2022032732 A1 WO2022032732 A1 WO 2022032732A1 CN 2020111644 W CN2020111644 W CN 2020111644W WO 2022032732 A1 WO2022032732 A1 WO 2022032732A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
znte
crystals
annealing
uniformity
Prior art date
Application number
PCT/CN2020/111644
Other languages
English (en)
French (fr)
Inventor
徐亚东
孙俊杰
Original Assignee
南京公诚节能新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京公诚节能新材料研究院有限公司 filed Critical 南京公诚节能新材料研究院有限公司
Publication of WO2022032732A1 publication Critical patent/WO2022032732A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Definitions

  • the invention relates to the technical field of ZnTe crystals, in particular to a method for improving the uniformity of doping elements of ZnTe crystals.
  • a crystal is a solid whose internal particles are periodically repeated in three-dimensional space. Due to its unique structural characteristics, crystals can realize the interaction and mutual conversion of electricity, heat, magnetism, light, sound and force, and become an indispensable and important functional material in industry. , meteorology, architecture, military technology and other fields have been widely used. According to different functional properties, crystal materials can be divided into optical functional crystals, semiconductor crystals, piezoelectric crystals, pyroelectric crystals, superhard crystals and so on. The reserves of natural crystals are limited, and due to the inevitable many defects in natural formation, it is difficult to guarantee the purity and single crystallinity. Intraocular lenses can meet specific needs by controlling their growth laws and habits. One of the methods is to dope crystals with certain types (such as B and P, transition metal elements, rare earth elements and actinides, etc.) and elements in order to improve the quality of crystal production and improve certain properties. .
  • certain types such as B and P, transition metal elements, rare earth elements and actinides, etc.
  • the content of dopant elements in different parts of the as-grown ZnTe crystal is different, resulting in differences in its electrical properties. Reducing the length of the molten zone and using ACRT technology can promote the diffusion of solutes, which is beneficial to reduce the segregation phenomenon and improve the uniformity of doping elements.
  • the compensation mechanism between different doping elements and Zn vacancies, the trapping characteristics of free carriers and their solid solubility in ZnTe crystals are different, which may introduce new defect complexes, resulting in reduced THz radiation efficiency and waveform The change. It is necessary to confirm the state and energy level of doping elements based on defect physics and defect chemical analysis methods and quantitative characterization methods of point defects, and then accurately control the doping concentration.
  • Te flux tellurium self-flux
  • the Zn vacancies in the crystal are the main factors that determine the carrier concentration and resistivity of ZnTe crystals.
  • Capital Normal University Wang Xiumin et al found that the resistivity of ZnTe crystals that can efficiently generate and detect THz radiation is usually between 10 2 -10 6 ⁇ cm.
  • the resistivity of ZnTe crystals can be tuned in a wide range by growth doping. For example, using ZnP 2 as a dopant can reduce the resistivity of the crystal to 2.3 ⁇ 10 -2 ⁇ cm, while the resistivity of In-doped ZnTe crystal can reach 4.4 ⁇ 10 8 ⁇ cm. Asahi et al. made the resistivity reach 10 6 ⁇ cm by doping GaS.
  • the purpose of the present invention is to provide a method for improving the uniformity of ZnTe crystal doping elements, so as to solve the problems raised in the above background art.
  • the present invention provides the following technical solutions: a method for improving the uniformity of ZnTe crystal doping elements, comprising the following steps:
  • ZnTe electro-optic crystals were grown by Te flux-TGSM technology, and large-sized ZnTe single crystals were obtained by optimizing ACRT parameters;
  • the crystal slice frame is fixed on the quartz support in the quartz ampoule, the ampoule is evacuated inside, then the bottle mouth of the ampoule is melted and sealed, and the ampoule is put into the annealing furnace for uniform annealing.
  • the crystal growth method includes melting Te and Zn in a vacuum quartz crucible to form a ZnTe ingot, and then placing the ingot together with the crucible into a vertical growth furnace for vertical growth.
  • the Te and Zn elements are swayed when they are melted in the crucible, and the melting synthesis temperature is 20°C higher than the melting point temperature of the ZnTe compound.
  • the ZnTe ingot is naturally cooled and solidified, and then the ZnTe ingot is placed vertically with the crucible.
  • Growth furnace the maximum temperature in the furnace is 1100 °C
  • the low temperature crystallization temperature is 1060 °C
  • the temperature gradient is 10 °C/cm
  • the crucible descending speed is 0.5-1mm/h
  • the melt to be passed through the temperature gradient zone of the vertical growth furnace is moved to The crystal growth in the low temperature region ends.
  • step S2 during annealing in the crystal furnace, the overall furnace temperature of the growth furnace is adjusted to 450°C-510°C, and the annealing time is 24-48h.
  • step S3 after the crystal slices are polished, the crystals are cleaned with an organic solvent combined with ultrasonic waves, rinsed with deionized water, and dried for later use.
  • the organic solvent is one or more of isopropanol, petroleum ether, and acetone.
  • step S4 the relationship between the doping amount and the properties of the ZnTe crystal is established by developing the macroscopic optoelectronic properties of the ZnTe crystal and developing a THz-TDS system based on the ZnTe crystal to establish the relationship between the doping amount and the resistivity of the ZnTe crystal.
  • the quantitative relationship between properties such as carrier mobility and carrier mobility, and the relationship between electrical properties such as carrier concentration, lifetime and mobility, and the absorption, transmission and scattering of ZnTe crystals in the THz band reveal the effects of ZnTe crystals on the generation and detection of THz.
  • the main factor of radiation revealing the influence law of surface treatment and modification on THz response.
  • step S5 the quartz support and the quartz ampoule are soaked in aqua regia, rinsed with deionized water and dried, and the vacuum degree in the quartz ampoule is greater than 5 ⁇ 10 -4 Pa, the annealing temperature is 550-600°C, and the annealing time is 50-110h.
  • a ZnTe crystal with high optical quality is finally obtained, and an engineering technology for forming a ZnTe-based electro-optic crystal for terahertz generation and detection is used for the development of high-performance THz spectrometer and THz Imaging devices, laying the foundation for its application in medical imaging, security inspection, atmospheric environmental quality monitoring, industrial non-destructive testing and other fields.
  • the invention provides a technical solution: a method for improving the uniformity of ZnTe crystal doping elements, comprising the following steps:
  • ZnTe electro-optic crystals were grown by Te flux-TGSM technology, and large-sized ZnTe single crystals were obtained by optimizing ACRT parameters;
  • the crystal slice frame is fixed on the quartz support in the quartz ampoule, the ampoule is evacuated inside, then the bottle mouth of the ampoule is melted and sealed, and the ampoule is put into the annealing furnace for uniform annealing.
  • the crystal growth method includes melting Te and Zn in a vacuum quartz crucible to form a ZnTe ingot, and then placing the ingot together with the crucible into a vertical growth furnace for vertical growth.
  • Te and Zn are swayed when they are melted in the crucible.
  • the melting synthesis temperature is 20°C higher than the melting point temperature of the ZnTe compound. After 7 hours of melting and synthesis, the temperature is naturally cooled and solidified. Then the ZnTe ingot is put into the vertical growth furnace with the crucible, and the highest temperature in the furnace is obtained. The temperature is 1100°C, the low-temperature crystallization temperature is 1060°C, the temperature gradient is 10°C/cm, and the crucible descending speed is 0.5-1mm/h. After the melt passes through the temperature gradient zone of the vertical growth furnace, it is moved to the low temperature zone to finish the crystal growth.
  • step S2 during annealing in the crystal furnace, the overall furnace temperature of the growth furnace is adjusted to 450°C-510°C, and the annealing time is 24-48h.
  • step S3 after the crystal slices are polished, the crystals are cleaned with acetone combined with ultrasonic waves, rinsed with deionized water, and dried for later use.
  • step S4 the relationship between the doping amount and the properties of the ZnTe crystal is established by developing the macroscopic optoelectronic properties of the ZnTe crystal and developing a THz-TDS system based on the ZnTe crystal to establish the relationship between the doping amount and the properties such as the resistivity and carrier mobility of the ZnTe crystal.
  • the properties such as the resistivity and carrier mobility of the ZnTe crystal.
  • step S5 both the quartz support and the quartz ampoule are soaked in aqua regia, rinsed with deionized water and dried, the vacuum degree in the quartz ampoule is greater than 5 ⁇ 10-4Pa, the annealing temperature is 550-600°C, and the annealing time is 50-110h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种提高ZnTe晶体掺杂元素均匀性的方法,包括如下步骤:采用Te熔剂-TGSM技术生长ZnTe电光晶体;将晶体在生长炉内低温区保温退火;将晶体锭条取出,进行定向切片,研磨和抛光,然后清洗干净并甩干备用;建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理;将晶体切片架在石英支架上固定于石英安瓿内,将安瓿瓶进行内进行抽真空,然后对安瓿瓶的瓶口进行熔封,将安瓿瓶放入退火炉进行均匀性退火。通过建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理,优化掺杂浓度及设计多阶段组合退火处理工艺,最终获得高均匀性光学品质的ZnTe晶体。

Description

一种提高ZnTe晶体掺杂元素均匀性的方法 技术领域
本发明涉及ZnTe晶体技术领域,具体为一种提高ZnTe晶体掺杂元素均匀性的方法。
背景技术
晶体是内部质点在三维空间中成周期性重复排列的固体。由于其特有的结构特点,晶体能够实现电、热、磁、光、声和力的相互作用和相互转换,成为工业中不可或缺的重要功能材料,在通信、摄影、宇航、医学、地质学、气象学、建筑学、军事技术等领域得到了广泛的应用。根据不同的功能物性,晶体材料可分为光功能晶体、半导体晶体、压电晶体、热释电晶体、超硬晶体等等。天然晶体储量有限,且由于天然形成不可避免有较多的各种缺陷,纯净度和单晶性难以保障。而人工晶体能够通过控制其生长规律和习性达到满足特定需求的目的。其中有一种方法就是在晶体中掺杂具有一定种类(如B和P,过渡金属元素,稀土元素及锕系元素等)和含量的元素,以达到提高晶体生产质量,及改善某些性能的目的。
由于掺杂元素的分凝,导致生长态ZnTe晶体不同部位掺杂元素的含量不同,进而造成其电学性能存在差异。减小熔区长度并采用ACRT技术可以促进溶质的扩散,有利于减小分凝现象,提高掺杂元素的均匀性。此外,不同掺杂元素与Zn空位间的补偿机理,对自由载流子的俘获特性及其在ZnTe晶体中的固溶度不同,可能会引入新的缺陷复合体,导致THz辐射效率降低和波形的变化。需要依据缺陷物理和缺陷化学分析方法及点缺陷的定量表征手段,确认出掺杂元素的状态和能级,进而准确控制掺杂浓度。
近年来,研究人员开发出碲自助熔剂(以下简称Te熔剂)技术生长ZnTe晶体,可以有效降低晶体的生长温度,并且可以减少高温条件下从石英坩埚 中扩散的杂质。2014年日本新日矿业公司采用Te熔剂技术改进的VGF法生长出ZnTe晶体。但采用Te熔剂法进行ZnTe晶体生长的一个显著的特点是:随着晶体生长的进行,熔体成分不断变化导致溶质的析出温度和析出速率在不断变化,进而造成液/固界面的推进速率及形态不稳定。
晶体中的Zn空位是决定ZnTe晶体载流子浓度及电阻率的主要因素。首都师范大学王秀敏等发现能够高效产生和探测THz辐射的ZnTe晶体的电阻率通常在10 2-10 6Ω·cm之间。通过生长掺杂可以在较宽范围内调整ZnTe晶体的电阻率。如:使用ZnP 2作为掺杂剂可以将晶体的电阻率降低至2.3×10 -2Ω·cm,而In掺杂的ZnTe晶体的电阻率可以达到4.4×10 8Ω·cm。Asahi等则通过掺GaS使其电阻率达到10 6Ω·cm。此外,2007年美国普林斯顿大学的研究人员则发现V掺杂可以显著提高晶体的电光效应。然而对掺杂元素在晶体中的状态以及与Zn空位的作用规律目前尚缺少理论研究。同时,由于Ⅱ-Ⅵ族半导体化合物材料一般存在严重的自补偿现象,如何实现有效掺杂以及控制掺杂的均匀性,也是目前亟待解决的技术问题,为此我们提出一种提高ZnTe晶体掺杂元素均匀性的方法用于解决上述问题。
发明内容
本发明的目的在于提供一种提高ZnTe晶体掺杂元素均匀性的方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种提高ZnTe晶体掺杂元素均匀性的方法,包括如下步骤:
S1、晶体生长
采用Te熔剂-TGSM技术生长ZnTe电光晶体,通过优化ACRT参数获得大尺寸ZnTe单晶;
S2、晶体炉内退火
晶体全部通过垂直生长炉的温度梯度区后在生长炉内低温区保温退火;
S3、晶体表面处理
将炉内退火后的晶体锭条取出,对晶向进行定向切片,研磨和抛光,然后清洗干净并甩干备用;
S4、掺杂元素与晶体关系检测
建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理,归纳富Te相及其诱导缺陷对THz辐射效率和均匀性等的影响规律;
S5、晶体均匀化退火
将晶体切片架在石英支架上固定于石英安瓿内,将安瓿瓶进行内进行抽真空,然后对安瓿瓶的瓶口进行熔封,将安瓿瓶放入退火炉进行均匀性退火。
优选的一种实施案例,步骤S1中,所述晶体生长方法包括Te和Zn单质在真空石英坩埚内熔融形成ZnTe锭条,然后将锭条随坩埚一起放入垂直生长炉进行垂直生长。
优选的一种实施案例,所述Te和Zn单质在坩埚内熔融时进行摇摆,熔融合成温度大于ZnTe化合物熔点温度20℃,熔融合成7h后自然降温凝固,然后将ZnTe锭条随坩埚放入垂直生长炉,炉内最高温度为1100℃,低温结晶温度为1060℃,温度梯度10℃/cm,坩埚下降速度为0.5-1mm/h,待熔体全部通过垂直生长炉的温度梯度区,移到低温区晶体生长结束。
优选的一种实施案例,步骤S2中,晶体炉内退火时,将生长炉整体炉温调整为450℃-510℃,退火时间:24-48h。
优选的一种实施案例,步骤S3中,晶体切片抛光后采用有机溶剂并结合超声波对晶进行清洗,并用去离子水冲洗干净,甩干备用。
优选的一种实施案例,所述有机溶剂为异丙醇、石油醚、丙酮中一种或多种。
优选的一种实施案例,步骤S4中,所述掺杂量与ZnTe晶体性能关系通 过开展ZnTe晶体的宏观光电性能,并开发基于ZnTe晶体的THz-TDS系统,建立掺杂量与ZnTe晶体电阻率和载流子迁移率等性能间的定量关系,并结合载流子浓度、寿命和迁移率等电学特性与ZnTe晶体在THz波段的吸收、透过和散射关系,揭示影响ZnTe晶体产生和探测THz辐射的主要因素,揭示表面处理和改性对THz响应的影响规律。
优选的一种实施案例,步骤S5中,所述石英支架和石英安瓿瓶均通过王水浸泡并去离子水冲洗干净并烘干,所述石英安瓿瓶内真空度大于高于5×10 -4Pa,退火温度为550-600℃,退火时间50-110h。
与现有技术相比,本发明的有益效果是:
1、通过对ZnTe晶体的定向切割、研磨、抛光等批量加工技术对晶体进行表面处理,并通过建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理,从本质上揭示掺杂元素影响ZnTe晶体THz响应性能的关键因素;
2、通过优化掺杂浓度及设计多阶段组合退火处理工艺,最终获得高光学品质的ZnTe晶体,形成太赫兹产生与探测用ZnTe基电光晶体的工程化技术,为开发高性能THz谱仪和THz成像器件,实现其在医疗成像、安全检查、大气环境质量监控、工业无损检测等领域中的应用奠定基础。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:一种提高ZnTe晶体掺杂元素均匀性的方法,包括如下步骤:
S1、晶体生长
采用Te熔剂-TGSM技术生长ZnTe电光晶体,通过优化ACRT参数获得大尺寸ZnTe单晶;
S2、晶体炉内退火
晶体全部通过垂直生长炉的温度梯度区后在生长炉内低温区保温退火;
S3、晶体表面处理
将炉内退火后的晶体锭条取出,对晶向进行定向切片,研磨和抛光,然后清洗干净并甩干备用;
S4、掺杂元素与晶体关系检测
建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理,归纳富Te相及其诱导缺陷对THz辐射效率和均匀性等的影响规律;
S5、晶体均匀化退火
将晶体切片架在石英支架上固定于石英安瓿内,将安瓿瓶进行内进行抽真空,然后对安瓿瓶的瓶口进行熔封,将安瓿瓶放入退火炉进行均匀性退火。
步骤S1中,晶体生长方法包括Te和Zn单质在真空石英坩埚内熔融形成ZnTe锭条,然后将锭条随坩埚一起放入垂直生长炉进行垂直生长。
进一步的,Te和Zn单质在坩埚内熔融时进行摇摆,熔融合成温度大于ZnTe化合物熔点温度20℃,熔融合成7h后自然降温凝固,然后将ZnTe锭条随坩埚放入垂直生长炉,炉内最高温度为1100℃,低温结晶温度为1060℃,温度梯度10℃/cm,坩埚下降速度为0.5-1mm/h,待熔体全部通过垂直生长炉的温度梯度区,移到低温区晶体生长结束。
步骤S2中,晶体炉内退火时,将生长炉整体炉温调整为450℃-510℃,退火时间:24-48h。
步骤S3中,晶体切片抛光后采用丙酮并结合超声波对晶进行清洗,并用去离子水冲洗干净,甩干备用。
步骤S4中,掺杂量与ZnTe晶体性能关系通过开展ZnTe晶体的宏观光电性能,并开发基于ZnTe晶体的THz-TDS系统,建立掺杂量与ZnTe晶体电阻率和载流子迁移率等性能间的定量关系,并结合载流子浓度、寿命和迁移率等电学特性与ZnTe晶体在THz波段的吸收、透过和散射关系,揭示影响ZnTe晶体产生和探测THz辐射的主要因素,揭示表面处理和改性对THz响应的影响规律,进一步的,对生长态晶体中的结构缺陷进行表征,主要探索掺杂对Zn空位的补偿原理和效率,揭示富Te相及其诱导缺陷的交互作用机制及演变规律,研究结果为依据,对优化掺杂浓度及多阶段组合退火处理提供依据,最终获得高光学品质的ZnTe晶体。
步骤S5中,石英支架和石英安瓿瓶均通过王水浸泡并去离子水冲洗干净并烘干,石英安瓿瓶内真空度大于高于5×10-4Pa,退火温度为550-600℃,退火时间50-110h。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于,包括如下步骤:
    S1、晶体生长
    采用Te熔剂-TGSM技术生长ZnTe电光晶体,通过优化ACRT参数获得大尺寸ZnTe单晶;
    S2、晶体炉内退火
    晶体全部通过垂直生长炉的温度梯度区后在生长炉内低温区保温退火;
    S3、晶体表面处理
    将炉内退火后的晶体锭条取出,对晶向进行定向切片,研磨和抛光,然后清洗干净并甩干备用;
    S4、掺杂元素与晶体关系
    建立掺杂量与ZnTe晶体电阻率及载流子传输特性的定量关系,获得THz辐射的吸收和散射机理,归纳富Te相及其诱导缺陷对THz辐射效率和均匀性等的影响规律;
    S5、晶体均匀化退火
    将晶体切片架在石英支架上固定于石英安瓿内,将安瓿瓶进行内进行抽真空,然后对安瓿瓶的瓶口进行熔封,将安瓿瓶放入退火炉进行均匀性退火。
  2. 根据权利要求1所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:步骤S1中,所述晶体生长方法包括Te和Zn单质在真空石英坩埚内熔融形成ZnTe锭条,然后将锭条随坩埚一起放入垂直生长炉进行垂直生长。
  3. 根据权利要求2所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:所述Te和Zn单质在坩埚内熔融时进行摇摆,熔融合成温度大于ZnTe化合物熔点温度20℃,熔融合成7h后自然降温凝固,然后将ZnTe锭条随坩埚放入垂直生长炉,炉内最高温度为1100℃,低温结晶温度为1060℃, 温度梯度10℃/cm,坩埚下降速度为0.5-1mm/h,待熔体全部通过垂直生长炉的温度梯度区,移到低温区晶体生长结束。
  4. 根据权利要求1所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:步骤S2中,晶体炉内退火时,将生长炉整体炉温调整为450℃-510℃,退火时间:24-48h。
  5. 根据权利要求1所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:步骤S3中,晶体切片抛光后采用有机溶剂并结合超声波对晶进行清洗,并用去离子水冲洗干净,甩干备用。
  6. 根据权利要求5所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:所述有机溶剂为异丙醇、石油醚、丙酮中一种或多种。
  7. 根据权利要求1所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:步骤S4中,所述掺杂量与ZnTe晶体性能关系通过开展ZnTe晶体的宏观光电性能,并开发基于ZnTe晶体的THz-TDS系统,建立掺杂量与ZnTe晶体电阻率和载流子迁移率等性能间的定量关系,并结合载流子浓度、寿命和迁移率等电学特性与ZnTe晶体在THz波段的吸收、透过和散射关系,揭示影响ZnTe晶体产生和探测THz辐射的主要因素,揭示表面处理和改性对THz响应的影响规律。
  8. 根据权利要求1所述的一种提高ZnTe晶体掺杂元素均匀性的方法,其特征在于:步骤S5中,所述石英支架和石英安瓿瓶均通过王水浸泡并去离子水冲洗干净并烘干,所述石英安瓿瓶内真空度大于高于5×10 -4Pa,退火温度为550-600℃,退火时间50-110h。
PCT/CN2020/111644 2020-08-14 2020-08-27 一种提高ZnTe晶体掺杂元素均匀性的方法 WO2022032732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010821085.5 2020-08-14
CN202010821085.5A CN111893572A (zh) 2020-08-14 2020-08-14 一种提高ZnTe晶体掺杂元素均匀性的方法

Publications (1)

Publication Number Publication Date
WO2022032732A1 true WO2022032732A1 (zh) 2022-02-17

Family

ID=73229481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111644 WO2022032732A1 (zh) 2020-08-14 2020-08-27 一种提高ZnTe晶体掺杂元素均匀性的方法

Country Status (2)

Country Link
CN (1) CN111893572A (zh)
WO (1) WO2022032732A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043317A (zh) * 2022-12-30 2023-05-02 华东师范大学 一种调控二维层状范德华材料结构和缺陷的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167874A (ja) * 1996-12-12 1998-06-23 Japan Energy Corp 化合物半導体単結晶の製造方法
CN101092748A (zh) * 2007-06-05 2007-12-26 西北工业大学 制备大体积碲锌镉单晶的方法
CN101275281A (zh) * 2007-12-21 2008-10-01 中国科学院上海技术物理研究所 锌镉碲单晶的生长和退火方法以及退火专用坩埚
CN101550586A (zh) * 2009-03-27 2009-10-07 上海应用技术学院 一种碲化锌单晶生长技术
CN105063741A (zh) * 2015-08-04 2015-11-18 西北工业大学 ZnTe单晶体的制备方法
CN109576797A (zh) * 2019-01-18 2019-04-05 西北工业大学 调控碲化锌晶体电阻率的退火方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167874A (ja) * 1996-12-12 1998-06-23 Japan Energy Corp 化合物半導体単結晶の製造方法
CN101092748A (zh) * 2007-06-05 2007-12-26 西北工业大学 制备大体积碲锌镉单晶的方法
CN101275281A (zh) * 2007-12-21 2008-10-01 中国科学院上海技术物理研究所 锌镉碲单晶的生长和退火方法以及退火专用坩埚
CN101550586A (zh) * 2009-03-27 2009-10-07 上海应用技术学院 一种碲化锌单晶生长技术
CN105063741A (zh) * 2015-08-04 2015-11-18 西北工业大学 ZnTe单晶体的制备方法
CN109576797A (zh) * 2019-01-18 2019-04-05 西北工业大学 调控碲化锌晶体电阻率的退火方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG RUI: "Growth, Characterization and Defects Analysis of ZnTe Crystals", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, 15 January 2017 (2017-01-15), CN , XP055900428, ISSN: 1674-022X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043317A (zh) * 2022-12-30 2023-05-02 华东师范大学 一种调控二维层状范德华材料结构和缺陷的方法及其应用

Also Published As

Publication number Publication date
CN111893572A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN110144624B (zh) 一种硒锗镓钡多晶的合成方法和硒锗镓钡单晶的生长方法
WO2022032732A1 (zh) 一种提高ZnTe晶体掺杂元素均匀性的方法
He et al. Preparation and characterization of CdGeAs2 crystal by modified vertical Bridgman method
Singh et al. Effect of annealing on the optical quality of AgGaS 2 and AgGaSe 2 single crystals
US11552174B2 (en) Compound semiconductor and method for producing the same
Lei et al. Growth of large-size high-quality ZnTe bulk crystals by traveling solvent melting zone method
CN111593406A (zh) 化合物锡硼氧溴和锡硼氧溴双折射晶体及制备方法和用途
Yu et al. Crystal growth of indium-doped Czochralski silicon for photovoltaic application
Li et al. The crystal growth of ZnSe by the traveling heater method with the accelerated crucible rotation technique
Nan et al. Growth and characterization of Fe2+: ZnSe single crystals for tunable mid-infrared lasers
Vijayakumar et al. Investigations on synthesis, growth, electrical and defect studies of lithium selenoindate single crystals
CN112899790A (zh) 一种去除锑化镓单晶片残余应力的退火方法
Pandey A new method for the growth of Pb1− xSnxTe single crystals
CN111962137A (zh) 一种维持ZnTe晶体稳定性的方法
Zhu et al. Modified growth of Cd1− xZnxTe single crystals
RU2506352C1 (ru) Кристаллы на основе бромида таллия для детекторов ионизирующего излучения
Singh et al. Control of the polytypes and line defects in radiation detector materials
Ni et al. Synthesis and growth of nonlinear infrared crystal material CdSe via seeded oriented temperature gradient solution zoning method
Liu et al. Impurities related micro-defects in GaSb crystal grown by LEC method
Li et al. Upgraded CdZnTe Based on the Infrared Attenuation Spectrum
CN117364243A (zh) 化合物碲酸钒锂非线性光学晶体及制备方法和用途
Sreedhar Liquid phase epitaxial growth from Te-rich solutions and junction formation in
Reijnen et al. Comparison Of LEC‐Grown And VGF‐Grown GaSb
Capper et al. Growert
Dixit et al. Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals for Infrared Detector Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949229

Country of ref document: EP

Kind code of ref document: A1