WO2022032615A1 - 一种针对大尺寸物体的高精度厚度测量方法及装置 - Google Patents

一种针对大尺寸物体的高精度厚度测量方法及装置 Download PDF

Info

Publication number
WO2022032615A1
WO2022032615A1 PCT/CN2020/109092 CN2020109092W WO2022032615A1 WO 2022032615 A1 WO2022032615 A1 WO 2022032615A1 CN 2020109092 W CN2020109092 W CN 2020109092W WO 2022032615 A1 WO2022032615 A1 WO 2022032615A1
Authority
WO
WIPO (PCT)
Prior art keywords
sets
laser
measured
cameras
thickness measurement
Prior art date
Application number
PCT/CN2020/109092
Other languages
English (en)
French (fr)
Inventor
张卫华
周涛
郑孝勇
Original Assignee
深圳市兴华炜科技有限公司
苏州光韵达自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市兴华炜科技有限公司, 苏州光韵达自动化设备有限公司 filed Critical 深圳市兴华炜科技有限公司
Priority to PCT/CN2020/109092 priority Critical patent/WO2022032615A1/zh
Publication of WO2022032615A1 publication Critical patent/WO2022032615A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Definitions

  • the present invention relates to the technical field of thickness detection, and more particularly, to a high-precision thickness measurement method and device for large-sized objects.
  • this method is suitable for the case where the steel sheet has stepped grooves on one side only, but not for the case where there are stepped grooves on both sides of the steel sheet; in addition, the extrusion of the probe will cause the steel mesh to warp. Make the measured thickness data inaccurate;
  • the third is to use the side projection measurement method, which requires that the steel sheet must have an opening, and it cannot be measured without an opening.
  • the technical problem to be solved by the present invention is to provide a high-precision thickness measurement method for large-size objects and a high-precision thickness measurement device for large-size objects in view of the above-mentioned defects of the prior art.
  • a high-precision thickness measurement method for large-sized objects includes the following steps:
  • Two sets of point laser sources are used to emit the first oblique laser and the oblique second laser towards the upper and lower surfaces of the object to be measured; wherein, the object to be measured is not a transparent object, and the two sets of point laser sources are coaxial;
  • the thickness of the measured object H
  • the step of obtaining the coordinates includes:
  • Two sets of cameras are used to obtain the first image of the reflection point corresponding to the first laser on the object to be measured, and the second image of the reflection point corresponding to the second laser on the object to be measured; wherein, the lenses of the two sets of cameras are facing each other, The two sets of cameras are placed upright, and the height of the overlapping part of the depth of field of the two sets of cameras is not less than the initial thickness of the object to be measured before processing;
  • the first coordinate and the second coordinate are obtained according to the first image and the second image, respectively.
  • a high-precision thickness measurement device for large-size objects is provided, based on the above-mentioned high-precision thickness measurement method for large-size objects, wherein the device includes:
  • Two sets of coaxial point laser sources during measurement the two sets of point laser sources respectively emit oblique first lasers and oblique second lasers toward the upper and lower surfaces of the object to be measured;
  • Two sets of cameras with the lenses facing each other and both standing upright during measurement; the two sets of cameras respectively obtain the first image of the reflection point corresponding to the first laser on the object to be measured, and the reflection point corresponding to the second laser on the object to be measured.
  • the second image is obtained, and the first coordinates of the reflection point corresponding to the first laser on the object to be measured and the second coordinates of the reflection point corresponding to the second laser on the object to be measured are also obtained respectively; is not less than the initial thickness of the object under test before processing; and
  • a mounting bracket for installing two sets of the point laser sources and two sets of the cameras.
  • the device further comprises two sets of polarizers corresponding to the two sets of the point laser sources one-to-one.
  • the device further comprises a partition plate for preventing the two groups of the point laser sources from irradiating each other during debugging.
  • a group of the point laser sources and a group of the cameras constitute a group of units;
  • the mounting frame includes a main frame body; the upper and lower sides of the main frame body are slidably connected with a first moving along the Y-axis a movable seat; the first movable seat is slidably connected with a second movable seat that moves along the X axis; two sets of the units are respectively installed on the two sets of the second movable seats.
  • Suitable for objects of many shapes During measurement, the upper and lower surfaces of the object to be measured are detected at the same time, and what is obtained is the relative height of the upper and lower surfaces. Therefore, it is suitable for the thickness detection of the measured object that has not yet been opened, the measured object with stepped grooves only on one side, and the measured object with stepped grooves on both sides, and has good applicability;
  • Thickness inspection is not disturbed by tiny warping.
  • the arc can be considered to be composed of multiple straight lines. This method is based on the trigonometric function to calculate the thickness. Therefore, the slight warping of the inspected part will not interfere with the accuracy of the thickness inspection.
  • the two sets of point laser sources form oblique projections in two directions, and the straight line formed by the two sets of point laser sources obliquely penetrates the measured object, and the two reflection points must not coincide, so there must be horizontal directions. It is more convenient to measure the offset without setting a relative test reference.
  • Fig. 1 is the realization flow chart of a kind of high-precision thickness measurement method for large-size objects provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the use of a high-precision thickness measurement method for large-sized objects provided in Embodiment 1 of the present invention (there is no object to be measured at this time);
  • Embodiment 3 is a schematic diagram of the use of a high-precision thickness measurement method for large-sized objects provided in Embodiment 1 of the present invention (the object to be measured is not slotted, and the upper and lower two boxes are images captured by the upper and lower two sets of cameras respectively);
  • Embodiment 4 is a schematic diagram of the use of a high-precision thickness measurement method for large-sized objects provided in Embodiment 1 of the present invention (the object to be measured is only grooved on the upper surface, and the upper and lower two boxes are the images captured by the upper and lower two sets of cameras respectively) ;
  • Embodiment 5 is a schematic diagram of the use of a high-precision thickness measurement method for large-sized objects provided in Embodiment 1 of the present invention (the upper and lower surfaces of the measured object are both slotted, and the upper and lower two boxes are the upper and lower two sets of cameras respectively. images); and
  • FIG. 6 is a schematic structural diagram of a high-precision thickness measurement device for large-sized objects according to Embodiment 2 of the present invention.
  • An embodiment of the present invention provides a high-precision thickness measurement method for large-sized objects, as shown in FIG. 1 , including the following steps:
  • Step S1 use two sets of point laser sources to emit oblique first laser and oblique second laser toward the upper and lower surfaces of the object to be measured; wherein, the object to be measured is not a transparent object, and the two sets of point laser sources are coaxial .
  • Step S2 Obtain the first coordinate of the reflection point corresponding to the first laser on the object to be measured, the second coordinate of the reflection point corresponding to the second laser on the object to be measured, and the angle ⁇ formed by the first laser and the horizontal plane.
  • the obtained coordinates specifically include:
  • Two sets of cameras are used to obtain the first image of the reflection point corresponding to the first laser on the object to be measured, and the second image of the reflection point corresponding to the second laser on the object to be measured; wherein, the lenses of the two sets of cameras are facing each other, The two sets of cameras are placed upright, and the height of the overlapping part of the depth of field of the two sets of cameras is not less than the initial thickness of the object to be measured before processing;
  • the first coordinate and the second coordinate are obtained according to the first image and the second image, respectively.
  • the camera has enough depth of field to ensure that the laser reflection point can be correctly observed with a small distortion within the warping range, and the thickness less than the depth of field can be accurately measured within the field of view, and is not subject to warping of the object to be measured. Or the positional relationship with the measured object.
  • Step S3 Calculate the horizontal offset ⁇ A between the first coordinate and the preset origin, and the horizontal offset ⁇ B between the second coordinate and the preset origin.
  • Thickness inspection is not disturbed by tiny warping.
  • the arc can be considered to be composed of multiple straight lines. This method is based on the trigonometric function to calculate the thickness. Therefore, the slight warping of the inspected part will not interfere with the accuracy of the thickness inspection.
  • the two sets of point laser sources form oblique projections in two directions, and the straight line formed by the two sets of point laser sources obliquely penetrates the measured object, and the two reflection points must not coincide, so there must be horizontal directions. It is more convenient to measure the offset without setting a relative test reference.
  • An embodiment of the present invention provides a high-precision thickness measurement device for large-sized objects. Based on the high-precision thickness measurement method for large-sized objects provided in Embodiment 1, as shown in FIG. 6 , the device includes:
  • Two sets of coaxial point laser sources 10 during measurement Two sets of point laser sources 10, respectively emitting oblique first laser and oblique second laser toward the upper and lower surfaces of the object to be measured; and
  • Two sets of cameras 11 with the lenses facing each other and both standing upright during measurement; the two sets of cameras 11 respectively obtain the first image of the reflection point corresponding to the first laser on the object to be measured, and the reflection point corresponding to the second laser on the object to be measured The second image is obtained, and the first coordinates of the reflection point corresponding to the first laser on the measured object and the second coordinate of the reflection point corresponding to the second laser on the measured object are also obtained respectively; Not less than the initial thickness of the object to be measured before machining; and
  • the device further includes two sets of polarizers (not shown in the figure) corresponding to the two sets of point laser sources 10 one-to-one.
  • the object to be measured is glass, especially thin glass, the reflection effect on the laser is relatively general. It is easy to occur that the deviation of the refraction angle is too small, causing the two sets of point laser sources 10 to be opposite. bad situation.
  • the device further includes a partition plate (not shown in the figure) for preventing the two sets of point laser sources from emitting 10 against each other during debugging.
  • a partition plate (not shown in the figure) for preventing the two sets of point laser sources from emitting 10 against each other during debugging.
  • a group of point laser sources 10 and a group of cameras 11 constitute a group of units 13;
  • the mounting frame 12 includes a main frame body 14; the upper and lower sides of the main frame body 14 are slidably connected with a first movable seat that moves along the Y axis 15;
  • the first movable seat 15 is slidably connected with a second movable seat 16 that moves along the X axis; , which is more flexible to use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种针对大尺寸物体的高精度厚度测量方法及装置,该方法包括采用两组点激光源分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光,进而获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标,以及第一激光与水平面所成夹角θ,进而计算第一坐标与预设定原点的水平偏移量△A,以及第二坐标与预设定原点的水平偏移量△B,即得被测物体的厚度H = |△A-△B|*tag(θ),本方法适用于大平面或超大平面的中心点厚度测量、适用于多种形状的物体、厚度检测不会受到微小翘曲的干扰、无须设置相对测试基准。

Description

一种针对大尺寸物体的高精度厚度测量方法及装置 技术领域
本发明涉及厚度检测技术领域,更具体地说,涉及一种针对大尺寸物体的高精度厚度测量方法及装置。
背景技术
生产5G配套产品时,常常会需要在尺寸超过500mmx400mm、厚度为0.12mm-0.15mm的钢片上加工阶梯槽,且阶梯槽深度就是锡膏印刷高度,即阶梯槽的加工品质会直接影响印刷品质。因此,加工时如何准确测量钢片厚度是极为关键的。目前常用方式如下:
一是用大型的千分尺进行测量,该方式需要定制量具,被测物品尺寸越大,量具价格越高,且不方便摆放被测物品,所测尺寸不准确;
二是借助大理石平台,该方式适用于钢片仅单侧带阶梯槽的情况,不适用于钢片两侧都带有阶梯槽的情况;此外,探针的挤压会造成钢网翘曲,使得所测厚度数据不精准;
三是采用侧投影测量方法,该方式要求钢片必须带有开口,不带开口则无法测量。
因此,仍需对现有的厚度测量方式做改进,以解决上述不足。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种针对大尺寸物体的高精度厚度测量方法,以及一种针对大尺寸物体的高精度厚度测量装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
一方面,提供了一种针对大尺寸物体的高精度厚度测量方法,其中,包括如下步骤:
采用两组点激光源分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;其中,被测物体不是透明物体,两组点激光源同轴;
获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标,以及第一激光与水平面所成夹角θ;
计算第一坐标与预设定原点的水平偏移量△A,以及第二坐标与预设定原点的水平偏移量△B;
被测物体的厚度H = |△A-△B|*tag(θ)。
优选的,获取坐标的步骤,包括:
采用两组相机分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像;其中,两组相机的镜头正对,两组相机均直立放置,两组相机景深重叠部分的高度不小于被测物体加工前的初始厚度;
根据第一图像、第二图像分别获取第一坐标、第二坐标。
另一方面,提供了一种针对大尺寸物体的高精度厚度测量装置,基于上述的一种针对大尺寸物体的高精度厚度测量方法,其中,所述装置包括:
测量时同轴的两组点激光源;两组所述点激光源,分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;以及
测量时镜头正对、均直立的两组相机;两组所述相机,分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像,还分别获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标;两组所述相机景深重叠部分的高度不小于被测物体加工前的初始厚度;以及
用于安装两组所述点激光源和两组所述相机的安装架。
优选的,所述装置还包括与两组所述点激光源一一对应的两组偏振光片。
优选的,所述装置还包括调试时防止两组所述点激光源对射的隔断板。
优选的,一组所述点激光源和一组所述相机构成一组单元;所述安装架包括主架体;所述主架体的上下两侧均滑动连接有沿Y轴运动的第一活动座;所述第一活动座上滑动连接有沿X轴运动的第二活动座;两组所述单元,分别安装在两组所述第二活动座上。
有益效果
本发明的有益效果在于:
适用于大平面或超大平面的中心点厚度测量。测量时,改变点激光源的照射位置,即可对被测物体的不同位置进行厚度检测,与以往的千分尺检测不同,点激光源并不需要跟被测物体有实际接触。因此,被测物体尺寸增大,并不会对点激光源的移动或照射造成不便,也不会大幅增加检测成本;
适用于多种形状的物体。测量时,被测物体的上、下表面同时被检测,所得到的是上、下表面的相对高度。因此,适用于尚未开口的被测物体、仅单面带阶梯槽的被测物体、双面都带阶梯槽的被测物体的厚度检测,适用性好;
厚度检测不会受到微小翘曲的干扰。弧形可视为由多段直线组成,本方法是基于三角函数进行厚度计算,因此,被检处发生微小翘曲,也不会对厚度检测的准确性造成干扰;
无须设置相对测试基准。测量时,两组点激光源形成了两个方向上的斜方向投影,两组点激光源所连成的直线斜穿被测物体,两个反射点必然是不重合的,因此必然会有横向偏移量,无须特意设置相对测试基准,测量更为方便。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明实施例一提供的一种针对大尺寸物体的高精度厚度测量方法的实现流程图;
图2是本发明实施例一提供的一种针对大尺寸物体的高精度厚度测量方法的使用示意图(此时无被测物体);
图3是本发明实施例一提供的一种针对大尺寸物体的高精度厚度测量方法的使用示意图(被测物体未开槽,上下两个方框分别为上下两组相机所摄图像);
图4是本发明实施例一提供的一种针对大尺寸物体的高精度厚度测量方法的使用示意图(被测物体仅上表面开槽,上下两个方框分别为上下两组相机所摄图像);
图5是本发明实施例一提供的一种针对大尺寸物体的高精度厚度测量方法的使用示意图(被测物体的上、下表面均开槽,上下两个方框分别为上下两组相机所摄图像);以及
图6是本发明实施例二提供的一种针对大尺寸物体的高精度厚度测量装置的结构示意图。
本发明的实施方式
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例一
本发明实施例提供了一种针对大尺寸物体的高精度厚度测量方法,如图1所示,包括如下步骤:
步骤S1:采用两组点激光源分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;其中,被测物体不是透明物体,两组点激光源同轴。
步骤S2:获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标,以及第一激光与水平面所成夹角θ。
其中,获取坐标具体包括:
采用两组相机分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像;其中,两组相机的镜头正对,两组相机均直立放置,两组相机景深重叠部分的高度不小于被测物体加工前的初始厚度;
根据第一图像、第二图像分别获取第一坐标、第二坐标。
其中,相机有足够的景深,保证在翘曲范围内可以在很小畸变的情况下正确观测到激光反射点,可以在视野范围内准确测量小于景深范围的厚度,不受被测物体的翘曲或者与被测物体的位置关系影响。
步骤S3:计算第一坐标与预设定原点的水平偏移量△A,以及第二坐标与预设定原点的水平偏移量△B。
步骤S4:被测物体的厚度H = |△A-△B|*tag(θ)。
本实施例提供的测量方法具备以下优点:
适用于大平面或超大平面的中心点厚度测量。测量时,改变点激光源的照射位置,即可对被测物体的不同位置进行厚度检测,与以往的千分尺检测不同,点激光源并不需要跟被测物体有实际接触。因此,被测物体尺寸增大,并不会对点激光源的移动或照射造成不便,也不会大幅增加检测成本;
适用于多种形状的物体。如图2-图5所示,测量时,被测物体的上、下表面同时被检测,所得到的是上、下表面的相对高度。因此,适用于尚未开口的被测物体、仅单面带阶梯槽的被测物体、双面都带阶梯槽的被测物体的厚度检测,适用性好;
厚度检测不会受到微小翘曲的干扰。弧形可视为由多段直线组成,本方法是基于三角函数进行厚度计算,因此,被检处发生微小翘曲,也不会对厚度检测的准确性造成干扰;
无须设置相对测试基准。测量时,两组点激光源形成了两个方向上的斜方向投影,两组点激光源所连成的直线斜穿被测物体,两个反射点必然是不重合的,因此必然会有横向偏移量,无须特意设置相对测试基准,测量更为方便。
实施例二
本发明实施例提供了一种针对大尺寸物体的高精度厚度测量装置,基于实施例一所提供的一种针对大尺寸物体的高精度厚度测量方法,如图6所示,装置包括:
测量时同轴的两组点激光源10;两组点激光源10,分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;以及
测量时镜头正对、均直立的两组相机11;两组相机11,分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像,还分别获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标;两组相机景深重叠部分的高度不小于被测物体加工前的初始厚度;以及
用于安装两组点激光源10和两组相机11的安装架12。
优选的,装置还包括与两组点激光源10一一对应的两组偏振光片(图中未示出),当被测物体为玻璃尤其为薄玻璃时,对激光的反射效果较为一般,容易出现折射角度偏移太小导致两组点激光源10对射的情况,对射会导致玻璃的发光体被烧坏,通过增设偏振光片(图中未示出)可以避免发光体被烧坏的情况。
优选的,装置还包括调试时防止两组点激光源对射10的隔断板(图中未示出)。
优选的,一组点激光源10和一组相机11构成一组单元13;安装架12包括主架体14;主架体14的上下两侧均滑动连接有沿Y轴运动的第一活动座15;第一活动座15上滑动连接有沿X轴运动的第二活动座16;两组单元13,分别安装在两组第二活动座16上,以便对两组单元13的位置分别进行调节,使用更为灵活。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (6)

  1. 一种针对大尺寸物体的高精度厚度测量方法,其特征在于,包括如下步骤:
    采用两组点激光源分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;其中,被测物体不是透明物体,两组点激光源同轴;
    获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标,以及第一激光与水平面所成夹角θ;
    计算第一坐标与预设定原点的水平偏移量△A,以及第二坐标与预设定原点的水平偏移量△B;
    被测物体的厚度H = |△A-△B|*tag(θ)。
  2. 根据权利要求1所述的一种针对大尺寸物体的高精度厚度测量方法,其特征在于,获取坐标的步骤,包括:
    采用两组相机分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像;其中,两组相机的镜头正对,两组相机均直立放置,两组相机景深重叠部分的高度不小于被测物体加工前的初始厚度;
    根据第一图像、第二图像分别获取第一坐标、第二坐标。
  3. 一种针对大尺寸物体的高精度厚度测量装置,基于权利要求1-2任一所述的一种针对大尺寸物体的高精度厚度测量方法,其特征在于,所述装置包括:
    测量时同轴的两组点激光源;两组所述点激光源,分别朝被测物体的上、下表面发射斜向的第一激光、斜向的第二激光;以及
    测量时镜头正对、均直立的两组相机;两组所述相机,分别获取第一激光在被测物体上所对应反射点的第一图像、第二激光在被测物体上所对应反射点的第二图像,还分别获取第一激光在被测物体上所对应反射点的第一坐标、第二激光在被测物体上所对应反射点的第二坐标;两组所述相机景深重叠部分的高度不小于被测物体加工前的初始厚度;以及
    用于安装两组所述点激光源和两组所述相机的安装架。
  4. 根据权利要求3所述的一种针对大尺寸物体的高精度厚度测量装置,其特征在于,所述装置还包括与两组所述点激光源一一对应的两组偏振光片。
  5. 根据权利要求3所述的一种针对大尺寸物体的高精度厚度测量装置,其特征在于,所述装置还包括调试时防止两组所述点激光源对射的隔断板。
  6. 根据权利要求3所述的一种针对大尺寸物体的高精度厚度测量装置,其特征在于,一组所述点激光源和一组所述相机构成一组单元;所述安装架包括主架体;所述主架体的上下两侧均滑动连接有沿Y轴运动的第一活动座;所述第一活动座上滑动连接有沿X轴运动的第二活动座;两组所述单元,分别安装在两组所述第二活动座上。
PCT/CN2020/109092 2020-08-14 2020-08-14 一种针对大尺寸物体的高精度厚度测量方法及装置 WO2022032615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109092 WO2022032615A1 (zh) 2020-08-14 2020-08-14 一种针对大尺寸物体的高精度厚度测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109092 WO2022032615A1 (zh) 2020-08-14 2020-08-14 一种针对大尺寸物体的高精度厚度测量方法及装置

Publications (1)

Publication Number Publication Date
WO2022032615A1 true WO2022032615A1 (zh) 2022-02-17

Family

ID=80246760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109092 WO2022032615A1 (zh) 2020-08-14 2020-08-14 一种针对大尺寸物体的高精度厚度测量方法及装置

Country Status (1)

Country Link
WO (1) WO2022032615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114608460A (zh) * 2022-03-21 2022-06-10 广州矩阵黑格软件科技合伙企业(有限合伙) 一种瓶坯壁厚度的测量方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706286A (zh) * 2012-06-25 2012-10-03 哈尔滨工业大学 板材板厚的激光测量装置
CN203337104U (zh) * 2013-07-02 2013-12-11 深圳市领略数控设备有限公司 一种ccd激光测厚装置
US9151595B1 (en) * 2014-04-18 2015-10-06 Advanced Gauging Technologies, LLC Laser thickness gauge and method including passline angle correction
CN107462175A (zh) * 2017-06-21 2017-12-12 浙江龙游展宇有机玻璃有限公司 一种有机玻璃厚度测试装置及其检测方法
CN111735401A (zh) * 2020-08-14 2020-10-02 深圳市兴华炜科技有限公司 一种针对大尺寸物体的高精度厚度测量方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706286A (zh) * 2012-06-25 2012-10-03 哈尔滨工业大学 板材板厚的激光测量装置
CN203337104U (zh) * 2013-07-02 2013-12-11 深圳市领略数控设备有限公司 一种ccd激光测厚装置
US9151595B1 (en) * 2014-04-18 2015-10-06 Advanced Gauging Technologies, LLC Laser thickness gauge and method including passline angle correction
CN107462175A (zh) * 2017-06-21 2017-12-12 浙江龙游展宇有机玻璃有限公司 一种有机玻璃厚度测试装置及其检测方法
CN111735401A (zh) * 2020-08-14 2020-10-02 深圳市兴华炜科技有限公司 一种针对大尺寸物体的高精度厚度测量方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114608460A (zh) * 2022-03-21 2022-06-10 广州矩阵黑格软件科技合伙企业(有限合伙) 一种瓶坯壁厚度的测量方法及系统

Similar Documents

Publication Publication Date Title
CN111735401A (zh) 一种针对大尺寸物体的高精度厚度测量方法及装置
US9106807B2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object
AU693234B2 (en) Method and apparatus for transforming coordinate systems in an automated video monitor alignment system
CN100573236C (zh) 目测装置以及使用目测装置检查显示面板的方法
CN102500627B (zh) 一种板材的宽度、边部形状、边部缺陷测量仪及测量方法
JP5331638B2 (ja) 表示装置製造用フォトマスクの製造方法及び描画装置
JP5686139B2 (ja) 液晶表示パネル用ガラス基板の製造方法
KR102119492B1 (ko) 표면 결함 검사 장치
TW201837424A (zh) 物件厚度量測系統、方法、檢測設備、及其電腦可讀取記錄媒體及電腦程式產品
CN104808586A (zh) 涂布机
WO2022032615A1 (zh) 一种针对大尺寸物体的高精度厚度测量方法及装置
US7148971B2 (en) Apparatus for measuring the physical properties of a surface and a pattern generating apparatus for writing a pattern on a surface
EP1756513A2 (en) A method and a system for height triangulation measurement
CN212409631U (zh) 一种针对大尺寸物体的高精度厚度测量装置
CN105675622B (zh) 一种工控玻璃检测系统
JPH11316110A (ja) はんだバンプの測定方法
JP2015096808A (ja) 板厚測定方法
CN110864879B (zh) 一种基于投影模块的tof深度模组平面度测试系统及方法
CN111721255A (zh) 一种平面度检测方法及系统
CN206563550U (zh) 用于小零件高精度尺寸测量的装置
TW201624149A (zh) 預對準測量裝置和方法
CN207163693U (zh) 一种扫描场镜畸变校准装置
CN110428471A (zh) 一种针对光学自由曲面子孔径偏折测量的精确自定位方法
JP2012133122A (ja) 近接露光装置及びそのギャップ測定方法
JPH02304304A (ja) パターンの描画または検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949113

Country of ref document: EP

Kind code of ref document: A1