WO2022030593A1 - 吸着方法およびその方法に用いられるメソポーラスアルミナ - Google Patents

吸着方法およびその方法に用いられるメソポーラスアルミナ Download PDF

Info

Publication number
WO2022030593A1
WO2022030593A1 PCT/JP2021/029172 JP2021029172W WO2022030593A1 WO 2022030593 A1 WO2022030593 A1 WO 2022030593A1 JP 2021029172 W JP2021029172 W JP 2021029172W WO 2022030593 A1 WO2022030593 A1 WO 2022030593A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
temperature
mesoporous alumina
desorption
μmol
Prior art date
Application number
PCT/JP2021/029172
Other languages
English (en)
French (fr)
Inventor
ロバート ヘップバーン
翔吾 坪田
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to US18/019,663 priority Critical patent/US20230321628A1/en
Priority to EP21853607.6A priority patent/EP4194069A4/en
Priority to JP2022541736A priority patent/JPWO2022030593A1/ja
Priority to CN202180057827.4A priority patent/CN116157199A/zh
Priority to KR1020237007237A priority patent/KR20230048519A/ko
Publication of WO2022030593A1 publication Critical patent/WO2022030593A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an adsorption method and mesoporous alumina used in the method.
  • Patent Document 1 relates to a cesium-strontium adsorbent made of phase-separated porous glass and a system for forming a stable vitrified body after adsorption, relating to a technique for adsorbing and removing radioactive cesium and strontium from natural water or contaminated water. is suggesting.
  • Patent Document 2 describes a porous metal oxide useful as a molybdenum (Mo) adsorbent for a 99 m Tc generator and a method for producing the same.
  • Mo molybdenum
  • Patent Document 1 The technique described in Patent Document 1 is based on the premise that a phase-dividing porous glass composed mostly of SiO 2 is used (claim 1, paragraph [0051], etc.), and adsorption mainly composed of alumina. It does not use wood. Further, in Patent Document 1, the elements to be adsorbed on the adsorbent (elements to be adsorbed) are limited to cesium and strontium, and the adsorption of other elements is not intended. Patent Document 2 focuses on the method for producing the porous metal oxide and structural features (specific surface area, pore volume, average pore diameter, etc.) regarding the Mo retention amount of the porous metal oxide and other metal oxides. However, the retention of elements other than Mo has not been specifically investigated. It would be beneficial if an adsorption method using an adsorbent and applicable to the adsorption of elements of Groups 3 to 15 of the Periodic Table other than Mo is provided.
  • An object of the present invention is to provide an adsorption method that solves such a problem. Another related object is to provide an adsorbent suitable for carrying out the above adsorption method.
  • the adsorption method includes preparing mesoporous alumina and contacting the mesoporous alumina with a liquid containing the adsorption target element to adsorb the adsorption target element to the mesoporous alumina.
  • the element to be adsorbed is at least one selected from the group consisting of elements belonging to the 4th to 6th periods and the 3rd to 15th groups of the periodic table.
  • the mesoporous alumina those satisfying at least one of the following (1) to (3) are used.
  • the amount of surface hydroxyl groups is 3.5 mmol / g or more.
  • the amount of CO 2 desorbed at the peak with a peak temperature of less than 200 ° C. (hereinafter also referred to as “low temperature CO 2 desorption amount”) is 5 ⁇ mol / g or more.
  • the amount of NH 3 desorbed at a peak with a peak temperature of less than 300 ° C. (hereinafter also referred to as “low temperature NH 3 desorption amount”) is 25 ⁇ mol / g or more. Is.
  • the retention amount (adsorption amount) of the above-mentioned element to be adsorbed per unit weight of the mesoporous alumina tends to increase. Therefore, according to the adsorption method using such mesoporous alumina, the adsorption target element can be efficiently adsorbed.
  • the amount of surface hydroxyl groups is 3.5 mmol / g or more; (2) In the temperature desorption analysis using CO 2 as the probe molecule, the amount of CO 2 desorbed at the peak with a peak temperature of less than 200 ° C. is 5 ⁇ mol / g or more; and (3) NH 3 is used as the probe molecule. In the thermal desorption analysis, the amount of NH 3 desorbed at the peak with a peak temperature of less than 300 ° C. is 25 ⁇ mol / g or more; Mesoporous alumina satisfying at least one of the above is provided. Such mesoporous alumina is preferable because it can efficiently adsorb the element to be adsorbed.
  • the mesoporous alumina in the technique disclosed herein satisfies at least one of a predetermined surface hydroxyl group amount, a predetermined low temperature CO 2 desorption amount, and a predetermined low temperature NH 3 desorption amount described below. It may be mesoporous alumina that satisfies two or more of these, or it may be mesoporous alumina that satisfies all three.
  • the surface hydroxyl group amount of the mesoporous alumina can be 3.5 mmol / g or more.
  • Mesoporous alumina satisfying this amount of surface hydroxyl groups tends to retain a larger amount of elements to be adsorbed per unit weight than mesoporous alumina having a smaller amount of surface hydroxyl groups.
  • the surface hydroxyl group amount is preferably 3.7 mmol / g or more, for example, 4.0 mmol / g or more, 4.5 mmol / g or more, 5.0 mmol / g or more.
  • the upper limit of the amount of surface hydroxyl groups is not particularly limited, and may be any amount that can theoretically exist in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, etc., the amount of the surface hydroxyl group may be, for example, 20 mmol / g or less, 15 mmol / g or less, or 10 mmol / g in some embodiments. It may be less than or equal to, 8 mmol / g or less, and 6 mmol / g or less.
  • the amount of surface hydroxyl groups referred to here can be grasped by thermal weight-differential thermal analysis (TG-DTA), and specifically, it is measured by the following method. The same method is adopted for the examples described later.
  • Measurement method of surface hydroxyl group amount The sample to be measured and the container containing water are allowed to stand in a desiccator, and water vapor is adsorbed on the hydroxyl groups existing on the surface of the sample. After a sufficient time (preferably 3 hours or more) has elapsed, the sample is heated from room temperature to 200 ° C. at a rate of 5 ° C./min by a thermogravimetric-differential heat measuring device, and then held for 12 hours.
  • ⁇ W1 in the above formula indicates the weight reduction rate [wt%] from room temperature to 200 ° C. and after holding at 200 ° C.
  • ⁇ W2 in the above formula indicates the weight reduction rate [wt%] after the temperature rise from 200 ° C. to 900 ° C. and the hold at 900 ° C.
  • the low-temperature CO 2 desorption amount of the mesoporous alumina can be 5 ⁇ mol / g or more.
  • Mesoporous alumina satisfying this low-temperature CO 2 desorption amount tends to retain a larger amount of the element to be adsorbed per unit weight than mesoporous alumina having a smaller low-temperature CO 2 desorption amount.
  • the low temperature CO 2 desorption amount is preferably 8 ⁇ mol / g or more, may be 10 ⁇ mol / g or more, 12 ⁇ mol / g or more, 15 ⁇ mol / g or more, or 20 ⁇ mol / g or more. good.
  • the upper limit of the amount of low-temperature CO 2 desorption is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, and the like, in some embodiments, the low-temperature CO 2 desorption amount may be, for example, 400 ⁇ mol / g or less, or 300 ⁇ mol / g or less.
  • It may be 250 ⁇ mol / g or less, 200 ⁇ mol / g or less, 100 ⁇ mol / g or less, 70 ⁇ mol / g or less, 50 ⁇ mol / g or less, 30 ⁇ mol / g or less, 20 ⁇ mol / g or less, 15 ⁇ mol / g or less. It may be less than or equal to g.
  • the low-temperature CO 2 desorption amount referred to here can be grasped by a heated desorption analysis (CO 2 -TPD) using CO 2 as a probe molecule, and specifically, it is measured by the following method. The same method is adopted for the examples described later.
  • Measurement method of low temperature CO 2 desorption amount After leaving the sample to be measured under reduced pressure (1 Pa or less) at 150 ° C. for 10 hours, the sample was allowed to stand still and CO 2 gas was passed through a sample tube kept at 40 ° C. to sufficiently adsorb CO 2 to the sample. Then, using He gas, excess CO 2 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
  • the concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at 5 ° C./min under reduced pressure and under He flow.
  • the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
  • the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption in this sample.
  • a model "OmniStar GSD301" (used in Examples described later) manufactured by Pfeiffer Vacuum GmbH or an equivalent product thereof can be used.
  • the mesoporous alumina is also referred to as a low temperature CO 2 desorption amount measured under reduced pressure by the method described above (hereinafter, also referred to as “low temperature CO 2 desorption amount under reduced pressure”. ), Or in addition to the low-temperature CO 2 desorption amount under reduced pressure, the CO 2 desorption amount measured by the following method (hereinafter, also referred to as “low-temperature CO 2 desorption amount under normal pressure”) is used. May be specified. [Measurement method of low temperature CO 2 desorption under normal pressure] The sample to be measured was heated to 500 ° C.
  • the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under normal pressure of this sample.
  • a quadrupole mass spectrometer MKS Instruments UK Ltd. Product name "MKS Cirrus 2" (used in the examples described later) or an equivalent product thereof can be used.
  • the amount of low-temperature CO 2 desorption under normal pressure of mesoporous alumina may be, for example, 5 ⁇ mol / g or more, 10 ⁇ mol / g or more, 20 ⁇ mol / g or more, or 30 ⁇ mol / g or more. Due to the increase in the amount of low-temperature CO 2 desorption under normal pressure, the amount of the element to be adsorbed (for example, Mo) per unit weight of mesoporous alumina tends to increase.
  • the amount of low-temperature CO 2 desorption under normal pressure of mesoporous alumina is preferably 35 ⁇ mol / g or more, preferably 45 ⁇ mol / g or more, and 55 ⁇ mol / g.
  • the above is preferable, and it may be 75 ⁇ mol / g or more, 95 ⁇ mol / g or more, 110 ⁇ mol / g or more, 130 ⁇ mol / g or more, 140 ⁇ mol / g or more, or 150 ⁇ mol / g or more.
  • the upper limit of the amount of low-temperature CO 2 desorption under normal pressure is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, etc., the amount of low-temperature CO 2 desorption under normal pressure may be, for example, 400 ⁇ mol / g or less, or 300 ⁇ mol / g or less in some embodiments. It may be 250 ⁇ mol / g or less, 230 ⁇ mol / g or less, or 200 ⁇ mol / g or less.
  • the low temperature NH 3 desorption amount of the mesoporous alumina can be 25 ⁇ mol / g or more.
  • Mesoporous alumina satisfying this low-temperature NH 3 desorption amount tends to retain a larger amount of the element to be adsorbed per unit weight than mesoporous alumina having a smaller low-temperature NH 3 desorption amount.
  • the low temperature NH3 desorption amount is preferably 30 mol / g or more, 40 ⁇ mol / g or more, 50 ⁇ mol / g or more, 60 ⁇ mol / g or more, or 70 ⁇ mol / g or more. good.
  • the upper limit of the amount of low-temperature NH3 desorption is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina.
  • the amount of low-temperature NH3 desorption of mesoporous alumina can be, for example, 700 ⁇ mol / g or less, 500 ⁇ mol / g or less, or 400 ⁇ mol / g or less.
  • the amount of low-temperature NH3 desorption of mesoporous alumina may be, for example, 300 ⁇ mol / g or less, and even less than 200 ⁇ mol / g in some embodiments. It may be 150 ⁇ mol / g or less, 100 ⁇ mol / g or less, 80 ⁇ mol / g or less, or 60 ⁇ mol / g or less.
  • the low-temperature NH 3 desorption amount referred to here can be grasped by a heated desorption analysis (NH 3 -TPD) using NH 3 as a probe molecule, and specifically, it is measured by the following method. The same method is adopted for the examples described later.
  • Measurement method of low temperature NH 3 desorption amount After the sample to be measured was left at 150 ° C. for 10 hours under a reduced pressure of 1 Pa or less, NH 3 / He mixed gas was passed through a sample tube kept at 40 ° C. for the sample to be sufficiently added to the sample. Then, the gas is switched to He gas, and excess NH 3 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
  • the concentration of NH 3 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at a rate of 10 ° C./min under reduced pressure and He flow.
  • the obtained TPD desorption curve is peak-separated, and the NH3 desorption amount at the peak is calculated based on the area of each peak.
  • the NH 3 desorption amount obtained from the area of the peak whose peak temperature is less than 300 ° C. is defined as the low temperature NH 3 desorption amount of this sample.
  • a model "OmniStar GSD301" (used in Examples described later) manufactured by Pfeiffer Vacuum GmbH or an equivalent product thereof can be used.
  • the specific surface area of mesoporous alumina is not particularly limited.
  • the specific surface area can be, for example, about 50 m 2 / g or more.
  • the specific surface area is preferably about 100 m 2 / g or more, preferably about 130 m 2 / g or more, from the viewpoint of increasing the contact area with the element to be adsorbed. It is more preferably about 150 m 2 / g or more, and may be about 190 m 2 / g or more, or about 220 m 2 / g or more.
  • the specific surface area may be, for example, about 500 m 2 / g or less, about 400 m 2 / g or less, and about 300 m 2 / g. It may be less than or equal to, approximately 270 m 2 / g or less, and may be approximately 220 m 2 / g or less.
  • the specific surface area can be measured by a nitrogen gas adsorption amount measuring method (BET method). The same method is adopted for the examples described later.
  • the average pore diameter of mesoporous alumina is not particularly limited, but is typically in the range of about 2 nm to about 50 nm.
  • the average pore diameter is preferably about 40 nm or less, preferably about 30 nm or less, and more preferably about 25 nm or less, from the viewpoint of facilitating the realization of the above-mentioned specific surface area. Is more preferable, it may be less than about 20 nm, may be less than about 15 nm, may be less than about 13 nm, may be less than about 11 nm, and may be less than about 9 nm.
  • the average pore diameter is preferably about 4 nm or more, preferably about 6.5 nm or more, and about 8 nm from the viewpoint of contact efficiency with the element to be adsorbed. It may be more than that, it may be about 10 nm or more, it may be about 13 nm or more, and it may be about 16 nm or more.
  • the average pore diameter can be measured by a nitrogen gas adsorption amount measuring method (BJH method). The same method is adopted for the examples described later.
  • the pore volume of mesoporous alumina is not particularly limited. In some embodiments, it is appropriate that the pore volume is approximately 0.2 cm 3 / g or more, and is approximately 0.4 cm 3 / g or more, from the viewpoint of contact efficiency with the element to be adsorbed. It is preferable, it is more preferably about 0.5 cm 3 / g or more, it may be about 0.7 cm 3 / g or more, and it may be about 1.1 cm 3 / g or more.
  • the pore volume may be, for example, about 3.0 cm 3 / g or less, or about 2.2 cm 3 / g or less. It may be approximately 1.7 cm 3 / g or less, approximately 1.2 cm 3 / g or less, or approximately 0.8 cm 3 / g or less.
  • the pore volume can be measured by a nitrogen gas adsorption amount measuring method. The same method is adopted for the examples described later.
  • mesoporous alumina in the technique disclosed herein tends to increase the retention amount of the element to be adsorbed per weight, it can be fired so as to produce ⁇ -alumina (sometimes referred to as activated alumina). preferable. It can be confirmed, for example, by X-ray diffraction that the mesoporous alumina is ⁇ -alumina.
  • the method for producing mesoporous alumina in the technique disclosed herein is not particularly limited.
  • a person skilled in the art appropriately performs selection of a manufacturing method, selection of materials to be used, setting of manufacturing conditions and processing conditions, etc. based on one or more known techniques, and is disclosed in the present specification. Satisfies one, two or three of the surface hydroxyl group amount, the predetermined low temperature CO 2 desorption amount under reduced pressure (or the predetermined low temperature CO 2 desorption amount under normal pressure), and the predetermined low temperature NH 3 desorption amount.
  • Mesoporous alumina can be produced, and mesoporous alumina used in any of the adsorption methods disclosed herein can be prepared.
  • Examples of the above-mentioned known techniques include calcining an alumina precursor obtained by drying a slurry prepared by mixing an aluminum source, a pore-forming agent and an aqueous solvent, and calcining an alumina sol or an alumina hydrate.
  • the surfactant is removed from the alumina precursor obtained by the sol-gel method using micelles of the surfactant as a template for pore formation by methods such as calcination and washing, and the evaporation-induced self-assembly method is used. Manufacturing, etc., but is not limited to these.
  • the firing is preferably performed so that ⁇ -alumina is produced.
  • a firing temperature of about 500 ° C. or higher and about 800 ° C. or lower (more preferably, about 550 ° C. or higher and about 700 ° C. or lower, or about 650 ° C. or higher and 750 ° C. or lower) can be preferably adopted.
  • an organoaluminum compound or a hydrolyzate thereof can be used.
  • an aluminum alkoxide such as aluminum isopropoxide
  • the pore-forming agent or template include inorganic compounds that decompose to produce gas by heating below the firing temperature (preferably compounds belonging to at least one of ammonium salt, carbonate and bicarbonate, such as ammonium carbonate. , Ammonium hydrogencarbonate, sodium hydrogencarbonate), organic compounds that can be decomposed and removed by heating (for example, polymers such as glucose and polymer nanospheres such as polydiaminopyridine nanospheres), but are not limited thereto.
  • the amount of the pore-forming agent (for example, the inorganic compound) used with respect to 100 parts by weight of the aluminum source (for example, aluminum alkoxide) can be, for example, 50 parts by weight or more, preferably 100 parts by weight or more.
  • the adsorption methods disclosed herein include the above-mentioned predetermined surface hydroxyl group amount, predetermined low temperature CO 2 desorption amount under reduced pressure (or predetermined low temperature CO 2 desorption amount under normal pressure), and predetermined low temperature NH 3 desorption amount. It includes preparing mesoporous alumina satisfying one, two or three of them, and contacting the mesoporous alumina with a liquid containing an element to be adsorbed. The above adsorption method can be preferably carried out using the mesoporous alumina disclosed herein.
  • the adsorption target element contained in the adsorption target element-containing liquid can be adsorbed on the mesoporous alumina.
  • adsorbing the adsorption target element to the mesoporous alumina can also be understood as removing or separating the adsorption target element using the mesoporous alumina. Therefore, the matters disclosed herein include techniques for adsorbing, separating or removing elements to be adsorbed using mesoporous alumina.
  • the element to be adsorbed is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table.
  • the element to be adsorbed may be an element belonging to the 4th to 6th cycles (for example, the 4th to 5th cycles) and the 4th to 15th groups in the periodic table, and the 4th to 6th cycles may be used. It may be an element belonging to the 3rd to 14th groups (for example, 4th to 5th cycles), and may be an element belonging to the 4th to 6th cycles (for example, the 4th to 5th cycles) and the 4th to 14th groups.
  • the element to be adsorbed may be an element belonging to the 4th cycle of the periodic table and groups 3 to 15 (preferably groups 4 to 14, for example, groups 4 to 12).
  • the element to the 5th period and the 3rd to 15th group preferably the 4th to 14th group, for example, the 4th to 12th group.
  • Specific examples of the elements that can be adsorbed in the adsorption method disclosed herein include, but are not limited to, Ti, Cr, Co, Ni, Cu, Zn, Zr, Mo, and Pb.
  • the content of the element to be adsorbed in the liquid containing the element to be adsorbed is not particularly limited. In some embodiments, the content of the element to be adsorbed can be, for example, greater than 0 g / L and less than or equal to 20 g / L.
  • the mesoporous alumina disclosed herein can also be preferably used for adsorbing an adsorption target element from an adsorption target element-containing liquid having an adsorption target element content of, for example, 20000 ppm or less, 10000 ppm or less, or 5000 ppm or less.
  • the content of the element to be adsorbed may be, for example, 1 ppm or more, 10 ppm or more, or 100 ppm or more.
  • the pH of the element-containing liquid to be adsorbed may be, for example, about 2 to 12, may be 2 to 10, or may be 2 to 8.
  • the technique disclosed herein can be preferably applied to, for example, a liquid containing an element to be adsorbed having a pH of 2 to 6. From the viewpoint of the durability of mesoporous alumina, it is advantageous that the pH of the element-containing liquid to be adsorbed is about 2.5 or more.
  • the pH may be 3 or higher, 4 or higher, or 4.5 or higher. In some other embodiments, the pH may be 5.5 or less, 4 or less, or 3 or less.
  • a pH adjusting agent In order to adjust the pH of the element-containing liquid to be adsorbed, an appropriate amount of a pH adjusting agent can be used, if necessary.
  • a pH adjusting agent for example, potassium hydroxide, sodium hydroxide, hydrochloric acid, nitric acid, sulfuric acid and the like can be used, but the pH adjusting agent is not limited thereto.
  • the pH adjuster one type may be used alone or two or more types may be used in combination as appropriate.
  • the temperature of the element-containing liquid to be adsorbed in contact with the mesoporous alumina is not particularly limited, and may be, for example, about 0 ° C to 60 ° C. In some preferred embodiments, the temperature of the element-containing liquid to be adsorbed may be 10 ° C. or higher, 20 ° C. or higher, 50 ° C. or lower, or 40 ° C. or lower. From the viewpoint of ease of operation and the like, a mode of contact at room temperature (typically 20 ° C. to 30 ° C.) can be preferably adopted.
  • the mode in which the mesoporous alumina is brought into contact with the element-containing liquid to be adsorbed is not particularly limited, and can be brought into contact with, for example, by passing the liquid or dipping.
  • the liquid may be passed by one pass, or the liquid containing the element to be adsorbed may be circulated.
  • any of the mesoporous alumina disclosed here can be preferably used for various uses in various fields in addition to the use for adsorbing the element to be adsorbed.
  • Examples of applications of any of the mesoporous aluminas disclosed herein include metal ion adsorbents, metal ion separators, liquid adsorbents, liquid filters, liquid separators, gas adsorbents, gas filters, gas separators.
  • the matters disclosed herein include: [1] A method for adsorbing elements belonging to the 4th to 6th periods and the 3rd to 15th groups in the periodic table.
  • a liquid containing an element to be adsorbed is brought into contact with the mesoporous alumina to adsorb the element to be adsorbed to the mesoporous alumina.
  • the adsorption target element is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table. [Measurement method of surface hydroxyl group amount] The sample to be measured and the container containing water are allowed to stand in a desiccator, and water vapor is adsorbed on the hydroxyl groups existing on the surface of the sample.
  • the sample is heated from room temperature to 200 ° C. at a rate of 5 ° C./min by a thermogravimetric-differential heat measuring device, and then held for 12 hours. The weight loss due to the desorption of physically adsorbed water from the water is measured. Further, the sample is heated to 900 ° C. at a rate of 5 ° C./min and then held for 12 hours to measure the amount of dehydration due to dehydration condensation of two adjacent hydroxyl groups. From the obtained results, the amount of surface hydroxyl groups [mmol / g] is calculated by the following formula.
  • the concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at 5 ° C./min under reduced pressure and under He flow.
  • the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
  • the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under reduced pressure in this sample. [Measurement method of low temperature NH 3 desorption amount] After the sample to be measured was left at 150 ° C.
  • NH 3 / He mixed gas was passed through a sample tube kept at 40 ° C. for the sample to be sufficiently added to the sample. Then, the gas is switched to He gas, and excess NH 3 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
  • concentration of NH 3 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at a rate of 10 ° C./min under reduced pressure and He flow.
  • the obtained TPD desorption curve is peak-separated, and the NH3 desorption amount at the peak is calculated based on the area of each peak.
  • the NH 3 desorption amount obtained from the area of the peak whose peak temperature is less than 300 ° C. is defined as the low temperature NH 3 desorption amount of this sample.
  • the mesoporous alumina at least the above (2) and the following (4): (4)
  • the amount of low-temperature CO 2 desorption under normal pressure measured by the following method is 5 ⁇ mol / g or more (for example, 35 ⁇ mol / g or more);
  • the method according to the above [1], wherein the mesoporous alumina satisfying the above conditions is prepared.
  • Measurement method of low temperature CO 2 desorption under normal pressure The sample to be measured was heated to 500 ° C. at a rate of 10 ° C./hr under normal pressure of about 1 atm, held for 60 minutes, and then the sample was allowed to stand and kept at 35 ° C. CO 2 in a sample tube.
  • CO 2 is sufficiently adsorbed on the sample through the gas, and then excess CO 2 is purged out using He gas under normal pressure of about 1 atm.
  • concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature to 500 ° C. at a rate of 10 ° C./hr under normal pressure of about 1 atm and under He flow.
  • the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
  • the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under normal pressure of this sample.
  • [4] A method for adsorbing elements belonging to the 4th to 6th periods and the 3rd to 15th groups in the periodic table.
  • the amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (3)
  • the low-temperature NH 3 desorption amount measured by the method described in [1] above is 25 ⁇ mol / g or more; and (4) the low-temperature CO 2 desorption amount under normal pressure measured by the following method is 5 ⁇ mol.
  • a liquid containing an element to be adsorbed is brought into contact with the mesoporous alumina to adsorb the element to be adsorbed to the mesoporous alumina.
  • the adsorption target element is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table.
  • [10] Mesoporous alumina used for the adsorption of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups of the periodic table, wherein the following (1) to (3): (1) The amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (2) The amount of low-temperature CO 2 desorption under reduced pressure measured by the method described in the above [1] is 5 ⁇ mol / g or more; and (3) the low-temperature NH 3 measured by the method described in the above [1]. The amount of desorption is 25 ⁇ mol / g or more; Mesoporous alumina that meets at least one of the above.
  • [13] Mesoporous alumina used for adsorbing elements belonging to the 4th to 6th cycles and the 3rd to 15th groups of the periodic table, wherein the following (1), (3), (4): (1) The amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (3) The amount of low-temperature NH 3 desorbed by the method described in the above [1] is 25 ⁇ mol / g or more; and (4) the low-temperature CO 2 under normal pressure measured by the method described in the above [4]. The amount of desorption is 5 ⁇ mol / g or more (for example, 35 ⁇ mol / g or more); Mesoporous alumina that meets at least one of the above.
  • Preparation Example 3 A commercially available alumina sol (AS-200 manufactured by Nissan Chemical Industries, Ltd.) was calcined at 700 ° C. for 5 hours in a calcining furnace under an atmospheric atmosphere, then crushed and passed through a 50-mesh wire mesh. In this way, the mesoporous alumina of Sample 3 (specific surface area 204 m 2 / g, pore volume 0.49 cm 3 / g, average pore diameter 8.3 nm) was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法が提供される。その方法は: (1)表面水酸基量が3.5mmol/g以上である; (2)CO昇温脱離分析における低温CO脱離量が5μmol/g以上である;および (3)NH昇温脱離分析における低温NH脱離量が25μmol/g以上である; の少なくとも1つを満たすメソポーラスアルミナを準備することと、 上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、を含む。上記吸着対象元素は、周期表の第4~6周期かつ第3~15族に属する元素からなる群から選択される少なくとも1種である。

Description

吸着方法およびその方法に用いられるメソポーラスアルミナ
 本発明は、吸着方法およびその方法に用いられるメソポーラスアルミナに関する。
 本出願は、2020年8月6日に出願された米国仮特許出願第63/061,956号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 吸着材や触媒担体として多孔質金属酸化物を用いることが知られている。例えば特許文献1は、放射性セシウムおよびストロンチウムを天然水や汚染水から吸着除去する技術に関し、分相法多孔質ガラスからなるセシウム・ストロンチウム吸着材および吸着後に安定的なガラス固化体を形成するシステムを提案している。また、特許文献2には、99mTcジェネレータのモリブデン(Mo)吸着材等として有用な多孔質金属酸化物とその製造方法が記載されている。
日本国特許出願公開2019-000764号公報 国際公開第2017/126602号
 特許文献1に記載された技術は、その大部分がSiOにより構成された分相法多孔質ガラスを用いることを前提とし(請求項1、段落[0051]等)、アルミナを主体とする吸着材を用いるものではない。また、特許文献1では、吸着材に吸着させる元素(吸着対象元素)がセシウムおよびストロンチウムに限定され、他の元素の吸着は意図されていない。特許文献2は、多孔質アルミナその他の金属酸化物のMo保持量に関し、該多孔質金属酸化物の製造方法や構造上の特徴(比表面積、細孔容積、平均細孔径等)に着目しているが、Mo以外の元素を保持させることについては具体的に検討されていない。吸着材を用いる吸着方法であって、Mo以外の周期表第3~15族元素の吸着にも適用可能な吸着方法が提供されれば有益である。
 本発明は、かかる課題を解決する吸着方法の提供を目的とする。関連する他の目的は、上記吸着方法の実施に適した吸着材を提供することである。
 この明細書によると、周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法が提供される。その吸着方法は、メソポーラスアルミナを準備することと、上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、を含む。上記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である。上記メソポーラスアルミナとしては、以下の(1)~(3)の少なくとも1つを満たすものを使用する。
 (1)表面水酸基量が3.5mmol/g以上である。
 (2)COをプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO量(以下「低温CO脱離量」ともいう。)が5μmol/g以上である。
 (3)NHをプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH量(以下「低温NH脱離量」ともいう。)が25μmol/g以上である。
 上記(1)~(3)の1つまたは2つ以上を満たすことにより、該メソポーラスアルミナの単位重量あたりの上記吸着対象元素の保持量(吸着量)は、多くなる傾向にある。したがって、かかるメソポーラスアルミナを用いる上記吸着方法によると、上記吸着対象元素を効率よく吸着することができる。
 また、この明細書によると、以下の(1)~(3):
 (1)表面水酸基量が3.5mmol/g以上である;
 (2)COをプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO量が5μmol/g以上である;および
 (3)NHをプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH量が25μmol/g以上である;
の少なくとも1つを満たすメソポーラスアルミナが提供される。かかるメソポーラスアルミナは、上記吸着対象元素を効率よく吸着し得るので好ましい。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される技術におけるメソポーラスアルミナは、以下において説明する所定の表面水酸基量、所定の低温CO脱離量および所定の低温NH脱離量の少なくとも1つを満たす。これらのうち2つ以上を満たすメソポーラスアルミナであってもよく、3つ全てを満たすメソポーラスアルミナであってもよい。
 上記メソポーラスアルミナが少なくとも所定の表面水酸基量を満たす態様において、該メソポーラスアルミナの表面水酸基量は3.5mmol/g以上であり得る。この表面水酸基量を満たすメソポーラスアルミナは、より表面水酸基量が少ないメソポーラスアルミナに比べて、単位重量あたりの吸着対象元素の保持量が多くなる傾向にある。いくつかの態様において、上記表面水酸基量は、好ましくは3.7mmol/g以上であり、例えば4.0mmol/g以上であってよく、4.5mmol/g以上でもよく、5.0mmol/g以上でもよい。表面水酸基量の上限は特に制限されず、メソポーラスアルミナの比表面積との関係で理論上存在し得る量であればよい。製造容易性や取扱い性、保存性、品質安定性等の観点から、いくつかの態様において、上記表面水酸基量は、例えば20mmol/g以下であってよく、15mmol/g以下でもよく、10mmol/g以下でもよく、8mmol/g以下でもよく、6mmol/g以下でもよい。
 ここでいう表面水酸基量は、熱重量-示差熱分析(TG-DTA)により把握することができ、具体的には以下の方法により測定される。後述の実施例についても同様の方法が採用される。
  [表面水酸基量の測定方法]
 測定対象のサンプルと水を入れた容器をデシケーター内に静置し、サンプル表面に存在する水酸基に水蒸気を吸着させる。十分な時間(好ましくは3時間以上)が経過した後、熱重量-示差熱測定装置により、上記サンプルを室温から5℃/分のレートで200℃まで昇温した後12時間ホールドし、該サンプルからの物理吸着水の脱離による重量減少を測定する。さらに、上記サンプルを5℃/分のレートで900℃まで昇温した後12時間ホールドして、隣り合う二つの水酸基の脱水縮合による脱水量を測定する。得られた結果から、次式により表面水酸基量[mmol/g]を算出する。
  表面水酸基量[mmol/g]=1.111×ΔW2/(1-ΔW1/100)
 ここで、上記式中のΔW1は、室温から200℃までの昇温と200℃でのホールド後までの重量減少率[wt%]を示す。上記式中のΔW2は、200℃から900℃までの昇温と900℃でのホールド後までの重量減少率[wt%]を示す。
 上記メソポーラスアルミナが少なくとも所定の低温CO脱離量を満たす態様において、該メソポーラスアルミナの低温CO脱離量は5μmol/g以上であり得る。この低温CO脱離量を満たすメソポーラスアルミナは、より低温CO脱離量が少ないメソポーラスアルミナに比べて、単位重量あたりの吸着対象元素の保持量が多くなる傾向にある。いくつかの態様において、上記低温CO脱離量は、好ましくは8μmol/g以上であり、10μmol/g以上でもよく、12μmol/g以上でもよく、15μmol/g以上でもよく、20μmol/g以上でもよい。低温CO脱離量の上限は特に制限されず、メソポーラスアルミナの比表面積との関係で理論上可能な量であればよい。製造容易性や取扱い性、保存性、品質安定性等の観点から、いくつかの態様において、上記低温CO脱離量は、例えば400μmol/g以下であってよく、300μmol/g以下でもよく、250μmol/g以下でもよく200μmol/g以下でもよく、100μmol/g以下でもよく、70μmol/g以下でもよく、50μmol/g以下でもよく、30μmol/g以下でもよく、20μmol/g以下でもよく、15μmol/g以下でもよい。
 ここでいう低温CO脱離量は、COをプローブ分子に用いる昇温脱離分析(CO-TPD)により把握することができ、具体的には以下の方法により測定される。後述の実施例についても同様の方法が採用される。
  [低温CO脱離量の測定方法]
 測定対象のサンプルを減圧下(1Pa以下)に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にCOガスを通して上記サンプルにCOを十分に吸着させ、その後、Heガスを用いて、約3kPa~約10kPaの減圧下で過剰なCOをパージアウトする。次いで、減圧下、He流通下で5℃/分で昇温しながら、各温度で脱離してくるCOの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO脱離量を、本サンプルの低温CO脱離量とする。四重極質量分析装置としては、Pfeiffer Vacuum GmbH社製の型式「OmniStar GSD301」(後述の実施例で使用)またはその同等品を用いることができる。
 ここに開示される技術のいくつかの態様において、上記メソポーラスアルミナは、上述の方法により減圧下で測定される低温CO脱離量(以下、「減圧下低温CO脱離量」ともいう。)の代わりに、または該減圧下低温CO脱離量に加えて、以下の方法により測定されるCO脱離量(以下、「常圧下低温CO脱離量」ともいう。)を用いて特定されるものであってもよい。
  [常圧下低温CO脱離量の測定方法]
 測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCOガスを通して上記サンプルにCOを十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCOをパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCOの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO脱離量を、本サンプルの常圧下低温CO脱離量とする。四重極質量分析装置としては、MKS Instruments UK Ltd.の製品名「MKS Cirrus 2」(後述の実施例で使用)またはその同等品を用いることができる。
 メソポーラスアルミナの常圧下低温CO脱離量は、例えば5μmol/g以上であってよく、10μmol/g以上でもよく、20μmol/g以上でもよく、30μmol/g以上でもよい。常圧下低温CO脱離量の増大により、メソポーラスアルミナの単位重量あたりの吸着対象元素(例えばMo)の保持量は多くなる傾向にある。かかる観点から、いくつかの態様において、メソポーラスアルミナの常圧下低温CO脱離量は、35μmol/g以上であることが適当であり、45μmol/g以上であることが有利であり、55μmol/g以上であることが好ましく、75μmol/g以上でもよく、95μmol/g以上でもよく、110μmol/g以上でもよく、130μmol/g以上でもよく、140μmol/g以上でもよく、150μmol/g以上でもよい。常圧下低温CO脱離量の上限は特に制限されず、メソポーラスアルミナの比表面積との関係で理論上可能な量であればよい。製造容易性や取扱い性、保存性、品質安定性等の観点から、いくつかの態様において、上記常圧下低温CO脱離量は、例えば400μmol/g以下であってよく、300μmol/g以下でもよく、250μmol/g以下でもよく、230μmol/g以下でもよく、200μmol/g以下でもよい。
 上記メソポーラスアルミナが少なくとも所定の低温NH脱離量を満たす態様において、該メソポーラスアルミナの低温NH脱離量は25μmol/g以上であり得る。この低温NH脱離量を満たすメソポーラスアルミナは、より低温NH脱離量が少ないメソポーラスアルミナに比べて、単位重量あたりの吸着対象元素の保持量が多くなる傾向にある。いくつかの態様において、上記低温NH脱離量は、好ましくは30mol/g以上であり、40μmol/g以上でもよく、50μmol/g以上でもよく、60μmol/g以上でもよく、70μmol/g以上でもよい。低温NH脱離量の上限は特に制限されず、メソポーラスアルミナの比表面積との関係で理論上可能な量であればよい。メソポーラスアルミナの低温NH脱離量は、例えば700μmol/g以下、500μmol/g以下または400μmol/g以下であり得る。製造容易性や取扱い性、保存性、品質安定性等の観点から、いくつかの態様において、メソポーラスアルミナの低温NH脱離量は、例えば300μmol/g以下であってよく、200μmol/g未満でもよく、150μmol/g以下でもよく、100μmol/g以下でもよく、80μmol/g以下でもよく、60μmol/g以下でもよい。
 ここでいう低温NH脱離量は、NHをプローブ分子に用いる昇温脱離分析(NH-TPD)により把握することができ、具体的には以下の方法により測定される。後述の実施例についても同様の方法が採用される。
  [低温NH脱離量の測定方法]
 測定対象のサンプルを1Pa以下の減圧下に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にNH/He混合ガスを通して上記サンプルにNHを十分に吸着させ、その後、Heガスに切り替え、約3kPa~約10kPaの減圧下、で過剰なNHをパージアウトする。次いで、減圧、He流通下で10℃/分のレートで昇温しながら、各温度で脱離してくるNHの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるNH脱離量を算出する。そのうちピーク温度が300℃未満のピークの面積から求められたNH脱離量を、本サンプルの低温NH脱離量とする。四重極質量分析装置としては、Pfeiffer Vacuum GmbH社製の型式「OmniStar GSD301」(後述の実施例で使用)またはその同等品を用いることができる。
 ここに開示される技術において、メソポーラスアルミナの比表面積は、特に限定されない。上記比表面積は、例えば凡そ50m/g以上であり得る。いくつかの態様において、吸着対象元素との接触面積を大きくする観点から、上記比表面積は、凡そ100m/g以上であることが有利であり、凡そ130m/g以上であることが好ましく、凡そ150m/g以上であることがより好ましく、凡そ190m/g以上でもよく、凡そ220m/g以上でもよい。また、メソポーラスアルミナの強度や耐久性の観点から、いくつかの態様において、上記比表面積は、例えば凡そ500m/g以下であってよく、凡そ400m/g以下でもよく、凡そ300m/g以下でもよく、凡そ270m/g以下でもよく、凡そ220m/g以下でもよい。比表面積は、窒素ガス吸着量測定法(BET法)により測定することができる。後述の実施例についても同様の方法が採用される。
 ここに開示される技術において、メソポーラスアルミナの平均細孔径は特に限定されないが、典型的には凡そ2nm~凡そ50nmの範囲内である。いくつかの態様において、上述した比表面積を実現しやすくする観点から、上記平均細孔径は、凡そ40nm以下であることが適当であり、凡そ30nm以下であることが好ましく、凡そ25nm以下であることがより好ましく、凡そ20nm未満でもよく、凡そ15nm未満でもよく、凡そ13nm未満でもよく、凡そ11nm未満でもよく、凡そ9nm未満でもよい。また、いくつかの態様において、吸着対象元素との接触効率等の観点から、上記平均細孔径は、凡そ4nm以上であることが適当であり、凡そ6.5nm以上であることが好ましく、凡そ8nm以上でもよく、凡そ10nm以上でもよく、凡そ13nm以上でもよく、凡そ16nm以上でもよい。平均細孔径は、窒素ガス吸着量測定法(BJH法)により測定することができる。後述の実施例についても同様の方法が採用される。
 ここに開示される技術において、メソポーラスアルミナの細孔容積は特に限定されない。いくつかの態様において、吸着対象元素との接触効率等の観点から、上記細孔容積は、凡そ0.2cm/g以上であることが適当であり、凡そ0.4cm/g以上であることが好ましく、凡そ0.5cm/g以上であることがより好ましく、凡そ0.7cm/g以上でもよく、凡そ1.1cm/g以上でもよい。また、メソポーラスアルミナの強度や耐久性の観点から、いくつかの態様において、上記細孔容積は、例えば凡そ3.0cm/g以下であってよく、凡そ2.2cm/g以下でもよく、凡そ1.7cm/g以下でもよく、凡そ1.2cm/g以下でもよく、凡そ0.8cm/g以下でもよい。細孔容積は、窒素ガス吸着量測定法により測定することができる。後述の実施例についても同様の方法が採用される。
 ここに開示される技術におけるメソポーラスアルミナは、重量当たりの吸着対象元素の保持量を高めやすいことから、γ-アルミナ(活性アルミナと称されることもある。)が生成するように焼成することが好ましい。メソポーラスアルミナがγ-アルミナであることは、例えばX線回折により確認することができる。
 ここに開示される技術におけるメソポーラスアルミナの製造方法は、特に限定されない。当業者は、公知の1または2以上の技術に基づいて、製造方法の選択、使用する材料の選定、製造条件や処理条件の設定等を適切に行うことにより、本明細書により開示される所定の表面水酸基量、所定の減圧下低温CO脱離量(または、所定の常圧下低温CO脱離量)および所定の低温NH脱離量のうち1つ、2つまたは3つを満たすメソポーラスアルミナを製造することができ、ここに開示されるいずれかの吸着方法に用いられるメソポーラスアルミナを準備することができる。
 上記公知技術の例には、アルミニウム源と細孔形成剤と水性溶媒とを混合して調製したスラリーを乾燥させて得られたアルミナ前駆体を焼成すること、アルミナゾルやアルミナ水和物を焼成すること、界面活性剤のミセルを細孔形成のテンプレートに用いるゾル-ゲル法により得られたアルミナ前駆体から焼成や洗浄等の手法により界面活性剤を除去すること、蒸発誘起自己組織化法を用いて製造すること、等が含まれるが、これらに限定されない。上記焼成は、γ-アルミナが生成するように行うことが好ましい。例えば、凡そ500℃以上かつ凡そ800℃以下(より好ましくは、凡そ550℃以上かつ凡そ700℃以下、または凡そ650℃以上750℃以下)の焼成温度を好ましく採用し得る。
 上記アルミニウム源としては、有機アルミニウム化合物またはその加水分解物を利用し得る。上記有機アルミニウム化合物としては、例えばアルミニウムイソプロポキシド等のアルミニウムアルコキシドを用いることができる。上記細孔形成剤またはテンプレートの例としては、焼成温度以下の加熱により分解してガスを生じる無機化合物(好ましくは、アンモニウム塩、炭酸塩および炭酸水素塩の少なくとも1つに属する化合物。例えば炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム)、加熱により分解除去可能な有機化合物(例えば、グルコース等のポリマーや、ポリジアミノピリジンナノスフェア等のようなポリマーナノスフェア)等が挙げられるが、これらに限定されない。上記アルミニウム源(例えばアルミニウムアルコキシド)100重量部に対する上記細孔形成剤(例えば上記無機化合物)の使用量は、例えば50重量部以上、好ましくは100重量部以上とすることができる。
 ここに開示される吸着方法は、上述した所定の表面水酸基量、所定の減圧下低温CO脱離量(または、所定の常圧下低温CO脱離量)および所定の低温NH脱離量のうち1つ、2つまたは3つを満たすメソポーラスアルミナを準備することと、そのメソポーラスアルミナに吸着対象元素含有液を接触させることとを含む。上記吸着方法は、ここに開示されるメソポーラスアルミナを用いて好ましく実施することができる。メソポーラスアルミナに吸着対象元素含有液を接触させることにより、該吸着対象元素含有液に含まれる吸着対象元素を上記メソポーラスアルミナに吸着させることができる。ここで、吸着対象元素を上記メソポーラスアルミナに吸着させることは、該上記メソポーラスアルミナを用いて吸着対象元素を除去または分離することとしても把握され得る。したがって、この明細書により開示される事項には、メソポーラスアルミナを用いて吸着対象元素を吸着、分離または除去する技術が包含される。
 上記吸着対象元素は、周期表の第4~6周期かつ第3~15族に属する元素からなる群から選択される少なくとも1種である。いくつかの態様において、上記吸着対象元素は、周期表の第4~6周期(例えば第4~5周期)かつ第4族~第15族に属する元素であってもよく、第4~6周期(例えば第4~5周期)かつ第3族~第14族に属する元素であってもよく、第4~6周期(例えば第4~5周期)かつ第4族~第14族に属する元素であってもよく、第4~6周期(例えば第4~5周期)かつ第4族~第12族に属する元素であってもよい。また、いくつかの態様において、上記吸着対象元素は、周期表の第4周期かつ第3~15族(好ましくは第4~14族、例えば第4~12族)に属する元素であってもよく、第5周期かつ第3~15族(好ましくは第4~14族、例えば第4~12族)に属する元素であってもよい。ここに開示される吸着方法において吸着対象となり得る元素の具体例には、Ti,Cr,Co,Ni,Cu,Zn,Zr,Mo,Pbが含まれるが、これらに限定されない。
 吸着対象元素含有液における吸着対象元素の含有量は、特に限定されない。いくつかの態様において、吸着対象元素の含有量は、例えば0g/Lより大きく20g/L以下であり得る。ここに開示されるメソポーラスアルミナは、吸着対象元素の含有量が例えば20000ppm以下、10000ppm以下または5000ppm以下である吸着対象元素含有液から吸着対象元素を吸着する用途にも好ましく用いられ得る。吸着対象元素の含有量は、例えば1ppm以上、10ppm以上または100ppm以上であり得る。
 特に限定するものではないが、吸着対象元素含有液のpHは、例えば2~12程度であってよく、2~10でもよく、2~8でもよい。ここに開示される技術は、例えばpHが2~6である吸着対象元素含有液に好ましく適用され得る。メソポーラスアルミナの耐久性の観点から、吸着対象元素含有液のpHは、凡そ2.5以上であることが有利である。いくつかの態様において、pHは、3以上でもよく、4以上でもよく、4.5以上でもよい。他のいくつかの態様において、pHは、5.5以下であってよく、4以下でもよく、3以下でもよい。吸着対象元素含有液のpHを調整するために、必要に応じて適量のpH調整剤を用いることができる。上記pH調整剤としては、例えば水酸化カリウム、水酸化ナトリウム、塩酸、硝酸、硫酸等を用いることができるが、これらに限定されない。pH調整剤は、1種を単独でまたは2種以上を適宜組み合わせて用いることができる。
 メソポーラスアルミナに接触させる吸着対象元素含有液の温度は、特に限定されず、例えば0℃~60℃程度であり得る。いくつかの好ましい態様において、吸着対象元素含有液の温度は、10℃以上でもよく、20℃以上でもよく、また、50℃以下でもよく、40℃以下でもよい。操作の容易性等の観点から、室温(典型的には20℃~30℃)で接触させる態様を好ましく採用し得る。
 メソポーラスアルミナに吸着対象元素含有液を接触させる態様は特に限定されず、例えば通液や浸漬により接触させることができる。通液は、ワンパスで行ってもよく、吸着対象元素含有液を循環させて行ってもよい。
 ここに開示されるいずれかのメソポーラスアルミナは、吸着対象元素の吸着用途のほか、種々の分野において各種の用途に好ましく用いられ得る。ここに開示されるいずれかのメソポーラスアルミナの用途の例には、金属イオン吸着材、金属イオン分離材、液体吸着材、液体ろ過材、液体分離材、ガス吸着材、ガスろ過材、ガス分離材、吸水材、保水材、調湿材、排水処理材、芳香・消臭用担体、食品用精製・除菌材、医薬品菌体その他の菌体の分離・濃縮材、ドラッグデリバリー用担体、化粧品用材、触媒担体、バイオリアクター・微生物担持用材、湿度センサー用材、吸音・消音材、断熱材、遮熱材等が含まれるが、これらに限定されない。この明細書により開示される事項には、上述したいずれかの用途にメソポーラスアルミナを用いることや、かかる用途において用いられるメソポーラスアルミナが包含され得る。
 この明細書により開示される事項には、以下のものが含まれる。
 〔1〕 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法であって、
 以下の(1)~(3):
 (1)下記の方法で測定される表面水酸基量が3.5mmol/g以上である;
 (2)下記の方法で測定される減圧下低温CO脱離量が5μmol/g以上である;および
 (3)下記の方法で測定される低温NH脱離量が25μmol/g以上である;
の少なくとも1つを満たすメソポーラスアルミナを準備することと、
 上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、
を含み、
 上記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。
  [表面水酸基量の測定方法]
 測定対象のサンプルと水を入れた容器をデシケーター内に静置し、サンプル表面に存在する水酸基に水蒸気を吸着させる。十分な時間(好ましくは3時間以上)が経過した後、熱重量-示差熱測定装置により、上記サンプルを室温から5℃/分のレートで200℃まで昇温した後12時間ホールドし、該サンプルからの物理吸着水の脱離による重量減少を測定する。さらに、上記サンプルを5℃/分のレートで900℃まで昇温した後12時間ホールドして、隣り合う二つの水酸基の脱水縮合による脱水量を測定する。得られた結果から、次式により表面水酸基量[mmol/g]を算出する。
  表面水酸基量[mmol/g]=1.111×ΔW2/(1-ΔW1/100)
  [減圧下低温CO脱離量の測定方法]
 測定対象のサンプルを減圧下(1Pa以下)に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にCOガスを通して上記サンプルにCOを十分に吸着させ、その後、Heガスを用いて、約3kPa~約10kPaの減圧下で過剰なCOをパージアウトする。次いで、減圧下、He流通下で5℃/分で昇温しながら、各温度で脱離してくるCOの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO脱離量を、本サンプルの減圧下低温CO脱離量とする。
  [低温NH脱離量の測定方法]
 測定対象のサンプルを1Pa以下の減圧下に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にNH/He混合ガスを通して上記サンプルにNHを十分に吸着させ、その後、Heガスに切り替え、約3kPa~約10kPaの減圧下、で過剰なNHをパージアウトする。次いで、減圧、He流通下で10℃/分のレートで昇温しながら、各温度で脱離してくるNHの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるNH脱離量を算出する。そのうちピーク温度が300℃未満のピークの面積から求められたNH脱離量を、本サンプルの低温NH脱離量とする。
 〔2〕 上記メソポーラスアルミナとして、少なくとも上記(2)を満たすメソポーラスアルミナを準備する、上記〔1〕に記載の方法。
 〔3〕 上記メソポーラスアルミナとして、少なくとも上記(2)および下記(4):
 (4)下記の方法で測定される常圧下低温CO脱離量が5μmol/g以上(例えば35μmol/g以上)である; 
を満たすメソポーラスアルミナを準備する、上記〔1〕に記載の方法。
  [常圧下低温CO脱離量の測定方法]
 測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCOガスを通して上記サンプルにCOを十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCOをパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCOの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO脱離量を、本サンプルの常圧下低温CO脱離量とする。
 〔4〕 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法であって、
 以下の(1)、(3)、(4):
 (1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
 (3)上記〔1〕に記載の方法で測定される低温NH脱離量が25μmol/g以上である;および
 (4)下記の方法で測定される常圧下低温CO脱離量が5μmol/g以上(例えば35μmol/g以上)である; 
の少なくとも1つを満たすメソポーラスアルミナを準備することと、
 上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、
を含み、
 上記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。
  [常圧下低温CO脱離量の測定方法]
 測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCOガスを通して上記サンプルにCOを十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCOをパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCOの濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO脱離量を、本サンプルの常圧下低温CO脱離量とする。
 〔5〕 上記メソポーラスアルミナとして、少なくとも上記(4)を満たすメソポーラスアルミナを準備する、上記〔4〕に記載の方法。
 〔6〕 上記メソポーラスアルミナは、100m/g以上の比表面積を有する、上記〔1〕~〔5〕のいずれかに記載の方法。
 〔7〕 上記メソポーラスアルミナは、2nm以上30nm以下の平均細孔径を有する、上記〔1〕~〔6〕のいずれかに記載の方法。
 〔8〕 上記吸着対象元素を含む液は、pHが2~6である、上記〔1〕~〔7〕のいずれかに記載の方法。
 〔9〕 上記〔1〕~〔8〕のいずれかに記載の方法に用いられる、メソポーラスアルミナ。
 〔10〕 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着に用いられるメソポーラスアルミナであって、以下の(1)~(3):
 (1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
 (2)上記〔1〕に記載の方法で測定される減圧下低温CO脱離量が5μmol/g以上である;および
 (3)上記〔1〕に記載の方法で測定される低温NH脱離量が25μmol/g以上である;
の少なくとも1つを満たす、メソポーラスアルミナ。
 〔11〕 少なくとも上記(2)を満たす。上記〔10〕に記載のメソポーラスアルミナ。
 〔12〕 少なくとも上記(2)および下記(4):
 (4)上記〔4〕に記載の方法で測定される常圧下低温CO脱離量が5μmol/g以上(例えば35μmol/g以上)である; 
を満たす、上記〔11〕に記載のメソポーラスアルミナ。
 〔13〕 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着に用いられるメソポーラスアルミナであって、以下の(1)、(3)、(4):
 (1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
 (3)上記〔1〕に記載の方法で測定される低温NH脱離量が25μmol/g以上である;および
 (4)上記〔4〕に記載の方法で測定される常圧下低温CO脱離量が5μmol/g以上(例えば35μmol/g以上)である; 
の少なくとも1つを満たす、メソポーラスアルミナ。
 〔14〕 少なくとも上記(4)を満たす。上記〔13〕に記載のメソポーラスアルミナ。
 〔15〕 上記メソポーラスアルミナは、100m/g以上の比表面積を有する、上記〔10〕~〔14〕のいずれかに記載のメソポーラスアルミナ。
 〔16〕 上記メソポーラスアルミナは、2nm以上30nm以下の平均細孔径を有する、上記〔10〕~〔15〕のいずれかに記載のメソポーラスアルミナ。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<<実験例1>>
 <メソポーラスアルミナの調製>
  (調製例1)
 室温下において容器に蒸留水970gを投入し、攪拌しながら炭酸アンモニウム60gを投入して溶解させた後、粉末状のアルミニウムイソプロポキシド32gを投入し、室温下で24時間攪拌を継続して中間液を調製した。この中間液を耐熱容器に移し、80℃で48時間乾燥させて、アルミナ前駆体粉末を得た。これを大気雰囲気の焼成炉にて700℃で5時間焼成した後、解砕して50メッシュの金網に通過させた。このようにしてサンプル1のメソポーラスアルミナ(比表面積219m/g、細孔容積1.63cm/g、平均細孔径11.1nm)を調製した。
  (調製例2)
 炭酸アンモニウムの使用量を30gに変更した他はサンプル1のメソポーラスアルミナの調製と同様にして、サンプル2のメソポーラスアルミナ(比表面積224m/g、細孔容積0.61cm/g、平均細孔径9.6nm)を調製した。
  (調製例3)
 市販のアルミナゾル(日産化学社製、AS-200)を、大気雰囲気下の焼成炉にて700℃で5時間焼成した後、解砕して50メッシュの金網に通過させた。このようにしてサンプル3のメソポーラスアルミナ(比表面積204m/g、細孔容積0.49cm/g、平均細孔径8.3nm)を調製した。
 サンプル4としては、市販のメソポーラスアルミナ(Sigma Aldrich社、製品番号199966、Brockmann活性度I、比表面積154m/g、細孔容積0.25cm/g、平均細孔径6nm)を使用した。
 <表面水酸基量、減圧下低温CO脱離量、低温NH脱離量の測定>
 サンプル1~4の表面水酸基量(SOH)、減圧下低温CO脱離量(LCO2)および低温NH脱離量(LNH3)を、それぞれ上述の方法により測定した。結果を表1に示す。
 <吸着試験(吸着方法の実施)>
 サンプル1~4のメソポーラスアルミナを、直径4.6mm、長さ50mmのカラムに充填した。室温において、吸着対象元素としてのMoを含む液を、ポンプを用いて5mL/分の速度で上記カラムに通過させた。カラムを通過前および通過後の液のMo濃度を高周波誘導結合プラズマ発光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により決定し、通過前に対する通過後のMo減少量をサンプル1gあたりの数値に換算することにより、Mo保持量[mg/g]を算出した。カラムに通過させる液としては、0.25重量%のモリブデン酸ナトリウム水溶液を、硝酸を用いてpHを2.5(Mo濃度は900ppm)に調整して使用した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記で得られたサンプルにつき、上述の方法で常圧下低温CO脱離量を測定したところ、サンプル1は167.0μmol/gであり、サンプル3は146.6μmol/gであった。また、サンプル4の常圧下低温CO脱離量は、サンプル1、3に比べて著しく少なかった。これらの測定結果および表1に示す各サンプルのMo保持量からわかるように、常圧下低温CO脱離量とMo保持量との間に正の相関が認められた。上述の吸着試験において、カラムに通過させる液のpHを2.0に変更した場合にも、常圧下低温CO脱離量とMo保持量との間に同様の相関が認められた。
<<実験例2>>
 実験例1において吸着試験に用いたサンプル1、3および4について、Zr,Co,Cr,Cu,NiおよびZuの各々を吸着対象元素として、同様の吸着試験を行い、各金属元素の保持量を求めた。カラムに通過させる吸着対象元素含有液としては、各元素を約1000ppmの濃度で含むICP用標準液(メルク社)を、KOHを用いてpHを2.5または5に調整して使用した。結果を表2に示す。なお、表2中のN/Aは未実施であることを示している。
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (6)

  1.  周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法であって、
     以下の(1)~(3):
     (1)表面水酸基量が3.5mmol/g以上である;
     (2)COをプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO量が5μmol/g以上である;および
     (3)NHをプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH量が25μmol/g以上である;
    の少なくとも1つを満たすメソポーラスアルミナを準備することと、
     前記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を前記メソポーラスアルミナに吸着させることと、
    を含み、
     前記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。
  2.  前記メソポーラスアルミナは、100m/g以上の比表面積を有する、請求項1に記載の方法。
  3.  前記メソポーラスアルミナは、2nm以上30nm以下の平均細孔径を有する、請求項1または2に記載の方法。
  4.  前記吸着対象元素を含む液は、pHが2~6である、請求項1~3のいずれか一項に記載の方法。
  5.  請求項1~4のいずれか一項に記載の方法に用いられる、メソポーラスアルミナ。
  6.  周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着に用いられるメソポーラスアルミナであって、以下の(1)~(3):
     (1)表面水酸基量が3.5mmol/g以上である;
     (2)COをプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO量が5μmol/g以上である;および
     (3)NHをプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH量が25μmol/g以上である;
    の少なくとも1つを満たす、メソポーラスアルミナ。
PCT/JP2021/029172 2020-08-06 2021-08-05 吸着方法およびその方法に用いられるメソポーラスアルミナ WO2022030593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/019,663 US20230321628A1 (en) 2020-08-06 2021-08-05 Absorption method and mesoporous alumina used for the same
EP21853607.6A EP4194069A4 (en) 2020-08-06 2021-08-05 ADSORPTION PROCESS AND MESOPOROUS ALUMINA TO BE USED IN THIS PROCESS
JP2022541736A JPWO2022030593A1 (ja) 2020-08-06 2021-08-05
CN202180057827.4A CN116157199A (zh) 2020-08-06 2021-08-05 吸附方法和该方法中使用的介孔氧化铝
KR1020237007237A KR20230048519A (ko) 2020-08-06 2021-08-05 흡착 방법 및 그 방법에 사용되는 메조포러스 알루미나

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063061956P 2020-08-06 2020-08-06
US63/061,956 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030593A1 true WO2022030593A1 (ja) 2022-02-10

Family

ID=80118115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029172 WO2022030593A1 (ja) 2020-08-06 2021-08-05 吸着方法およびその方法に用いられるメソポーラスアルミナ

Country Status (6)

Country Link
US (1) US20230321628A1 (ja)
EP (1) EP4194069A4 (ja)
JP (1) JPWO2022030593A1 (ja)
KR (1) KR20230048519A (ja)
CN (1) CN116157199A (ja)
WO (1) WO2022030593A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478438A (ja) * 1990-07-19 1992-03-12 Fuji Photo Film Co Ltd 重金属除去用活性アルミナ及びそれを用いた硝酸銀の製造方法
JP2005015323A (ja) * 2003-06-06 2005-01-20 National Institute Of Advanced Industrial & Technology 多孔性アルミナ結晶性粒子及びその製造方法
WO2017126602A1 (ja) 2016-01-21 2017-07-27 株式会社フジミインコーポレーテッド 多孔質金属酸化物の製造方法
JP2019000764A (ja) 2017-06-12 2019-01-10 株式会社環境レジリエンス セシウム・ストロンチウム吸着材、その製法、ならびに、それを用いた吸着除去システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478438A (ja) * 1990-07-19 1992-03-12 Fuji Photo Film Co Ltd 重金属除去用活性アルミナ及びそれを用いた硝酸銀の製造方法
JP2005015323A (ja) * 2003-06-06 2005-01-20 National Institute Of Advanced Industrial & Technology 多孔性アルミナ結晶性粒子及びその製造方法
WO2017126602A1 (ja) 2016-01-21 2017-07-27 株式会社フジミインコーポレーテッド 多孔質金属酸化物の製造方法
JP2019000764A (ja) 2017-06-12 2019-01-10 株式会社環境レジリエンス セシウム・ストロンチウム吸着材、その製法、ならびに、それを用いた吸着除去システム

Also Published As

Publication number Publication date
KR20230048519A (ko) 2023-04-11
JPWO2022030593A1 (ja) 2022-02-10
EP4194069A1 (en) 2023-06-14
CN116157199A (zh) 2023-05-23
EP4194069A4 (en) 2024-11-13
US20230321628A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
JP5589996B2 (ja) 二酸化炭素捕捉材
KR101822925B1 (ko) 복합 산화물, 그 제조법 및 배기가스 정화용 촉매
WO2007132829A1 (ja) 排ガス浄化用触媒及びその製造方法
CN111203205B (zh) 一种基于稀土掺杂zif-8纳米多孔碳催化剂及其制备方法与应用
Kapica-Kozar et al. Alkali-treated titanium dioxide as adsorbent for CO2 capture from air
US20190083953A1 (en) Manganese Oxide Nanoarchitectures for Broad-Spectrum Removal of Toxic Gases in Air-Filtration Applications
JP5428540B2 (ja) 高耐水性且つ大粒子のsapo−34及びその合成方法並びにその用途
CN105903458A (zh) 一种钙基吸附剂的制备方法及应用
WO2022030593A1 (ja) 吸着方法およびその方法に用いられるメソポーラスアルミナ
CN117772124A (zh) 一种高效固体大气捕碳材料及其制备方法与应用
JP6303842B2 (ja) Lev型ゼオライト及びこれを含む窒素酸化物還元触媒、並びに窒素酸化物還元方法
CN104495906A (zh) 一种γ-氧化铝掺杂稀土氧化物的制备方法
JP2006137651A (ja) 複合酸化物及び排ガス浄化用触媒
KR101602649B1 (ko) 이산화탄소 흡착용 활성탄소의 제조방법
JP6772122B2 (ja) 酸化アルミニウム粉体及びその製造方法
CN112755953A (zh) 脱除流体中氮氧化物的吸附剂、制备方法及用途
CN114364460A (zh) 含有铈元素和锆元素的复合氧化物的粉末、使用其的废气净化用催化剂组合物及其制造方法
RU2411992C2 (ru) Материал с каталитической активностью для разложения озона и способ его получения
Hsu et al. Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal
CN110813235A (zh) 一种镍离子吸附剂及其制备方法
CN109718757A (zh) 一种钒硅钛复合氧化物催化剂的制备方法
CN110013826A (zh) 铝柱撑蒙脱石负载K-Nb或Mg-Nb复合吸附剂的制备方法和应用
JP7426258B2 (ja) シリカ含有アルミナ粉体及びその製造方法
JP5982964B2 (ja) 硫黄酸化物除去剤
WO2022145217A1 (ja) 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541736

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021853607

Country of ref document: EP

Effective date: 20230306