WO2022030593A1 - 吸着方法およびその方法に用いられるメソポーラスアルミナ - Google Patents
吸着方法およびその方法に用いられるメソポーラスアルミナ Download PDFInfo
- Publication number
- WO2022030593A1 WO2022030593A1 PCT/JP2021/029172 JP2021029172W WO2022030593A1 WO 2022030593 A1 WO2022030593 A1 WO 2022030593A1 JP 2021029172 W JP2021029172 W JP 2021029172W WO 2022030593 A1 WO2022030593 A1 WO 2022030593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amount
- temperature
- mesoporous alumina
- desorption
- μmol
- Prior art date
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 42
- 238000003795 desorption Methods 0.000 claims abstract description 104
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 230000000737 periodic effect Effects 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 239000000523 sample Substances 0.000 claims description 64
- 239000011148 porous material Substances 0.000 claims description 22
- 239000007789 gas Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000003463 adsorbent Substances 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000003002 pH adjusting agent Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- -1 aluminum alkoxide Chemical class 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- XSDDURKCUUMQFV-UHFFFAOYSA-N [Sr].[Cs] Chemical compound [Sr].[Cs] XSDDURKCUUMQFV-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28061—Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/32—Thermal properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to an adsorption method and mesoporous alumina used in the method.
- Patent Document 1 relates to a cesium-strontium adsorbent made of phase-separated porous glass and a system for forming a stable vitrified body after adsorption, relating to a technique for adsorbing and removing radioactive cesium and strontium from natural water or contaminated water. is suggesting.
- Patent Document 2 describes a porous metal oxide useful as a molybdenum (Mo) adsorbent for a 99 m Tc generator and a method for producing the same.
- Mo molybdenum
- Patent Document 1 The technique described in Patent Document 1 is based on the premise that a phase-dividing porous glass composed mostly of SiO 2 is used (claim 1, paragraph [0051], etc.), and adsorption mainly composed of alumina. It does not use wood. Further, in Patent Document 1, the elements to be adsorbed on the adsorbent (elements to be adsorbed) are limited to cesium and strontium, and the adsorption of other elements is not intended. Patent Document 2 focuses on the method for producing the porous metal oxide and structural features (specific surface area, pore volume, average pore diameter, etc.) regarding the Mo retention amount of the porous metal oxide and other metal oxides. However, the retention of elements other than Mo has not been specifically investigated. It would be beneficial if an adsorption method using an adsorbent and applicable to the adsorption of elements of Groups 3 to 15 of the Periodic Table other than Mo is provided.
- An object of the present invention is to provide an adsorption method that solves such a problem. Another related object is to provide an adsorbent suitable for carrying out the above adsorption method.
- the adsorption method includes preparing mesoporous alumina and contacting the mesoporous alumina with a liquid containing the adsorption target element to adsorb the adsorption target element to the mesoporous alumina.
- the element to be adsorbed is at least one selected from the group consisting of elements belonging to the 4th to 6th periods and the 3rd to 15th groups of the periodic table.
- the mesoporous alumina those satisfying at least one of the following (1) to (3) are used.
- the amount of surface hydroxyl groups is 3.5 mmol / g or more.
- the amount of CO 2 desorbed at the peak with a peak temperature of less than 200 ° C. (hereinafter also referred to as “low temperature CO 2 desorption amount”) is 5 ⁇ mol / g or more.
- the amount of NH 3 desorbed at a peak with a peak temperature of less than 300 ° C. (hereinafter also referred to as “low temperature NH 3 desorption amount”) is 25 ⁇ mol / g or more. Is.
- the retention amount (adsorption amount) of the above-mentioned element to be adsorbed per unit weight of the mesoporous alumina tends to increase. Therefore, according to the adsorption method using such mesoporous alumina, the adsorption target element can be efficiently adsorbed.
- the amount of surface hydroxyl groups is 3.5 mmol / g or more; (2) In the temperature desorption analysis using CO 2 as the probe molecule, the amount of CO 2 desorbed at the peak with a peak temperature of less than 200 ° C. is 5 ⁇ mol / g or more; and (3) NH 3 is used as the probe molecule. In the thermal desorption analysis, the amount of NH 3 desorbed at the peak with a peak temperature of less than 300 ° C. is 25 ⁇ mol / g or more; Mesoporous alumina satisfying at least one of the above is provided. Such mesoporous alumina is preferable because it can efficiently adsorb the element to be adsorbed.
- the mesoporous alumina in the technique disclosed herein satisfies at least one of a predetermined surface hydroxyl group amount, a predetermined low temperature CO 2 desorption amount, and a predetermined low temperature NH 3 desorption amount described below. It may be mesoporous alumina that satisfies two or more of these, or it may be mesoporous alumina that satisfies all three.
- the surface hydroxyl group amount of the mesoporous alumina can be 3.5 mmol / g or more.
- Mesoporous alumina satisfying this amount of surface hydroxyl groups tends to retain a larger amount of elements to be adsorbed per unit weight than mesoporous alumina having a smaller amount of surface hydroxyl groups.
- the surface hydroxyl group amount is preferably 3.7 mmol / g or more, for example, 4.0 mmol / g or more, 4.5 mmol / g or more, 5.0 mmol / g or more.
- the upper limit of the amount of surface hydroxyl groups is not particularly limited, and may be any amount that can theoretically exist in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, etc., the amount of the surface hydroxyl group may be, for example, 20 mmol / g or less, 15 mmol / g or less, or 10 mmol / g in some embodiments. It may be less than or equal to, 8 mmol / g or less, and 6 mmol / g or less.
- the amount of surface hydroxyl groups referred to here can be grasped by thermal weight-differential thermal analysis (TG-DTA), and specifically, it is measured by the following method. The same method is adopted for the examples described later.
- Measurement method of surface hydroxyl group amount The sample to be measured and the container containing water are allowed to stand in a desiccator, and water vapor is adsorbed on the hydroxyl groups existing on the surface of the sample. After a sufficient time (preferably 3 hours or more) has elapsed, the sample is heated from room temperature to 200 ° C. at a rate of 5 ° C./min by a thermogravimetric-differential heat measuring device, and then held for 12 hours.
- ⁇ W1 in the above formula indicates the weight reduction rate [wt%] from room temperature to 200 ° C. and after holding at 200 ° C.
- ⁇ W2 in the above formula indicates the weight reduction rate [wt%] after the temperature rise from 200 ° C. to 900 ° C. and the hold at 900 ° C.
- the low-temperature CO 2 desorption amount of the mesoporous alumina can be 5 ⁇ mol / g or more.
- Mesoporous alumina satisfying this low-temperature CO 2 desorption amount tends to retain a larger amount of the element to be adsorbed per unit weight than mesoporous alumina having a smaller low-temperature CO 2 desorption amount.
- the low temperature CO 2 desorption amount is preferably 8 ⁇ mol / g or more, may be 10 ⁇ mol / g or more, 12 ⁇ mol / g or more, 15 ⁇ mol / g or more, or 20 ⁇ mol / g or more. good.
- the upper limit of the amount of low-temperature CO 2 desorption is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, and the like, in some embodiments, the low-temperature CO 2 desorption amount may be, for example, 400 ⁇ mol / g or less, or 300 ⁇ mol / g or less.
- It may be 250 ⁇ mol / g or less, 200 ⁇ mol / g or less, 100 ⁇ mol / g or less, 70 ⁇ mol / g or less, 50 ⁇ mol / g or less, 30 ⁇ mol / g or less, 20 ⁇ mol / g or less, 15 ⁇ mol / g or less. It may be less than or equal to g.
- the low-temperature CO 2 desorption amount referred to here can be grasped by a heated desorption analysis (CO 2 -TPD) using CO 2 as a probe molecule, and specifically, it is measured by the following method. The same method is adopted for the examples described later.
- Measurement method of low temperature CO 2 desorption amount After leaving the sample to be measured under reduced pressure (1 Pa or less) at 150 ° C. for 10 hours, the sample was allowed to stand still and CO 2 gas was passed through a sample tube kept at 40 ° C. to sufficiently adsorb CO 2 to the sample. Then, using He gas, excess CO 2 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
- the concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at 5 ° C./min under reduced pressure and under He flow.
- the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
- the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption in this sample.
- a model "OmniStar GSD301" (used in Examples described later) manufactured by Pfeiffer Vacuum GmbH or an equivalent product thereof can be used.
- the mesoporous alumina is also referred to as a low temperature CO 2 desorption amount measured under reduced pressure by the method described above (hereinafter, also referred to as “low temperature CO 2 desorption amount under reduced pressure”. ), Or in addition to the low-temperature CO 2 desorption amount under reduced pressure, the CO 2 desorption amount measured by the following method (hereinafter, also referred to as “low-temperature CO 2 desorption amount under normal pressure”) is used. May be specified. [Measurement method of low temperature CO 2 desorption under normal pressure] The sample to be measured was heated to 500 ° C.
- the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under normal pressure of this sample.
- a quadrupole mass spectrometer MKS Instruments UK Ltd. Product name "MKS Cirrus 2" (used in the examples described later) or an equivalent product thereof can be used.
- the amount of low-temperature CO 2 desorption under normal pressure of mesoporous alumina may be, for example, 5 ⁇ mol / g or more, 10 ⁇ mol / g or more, 20 ⁇ mol / g or more, or 30 ⁇ mol / g or more. Due to the increase in the amount of low-temperature CO 2 desorption under normal pressure, the amount of the element to be adsorbed (for example, Mo) per unit weight of mesoporous alumina tends to increase.
- the amount of low-temperature CO 2 desorption under normal pressure of mesoporous alumina is preferably 35 ⁇ mol / g or more, preferably 45 ⁇ mol / g or more, and 55 ⁇ mol / g.
- the above is preferable, and it may be 75 ⁇ mol / g or more, 95 ⁇ mol / g or more, 110 ⁇ mol / g or more, 130 ⁇ mol / g or more, 140 ⁇ mol / g or more, or 150 ⁇ mol / g or more.
- the upper limit of the amount of low-temperature CO 2 desorption under normal pressure is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina. From the viewpoints of ease of manufacture, handleability, storage stability, quality stability, etc., the amount of low-temperature CO 2 desorption under normal pressure may be, for example, 400 ⁇ mol / g or less, or 300 ⁇ mol / g or less in some embodiments. It may be 250 ⁇ mol / g or less, 230 ⁇ mol / g or less, or 200 ⁇ mol / g or less.
- the low temperature NH 3 desorption amount of the mesoporous alumina can be 25 ⁇ mol / g or more.
- Mesoporous alumina satisfying this low-temperature NH 3 desorption amount tends to retain a larger amount of the element to be adsorbed per unit weight than mesoporous alumina having a smaller low-temperature NH 3 desorption amount.
- the low temperature NH3 desorption amount is preferably 30 mol / g or more, 40 ⁇ mol / g or more, 50 ⁇ mol / g or more, 60 ⁇ mol / g or more, or 70 ⁇ mol / g or more. good.
- the upper limit of the amount of low-temperature NH3 desorption is not particularly limited, and may be any amount that is theoretically possible in relation to the specific surface area of mesoporous alumina.
- the amount of low-temperature NH3 desorption of mesoporous alumina can be, for example, 700 ⁇ mol / g or less, 500 ⁇ mol / g or less, or 400 ⁇ mol / g or less.
- the amount of low-temperature NH3 desorption of mesoporous alumina may be, for example, 300 ⁇ mol / g or less, and even less than 200 ⁇ mol / g in some embodiments. It may be 150 ⁇ mol / g or less, 100 ⁇ mol / g or less, 80 ⁇ mol / g or less, or 60 ⁇ mol / g or less.
- the low-temperature NH 3 desorption amount referred to here can be grasped by a heated desorption analysis (NH 3 -TPD) using NH 3 as a probe molecule, and specifically, it is measured by the following method. The same method is adopted for the examples described later.
- Measurement method of low temperature NH 3 desorption amount After the sample to be measured was left at 150 ° C. for 10 hours under a reduced pressure of 1 Pa or less, NH 3 / He mixed gas was passed through a sample tube kept at 40 ° C. for the sample to be sufficiently added to the sample. Then, the gas is switched to He gas, and excess NH 3 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
- the concentration of NH 3 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at a rate of 10 ° C./min under reduced pressure and He flow.
- the obtained TPD desorption curve is peak-separated, and the NH3 desorption amount at the peak is calculated based on the area of each peak.
- the NH 3 desorption amount obtained from the area of the peak whose peak temperature is less than 300 ° C. is defined as the low temperature NH 3 desorption amount of this sample.
- a model "OmniStar GSD301" (used in Examples described later) manufactured by Pfeiffer Vacuum GmbH or an equivalent product thereof can be used.
- the specific surface area of mesoporous alumina is not particularly limited.
- the specific surface area can be, for example, about 50 m 2 / g or more.
- the specific surface area is preferably about 100 m 2 / g or more, preferably about 130 m 2 / g or more, from the viewpoint of increasing the contact area with the element to be adsorbed. It is more preferably about 150 m 2 / g or more, and may be about 190 m 2 / g or more, or about 220 m 2 / g or more.
- the specific surface area may be, for example, about 500 m 2 / g or less, about 400 m 2 / g or less, and about 300 m 2 / g. It may be less than or equal to, approximately 270 m 2 / g or less, and may be approximately 220 m 2 / g or less.
- the specific surface area can be measured by a nitrogen gas adsorption amount measuring method (BET method). The same method is adopted for the examples described later.
- the average pore diameter of mesoporous alumina is not particularly limited, but is typically in the range of about 2 nm to about 50 nm.
- the average pore diameter is preferably about 40 nm or less, preferably about 30 nm or less, and more preferably about 25 nm or less, from the viewpoint of facilitating the realization of the above-mentioned specific surface area. Is more preferable, it may be less than about 20 nm, may be less than about 15 nm, may be less than about 13 nm, may be less than about 11 nm, and may be less than about 9 nm.
- the average pore diameter is preferably about 4 nm or more, preferably about 6.5 nm or more, and about 8 nm from the viewpoint of contact efficiency with the element to be adsorbed. It may be more than that, it may be about 10 nm or more, it may be about 13 nm or more, and it may be about 16 nm or more.
- the average pore diameter can be measured by a nitrogen gas adsorption amount measuring method (BJH method). The same method is adopted for the examples described later.
- the pore volume of mesoporous alumina is not particularly limited. In some embodiments, it is appropriate that the pore volume is approximately 0.2 cm 3 / g or more, and is approximately 0.4 cm 3 / g or more, from the viewpoint of contact efficiency with the element to be adsorbed. It is preferable, it is more preferably about 0.5 cm 3 / g or more, it may be about 0.7 cm 3 / g or more, and it may be about 1.1 cm 3 / g or more.
- the pore volume may be, for example, about 3.0 cm 3 / g or less, or about 2.2 cm 3 / g or less. It may be approximately 1.7 cm 3 / g or less, approximately 1.2 cm 3 / g or less, or approximately 0.8 cm 3 / g or less.
- the pore volume can be measured by a nitrogen gas adsorption amount measuring method. The same method is adopted for the examples described later.
- mesoporous alumina in the technique disclosed herein tends to increase the retention amount of the element to be adsorbed per weight, it can be fired so as to produce ⁇ -alumina (sometimes referred to as activated alumina). preferable. It can be confirmed, for example, by X-ray diffraction that the mesoporous alumina is ⁇ -alumina.
- the method for producing mesoporous alumina in the technique disclosed herein is not particularly limited.
- a person skilled in the art appropriately performs selection of a manufacturing method, selection of materials to be used, setting of manufacturing conditions and processing conditions, etc. based on one or more known techniques, and is disclosed in the present specification. Satisfies one, two or three of the surface hydroxyl group amount, the predetermined low temperature CO 2 desorption amount under reduced pressure (or the predetermined low temperature CO 2 desorption amount under normal pressure), and the predetermined low temperature NH 3 desorption amount.
- Mesoporous alumina can be produced, and mesoporous alumina used in any of the adsorption methods disclosed herein can be prepared.
- Examples of the above-mentioned known techniques include calcining an alumina precursor obtained by drying a slurry prepared by mixing an aluminum source, a pore-forming agent and an aqueous solvent, and calcining an alumina sol or an alumina hydrate.
- the surfactant is removed from the alumina precursor obtained by the sol-gel method using micelles of the surfactant as a template for pore formation by methods such as calcination and washing, and the evaporation-induced self-assembly method is used. Manufacturing, etc., but is not limited to these.
- the firing is preferably performed so that ⁇ -alumina is produced.
- a firing temperature of about 500 ° C. or higher and about 800 ° C. or lower (more preferably, about 550 ° C. or higher and about 700 ° C. or lower, or about 650 ° C. or higher and 750 ° C. or lower) can be preferably adopted.
- an organoaluminum compound or a hydrolyzate thereof can be used.
- an aluminum alkoxide such as aluminum isopropoxide
- the pore-forming agent or template include inorganic compounds that decompose to produce gas by heating below the firing temperature (preferably compounds belonging to at least one of ammonium salt, carbonate and bicarbonate, such as ammonium carbonate. , Ammonium hydrogencarbonate, sodium hydrogencarbonate), organic compounds that can be decomposed and removed by heating (for example, polymers such as glucose and polymer nanospheres such as polydiaminopyridine nanospheres), but are not limited thereto.
- the amount of the pore-forming agent (for example, the inorganic compound) used with respect to 100 parts by weight of the aluminum source (for example, aluminum alkoxide) can be, for example, 50 parts by weight or more, preferably 100 parts by weight or more.
- the adsorption methods disclosed herein include the above-mentioned predetermined surface hydroxyl group amount, predetermined low temperature CO 2 desorption amount under reduced pressure (or predetermined low temperature CO 2 desorption amount under normal pressure), and predetermined low temperature NH 3 desorption amount. It includes preparing mesoporous alumina satisfying one, two or three of them, and contacting the mesoporous alumina with a liquid containing an element to be adsorbed. The above adsorption method can be preferably carried out using the mesoporous alumina disclosed herein.
- the adsorption target element contained in the adsorption target element-containing liquid can be adsorbed on the mesoporous alumina.
- adsorbing the adsorption target element to the mesoporous alumina can also be understood as removing or separating the adsorption target element using the mesoporous alumina. Therefore, the matters disclosed herein include techniques for adsorbing, separating or removing elements to be adsorbed using mesoporous alumina.
- the element to be adsorbed is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table.
- the element to be adsorbed may be an element belonging to the 4th to 6th cycles (for example, the 4th to 5th cycles) and the 4th to 15th groups in the periodic table, and the 4th to 6th cycles may be used. It may be an element belonging to the 3rd to 14th groups (for example, 4th to 5th cycles), and may be an element belonging to the 4th to 6th cycles (for example, the 4th to 5th cycles) and the 4th to 14th groups.
- the element to be adsorbed may be an element belonging to the 4th cycle of the periodic table and groups 3 to 15 (preferably groups 4 to 14, for example, groups 4 to 12).
- the element to the 5th period and the 3rd to 15th group preferably the 4th to 14th group, for example, the 4th to 12th group.
- Specific examples of the elements that can be adsorbed in the adsorption method disclosed herein include, but are not limited to, Ti, Cr, Co, Ni, Cu, Zn, Zr, Mo, and Pb.
- the content of the element to be adsorbed in the liquid containing the element to be adsorbed is not particularly limited. In some embodiments, the content of the element to be adsorbed can be, for example, greater than 0 g / L and less than or equal to 20 g / L.
- the mesoporous alumina disclosed herein can also be preferably used for adsorbing an adsorption target element from an adsorption target element-containing liquid having an adsorption target element content of, for example, 20000 ppm or less, 10000 ppm or less, or 5000 ppm or less.
- the content of the element to be adsorbed may be, for example, 1 ppm or more, 10 ppm or more, or 100 ppm or more.
- the pH of the element-containing liquid to be adsorbed may be, for example, about 2 to 12, may be 2 to 10, or may be 2 to 8.
- the technique disclosed herein can be preferably applied to, for example, a liquid containing an element to be adsorbed having a pH of 2 to 6. From the viewpoint of the durability of mesoporous alumina, it is advantageous that the pH of the element-containing liquid to be adsorbed is about 2.5 or more.
- the pH may be 3 or higher, 4 or higher, or 4.5 or higher. In some other embodiments, the pH may be 5.5 or less, 4 or less, or 3 or less.
- a pH adjusting agent In order to adjust the pH of the element-containing liquid to be adsorbed, an appropriate amount of a pH adjusting agent can be used, if necessary.
- a pH adjusting agent for example, potassium hydroxide, sodium hydroxide, hydrochloric acid, nitric acid, sulfuric acid and the like can be used, but the pH adjusting agent is not limited thereto.
- the pH adjuster one type may be used alone or two or more types may be used in combination as appropriate.
- the temperature of the element-containing liquid to be adsorbed in contact with the mesoporous alumina is not particularly limited, and may be, for example, about 0 ° C to 60 ° C. In some preferred embodiments, the temperature of the element-containing liquid to be adsorbed may be 10 ° C. or higher, 20 ° C. or higher, 50 ° C. or lower, or 40 ° C. or lower. From the viewpoint of ease of operation and the like, a mode of contact at room temperature (typically 20 ° C. to 30 ° C.) can be preferably adopted.
- the mode in which the mesoporous alumina is brought into contact with the element-containing liquid to be adsorbed is not particularly limited, and can be brought into contact with, for example, by passing the liquid or dipping.
- the liquid may be passed by one pass, or the liquid containing the element to be adsorbed may be circulated.
- any of the mesoporous alumina disclosed here can be preferably used for various uses in various fields in addition to the use for adsorbing the element to be adsorbed.
- Examples of applications of any of the mesoporous aluminas disclosed herein include metal ion adsorbents, metal ion separators, liquid adsorbents, liquid filters, liquid separators, gas adsorbents, gas filters, gas separators.
- the matters disclosed herein include: [1] A method for adsorbing elements belonging to the 4th to 6th periods and the 3rd to 15th groups in the periodic table.
- a liquid containing an element to be adsorbed is brought into contact with the mesoporous alumina to adsorb the element to be adsorbed to the mesoporous alumina.
- the adsorption target element is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table. [Measurement method of surface hydroxyl group amount] The sample to be measured and the container containing water are allowed to stand in a desiccator, and water vapor is adsorbed on the hydroxyl groups existing on the surface of the sample.
- the sample is heated from room temperature to 200 ° C. at a rate of 5 ° C./min by a thermogravimetric-differential heat measuring device, and then held for 12 hours. The weight loss due to the desorption of physically adsorbed water from the water is measured. Further, the sample is heated to 900 ° C. at a rate of 5 ° C./min and then held for 12 hours to measure the amount of dehydration due to dehydration condensation of two adjacent hydroxyl groups. From the obtained results, the amount of surface hydroxyl groups [mmol / g] is calculated by the following formula.
- the concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at 5 ° C./min under reduced pressure and under He flow.
- the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
- the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under reduced pressure in this sample. [Measurement method of low temperature NH 3 desorption amount] After the sample to be measured was left at 150 ° C.
- NH 3 / He mixed gas was passed through a sample tube kept at 40 ° C. for the sample to be sufficiently added to the sample. Then, the gas is switched to He gas, and excess NH 3 is purged out under a reduced pressure of about 3 kPa to about 10 kPa.
- concentration of NH 3 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature at a rate of 10 ° C./min under reduced pressure and He flow.
- the obtained TPD desorption curve is peak-separated, and the NH3 desorption amount at the peak is calculated based on the area of each peak.
- the NH 3 desorption amount obtained from the area of the peak whose peak temperature is less than 300 ° C. is defined as the low temperature NH 3 desorption amount of this sample.
- the mesoporous alumina at least the above (2) and the following (4): (4)
- the amount of low-temperature CO 2 desorption under normal pressure measured by the following method is 5 ⁇ mol / g or more (for example, 35 ⁇ mol / g or more);
- the method according to the above [1], wherein the mesoporous alumina satisfying the above conditions is prepared.
- Measurement method of low temperature CO 2 desorption under normal pressure The sample to be measured was heated to 500 ° C. at a rate of 10 ° C./hr under normal pressure of about 1 atm, held for 60 minutes, and then the sample was allowed to stand and kept at 35 ° C. CO 2 in a sample tube.
- CO 2 is sufficiently adsorbed on the sample through the gas, and then excess CO 2 is purged out using He gas under normal pressure of about 1 atm.
- concentration of CO 2 desorbed at each temperature is measured by a quadrupole mass spectrometer while raising the temperature to 500 ° C. at a rate of 10 ° C./hr under normal pressure of about 1 atm and under He flow.
- the obtained TPD desorption curve is peak-separated, and the amount of CO 2 desorption at the peak is calculated based on the area of each peak.
- the amount of CO 2 desorption obtained from the area of the peak whose peak temperature is less than 200 ° C. is defined as the amount of low-temperature CO 2 desorption under normal pressure of this sample.
- [4] A method for adsorbing elements belonging to the 4th to 6th periods and the 3rd to 15th groups in the periodic table.
- the amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (3)
- the low-temperature NH 3 desorption amount measured by the method described in [1] above is 25 ⁇ mol / g or more; and (4) the low-temperature CO 2 desorption amount under normal pressure measured by the following method is 5 ⁇ mol.
- a liquid containing an element to be adsorbed is brought into contact with the mesoporous alumina to adsorb the element to be adsorbed to the mesoporous alumina.
- the adsorption target element is at least one selected from the group consisting of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups in the periodic table.
- [10] Mesoporous alumina used for the adsorption of elements belonging to the 4th to 6th cycles and the 3rd to 15th groups of the periodic table, wherein the following (1) to (3): (1) The amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (2) The amount of low-temperature CO 2 desorption under reduced pressure measured by the method described in the above [1] is 5 ⁇ mol / g or more; and (3) the low-temperature NH 3 measured by the method described in the above [1]. The amount of desorption is 25 ⁇ mol / g or more; Mesoporous alumina that meets at least one of the above.
- [13] Mesoporous alumina used for adsorbing elements belonging to the 4th to 6th cycles and the 3rd to 15th groups of the periodic table, wherein the following (1), (3), (4): (1) The amount of surface hydroxyl groups measured by the method according to the above [1] is 3.5 mmol / g or more; (3) The amount of low-temperature NH 3 desorbed by the method described in the above [1] is 25 ⁇ mol / g or more; and (4) the low-temperature CO 2 under normal pressure measured by the method described in the above [4]. The amount of desorption is 5 ⁇ mol / g or more (for example, 35 ⁇ mol / g or more); Mesoporous alumina that meets at least one of the above.
- Preparation Example 3 A commercially available alumina sol (AS-200 manufactured by Nissan Chemical Industries, Ltd.) was calcined at 700 ° C. for 5 hours in a calcining furnace under an atmospheric atmosphere, then crushed and passed through a 50-mesh wire mesh. In this way, the mesoporous alumina of Sample 3 (specific surface area 204 m 2 / g, pore volume 0.49 cm 3 / g, average pore diameter 8.3 nm) was prepared.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
Abstract
Description
本出願は、2020年8月6日に出願された米国仮特許出願第63/061,956号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
(1)表面水酸基量が3.5mmol/g以上である。
(2)CO2をプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO2量(以下「低温CO2脱離量」ともいう。)が5μmol/g以上である。
(3)NH3をプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH3量(以下「低温NH3脱離量」ともいう。)が25μmol/g以上である。
(1)表面水酸基量が3.5mmol/g以上である;
(2)CO2をプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO2量が5μmol/g以上である;および
(3)NH3をプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH3量が25μmol/g以上である;
の少なくとも1つを満たすメソポーラスアルミナが提供される。かかるメソポーラスアルミナは、上記吸着対象元素を効率よく吸着し得るので好ましい。
[表面水酸基量の測定方法]
測定対象のサンプルと水を入れた容器をデシケーター内に静置し、サンプル表面に存在する水酸基に水蒸気を吸着させる。十分な時間(好ましくは3時間以上)が経過した後、熱重量-示差熱測定装置により、上記サンプルを室温から5℃/分のレートで200℃まで昇温した後12時間ホールドし、該サンプルからの物理吸着水の脱離による重量減少を測定する。さらに、上記サンプルを5℃/分のレートで900℃まで昇温した後12時間ホールドして、隣り合う二つの水酸基の脱水縮合による脱水量を測定する。得られた結果から、次式により表面水酸基量[mmol/g]を算出する。
表面水酸基量[mmol/g]=1.111×ΔW2/(1-ΔW1/100)
[低温CO2脱離量の測定方法]
測定対象のサンプルを減圧下(1Pa以下)に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にCO2ガスを通して上記サンプルにCO2を十分に吸着させ、その後、Heガスを用いて、約3kPa~約10kPaの減圧下で過剰なCO2をパージアウトする。次いで、減圧下、He流通下で5℃/分で昇温しながら、各温度で脱離してくるCO2の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO2脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO2脱離量を、本サンプルの低温CO2脱離量とする。四重極質量分析装置としては、Pfeiffer Vacuum GmbH社製の型式「OmniStar GSD301」(後述の実施例で使用)またはその同等品を用いることができる。
[常圧下低温CO2脱離量の測定方法]
測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCO2ガスを通して上記サンプルにCO2を十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCO2をパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCO2の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO2脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO2脱離量を、本サンプルの常圧下低温CO2脱離量とする。四重極質量分析装置としては、MKS Instruments UK Ltd.の製品名「MKS Cirrus 2」(後述の実施例で使用)またはその同等品を用いることができる。
[低温NH3脱離量の測定方法]
測定対象のサンプルを1Pa以下の減圧下に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にNH3/He混合ガスを通して上記サンプルにNH3を十分に吸着させ、その後、Heガスに切り替え、約3kPa~約10kPaの減圧下、で過剰なNH3をパージアウトする。次いで、減圧、He流通下で10℃/分のレートで昇温しながら、各温度で脱離してくるNH3の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるNH3脱離量を算出する。そのうちピーク温度が300℃未満のピークの面積から求められたNH3脱離量を、本サンプルの低温NH3脱離量とする。四重極質量分析装置としては、Pfeiffer Vacuum GmbH社製の型式「OmniStar GSD301」(後述の実施例で使用)またはその同等品を用いることができる。
〔1〕 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法であって、
以下の(1)~(3):
(1)下記の方法で測定される表面水酸基量が3.5mmol/g以上である;
(2)下記の方法で測定される減圧下低温CO2脱離量が5μmol/g以上である;および
(3)下記の方法で測定される低温NH3脱離量が25μmol/g以上である;
の少なくとも1つを満たすメソポーラスアルミナを準備することと、
上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、
を含み、
上記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。
[表面水酸基量の測定方法]
測定対象のサンプルと水を入れた容器をデシケーター内に静置し、サンプル表面に存在する水酸基に水蒸気を吸着させる。十分な時間(好ましくは3時間以上)が経過した後、熱重量-示差熱測定装置により、上記サンプルを室温から5℃/分のレートで200℃まで昇温した後12時間ホールドし、該サンプルからの物理吸着水の脱離による重量減少を測定する。さらに、上記サンプルを5℃/分のレートで900℃まで昇温した後12時間ホールドして、隣り合う二つの水酸基の脱水縮合による脱水量を測定する。得られた結果から、次式により表面水酸基量[mmol/g]を算出する。
表面水酸基量[mmol/g]=1.111×ΔW2/(1-ΔW1/100)
[減圧下低温CO2脱離量の測定方法]
測定対象のサンプルを減圧下(1Pa以下)に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にCO2ガスを通して上記サンプルにCO2を十分に吸着させ、その後、Heガスを用いて、約3kPa~約10kPaの減圧下で過剰なCO2をパージアウトする。次いで、減圧下、He流通下で5℃/分で昇温しながら、各温度で脱離してくるCO2の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO2脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO2脱離量を、本サンプルの減圧下低温CO2脱離量とする。
[低温NH3脱離量の測定方法]
測定対象のサンプルを1Pa以下の減圧下に150℃で10時間放置した後、該サンプルを静置して40℃に保った試料管中にNH3/He混合ガスを通して上記サンプルにNH3を十分に吸着させ、その後、Heガスに切り替え、約3kPa~約10kPaの減圧下、で過剰なNH3をパージアウトする。次いで、減圧、He流通下で10℃/分のレートで昇温しながら、各温度で脱離してくるNH3の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるNH3脱離量を算出する。そのうちピーク温度が300℃未満のピークの面積から求められたNH3脱離量を、本サンプルの低温NH3脱離量とする。
(4)下記の方法で測定される常圧下低温CO2脱離量が5μmol/g以上(例えば35μmol/g以上)である;
を満たすメソポーラスアルミナを準備する、上記〔1〕に記載の方法。
[常圧下低温CO2脱離量の測定方法]
測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCO2ガスを通して上記サンプルにCO2を十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCO2をパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCO2の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO2脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO2脱離量を、本サンプルの常圧下低温CO2脱離量とする。
以下の(1)、(3)、(4):
(1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
(3)上記〔1〕に記載の方法で測定される低温NH3脱離量が25μmol/g以上である;および
(4)下記の方法で測定される常圧下低温CO2脱離量が5μmol/g以上(例えば35μmol/g以上)である;
の少なくとも1つを満たすメソポーラスアルミナを準備することと、
上記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を上記メソポーラスアルミナに吸着させることと、
を含み、
上記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。
[常圧下低温CO2脱離量の測定方法]
測定対象のサンプルを、約1atmの常圧下、10℃/hrのレートで500℃まで昇温して60分ホールドした後、該サンプルを静置して35℃に保った試料管中にCO2ガスを通して上記サンプルにCO2を十分に吸着させ、その後、Heガスを用いて約1atmの常圧下で過剰なCO2をパージアウトする。次いで、約1atmの常圧下、He流通下で10℃/hrのレートで500℃まで昇温しながら、各温度で脱離してくるCO2の濃度を四重極質量分析装置により測定する。得られたTPD脱離カーブをピーク分離し、各ピークの面積に基づいて該ピークにおけるCO2脱離量を算出する。そのうちピーク温度が200℃未満のピークの面積から求められたCO2脱離量を、本サンプルの常圧下低温CO2脱離量とする。
(1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
(2)上記〔1〕に記載の方法で測定される減圧下低温CO2脱離量が5μmol/g以上である;および
(3)上記〔1〕に記載の方法で測定される低温NH3脱離量が25μmol/g以上である;
の少なくとも1つを満たす、メソポーラスアルミナ。
(4)上記〔4〕に記載の方法で測定される常圧下低温CO2脱離量が5μmol/g以上(例えば35μmol/g以上)である;
を満たす、上記〔11〕に記載のメソポーラスアルミナ。
(1)上記〔1〕に記載の方法で測定される表面水酸基量が3.5mmol/g以上である;
(3)上記〔1〕に記載の方法で測定される低温NH3脱離量が25μmol/g以上である;および
(4)上記〔4〕に記載の方法で測定される常圧下低温CO2脱離量が5μmol/g以上(例えば35μmol/g以上)である;
の少なくとも1つを満たす、メソポーラスアルミナ。
<メソポーラスアルミナの調製>
(調製例1)
室温下において容器に蒸留水970gを投入し、攪拌しながら炭酸アンモニウム60gを投入して溶解させた後、粉末状のアルミニウムイソプロポキシド32gを投入し、室温下で24時間攪拌を継続して中間液を調製した。この中間液を耐熱容器に移し、80℃で48時間乾燥させて、アルミナ前駆体粉末を得た。これを大気雰囲気の焼成炉にて700℃で5時間焼成した後、解砕して50メッシュの金網に通過させた。このようにしてサンプル1のメソポーラスアルミナ(比表面積219m2/g、細孔容積1.63cm3/g、平均細孔径11.1nm)を調製した。
炭酸アンモニウムの使用量を30gに変更した他はサンプル1のメソポーラスアルミナの調製と同様にして、サンプル2のメソポーラスアルミナ(比表面積224m2/g、細孔容積0.61cm3/g、平均細孔径9.6nm)を調製した。
市販のアルミナゾル(日産化学社製、AS-200)を、大気雰囲気下の焼成炉にて700℃で5時間焼成した後、解砕して50メッシュの金網に通過させた。このようにしてサンプル3のメソポーラスアルミナ(比表面積204m2/g、細孔容積0.49cm3/g、平均細孔径8.3nm)を調製した。
サンプル1~4の表面水酸基量(SOH)、減圧下低温CO2脱離量(LCO2)および低温NH3脱離量(LNH3)を、それぞれ上述の方法により測定した。結果を表1に示す。
サンプル1~4のメソポーラスアルミナを、直径4.6mm、長さ50mmのカラムに充填した。室温において、吸着対象元素としてのMoを含む液を、ポンプを用いて5mL/分の速度で上記カラムに通過させた。カラムを通過前および通過後の液のMo濃度を高周波誘導結合プラズマ発光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により決定し、通過前に対する通過後のMo減少量をサンプル1gあたりの数値に換算することにより、Mo保持量[mg/g]を算出した。カラムに通過させる液としては、0.25重量%のモリブデン酸ナトリウム水溶液を、硝酸を用いてpHを2.5(Mo濃度は900ppm)に調整して使用した。結果を表1に示す。
実験例1において吸着試験に用いたサンプル1、3および4について、Zr,Co,Cr,Cu,NiおよびZuの各々を吸着対象元素として、同様の吸着試験を行い、各金属元素の保持量を求めた。カラムに通過させる吸着対象元素含有液としては、各元素を約1000ppmの濃度で含むICP用標準液(メルク社)を、KOHを用いてpHを2.5または5に調整して使用した。結果を表2に示す。なお、表2中のN/Aは未実施であることを示している。
Claims (6)
- 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着方法であって、
以下の(1)~(3):
(1)表面水酸基量が3.5mmol/g以上である;
(2)CO2をプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO2量が5μmol/g以上である;および
(3)NH3をプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH3量が25μmol/g以上である;
の少なくとも1つを満たすメソポーラスアルミナを準備することと、
前記メソポーラスアルミナに吸着対象元素を含む液を接触させて該吸着対象元素を前記メソポーラスアルミナに吸着させることと、
を含み、
前記吸着対象元素は、周期表の第4周期~第6周期かつ第3族~第15族に属する元素からなる群から選択される少なくとも1種である、吸着方法。 - 前記メソポーラスアルミナは、100m2/g以上の比表面積を有する、請求項1に記載の方法。
- 前記メソポーラスアルミナは、2nm以上30nm以下の平均細孔径を有する、請求項1または2に記載の方法。
- 前記吸着対象元素を含む液は、pHが2~6である、請求項1~3のいずれか一項に記載の方法。
- 請求項1~4のいずれか一項に記載の方法に用いられる、メソポーラスアルミナ。
- 周期表の第4周期~第6周期かつ第3族~第15族に属する元素の吸着に用いられるメソポーラスアルミナであって、以下の(1)~(3):
(1)表面水酸基量が3.5mmol/g以上である;
(2)CO2をプローブ分子に用いる昇温脱離分析において、ピーク温度200℃未満のピークで脱離するCO2量が5μmol/g以上である;および
(3)NH3をプローブ分子に用いる昇温脱離分析において、ピーク温度300℃未満のピークで脱離するNH3量が25μmol/g以上である;
の少なくとも1つを満たす、メソポーラスアルミナ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/019,663 US20230321628A1 (en) | 2020-08-06 | 2021-08-05 | Absorption method and mesoporous alumina used for the same |
EP21853607.6A EP4194069A4 (en) | 2020-08-06 | 2021-08-05 | ADSORPTION PROCESS AND MESOPOROUS ALUMINA TO BE USED IN THIS PROCESS |
JP2022541736A JPWO2022030593A1 (ja) | 2020-08-06 | 2021-08-05 | |
CN202180057827.4A CN116157199A (zh) | 2020-08-06 | 2021-08-05 | 吸附方法和该方法中使用的介孔氧化铝 |
KR1020237007237A KR20230048519A (ko) | 2020-08-06 | 2021-08-05 | 흡착 방법 및 그 방법에 사용되는 메조포러스 알루미나 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063061956P | 2020-08-06 | 2020-08-06 | |
US63/061,956 | 2020-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030593A1 true WO2022030593A1 (ja) | 2022-02-10 |
Family
ID=80118115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029172 WO2022030593A1 (ja) | 2020-08-06 | 2021-08-05 | 吸着方法およびその方法に用いられるメソポーラスアルミナ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230321628A1 (ja) |
EP (1) | EP4194069A4 (ja) |
JP (1) | JPWO2022030593A1 (ja) |
KR (1) | KR20230048519A (ja) |
CN (1) | CN116157199A (ja) |
WO (1) | WO2022030593A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0478438A (ja) * | 1990-07-19 | 1992-03-12 | Fuji Photo Film Co Ltd | 重金属除去用活性アルミナ及びそれを用いた硝酸銀の製造方法 |
JP2005015323A (ja) * | 2003-06-06 | 2005-01-20 | National Institute Of Advanced Industrial & Technology | 多孔性アルミナ結晶性粒子及びその製造方法 |
WO2017126602A1 (ja) | 2016-01-21 | 2017-07-27 | 株式会社フジミインコーポレーテッド | 多孔質金属酸化物の製造方法 |
JP2019000764A (ja) | 2017-06-12 | 2019-01-10 | 株式会社環境レジリエンス | セシウム・ストロンチウム吸着材、その製法、ならびに、それを用いた吸着除去システム |
-
2021
- 2021-08-05 CN CN202180057827.4A patent/CN116157199A/zh active Pending
- 2021-08-05 KR KR1020237007237A patent/KR20230048519A/ko active Search and Examination
- 2021-08-05 US US18/019,663 patent/US20230321628A1/en active Pending
- 2021-08-05 WO PCT/JP2021/029172 patent/WO2022030593A1/ja unknown
- 2021-08-05 EP EP21853607.6A patent/EP4194069A4/en active Pending
- 2021-08-05 JP JP2022541736A patent/JPWO2022030593A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0478438A (ja) * | 1990-07-19 | 1992-03-12 | Fuji Photo Film Co Ltd | 重金属除去用活性アルミナ及びそれを用いた硝酸銀の製造方法 |
JP2005015323A (ja) * | 2003-06-06 | 2005-01-20 | National Institute Of Advanced Industrial & Technology | 多孔性アルミナ結晶性粒子及びその製造方法 |
WO2017126602A1 (ja) | 2016-01-21 | 2017-07-27 | 株式会社フジミインコーポレーテッド | 多孔質金属酸化物の製造方法 |
JP2019000764A (ja) | 2017-06-12 | 2019-01-10 | 株式会社環境レジリエンス | セシウム・ストロンチウム吸着材、その製法、ならびに、それを用いた吸着除去システム |
Also Published As
Publication number | Publication date |
---|---|
KR20230048519A (ko) | 2023-04-11 |
JPWO2022030593A1 (ja) | 2022-02-10 |
EP4194069A1 (en) | 2023-06-14 |
CN116157199A (zh) | 2023-05-23 |
EP4194069A4 (en) | 2024-11-13 |
US20230321628A1 (en) | 2023-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5589996B2 (ja) | 二酸化炭素捕捉材 | |
KR101822925B1 (ko) | 복합 산화물, 그 제조법 및 배기가스 정화용 촉매 | |
WO2007132829A1 (ja) | 排ガス浄化用触媒及びその製造方法 | |
CN111203205B (zh) | 一种基于稀土掺杂zif-8纳米多孔碳催化剂及其制备方法与应用 | |
Kapica-Kozar et al. | Alkali-treated titanium dioxide as adsorbent for CO2 capture from air | |
US20190083953A1 (en) | Manganese Oxide Nanoarchitectures for Broad-Spectrum Removal of Toxic Gases in Air-Filtration Applications | |
JP5428540B2 (ja) | 高耐水性且つ大粒子のsapo−34及びその合成方法並びにその用途 | |
CN105903458A (zh) | 一种钙基吸附剂的制备方法及应用 | |
WO2022030593A1 (ja) | 吸着方法およびその方法に用いられるメソポーラスアルミナ | |
CN117772124A (zh) | 一种高效固体大气捕碳材料及其制备方法与应用 | |
JP6303842B2 (ja) | Lev型ゼオライト及びこれを含む窒素酸化物還元触媒、並びに窒素酸化物還元方法 | |
CN104495906A (zh) | 一种γ-氧化铝掺杂稀土氧化物的制备方法 | |
JP2006137651A (ja) | 複合酸化物及び排ガス浄化用触媒 | |
KR101602649B1 (ko) | 이산화탄소 흡착용 활성탄소의 제조방법 | |
JP6772122B2 (ja) | 酸化アルミニウム粉体及びその製造方法 | |
CN112755953A (zh) | 脱除流体中氮氧化物的吸附剂、制备方法及用途 | |
CN114364460A (zh) | 含有铈元素和锆元素的复合氧化物的粉末、使用其的废气净化用催化剂组合物及其制造方法 | |
RU2411992C2 (ru) | Материал с каталитической активностью для разложения озона и способ его получения | |
Hsu et al. | Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal | |
CN110813235A (zh) | 一种镍离子吸附剂及其制备方法 | |
CN109718757A (zh) | 一种钒硅钛复合氧化物催化剂的制备方法 | |
CN110013826A (zh) | 铝柱撑蒙脱石负载K-Nb或Mg-Nb复合吸附剂的制备方法和应用 | |
JP7426258B2 (ja) | シリカ含有アルミナ粉体及びその製造方法 | |
JP5982964B2 (ja) | 硫黄酸化物除去剤 | |
WO2022145217A1 (ja) | 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853607 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022541736 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237007237 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021853607 Country of ref document: EP Effective date: 20230306 |