WO2022030365A1 - 培養装置 - Google Patents

培養装置 Download PDF

Info

Publication number
WO2022030365A1
WO2022030365A1 PCT/JP2021/028181 JP2021028181W WO2022030365A1 WO 2022030365 A1 WO2022030365 A1 WO 2022030365A1 JP 2021028181 W JP2021028181 W JP 2021028181W WO 2022030365 A1 WO2022030365 A1 WO 2022030365A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture solution
heater
gas
membrane filter
Prior art date
Application number
PCT/JP2021/028181
Other languages
English (en)
French (fr)
Inventor
朗 樋口
Original Assignee
株式会社京都製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都製作所 filed Critical 株式会社京都製作所
Priority to US18/005,777 priority Critical patent/US20230279331A1/en
Priority to JP2022541495A priority patent/JPWO2022030365A1/ja
Publication of WO2022030365A1 publication Critical patent/WO2022030365A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level

Definitions

  • the present invention relates to a culture device for culturing cells using a culture solution in a culture container.
  • Patent Document 1 discloses a shake-type culture device for culturing cells using a culture solution in a culture bag (culture container).
  • this culture apparatus cells are cultured in the culture vessel by shaking the culture vessel while heating the culture vessel with a rubber heater or the like.
  • this culturing device performs culturing while supplying a mixed gas into the culturing container.
  • an object of the present invention is to suppress evaporation of the culture solution when the cells are cultured using the culture solution in the culture vessel.
  • a culture vessel that houses the culture medium for culturing cells
  • a gas supply device that supplies gas to the culture vessel and It has a humidifying device that humidifies the gas from the gas supply device to the culture vessel.
  • the humidifier A hollow fiber membrane filter including a hollow fiber membrane through which gas from the gas supply device passes and a casing for accommodating the hollow fiber membrane,
  • a water supply device that fills the casing of the hollow fiber membrane filter with water,
  • a culture apparatus is provided that includes a first heater that heats the hollow fiber membrane filter.
  • the present invention when cells are cultured in a culture medium using the culture medium, evaporation of the culture solution can be suppressed.
  • FIG. 3 Schematic block diagram which shows the structure of the culture apparatus which concerns on one Embodiment of this invention.
  • Schematic perspective view of an example of a culture vessel Schematic partial cross-sectional view of the shaking part of the culture vessel in the culture apparatus
  • Cross-sectional view showing the tilted state of the culture vessel when the amount of the culture solution is relatively small.
  • Top view showing the tilted state of the culture vessel when the amount of the culture solution is relatively small.
  • FIG. 1 Cross-sectional view showing the state of inclination of the culture vessel when the amount of the culture solution is relatively large.
  • Top view showing the state of inclination of the culture vessel when the amount of the culture solution is relatively large.
  • Schematic block diagram of the gas supply unit Schematic internal structure of the hollow fiber membrane filter The figure which shows the dilution ratio and osmotic pressure of a culture solution The figure which shows the relationship between the supply gas flow rate and the evaporation rate of a culture solution. The figure which shows the culture solution amount and the evaporation rate of a culture solution with respect to the elapsed culture time.
  • the culture apparatus of one aspect of the present invention humidifies a culture container containing a culture solution for culturing cells, a gas supply device for supplying gas to the culture container, and gas directed from the gas supply device to the culture container.
  • a hollow fiber membrane filter comprising a humidifying device, wherein the humidifying device includes a hollow fiber membrane through which gas from the gas supply device passes and a casing for accommodating the hollow fiber membrane, and the hollow fiber membrane filter.
  • a water supply device for filling the casing with water and a first heater for heating the hollow fiber membrane filter are included.
  • the culture apparatus is arranged below the culture vessel and has a second heater for heating the culture solution in the culture solution.
  • the heating temperature of the first heater is higher than the heating temperature of the second heater.
  • the culture device has a first membrane filter provided in the gas supply path between the humidifier and the culture container, and the normal of the filter surface is arranged so as to be inclined with respect to the vertical direction.
  • This first membrane filter suppresses contamination of the culture solution in the culture vessel. Further, by tilting, it is suppressed that the dew condensation water spreads uniformly over the entire filter surface of the first membrane filter and the flow path resistance increases.
  • the incubator has a third heater that heats the first membrane filter.
  • the heating temperature of the third heater is higher than the heating temperature of the first heater.
  • the portion of the gas supply path between the first membrane filter and the culture vessel extends in the horizontal direction. As a result, it is possible to prevent the dew condensation water generated by dew condensation in the gas supply path from dripping into the culture vessel.
  • the first membrane filter is located at a lower position than the connection portion of the culture vessel. As a result, it is possible to prevent the dew condensation water generated by dew condensation in the gas supply path from dripping into the culture vessel.
  • the culture apparatus has a second membrane filter provided in a gas discharge path connecting the inside of the culture container and the outside air, and arranged in a state where the normal of the filter surface is inclined with respect to the vertical direction.
  • the second membrane filter suppresses contamination of the culture solution in the culture vessel. Further, by tilting, it is suppressed that the dew condensation water spreads uniformly over the entire filter surface of the second membrane filter and the flow path resistance increases.
  • the incubator has a fourth heater that heats the second membrane filter.
  • the heating temperature of the fourth heater is higher than the heating temperature of the first heater.
  • the portion of the gas discharge path between the second membrane filter and the culture vessel extends in the horizontal direction. As a result, it is possible to prevent the dew condensation water generated by dew condensation in the gas discharge path from dripping into the culture vessel.
  • the second membrane filter is located at a lower position than the connection portion of the culture vessel. As a result, it is possible to prevent the dew condensation water generated by dew condensation in the gas discharge path from dripping into the culture vessel.
  • the culture container has a columnar shape including a bottom plate portion, a top plate portion, and a side wall portion.
  • the culture apparatus has a fifth heater for heating the top plate portion and a sixth heater for heating the side wall portion, and the heating temperature of the fifth and sixth heaters is the first. It is higher than the heating temperature of the heater of 2. As a result, the occurrence of dew condensation on the top plate portion and the side wall portion is suppressed.
  • the culture apparatus has a culture solution supply unit that supplies the culture solution to the culture container.
  • the gas supply amount per unit time of the gas supply device is changed.
  • the amount of the culture solution in the culture vessel is large and the evaporation of the culture solution does not significantly affect the cells, the supply of an excessive amount of gas to the culture vessel is suppressed.
  • the gas supply amount of the gas supply device is changed so that the evaporation rate of the culture solution amount in the culture vessel and the osmotic pressure of the culture solution obtained from the evaporation rate become predetermined values. This makes it possible to suppress the deformation of cells due to the osmotic pressure of the culture solution.
  • the predetermined value of the osmotic pressure of the culture solution may be in the range of 260 to 315 mOsm / kg.
  • the heating temperature of the first heater is changed as the amount of the culture solution in the culture container supplied by the culture solution supply unit increases. This suppresses the supply of an excessive amount of water vapor to the culture vessel when there is a large amount of the culture solution in the culture vessel and the evaporation of the culture solution does not significantly affect the cells.
  • the culture solution supply unit supplies the culture solution to the culture container
  • the gas supplied from the gas supply device and humidified by the humidifying device is supplied to the culture container.
  • evaporation of a small amount of the culture solution immediately after being supplied to the culture container is suppressed.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a culture apparatus according to an embodiment of the present invention.
  • the culture apparatus 10 shakes the culture container 12 for accommodating the culture solution CS containing cells and the culture container 12 for stirring the culture solution CS in the culture container 12. It has a moving unit 14 and a culture solution supply unit 16 that supplies the culture solution CS to the culture container 12.
  • the culture apparatus 10 includes a humidity sensor 18 for measuring the humidity in the culture vessel 12, a dissolved oxygen sensor 20 for measuring the amount of oxygen dissolved in the culture solution CS in the culture vessel 12. It has a cell density measuring unit 22 for measuring the cell density in the culture solution CS in the culture vessel 12.
  • the culture device 10 has a gas supply unit 24 that supplies a mixed gas of humidified oxygen, carbon dioxide, and nitrogen to the culture container 12.
  • the culture apparatus 10 controls the culture vessel shaking unit 14, the culture solution supply unit 16, and the gas supply unit 24 based on the detection results of the humidity sensor 18, the dissolved oxygen sensor 20, and the cell density measurement unit 22, respectively.
  • the control unit 26 is provided.
  • the culture container 12 is a container for accommodating the culture solution CS, and cells are cultured inside the culture container 12 using the culture solution CS.
  • the culture solution CS is added stepwise from a small amount (less than 1 liter, for example, 50 ml), and the cells are cultured using the culture solution CS, that is, expanded culture. Will be done. Therefore, the culture vessel 12 has a capacity that can accommodate and stir the maximum amount (for example, 50 liters) of the culture solution used for culturing.
  • FIG. 2 is a perspective view showing the shape of an example of the culture vessel 12.
  • the XYZ Cartesian coordinate system is shown in the drawings, this is for facilitating the understanding of the embodiment of the invention and does not limit the invention.
  • the X-axis direction and the Y-axis direction are horizontal directions
  • the Z-axis direction is a vertical direction.
  • the culture vessel 12 is supported by a disk-shaped bottom plate portion 12a, a cylindrical side wall portion 12b erected from the outer peripheral edge of the bottom plate portion 12a, and a side wall portion 12b. It is provided with a top plate portion 12c to be formed. That is, the culture vessel 12 is a so-called columnar shape. The height of the side wall portion 12b is smaller than the radius of the bottom plate portion 12a. Further, the top plate portion 12c is removable and functions as a lid.
  • FIG. 3 is a schematic partial cross-sectional view of the culture vessel swinging portion 14 in the culture apparatus 10.
  • FIG. 4 is a schematic partial cross-sectional view of a part of the culture vessel swinging portion 14 shown in FIG. 3 as viewed from different directions.
  • the culture vessel swinging portion 14 in the culture apparatus 10 is centered on the stage 30 holding the culture vessel 12 and the rotation center axis C0 extending in the vertical direction (Z-axis direction). It also includes a rotary actuator 34 with a rotary table 32 that rotates around.
  • the stage 30 and the rotary actuator 34 are driven and connected via the swing head 36 and the tilting mechanism 38.
  • the swing head 36 supports the stage 30 and swings extending in the horizontal direction (X-axis direction) and extending in the horizontal direction (Y-axis direction) and orthogonal to the swing axis C1.
  • the culture vessel swinging portion 14 is provided so as to be swingable around the shaft C2.
  • the swing head 36 is provided with a connecting shaft 40 for driving and connecting to the rotary actuator 34 via the tilting mechanism 38 at the lower portion thereof.
  • the connecting shaft 40 of the swing head 36 extends in the vertical direction (Z-axis direction).
  • the tilting mechanism 38 is a link mechanism for tilting the stage 30 via the rocking head 36, that is, tilting the culture vessel 12 on the stage 30 in the horizontal direction. Therefore, the tilting mechanism 38 includes a base portion 42, a swing head connecting portion 44 connected to the swing head 36, and a link arm 46 connecting the base portion 42 and the swing head connecting portion 44. ..
  • the base portion 42 of the tilting mechanism 38 is attached to the rotary table 32 of the rotary actuator 34. Therefore, when the rotary actuator 34 is driven, the base portion 42 rotates about the rotation center axis C0 together with the rotary table 32.
  • the swing head connecting portion 44 of the tilting mechanism 38 is extrapolated and slidably attached to the connecting shaft 40 of the swing head 36, for example, via a bearing.
  • the link arm 46 of the tilting mechanism 38 is configured to connect the base portion 42 and the swing head connecting portion 44.
  • the link arm 46 includes one end rotatably fixed to the swing head connecting portion 44 and the other end rotatably fixed to the base portion 42.
  • the rotation shaft C3 at one end and the rotation shaft C4 at the other end of the link arm 46 extend horizontally and are parallel to each other.
  • the rotary actuator 34 to which the base portion 42 of the tilting mechanism 38 is attached is moved up and down in the vertical direction (Z-axis direction) by the ball screw mechanism 48.
  • the ball screw mechanism 48 includes a screw shaft 50 extending in the vertical direction (Z-axis direction), a nut 52 engaging with the screw shaft 50, and a motor (not shown) for rotating the screw shaft 50. ..
  • the nut 52 is attached to the elevating bracket 54.
  • a rotary actuator 34 is attached to the elevating bracket 54.
  • the rotary actuator 34 moves up and down together with the elevating bracket 54 via the nut 52.
  • the stage 30 is tilted via the tilting mechanism 38.
  • the base portion 42 of the tilting mechanism 38 attached to the rotary actuator 34 rises, whereby the link arm 46 pushes the swing head connecting portion 44.
  • the swing head 36 rotates around at least one of the swing shafts C1 and C2 (the swing shaft C2 in FIG. 13) together with the swing head connecting portion 44.
  • the stage 30 is tilted, and the culture vessel 12 on the stage 30 is also tilted.
  • the tilting mechanism 38 rotates about the rotation center axis C0, whereby the tilting direction of the stage 30 Changes.
  • the culture solution CS in the culture medium 12 is stirred, and the cells in the culture solution CS are cultured.
  • the culture solution supply unit 16 that supplies the culture solution CS to the culture container 12 is controlled by the control unit 26.
  • the supply of the culture solution CS to the culture vessel 12 will be described later.
  • the mixed gas is supplied to the culture vessel 12 by the gas supply unit 24.
  • the gas supply to the culture vessel 12 will be described later.
  • the humidity sensor 18 is attached to the inner peripheral surface 12d of the culture vessel 12 so as not to be immersed in the culture solution CS, and measures the humidity in the culture vessel 12. Further, the humidity sensor 18 outputs a signal corresponding to the measured humidity to the control unit 26.
  • the dissolved oxygen sensor 20 measures the amount of oxygen dissolved in the culture solution CS in the culture vessel 12.
  • a fluorescent dissolved oxygen sensor is used as the dissolved oxygen sensor 20.
  • the fluorescent dissolved oxygen sensor is arranged on the bottom surface 12e of the culture vessel 12 and coated with a fluorescent substance, a light source that irradiates the chip with ultraviolet rays or the like from the outside of the culture vessel 12, and radiates from the chip. It is provided with a light receiving element that receives the received fluorescence.
  • the fluorescent substance When the fluorescent substance absorbs light energy such as ultraviolet rays from the light source, it transitions from the ground state to the excited state. Excited molecules of fluorescent material usually radiate fluorescence and return to the ground state. However, at this time, if oxygen molecules are present around the molecules in the excited state, the excitation energy is deprived by the oxygen molecules, and so-called oxygen quenching occurs in which the radiant intensity of fluorescence is lowered. Utilizing this oxygen quenching, that is, utilizing the fact that the radiation intensity of fluorescence is inversely proportional to the oxygen molecule concentration, the fluorescent dissolved oxygen sensor measures the dissolved oxygen amount of the culture solution in the culture vessel.
  • the dissolved oxygen sensor 20 outputs a signal corresponding to the measured dissolved oxygen amount to the control unit 26.
  • the cell density measuring unit 22 measures the cell density of the culture solution CS in the culture vessel 12. The measured cell density is output to the control unit 26. The cell density during culture is monitored by the periodic measurement of the cell density measuring unit 22.
  • the control unit 26 is composed of, for example, a control board on which a storage device and a CPU are mounted. By operating according to the program stored in the storage device, the CPU performs an operation related to cell culture described later.
  • control unit 26 controls the culture solution supply unit 16.
  • the culture solution supply unit 16 additionally supplies the culture solution CS to the culture container 12 as the number of cells in the culture solution CS of the culture container 12 increases.
  • the culture solution CS is additionally supplied to the culture vessel 12 in stages until the culture solution CS of less than 1 liter (for example, 200 ml) becomes 50 liters.
  • control unit 26 controls the culture vessel swinging portion 14 (its rotary actuator 34 and ball screw mechanism 48) based on the amount of the culture solution CS in the culture vessel 12.
  • the culture vessel swinging unit 14 swings the culture vessel 12 so that the culture solution CS is stirred while the evaporation of the culture solution CS in the culture vessel 12 is suppressed. do.
  • the culture vessel shaking portion 14 the smaller the amount of the culture solution CS in the culture vessel 12, the smaller the surface portion of the culture vessel 12 that comes into contact with the culture solution that moves by stirring. Shake the culture vessel 12. The shaking of the culture vessel 12, that is, the stirring of the culture solution CS will be described.
  • FIG. 6A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small.
  • FIG. 6B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small.
  • the culture solution is stirred in a state where the culture vessel 12 is tilted.
  • the inclination angle ⁇ (angle with respect to the culture vessel 12 in the horizontal state) of the culture vessel 12 is increased as the amount of the culture solution CS in the culture vessel 12 is smaller.
  • the smaller the amount of the culture solution CS the smaller the size of the area of the liquid level LS of the culture solution CS by tilting the culture container 12 greatly.
  • the size of the area of the liquid level LS By reducing the size of the area of the liquid level LS, evaporation of the culture solution CS from the liquid level LS can be suppressed.
  • the culture medium CS evaporates, the cell density in the culture medium CS increases.
  • the amount of the culture solution CS is large (for example, 1 liter or more)
  • the amount of increase in cell density due to evaporation of the culture solution CS is relatively small, and the effect of the increase in density on the cells is small.
  • the amount of the culture solution CS is small (for example, less than 1 liter)
  • the amount of increase in cell density due to evaporation of the culture solution CS is relatively large, and the effect of the increase in density on cells is large.
  • the smaller the amount of the culture medium CS the greater the effect of evaporation on the cells, and in some cases, a part of the cells is killed or damaged.
  • the inclination angle ⁇ of the culture container 12 may be constant. ..
  • the culture solution CS is sandwiched between the circular bottom surface 12e of the culture vessel 12 and the cylindrical inner peripheral surface 12d erected from the outer peripheral edge of the bottom surface 12e. It collects in the corner 12f. In this state, the tilting direction of the culture vessel 12 is changed.
  • FIG. 7 is a diagram showing stirring of the culture solution when the amount of the culture solution is relatively small.
  • FIG. 7 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
  • a relatively small amount (for example, less than 1 liter) of the culture solution CS is reciprocated along the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture vessel 12.
  • the rotary actuator 34 repeats the forward rotation and the reverse rotation of the tilting mechanism 38 in an angle range of 90 degrees
  • the tilting direction of the culture vessel 12 changes in an angle range of 90 degrees.
  • the culture solution CS is reciprocated within an angle range of 90 degrees.
  • the culture solution CS is stirred.
  • the culture solution CS moves on the surface of the culture vessel 12 by stirring, a very small amount of the culture solution CS remains on the surface after most (lumpy) culture solution CS has passed. For example, as shown in FIG. 7, after most (lumps) of the culture solution CS move to the position of 45 degrees, a small amount of the culture solution CS remains at the position of 0 degrees. This remaining minute amount of culture solution CS is easy to evaporate. Therefore, before the minute amount of the culture solution CS evaporates, the massive culture solution CS returns and absorbs the minute amount of the culture solution CS. Further, as the amount of the culture solution CS is smaller, the influence of evaporation on the cells is larger, so that the reciprocating range of the culture solution CS is reduced. Thereby, when the amount of the culture solution CS is relatively small, the evaporation of the culture solution CS can be suppressed.
  • the culture solution CS is added to the culture container 12, and the amount of the culture solution CS in the culture container 12 increases. As the increase thereof, the reciprocating range of the culture solution CS is expanded. This is because the influence of the evaporation on the cells is reduced by increasing the culture solution CS, but it is necessary to further agitate the culture solution CS.
  • the culture solution CS When the culture solution CS is relatively small (for example, less than 1 liter), the culture solution CS is reciprocated in the culture vessel 12 in order to suppress evaporation, as described above. On the other hand, when the culture solution CS is added as the number of cells increases and the culture solution CS is relatively large (for example, 1 liter or more), the culture solution CS is circulated in the culture vessel 12.
  • FIG. 8A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large.
  • FIG. 8B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large.
  • the culture vessel 12 is compared with the case where the culture medium CS is relatively small.
  • the tilt angle ⁇ of is small. This is to reduce the depth of the culture solution CS and to distribute a gas such as oxygen throughout the culture solution CS.
  • the culture solution CS is collected in the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture vessel 12, as shown in FIG. 8B. In this state, the tilting direction of the culture vessel 12 is changed.
  • FIG. 9 is a diagram showing stirring of the culture solution CS when the amount of the culture solution CS is relatively large.
  • FIG. 9 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
  • a relatively large amount (for example, 1 liter or more) of the culture solution CS is circulated along the corner 12f sandwiched between the bottom surface 12e of the culture vessel 12 and the inner peripheral surface 12d.
  • the rotary actuator 34 keeps rotating the tilting mechanism 38 in one direction, so that the tilting direction of the culture vessel 12 keeps rotating in one direction.
  • the culture solution CS is circulated.
  • the culture solution CS is stirred.
  • the control unit 26 changes the stirring mode (oscillation pattern) based on the amount of the culture solution CS in the culture vessel 12. For example, when the amount of the culture solution CS in the culture vessel 12 is smaller than the predetermined threshold amount (for example, 1 liter), the culture solution CS is reciprocated by reciprocating the culture solution CS as shown in FIG. The culture solution CS is stirred. Further, the smaller the amount of the culture solution CS, the smaller the reciprocating range of the culture solution CS. On the other hand, when the amount of the culture solution CS in the culture vessel 12 exceeds a predetermined threshold amount, the culture solution CS is stirred by circulating the culture solution CS as shown in FIG. The amount of the culture solution CS in the culture vessel 12 may be calculated from, for example, the weight of the culture solution CS in the culture vessel 12 measured by a weight sensor (not shown).
  • control unit 26 is configured to control the culture vessel swing unit 14 based on the measurement results of the humidity sensor 18 and the dissolved oxygen sensor 20 while stirring the culture solution CS. ing.
  • the culture container swing unit controlled by the control unit 26 14 increases the tilt angle of the culture vessel 12 (that is, the stage 30) so that the area of the liquid level LS of the culture solution CS becomes small.
  • the culture solution CS tends to evaporate from the liquid level LS. Therefore, by reducing the area of the liquid level LS of the culture liquid CS, its evaporation can be suppressed.
  • the culture vessel swinging unit 14 controlled by the control unit 26 is the culture solution CS.
  • the culture vessel 12 is swung so that at least one of the reciprocating cycle and the reciprocating range is increased.
  • the dissolved oxygen sensor 20 (the chip thereof) is provided at a position on the culture vessel 12 that can come into contact with the culture solution CS and detect the dissolved oxygen amount regardless of the amount of the culture solution CS in the culture container 12.
  • the dissolved oxygen sensor 20 is provided on the outer peripheral edge of the bottom surface 12e of the culture vessel 12.
  • the culture vessel 12 is shaken by the culture vessel shaking portion 14 so that the culture solution CS comes into contact with the dissolved oxygen sensor 20.
  • the shaking speed or shaking pattern of the culture vessel 12 may be temporarily changed, or the culture may be performed. The swing of the container 12 may be temporarily stopped.
  • the amount of dissolved oxygen in the culture solution CS in the culture container 12 decreases, the cells in the culture solution CS are damaged. Therefore, by increasing at least one of the reciprocating cycle and the reciprocating range of the culture solution CS, the culture solution CS is more agitated, whereby a large amount of oxygen is taken into the culture solution CS. As a result, cell damage can be suppressed.
  • the culture solution CS in the culture vessel 12 is relatively large and orbits, the culture solution CS is more agitated by increasing the orbiting speed, whereby a large amount of the culture solution CS is contained in the culture solution CS. Can take in oxygen.
  • control unit 26 controls the amount of gas supplied to the culture container 12 by the gas supply unit 24 based on the amount of the culture liquid in the culture container 12.
  • the configuration of the gas supply unit 24 will be described.
  • FIG. 10 is a schematic configuration diagram of the gas supply unit.
  • the gas supply unit 24 includes a gas supply device 60 that supplies a mixed gas of oxygen, carbon dioxide, and nitrogen to the culture container 12, and a humidification device that humidifies the gas from the gas supply device 60 toward the culture container 12. It has a device 62.
  • the gas supply device 60 is configured to supply the mixed gas contained in the gas tank (not shown) at a predetermined timing and supply amount based on an instruction (control signal) from the control unit 26.
  • the gas supply device 60 is a flow rate adjusting valve arranged between the gas tank and the humidifying device 62.
  • the humidifying device 62 is arranged between the gas supply device 60 and the culture vessel 12. Further, the humidifying device 62 includes a hollow fiber membrane filter 64 through which the mixed gas Gd from the gas supply device 60 passes, a plurality of water supply devices 66 for filling the hollow fiber membrane filter 64 with water, and a hollow fiber membrane filter 64. It includes a first heater 68 for heating. In the case of this embodiment, the water supply device 66 is two water supply containers 66.
  • FIG. 11 is a schematic internal structure diagram of the hollow fiber membrane filter.
  • the hollow fiber membrane filter 64 includes a plurality of hollow fiber membranes 70 through which the mixed gas Gd from the gas supply device 60 passes, and a casing 72 for accommodating the plurality of hollow fiber membranes 70.
  • the casing 72 is provided with a port 72a connected to each of the two water supply containers 66.
  • the water W of the water supply container 66 is filled in the casing 72 through the port 72a.
  • the filling of the water W in the casing 72 is started in a state where one of the water supply containers 66 stores the water W and the other is empty.
  • the air in the casing 72 moves into the other empty water supply container 66.
  • the casing 72 becomes filled with water.
  • two water supply containers 66 are provided, but if a plurality of water supply containers 66 are provided, three or more water supply containers 66 may be provided. Further, the water supply container 66 is located above the hollow fiber membrane filter 64, and water is stored in the water supply container 66 so that the water surfaces in all the water supply containers 66 are at the same level.
  • the water supply container 66 may be configured so that the internal volume is variable. That is, the water supply container 66 is made of, for example, a piston such as a syringe, is formed in a bellows shape, or is at least partially made of an elastic body.
  • the water supply container 66 has a fixed internal volume and is in a closed state, there is a possibility that sufficient water cannot be supplied into the casing 72. In addition, it may not be possible to absorb the volume change due to the vaporization gas from the supply water and the aeration gas that has passed through the hollow fiber membrane caused by the temperature change or the like.
  • a detection unit that detects the amount of movement of the piston representing the amount of change in the internal volume, the amount of deformation of the bellows, and the amount of deformation of the elastic part of the elastic body (not shown). ) May be provided.
  • a detection unit that detects the amount of movement of the piston representing the amount of change in the internal volume, the amount of deformation of the bellows, and the amount of deformation of the elastic part of the elastic body (not shown).
  • the mixed gas Gd passing through the hollow fiber membrane 70 is humidified by the water vapor that has passed through the hollow fiber membrane 70.
  • the humidified mixed gas Gw flows out from the casing 72.
  • the pressure around the hollow fiber membrane 70 (water pressure) is set to a higher pressure than the pressure inside the hollow fiber membrane 70 (mixed gas pressure) so that water vapor moves into the hollow fiber membrane 70.
  • the amount of water vapor per unit volume contained in the humidified mixed gas Gw is determined by the heating temperature T1 [° C.] of the first heater 68 that heats the hollow fiber membrane filter 64.
  • the first heater 68 is, for example, a heater (hereinafter referred to as “silicon rubber heater”) that is waterproofed by coating a heating wire with silicon rubber.
  • the culture in order to maintain the culture solution CS in the culture vessel 12 at a predetermined temperature (for example, about 37 ° C.), the culture is arranged below the culture vessel 12 and the inside thereof is cultured.
  • a second heater 74 for heating the liquid CS is provided.
  • the second heater 74 is, for example, a silicon rubber heater provided on the stage 30 of the culture vessel swinging portion 14.
  • the heating temperature T1 of the first heater 68 for heating the hollow fiber membrane filter 64 is set higher than the heating temperature T2 of the second heater 74. This takes into consideration that the water vapor in the mixed gas Gw flowing out of the humidifying device 62 is dewed and reduced before arriving at the culture vessel 12.
  • the heating temperature T1 of the first heater 68 is set to the second heater 74.
  • the heating temperature is set higher than that of T2.
  • the heating temperature T1 is set to a temperature 10 to 15 ° C. higher than the heating temperature T2.
  • the humidified mixed gas Gw flowing out of the humidifying device 62 is supplied to the culture vessel 12 via the gas supply path Pin.
  • the gas supply path Pin is a flexible heat insulating structure that connects the first filter unit 76, the L-shaped tube joint 78 provided on the top plate portion 12c of the culture vessel 12, the humidifying device 62, and the first filter unit 76. It is composed of a tube 80 and a flexible heat insulating tube 82 connecting the first filter unit 76 and the L-shaped tube joint 78.
  • the first filter unit 76 is a unit for suppressing contamination of the culture solution CS in the culture vessel 12, and the first membrane filter 86 through which the humidified mixed gas Gw passes through the housing 84.
  • the first membrane filter 86 is in a state where the normal line of the filter surface 86a through which the mixed gas Gw passes is inclined with respect to the vertical direction (Z-axis direction) (in the case of the present embodiment, the vertical line). It is arranged at an angle of 90 degrees with respect to the direction). The reason for arranging the first membrane filter 86 in such an attitude will be described.
  • the dew condensation water generated in the portion of the gas supply path Pin from the humidifying device 62 to the first membrane filter 86 is captured by the first membrane filter 86.
  • the captured dew condensation water spreads uniformly over the entire filter surface 86a of the first membrane filter 86.
  • the flow resistance of the first membrane filter 86 increases, and the required amount of mixed gas or water vapor does not reach the culture vessel 12.
  • the first membrane filter 86 is arranged so that the normal line of the filter surface 86a is inclined with respect to the vertical direction (Z-axis direction). As a result, the captured dew water moves to the low part of the first membrane filter 86. As a result, it is suppressed that the entire filter surface 86a is covered with dew condensation water.
  • a first filter unit 76 that is, a third heater 88 for heating the first membrane filter 86 is provided.
  • the third heater 88 is, for example, a silicon rubber heater.
  • the third heater 88 heats the first membrane filter 86 at a heating temperature T3 higher than the heating temperature T1 of the first heater 68 that heats the hollow fiber membrane filter 64.
  • the heating temperature T3 is set to be 3 to 5 ° C. higher than the heating temperature T1.
  • the portion between the first membrane filter 86 and the culture vessel 12 in the gas supply path Pin, that is, the heat insulating tube 80 extends in the horizontal direction (X-axis direction).
  • water vapor in the mixed gas Gw that has passed through the first membrane filter 86 condenses, and the dew water is suppressed from dropping into the culture vessel 12 (this portion is in the vertical direction (Z-axis direction)).
  • the local and rapid decrease in the concentration of the culture solution CS due to the dropping of the dew condensation water is suppressed.
  • the osmotic pressure of the cells changes, and the cells may be damaged.
  • the first membrane filter 86 is provided with a connection portion between the gas supply path Pin and the culture vessel 12, that is, a heat insulating tube 80 and an L-shaped tube joint 78. It may be placed at a lower place than the connection portion between them.
  • a second filter unit 90 is also provided on the gas discharge path Pout connecting the inside of the culture vessel 12 and the outside air.
  • the gas discharge path Pout is flexible to connect the second filter unit 90, the L-shaped tube joint 92 provided on the top plate portion 12c of the culture vessel 12, and the second filter unit 90 and the L-shaped tube joint 92. It is composed of a sex insulating tube 94.
  • the second filter unit 90 is a unit for suppressing contamination of the culture solution CS in the culture vessel 12, and includes a second membrane filter 98 through which the exhaust gas Ge passes in the housing 96.
  • the second membrane filter 98 is in a state where the normal line of the filter surface 98a through which the exhaust gas Ge passes is tilted with respect to the vertical direction (Z-axis direction) (in the case of the present embodiment, it is vertical). It is arranged at an angle of 90 degrees with respect to the direction).
  • the second filter unit 90 that is, the fourth heater that heats the second membrane filter 98. 100 is provided.
  • the fourth heater 100 is a silicon rubber heater like the third heater 88.
  • the fourth heater 100 has a heating temperature T4 higher than the heating temperature T1 of the first heater 68 for heating the hollow fiber membrane filter 64, for example, the same heating temperature as the heating temperature T3 of the third heater 88.
  • the membrane filter 98 of 2 is heated. As a result, the water vapor in the exhaust gas Ge can pass through the second membrane filter 98 without dew condensation on the second membrane filter 98.
  • the portion between the second membrane filter 98 and the culture vessel 12 in the gas discharge path Pout, that is, the heat insulating tube 94 extends in the horizontal direction (X-axis direction).
  • X-axis direction water vapor in the exhaust gas Ge before passing through the second membrane filter 98 is dew-condensed, and the dew water is suppressed from dripping into the culture vessel 12 (this portion is in the vertical direction (Z-axis).
  • the local and rapid decrease in the concentration of the culture solution CS due to the dropping of the dew condensation water is suppressed.
  • the second membrane filter 98 is provided with a connection portion between the gas discharge path Pout and the culture vessel 12, that is, a heat insulating tube 94 and an L-shaped tube joint 92 in order to further suppress the dripping of dew condensation water. It may be placed at a lower place than the connection portion between them.
  • the culture apparatus 10 of the present embodiment further has a fifth heater 102 for heating the top plate portion 12c of the columnar culture container 12, and a sixth heater 104 for heating the side wall portion 12b.
  • the fifth and sixth heaters 102 and 104 are, for example, film heaters attached to the outer surface of the culture vessel 12, and are transparent using an ITO electrode or the like so that the culture solution CS in the culture vessel 12 can be visually recognized. It is a heater.
  • the fifth and sixth heaters 102 and 104 have the top plate portion 12c and the side wall portion 12b so that the water vapor in the culture vessel 12 does not cause dew condensation on the inner surface of the top plate portion 12c and the side wall portion 12b of the culture container 12.
  • the heating temperatures T5 and T6 of the fifth and sixth heaters 102 and 104 are set higher than the heating temperature T2 of the second heater 74 arranged below the culture vessel 12.
  • the heating temperatures T5 and T6 are set to be 0 to 5 ° C. higher than the heating temperature T2.
  • the gas supply device 60, the first heater 68, the second heater 74, the third heater 88, the fourth heater 100, the fifth heater 102, and the sixth heater 104 in the gas supply unit 24 are control units. It is controlled by 26.
  • control unit 26 makes the first heater 68, the second heater 74, the third heater 88, the fourth heater 100, the fifth heater 102, and the sixth heater 104 correspond as described above. It is controlled to heat at the related heating temperatures T1 to T6. While maintaining control over these heaters, the control unit 26 controls the gas supply amount per unit time of the gas supply device 60.
  • control unit 26 gradually or linearly reduces the gas supply amount per unit time of the gas supply device 60 as the amount of the culture solution CS supplied by the culture solution supply unit 16 increases. Let me. In other words, the smaller the amount of the culture solution CS in the culture container 12, the larger the gas supply amount.
  • the culture solution CS in the culture vessel 12 when the culture solution CS in the culture vessel 12 is small, a large amount of humidified mixed gas Gw, that is, a large amount of water vapor is supplied to the culture vessel 12, and the humidity in the culture vessel 12 is 95% RH or more. The environment. As a result, the culture solution CS is less likely to evaporate, and damage to the cells in the culture solution CS is suppressed.
  • the amount of the culture solution CS in the culture vessel 12 is large, if the mixed gas Gw is excessively charged in that state, the pressure in the culture vessel 12 increases, so that the gas supply amount is reduced. However, the amount of gas supplied for adjusting the pH of the culture solution CS is maintained.
  • FIG. 12 is a diagram showing the dilution ratio and the osmotic pressure when the Iskov modified Darvecco medium (IMDM) as an example of the culture solution is diluted with distilled water. As shown in FIG. 12, as the dilution ratio is increased, the osmotic pressure of the culture solution becomes smaller. When cells are placed in a so-called hypertonic solution having high osmotic pressure, the volume of the cells decreases as the intracellular water goes out.
  • IMDM Iskov modified Darvecco medium
  • the cells when the cells are placed in a so-called hypotonic solution having a low osmotic pressure, the cells draw water into the inside and expand. In this way, the osmotic pressure of the culture medium deforms and damages the cells.
  • the optimum osmotic pressure of the culture solution in cell culture is 265 to 315 mOsm / kg, and the cells are damaged by water transfer in either the hypertonic solution or the hypotonic solution outside this numerical range. That is, in the Iskov-modified Dalveco medium of FIG. 12, these relationships are adjusted so that the optimum osmotic pressure is obtained at a dilution ratio of 1.00, and when the dilution ratio is higher than that, the osmotic pressure decreases and the culture solution is used. The osmotic pressure increases as the evaporation progresses and the concentration increases.
  • FIG. 13 is a diagram showing the results of examining the gas flow rate of the mixed gas supplied to the culture vessel and the evaporation rate of the culture solution under certain conditions (50 ml) in the example of the present embodiment. be.
  • the evaporation rate increases as the gas flow rate increases. Therefore, when the amount of the culture solution is large, the gradient indicating the evaporation rate with respect to the gas flow rate becomes gentle, and when the amount of the culture solution is small, the gradient indicating the evaporation rate with respect to the gas flow rate becomes steeper. Therefore, it is required to control the gas flow rate of the humidified mixed gas in order to suppress the evaporation of the culture solution.
  • FIG. 14 is a diagram showing the amount of the culture solution and the evaporation rate of the culture solution with respect to the elapsed culture time as an example of the present embodiment.
  • the initial culture solution volume starts from 50 ml, and the culture solution volume, which is the initial solution volume plus the addition amount after 97 hours, is shown as the estimated solution volume (solid line) for each hour.
  • the change in the amount of liquid (broken line) including the evaporation rate is also shown.
  • the figure also shows the transition (dashed line) of the evaporation rate (ratio of the amount of evaporation liquid to the amount of culture liquid) obtained from the evaporation rate at the gas flow rate of FIG.
  • the evaporation rate reaches the maximum value at the time point after the elapsed culture time of 26 hours, and the value is about 3.5%. That is, when the evaporation rate is zero or more, the concentration of the culture solution progresses, the osmotic pressure increases, and the intracellular water is discharged to the outside, and the cells are damaged. As shown in FIG. 14, the evaporation rate naturally decreases as the amount of the culture solution increases. In this embodiment, the gas flow rate, rocking conditions, humidity conditions, etc. are controlled so that the maximum value of the evaporation rate is 3.5%. On the other hand, the evaporation rate of 3.5% in FIG.
  • the osmotic pressure of the culture solution can be controlled to the optimum value of about 290 mOsm / kg.
  • the evaporation rate of the culture solution is controlled by controlling the flow rate of the supply gas supplied to the culture vessel to evaporate the culture solution. Is in control.
  • the osmotic pressure of the culture solution is controlled within the optimum value range, and the damage to the cells is reduced.
  • the amount of evaporation is controlled when the amount of the culture solution is small so that the osmotic pressure is about 260 to 315 mOsm / kg.
  • the control unit 26 sets the heating temperature T1 of the first heater 68 that heats the hollow fiber membrane filter 64 as the amount of the culture solution CS supplied by the culture solution supply unit 16 increases. Decrease. As a result, the amount of water vapor contained in the mixed gas Gd in the hollow fiber membrane filter 64 is reduced. As a result, the amount of water vapor contained can be reduced while maintaining the required amount of the mixed gas. By reducing the amount of water vapor, the diluting of the culture solution is suppressed. In addition, the power consumption of the first heater 68 can be suppressed.
  • the heating temperature T1 of the first heater 68 is lowered, and the heating temperature T3 of the third heater 88, which is involved in suppressing dew condensation, the heating temperature T4 of the fourth heater 100, and the heating temperature of the fifth heater 102.
  • the heating temperature T6 of the T5 and the sixth heater 104 may be lowered while maintaining the above-mentioned correspondence.
  • the heating temperature T2 of the second heater 74 that heats the culture solution CS in the culture vessel 12 is maintained at the required temperature regardless of the heating temperature of the other heaters.
  • the gas supply unit 24 may supply the humidified mixed gas Gw to the culture container 12 before the culture solution supply unit 16 supplies the culture solution CS to the culture container 12.
  • the inside of the culture vessel 12 is sufficiently humidified, that is, the culture vessel 12 is filled with water vapor.
  • the maximum amount of humidified mixed gas Gw is supplied from the gas supply unit 24 to the culture vessel 12.
  • the gas supply path Pin for supplying the humidified mixed gas Gw and the gas discharge path Pout for discharging the exhaust gas Ge are the top plate portion of the culture container 12. It is connected to 12c.
  • the embodiment of the present invention is not limited to this.
  • FIG. 15 is a schematic configuration diagram of a gas supply unit in the culture apparatus according to another embodiment.
  • the gas supply path Pin for supplying the humidified mixed gas Gw is provided on the side wall portion 212b of the cylindrical culture container 212. It is connected via a straight tube joint 278.
  • the gas supply path Pin including the first filter unit 76, the heat insulating tubes 80 and 82, and the tube joint 278 extends in the horizontal direction (X-axis direction) as a whole.
  • the dew condensation water is suppressed from dripping from the gas supply path Pin to the culture vessel 212.
  • the gas discharge path Pout that discharges the exhaust gas Ge is also connected to the side wall portion 212b of the culture vessel 212 via a straight tube joint 292.
  • the gas discharge path Pout composed of the second filter unit 90, the heat insulating tube 94, and the tube joint 292 extends in the horizontal direction (X-axis direction) as a whole.
  • the dew condensation water is suppressed from dripping from the gas discharge path Pout to the culture vessel 212.
  • the humidifying device 62 humidifies the mixed gas in the gas supply unit 24, but the embodiment of the present invention is not limited to this.
  • the humidifier may humidify a single gas required for culturing, such as oxygen and carbon dioxide.
  • the culture vessel has a cylindrical shape as shown in FIG.
  • the culture vessel may be, for example, a large Erlenmeyer flask.
  • the culture container may be a flexible culture bag.
  • the culture apparatus 10 is configured to additionally supply the culture solution CS to the culture vessel 12, that is, to perform expansion culture as the culture progresses.
  • the form of is not limited to this. It may be a culture apparatus that cultures cells using a certain amount of culture medium.
  • the culture apparatus is broadly defined as a culture vessel containing a culture solution for culturing cells, a gas supply apparatus for supplying gas to the culture vessel, and the gas supply apparatus.
  • a hollow fiber membrane filter comprising a humidifying device for humidifying a gas directed toward a culture vessel, wherein the humidifying device comprises a hollow fiber membrane through which gas from the gas supply device passes and a casing accommodating the hollow fiber membrane.
  • a water supply device for filling the inside of the casing of the hollow fiber membrane filter with water, and a first heater for heating the hollow fiber membrane filter are included.
  • the present invention is applicable to an apparatus for culturing cells using a culture solution in a culture vessel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養装置は、細胞を培養する培養液を収容する培養容器と、培養容器にガスを供給するガス供給装置と、ガス供給装置から培養容器に向かうガスを加湿する加湿装置とを有する。加湿装置が、ガス供給装置からのガスが通過する中空糸膜と前記中空糸膜を収容するケーシングとを備える中空糸膜フィルタと、中空糸膜フィルタのケーシング内に水を充満させる水供給装置と、中空糸膜フィルタを加熱する第1のヒータと、を含んでいる。

Description

培養装置
 本発明は、培養容器内で培養液を用いて細胞の培養を行う培養装置に関する。
 例えば、特許文献1には、培養袋(培養容器)内で培養液を用いて細胞の培養を行う振とう型の培養装置が開示されている。この培養装置は、培養容器をラバーヒータ等で加熱しつつ、その培養容器を振とうさせることにより、培養容器内で細胞の培養を行う。また、この培養装置は、培養容器内に混合ガスを供給しつつ培養を行う。
国際公開第2016/120708号
 特許文献1に記載された培養装置のように培養容器内で培養液を用いて細胞の培養を行う場合、培養液の蒸発が問題になる場合がある。培養液が蒸発すると、培養液の浸透圧が高くなり、細胞外へ水が出ていくことにより細胞がダメージを受けうる。特に、少量の培養液を用いて細胞の培養を行う場合に、培養液の蒸発率が高くなるため、浸透圧も高くなることから細胞に大きなダメージを与えうる。
 そこで、本発明は、培養容器内で培養液を用いて細胞の培養を行うときに、その培養液の蒸発を抑制することを課題とする。
 上記技術的課題を解決するために、本発明の一態様によれば、
 細胞を培養する培養液を収容する培養容器と、
 前記培養容器にガスを供給するガス供給装置と、
 前記ガス供給装置から前記培養容器に向かうガスを加湿する加湿装置と、を有し、
 前記加湿装置が、
 前記ガス供給装置からのガスが通過する中空糸膜と前記中空糸膜を収容するケーシングとを備える中空糸膜フィルタと、
 前記中空糸膜フィルタのケーシング内に水を充満させる水供給装置と、
 前記中空糸膜フィルタを加熱する第1のヒータと、を含んでいる、培養装置が提供される。
 本発明によれば、培養容器内で培養液を用いて細胞の培養を行うときに、その培養液の蒸発を抑制することができる。
本発明の一実施の形態に係る培養装置の構成を示す概略的構成図 培養容器の一例の概略的斜視図 培養装置における培養容器揺動部の概略的部分断面図 図3に示す培養容器揺動部の一部を異なる方向から見た概略的部分断面図 培養容器が傾いた状態の図3に示す培養容器揺動部の概略的部分断面図 培養液が相対的に少量であるときの培養容器の傾き状態を示す断面図 培養液が相対的に少量であるときの培養容器の傾き状態を示す上面図 培養液が相対的に少量であるときの培養液の撹拌を示す図 培養液が相対的に多量であるときの培養容器の傾きの状態を示す断面図 培養液が相対的に多量であるときの培養容器の傾きの状態を示す上面図 培養液が相対的に多量であるときの培養液の撹拌を示す図 ガス供給部の概略的構成図 中空糸膜フィルタの概略的な内部構造図 培養液の希釈倍率と浸透圧を示す図 供給ガス流量と培養液の蒸発速度の関係を示す図 培養経過時間に対する培養液量と培養液の蒸発率を示す図 別の実施の形態に係る培養装置におけるガス供給部の概略的構成図
 本発明の一態様の培養装置は、細胞を培養する培養液を収容する培養容器と、前記培養容器にガスを供給するガス供給装置と、前記ガス供給装置から前記培養容器に向かうガスを加湿する加湿装置と、を有し、前記加湿装置が、前記ガス供給装置からのガスが通過する中空糸膜と前記中空糸膜を収容するケーシングとを備える中空糸膜フィルタと、前記中空糸膜フィルタのケーシング内に水を充満させる水供給装置と、前記中空糸膜フィルタを加熱する第1のヒータと、を含んでいる。
 この態様によれば、培養容器内で培養液を用いて細胞の培養を行うときに、その培養液の蒸発を抑制することができる。
 例えば、培養装置が、前記培養容器の下方に配置され、前記培養液内の培養液を加熱する第2のヒータを有する。この場合、前記第1のヒータの加熱温度が、前記第2のヒータの加熱温度に比べて高い。これにより、加湿装置から流出したガス内の水蒸気が、培養容器に到着する前に結露して減少することが抑制される。
 例えば、培養装置が、前記加湿装置と前記培養容器との間のガス供給路に設けられ、フィルタ面の法線が鉛直方向に対して傾いた状態で配置された第1のメンブレンフィルタを有する。この第1のメンブレンフィルタにより、培養容器内の培養液のコンタミネーションが抑制される。また、傾くことにより、第1のメンブレンフィルタのフィルタ面全体に結露水が一様に拡がって流路抵抗が増加することが抑制される。
 例えば、培養装置が、前記第1のメンブレンフィルタを加熱する第3のヒータを有する。この場合、前記第3のヒータの加熱温度が、前記第1のヒータの加熱温度に比べて高い。これにより、ガス内の水蒸気が、第1のメンブレンフィルタで結露することなく、第1のメンブレンフィルタを通過することができる。
 例えば、前記ガス供給路における前記第1のメンブレンフィルタと前記培養容器との間の部分が、水平方向に延在する。これにより、ガス供給路で結露して発生した結露水が培養容器内に滴下することが抑制される。
 例えば、前記第1のメンブレンフィルタが、前記培養容器の接続部に比べて低所に位置する。これにより、ガス供給路で結露して発生した結露水が培養容器内に滴下することが抑制される。
 例えば、培養装置が、前記培養容器内と外気とを接続するガス排出路に設けられ、フィルタ面の法線が鉛直方向に対して傾いた状態で配置された第2のメンブレンフィルタを有する。これにより、この第2のメンブレンフィルタにより、培養容器内の培養液のコンタミネーションが抑制される。また、傾くことにより、第2のメンブレンフィルタのフィルタ面全体に結露水が一様に拡がって流路抵抗が増加することが抑制される。
 例えば、培養装置が、前記第2のメンブレンフィルタを加熱する第4のヒータを有する。この場合、前記第4のヒータの加熱温度が、前記第1のヒータの加熱温度に比べて高い。これにより、ガス内の水蒸気が、第2のメンブレンフィルタで結露することなく、第2のメンブレンフィルタを通過することができる。
 例えば、前記ガス排出路における前記第2のメンブレンフィルタと前記培養容器との間の部分が、水平方向に延在する。これにより、ガス排出路で結露して発生した結露水が培養容器内に滴下することが抑制される。
 例えば、前記第2のメンブレンフィルタが、前記培養容器の接続部に比べて低所に位置する。これにより、ガス排出路で結露して発生した結露水が培養容器内に滴下することが抑制される。
 例えば、前記培養容器が、底板部、天板部、および側壁部を備える円柱状である。この場合、培養装置は、前記天板部を加熱する第5のヒータと、前記側壁部を加熱する第6のヒータとを有し、前記第5および第6のヒータの加熱温度が、前記第2のヒータの加熱温度に比べて高い。これにより、天板部および側壁部での結露の発生が抑制される。
 例えば、培養装置が、前記培養容器に培養液を供給する培養液供給部を有する。この場合、前記培養液供給部によって供給された培養容器内の培養液量が増加するにしたがって、ガス供給装置の単位時間あたりのガス供給量を変化させる。培養容器内の培養液が多量にあって、培養液の蒸発が細胞に大きく影響しないときに、過剰量のガスが培養容器に供給されることが抑制される。
 例えば、前記ガス供給装置のガス供給量を、前記培養容器における培養液量における蒸発率と、当該蒸発率から求められる前記培養液の浸透圧が所定値となるように変化させる。これにより、培養液の浸透圧による細胞の変形を抑制することができる。
 一例として、前記培養液の浸透圧の所定値が、260~315mOsm/kgの範囲であってもよい。
 例えば、前記培養液供給部によって供給された培養容器内の培養液量が増加するにしたがって、前記第1のヒータの加熱温度を変化させる。これにより、培養容器内の培養液が多量にあって、培養液の蒸発が細胞に大きく影響しないときに、過剰量の水蒸気が培養容器に供給されることが抑制される。
 例えば、前記培養液供給部が前記培養容器に培養液を供給する前に、前記ガス供給装置から供給されて前記加湿装置によって加湿されたガスが、前記培養容器に供給される。これにより、培養容器に供給された直後の少量の培養液の蒸発が抑制される。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の一実施の形態に係る培養装置の構成を示す概略的構成図である。
 図1に示すように、培養装置10は、細胞を含んだ培養液CSを収容する培養容器12と、培養容器12内の培養液CSを撹拌するために培養容器12を揺動する培養容器揺動部14と、培養容器12に培養液CSを供給する培養液供給部16とを有する。
 また、本実施の形態の場合、培養装置10は、培養容器12内の湿度を測定する湿度センサ18と、培養容器12内の培養液CSに溶存する酸素量を測定する溶存酸素センサ20と、培養容器12内の培養液CS内の細胞密度を計測する細胞密度計測部22とを有する。
 さらに、培養装置10は、加湿された酸素、二酸化炭素、窒素の混合ガスを培養容器12に供給するガス供給部24を有する。
 さらにまた、培養装置10は、湿度センサ18、溶存酸素センサ20、および細胞密度計測部22それぞれの検出結果に基づいて培養容器揺動部14、培養液供給部16、およびガス供給部24を制御する制御部26を有する。
 培養容器12は、培養液CSを収容する容器であって、この内部で培養液CSを用いた細胞の培養が行われる。この培養容器12では、細胞の増加にともなって、少量(1リットル未満、例えば50ミリリットル)から段階的に培養液CSを追加しながら、その培養液CSを用いた細胞の培養、すなわち拡大培養が行われる。そのため、培養容器12は、培養に使用される最大量(例えば50リットル)の培養液を収容して撹拌可能な容量を備える。
 図2は、培養容器12の一例の形状を示す斜視図である。なお、図面においてX-Y-Z直交座標系が示されているが、これは発明の実施の形態の理解を容易にするためのものであって発明を限定するものではない。また、X軸方向およびY軸方向は水平方向であって、Z軸方向は鉛直方向である。
 図2に示すように、本実施の形態の場合、培養容器12は、円盤状の底板部12aと、底板部12aの外周縁から立設する円筒状の側壁部12bと、側壁部12bに支持される天板部12cとを備える。すなわち、培養容器12は、いわゆる円柱状である。側壁部12bの高さは、底板部12aの半径に比べて小さくされている。また、天板部12cは、着脱可能であって蓋として機能する。
 図3は、培養装置10における培養容器揺動部14の概略的部分断面図である。また、図4は、図3に示す培養容器揺動部14の一部を異なる方向から見た概略的部分断面図である。
 図3および図4に示すように、培養装置10における培養容器揺動部14は、培養容器12を保持するステージ30と、鉛直方向(Z軸方向)に延在する回転中心軸C0を中心にして回転する回転テーブル32を備えるロータリーアクチュエータ34とを備える。
 ステージ30とロータリーアクチュエータ34は、揺動ヘッド36と傾動機構38とを介して駆動連結されている。
 揺動ヘッド36は、ステージ30を支持し、水平方向(X軸方向)に延在する揺動軸C1と水平方向(Y軸方向)に延在して該揺動軸C1に直交する揺動軸C2を中心にして揺動可能に、培養容器揺動部14に設けられている。また、揺動ヘッド36は、その下部に、傾動機構38を介してロータリーアクチュエータ34と駆動連結するための連結シャフト40を備えている。ステージ30が水平姿勢をとるとき、揺動ヘッド36の連結シャフト40は鉛直方向(Z軸方向)に延在している。
 傾動機構38は、揺動ヘッド36を介してステージ30を傾ける、すなわちステージ30上の培養容器12を水平方向に対して傾けるためのリンク機構である。そのために、傾動機構38は、ベース部42と、揺動ヘッド36に連結する揺動ヘッド連結部44と、ベース部42と揺動ヘッド連結部44とを連結するリンクアーム46とを含んでいる。
 傾動機構38のベース部42は、ロータリーアクチュエータ34の回転テーブル32に取り付けられている。そのため、ロータリーアクチュエータ34が駆動すると、ベース部42は、回転テーブル32とともに、回転中心軸C0を中心にして回転する。
 傾動機構38の揺動ヘッド連結部44は、揺動ヘッド36の連結シャフト40に、例えば軸受を介することなどにより、摺動可能に外挿されている。
 傾動機構38のリンクアーム46は、ベース部42と揺動ヘッド連結部44とを連結するように構成されている。具体的には、リンクアーム46は、揺動ヘッド連結部44に回動可能に固定された一端と、ベース部42に回動可能に固定された他端とを備える。リンクアーム46の一端の回動軸C3と他端の回転軸C4それぞれは、水平方向に延在し、互いに平行である。
 傾動機構38のベース部42が取り付けられているロータリーアクチュエータ34は、ボールねじ機構48によって鉛直方向(Z軸方向)に昇降される。
 ボールねじ機構48は、鉛直方向(Z軸方向)に延在するねじシャフト50と、ねじシャフト50に係合するナット52と、ねじシャフト50を回転させるモータ(図示せず)とを含んでいる。ナット52は、昇降ブラケット54に取り付けられている。その昇降ブラケット54にロータリーアクチュエータ34が取り付けられている。
 ボールねじ機構48が駆動すると、ナット52を介して、昇降ブラケット54とともにロータリーアクチュエータ34が昇降する。例えば、図5に示すように、ボールねじ機構48によってロータリーアクチュエータ34が上昇すると、傾動機構38を介してステージ30が傾く。具体的には、ロータリーアクチュエータ34に取り付けられた傾動機構38のベース部42が上昇し、それによりリンクアーム46が揺動ヘッド連結部44を押す。それにより、揺動ヘッド連結部44とともに揺動ヘッド36が、揺動軸C1、C2の少なくとも一方(図13では揺動軸C2)を中心として回転する。それにより、ステージ30が傾き、そのステージ30上の培養容器12も傾く。
 図5に示すように、ステージ30が傾いた状態でロータリーアクチュエータ34が駆動して回転テーブル32が回転すると、傾動機構38が回転中心軸C0を中心にして回転し、それによりステージ30の傾き方向が変化する。その結果、培養容器12内の培養液CSが撹拌され、培養液CS内の細胞が培養される。
 なお、このような培養容器揺動部14においては、ロータリーアクチュエータ34が傾動機構38を例えば一回転させても、ステージ30自体は回転せず、その代わりにステージ30の傾き方向が一回転するだけである。すなわち、ステージ30上の培養容器12における最も低い部分が、順次、別の部分に変更されていくだけである。
 図1に戻り、本実施の形態の場合、培養容器12に培養液CSを供給する培養液供給部16は、制御部26によって制御される。培養容器12への培養液CSの供給については後述する。
 また、培養液CSに加えて、ガス供給部24によって混合ガスが培養容器12に供給される。培養容器12へのガス供給については後述する。
 湿度センサ18は、培養容器12内、具体的には培養液CSに浸からないように例えば内周面12dに取り付けられ、培養容器12内の湿度を測定する。また、湿度センサ18は、測定した湿度に対応する信号を制御部26に出力する。
 溶存酸素センサ20は、培養容器12内の培養液CSに溶存する酸素の量を測定する。例えば、溶存酸素センサ20として、蛍光式の溶存酸素センサが使用される。例えば、蛍光式の溶存酸素センサは、培養容器12の底面12eに配置されて蛍光物質が塗布されたチップと、チップに対して培養容器12の外部から紫外線等を照射する光源と、チップから放射された蛍光を受光する受光素子とを備える。
 蛍光物質が光源からの紫外線等の光エネルギーを吸収すると、基底状態から励起状態に遷移する。励起した蛍光物質の分子は、通常、蛍光を放射して基底状態に戻る。しかし、このとき、励起状態の分子の周りに酸素分子が存在すると、励起エネルギーが酸素分子に奪われ、蛍光の放射強度が低下する、いわゆる酸素消光が生じる。この酸素消光を利用して、すなわち蛍光の放射強度が酸素分子濃度に反比例することを利用して、蛍光式の溶存酸素センサは、培養容器内の培養液の溶存酸素量を測定する。
 また、溶存酸素センサ20は、測定した溶存酸素量に対応する信号を制御部26に出力する。
 細胞密度計測部22は、培養容器12内の培養液CSの細胞密度を計測する。その計測した細胞密度は、制御部26に出力される。この細胞密度計測部22の定期的な計測によって培養中の細胞密度がモニタリングされる。
 制御部26は、例えば、記憶装置やCPUが搭載された制御基板から構成される。記憶装置に記憶されたプログラムにしたがって動作することにより、CPUは、後述する細胞の培養に関連する動作を実行する。
 まず、制御部26は、培養液供給部16を制御する。
 制御部26によって制御されることにより、培養液供給部16は、培養容器12の培養液CS内の細胞の増加にともなって培養容器12に培養液CSを追加供給する。例えば、培養容器12一つで、1リットル未満(例えば200ミリリットル)の培養液CSが50リットルになるまで、培養液CSが培養容器12に段階的に追加供給される。
 また、制御部26は、培養容器12内の培養液CSの量に基づいて、培養容器揺動部14(そのロータリーアクチュエータ34およびボールねじ機構48)を制御する。
 制御部26によって制御されることにより、培養容器揺動部14は、培養容器12内での培養液CSの蒸発が抑制されつつ、その培養液CSが撹拌されるように培養容器12を揺動する。具体的には、培養容器揺動部14は、培養容器12内の培養液CSの量が少ないほど、撹拌によって移動する培養液に接触される培養容器12の表面の部分が小さくなるように、培養容器12を揺動する。その培養容器12の揺動、すなわち培養液CSの撹拌について説明する。
 図6Aは、培養液が相対的に少量であるときの培養容器12の傾き状態を示す断面図である。また、図6Bは、培養液が相対的に少量であるときの培養容器12の傾き状態を示す上面図である。
 図6Aおよび図6Bに示すように、培養液の撹拌は、培養容器12が傾いた状態で行われる。その培養容器12の傾き角度θ(水平状態の培養容器12に対する角度)は、培養容器12内の培養液CSの量が少ないほど大きくされている。
 このように培養液CSの量が少ないほど、培養容器12を大きく傾けることにより、培養液CSの液面LSの面積の大きさが小さくなる。液面LSの面積の大きさが小さくなることにより、その液面LSからの培養液CSの蒸発を抑制することができる。
 ここで、「培養液の蒸発」について説明する。培養液CSが蒸発すると、培養液CS内の細胞密度が上昇する。培養液CSが多量(例えば1リットル以上)である場合には、培養液CSの蒸発による細胞密度の上昇量は比較的小さく、密度上昇による細胞への影響は小さい。一方、培養液CSが少量(例えば1リットル未満)である場合には、培養液CSの蒸発による細胞密度の上昇量は比較的大きく、密度上昇による細胞への影響は大きい。培養液CSが少量であるほど、その蒸発による細胞への影響は大きくなり、場合によっては細胞の一部が死滅するまたはダメージを受ける。
 したがって、培養液CSの量が少ないほど、培養容器12を大きく傾けることにより(傾き角度θを大きくすることにより)、培養液CSの蒸発による細胞への影響を低減している。
 なお、培養容器12内の培養液CSの量がその培養液CSの蒸発による細胞への影響が十分に小さい量以上である場合には、培養容器12の傾き角度θは一定であってもよい。
 培養容器12が傾くことにより、図6Bに示すように、培養液CSが、培養容器12の円形状の底面12eとその底面12eの外周縁から立設する円筒状の内周面12dとに挟まれたコーナー12fに溜まる。この状態で培養容器12の傾き方向が変化される。
 図7は、培養液が相対的に少量であるときの培養液の撹拌を示す図である。図7は、撹拌中の培養容器12を上方から見た(Z軸方向視)状態を示している。
 図7に示すように、相対的に少量な(例えば1リットル未満の)培養液CSは、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに沿って往復動される。例えば、ロータリーアクチュエータ34が90度の角度範囲で傾動機構38の正転および逆転を繰り返すことにより、培養容器12の傾き方向が90度の角度範囲で変化する。それにより、培養液CSが90度の角度範囲で往復動される。その結果、培養液CSは撹拌される。なお、図7に示すように、Z軸を基準としてY軸プラス方向を0度方向と設定した場合、例えば、0度の位置を中心として-45度(315度)の位置から+45度の位置の間で、培養液CSが往復動される。
 培養液CSの量が少ないほど、培養液CSの往復範囲(角度範囲)が小さくされる。その理由は、培養液CSの蒸発を抑制するためである。
 具体的に説明すると、撹拌によって培養液CSが培養容器12の表面上を移動すると、微少量の培養液CSが大部分(塊状)の培養液CSが通過した後の表面に残る。例えば、図7に示すように、45度の位置に培養液CSの大部分(塊)が移動した後、0度の位置に微少量の培養液CSが残る。この残された微少量の培養液CSは蒸発しやすい。したがって、この微少量の培養液CSが蒸発する前に、塊状の培養液CSが戻ってその微少量の培養液CSを吸収する。また、培養液CSの量が少ないほど、蒸発による細胞への影響が大きいため、培養液CSの往復範囲を小さくする。これにより、培養液CSが相対的に少量である場合、培養液CSの蒸発を抑制することができる。
 なお、細胞の増加にともなって培養液CSが培養容器12に追加され、培養容器12内の培養液CSの量が増加する。その増加にしたがって培養液CSの往復範囲が拡大される。これは、培養液CSの増加によってその蒸発による細胞への影響が低減される一方で、培養液CSをより撹拌する必要があるからである。
 培養液CSが相対的に少量(例えば1リットル未満)である場合、上述したように、培養液CSは、蒸発を抑制するために、培養容器12内を往復動される。これに対して、細胞の増加にともなって培養液CSが追加され、培養液CSが相対的に多量(例えば1リットル以上)である場合、培養液CSは培養容器12内を周回される。
 図8Aは、培養液が相対的に多量であるときの培養容器12の傾き状態を示す断面図である。また、図8Bは、培養液が相対的に多量であるときの培養容器12の傾き状態を示す上面図である。
 図8Aおよび図8Bに示すように、また図6Aおよび図6Bを参照すると、培養液CSが相対的に多量である場合、培養液CSが相対的に少量である場合に比べて、培養容器12の傾き角度θは小さい。これは、培養液CSの深さを小さくし、培養液CS全体に酸素などのガスを行き渡らせるためである。
 培養液CSの深さが大きくなるほど、撹拌によって培養液CSの液面を介して取り込まれた酸素などのガスは培養液CS全体に行き渡りにくい。具体的には、培養液CSの深部にガスは到達しにくい。その結果、培養液CSの深部の溶存酸素量が不足し、細胞がダメージを受けることになる可能性がある。
 培養容器12が傾くことにより、図8Bに示すように、培養液CSが、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに溜まる。この状態で培養容器12の傾き方向が変化される。
 図9は、培養液CSが相対的に多量であるときの培養液CSの撹拌を示す図である。図9は、撹拌中の培養容器12を上方から見た(Z軸方向視)状態を示している。
 相対的に多量な(例えば1リットル以上の)培養液CSは、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに沿って周回される。例えば、ロータリーアクチュエータ34が傾動機構38を一方向に回転し続けることにより、培養容器12の傾き方向が一方向に回転し続ける。それにより、培養液CSが周回される。その結果、培養液CSは撹拌される。
 このように、制御部26は、培養容器12内の培養液CSの量に基づいて、撹拌モード(揺動パターン)を変化させる。例えば、培養容器12内の培養液CSの量が所定のしきい量(例えば1リットル)に比べて少量である場合には、図7に示すように、培養液CSを往復動させることによってその培養液CSを撹拌する。また、培養液CSの量が少ないほど、その培養液CSの往復範囲を小さくする。一方、培養容器12内の培養液CSの量が所定のしきい量を超えると、図9に示すように培養液CSを周回させることによってその培養液CSを撹拌する。なお、培養容器12内の培養液CSの量は、例えば、重量センサ(図示せず)によって測定された培養容器12内の培養液CSの重量から算出されてもよい。
 加えて、本実施の形態の場合、制御部26は、培養液CSの撹拌中、湿度センサ18および溶存酸素センサ20の測定結果に基づいて、培養容器揺動部14を制御するように構成されている。
 具体的には、湿度センサ18によって検出された培養液CS内の湿度が低下すると、例えば所定の適正範囲の下限値を越えて湿度が低下すると、制御部26によって制御された培養容器揺動部14は、培養液CSの液面LSの面積が小さくなるように、培養容器12(すなわちステージ30)の傾き角度を大きくする。
 培養容器12内の湿度が低下すると、培養液CSがその液面LSから蒸発しやすくなる。したがって、培養液CSの液面LSの面積を小さくすることにより、その蒸発を抑制することができる。
 また、溶存酸素センサによって検出された溶存酸素の量が低下すると、例えば所定の適正範囲の下限値を越えて低下すると、制御部26によって制御された培養容器揺動部14は、培養液CSの往復動の周期および往復範囲の少なくとも一方が増加するように、培養容器12を揺動する。なお、溶存酸素センサ20(そのチップ)は、培養容器12内の培養液CSの量にかかわらず、培養液CSに接触してその溶存酸素量を検出できる培養容器12上の位置に設けられる。本実施の形態の場合、溶存酸素センサ20は、培養容器12の底面12eの外周縁部に設けられている。また、溶存酸素センサ20が溶存酸素量を測定するとき、その溶存酸素センサ20に培養液CSが接触するように、培養容器12が培養容器揺動部14によって揺動される。この場合、溶存酸素センサ20に培養液CSを接触させてその溶存酸素量を精度よく検出するために、培養容器12の揺動速度や揺動パターンが一時的に変更されてもよい、または培養容器12の揺動が一時的に停止してもよい。
 培養容器12内の培養液CSの溶存酸素の量が低下すると、培養液CS内の細胞がダメージを受ける。したがって、培養液CSの往復動の周期および往復範囲の少なくとも一方を増加させることにより、培養液CSがより撹拌され、それにより培養液CS内に多くの酸素が取り込まれる。その結果、細胞のダメージを抑制することができる。
 なお、培養容器12内の培養液CSが相対的に多量であって周回されている場合、その周回速度を増加させることにより、培養液CSがより撹拌され、それにより培養液CS内に多くの酸素を取り込むことができる。
 さらに、本実施の形態の場合、制御部26は、培養容器12内の培養液量に基づいてガス供給部24が培養容器12に供給するガス量を制御する。そのガス供給部24の構成について、まず説明する。
 図10は、ガス供給部の概略的な構成図である。
 図10に示すように、ガス供給部24は、培養容器12に酸素、二酸化炭素、窒素の混合ガスを供給するガス供給装置60と、ガス供給装置60から培養容器12に向かうガスを加湿する加湿装置62とを有する。
 ガス供給装置60は、ガスタンク(図示せず)に収容された混合ガスを制御部26からの指示(制御信号)に基づいて、所定のタイミングおよび供給量で供給するように構成されている。例えば、ガス供給装置60は、ガスタンクと加湿装置62との間に配置された流量調整弁である。
 加湿装置62は、ガス供給装置60と培養容器12との間に配置される。また、加湿装置62は、ガス供給装置60からの混合ガスGdが通過する中空糸膜フィルタ64と、中空糸膜フィルタ64に水を充満させる複数の水供給装置66と、中空糸膜フィルタ64を加熱する第1のヒータ68とを含んでいる。本実施の形態の場合、水供給装置66は、2つの水供給容器66である。
 図11は、中空糸膜フィルタの概略的な内部構造図である。
 中空糸膜フィルタ64は、ガス供給装置60からの混合ガスGdが通過する複数の中空糸膜70と、複数の中空糸膜70を収容するケーシング72とを備える。ケーシング72には、2つの水供給容器66とそれぞれ接続するポート72aが設けられている。ポート72aを介して、水供給容器66の水Wがケーシング72内に充満される。なお、ケーシング72内への水Wの充満は、水供給容器66の一方が水Wを貯え、他方が空の状態で開始される。水Wを貯える一方の水供給容器66内の水がケーシング72内に供給されると、ケーシング72内の空気が空の他方の水供給容器66内に移動する。最終的に2つの水供給容器66内の水面が同一レベルになると、ケーシング72は水が充満された状態になる。
 本実施の形態の場合、水供給容器66を2つ設けているが、複数の水供給容器66を設けるのであれば、3つ以上であってもよい。また、水供給容器66は中空糸膜フィルタ64より上方に位置し、全ての水供給容器66内の水面は同一レベルとなるよう水供給容器66内には水が蓄えられている。
 さらに、水供給容器66は内容積が可変となるように構成されてもよい。すなわち、水供給容器66は、例えば、シリンジのようなピストンで構成される、蛇腹状に形成される、あるいは、少なくとも一部が弾性体で構成されている。
 これと異なり、水供給容器66が、その内容積が固定であって、密閉状態となった場合、ケーシング72内に十分な水が供給できない可能性がある。また、温度変化等によって生じる供給水からの気化ガス、中空糸膜を通過した通気ガスによる体積変化を吸収することができない可能性がある。
 水供給容器66の内容積が可変である構成に加えて、内容積変化量を表すピストンの移動量、あるいは蛇腹の変形量、弾性体の弾性部の変形量を検知する検知部(図示せず)を設けてもよい。これにより、ガスによる水供給容器66の容積変化によって生じうる水供給容器66の破損、リークなどを抑制することができる、また、これらの検知部を介して、水供給容器66からケーシング72への供給水量を検知することも可能である。供給水量の検知結果に基づいて供給水の補給のタイミングを操作者に通知することができ、これにより、供給水量不足による加湿機能低下を未然に防ぐことができる。
 ケーシング72内に水が充満された状態で混合ガスGdが中空糸膜70内を通過すると、中空糸膜70を通過中の混合ガスGdは中空糸膜70を透過した水蒸気によって加湿される。その結果、ケーシング72から加湿された混合ガスGwが流出する。なお、水蒸気が中空糸膜70内に移動するように、中空糸膜70周りの圧力(水圧)が中空糸膜70内の圧力(混合ガス圧力)に比べて高圧にされている。
 加湿された混合ガスGwに含まれる単位体積あたりの水蒸気量は、中空糸膜フィルタ64を加熱する第1のヒータ68の加熱温度T1[℃]によって決まる。加熱温度T1が高いほど、加湿された混合ガスGwに含まれる水蒸気量は増加する。第1のヒータ68は、例えば、電熱線をシリコンラバーでコーティングすることによって防水したヒータ(以降「シリコンラバーヒータ」と呼ぶ)である。
 なお、本実施の形態の培養装置10の場合、培養容器12内の培養液CSを所定の温度(例えば約37℃)で維持するために、培養容器12の下方に配置されてその内部の培養液CSを加熱する第2のヒータ74が設けられている。第2のヒータ74は、例えば、培養容器揺動部14のステージ30に設けられているシリコンラバーヒータである。中空糸膜フィルタ64を加熱する第1のヒータ68の加熱温度T1は、第2のヒータ74の加熱温度T2に比べて高く設定されている。これは、加湿装置62から流出した混合ガスGw内の水蒸気が、培養容器12に到着する前に結露して減少することを考慮している。すなわち、培養容器12に必要な水蒸気量に比べて多くの水蒸気量を中空糸膜フィルタ64内で混合ガスGdに含有させるために、第1のヒータ68の加熱温度T1が、第2のヒータ74の加熱温度T2に比べて高く設定されている。一例として、加熱温度T1は、加熱温度T2に対して10~15℃高い温度に設定される。
 加湿装置62から流出した加湿された混合ガスGwは、ガス供給路Pinを介して、培養容器12に供給される。ガス供給路Pinは、第1のフィルタユニット76、培養容器12の天板部12cに設けられたL型チューブジョイント78、加湿装置62と第1のフィルタユニット76とを接続する可撓性の断熱チューブ80、および第1のフィルタユニット76とL型チューブジョイント78とを接続する可撓性の断熱チューブ82から構成されている。
 第1のフィルタユニット76は、培養容器12内の培養液CSのコンタミネーションを抑制するためのユニットであって、そのハウジング84内に、加湿された混合ガスGwが通過する第1のメンブレンフィルタ86を備える。本実施の形態の場合、第1のメンブレンフィルタ86は、混合ガスGwが通過するフィルタ面86aの法線が鉛直方向(Z軸方向)に対して傾いた状態(本実施の形態の場合、鉛直方向に対して90度傾いた状態)で配置されている。このような姿勢で第1のメンブレンフィルタ86を配置する理由について説明する。
 加湿装置62から第1のメンブレンフィルタ86までのガス供給路Pinの部分で発生した結露水は、第1のメンブレンフィルタ86によってキャプチャされる。このとき、本実施の形態と異なってフィルタ面86aの法線が鉛直方向に延在する場合、キャプチャされた結露水が、第1のメンブレンフィルタ86のフィルタ面86a全体に一様に拡がる。その結果、第1のメンブレンフィルタ86の流れ抵抗が増加し、培養容器12内に必要量の混合ガスや水蒸気が届かなくなる。
 その対処として、第1のメンブレンフィルタ86は、そのフィルタ面86aの法線が鉛直方向(Z軸方向)に対して傾くように配置されている。これにより、キャプチャされた結露水は、第1のメンブレンフィルタ86における低所部分に移動する。その結果、フィルタ面86a全体が結露水に覆われることが抑制される。
 本実施の形態の培養装置10の場合、第1のフィルタユニット76、すなわち第1のメンブレンフィルタ86を加熱する第3のヒータ88が設けられている。第3のヒータ88は、例えばシリコンラバーヒータである。この第3のヒータ88は、中空糸膜フィルタ64を加熱する第1のヒータ68の加熱温度T1に比べて高い加熱温度T3で第1のメンブレンフィルタ86を加熱する。例えば、加熱温度T3は、加熱温度T1に比べて3~5℃高く設定されている。これにより、混合ガスGw内の水蒸気が、第1のメンブレンフィルタ86で結露することなく、第1のメンブレンフィルタ86を通過することができる。
 本実施の形態の場合、ガス供給路Pinにおける第1のメンブレンフィルタ86と培養容器12との間の部分、すなわち断熱チューブ80が水平方向(X軸方向)に延在している。これにより、第1のメンブレンフィルタ86を通過した混合ガスGw内の水蒸気が結露し、その結露水が培養容器12内に滴下することを抑制している(この部分が鉛直方向(Z軸方向)に延在している場合に比べて)。その結果、結露水の滴下による培養液CSの局所的かつ急激な濃度低下が抑制される。このような培養液CSの濃度低下が起こると、細胞の浸透圧が変化し、細胞がダメージを受けうる。なお、より結露水の滴下を抑制するために、可能であれば、第1のメンブレンフィルタ86は、ガス供給路Pinと培養容器12の接続部、すなわち断熱チューブ80とL型チューブジョイント78との間の接続部に比べて低所に配置してもよい。
 図10に示すように、培養容器12内と外気とを接続するガス排出路Pout上にも、第2のフィルタユニット90が設けられている。ガス排出路Poutは、第2のフィルタユニット90、培養容器12の天板部12cに設けられたL型チューブジョイント92、および第2のフィルタユニット90とL型チューブジョイント92とを接続する可撓性の断熱チューブ94から構成されている。
 第2のフィルタユニット90は、培養容器12内の培養液CSのコンタミネーションを抑制するためのユニットであって、そのハウジング96内に、排気ガスGeが通過する第2のメンブレンフィルタ98を備える。本実施の形態の場合、第2のメンブレンフィルタ98は、排気ガスGeが通過するフィルタ面98aの法線が鉛直方向(Z軸方向)に対して傾いた状態(本実施の形態の場合、鉛直方向に対して90度傾いた状態)で配置されている。これにより、第1のメンブレンフィルタ86と同様に、結露水がフィルタ面98a全体を覆うことによって生じる流れ抵抗の増加が抑制される。その結果、培養容器12内の圧力が過剰に高まることが抑制される。
 本実施の形態の培養装置10の場合、第1のフィルタユニット76(第1のメンブレンフィルタ86)と同様に、第2のフィルタユニット90、すなわち第2のメンブレンフィルタ98を加熱する第4のヒータ100が設けられている。第4のヒータ100は、第3のヒータ88と同様に、シリコンラバーヒータである。この第4のヒータ100は、中空糸膜フィルタ64を加熱する第1のヒータ68の加熱温度T1に比べて高い加熱温度T4、例えば第3のヒータ88の加熱温度T3と同一の加熱温度で第2のメンブレンフィルタ98を加熱する。これにより、排気ガスGe内の水蒸気が、第2のメンブレンフィルタ98で結露することなく、第2のメンブレンフィルタ98を通過することができる。
 本実施の形態の場合、ガス排出路Poutにおける第2のメンブレンフィルタ98と培養容器12との間の部分、すなわち断熱チューブ94が水平方向(X軸方向)に延在している。これにより、第2のメンブレンフィルタ98を通過する前の排気ガスGe内の水蒸気が結露し、その結露水が培養容器12内に滴下することを抑制している(この部分が鉛直方向(Z軸方向)に延在している場合に比べて)。その結果、結露水の滴下による培養液CSの局所的かつ急激な濃度低下が抑制される。なお、より結露水の滴下を抑制するために、可能であれば、第2のメンブレンフィルタ98は、ガス排出路Poutと培養容器12の接続部、すなわち断熱チューブ94とL型チューブジョイント92との間の接続部に比べて低所に配置してもよい。
 本実施の形態の培養装置10の場合、さらに、円柱状の培養容器12の天板部12cを加熱する第5のヒータ102と、側壁部12bを加熱する第6のヒータ104とを有する。第5および第6のヒータ102、104は、例えば培養容器12の外側面に貼り付けられたフィルムヒータであって、培養容器12内の培養液CSを視認できるようにITO電極等を用いた透明なヒータである。
 第5および第6のヒータ102、104は、培養容器12内の水蒸気が培養容器12の天板部12cおよび側壁部12bの内側面で結露が発生しないように、天板部12cおよび側壁部12bを加熱する。そのために、第5および第6のヒータ102、104の加熱温度T5、T6は、培養容器12の下方に配置された第2のヒータ74の加熱温度T2に比べて高く設定されている。例えば、加熱温度T5、T6は、加熱温度T2に比べて0~5℃高く設定されている。
 ガス供給部24におけるガス供給装置60、第1のヒータ68、第2のヒータ74、第3のヒータ88、第4のヒータ100、第5のヒータ102、および第6のヒータ104は、制御部26によって制御される。
 まず、制御部26は、第1のヒータ68、第2のヒータ74、第3のヒータ88、第4のヒータ100、第5のヒータ102、および第6のヒータ104を、上述したような対応関係の加熱温度T1~T6で加熱するように制御する。これらのヒータに対する制御を維持しつつ、制御部26は、ガス供給装置60の単位時間あたりのガス供給量を制御する。
 具体的には、制御部26は、培養液供給部16によって供給された培養液CSの量が増加するにしたがって、ガス供給装置60の単位時間あたりのガス供給量を段階的または線形的に低下させる。言い換えると、培養容器12内の培養液CSの量が少ないほど、ガス供給量が多い。
 図6Aおよび図6Bに示すように、培養容器12内の培養液CSが少量である場合、その培養液CSの蒸発が、培養液CS内の細胞に大きなダメージを与える。一方、図8Aおよび図8Bに示すように、培養容器12内の培養液CSが多量である場合、その培養液CSの蒸発は、培養液CS内の細胞にほとんど影響しない。
したがって、培養容器12内の培養液CSが少量である場合には、多量の加湿された混合ガスGw、すなわち多量の水蒸気を培養容器12に供給し、培養容器12内を95%RH以上の湿度環境とする。これにより、培養液CSが蒸発しにくくなり、培養液CS内の細胞へのダメージが抑制される。一方、培養容器12内の培養液CSが多量である場合には、その状態で過剰に混合ガスGwを投入すると培養容器12内の圧力が高くなるので、ガス供給量を減少させる。ただし、培養液CSのペーハー調整などに必要なガス供給量は維持される。
 培養液の蒸発による細胞への影響について述べる。培養液が蒸発することで浸透圧が変化し細胞に影響を与える。図12は、培養液の一例としてのイスコフ改変ダルベッコ培地(IMDM)を蒸留水で希釈した場合の希釈倍率と浸透圧を示す図である。図12に示すように、希釈倍率をあげてゆくと、培養液の浸透圧は小さくなる。細胞を浸透圧が高い、いわゆる高張液に入れた場合、細胞内の水分が外に出ることで細胞の体積が減少する。一方、浸透圧が低い、いわゆる低張液に入れた場合には、細胞がその内部に水分を引き込んで膨張する。このように、培養液の浸透圧によって細胞が変形し、ダメージを受ける。
 一般的に細胞培養における培養液の至適浸透圧は、265~315mOsm/kgであり、この数値範囲から外れる高張液、低張液のいずれでも細胞は水分移動によるダメージを受ける。すなわち、図12のイスコフ改変ダルベッコ培地では、希釈率倍率1.00で最適な浸透圧となるようにこれらの関係が調整されており、それより希釈倍率が上がると浸透圧は減少し、培養液の蒸発が進み濃縮されると浸透圧が高くなる。
 図13は本実施の形態の一例での、培養容器に供給する混合ガスのガス流量と、培養液の蒸発速度を、培養液量がある条件(50ml)の場合に調べた結果を示す図である。図13に示すように、ガス流量の増加とともに蒸発速度が大きくなる。したがって、培養液量が多い場合にはガス流量に対する蒸発速度を示す勾配は緩くなり、培養液量が少ない場合にはガス流量に対する蒸発速度を示す勾配はより急になる。このことから、培養液の蒸発を抑制するために、加湿混合ガスのガス流量を制御することが求められる。
 図14は本実施の形態の一例として、培養経過時間に対する培養液量と培養液の蒸発率を示した図である。初期の培養液量が50mlから出発し、97時間後の初期液量プラス添加量である培養液量を時間ごとの推定液量(実線)として示している。また、蒸発速度を加味した液量推移(破線)も示している。また、図には、図13のガス流量における蒸発速度から求められる蒸発率(培養液量に対する蒸発液量の割合)の推移(一点鎖線)も示している。
 図14の蒸発率の推移から、本実施の形態では培養経過時間26時間後の時点で、蒸発率が最大値となり、その値はおよそ3.5%である。すなわち、蒸発率がゼロ以上では、培養液の濃縮が進み、浸透圧が高くなり細胞内の水分を外に出すように作用し、細胞がダメージを受ける。図14に示されるように、蒸発率は培養液量が増えると当然低下する。本実施の形態では、蒸発率の最大値が3.5%となるようにガス流量、揺動条件、湿度条件などを制御している。一方、図14における蒸発率3.5%は、図12の培養液の希釈倍率と浸透圧の関係を示す図において、蒸発側の希釈倍率0.965と同一となることから、この数値においては培養液の浸透圧を最適値の290mOsm/kg程度に制御できている。
 このように本実施の形態では、培養液量を増加させながら培養細胞を増やす拡大培養において、培養容器に供給する供給ガス流量を制御することで培養液の蒸発速度を制御して培養液の蒸発を制御している。このことによって、培養液の浸透圧を最適値範囲に制御し、細胞へのダメージを低下させるようにしている。具体的には、培養液量が少ない状態での蒸発量を制御して浸透圧が260~315mOsm/kg程度となるように制御している。
 本実施の形態の場合、制御部26は,培養液供給部16によって供給された培養液CSの量が増加するにしたがって、中空糸膜フィルタ64を加熱する第1のヒータ68の加熱温度T1を低下させる。これにより、中空糸膜フィルタ64で混合ガスGdに含有する水蒸気量が減少する。その結果、混合ガスを必要量で維持しつつ含有する水蒸気量を減少させることができる。水蒸気量が減少することにより、培養液が薄まることが抑制される。また、第1のヒータ68の消費電力を抑えることができる。
 なお、第1のヒータ68の加熱温度T1を低下させるとともに、結露の抑制に関与する第3のヒータ88の加熱温度T3、第4のヒータ100の加熱温度T4、第5のヒータ102の加熱温度T5、および第6のヒータ104の加熱温度T6を、上述の対応関係を維持しつつ低下させてもよい。ただし、培養容器12内の培養液CSを加熱する第2のヒータ74の加熱温度T2は、他のヒータの加熱温度に関係なく、必要温度で維持される。
 さらに、培養液供給部16が培養容器12に培養液CSを供給する前に、ガス供給部24が、加湿された混合ガスGwを培養容器12に供給してもよい。これにより、培養液CSが培養容器12内に供給される前に、培養容器12内が十分に加湿された状態、すなわち培養容器12内に水蒸気が充満される。その結果、培養容器12に供給された直後の少量の培養液CSの蒸発が抑制される。なお、培養容器12への培養液CSの供給をすぐに開始するために、最大量の加湿された混合ガスGwがガス供給部24から培養容器12に供給されるのが好ましい。
 以上のような本実施の形態によれば、培養容器内で培養液を用いて細胞の培養を行うときに、その培養液の蒸発を抑制することができる。
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明の実施の形態はこれらに限らない。
 例えば、上述の実施の形態の場合、図10に示すように、加湿された混合ガスGwを供給するガス供給路Pinと排気ガスGeを排出するガス排出路Poutは、培養容器12の天板部12cに接続されている。しかしながら、本発明の実施の形態はこれに限らない。
 図15は、別の実施の形態に係る培養装置におけるガス供給部の概略的な構成図である。
 図15に示すように、別の実施の形態に係る培養装置におけるガス供給部224において、加湿された混合ガスGwを供給するガス供給路Pinは、円筒状の培養容器212の側壁部212bに、ストレート型チューブジョイント278を介して接続されている。それにより、第1のフィルタユニット76、断熱チューブ80、82、およびチューブジョイント278から構成されるガス供給路Pinは、その全体が水平方向(X軸方向)に延在する。その結果、ガス供給路Pinから結露水が培養容器212に滴下することが抑制される。
 同様に、排気ガスGeを排出するガス排出路Poutも、培養容器212の側壁部212bに、ストレート型チューブジョイント292を介して接続されている。それにより、第2のフィルタユニット90、断熱チューブ94、およびチューブジョイント292から構成されるガス排出路Poutは、その全体が水平方向(X軸方向)に延在する。その結果、ガス排出路Poutから結露水が培養容器212に滴下することが抑制される。
 また、上述の実施の形態の場合、ガス供給部24において加湿装置62は混合ガスに対して加湿を行うが、本発明の実施の形態はこれに限らない。加湿装置は、酸素、二酸化炭素などの培養に必要な単一ガスを加湿してもよい。
 さらに、上述の実施の形態の場合、培養容器は、図2に示すように、円筒状である。しかしながら、本発明の実施の形態はこれに限らない。培養容器は、例えば、大型の三角フラスコであってもよい。また、培養容器は、可撓性を備える培養バッグであってもよい。
 さらにまた、上述の実施の形態の場合、培養装置10は、培養が進むにしたがって培養液CSを培養容器12に追加供給する、すなわち拡大培養を行うように構成されているが、本発明の実施の形態はこれに限らない。一定量の培養液を用いて細胞の培養を行う培養装置であってもよい。
 すなわち、本発明の実施の形態に係る培養装置は、広義には、細胞を培養する培養液を収容する培養容器と、前記培養容器にガスを供給するガス供給装置と、前記ガス供給装置から前記培養容器に向かうガスを加湿する加湿装置と、を有し、前記加湿装置が、前記ガス供給装置からのガスが通過する中空糸膜と前記中空糸膜を収容するケーシングとを備える中空糸膜フィルタと、前記中空糸膜フィルタのケーシング内に水を充満させる水供給装置と、前記中空糸膜フィルタを加熱する第1のヒータと、を含んでいるものである。
 本発明は、培養容器内で培養液を用いて細胞の培養を行う装置に適用可能である。

Claims (21)

  1.  細胞を培養する培養液を収容する培養容器と、
     前記培養容器にガスを供給するガス供給装置と、
     前記ガス供給装置から前記培養容器に向かうガスを加湿する加湿装置と、を有し、
     前記加湿装置が、
     前記ガス供給装置からのガスが通過する中空糸膜と前記中空糸膜を収容するケーシングとを備える中空糸膜フィルタと、
     前記中空糸膜フィルタのケーシング内に水を充満させる水供給装置と、
     前記中空糸膜フィルタを加熱する第1のヒータと、を含んでいる、培養装置。
  2.  前記水供給装置として、前記中空糸膜フィルタに接続された複数の水供給容器を有する、請求項1記載の培養装置。
  3.  前記複数の水供給容器は、内容積が可変に構成されている、請求項2記載の培養装置。
  4.  前記水供給容器の内容積変化量を検知する検知部を有する、請求項2記載の培養装置。
  5.  前記検知部は、前記水供給容器から前記ケーシングへの供給水量を検知する、請求項4記載の培養装置。
  6.  前記複数の水供給容器は、前記ケーシングより上方に位置し、前記複数の水供給容器内の水位が全て同じレベルとなるように水を蓄えている、請求項2から5のいずれか一項に記載の培養装置。
  7.  前記培養容器の下方に配置され、前記培養液内の培養液を加熱する第2のヒータを有し、
     前記第1のヒータの加熱温度が、前記第2のヒータの加熱温度に比べて高い、請求項1から6のいずれか一項に記載の培養装置。
  8.  前記加湿装置と前記培養容器との間のガス供給路に設けられ、フィルタ面の法線が鉛直方向に対して傾いた状態で配置された第1のメンブレンフィルタを有する、請求項1から7のいずれか一項に記載の培養装置。
  9.  前記第1のメンブレンフィルタを加熱する第3のヒータを有し、
     前記第3のヒータの加熱温度が、前記第1のヒータの加熱温度に比べて高い、請求項8に記載の培養装置。
  10.  前記ガス供給路における前記第1のメンブレンフィルタと前記培養容器との間の部分が、水平方向に延在する、請求項8または9に記載の培養装置。
  11.  前記第1のメンブレンフィルタが、前記培養容器の接続部に比べて低所に位置する、請求項8または9に記載の培養装置。
  12.  前記培養容器内と外気とを接続するガス排出路に設けられ、フィルタ面の法線が鉛直方向に対して傾いた状態で配置された第2のメンブレンフィルタを有する、請求項1から11のいずれか一項に記載の培養装置。
  13.  前記第2のメンブレンフィルタを加熱する第4のヒータを有し、
     前記第4のヒータの加熱温度が、前記第1のヒータの加熱温度に比べて高い、請求項12に記載の培養装置。
  14.  前記ガス排出路における前記第2のメンブレンフィルタと前記培養容器との間の部分が、水平方向に延在する、請求項12または13に記載の培養装置。
  15.  前記第2のメンブレンフィルタが、前記培養容器の接続部に比べて低所に位置する、請求項12または13に記載の培養装置。
  16.  前記培養容器が、底板部、天板部、および側壁部を備える円柱状であって、
     前記天板部を加熱する第5のヒータと、前記側壁部を加熱する第6のヒータとを有し、
     前記第5および第6のヒータの加熱温度が、前記第2のヒータの加熱温度に比べて高い、請求項7に記載の培養装置。
  17.  前記培養容器に培養液を供給する培養液供給部を有し、
     前記培養液供給部によって供給された培養容器内の培養液量が増加するにしたがって、ガス供給装置の単位時間あたりのガス供給量を変化させる、請求項1から16のいずれか一項に記載の培養装置。
  18.  前記ガス供給装置のガス供給量を、前記培養容器における培養液量における蒸発率と、当該蒸発率から求められる前記培養液の浸透圧が所定値となるように変化させる、請求項17に記載の培養装置。
  19.  前記培養液の浸透圧の所定値が、260~315mOsm/kgの範囲である、請求項18に記載の培養装置。
  20.  前記培養液供給部によって供給された培養容器内の培養液量が増加するにしたがって、前記第1のヒータの加熱温度を変化させる、請求項17から19のいずれか一項に記載の培養装置。
  21.  前記培養液供給部が前記培養容器に培養液を供給する前に、前記ガス供給装置から供給されて前記加湿装置によって加湿されたガスが、前記培養容器に供給される、請求項17または20に記載の培養装置。
PCT/JP2021/028181 2020-08-04 2021-07-29 培養装置 WO2022030365A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/005,777 US20230279331A1 (en) 2020-08-04 2021-07-29 Culture device
JP2022541495A JPWO2022030365A1 (ja) 2020-08-04 2021-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132656 2020-08-04
JP2020-132656 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022030365A1 true WO2022030365A1 (ja) 2022-02-10

Family

ID=80117491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028181 WO2022030365A1 (ja) 2020-08-04 2021-07-29 培養装置

Country Status (3)

Country Link
US (1) US20230279331A1 (ja)
JP (1) JPWO2022030365A1 (ja)
WO (1) WO2022030365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210107A1 (ja) * 2022-04-26 2023-11-02 キヤノン株式会社 培養装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207782A (ja) * 1989-02-06 1990-08-17 Hitachi Ltd 培養方法及び装置
JP2005331862A (ja) * 2004-05-21 2005-12-02 Inst Of Research & Innovation 顕微鏡観察用培養装置
JP2014001898A (ja) * 2012-06-19 2014-01-09 Kitz Microfilter Corp 湿潤ガス発生方法と小流量用調湿装置
JP2017529106A (ja) * 2014-09-29 2017-10-05 ゼネラル・エレクトリック・カンパニイ 自動細胞培養のためのデバイス、システムおよび方法
JP2019000043A (ja) * 2017-06-15 2019-01-10 株式会社京都製作所 培養装置および培養方法
US20200009348A1 (en) * 2018-07-09 2020-01-09 Perma Pure Llc Low-flow oxygen therapy humidifier and method
WO2021002358A1 (ja) * 2019-07-04 2021-01-07 株式会社京都製作所 培養装置および培養方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207782A (ja) * 1989-02-06 1990-08-17 Hitachi Ltd 培養方法及び装置
JP2005331862A (ja) * 2004-05-21 2005-12-02 Inst Of Research & Innovation 顕微鏡観察用培養装置
JP2014001898A (ja) * 2012-06-19 2014-01-09 Kitz Microfilter Corp 湿潤ガス発生方法と小流量用調湿装置
JP2017529106A (ja) * 2014-09-29 2017-10-05 ゼネラル・エレクトリック・カンパニイ 自動細胞培養のためのデバイス、システムおよび方法
JP2019000043A (ja) * 2017-06-15 2019-01-10 株式会社京都製作所 培養装置および培養方法
US20200009348A1 (en) * 2018-07-09 2020-01-09 Perma Pure Llc Low-flow oxygen therapy humidifier and method
WO2021002358A1 (ja) * 2019-07-04 2021-01-07 株式会社京都製作所 培養装置および培養方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210107A1 (ja) * 2022-04-26 2023-11-02 キヤノン株式会社 培養装置

Also Published As

Publication number Publication date
JPWO2022030365A1 (ja) 2022-02-10
US20230279331A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP6878163B2 (ja) 培養装置および培養方法
JP5432779B2 (ja) 分析装置
WO2022030365A1 (ja) 培養装置
US20110223064A1 (en) Sample analyzer
JP5296655B2 (ja) ガスの温湿度調節方法及びガス供給装置
WO2021002358A1 (ja) 培養装置および培養方法
TW200523436A (en) Method and apparatus for condensing water from ambient air
JP2018191546A (ja) インキュベータ
CN108139152A (zh) 干燥设备
WO2014033889A1 (ja) 自動培養装置及び自動培養方法
US20050042767A1 (en) Method and device for preparing sample slide
KR101186897B1 (ko) 양봉용 탈수장치
CN105115852A (zh) 煤的最高内在水分测定仪及其测定方法
JP4471394B2 (ja) 空気調和装置
CN208419153U (zh) 中央空调接水盘组件及中央空调
JPH11128601A (ja) 蒸発濃縮装置
CN103447100B (zh) 恒温恒湿箱
JP2012198755A (ja) 加煙試験器
CN207351087U (zh) 一种无菌真空干燥箱
CN111454841A (zh) 用于生物反应器的通气装置
JP2000121109A (ja) 空調器
CN217584689U (zh) 一种湿膜加湿装置及空调器
CN212770765U (zh) 用于生物反应器的通气装置
CN215263556U (zh) 试剂库以及自动分析装置
JP3655153B2 (ja) 塗布膜形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853073

Country of ref document: EP

Kind code of ref document: A1