WO2022028364A1 - 电子设备、通信方法和存储介质 - Google Patents

电子设备、通信方法和存储介质 Download PDF

Info

Publication number
WO2022028364A1
WO2022028364A1 PCT/CN2021/110055 CN2021110055W WO2022028364A1 WO 2022028364 A1 WO2022028364 A1 WO 2022028364A1 CN 2021110055 W CN2021110055 W CN 2021110055W WO 2022028364 A1 WO2022028364 A1 WO 2022028364A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot sequence
electronic device
dnr
constellation
processing circuit
Prior art date
Application number
PCT/CN2021/110055
Other languages
English (en)
French (fr)
Inventor
沙子渊
王昭诚
曹建飞
Original Assignee
索尼集团公司
沙子渊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 沙子渊 filed Critical 索尼集团公司
Priority to CN202180058883.XA priority Critical patent/CN116325681A/zh
Priority to EP21852227.4A priority patent/EP4195516A4/en
Publication of WO2022028364A1 publication Critical patent/WO2022028364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3872Compensation for phase rotation in the demodulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present disclosure generally relates to wireless signal transmission. More specifically, the present disclosure relates to electronic devices, communication methods, and storage media that can be used for wireless signal transmission, such as in the terahertz frequency band.
  • the terahertz frequency band is located between the microwave frequency band and the optical frequency band. Communication devices in this frequency band are difficult to manufacture and have a relatively significant RF hardware mismatch (RF impedance). The effect of RF hardware mismatch will cause distortion of the received signal, thereby degrading the communication performance. Although RF hardware mismatch effects are also widespread in lower-band communications, their effects are relatively less pronounced than in the terahertz band. At present, there have been many researches on RF hardware mismatch processing in low frequency bands, mainly including the pre-compensation (or pre-distortion) algorithm at the transmitting end and the compensation at the receiving end.
  • the predistortion at the transmitting end mainly deals with nonlinearities of the power amplifier and the IQ (in-phase/quadrature) imbalance at the transmitting end, and the compensation at the receiving end can deal with the IQ imbalance and carrier phase noise at the receiving end.
  • an electronic device at a transmitting end including a processing circuit configured to: generate a pilot sequence based on a constellation map corresponding to a modulation method, such that for each constellation map in the constellation map, a pilot sequence is generated.
  • the pilot sequence includes at least one constellation point; sending the pilot sequence to the receiving end for the receiving end to associate with each constellation point in the constellation diagram channel estimation.
  • an electronic device at a receiving end including a processing circuit, where the processing circuit is configured to: receive a pilot sequence from a transmitting end, wherein for each pair in a constellation diagram corresponding to a modulation scheme, each pair is mutually An opposite number of constellation points, of which the pilot sequence includes at least one constellation point; a channel estimation associated with each constellation point of the constellation is performed based on the received signal of the pilot sequence.
  • an electronic device for a transmitting end including a processing circuit configured to: transmit a pilot sequence to a receiving end; and receive information about a distortion-to-noise ratio (DNR) from the receiving end, the The DNR indicates the ratio between the distortion component caused by the hardware mismatch at the transmitting end and the channel noise component in the received signal of the pilot sequence; based on at least the DNR, the transmission parameters for transmitting the data signal to the receiving end are adjusted.
  • DNR distortion-to-noise ratio
  • an electronic device at a receiving end including a processing circuit configured to: receive a pilot sequence from a transmitting end; and estimate a distortion-to-noise ratio (DNR) based on a received signal of the pilot sequence ), the DNR indicates the ratio between the distortion component caused by the hardware mismatch of the transmitting end and the channel noise component in the received signal of the pilot sequence; the information about the DNR is fed back to the transmitting end.
  • DNR distortion-to-noise ratio
  • a communication method including operations performed by a processing circuit of any one of the above electronic devices.
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the above-described communication method.
  • Figure 1 shows the terahertz band on the electromagnetic spectrum
  • FIG. 2 shows a schematic diagram of modulated I-channel and Q-channel baseband signals experiencing I/Q imbalance
  • Figure 3 shows a signal constellation diagram obtained by linear equalization under the influence of RF hardware mismatch effects
  • FIG. 4 shows a flow chart of channel estimation according to the first embodiment
  • Figure 5 schematically shows the constellation diagrams associated with different modulation schemes
  • FIG. 6 shows an example of signaling for indicating a pilot sequence according to the first embodiment
  • Fig. 7 provides the comparative example of the original decision area and the minimum distance criterion decision area under the QPSK modulation mode
  • FIG. 8 shows simulation results of uncoded bit error rate (BER) performance under QPSK and 16QAM modulation of the signal transmission method according to the first embodiment
  • 9A and 9B respectively illustrate an electronic device of a transmitting end and a communication method thereof according to the first embodiment
  • 10A and 10B respectively illustrate the electronic device of the receiving end and the communication method thereof according to the first embodiment
  • Figure 11 shows an example of the insertion of pilot sequences for joint estimation and pilot sequences for phase tracking
  • 13A-13D show simulation results of the signal transmission method according to the second embodiment
  • 14A and 14B respectively illustrate an electronic device of a transmitting end and a communication method thereof according to the second embodiment
  • 15A and 15B respectively illustrate an electronic device of a receiving end and a communication method thereof according to the second embodiment
  • FIG. 16 illustrates a first example of a schematic configuration of a base station according to the present disclosure
  • FIG. 17 illustrates a second example of a schematic configuration of a base station according to the present disclosure
  • FIG. 19 illustrates a schematic configuration example of a car navigation apparatus according to the present disclosure.
  • terahertz communication is used as an exemplary scenario to illustrate the technical solutions of the present disclosure.
  • RF hardware mismatches addressed by this disclosure may exist in communications in various frequency bands (radio wave frequency bands such as centimeter waves, millimeter waves, terahertz frequency bands, light wave frequency bands, etc.)
  • the technical solution is not actually limited to terahertz communication, but can be applied in various communication scenarios to obtain improved wireless signal transmission performance, and even not limited to the purpose of alleviating RF hardware mismatch.
  • Terahertz communication refers to space communication using terahertz waves as an information carrier.
  • Figure 1 shows the terahertz band on the electromagnetic spectrum.
  • the terahertz frequency band is about 0.1THz to 10THz, in frequency, between microwave and infrared frequencies; in energy, between electrons and photons.
  • the infrared and microwave technologies on both sides of the terahertz frequency band are very mature, but the terahertz technology is basically a blank. Suitable for microwave theory to study.
  • the terahertz frequency band has a huge unallocated bandwidth, can support data transmission rates above 10Gbps, and has better confidentiality and anti-interference capabilities. Communication using the terahertz frequency band can effectively alleviate the increasingly tight spectrum resources and the capacity limitation of the current wireless communication system, and is the primary choice for future wireless communication.
  • Terahertz links have larger path losses than mmWave, including free space loss and molecular absorption loss, thus requiring directional antennas with very narrow beams to balance the link budget.
  • the terahertz frequency band is too high for electronic devices and too low for optical devices, so whether electronic devices or optical devices are used as terahertz communication devices, there is inevitably an RF hardware mismatch effect.
  • the "transmitting end” and “receiving end” referred to in this disclosure may be a base station and/or a user equipment (UE).
  • UE user equipment
  • the transmitter is the base station and the receiver is the UE;
  • the transmitter is the UE and the receiver is the base station;
  • both the transmitter and the receiver are is the UE.
  • the term “base station” as used in this disclosure refers to a device on the network control side in a wireless communication system, with the full breadth of its usual meaning.
  • the “base station” can also be, for example, an eNB in a 4G LTE/LTE-A communication system, a 3G communication system NodeBs, remote radio heads, wireless access points, relay nodes, drone control towers, or communication devices that perform similar control functions in the system. Subsequent chapters will describe the application examples of the base station in detail.
  • the term "UE” as used in this disclosure refers to a device on the user side in a wireless communication system, and has the full breadth of its usual meaning, including various terminal devices or in-vehicle devices that communicate with base stations or other UEs.
  • the UE may be a terminal device such as a mobile phone, a laptop computer, a tablet computer, an in-vehicle communication device, a drone, or the like. Subsequent chapters will describe the application examples of the UE in detail.
  • the transmitting end may employ photonic or electronic architectures to generate the terahertz signal.
  • a photonic transmitter architecture can generate a series of laser signals with different frequencies and use the frequency difference of the two laser signals to obtain a terahertz signal.
  • the electronic transmitter architecture is similar to the traditional microwave architecture, that is, generating a terahertz local oscillator signal and upconverting the baseband I/Q signal to an RF signal. Relatively speaking, the electronic transmitter architecture can be highly integrated on the chip, which is more practical.
  • the receiver at the receiving end performs the inverse process of the transmitter, eg an electronic architecture may be employed.
  • transmitters and receivers can suffer from severe RF hardware mismatch effects.
  • the RF hardware mismatch signal model is described below.
  • the present disclosure considers three major hardware mismatch factors in communication devices:
  • I/Q imbalance such as the amplitude difference between the I-channel baseband signal and the Q-channel baseband signal, or the phase difference between the I-channel baseband signal and the Q-channel baseband signal is not exactly 90°;
  • Figure 2 shows a schematic diagram of modulated I-path and Q-path baseband signals experiencing I/Q imbalance.
  • I/Q imbalance in the transmitter denote the I channel carrier signal of the transmitter as (1+ ⁇ T )cos(2 ⁇ f c t- ⁇ T ), and the Q channel carrier signal as (1- ⁇ T )sin(2 ⁇ f c t + ⁇ T ), where ⁇ T , ⁇ T are the imbalance factors of the amplitude and phase of the I channel and the Q channel, respectively.
  • the equivalent transmitted baseband signal can be expressed as
  • ⁇ T cos ⁇ T -j ⁇ T sin ⁇ T
  • ⁇ T ⁇ T cos ⁇ T -jsin ⁇ T
  • ⁇ T [n] is the phase noise in the transmitter
  • ⁇ T s * [n] is caused by I/Q imbalance Mirror interferers.
  • phase noise ⁇ T [n] is modeled as a block walk model, that is, assuming that within the kth transport block, ⁇ T [n] is a fixed value ⁇ k , and the ⁇ k between adjacent transport blocks differs by one Gaussian
  • the random walk term ⁇ k of the distribution can be expressed as
  • ⁇ k+1 ⁇ k + ⁇ k
  • terahertz communication usually uses antennas with extremely high directional gain at the transceiver end, there is only one effective transmission path in the channel, so the flat fading channel model is used, and the received signal can be expressed as
  • AWGN additive white Gaussian noise
  • Figure 3 illustrates a signal constellation diagram obtained by linear equalization under the above signal model, wherein (a) and (b) of Figure 3 correspond to QPSK modulation, and (c) and (d) correspond to 16QAM modulation.
  • the phase noise parameter is
  • the first embodiment of the present disclosure adopts channel estimation based on constellation points instead of linear equalization.
  • the inventors of the present disclosure have noticed that the channels h(s i ) corresponding to each constellation point s i are generally different, which is the reason why the traditional linear equalization strategy cannot work effectively.
  • Channel estimation according to the first embodiment of the present disclosure is described below with reference to FIG. 4 .
  • the transmitting end designs and generates a pilot sequence for channel estimation (S1).
  • the pilot sequence according to the first embodiment is associated with the modulation scheme to be used, containing information on all constellation points of the corresponding constellation.
  • FIG. 5 schematically shows the constellation diagrams respectively associated with modulation schemes such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 4QAM, 16QAM, and 64QAM.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 4QAM 4QAM
  • 16QAM 16QAM
  • 64QAM 64QAM.
  • the modulation scheme applicable to the present disclosure is not limited to this, and may also include various modulation schemes such as MSK, 8PSK, and 256QAM.
  • s constellation points
  • the pilot sequence includes the constellation points of the constellation diagram, but from the perspective of modulation, it can also be considered that the pilot sequence is a sequence obtained by modulating all 1s sequences through all constellation points.
  • the design of the pilot sequence needs to satisfy any two mutually opposite constellation points in the constellation diagram, One of the constellation points must be included in the pilot sequence.
  • the corresponding basic pilot sequences can be designed as
  • the above basic pilot sequence actually includes half of the constellation points of the right half of the corresponding constellation diagram shown in FIG. 5 .
  • the base pilot sequence is not limited thereto, and may include, for example, the left half of the constellation, the upper half, the half of the constellation points of the lower half, and the like.
  • the pilot sequence generated by the transmitter is long enough to improve the estimation accuracy of h(s i ) at a lower signal-to-noise ratio.
  • the final pilot sequence can be generated by repeating the base pilot sequence.
  • n basic pilot sequences can be directly connected repeatedly, that is, the final pilot sequence is [s T ,s T ,...,s T ] T , where n is the number of repetitions, and s is the basic pilot sequence. frequency sequence.
  • the n basic pilot sequences can be reversed and connected, that is, the final pilot sequence is [s T ,-s T ,...,s T ,-s T ] T or [s T ,s T ,...,-s T ,-s T ] T .
  • the final pilot sequence is [s T ,-s T ,...,s T ,-s T ] T or [s T ,s T ,...,-s T ,-s T ] T .
  • the final pilot sequence obtained by using the alternate inversion repetition method can be
  • both 1 and -1 are used for the estimation of h(1)
  • both 1+j and -1-j are used for the estimation of h(1+j), and so on.
  • the pilot sequence used for channel estimation can be characterized by the basic pilot sequence, the number of repetitions, and the repetition mode.
  • the example of directly taking the basic pilot sequence as the final pilot sequence can be regarded as a special case where the number of repetitions is 1.
  • the transmitting end may indicate the pilot sequence to the receiving end (S2) to notify the configuration of the pilot sequence to be transmitted.
  • the pilot sequence may be indicated by means of the signaling shown in FIG. 6 .
  • the signaling may include: an enable indication, which uses, for example, 1 bit to notify whether to enable the pilot sequence specially designed according to this embodiment; a modulation method, which is used to indicate the corresponding basic pilot sequence; the number of repetitions , which is used to indicate the number of repetitions of the basic pilot sequence in the final pilot sequence; the repetition mode is used to indicate the repetition mode of the basic pilot sequence, such as direct repetition, alternating inversion repetition, and so on.
  • the signaling format in FIG. 6 is only exemplary, and may not be limited thereto in actual use. Certain information can be conveyed by means of existing control signaling to be compatible with existing control signaling, for example, in the existing downlink control information (DCI), uplink control information (UCI), side chain control
  • DCI downlink control information
  • UCI uplink control information
  • SCI side chain control
  • MSC modulation and coding scheme
  • the receiving end can be configured to determine the modulation scheme to be used by receiving this field.
  • the information may not be sent, so as to reduce the burden of signaling transmission.
  • the basic pilot sequence and repetition mode corresponding to each modulation mode may be pre-configured between the transmitter and the receiver.
  • the sender can only notify the receiver of the number of repetitions, so that the receiver can determine the received pilot sequence.
  • the transmitting end may send a pilot sequence to the receiving end (S3).
  • the transmitting end can up-convert the pilot sequence to, for example, a terahertz frequency band to obtain a pilot signal, and transmit it through a directional antenna.
  • the pilot signal is sometimes also referred to as a reference signal, but conventional reference signals are all constant-modulus, ie, the amplitude is constant, while the pilot signal generated according to this embodiment may have a non-constant amplitude.
  • the receiving end receives the pilot signal, and performs channel estimation based on the received pilot sequence (S4). Specifically, in order to estimate h(s i ), assuming that the received pilot sequence is obtained by repeating the basic pilot sequence, the receiving end may average the corresponding received symbols for each constellation point s i .
  • the vector formed by the received symbols corresponding to the constellation point si is y i
  • the vector formed by the received symbols corresponding to s i+M/2 is yi+M/2
  • mean( ) represents the average operation
  • the channel parameters h(s i ) obtained by the channel estimation process described above can then be used for data demodulation.
  • the transmitting end modulates the data signal by using the modulation method associated with the pilot sequence, and sends the modulated data signal to the receiving end.
  • the receiver does not need to perform channel equalization, directly according to y and
  • the distance can be determined by the minimum distance criterion si , which can be expressed as
  • Figure 7 shows a comparison example of the original decision area and the decision area using the minimum distance criterion under the QPSK modulation mode. As shown in FIG. 7, although the constellation diagram is irregularly distorted due to RF hardware mismatch effects, data demodulation can be reliably achieved with channel estimation according to the present embodiment.
  • FIG. 8 shows the simulation results of the uncoded bit error rate (BER) performance of the signal transmission method according to the first embodiment under QPSK and 16QAM modulation, in which the performance of conventional linear equalization is used as a comparison.
  • the phase noise parameter is The transport block size is 1000 symbols
  • QPSK uses a pilot sequence of length 8 (ie, the number of repetitions is 4)
  • 16QAM uses a pilot sequence of length 32 (ie, the number of repetitions is 4).
  • FIG. 9A and 9B respectively illustrate an electronic device of a transmitting end and a communication method thereof according to the first embodiment.
  • FIG. 9A illustrates a block diagram of the electronic device 1000 according to the transmitting end.
  • the electronic device 1000 may be implemented as a base station or a UE.
  • the electronic device 1000 may perform signal transmission to the electronic device 2000 which will be described below.
  • the electronic device 1000 includes a processing circuit 1001, and the processing circuit 1001 includes at least a generating unit 1002 and a transmitting unit 1003.
  • the processing circuit 1001 may be configured to perform the communication method shown in FIG. 9B.
  • the generating unit 1002 of the processing circuit 1001 is configured to generate a pilot sequence based on the constellation corresponding to the modulation scheme (ie, perform step S1001 in FIG. 9B ). For each pair of mutually opposite constellation points in the constellation diagram, the generated pilot sequence includes at least one of the constellation points. In one example, the pilot sequence may be generated by repeating a base pilot sequence in a specific repetitive manner, where the base pilot sequence includes one of each pair of mutually opposite constellation points.
  • the sending unit 1003 is configured to send the pilot sequence generated by the generating unit 1002 to the receiving end for the receiving end to perform channel estimation associated with each constellation point in the constellation map (ie, perform step S1002 in FIG. 9B ) .
  • the sending unit 1003 may up-convert the pilot sequence to a frequency band such as terahertz, and transmit the pilot signal through a directional antenna.
  • the processing circuit 1001 may further include an indicating unit (not shown) to indicate the generated pilot sequence to the receiving end before sending the pilot sequence.
  • the instructing unit sends information about the number of repetitions of the basic pilot sequence to the receiving end.
  • the instructing unit sends information about the modulation mode, the repetition mode and the repetition number of the basic pilot sequence to the receiving end.
  • the indicating unit is not necessary, and the receiving end can only determine the associated pilot sequence through the information about the modulation mode contained in the control information (such as UCI, DCI, SCI).
  • the electronic device 1000 may also include, for example, a communication unit 1005 .
  • the communication unit 1005 may be configured to communicate, such as terahertz communication, with a receiving end (eg, the electronic device 2000 described below) under the control of the processing circuit 1001 .
  • the communication unit 1005 may be implemented as a transceiver, including communication components such as an antenna array and/or a radio frequency link.
  • the communication unit 1005 is drawn with a dashed line, as it can also be located outside the electronic device 1000 .
  • Electronic device 1000 may also include memory 1006 .
  • the memory 1006 may store various data and instructions, such as programs and data for the operation of the electronic device 1000, various data generated by the processing circuit 1001, and the like.
  • the memory 1006 is drawn with dashed lines, as it can also be located within the processing circuit 1001 or outside the electronic device 1000 .
  • FIG. 10A and 10B respectively illustrate an electronic device of a receiving end and a communication method thereof according to the first embodiment.
  • FIG. 10A illustrates a block diagram of an electronic device 2000 at the receiving end.
  • the electronic device 2000 may be implemented as a base station or a UE.
  • the electronic device 2000 may perform signal transmission with the electronic device 1000 described above.
  • the electronic device 2000 includes a processing circuit 2001 , and the processing circuit 2001 includes at least a receiving unit 2002 and a channel estimation unit 2003 .
  • the processing circuit 2001 may be configured to perform the communication method shown in Figure 10B.
  • the receiving unit 2002 of the processing circuit 2001 is configured to receive the pilot sequence from the transmitting end (ie, perform step S2001 in FIG. 10B ).
  • the pilot sequence includes at least one constellation point.
  • the pilot sequence can be viewed as one or more repetitions of the base pilot sequence containing half of the constellation points of the constellation.
  • the channel estimation unit 2003 is configured to perform channel estimation associated with each constellation point of the constellation map based on the received signal of the pilot sequence (ie, perform step S2002 in FIG. 10B ). For each pair of constellation points whose numbers are opposite to each other, the channel estimation unit 2003 may perform channel estimation only once to obtain the common channel parameters of the pair of constellation points. In the case where the received pilots include repeated basic pilot sequences, the channel estimation unit 2003 can improve the estimation accuracy by averaging.
  • the processing circuit 2001 may further include an indication receiving unit (not shown).
  • the instruction receiving unit can receive an instruction about the pilot sequence, so as to know the content of the pilot sequence to be received next.
  • the electronic device 2000 may also include, for example, a communication unit 2005 .
  • the communication unit 2005 may be configured to communicate, such as terahertz communication, with the transmitting end (eg, the electronic device 1000 described above) under the control of the processing circuit 2001 .
  • the communication unit 2005 may be implemented as a transceiver, including communication components such as an antenna array and/or radio frequency link.
  • the communication unit 2005 is drawn with a dashed line, as it can also be located outside the electronic device 2000.
  • Electronic device 2000 may also include memory 2006 .
  • the memory 2006 may store various data and instructions, such as programs and data for the operation of the electronic device 2000, various data generated by the processing circuit 2001, and the like.
  • the memory 2006 is drawn with a dashed line, as it can also be located within the processing circuit 2001 or outside the electronic device 2000.
  • the transmitter has the ability to compensate for the RF hardware mismatch at the transmitter, there may still be residual distortion.
  • the receiver can also compensate the RF hardware mismatch at the receiver through signal processing to eliminate the signal distortion caused by the hardware mismatch, but it may not be able to eliminate the residual distortion generated at the transmitter.
  • the signal suffers from a certain level of channel noise during wireless transmission. Both residual distortion and channel noise in the received signal can affect the demodulation of the signal.
  • the second embodiment of the present disclosure provides a mechanism for optimizing transmission parameters using metrics that measure residual distortion and channel noise.
  • ⁇ w[n]+ ⁇ w * [n] is the channel noise term, Can be modeled as AWGN.
  • the receiving end can compensate for the IQ imbalance according to the above formula (4), that is, take as the compensated signal, where is the compensation coefficient, the compensated signal can be expressed as
  • the right side of formula (5) is the useful signal term, residual distortion term and channel noise term, respectively.
  • the equivalent channel can be further defined
  • the transmitting end may send a pilot sequence PS1 of length N. If the received signal y[n], the pilot sequence PS1 and the AWGN term are all written in the form of N-dimensional column vectors, we have
  • the receiving end can obtain the estimated values of a and b
  • the sender can additionally send a pilot sequence PS2 for updating b, whose length is P, then the update of b estimation can be expressed as
  • the corresponding pilot sequence length P can be a value smaller than N.
  • the insertion period of the pilot sequence PS2 used to track the phase noise ie, update b
  • the insertion period of the pilot sequence PS2 used to jointly estimate a and b is shorter than the insertion period of the pilot sequence PS2 used to jointly estimate a and b.
  • one PS2 is inserted per transport block, as shown in Figure 11.
  • the pilot sequence PS1 may be carried by a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), etc.
  • the pilot sequence PS2 may be carried by a CSI-RS, DMRS, a phase tracking reference signal (PT -RS) etc.
  • the pilot sequences PS1 and PS2 are both constant-modulus sequences.
  • DNR distortion-to-noise ratio
  • the received residual distortion power can be expressed as
  • the channel noise power can be expressed as right
  • the estimate of can be approximately given by
  • the total power of channel noise and residual distortion can be estimated as
  • the final estimate of DNR can be obtained by the following formula
  • s can be selected as the pilot signal PS1 for jointly estimating a and b to improve the DNR estimation accuracy.
  • a method for estimating DNR is exemplified above, the present disclosure is not limited thereto, and various methods can be used to estimate DNR as long as it can measure the strong and weak contrast between residual distortion and channel noise.
  • the receiver can feed back the estimated DNR to the transmitter.
  • the receiver can encode the DNR as a binary indication, and only need to feed back a low DNR indication, such as a bit "0", when the estimated DNR is low (eg, below a certain threshold, such as DNR ⁇ 1).
  • a high DNR indication such as a bit "1” may be fed back.
  • the receiving end can also quantize the DNR into a series of discrete values to feed back the DNR more accurately.
  • the receiving end can also express it as 0 when the DNR is lower than a certain threshold (for example, DNR ⁇ 1), and express it as concrete when the DNR is higher than a certain threshold (for example, DNR>1). quantized value.
  • a certain threshold for example, DNR ⁇ 1
  • the transmitting end may adjust transmission parameters based on at least the DNR fed back by the receiving end to improve communication performance. Specifically, if the DNR is high, it means that the signal distortion caused by the RF hardware mismatch at the transmitting end is dominant. At this time, increasing the transmit power cannot improve the communication performance, but the probability of misjudgment can be reduced by reducing the modulation order or coding efficiency. , or the residual distortion can be reduced by recalibrating the compensation at the transmitter. If the DNR is low, it means that the channel noise is dominant. In this case, in addition to reducing the modulation order or coding efficiency, the transmit power can also be increased to improve the system performance.
  • the transmitter can also take into account the channel quality. For example, when the channel quality is good, the transmitting end may not adjust the transmission parameters, because the signal-to-noise ratio of the received signal may be sufficient to support demodulation. When the channel quality is not good, the transmitting end needs to adjust and optimize the transmission parameters with reference to the DNR, such as reducing the modulation order or coding efficiency.
  • the transmitter sends a measurement request to the receiver to request the receiver to measure DNR.
  • the transmitting end sends a pilot signal to the receiving end.
  • the pilot signal includes a longer pilot sequence.
  • the pilot signal can also be used for estimating channel quality at the same time.
  • the receiving end estimates the DNR based on the received pilot signal, for example, using the DNR estimation method described above.
  • the receiving end may also estimate the channel quality based on the pilot signal to obtain, for example, a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the receiving end feeds back the estimated DNR and optional CQI to the transmitting end, and the transmitting end adjusts transmission parameters, such as modulation order, coding efficiency, transmit power, etc., based on the DNR and/or CQI in S15.
  • the sender can then transmit data using the adjusted transmission parameters to enable signal transmission in the terahertz frequency band, for example.
  • the present disclosure verifies the performance using the signal transmission method according to the second embodiment through simulation.
  • IRR compensated image rejection ratio
  • NMSE normalized MSE
  • Figure 13D a simulation of the normalized MSE (NMSE) for DNR estimation is shown in Figure 13D. It can be seen that when the DNR is higher, its estimation accuracy is higher, and when the DNR is lower, its estimation accuracy is lower. Therefore, a feedback threshold (such as 1dB) as described above can be set. When the estimated DNR is lower than the feedback threshold, a low DNR indication is fed back to the transmitter, and when the estimated DNR is higher than the feedback threshold, a low DNR indication is sent to the sender. The sender feeds back a high DNR indication or a specific DNR quantization value.
  • a feedback threshold such as 1dB
  • FIG. 14A and 14B respectively illustrate an electronic device of a transmitting end and a communication method thereof according to the second embodiment.
  • FIG. 14A illustrates a block diagram of an electronic device 3000 according to a transmitting side.
  • the electronic device 3000 may be implemented as a base station or a UE.
  • the electronic device 3000 may perform signal transmission to the electronic device 4000 to be described below.
  • the electronic device 3000 includes a processing circuit 3001 , and the processing circuit 3001 includes at least a pilot sequence sending unit 3002 , a receiving unit 3003 and an adjusting unit 3004 .
  • the processing circuit 3001 may be configured to perform the communication method shown in FIG. 14B.
  • the pilot sequence sending unit 3002 of the processing circuit 3001 is configured to send the pilot sequence for estimating the DNR to the receiving end (ie, perform step S3001 in FIG. 14B ).
  • the pilot sequence may be transmitted through reference signals such as CSI-RS, DMRS, etc., and preferably has a longer length.
  • the pilot sequence sending unit 3002 may also send a pilot sequence used for phase tracking, whose length may be shorter than the pilot sequence used for DNR estimation, but whose period may be shorter.
  • the receiving unit 3003 is configured to receive information on the DNR from the receiving end, wherein the DNR indicates the ratio between the distortion component and the channel noise component caused by the hardware mismatch of the transmitting end in the received signal of the pilot sequence (ie, performing the in step S3002).
  • the DNR can be a binary indication of high or low, a quantized value, or a combination thereof.
  • the receiving unit 3003 may also receive a channel quality indicator (CQI) fed back by the receiving end, where the CQI is estimated by the receiving end based on the received signal of the pilot sequence sent by the pilot sequence sending unit 3002 .
  • CQI channel quality indicator
  • the adjusting unit 3004 is configured to adjust the transmission parameters for sending the data signal to the receiving end based on the received DNR (ie, perform step S3003 in FIG. 14B ).
  • the adjustment unit 3004 in the case of low DNR, can increase the transmit power, reduce the modulation order or reduce the coding efficiency, and in the case of high DNR, the adjustment unit 3004 can reduce the modulation order or reduce the coding efficiency.
  • the adjustment unit 3004 may also perform adjustment of the transmission parameters only in the case of poor channel quality.
  • the electronic device 3000 may also include a communication unit 3005, for example.
  • the communication unit 3005 may be configured to communicate, such as terahertz communication, with a receiving end (such as the electronic device 4000 described below) under the control of the processing circuit 3001.
  • the communication unit 3005 may be implemented as a transceiver, including communication components such as antenna arrays and/or radio frequency links.
  • the communication unit 3005 is drawn with a dashed line, as it can also be located outside the electronic device 3000.
  • Electronic device 3000 may also include memory 3006 .
  • the memory 3006 may store various data and instructions, such as programs and data for the operation of the electronic device 3000, various data generated by the processing circuit 3001, and the like.
  • the memory 3006 is drawn with a dashed line, as it can also be located within the processing circuit 3001 or outside the electronic device 3000.
  • 15A and 15B respectively illustrate an electronic device of a receiving end and a communication method thereof according to the second embodiment.
  • 15A illustrates a block diagram of an electronic device 4000 at the receiving end according to the present disclosure.
  • the electronic device 4000 may be implemented as a base station or a UE.
  • the electronic device 4000 may perform signal transmission with the electronic device 3000 described above.
  • the electronic device 4000 includes a processing circuit 4001 , and the processing circuit 4001 includes at least a pilot sequence receiving unit 4002 , an estimation unit 4003 and a feedback unit 4004 .
  • the processing circuit 4001 may be configured to perform the communication method shown in FIG. 15B.
  • the pilot sequence receiving unit 4002 of the processing circuit 4001 is configured to receive the pilot sequence from the transmitting end (ie, perform step S4001 in FIG. 15B ). In one example, the pilot sequence receiving unit 4002 receives the pilot sequence in response to a measurement request from the transmitter.
  • the pilot sequence may be carried by CSI-RS or DMRS or the like.
  • the estimation unit 4003 is configured to estimate the DNR based on the received signal of the pilot sequence (ie, perform step S4002 in FIG. 15B ). Additionally, the estimation unit 4003 can also estimate the channel quality based on the received signal of the pilot sequence.
  • the feedback unit 4004 is configured to feed back the information about the DNR to the transmitting end (ie, perform step S4003 in FIG. 15B ), so that the transmitting end can adjust the transmission parameters.
  • the DNR can be encoded in various forms, such as a binary indication of high or low, a specific quantization value, or a combination thereof. Additionally, the feedback unit 4004 may feed back the CQI indicating the channel quality together with the DNR to the transmitting end.
  • the electronic device 4000 may also include a communication unit 4005, for example.
  • the communication unit 4005 may be configured to communicate, such as terahertz communication, with the transmitting end (eg, the electronic device 3000 described above) under the control of the processing circuit 4001 .
  • the communication unit 4005 may be implemented as a transceiver, including communication components such as an antenna array and/or radio frequency link.
  • the communication unit 4005 is drawn with a dashed line, as it can also be located outside the electronic device 4000 .
  • Electronic device 4000 may also include memory 4006 .
  • the memory 4006 may store various data and instructions, such as programs and data for the operation of the electronic device 4000, various data generated by the processing circuit 4001, and the like.
  • Memory 4006 is drawn with dashed lines, as it can also be located within processing circuit 4001 or outside of electronic device 4000.
  • the units of the electronic devices 1000 , 2000 , 3000 , and 4000 described in the foregoing embodiments are only logical modules divided according to specific functions implemented by them, rather than being used to limit specific implementations.
  • the above units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • Processing circuits 1001, 2001, 3001, 4001 may refer to various implementations of digital, analog, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable gate arrays (FPGAs) ), and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • memories 1006, 2006, 3006, 4006 may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), flash memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read only memory
  • a kind of electronic equipment of the transmitting end comprising: a processing circuit, is configured to: based on the constellation map corresponding to the modulation mode, generate a pilot sequence, so that each pair of constellations that are mutually opposite numbers in the constellation map point, the pilot sequence includes at least one constellation point therein; the pilot sequence is sent to the receiving end for the receiving end to perform channel estimation associated with each constellation point in the constellation map.
  • generating a pilot sequence includes: generating a basic pilot sequence, and for each pair of constellation points that are opposite to each other in the constellation diagram, the basic pilot sequence Contains only one constellation point therein; the pilot sequence is generated by repeating the base pilot sequence one or more times in a predetermined repetition pattern.
  • the electronic device wherein, in the case that the basic pilot sequence and its repetition mode have been pre-configured for the receiving end, indicating the pilot sequence to the receiving end includes sending information about the basic pilot sequence. Information on the number of repetitions of the pilot sequence.
  • processing circuit is further configured to: modulate the data signal by using the modulation method; and send the modulated data signal to the receiving end.
  • an electronic device of a receiving end comprising: a processing circuit, configured to: receive a pilot sequence from a transmitting end, wherein for each pair of constellation points that are mutually opposite numbers in the constellation diagram corresponding to the modulation mode, the The pilot sequence includes at least one constellation point therein; based on the received signal of the pilot sequence, a channel estimation associated with each constellation point of the constellation is performed.
  • the pilot sequence includes a basic pilot sequence repeated one or more times in a predetermined repetition manner, wherein each pair in the constellation diagram is opposite to each other number of constellation points, of which the base pilot sequence contains only one constellation point.
  • receiving an indication about the pilot sequence includes receiving an indication about the pilot sequence Information on the number of repetitions of the sequence.
  • processing circuit is further configured to: receive the data signal modulated by the modulation method from the transmitting end; and demodulate the data signal based on the channel estimation result.
  • an electronic device for a transmitting end comprising: a processing circuit configured to: send a pilot sequence to a receiving end; receive information about a distortion-to-noise ratio (DNR) from the receiving end, the DNR indicating the pilot sequence The ratio between the distortion component and the channel noise component in the received signal caused by the hardware mismatch of the transmitting end; based on at least the DNR, the transmission parameters for transmitting the data signal to the receiving end are adjusted.
  • DNR distortion-to-noise ratio
  • the information about the DNR includes at least one of the following: a binary indication about whether the DNR is high or low, and a quantized value of the DNR.
  • pilot sequence is a first pilot sequence
  • processing circuit is further configured to: send a second pilot sequence for phase tracking, wherein the first pilot sequence is The length of one pilot sequence is greater than that of the second pilot sequence.
  • an electronic device at a receiving end comprising: a processing circuit configured to: receive a pilot sequence from a transmitting end; estimate a distortion-to-noise ratio (DNR) based on the received signal of the pilot sequence, the DNR indicating the The ratio between the distortion component caused by the hardware mismatch of the transmitting end and the channel noise component in the received signal of the pilot sequence is fed back; the information about the DNR is fed back to the transmitting end.
  • DNR distortion-to-noise ratio
  • the information about the DNR includes at least one of the following: a binary indication about whether the DNR is high or low, and a quantized value of the DNR.
  • pilot sequence is a first pilot sequence
  • processing circuit is further configured to: receive a second pilot sequence for phase tracking, wherein the first pilot sequence is The length of one pilot sequence is greater than that of the second pilot sequence.
  • processing circuit is further configured to: based on the received signal of the pilot sequence, perform joint estimation of the channel coefficient and the compensation coefficient for the hardware mismatch at the receiving end.
  • a communication method comprising: generating a pilot sequence based on a constellation map corresponding to a modulation scheme, so that for each pair of constellation points with opposite numbers in the constellation map, the pilot sequence includes the at least one constellation point of the constellation; sending the pilot sequence to the receiving end for the receiving end to perform channel estimation associated with each constellation point in the constellation.
  • a communication method comprising: receiving a pilot sequence from a transmitter, wherein for each pair of constellation points with opposite numbers in a constellation diagram corresponding to a modulation scheme, the pilot sequence includes at least one of them Constellation point; based on the received signal of the pilot sequence, a channel estimation associated with each constellation point of the constellation is performed.
  • a communication method comprising: sending a pilot sequence to a receiving end; receiving information about a Distortion-to-Noise Ratio (DNR) from the receiving end, the DNR indicating that the received signal of the pilot sequence is lost by hardware at the sending end.
  • DNR Distortion-to-Noise Ratio
  • the ratio between the distortion component caused by the matching and the channel noise component is adjusted; based on at least the DNR, the transmission parameters used to send the data signal to the receiving end are adjusted.
  • a communication method comprising: receiving a pilot sequence from a transmitting end; and estimating a distortion-to-noise ratio (DNR) based on a received signal of the pilot sequence, the DNR indicating that the received signal of the pilot sequence contains The ratio between the distortion component and the channel noise component due to hardware mismatch at the transmitter; information about the DNR is fed back to the transmitter
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the communication method according to any one of 26)-29).
  • the electronic devices 1000, 2000, 3000, 4000 may be implemented as or installed in various base stations, or implemented as or installed in various user equipments.
  • Communication methods according to embodiments of the present disclosure may be implemented by various base stations or user equipment; methods and operations according to embodiments of the present disclosure may be embodied as computer-executable instructions, stored in non-transitory computer-readable storage media, and Can be performed by various base stations or user equipment to implement one or more of the functions described above.
  • Techniques according to embodiments of the present disclosure can be made into various computer program products that are used in various base stations or user equipment to implement one or more of the functions described above.
  • the base stations mentioned in this disclosure can be implemented as any type of base stations, preferably, such as macro gNB and ng-eNB as defined in the 5G NR standard of 3GPP.
  • a gNB may be a gNB covering a smaller cell than a macro cell, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB, and base transceiver station (BTS).
  • the base station may also include a subject configured to control wireless communications and one or more remote radio heads (RRHs), wireless relay stations, drone towers, control nodes in automated factories, etc., located at a different location than the subject.
  • RRHs remote radio heads
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • User equipment may also be implemented as terminals performing machine-to-machine (M2M) communication (also known as machine type communication (MTC) terminals), drones, sensors and actuators in automated factories, and the like.
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • base station as used in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • base stations may be, for example, but not limited to the following: one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM communication system; a radio network controller (RNC) in a 3G communication system One or both of NodeBs and NodeBs; eNBs in 4G LTE and LTE-A systems; gNBs and ng-eNBs in 5G communication systems.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • a logical entity with a control function for communication may also be called a base station.
  • the logical entity that plays the role of spectrum coordination can also be called a base station.
  • a logical entity that provides network control functions can be referred to as a base station.
  • the base station may be implemented as a gNB 1400.
  • gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) here may correspond to any one of the above-mentioned electronic devices 1000, 2000, 3000, and 4000.
  • Antenna 1410 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1410 may, for example, be arranged in an antenna array matrix and used for the base station apparatus 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station apparatus 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 , and a wireless communication interface 1425 .
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420 .
  • the controller 1421 may include any of the processing circuits 1001, 2001, 3001, 4001 described above, perform the communication method described in FIG. 9B, 10B, 14B or 15B, or control the electronic device 1000, 2000, 3000 or 4000 of the various parts.
  • the controller 1421 generates data packets from the data in the signal processed by the wireless communication interface 1425, and communicates the generated packets via the network interface 1423.
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1421 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station apparatus 1420 to the core network 1424 (eg, a 5G core network).
  • the controller 1421 may communicate with core network nodes or further gNBs via the network interface 1423 .
  • gNB 1400 and core network nodes or other gNBs may be connected to each other through logical interfaces such as NG interface and Xn interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425 .
  • Wireless communication interface 1425 supports any cellular communication scheme, such as 5G NR, and provides wireless connectivity to terminals located in the cell of gNB 1400 via antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signals of various layers (eg, physical layer, MAC layer, RLC layer, PDCP layer, SDAP layer) deal with.
  • the BB processor 1426 may have some or all of the above-described logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1426 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 16 shows an example in which one RF circuit 1427 is connected to one antenna 1410 , the present disclosure is not limited to this illustration, but one RF circuit 1427 may connect a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426.
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427 .
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1425 includes multiple BB processors 1426 and multiple RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • one or more units included in the processing circuit 1001, 2001, 3001 or 4001 may be implemented in the wireless communication interface 1425.
  • the controller 1421 may be implemented in the controller 1421 .
  • gNB 1400 includes a portion (eg, BB processor 1426) or the entirety of wireless communication interface 1425, and/or a module including controller 1421, and one or more components may be implemented in the module.
  • the module may store and execute a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in gNB 1400, and wireless communication interface 1425 (eg, BB processor 1426) and/or controller 1421 may execute the program.
  • the gNB 1400, the base station apparatus 1420, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as the one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530.
  • gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or the base station device 1550) here may correspond to any one of the aforementioned electronic devices 1000, 2000, 3000, and 4000.
  • Antenna 1540 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1540 may be arranged in an antenna array matrix, for example, and used for the base station apparatus 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station apparatus 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 , and a connection interface 1557 .
  • the controller 1551 , the memory 1552 and the network interface 1553 are the same as the controller 1421 , the memory 1422 and the network interface 1423 described with reference to FIG. 16 .
  • Wireless communication interface 1555 supports any cellular communication scheme, such as 5G NR, and provides wireless communication via RRH 1560 and antenna 1540 to terminals located in a sector corresponding to RRH 1560.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 16, except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include a plurality of BB processors 1556.
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 17 shows an example in which the wireless communication interface 1555 includes multiple BB processors 1556
  • the wireless communication interface 1555 may include a single BB processor 1556 .
  • connection interface 1557 is an interface for connecting the base station apparatus 1550 (the wireless communication interface 1555 ) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1550 (the wireless communication interface 1555) to the RRH 1560.
  • RRH 1560 includes connection interface 1561 and wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (the wireless communication interface 1563 ) to the base station apparatus 1550.
  • the connection interface 1561 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may typically include RF circuitry 1564, for example.
  • RF circuitry 1564 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1540 .
  • FIG. 17 shows an example in which one RF circuit 1564 is connected to one antenna 1540 , the present disclosure is not limited to this illustration, but one RF circuit 1564 may connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may include a single RF circuit 1564.
  • gNB 1500 In the gNB 1500 shown in FIG. 17, one or more units included in the processing circuit 1001, 2001, 3001 or 4001 (eg, the transmitting unit 1003, the receiving unit 2002, the receiving unit 3003, etc.) may be implemented in the wireless communication interface 1525. Alternatively, at least some of these components may be implemented in the controller 1521 .
  • gNB 1500 includes a portion (eg, BB processor 1526) or the entirety of wireless communication interface 1525, and/or a module including controller 1521, and one or more components may be implemented in the module.
  • the module may store and execute a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in gNB 1500, and wireless communication interface 1525 (eg, BB processor 1526) and/or controller 1521 may execute the program.
  • the gNB 1500, the base station apparatus 1520, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as the one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the techniques of the present disclosure may be applied.
  • the smartphone 1600 may be implemented as any of the electronic devices 1000 , 2000 , 3000 , 4000 .
  • Smartphone 1600 includes processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the processor 1601 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 1600 .
  • the processor 1601 may include or function as any of the processing circuits 1001, 2001, 3001, 4001 described with reference to the figures.
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 1600 .
  • USB Universal Serial Bus
  • the camera 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 1610, and receives operations or information input from a user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600 .
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614 .
  • FIG. 18 shows an example in which the wireless communication interface 1612 includes multiple BB processors 1613 and multiple RF circuits 1614
  • the wireless communication interface 1612 may include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 may include the BB processor 1613 and the RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Antenna 1616 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO. Antennas 1616 may be arranged, for example, in an antenna array matrix and used for wireless communication interface 1612 to transmit and receive wireless signals. Smartphone 1600 may include one or more antenna panels (not shown).
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 18 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600, eg, in sleep mode.
  • one or more units included in the processing circuit 1001, 2001, 3001, or 4001 may be implemented in wireless communication interface 1612. Alternatively, at least some of these components may be implemented in processor 1601 or auxiliary controller 1619 .
  • smartphone 1600 includes a portion (eg, BB processor 1613 ) or the entirety of wireless communication interface 1612, and/or a module including processor 1601 and/or auxiliary controller 1619, and one or more components may be implemented in this module.
  • the module may store and execute a program that allows the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in smartphone 1600, and wireless communication interface 1612 (eg, BB processor 1613), processor 1601 and/or auxiliary The controller 1619 can execute the program.
  • the smartphone 1600 or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as the one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, a wireless A communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and a battery 1738 .
  • the car navigation device 1720 may be implemented as any of the electronic devices 1000, 2000, 3000, 4000 described in this disclosure.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors, such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1727 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives operations or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme, such as 4G LTE or 5G NR, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735 .
  • FIG. 19 shows an example in which the wireless communication interface 1733 includes multiple BB processors 1734 and multiple RF circuits 1735
  • the wireless communication interface 1733 may include a single BB processor 1734 or a single RF circuit 1735 .
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include the BB processor 1734 and the RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Antenna 1737 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1737 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation apparatus 1720 .
  • the battery 1738 provides power to the various blocks of the car navigation device 1720 shown in FIG. 19 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1738 accumulates power supplied from the vehicle.
  • one or more units included in the processing circuit 1001 , 2001 , 3001 or 4001 may be implemented in wireless Communication interface 1733.
  • at least some of these components may be implemented in the processor 1721 .
  • car navigation device 1720 includes a portion (eg, BB processor 1734) or the entirety of wireless communication interface 1733, and/or a module including processor 1721, and one or more components may be implemented in the module.
  • the module may store and execute a program that allows the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (eg, the BB processor 1734) and/or the processor 1721 may be installed Execute the program.
  • a device including one or more components a car navigation device 1720 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the techniques of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 that includes one or more blocks of a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741 .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、通信方法和存储介质。一种发送端的电子设备包括处理电路,处理电路被配置为:基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。

Description

电子设备、通信方法和存储介质
相关申请的交叉引用
本申请要求于2020年8月6日提交的发明名称为“电子设备、通信方法和存储介质”的中国发明专利申请202010783403.3的优先权,其公开内容通过引用整体并入于此。
技术领域
本公开总体上涉及无线信号传输。更具体而言,本公开涉及可用于诸如太赫兹频段上的无线信号传输的电子设备、通信方法和存储介质。
背景技术
近年来,为了满足因数据流量的爆炸性增长而带来的越来越高的无线数据传输速率的需求,业界一直在探索利用可在新的高频段上提供无线通信的方法,例如,当前流行的5G NR(New Radio,新无线电)使用30GHz~300GHz的毫米波频段。此外,人们设想在不久的将来将需要每秒太比特(Tbps)的无线信号传输,这激发了更高频段的探索和相应的通信解决方案的研究。其中,太赫兹频段因其种种优点而受到业界的关注,甚至成为下一代无线通信标准的研究热点。
然而,太赫兹频段位于微波频段和光频段之间,此频段的通信器件制作难度高,具有较为显著的射频硬件失配(RF impairment)效应。RF硬件失配效应将会引起接收信号的失真,从而造成通信性能的劣化。虽然RF硬件失配效应在较低频段的通信中也广泛存在,但是其效应相对不如太赫兹频段显著。目前已经有很多低频段的有关RF硬件失配处理的研究,主要包括发送端的预补偿(或预失真)算法和接收端的补偿。其中发送端的预失真主要处理诸如功放非线性和发送端IQ(同相/正交)失衡,接收端的补偿可以处理接收端的IQ失衡和载波相位噪声。
一方面,考虑到高频段的通信器件制作难度大、成本高,在发送端或接收端配置用 于补偿RF硬件失配的电路可能存在困难。另一方面,即使在发送端配置了预失真补偿电路的情况下,仍可能存在较强的残余失真。这导致了现有的解决方案无法令人满意地对抗RF硬件失配,尤其是对于诸如太赫兹通信之类的高频段通信。
因此,存在对于缓解由RF硬件失配等引起的通信性能劣化的改进手段的需求。
发明内容
通过应用本公开的一个或多个方面,上述需求得到满足。
在此部分给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种发送端的电子设备,包括处理电路,处理电路被配置为:基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。
根据本公开的一个方面,提供了一种接收端的电子设备,包括处理电路,处理电路被配置为:从发送端接收导频序列,其中对于与调制方式对应的星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;基于所述导频序列的接收信号,进行与所述星座图的每个星座点相关联的信道估计。
根据本公开的一个方面,提供了一种发送端的电子设备,包括处理电路,处理电路被配置为:向接收端发送导频序列;从接收端接收关于失真噪声比(DNR)的信息,所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;至少基于所述DNR,调整用于向接收端发送数据信号的传输参数。
根据本公开的一个方面,提供了一种接收端的电子设备,包括处理电路,处理电路被配置为:从发送端接收导频序列;基于所述导频序列的接收信号,估计失真噪声比(DNR),所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;向发送端反馈关于所述DNR的信息。
根据本公开的一个方面,提供了一种通信方法,包括上述任何一个电子设备的处理电路执行的操作。
根据本公开的一个方面,提供了一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现上述通信方法。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了电磁频谱上的太赫兹频段;
图2示出了经过调制的I路和Q路基带信号经历I/Q失衡的示意图;
图3示出了在RF硬件失配效应的影响下通过线性均衡得到的信号星座图;
图4示出了根据第一实施例的信道估计的流程图;
图5示意性地示出了与不同调制方式相关联的星座图;
图6示出了根据第一实施例的用于指示导频序列的信令的示例;
图7给出了在QPSK调制方式下原始判决区域和最小距离准则判决区域的对比示例;
图8示出了根据第一实施例的信号传输方法在QPSK和16QAM调制下的无编码误比特率(BER)性能的仿真结果;
图9A和9B分别例示了根据第一实施例的发送端的电子设备及其通信方法;
图10A和10B分别例示了根据第一实施例的接收端的电子设备及其通信方法;
图11示出了用于联合估计的导频序列与用于相位追踪的导频序列的插入示例;
图12示出了根据第二实施例的基于DNR调整传输参数的流程图;
图13A-13D示出了根据第二实施例的信号传输方法的仿真结果;
图14A和14B分别例示了根据第二实施例的发送端的电子设备及其通信方法;
图15A和15B分别例示了根据第二实施例的接收端的电子设备及其通信方法;
图16例示了根据本公开的基站的示意性配置的第一示例;
图17例示了根据本公开的基站的示意性配置的第二示例;
图18例示了根据本公开的智能电话的示意性配置示例;
图19例示了根据本公开的汽车导航设备的示意性配置示例。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有实现方式。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与本公开的技术方案密切相关的处理步骤和/或设备结构。以下对于示例性实施例的描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
仅为了便于说明,下面以太赫兹通信作为示例性场景来阐述本公开的技术方案。然而应注意,本公开针对的RF硬件失配可能存在于各种频段(诸如厘米波、毫米波之类的无线电波频段,太赫兹频段,光波频段,等等)的通信中,因此本公开的技术方案实际上不限于太赫兹通信,而是可以应用于各种通信场景中以获得改善的无线信号传输性能,甚至不仅限于缓解RF硬件失配的目的。
太赫兹通信是指用太赫兹波作为信息载体进行的空间通信。图1示出了电磁频谱上的太赫兹频段。太赫兹频段大约为0.1THz至10THz,从频率上看,在微波和红外频率之间;从能量上看,在电子和光子之间。在电磁频谱上,太赫兹频段两侧的红外和微波技术已经非常成熟,但是太赫兹技术基本上还是一个空白,其原因是在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的理论来研究。
太赫兹频段具有极大的未被分配使用的带宽,能够支持10Gbps以上的数据传输速率,而且具有更好的保密性及抗干扰能力。利用太赫兹频带进行通信能够有效缓解日益紧张的频谱资源和当前无线通信系统的容量限制,是未来无线通信的首要选择。
尽管如此,实现太赫兹通信具有较大挑战性。太赫兹链路具有比毫米波更大的路径损耗,包括自由空间损耗和分子吸收损耗,因此需要具有非常窄的波束的指向性天线来平衡链路预算。此外,太赫兹频段对于电子器件来说过高,对于光学器件来说过低,因此无论是采用电子器件还是光学器件作为太赫兹通信器件,都不可避免地存在RF硬件失配效应。
本公开提供了用于缓解RF硬件失配效应的示例性实施例。下面将参照附图来详细描述。
【第一实施例】
根据本公开的第一实施例,考虑了在发送端没有针对RF硬件失配的补偿/预失真的情景。
取决于传输方向,本公开中所言的“发送端”和“接收端”可以是基站和/或用户设备(UE)。例如,对于下行链路传输,发送端是基站,而接收端是UE;对于下行链路传输,发送端是UE,而接收端是基站;对于侧链(Sidelink)传输,发送端和接收端都是UE。
应注意,本公开中所使用的术语“基站”是指无线通信系统中的网络控制侧的设备,具有其通常含义的全部广度。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开的技术方案被应用的场景,“基站”例如还可以是4G LTE/LTE-A通信系统中的eNB、3G通信系统中的NodeB、远程无线电头端、无线接入点、中继节点、无人机控制塔台或者执行类似控制功能的通信装置。后面的章节将详细描述基站的应用示例。
另外,本公开中所使用的术语“UE”是指无线通信系统中的用户侧的设备,具有其通常含义的全部广度,包括与基站或其他UE通信的各种终端设备或车载设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、无人机等之类的终端设备。后面的章节将详细描述UE的应用示例。
对于示例性的太赫兹通信,发送端可以采用光子或电子架构来产生太赫兹信号。 例如,光子发射机架构可以生成一系列具有不同频率的激光信号,并利用两个激光信号的频率差来获得太赫兹信号。电子发射机架构类似于传统的微波架构,即,产生太赫兹本机振荡器信号,并将基带I/Q信号上变频成RF信号。相对而言,电子发射机架构可以高度集成在芯片上,更具有实用性。接收端的接收机执行发射机的逆过程,例如可以采用电子架构。
无论何种架构,发射机和接收机都可能遭受严重的RF硬件失配效应。下面描述RF硬件失配信号模型。
本公开考虑通信器件中的三种主要硬件失配因素:
1)相位噪声,由本机振荡器的相位波动引起;
2)I/Q失衡,诸如I路基带信号和Q路基带信号之间的幅度差,或者I路基带信号和Q路基带信号之间的相位差不是正好90°;
3)功放非线性,由功率放大器的非线性失真引起。
图2示出了经过调制的I路和Q路基带信号经历I/Q失衡的示意图。对于发射机中的I/Q失衡,记发射机I路载波信号为(1+∈ T)cos(2πf ct-φ T),Q路载波信号为(1-∈ T)sin(2πf ct+φ T),其中∈ T,φ T分别为I路、Q路的幅度和相位的失衡因子。
进一步考虑发送端的相位噪声,等效的发射基带信号可表示为
Figure PCTCN2021110055-appb-000001
其中μ T=cosφ T-j∈ Tsinφ TT=∈ Tcosφ T-jsinφ T,θ T[n]为发射机中的相位噪声,ν Ts *[n]为I/Q失衡引起的镜像干扰项。
这里相位噪声θ T[n]建模为块游走模型,即,假定在第k个传输块内,θ T[n]为固定值θ k,相邻传输块之间的θ k相差一个高斯分布的随机游走项Δθ k,可表示为
θ k+1=θ k+Δθ k,
Figure PCTCN2021110055-appb-000002
其中
Figure PCTCN2021110055-appb-000003
为游走项方差。
接下来考虑发送端的功放非线性。这里采用包含三项的无记忆多项式模型建模,则功率放大器输出的等效基带信号可表示为
Figure PCTCN2021110055-appb-000004
其中作为示例,假设b 1=1.0108+j0.0858,b 3=0.0879-j0.1583,b 5=-1.0992-j0.8991。
由于太赫兹通信通常在收发端均采用极高方向增益的天线,因此信道中的有效传输路径可认为只有一条,故采用平衰落信道模型,则接收信号可以表示为
y[n]=hs PA[n]+w[n]
其中h为信道衰落因子,
Figure PCTCN2021110055-appb-000005
为加性高斯白噪声(AWGN),其中包括了热噪声和分子吸收噪声。
类似地,假定∈ R、φ R分别为接收端的I路与Q路的幅度和相位的失衡因子,并且接收端的相位噪声θ R[n]同样服从块游走模型,则最终的等效基带接收信号可以表示为
Figure PCTCN2021110055-appb-000006
其中μ R=cosφ R+j∈ Rsinφ RR=∈ Rcosφ R-jsinφ R
图3例示了在上述信号模型下通过线性均衡得到的信号星座图,其中图3的(a)、(b)对应于QPSK调制方式,(c)、(d)对应于16QAM调制方式。作为轻度I/Q失衡的示例,在图3的(a)、(c)中,∈ T=∈ R=∈=0.05,φ T=φ R=φ=0.5°。作为重度I/Q失衡的示例,在图3的(b)、(d)中,∈ T=∈ R=∈=0.2,φ T=φ R=φ=2°。此外,相位噪声参数为
Figure PCTCN2021110055-appb-000007
如图3中所示,如果对包含RF硬件失配效应的信号模型采用传统的线性均衡策略,则发现信号星座图发生了不规则的扭曲。这将会导致误码性能下降。
对此,本公开的第一实施例采用基于星座点的信道估计来代替线性均衡。
在假定无信道噪声的情况下(w[n]=0),可将每个星座点s i的接收信号写成y i=h(s i)s i。通过上面建立的信号模型,本公开的发明人注意到每个星座点s i对应的信道h(s i)一般是不同的,这是导致传统的线性均衡策略无法有效工作的原因。
下面参考图4来描述根据本公开的第一实施例的信道估计。如图4中所示,发送端设计并生成用于信道估计的导频序列(S1)。特别地,根据第一实施例的导频序列 与要使用的调制方式相关联,包含关于相应星座图的所有星座点的信息。
对于特定的调制方式,记其星座图的星座点集合χ={s 1,s 2,…,s M},其中共包含card(χ)=M个星座点。图5示意性地示出了分别与二进制相移键控(BPSK)、正交相移键控(QPSK)、4QAM、16QAM、64QAM等调制方式相关联的星座图。应注意,本公开适用的调制方式不限于此,还可以包括例如MSK、8PSK、256QAM等各种调制方式。
在一个示例中,发送端可以生成导频序列,使其包括所有的星座点,即,s=[s 1,s 2,…,s M] T。例如:
对于BPSK,s BPSK=[1,-1] T
对于QPSK,,
Figure PCTCN2021110055-appb-000008
对于16QAM,
Figure PCTCN2021110055-appb-000009
Figure PCTCN2021110055-appb-000010
在第一实施例中提到导频序列包括星座图的星座点,但是从调制的角度看,也可以认为这种导频序列是全1序列经过所有星座点调制而得到的序列。
相应地,为了估计每个星座点s i所对应的h(s i),共需要进行card(χ)次信道估计。然而,根据上面提到的信号模型,可以验证互为相反数的两个星座点对应的信道是相同的,即
h(s i)=h(-s i)
根据这一特性,可以设计一种基础导频序列,使得对于每一对互为相反数的星座点,基础导频序列仅包括其中的一个星座点。具体而言,假定在星座图中,s i=-s i+M/2,一方面,为了估计h(s i),导频序列中只需包含s i和s i+M/2其一即可,即,s=[s 1,s 2,…,s M/2] T。另一方面,为了估计h(s 1),h(s 2),…,h(s M/2),导频序列的设计需满足对于星座图中任意两个互为相反数的星座点,其中的一个星座点必须被包含在导频序列中。
例如,对于BPSK,QPSK,16QAM,其相应的基础导频序列可分别设计为
s BPSK=[1] T,
Figure PCTCN2021110055-appb-000011
Figure PCTCN2021110055-appb-000012
上述基础导频序列实际上包括了图5中所示的相应星座图的右半部分的一半星座点。然而,基础导频序列不限于此,例如,可以包括星座图的左半部分、上半部分、下半部分的一半星座点,等等。
通过生成这样的基础导频序列作为用于信道估计的导频序列,为了估计每个星座点s i所对应的h(s i),只需对一半的星座点对应的信道进行估计即可。则待估计的信道参数为h(s 1),h(s 2),…,h(s M/2)。由此,所发送的导频序列的长度可以缩短,并且接收端进行信道估计的工作量也可以减小。
然而在某些情况下,可能希望发送端所生成的导频序列足够长,以提高h(s i)在较低信噪比下的估计精度。在这种情况下,可以通过重复基础导频序列来生成最终的导频序列。
作为最简单的重复方式,例如可以将n个基础导频序列直接重复相连,即最终导频序列为[s T,s T,…,s T] T,其中n是重复次数,s为基础导频序列。
作为另一个重复方式,例如,可以使n个基础导频序列取反相连,即最终导频序列为[s T,-s T,…,s T,-s T] T或[s T,s T,…,-s T,-s T] T。以这种方式,导频序列中实际包括所有的星座点s i和s i+M/2
例如,当重复次数n=2时,采用交替取反重复方式得到的最终导频序列可以为
s BPSK=[1,-1] T,
Figure PCTCN2021110055-appb-000013
Figure PCTCN2021110055-appb-000014
其中,对于s BPSK,1与-1均用于h(1)的估计,而对于s QPSK,1+j与-1-j均用于h(1+j)的估计,以此类推。
在这种生成方式中,用于信道估计的导频序列可以通过基础导频序列、重复次数和重复方式来表征。特别地,直接把基础导频序列作为最终的导频序列的示例可以看作重复次数为1的特例。
回到图4,发送端可以在发送所生成的导频序列之前,向接收端指示导频序列(S2),以通知将要发送的导频序列的配置。
在一个示例中,可以借助于图6中所示的信令来指示导频序列。如图6中所示,信令可以包括:启用指示,利用例如1个比特来通知是否启用根据本实施例特殊设计的导频序列;调制方式,用于指示对应的基础导频序列;重复次数,用于指示基础导频序列在最终的导频序列中的重复次数;重复方式,用于指示基础导频序列的重复方式,例如直接重复、交替取反重复,等等。
应理解,图6中的信令格式仅仅是示例性的,实际使用时可以不限于此。可以借助于现有的控制信令来传递某些信息以兼容现有的控制信令,例如,在现有的下行链路控制信息(DCI)、上行链路控制信息(UCI)、侧链控制信息(SCI)中包含关于调制方式的字段(如“调制和编码方案MSC”),接收端可以被配置为通过接收该字段来确定将使用的调制方式。此外,当某些信息已经在发送端和接收端之间预先配置好时,可以不发送这些信息,以减少信令传输负担。例如,可以在发送端和接收端之间预先配置与每种调制方式对应的基础导频序列和重复方式。当需要发送导频序列时,发送端可以仅向接收端通知重复次数,由此接收端可以根据所接收的重复次数以及如DCI、UCI、SCI中包含的关于调制方式的字段来确定将接收的导频序列。
可以存在各种指示机制,只要接收端能够接下来将接收的导频序列的内容即可。
随后,发送端可以向接收端发送导频序列(S3)。发送端可以将导频序列上变频到例如太赫兹频段上以得到导频信号,通过指向性天线发射出去。导频信号有时候也称为参考信号,但是传统的参考信号都是恒模的,即,幅度为定值,而根据本实施例生成的导频信号可以具有不恒定的幅度。
接收端接收导频信号,并基于接收的导频序列进行信道估计(S4)。具体而言,为了估计h(s i),假定接收到的导频序列是通过重复基础导频序列而得到的,则接收端可以针对每个星座点s i来对相应的接收符号取平均。
举例来说,与星座点s i对应的接收符号所构成的向量为y i,与s i+M/2对应的接收符号所构成的向量为y i+M/2,则h(s i)可如下估计
Figure PCTCN2021110055-appb-000015
其中mean(·)表示取平均操作。
通过上述信道估计过程获得的信道参数h(s i)然后可以用于数据解调。发送端利用与导频序列相关联的调制方式对数据信号进行调制,并将调制后的数据信号发送到接收端。
对于接收到的数据符号y,接收端无需进行信道均衡,直接根据y与
Figure PCTCN2021110055-appb-000016
的距离采用最小距离准则判决s i即可,该判决可表示为
Figure PCTCN2021110055-appb-000017
图7给出了在QPSK调制方式下原始判决区域和采用最小距离准则的判决区域的对比示例。如图7中所示,尽管星座图由于RF硬件失配效应而受到不规则的扭曲,但是利用根据本实施例的信道估计,仍然可以可靠地实现数据解调。
图8示出了根据第一实施例的信号传输方法在QPSK和16QAM调制下的无编码误比特率(BER)性能的仿真结果,其中采用传统的线性均衡的性能作为对比。在仿真中,I/Q失衡参数为∈ T=∈ R=0.2,φ T=φ R=2°,相位噪声参数为
Figure PCTCN2021110055-appb-000018
传输块的大小为1000符号,QPSK采用长度为8的导频序列(即,重复次数为4),16QAM采用长度为32的导频序列(即,重复次数为4)。
如图8中所示,对QPSK而言,由于星座点的间距较大,抵抗RF硬件失真效应的能力较强,因此采用根据第一实施例的信号传输方法获得的性能增益较小。然而对16QAM而言,星座点较为密集,由于太赫兹的RF硬件失真效应极易产生误码,因此采用根据第一实施例的信号传输方法可以获得明显的性能增益。
接下来描述根据本公开的第一实施例的电子设备和通信方法。
图9A和9B分别例示了根据第一实施例的发送端的电子设备及其通信方法。图9A例示了根据发送端的电子设备1000的框图。取决于具体的通信场景,电子设备1000可以被实现为基站或UE。电子设备1000可以向下面将描述的电子设备2000执行信号传输。
如图9A中所示,电子设备1000包括处理电路1001,处理电路1001至少包括生成 单元1002和发送单元1003。处理电路1001可被配置为执行图9B中所示的通信方法。
处理电路1001的生成单元1002被配置为基于与调制方式对应的星座图,生成导频序列(即,执行图9B中的步骤S1001)。对于星座图中的每一对互为相反数的星座点,所生成的导频序列包含其中的至少一个星座点。在一个示例中,导频序列可以通过按特定的重复方式重复基础导频序列来生成,其中基础导频序列包含每一对互为相反数的星座点中的一个。
发送单元1003被配置为向接收端发送由生成单元1002生成的导频序列,以供接收端进行与星座图中的每个星座点相关联的信道估计(即,执行图9B中的步骤S1002)。发送单元1003可以将导频序列上变频到诸如太赫兹频段上,并通过指向性天线发射导频信号。
可选地,处理电路1001还可以包括指示单元(未示出),以在发送导频序列之前向接收端指示所生成的导频序列。在一个示例中,在已为接收端预先配置基础导频序列及其重复方式的情况下,指示单元向接收端发送关于基础导频序列的重复次数的信息。在另一个示例中,指示单元向接收端发送关于调制方式、基础导频序列的重复方式和重复次数的信息。然而指示单元不是必需的,接收端可以仅通过控制信息(诸如UCI、DCI、SCI)中包含的关于调制方式的信息来确定相关联的导频序列。
电子设备1000还可以包括例如通信单元1005。通信单元1005可以被配置为在处理电路1001的控制下与接收端(例如下面描述的电子设备2000)进行通信,诸如太赫兹通信。在一个示例中,通信单元1005可以被实现为收发机,包括天线阵列和/或射频链路等通信部件。通信单元1005用虚线绘出,因为它还可以位于电子设备1000外。
电子设备1000还可以包括存储器1006。存储器1006可以存储各种数据和指令,例如用于电子设备1000操作的程序和数据、由处理电路1001产生的各种数据等。存储器1006用虚线绘出,因为它还可以位于处理电路1001内或者位于电子设备1000外。
图10A和10B分别例示了根据第一实施例的接收端的电子设备及其通信方法。图10A例示了接收端的电子设备2000的框图。取决于具体的通信场景,电子设备2000可以被实现为基站或UE。电子设备2000可以与上面描述的电子设备1000执行信号传输。
如图10A中所示,电子设备2000包括处理电路2001,处理电路2001至少包括接收单元2002和信道估计单元2003。处理电路2001可被配置为执行图10B中所示的通信 方法。
处理电路2001的接收单元2002被配置为从发送端接收导频序列(即,执行图10B中的步骤S2001)。对于与调制方式对应的星座图中的每一对互为相反数的星座点,导频序列包含其中的至少一个星座点。在一个示例中,导频序列可以看作包含星座图的一半星座点的基础导频序列的一次或多次重复。
信道估计单元2003被配置为基于导频序列的接收信号,进行与星座图的每个星座点相关联的信道估计(即,执行图10B中的步骤S2002)。对于每一对互为相反数的星座点,信道估计单元2003可以仅执行一次信道估计,以获得这对星座点的共同的信道参数。对于所接收的导频包括重复的基础导频序列的情况,信道估计单元2003可以通过取平均来提高估计精度。
可选地,处理电路2001还可以包括指示接收单元(未示出)。指示接收单元可以接收关于导频序列的指示,从而知道接下来将接收到的导频序列的内容。
电子设备2000还可以包括例如通信单元2005。通信单元2005可以被配置为在处理电路2001的控制下与发送端(例如上面描述的电子设备1000)进行通信,诸如太赫兹通信。在一个示例中,通信单元2005可以被实现为收发机,包括天线阵列和/或射频链路等通信部件。通信单元2005用虚线绘出,因为它还可以位于电子设备2000外。
电子设备2000还可以包括存储器2006。存储器2006可以存储各种数据和指令,例如用于电子设备2000操作的程序和数据、由处理电路2001产生的各种数据等。存储器2006用虚线绘出,因为它还可以位于处理电路2001内或者位于电子设备2000外。
【第二实施例】
根据本公开的第二实施例,考虑了在发送端存在针对RF硬件失配的补偿/预失真的情景。
虽然发送端具备针对发送端的RF硬件失配的补偿能力,但是仍可能存在残余失真。接收端也可通过信号处理的方式补偿接收端的RF硬件失配以消除由硬件失配引起的信号失真,但是可能无法消除在发送端产生的残余失真。此外,取决于信道质量,信号在无线传输过程中会遭受一定程度的信道噪声。接收信号中的残余失真和信道噪声都可能影响信号的解调。
在现有的信号传输系统中,由发送端的RF硬件失配效应引起的残余失真与信道噪声对于信号解调的影响是未知的,从而无法很好地优化传输。
因此,本公开的第二实施例提供了利用衡量残余失真与信道噪声的指标来优化传输参数的机制。
下面描述有关信号模型。对于发送端,在配备预失真/补偿电路的情况下,其发送信号模型可表示为
s PA[n]=s[n]+w t[n]
其中
Figure PCTCN2021110055-appb-000019
代表发送端的残余失真,可建模为AWGN。
此时,接收端接收到的信号模型为
Figure PCTCN2021110055-appb-000020
可以进一步定义
Figure PCTCN2021110055-appb-000021
作为信道系数和相位噪声的等效系数,同时忽略相位噪声对噪声项的影响,则上式(3)可写成
Figure PCTCN2021110055-appb-000022
其中
Figure PCTCN2021110055-appb-000023
是有用的信号项,
Figure PCTCN2021110055-appb-000024
是镜像干扰项,
Figure PCTCN2021110055-appb-000025
是残余失真项。“μw[n]+νw *[n]”是信道噪声项,
Figure PCTCN2021110055-appb-000026
可建模为AWGN。
接收端可依照上式(4)对IQ失衡进行补偿,即,取
Figure PCTCN2021110055-appb-000027
作为补偿后的信号,其中
Figure PCTCN2021110055-appb-000028
为补偿系数,补偿后的信号可表示为
Figure PCTCN2021110055-appb-000029
其中,公式(5)的右边分别为有用的信号项、残余失真项和信道噪声项。
依照上式可进一步定义等效信道
Figure PCTCN2021110055-appb-000030
为了估计补偿系数a和等效信道b,发送端可以发送一个长度为N的导频序列PS1。如将接收信号y[n]、导频序列PS1和AWGN项均写成N维列向量形式,则有
Figure PCTCN2021110055-appb-000031
通过采用最大似然估计方法,接收端可得到a、b的估计值
Figure PCTCN2021110055-appb-000032
其中
Figure PCTCN2021110055-appb-000033
代表伪逆操作。在本阶段的a和b的联合估计中,由于需要同时估计两个参数,所以需要较长的导频序列PS1以保证估计精度。
另一方面,在a和b的联合估计之后,还需对由相位噪声(其有别于信道噪声)引起的等效信道b的变化进行实时追踪。然而,由于补偿系数a不受相位噪声的影响,因此在短时间内只需对b的估计进行周期性的更新。发送端可以额外发送用于更新b的导频序列PS2,其长度为P,则对b估计的更新可表示为
Figure PCTCN2021110055-appb-000034
由于这里只需估计b一个参数,因此相应的导频序列长度P可以采用比N小的值。与此同时,由于相位噪声时变性较强,所以用于追踪相位噪声(即更新b)的导频序列PS2的插入周期相比用于联合估计a,b的导频序列PS2的插入周期较短,例如,每个传输块插入一个PS2,如图11中所示。
在一个示例中,导频序列PS1可以由信道状态信息参考信号(CSI-RS)、解调参考信号(DMRS)等携带,导频序列PS2可以由CSI-RS、DMRS、相位追踪参考信号(PT-RS)等携带。根据第二实施例,导频序列PS1和PS2都是恒模的序列。
如上面所述,在信号传输过程中,影响通信性能的因素既包括信道噪声又包括发送端的残余硬件失配造成的信号失真,因此根据本公开的第二实施例,定义失真噪声比(DNR)作为衡量由发送端的硬件失配导致的失真分量与信道噪声分量之间的权重的指标。例如,DNR可以被定义为接收信号中的残余失真功率与信道噪声功率之比。
结合上面的信号模型,给出一种计算DNR的方法。
接收到的残余失真功率可表示为
Figure PCTCN2021110055-appb-000035
信道噪声功率可表示为
Figure PCTCN2021110055-appb-000036
Figure PCTCN2021110055-appb-000037
Figure PCTCN2021110055-appb-000038
的估计可由下式近似地给出
Figure PCTCN2021110055-appb-000039
进一步地,信道噪声和残余失真的总功率可估计为
Figure PCTCN2021110055-appb-000040
最终对DNR的估计可由下式得到
Figure PCTCN2021110055-appb-000041
在以上的公式中,s可选为用于联合估计a、b的导频信号PS1,以提升DNR估计精度。虽然上面例示了一种DNR的估计方法,但是本公开不限于此,可以使用各种方法估计DNR,只要它能够衡量残余失真和信道噪声之间的强弱对比即可。
接收端可以将估计的DNR反馈给发送端。取决于预先配置,接收端可以将DNR编码为二元指示,当估计的DNR较低(例如,低于某个阈值,如DNR≤1)时只需反馈一个低DNR指示,诸如比特“0”,当估计的DNR较高(例如,高于某个阈值,如DNR>1)时可以反馈高DNR指示,诸如比特“1”。
可替代地,接收端也可以将DNR量化为一系列离散的数值,以更精确地反馈DNR。
此外,经仿真验证,在所例示的上述DNR计算方法中,当DNR较低时,DNR估计误差较大,而当DNR较高时,DNR估计误差较小。因此,接收端也可以在DNR低于某个阈值(例如,DNR≤1)时,将其表示为0,而在DNR高于某个阈值(例如,DNR>1)时,将其表示为具体的量化值。
发送端可以至少基于由接收端反馈的DNR来调整传输参数,以提升通信性能。具体而言,如果DNR高,则说明由发送端的RF硬件失配引起的信号失真占主导地位,此时提升发射功率无法提升通信性能,但是可以通过降低调制阶数或编码效率来降低误判决概率,或者可以通过重新校准发送端的补偿来减少残余失真。如果DNR低,则说明信道噪声占主导地位,此时除了降低调制阶数或编码效率外,还可以提高发射功率以提升系统性能。
除了从来自接收端的DNR以外,发送端还可以将信道质量纳入考虑。例如,当信道质量较好时,发送端可以不调整传输参数,因为接收信号的信噪比可能足够支持解调。 而当信道质量不好时,发送端需要参考DNR调整、优化传输参数,例如降低调制阶数或编码效率。
接下来参照图12来描述根据第二实施例的基于DNR调整传输参数的信令流程图。
如图12中所示,首先,在S11中,发送端向接收端发送测量请求,以请求接收端测量DNR。随后,在S12中,发送端向接收端发送导频信号。出于估计精度考虑,该导频信号包括较长的导频序列。可选地,该导频信号可以还可同时用于估计信道质量。
在S13中,响应于接收到对于DNR的测量请求,接收端基于接收到的导频信号来估计DNR,例如采用上面描述的DNR估计方法。可选地,接收端还可以基于该导频信号来估计信道质量,以获得例如信道质量指示(CQI)。
在S14中,接收端将所估计的DNR以及可选的CQI反馈给发送端,而发送端在S15中基于DNR和/或CQI来调整传输参数,诸如调制阶数、编码效率、发射功率等。发送端然后可以利用调整的传输参数来发送数据,以实现例如太赫兹频段上的信号传输。
本公开通过仿真验证了利用根据第二实施例的信号传输方法的性能。
首先考虑联合估计的性能。采用IQ失衡参数∈ T=∈ R=0.1,φ T=φ R=2°,相位噪声参数
Figure PCTCN2021110055-appb-000042
发送端的残余硬件失配参数σ t=0.1。对a,b联合估计的均方误差(MSE)的仿真如图13A所示,可见随着导频序列长度的增加,估计精度显著提升,发射机可根据信道质量决定合适的导频长度以确保估计精度。
进一步,采用估计得到的补偿系数
Figure PCTCN2021110055-appb-000043
进行接收端的I/Q失衡的补偿,并对补偿后的镜像抑制比(IRR)进行仿真,其中IRR的定义是有用的数据信号的功率与镜像干扰的功率之比。IRR仿真的结果如图13B中所示,可以看出,由于导频序列长度的增加可以提升对
Figure PCTCN2021110055-appb-000044
的估计精度,IRR也会随之提高。随着信噪比和导频长度的变化,补偿后的IRR可以相比补偿前的IIR提供10-30dB的增益。
下一步,考虑相位追踪阶段对等效信道b进行更新的MSE,仿真结果如图13C所示,其中等效b估计的MSE随着传输块索引的变化保持稳定不变,且依然随着导频长度的增加而降低。
最后,对DNR估计的归一化MSE(NMSE)的仿真如图13D中所示。可以看出,当DNR较高时,其估计精度较高,而当DNR较低时,其估计精度较低。因此可以设定一个如前 文所述的反馈阈值(如1dB),当估计的DNR低于该反馈阈值时,向发送端反馈一个低DNR指示,而当估计的DNR高于该反馈阈值时,向发送端反馈一个高DNR指示或具体的DNR量化值。
接下来描述根据本公开的第二实施例的电子设备和通信方法。
图14A和14B分别例示了根据第二实施例的发送端的电子设备及其通信方法。图14A例示了根据发送端的电子设备3000的框图。取决于具体的通信场景,电子设备3000可以被实现为基站或UE。电子设备3000可以向下面将描述的电子设备4000执行信号传输。
如图14A中所示,电子设备3000包括处理电路3001,处理电路3001至少包括导频序列发送单元3002、接收单元3003和调整单元3004。处理电路3001可被配置为执行图14B中所示的通信方法。
处理电路3001的导频序列发送单元3002被配置为向接收端发送用于估计DNR的导频序列(即,执行图14B中的步骤S3001)。该导频序列可以通过诸如CSI-RS、DMRS等参考信号发送,并优选地具有较长的长度。此外,导频序列发送单元3002还可以发送用于相位追踪的导频序列,其长度可以短于用于估计DNR的导频序列,但其周期可以更短。
接收单元3003被配置为从接收端接收关于DNR的信息,其中DNR指示在导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率(即,执行图14B中的步骤S3002)。DNR可以是指示高或低的二元指示、量化值或者它们的组合。附加地,接收单元3003还可以接收由接收端反馈的信道质量指示(CQI),该CQI是由接收端基于导频序列发送单元3002发送的导频序列的接收信号估计的。
调整单元3004被配置为基于接收到的DNR,调整用于向接收端发送数据信号的传输参数(即,执行图14B中的步骤S3003)。在一个示例中,在DNR低的情况下,调整单元3004提高发射功率、降低调制阶数或降低编码效率,而在DNR高的情况下,调整单元3004可以降低调制阶数或降低编码效率。在另一个示例中,调整单元3004还可以仅在信道质量差的情况下执行传输参数的调整。
电子设备3000还可以包括例如通信单元3005。通信单元3005可以被配置为在处理电路3001的控制下与接收端(例如下面描述的电子设备4000)进行通信,诸如太赫兹 通信。在一个示例中,通信单元3005可以被实现为收发机,包括天线阵列和/或射频链路等通信部件。通信单元3005用虚线绘出,因为它还可以位于电子设备3000外。
电子设备3000还可以包括存储器3006。存储器3006可以存储各种数据和指令,例如用于电子设备3000操作的程序和数据、由处理电路3001产生的各种数据等。存储器3006用虚线绘出,因为它还可以位于处理电路3001内或者位于电子设备3000外。
图15A和15B分别例示了根据第二实施例的接收端的电子设备及其通信方法。图15A例示了根据本公开的接收端的电子设备4000的框图。取决于具体的通信场景,电子设备4000可以被实现为基站或UE。电子设备4000可以与上面描述的电子设备3000执行信号传输。
如图15A中所示,电子设备4000包括处理电路4001,处理电路4001至少包括导频序列接收单元4002、估计单元4003和反馈单元4004。处理电路4001可被配置为执行图15B中所示的通信方法。
处理电路4001的导频序列接收单元4002被配置为从发送端接收导频序列(即,执行图15B中的步骤S4001)。在一个示例中,导频序列接收单元4002响应于来自发送端的测量请求而接收导频序列。导频序列可以由CSI-RS或DMRS等携带。
估计单元4003被配置为基于导频序列的接收信号,估计DNR(即,执行图15B中的步骤S4002)。附加地,估计单元4003还可以基于导频序列的接收信号来估计信道质量。
反馈单元4004被配置为向发送端反馈关于DNR的信息(即,执行图15B中的步骤S4003),以供发送端调整传输参数。DNR可以被编码成各种形式,诸如指示高或低的二元指示、具体的量化值或者它们的组合。附加地,反馈单元4004可以将指示信道质量的CQI与DNR一起反馈给发送端。
电子设备4000还可以包括例如通信单元4005。通信单元4005可以被配置为在处理电路4001的控制下与发送端(例如上面描述的电子设备3000)进行通信,诸如太赫兹通信。在一个示例中,通信单元4005可以被实现为收发机,包括天线阵列和/或射频链路等通信部件。通信单元4005用虚线绘出,因为它还可以位于电子设备4000外。
电子设备4000还可以包括存储器4006。存储器4006可以存储各种数据和指令,例 如用于电子设备4000操作的程序和数据、由处理电路4001产生的各种数据等。存储器4006用虚线绘出,因为它还可以位于处理电路4001内或者位于电子设备4000外。
应当理解,上述各实施例中描述的电子设备1000、2000、3000、4000的各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
处理电路1001、2001、3001、4001可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
此外,存储器1006、2006、3006、4006可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1)、一种发送端的电子设备,包括:处理电路,被配置为:基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。
2)、如1)所述的电子设备,其中,生成导频序列包括:生成基础导频序列,对于所述星座图中的每一对互为相反数的星座点,所述基础导频序列包含其中的仅一个星座点;通过以预定的重复方式重复一次或多次所述基础导频序列来生成所述导频序列。
3)、如2)所述的电子设备,所述处理电路进一步被配置为:在发送所述导频序列之前,向接收端指示所述导频序列。
4)、如3)所述的电子设备,其中,在已为接收端预先配置所述基础导频序列及 其重复方式的情况下,向接收端指示所述导频序列包括发送关于所述基础导频序列的重复次数的信息。
5)、如1)所述的电子设备,所述处理电路进一步被配置为:利用所述调制方式对数据信号进行调制;向接收端发送经调制的数据信号。
6)、如5)所述的电子设备,所述处理电路进一步被配置为:利用太赫兹频段向接收端发送经调制的数据信号。
7)、一种接收端的电子设备,包括:处理电路,被配置为:从发送端接收导频序列,其中对于与调制方式对应的星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;基于所述导频序列的接收信号,进行与所述星座图的每个星座点相关联的信道估计。
8)、如7)所述的电子设备,其中,所述导频序列包括以预定的重复方式重复一次或多次的基础导频序列,其中对于所述星座图中的每一对互为相反数的星座点,所述基础导频序列包含其中的仅一个星座点。
9)、如8)所述的电子设备,所述处理电路进一步被配置为:在接收所述导频序列之前,从发送端接收关于所述导频序列的指示。
10)、如9)所述的电子设备,其中,在所述导频序列及其重复方式已被预先配置至接收端的情况下,接收关于所述导频序列的指示包括接收关于所述导频序列的重复次数的信息。
11)、如7)所述的电子设备,所述处理电路进一步被配置为:从发送端接收利用所述调制方式调制的数据信号;基于信道估计的结果,对所述数据信号进行解调。
12)、如11)所述的电子设备,所述处理电路进一步被配置为:利用太赫兹频段接收所述数据信号。
13)、如11)所述的电子设备,所述处理电路进一步被配置为:基于信道估计的结果,采用最小距离准则对所述数据信号进行解调,而无需信道均衡。
14)、一种发送端的电子设备,包括:处理电路,被配置为:向接收端发送导频序列;从接收端接收关于失真噪声比(DNR)的信息,所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;至少基于 所述DNR,调整用于向接收端发送数据信号的传输参数。
15)、如14)所述的电子设备,所述处理电路进一步被配置为:在发送所述导频序列之前,向接收端发送对于所述DNR的测量请求。
16)、如14)所述的电子设备,其中,关于DNR的信息包括以下中的至少一个:关于所述DNR是高还是低的二元指示,以及所述DNR的量化值。
17)、如14)所述的电子设备,所述处理电路进一步被配置为:在DNR低于预定阈值的情况下,调整传输参数包括提高发射功率、降低调制阶数、降低编码效率中的至少一个;在DNR高于预定阈值的情况下,调整传输参数包括降低调制阶数、降低编码效率中的至少一个。
18)、如14)所述的电子设备,其中,所述导频序列是第一导频序列,并且所述处理电路进一步被配置为:发送用于相位追踪的第二导频序列,其中第一导频序列的长度大于第二导频序列。
19)、如14)所述的电子设备,所述处理电路进一步被配置为:利用调整后的传输参数,在太赫兹频段上发送数据信号。
20)、一种接收端的电子设备,包括:处理电路,被配置为:从发送端接收导频序列;基于所述导频序列的接收信号,估计失真噪声比(DNR),所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;向发送端反馈关于所述DNR的信息。
21)、如20)所述的电子设备,所述处理电路进一步被配置为:从发送端接收对于所述DNR的测量请求;响应于所述测量请求,估计所述DNR。
22)、如20)所述的电子设备,其中,关于DNR的信息包括以下中的至少一个:关于所述DNR是高还是低的二元指示,以及所述DNR的量化值。
23)、如20)所述的电子设备,其中,所述导频序列是第一导频序列,并且所述处理电路进一步被配置为:接收用于相位追踪的第二导频序列,其中第一导频序列的长度大于第二导频序列。
24)、如20)所述的电子设备,所述处理电路进一步被配置为:基于所述导频序列的接收信号,估计信道质量;将关于信道质量的信息与关于DNR的信息一起反馈给 发送端。
25)、如20)所述电子设备,所述处理电路进一步被配置为:基于所述导频序列的接收信号,进行信道系数与对于接收端的硬件失配的补偿系数的联合估计。
26)、一种通信方法,包括:基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。
27)、一种通信方法,包括:从发送端接收导频序列,其中对于与调制方式对应的星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;基于所述导频序列的接收信号,进行与所述星座图的每个星座点相关联的信道估计。
28)、一种通信方法,包括:向接收端发送导频序列;从接收端接收关于失真噪声比(DNR)的信息,所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;至少基于所述DNR,调整用于向接收端发送数据信号的传输参数。
29)、一种通信方法,包括:从发送端接收导频序列;基于所述导频序列的接收信号,估计失真噪声比(DNR),所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;向发送端反馈关于所述DNR的信息
30)、一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如26)-29)中任一项所述的通信方法。
【本公开的应用实例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备1000、2000、3000、4000可以被实现为各种基站或者安装在基站中,或被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面简单介绍可以应用本公开的技术的基站和用户设备的示例。
应当理解,本公开中使用的术语“基站”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:GSM通信系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者;3G通信系统中的无线电网络控制器(RNC)和NodeB中的一者或两者;4G LTE和LTE-A系统中的eNB;5G通信系统中的gNB和ng-eNB。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。在自动化工厂中,可以将提供网络控制功能的逻辑实体称为基站。
基站的第一应用示例
图16是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图16中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备1000、2000、3000、4000中任一 个。
天线1410包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1410例如可以被布置成天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421可以包括上面所述的处理电路1001、2001、3001、4001中任一个,执行图9B、10B、14B或15B中描述的通信方法,或者控制电子设备1000、2000、3000或4000的各个部件。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置 为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图16示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图16所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图16所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图16示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图16中示出的gNB 1400中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1425中。可替代地,这些组件中的至少一部分可被实现在控制器1421中。例如,gNB 1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
基站的第二应用示例
图17是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图17中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB  1530(或基站设备1550)可以对应于上述电子设备1000、2000、3000、4000中的任一个。
天线1540包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1540例如可以被布置成天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图16描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图16描述的BB处理器1426相同。如图17所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图17示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图17示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图17所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图17示出其中无线通信接口1563包括多个RF电路 1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图17中示出的gNB 1500中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图18是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。在一个示例中,智能电话1600可以被实现为电子设备1000、2000、3000、4000中的任一个。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照附图描述的处理电路1001、2001、3001、4001中的任一个。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导 体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图18所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图18示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1616例如可以被布置成天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、 无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图18所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图18中示出的智能电话1600中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1612中。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图19是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一个示例中,汽车导航设备1720可以被实现为本公开中描述的电子设备1000、2000、3000、4000中的任一个。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络 1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图19所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图19示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1737例如可以被布置成天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图19所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图19中示出的汽车导航装置1720中,处理电路1001、2001、3001或4001中 包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1733中。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例如,BB处理器1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在 没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (30)

  1. 一种发送端的电子设备,包括:
    处理电路,被配置为:
    基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;
    向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。
  2. 如权利要求1所述的电子设备,其中,生成导频序列包括:
    生成基础导频序列,对于所述星座图中的每一对互为相反数的星座点,所述基础导频序列包含其中的仅一个星座点;
    通过以预定的重复方式重复一次或多次所述基础导频序列来生成所述导频序列。
  3. 如权利要求2所述的电子设备,所述处理电路进一步被配置为:
    在发送所述导频序列之前,向接收端指示所述导频序列。
  4. 如权利要求3所述的电子设备,其中,在已为接收端预先配置所述基础导频序列及其重复方式的情况下,向接收端指示所述导频序列包括发送关于所述基础导频序列的重复次数的信息。
  5. 如权利要求1所述的电子设备,所述处理电路进一步被配置为:
    利用所述调制方式对数据信号进行调制;
    向接收端发送经调制的数据信号。
  6. 如权利要求5所述的电子设备,所述处理电路进一步被配置为:
    利用太赫兹频段向接收端发送经调制的数据信号。
  7. 一种接收端的电子设备,包括:
    处理电路,被配置为:
    从发送端接收导频序列,其中对于与调制方式对应的星座图中的每一对互为 相反数的星座点,所述导频序列包含其中的至少一个星座点;
    基于所述导频序列的接收信号,进行与所述星座图的每个星座点相关联的信道估计。
  8. 如权利要求7所述的电子设备,其中,所述导频序列包括以预定的重复方式重复一次或多次的基础导频序列,其中对于所述星座图中的每一对互为相反数的星座点,所述基础导频序列包含其中的仅一个星座点。
  9. 如权利要求8所述的电子设备,所述处理电路进一步被配置为:
    在接收所述导频序列之前,从发送端接收关于所述导频序列的指示。
  10. 如权利要求9所述的电子设备,其中,在所述导频序列及其重复方式已被预先配置至接收端的情况下,接收关于所述导频序列的指示包括接收关于所述导频序列的重复次数的信息。
  11. 如权利要求7所述的电子设备,所述处理电路进一步被配置为:
    从发送端接收利用所述调制方式调制的数据信号;
    基于信道估计的结果,对所述数据信号进行解调。
  12. 如权利要求11所述的电子设备,所述处理电路进一步被配置为:
    利用太赫兹频段接收所述数据信号。
  13. 如权利要求11所述的电子设备,所述处理电路进一步被配置为:
    基于信道估计的结果,采用最小距离准则对所述数据信号进行解调,而无需信道均衡。
  14. 一种发送端的电子设备,包括:
    处理电路,被配置为:
    向接收端发送导频序列;
    从接收端接收关于失真噪声比(DNR)的信息,所述DNR指示所述导频序列 的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;
    至少基于所述DNR,调整用于向接收端发送数据信号的传输参数。
  15. 如权利要求14所述的电子设备,所述处理电路进一步被配置为:
    在发送所述导频序列之前,向接收端发送对于所述DNR的测量请求。
  16. 如权利要求14所述的电子设备,其中,关于DNR的信息包括以下中的至少一个:关于所述DNR是高还是低的二元指示,以及所述DNR的量化值。
  17. 如权利要求14所述的电子设备,其中,调整传输参数包括:
    在DNR低于预定阈值的情况下,提高发射功率、降低调制阶数、降低编码效率中的至少一个;
    在DNR高于预定阈值的情况下,降低调制阶数、降低编码效率中的至少一个。
  18. 如权利要求14所述的电子设备,其中,所述导频序列是第一导频序列,并且所述处理电路进一步被配置为:
    发送用于相位追踪的第二导频序列,其中第一导频序列的长度大于第二导频序列。
  19. 如权利要求14所述的电子设备,所述处理电路进一步被配置为:
    利用调整后的传输参数,在太赫兹频段上发送数据信号。
  20. 一种接收端的电子设备,包括:
    处理电路,被配置为:
    从发送端接收导频序列;
    基于所述导频序列的接收信号,估计失真噪声比(DNR),所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;
    向发送端反馈关于所述DNR的信息。
  21. 如权利要求20所述的电子设备,所述处理电路进一步被配置为:
    从发送端接收对于所述DNR的测量请求;
    响应于所述测量请求,估计所述DNR。
  22. 如权利要求20所述的电子设备,其中,关于DNR的信息包括以下中的至少一个:关于所述DNR是高还是低的二元指示,以及所述DNR的量化值。
  23. 如权利要求20所述的电子设备,其中,所述导频序列是第一导频序列,并且所述处理电路进一步被配置为:
    接收用于相位追踪的第二导频序列,其中第一导频序列的长度大于第二导频序列。
  24. 如权利要求20所述的电子设备,所述处理电路进一步被配置为:
    基于所述导频序列的接收信号,估计信道质量;
    将关于信道质量的信息与关于DNR的信息一起反馈给发送端。
  25. 如权利要求20所述电子设备,所述处理电路进一步被配置为:
    基于所述导频序列的接收信号,进行信道系数与对于接收端的硬件失配的补偿系数的联合估计。
  26. 一种通信方法,包括:
    基于与调制方式对应的星座图,生成导频序列,使得对于所述星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;
    向接收端发送所述导频序列,以供接收端进行与所述星座图中的每个星座点相关联的信道估计。
  27. 一种通信方法,包括:
    从发送端接收导频序列,其中对于与调制方式对应的星座图中的每一对互为相反数的星座点,所述导频序列包含其中的至少一个星座点;
    基于所述导频序列的接收信号,进行与所述星座图的每个星座点相关联的信道估计。
  28. 一种通信方法,包括:
    向接收端发送导频序列;
    从接收端接收关于失真噪声比(DNR)的信息,所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;
    至少基于所述DNR,调整用于向接收端发送数据信号的传输参数。
  29. 一种通信方法,包括:
    从发送端接收导频序列;
    基于所述导频序列的接收信号,估计失真噪声比(DNR),所述DNR指示所述导频序列的接收信号中由发送端的硬件失配导致的失真分量与信道噪声分量之间的比率;
    向发送端反馈关于所述DNR的信息。
  30. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求26-29中任一项所述的通信方法。
PCT/CN2021/110055 2020-08-06 2021-08-02 电子设备、通信方法和存储介质 WO2022028364A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180058883.XA CN116325681A (zh) 2020-08-06 2021-08-02 电子设备、通信方法和存储介质
EP21852227.4A EP4195516A4 (en) 2020-08-06 2021-08-02 ELECTRONIC DEVICE, COMMUNICATION METHOD AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010783403.3A CN114070335A (zh) 2020-08-06 2020-08-06 电子设备、通信方法和存储介质
CN202010783403.3 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022028364A1 true WO2022028364A1 (zh) 2022-02-10

Family

ID=80119952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110055 WO2022028364A1 (zh) 2020-08-06 2021-08-02 电子设备、通信方法和存储介质

Country Status (3)

Country Link
EP (1) EP4195516A4 (zh)
CN (2) CN114070335A (zh)
WO (1) WO2022028364A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785292B1 (en) * 1999-05-28 2004-08-31 3Com Corporation Method for detecting radio frequency impairments in a data-over-cable system
CN101262468A (zh) * 1998-04-16 2008-09-10 松下电器产业株式会社 利用导频信号传送技术的数字通信系统和方法
CN101292487A (zh) * 2005-08-22 2008-10-22 高通股份有限公司 无线通信系统中的可配置导频
CN102124706A (zh) * 2008-06-17 2011-07-13 爱立信电话股份有限公司 用于使用软导频符号来处理无线电信号的方法和接收器
CN105323747A (zh) * 2014-06-23 2016-02-10 中兴通讯股份有限公司 终端能力指示参数的反馈、反馈处理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756000B2 (en) * 2007-05-17 2010-07-13 Harris Corporation Spread baseband injected pilot carrier
EP2712138A3 (en) * 2012-09-24 2014-06-18 ST-Ericsson SA Interference cancellation technique for channel estimation in ofdm receivers
US20150117866A1 (en) * 2013-10-31 2015-04-30 Zte Corporation Quadrature amplitude modulation symbol mapping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262468A (zh) * 1998-04-16 2008-09-10 松下电器产业株式会社 利用导频信号传送技术的数字通信系统和方法
US6785292B1 (en) * 1999-05-28 2004-08-31 3Com Corporation Method for detecting radio frequency impairments in a data-over-cable system
CN101292487A (zh) * 2005-08-22 2008-10-22 高通股份有限公司 无线通信系统中的可配置导频
CN102124706A (zh) * 2008-06-17 2011-07-13 爱立信电话股份有限公司 用于使用软导频符号来处理无线电信号的方法和接收器
CN105323747A (zh) * 2014-06-23 2016-02-10 中兴通讯股份有限公司 终端能力指示参数的反馈、反馈处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195516A4 *

Also Published As

Publication number Publication date
CN116325681A (zh) 2023-06-23
CN114070335A (zh) 2022-02-18
EP4195516A1 (en) 2023-06-14
EP4195516A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US8879667B2 (en) Layer shifting in open loop multiple-input, multiple-output communications
US11239896B2 (en) Beam sweeping method for multiple transmitting beams based on priori information
US10425201B2 (en) Apparatus and method for transmitting and receiving signal in wireless communication system
US11101850B2 (en) Electronic device and communication method
US11601167B2 (en) Method and device for power adjustment in UE and base station
WO2020156503A1 (zh) 电子设备、通信方法和存储介质
CN111867032B (zh) 一种被用于无线通信的节点中的方法和装置
US10721023B2 (en) Electronic device, radio communication apparatus, and radio communication method
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
CN115580387A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022095843A1 (zh) 电子设备、信号处理方法以及计算机可读存储介质
CN111224698A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
JP7259841B2 (ja) 送信装置、方法及びプログラム
CN112714412B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022028364A1 (zh) 电子设备、通信方法和存储介质
US11310091B2 (en) Transmission device, method, and recording medium
CN109787667B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112436869A (zh) 一种被用于无线通信的节点中的方法和装置
CN111615183B (zh) 一种被用于无线通信的节点中的方法和装置
US20240097815A1 (en) MAC Architectures for Adaptive NOMA Modulation
KR102532591B1 (ko) 무선 통신 시스템에서 신호를 송신 및 수신하는 장치 및 방법
CN115804072A (zh) 用于无线通信中可配置调制的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021852227

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE