WO2022024641A1 - 高周波モジュール及び通信装置 - Google Patents
高周波モジュール及び通信装置 Download PDFInfo
- Publication number
- WO2022024641A1 WO2022024641A1 PCT/JP2021/024660 JP2021024660W WO2022024641A1 WO 2022024641 A1 WO2022024641 A1 WO 2022024641A1 JP 2021024660 W JP2021024660 W JP 2021024660W WO 2022024641 A1 WO2022024641 A1 WO 2022024641A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- high frequency
- terminal
- filter
- band
- main surface
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 161
- 230000005540 biological transmission Effects 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000004065 semiconductor Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 6
- 230000007774 longterm Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000012447 hatching Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- SWPMTVXRLXPNDP-UHFFFAOYSA-N 4-hydroxy-2,6,6-trimethylcyclohexene-1-carbaldehyde Chemical compound CC1=C(C=O)C(C)(C)CC(O)C1 SWPMTVXRLXPNDP-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/0057—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/006—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
- H04B1/18—Input circuits, e.g. for coupling to an antenna or a transmission line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/44—Transmit/receive switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/54—Circuits using the same frequency for two directions of communication
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
Definitions
- the present invention relates to a high frequency module and a communication device.
- Patent Document 1 discloses a diversity module for transmitting an uplink signal from a diversity antenna.
- the transmission signal and the reception signal may interfere with each other, causing a decrease in reception sensitivity.
- the present invention provides a high-frequency module and a communication device capable of suppressing interference between a transmission signal and a reception signal when simultaneous communication is performed in a plurality of communication bands.
- the high frequency module has a first main surface and a second main surface facing each other, and is arranged on a module substrate having a rectangular outer shape in a plan view and a second main surface.
- a high-frequency input terminal for receiving an amplified transmission signal from the outside, a first high-frequency output terminal and a second high-frequency output terminal for supplying a received signal to the outside, and a plurality of external connection terminals including an antenna connection terminal.
- a first that is located on the first main surface is connected between a high frequency input terminal and a first high frequency output terminal and an antenna connection terminal, and has a pass band including a first communication band for time division duplex (TDD).
- TDD time division duplex
- a second filter having a band and a high frequency input terminal are arranged in a first region on the second main surface extending along the first side of the four sides constituting the rectangular outer shape of the module board.
- the second high frequency output terminal is arranged in the second region on the second main surface extending along the second side facing the first side among the four sides constituting the rectangular outer shape of the module board.
- the present invention it is possible to suppress interference between a transmission signal and a reception signal when simultaneous communication is performed in a plurality of communication bands.
- FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
- FIG. 2A is a plan view of the high frequency module according to the embodiment.
- FIG. 2B is a plan view of the high frequency module according to the embodiment.
- FIG. 3 is an enlarged plan view of the high frequency module according to the embodiment.
- FIG. 4 is an enlarged cross-sectional view of the high frequency module according to the embodiment.
- each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
- the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
- the z-axis is an axis perpendicular to the main surface of the module substrate, the positive direction thereof indicates an upward direction, and the negative direction thereof indicates a downward direction.
- connection includes not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element. .. Further, “connected between A and B” means that both A and B are connected between A and B.
- planar view means that an object is projected orthographically projected onto the xy plane from the positive side of the z-axis.
- Parts are placed on the main surface of the board means that in addition to the parts being placed on the main surface in contact with the main surface of the board, the parts are placed on the main surface without contacting the main surface. It includes being arranged above and having a part of the component embedded in the substrate from the main surface side.
- a is placed between B and C means that at least one of a plurality of line segments connecting any point in B and any point in C passes through A.
- FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 5 according to the first embodiment.
- the communication device 5 includes a high frequency module 1, an antenna 2, an RFIC 3, and a BBIC 4.
- the high frequency module 1 transmits a high frequency signal between the antenna 2 and the RFIC 3.
- the high frequency module 1 can be used as a diversity module capable of transmitting high frequency signals of TDD in addition to receiving high frequency signals of TDD and frequency division duplex (FDD).
- FDD frequency division duplex
- the antenna 2 is connected to the antenna connection terminal 100 of the high frequency module 1, transmits the high frequency signal output from the high frequency module 1, and also receives the high frequency signal from the outside and outputs it to the high frequency module 1.
- RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency module 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the high frequency transmission signal generated by the signal processing to the transmission path of the high frequency module 1 via an amplifier circuit or the like. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency module 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency module 1.
- the BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency module 1.
- the signal processed by the BBIC 4 for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
- the antenna 2 and the BBIC 4 are not essential components.
- the high frequency module 1 includes low noise amplifiers 21 to 24, switches 51 and 52, filters 61 to 64, matching circuits (MN) 71 to 73, an antenna connection terminal 100, and a high frequency input.
- the terminal 110 and the high frequency output terminals 121 to 124 are provided.
- the antenna connection terminal 100 is connected to the antenna 2.
- the high frequency input terminal 110 is a terminal for receiving an amplified high frequency transmission signal from the outside of the high frequency module 1. Specifically, the high frequency input terminal 110 is a terminal for receiving a transmission signal of the communication band D for TDD and amplified by an external power amplifier circuit.
- the communication band means a frequency band defined in advance by a standardization body for a communication system (for example, 3GPP (3rd Generation Partnership Project), IEEE (Institute of Electrical and Electronics Engineers), etc.).
- the communication system means a communication system constructed by using radio access technology (RAT).
- RAT radio access technology
- As the communication system for example, a 5GNR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, a WLAN (Wireless Local Area Network) system, and the like can be used, but the communication system is not limited thereto.
- the high frequency output terminals 121 to 124 are terminals for providing a high frequency reception signal to the outside of the high frequency module 1.
- the high frequency output terminal 121 is an example of the second high frequency output terminal, and is a terminal for supplying the received signal of the communication band A to the RFIC 3.
- the high frequency output terminal 122 is an example of the second high frequency output terminal, and is a terminal for supplying the received signal of the communication band B to the RFIC 3.
- the high frequency output terminal 123 is an example of the third high frequency output terminal, and is a terminal for supplying the received signal of the communication band C to the RFIC 3.
- the high frequency output terminal 124 is an example of the first high frequency output terminal, and is a terminal for supplying the received signal of the communication band D to the RFIC 3.
- Each of the communication bands A and B is an example of the second communication band, and can communicate with the communication band D at the same time.
- the combination of the communication bands A and B the combination of Band 1 and Band 3 for LTE can be used, but the combination is not limited to this.
- any two of Band 1 and Band 3 for LTE and n75 and n76 for 5G NR may be used.
- Band 25 and Band 66 for LTE may be used as a combination of communication bands A and B.
- a frequency band for WLAN may be used for the communication bands A and / or B.
- a millimeter wave band of 7 GHz or more may be used as the communication band A and / or B.
- Communication band C is an example of a third communication band, and simultaneous communication with communication band D is not possible.
- Band 40 for LTE can be used, but the communication band C is not limited to this.
- Band 7 for LTE may be used as the communication band C.
- a frequency band for 5GNR or WLAN may be used as the communication band C.
- a millimeter wave band of 7 gigahertz or more may be used as the communication band C.
- the communication band D is an example of the first communication band and is a communication band for TDD.
- Band 41 for LTE and / or n41 for 5G NR can be used, but the communication band D is not limited to this.
- a frequency band for WLAN may be used as the communication band D.
- a millimeter wave band of 7 GHz or more may be used as the communication band D.
- the simultaneous communication of a plurality of communication bands means that at least one of simultaneous transmission, simultaneous reception, and simultaneous transmission / reception is permitted in the plurality of communication bands. At this time, it is not excluded that the plurality of communication bands are used independently.
- the combination of communication bands capable of simultaneous communication is defined in advance by, for example, a standardization body for a communication system.
- the combination of communication bands that cannot be simultaneously communicated is a combination of communication bands excluding the combination of communication bands that can be simultaneously communicated.
- the low noise amplifier 21 is connected between the filter 61 and the high frequency output terminal 121.
- the low noise amplifier 21 can amplify the received signal of the communication band A input from the antenna connection terminal 100 via the switch 51, the matching circuit 71, and the filter 61.
- the received signal of the communication band A amplified by the low noise amplifier 21 is output to the high frequency output terminal 121.
- the low noise amplifier 22 is connected between the filter 62 and the high frequency output terminal 122.
- the low noise amplifier 22 can amplify the received signal of the communication band B input from the antenna connection terminal 100 via the switch 51, the matching circuit 71, and the filter 62.
- the received signal of the communication band B amplified by the low noise amplifier 22 is output to the high frequency output terminal 122.
- the low noise amplifier 23 is connected between the filter 63 and the high frequency output terminal 123.
- the low noise amplifier 23 can amplify the received signal of the communication band C input from the antenna connection terminal 100 via the switch 51, the matching circuit 72, and the filter 63.
- the received signal of the communication band C amplified by the low noise amplifier 23 is output to the high frequency output terminal 123.
- the low noise amplifier 24 is connected between the filter 64 and the high frequency output terminal 124.
- the low noise amplifier 24 can amplify the received signal of the communication band D input from the antenna connection terminal 100 via the switch 51, the matching circuit 73, the filter 64, and the switch 52.
- the received signal of the communication band D amplified by the low noise amplifier 24 is output to the high frequency output terminal 124.
- the filter 61 (A-Rx) is an example of the second filter, and has a pass band including the downlink operation band of the communication band A. As a result, the filter 61 can pass the received signal of the communication band A and attenuate the transmission signal of the communication band A and the transmission signal and the reception signal of another communication band that do not overlap with the communication band A.
- the filter 61 has an input terminal 611 and an output terminal 612.
- the input terminal 611 is connected to the antenna connection terminal 100 via the matching circuit 71 and the switch 51.
- the output terminal 612 is connected to the input of the low noise amplifier 21.
- the filter 62 (B-Rx) is an example of the second filter, and has a pass band including the downlink operation band of the communication band B. As a result, the filter 62 can pass the received signal of the communication band B and attenuate the transmission signal of the communication band B and the transmission signal and the reception signal of another communication band that do not overlap with the communication band B.
- the filter 62 has an input terminal 621 and an output terminal 622.
- the input terminal 621 is connected to the antenna connection terminal 100 via the matching circuit 71 and the switch 51.
- the output terminal 622 is connected to the input of the low noise amplifier 22.
- the filters 61 and 62 constitute a multiplexer. That is, the filters 61 and 62 are bundled together and connected to one terminal of the switch 51.
- the filter 63 (C-Rx) is an example of the third filter, and has a pass band including the downlink operation band of the communication band C. As a result, the filter 63 can pass the received signal of the communication band C and attenuate the transmission signal of the communication band C and the transmission signal and the reception signal of another communication band that do not overlap with the communication band C.
- the filter 63 has an input terminal 631 and an output terminal 632.
- the input terminal 631 is connected to the antenna connection terminal 100 via the matching circuit 72 and the switch 51.
- the output terminal 632 is connected to the input of the low noise amplifier 23.
- the filter 64 (D-TRx) is an example of the first filter and has a pass band including the communication band D. As a result, the filter 64 can pass the transmission signal and the reception signal of the communication band D and attenuate the transmission signal and the reception signal of another communication band that do not overlap with the communication band D.
- the filter 64 has two input / output terminals 641 and 642.
- the input / output terminal 641 is connected to the antenna connection terminal 100 via the matching circuit 73 and the switch 51.
- the input / output terminal 642 is connected to the input of the low noise amplifier 24 or the high frequency input terminal 110 via the switch 52.
- the switch 51 is connected between the antenna connection terminal 100 and the filters 61 to 64. Specifically, the switch 51 has terminals 511 to 514.
- the terminal 511 is connected to the antenna connection terminal 100.
- the terminal 512 is connected to the filters 61 and 62 via the matching circuit 71.
- the terminal 513 is connected to the filter 63 via the matching circuit 72.
- the terminal 514 is connected to the filter 64 via the matching circuit 73.
- the switch 51 can connect the terminal 511 to at least one of the terminals 512 to 514, for example, based on the control signal from the RFIC3. That is, the switch 51 can switch between connecting and disconnecting the antenna 2 and each of the filters 61 to 64.
- the switch 51 is composed of, for example, a multi-connection type switch circuit, and is sometimes called an antenna switch.
- the switch 52 is connected between the filter 64, the high frequency input terminal 110, and the low noise amplifier 24. Specifically, the switch 52 has terminals 521 to 523. The terminal 521 is connected to the input / output terminal 642 of the filter 64. The terminal 522 is connected to the input of the low noise amplifier 24, and the terminal 523 is connected to the high frequency input terminal 110.
- the switch 52 can connect the terminal 521 to any of the terminals 522 and 523, for example, based on the control signal from the RFIC3. That is, the switch 52 can switch between the connection of the filter 64 and the low noise amplifier 24 and the connection of the filter 64 and the high frequency input terminal 110.
- the switch 52 is composed of, for example, a SPDT (Single Pole Double Throw) type switch circuit, and may be called a TDD switch.
- the matching circuit 71 is composed of, for example, an inductor and / or a capacitor, and can achieve impedance matching between the antenna 2 and the filters 61 and 62.
- the matching circuit 71 is connected between the switch 51 and the filters 61 and 62. Specifically, the matching circuit 71 is connected to both the input terminal 611 of the filter 61 and the input terminal 621 of the filter 62, and is connected to the antenna connection terminal 100 via the switch 51.
- the matching circuit 72 is composed of, for example, an inductor and / or a capacitor, and can achieve impedance matching between the antenna 2 and the filter 63.
- the matching circuit 72 is connected between the switch 51 and the filter 63. Specifically, the matching circuit 72 is connected to the input terminal 631 of the filter 63 and is connected to the antenna connection terminal 100 via the switch 51.
- the matching circuit 73 is composed of, for example, an inductor and / or a capacitor, and can achieve impedance matching between the antenna 2 and the filter 64.
- the matching circuit 73 is connected between the switch 51 and the filter 64. Specifically, the matching circuit 73 is connected to the input / output terminal 641 of the filter 64 and is connected to the antenna connection terminal 100 via the switch 51.
- the high frequency module 1 may include at least a filter 61 or 62 and a filter 64, and may not include other circuit elements.
- FIG. 2A and 2B are plan views of the high frequency module 1 according to the embodiment. Specifically, FIG. 2A shows a view of the main surface 91a of the module substrate 91 from the positive side of the z-axis. Further, FIG. 2B shows a perspective view of the main surface 91b of the module substrate 91 from the positive side of the z-axis.
- FIG. 3 is an enlarged plan view of the high frequency module 1 according to the embodiment. Specifically, FIG. 3 is an enlarged view of the region iii in FIG. 2A.
- FIG. 4 is an enlarged cross-sectional view of the high frequency module 1 according to the embodiment. The cross section of the high frequency module 1 in FIG. 4 is a cross section in the iv-iv cutting line of FIG.
- the high frequency module 1 further includes a module board 91 and a plurality of external connection terminals 150 in addition to the circuit components constituting the circuit shown in FIG.
- the module board 91 has a main surface 91a and a main surface 91b facing each other.
- Examples of the module substrate 91 include a low-temperature co-fired ceramics (LTCC: Low Temperature Co-fired Ceramics) substrate having a laminated structure of a plurality of dielectric layers, a high-temperature co-fired ceramics (HTCC: High Temperature Co-fired Ceramics) substrate, and the like.
- LTCC Low Temperature Co-fired Ceramics
- HTCC High Temperature Co-fired Ceramics
- a board having a built-in component, a board having a redistribution layer (RDL: Redistribution Layer), a printed circuit board, or the like can be used, but is not limited thereto.
- the main surface 91a is an example of the first main surface, and may be referred to as an upper surface or a surface. As shown in FIG. 2A, low noise amplifiers 21 to 24, switches 51 and 52, filters 61 to 64, and matching circuits 71 to 73 are arranged on the main surface 91a.
- the low noise amplifiers 21 to 24 and the switches 51 and 52 are built in the semiconductor integrated circuit 20 having a rectangular outer shape in a plan view.
- the semiconductor integrated circuit 20 is an electronic circuit formed on the surface and inside of a semiconductor chip (also called a die), and is also called a semiconductor component.
- the semiconductor integrated circuit 20 is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor), and may be specifically configured by an SOI (Silicon on Insulator) process. This makes it possible to manufacture the semiconductor integrated circuit 20 at low cost.
- CMOS Complementary Metal Oxide Semiconductor
- SOI Silicon on Insulator
- the semiconductor integrated circuit 20 may be composed of at least one of GaAs, SiGe, and GaN. This makes it possible to realize a high-quality semiconductor integrated circuit 20.
- the semiconductor integrated circuit 20 has terminals 201 to 206 near the outer edge of the semiconductor integrated circuit 20 in a plan view.
- the terminals 201 to 206 for example, an electrode pad, a bump electrode, a lead electrode, or the like can be used, but the terminals are not limited to these.
- the terminal 201 is an example of the first terminal, is connected to the antenna connection terminal 100, and is connected to the terminal 511 of the switch 51 in the semiconductor integrated circuit 20.
- the terminal 202 is connected to the input / output terminal 641 of the matching circuit 73 and the filter 64 by the wiring 84. Further, the terminal 202 is connected to the terminal 514 of the switch 51 in the semiconductor integrated circuit 20.
- the terminal 203 is connected to the input terminal 631 of the matching circuit 72 and the filter 63 by the wiring 83. Further, the terminal 203 is connected to the terminal 513 of the switch 51 in the semiconductor integrated circuit 20.
- the terminal 204 is connected to the matching circuit 71, the input terminal 621 of the filter 62, and the input terminal 611 of the filter 61 by the wirings 81 and 82. Further, the terminal 204 is connected to the terminal 512 of the switch 51 in the semiconductor integrated circuit 20.
- the terminals 201 to 204 are arranged in the region 212 (hatching region) of the semiconductor integrated circuit 20.
- the region 212 is an example of the third region, and is a virtual region extending along the side 211 which is an example of the third side of the four sides constituting the rectangular outer shape of the semiconductor integrated circuit 20.
- the terminals 201 to 204 are arranged in the vicinity of the side 211.
- the terminal 205 is an example of the second terminal, is connected to the high frequency output terminal 122, and is connected to the output of the low noise amplifier 22 in the semiconductor integrated circuit 20.
- the terminal 206 is an example of the second terminal, is connected to the high frequency output terminal 121, and is connected to the output of the low noise amplifier 21 in the semiconductor integrated circuit 20.
- the terminals 205 and 206 are arranged in the area 214 of the semiconductor integrated circuit 20.
- the region 214 is an example of the fourth region, and is a virtual region extending along the side 213 which is an example of the fourth side of the four sides constituting the rectangular outer shape of the semiconductor integrated circuit 20.
- the side 213 faces the side 211.
- the terminals 205 and 206 are arranged in the vicinity of the side 213 facing the side 211 and separated from the terminals 201 to 204.
- the wiring 81 is an example of the second wiring, and connects the terminal 204 of the semiconductor integrated circuit 20 and the filter 61. Specifically, as shown in FIGS. 2A and 3, the wiring 81 connects the terminal 204 and the matching circuit 71, and also connects the matching circuit 71 and the input terminal 611 of the filter 61.
- the wiring 82 is an example of the second wiring, and connects the terminal 204 of the semiconductor integrated circuit 20 and the filter 62. Specifically, as shown in FIGS. 2A and 3, the wiring 82 connects the terminal 204 and the matching circuit 71, and also connects the matching circuit 71 and the input terminal 621 of the filter 62. Wiring 81 and 82 connecting the terminal 204 and the matching circuit 71 are common wiring.
- the wiring 83 is an example of the third wiring, and connects the terminal 203 of the semiconductor integrated circuit 20 and the filter 63. Specifically, as shown in FIG. 2A, the wiring 83 connects the terminal 203 and the matching circuit 72, and also connects the matching circuit 72 and the input terminal 631 of the filter 63.
- the wiring 84 is an example of the first wiring, and connects the terminal 202 of the semiconductor integrated circuit 20 and the filter 64. Specifically, as shown in FIG. 2A, the wiring 84 connects the terminal 202 and the matching circuit 73, and also connects the matching circuit 73 and the input / output terminal 641 of the filter 64.
- a flat pattern electrode on the main surface 91a can be used, but the wiring is not limited to this.
- a bonding wire may be used as a part or all of the wirings 81 to 84.
- each of the wirings 81, 82 and 84 is smaller than the length of the wiring 83. That is, the wiring between each of the filters 61, 62, and 64 for the communication bands A, B, and D capable of simultaneous communication and the switch 51 is the filter 63 and the switch 51 for the communication band C capable of simultaneous communication. Shorter than the wiring between and.
- the pattern electrodes of the second layer and the third layer among the plurality of wiring layers in the module board 91 are removed.
- the ordinal numbers of the wiring layers are arranged in ascending order from the main surface 91a side to the main surface 91b side.
- the first layer is a wiring layer on the main surface 91a.
- the second to fifth layers are wiring layers in the module board 91.
- the sixth layer is a wiring layer on the main surface 91b.
- the wiring layer from which the pattern electrodes are removed is not limited to the second layer and the third layer, and may be only the second layer, and may be the second layer to the fourth layer or the second layer to the fifth layer. There may be. That is, in a plan view, in the region overlapping with at least one of the wirings 81 and 82 and the matching circuit 71, the pattern electrodes are arranged on at least one of the plurality of wiring layers in the module substrate 91 on the main surface 91a side. Not.
- the total number of wiring layers of the module board 91 is not limited to 6 layers, and may be more or less than 6 layers.
- the filters 61 to 64 are arranged in the vicinity of the side 211 of the semiconductor integrated circuit 20.
- the filter 63 is arranged between the filters 62 and 64.
- an elastic wave filter using a BAW (Bulk Acoustic Wave) an LC filter, a dielectric filter and a distributed constant type filter may be used, and the filters are not limited thereto.
- the main surface 91b is an example of the second main surface, and may be referred to as a lower surface or a back surface. As shown in FIG. 2B, a plurality of external connection terminals 150 are arranged on the main surface 91b.
- the plurality of external connection terminals 150 include an antenna connection terminal 100, a high frequency input terminal 110, high frequency output terminals 121 to 124, and a ground terminal GND.
- the plurality of external connection terminals 150 are connected to input / output terminals and / or ground electrodes on the mother substrate arranged in the negative direction of the z-axis of the high frequency module 1.
- Pad electrodes can be used as the plurality of external connection terminals 150, but the present invention is not limited to this.
- a post electrode or a bump electrode protruding from the main surface 91b may be used.
- the high frequency input terminal 110 which is one of the plurality of external connection terminals 150, is arranged in the region 912 (hatching region) on the main surface 91b.
- the area 912 is an example of the first area, and is a virtual area extending along the side 911 which is an example of the first side of the four sides constituting the rectangular outer shape of the module board 91.
- the high frequency input terminal 110 is arranged in the vicinity of the side 911.
- the high frequency output terminals 121 and 122 which are one of the plurality of external connection terminals 150, are arranged in the region 914 (hatching region) on the main surface 91b.
- the region 914 is an example of the second region, and is a virtual region extending along the side 913, which is an example of the second side, among the four sides constituting the rectangular outer shape of the module board 91.
- the high frequency output terminals 121 and 122 are arranged in the vicinity of the side 913 facing the side 911 and separated from the high frequency input terminal 110.
- a ground terminal GND is arranged between the high frequency input terminal 110 and each of the high frequency output terminals 121 and 122.
- two ground terminals GND larger than the other high frequency input terminals 110 are arranged in the central region on the main surface 91b located between the regions 912 and 914.
- the high frequency module 1 has main surfaces 91a and 91b facing each other, and is arranged on the module substrate 91 having a rectangular outer shape in a plan view and the main surface 91b.
- a high frequency input terminal 110 for receiving the amplified transmission signal from the outside high frequency output terminals 121 and 124 for supplying the received signal to the outside, and a plurality of external connection terminals 150 including an antenna connection terminal 100.
- the high frequency input is provided with a filter 61 which is connected between the high frequency output terminal 121 and the antenna connection terminal 100 and has a pass band including at least a part of the communication band A capable of simultaneous communication with the communication band D.
- the terminal 110 is arranged in the region 912 on the main surface 91b extending along the side 911 of the four sides constituting the rectangular outer shape of the module board 91, and the high frequency output terminal 121 is the rectangular shape of the module board 91. It is arranged in the region 914 on the main surface 91b extending along the side 913 facing the side 911 among the four sides constituting the outer shape.
- the high frequency input terminal 110 into which the amplified transmission signal of the communication band D is input is arranged in the vicinity of the side 911 of the module board 91, and the reception signal of the communication band A capable of simultaneous communication with the communication band D is received.
- the output high frequency output terminal 121 can be arranged in the vicinity of the side 913 facing the side 911 of the module board 91. Therefore, the distance between the high frequency input terminal 110 and the high frequency output terminal 121 can be increased on the main surface 91b of the module board 91, and the isolation between the high frequency input terminal 110 and the high frequency output terminal 121 can be improved.
- the plurality of external connection terminals 150 may further include a ground terminal GND arranged between the high frequency input terminal 110 and the high frequency output terminal 121.
- the ground terminal GND is arranged between the high frequency input terminal 110 and the high frequency output terminal 121, it is between the amplified transmission signal flowing through the high frequency input terminal 110 and the reception signal flowing through the high frequency output terminal 121. Interference can be further suppressed.
- the high frequency module 1 may further include a semiconductor integrated circuit 20 having a rectangular outer shape in a plan view, which is arranged on the main surface 91a or 91b, and the semiconductor integrated circuit 20 may be provided.
- the switch 51 connected between the antenna connection terminal 100 and the filters 61 and 64, the low noise amplifier 21 connected between the filter 61 and the high frequency output terminal 121, and the semiconductor integration connected to the antenna connection terminal 100.
- a terminal 201 connected to the switch 51 in the circuit 20 and a terminal 206 connected to the high frequency output terminal 121 and connected to the output of the low noise amplifier 21 in the semiconductor integrated circuit 20 are provided, and the terminal 201 is a semiconductor.
- the terminal 206 is arranged in the region 212 extending along the side 211 of the four sides constituting the rectangular outer shape of the integrated circuit 20, and the terminal 206 is the side 211 of the four sides constituting the rectangular outer shape of the semiconductor integrated circuit 20. It may be arranged in the region 214 extending along the side 213 facing the.
- the terminal 201 through which the transmission signal of the communication band D flows is arranged in the vicinity of the side 211 of the semiconductor integrated circuit 20, and the terminal 206 through which the reception signal of the communication band A flows faces the side 211 of the semiconductor integrated circuit 20. It can be arranged in the vicinity of the side 213. Therefore, in the semiconductor integrated circuit 20, the distance between the terminals 201 and 206 can be increased, and the isolation between the terminals 201 and 206 can be improved. As a result, when simultaneous communication is performed in the communication bands A and D, it is possible to suppress the interference between the amplified transmission signal flowing through the terminal 201 and the receiving signal flowing through the terminal 206, and the reception sensitivity is improved. be able to.
- the high frequency module 1 is further arranged on the main surface 91a, and is connected between the high frequency output terminal 123 for supplying the received signal to the outside and the antenna connection terminal 100.
- a filter 63 having a pass band including at least a part of the communication band C which cannot be simultaneously communicated with the communication band D may be provided, and the wiring 84 connecting the filter 64 and the switch 51 and the wiring connecting the filter 61 and the switch 51 may be provided.
- Each of 81 may be shorter than the wiring 83 connecting the filter 63 and the switch 51.
- the lengths of the wires 81 and 84 between the filter 61 and the filter 64 and the switch 51 used for simultaneous communication can be shortened. Therefore, it is possible to reduce the wiring loss and the inconsistency loss due to the wirings 81 and 84, and it is possible to improve the electrical characteristics (for example, noise figure (NF)) of the high frequency module 1 in simultaneous communication.
- NF noise figure
- the high frequency module 1 may further include a conductive component arranged between the filter 61 and the filter 64.
- the conductive component can be arranged between the filter 61 through which the received signal of the communication band A flows and the filter 64 through which the transmitted signal and the received signal of the communication band D flow. Therefore, the isolation of the filters 61 and 64 can be improved, the interference between the transmission signal of the communication band D and the reception signal of the communication band A can be suppressed, and the reception sensitivity can be improved.
- the conductive component is connected between the high frequency output terminal 123 for supplying a received signal to the outside and the antenna connection terminal 100, and simultaneously communicates with the communication band D.
- a filter 63 having a pass band including at least a part of the impossible communication band C may be included.
- the filter 63 that passes the received signal of the communication band C that cannot be simultaneously communicated with the communication band A can be used.
- the communication band D may be Band 41 for LTE or n41 for 5 GNR.
- Band 41 or n41 can be used as the communication band D.
- the communication band A may be Band 1 or Band 3 for LTE, or n75 or n76 for 5G NR.
- Band1, Band3, n75, or n76 can be used as the communication band A.
- the communication band C may be Band 7 or Band 40 for LTE.
- Band 7 or Band 40 can be used as the communication band C.
- the communication device 5 includes an RFIC 3 for processing a high frequency signal and a high frequency module 1 for transmitting a high frequency signal between the RFIC 3 and the antenna 2.
- the communication device 5 can exert the same effect as the above effect of the high frequency module 1.
- the high frequency module and the communication device according to the present invention have been described above based on the embodiment, the high frequency module and the communication device according to the present invention are not limited to the above embodiment. Another embodiment realized by combining arbitrary components in the above embodiment, or modifications obtained by applying various modifications to the above embodiments that can be conceived by those skilled in the art without departing from the gist of the present invention. Examples and various devices incorporating the high frequency module and the communication device are also included in the present invention.
- another circuit element, wiring, or the like may be inserted between the paths connecting the circuit elements and the signal paths shown in the drawings. ..
- a filter may be inserted between the antenna connection terminal 100 and the switch 51.
- a matching circuit may be inserted between the filters 61 to 64 and the low noise amplifiers 21 to 24, respectively.
- the filter 63 is arranged between each of the filters 61 and 62 and the filter 64, but the component arranged between each of the filters 61 and 62 and the filter 64 is this.
- a matching circuit 73, a control circuit (not shown), a power supply circuit (not shown) or a metal wall may be placed between at least one of the filters 61 and 62 and the filter 64. That is, other conductive components may be arranged between each of the filters 61 and 62 and the filter 64. Further, the conductive component may not be arranged between each of the filters 61 and 62 and the filter 64.
- the main surfaces 91a and 91b of the module substrate 91 are not molded with the resin member, but the present invention is not limited to this. That is, the main surface 91a and / or 91b of the module substrate 91 may be molded with a resin member. In this case, the surface of the resin member may be covered with a shield electrode layer.
- the ground terminal GND is arranged between the high frequency input terminal 110 and the high frequency output terminal 121/122, but the present invention is not limited to this. That is, the ground terminal GND does not have to be arranged between the high frequency input terminal 110 and the high frequency output terminal 121/122.
- the low noise amplifiers 21 to 24 and the switches 51 and 52 are built in one semiconductor integrated circuit 20, but the present invention is not limited to this. For example, it does not have to be.
- Each of the low noise amplifiers 21-24 and the switches 51 and 52 may be separate surface mount components. Further, the low noise amplifiers 21 to 24 and the switches 51 and 52 may be incorporated in a plurality of semiconductor integrated circuits in any combination.
- the semiconductor integrated circuit 20 is arranged on the main surface 91a of the module substrate 91, but may be arranged on the main surface 91b.
- each of the wirings 81, 82 and 84 is shorter than the wiring 83, but the present invention is not limited to this.
- at least one of the wires 81, 82 and 84 may be longer than the wire 83.
- the present invention can be widely used in communication devices such as mobile phones as a high frequency module arranged on the front end portion.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transceivers (AREA)
Abstract
高周波モジュール(1)は、増幅された送信信号を外部から受けるための高周波入力端子(110)と、受信信号を外部に供給するための高周波出力端子(121及び124)と、高周波入力端子(110)及び高周波出力端子(124)とアンテナ接続端子(100)との間に接続され、TDD用の通信バンドDを含む通過帯域を有するフィルタ(64)と、高周波出力端子(121)とアンテナ接続端子(100)との間に接続され、通信バンドDと同時通信可能な通信バンドAの少なくとも一部を含む通過帯域を有するフィルタ(61)と、を備え、高周波入力端子(110)は、モジュール基板(91)の辺(911)に沿って延びる領域(912)に配置され、高周波出力端子(121)は、モジュール基板(91)の辺(911)に対向する辺(913)に沿って延びる領域(914)に配置されている。
Description
本発明は、高周波モジュール及び通信装置に関する。
近年の携帯電話では、1つの端末で複数の通信システムに対応するマルチモード化及び複数の通信バンドに対応するマルチバンド化に加えて、複数の通信システム及び/又は複数の通信バンドでの同時通信が要求される。例えば、特許文献1には、ダイバーシティアンテナからアップリンク信号を送信するためダイバーシティモジュールが開示されている。
しかしながら、上記従来技術において、複数の通信バンドで同時通信が行われる場合に、送信信号及び受信信号が干渉し、受信感度の低下を引き起こす可能性がある。
そこで、本発明は、複数の通信バンドで同時通信が行われる場合に、送信信号及び受信信号間の干渉を抑制することができる高周波モジュール及び通信装置を提供する。
本発明の一態様に係る高周波モジュールは、互いに対向する第1主面及び第2主面を有し、平面視において矩形状の外形を有するモジュール基板と、第2主面に配置されており、増幅された送信信号を外部から受けるための高周波入力端子、受信信号を外部に供給するための第1高周波出力端子及び第2高周波出力端子、並びに、アンテナ接続端子を含む複数の外部接続端子と、第1主面に配置されており、高周波入力端子及び第1高周波出力端子とアンテナ接続端子との間に接続され、時分割複信(TDD)用の第1通信バンドを含む通過帯域を有する第1フィルタと、第1主面に配置されており、第2高周波出力端子とアンテナ接続端子との間に接続され、第1通信バンドと同時通信可能な第2通信バンドの少なくとも一部を含む通過帯域を有する第2フィルタと、を備え、高周波入力端子は、モジュール基板の矩形状の外形を構成する四辺のうちの第1辺に沿って延びる、第2主面上の第1領域に配置され、第2高周波出力端子は、モジュール基板の矩形状の外形を構成する四辺のうちの、第1辺に対向する第2辺に沿って延びる、第2主面上の第2領域に配置されている。
本発明によれば、複数の通信バンドで同時通信が行われる場合に、送信信号及び受信信号間の干渉を抑制することができる。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
以下の各図において、x軸及びy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
また、本開示の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。また、「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味する。
また、本開示のモジュール構成において、「平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「部品が基板の主面に配置される」とは、部品が基板の主面と接触した状態で主面上に配置されることに加えて、部品が主面と接触せずに主面の上方に配置されること、及び、部品の一部が主面側から基板内に埋め込まれて配置されることを含む。「AがB及びCの間に配置される」とは、B内の任意の点とC内の任意の点とを結ぶ複数の線分のうちの少なくとも1つがAを通ることを意味する。また、「平行」及び「垂直」などの要素間の関係性を示す用語、及び、「矩形」などの要素の形状を示す用語は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
(実施の形態)
[1.1 高周波モジュール1及び通信装置5の回路構成]
本実施の形態に係る高周波モジュール1及び通信装置5の回路構成について、図1を参照しながら説明する。図1は、実施の形態1に係る高周波モジュール1及び通信装置5の回路構成図である。
[1.1 高周波モジュール1及び通信装置5の回路構成]
本実施の形態に係る高周波モジュール1及び通信装置5の回路構成について、図1を参照しながら説明する。図1は、実施の形態1に係る高周波モジュール1及び通信装置5の回路構成図である。
[1.1.1 通信装置5の回路構成]
まず、通信装置5の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置5は、高周波モジュール1と、アンテナ2と、RFIC3と、BBIC4と、を備える。
まず、通信装置5の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置5は、高周波モジュール1と、アンテナ2と、RFIC3と、BBIC4と、を備える。
高周波モジュール1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波モジュール1は、TDD及び周波数分割複信(FDD)の高周波信号の受信に加えて、TDDの高周波信号の送信が可能なダイバーシティモジュールとして利用することができる。高周波モジュール1の詳細な回路構成については後述する。
アンテナ2は、高周波モジュール1のアンテナ接続端子100に接続され、高周波モジュール1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波モジュール1へ出力する。
RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波モジュール1の受信経路を介して入力された高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、増幅回路などを介して高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1が有するスイッチ及び増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4又は高周波モジュール1に実装されてもよい。
BBIC4は、高周波モジュール1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のための音声信号が用いられる。
なお、本実施の形態に係る通信装置5において、アンテナ2及びBBIC4は、必須の構成要素ではない。
[1.1.2 高周波モジュール1の回路構成]
次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、低雑音増幅器21~24と、スイッチ51及び52と、フィルタ61~64と、整合回路(MN)71~73と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子121~124と、を備える。
次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、低雑音増幅器21~24と、スイッチ51及び52と、フィルタ61~64と、整合回路(MN)71~73と、アンテナ接続端子100と、高周波入力端子110と、高周波出力端子121~124と、を備える。
アンテナ接続端子100は、アンテナ2に接続される。
高周波入力端子110は、高周波モジュール1の外部から、増幅された高周波送信信号を受けるための端子である。具体的には、高周波入力端子110は、TDD用の通信バンドDの送信信号であって外部の電力増幅回路で増幅された送信信号を受けるための端子である。
ここで、通信バンドとは、通信システムのための標準化団体など(例えば3GPP(3rd Generation Partnership Project)、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。通信システムとは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムを意味する。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。
高周波出力端子121~124は、高周波モジュール1の外部に、高周波受信信号を提供するための端子である。具体的には、高周波出力端子121は、第2高周波出力端子の一例であり、通信バンドAの受信信号をRFIC3に供給するための端子である。高周波出力端子122は、第2高周波出力端子の一例であり、通信バンドBの受信信号をRFIC3に供給するための端子である。高周波出力端子123は、第3高周波出力端子の一例であり、通信バンドCの受信信号をRFIC3に供給するための端子である。高周波出力端子124は、第1高周波出力端子の一例であり、通信バンドDの受信信号をRFIC3に供給するための端子である。
通信バンドA及びBの各々は、第2通信バンドの一例であり、通信バンドDと同時通信可能である。通信バンドA及びBの組み合わせとしては、LTEのためのBand1及びBand3の組み合わせを用いることができるが、これに限定されない。例えば、通信バンドA及びBの組み合わせとして、LTEのためのBand1及びBand3と、5GNRのためのn75及びn76とのうちの任意の2つが用いられてもよい。また例えば、通信バンドA及びBの組み合わせとして、LTEのためのBand25及びBand66が用いられてもよい。また例えば、通信バンドA及び/又はBに、WLANのための周波数バンドが用いられてもよい。また例えば、通信バンドA及び/又はBとして、7ギガヘルツ以上のミリ波帯域が用いられてもよい。
通信バンドCは、第3通信バンドの一例であり、通信バンドDと同時通信不可能である。通信バンドCとしては、LTEのためのBand40を用いることができるが、これに限定されない。例えば、通信バンドCとして、LTEのためのBand7が用いられてもよい。また例えば、通信バンドCとして、5GNR又はWLANのための周波数バンドが用いられてもよい。また例えば、通信バンドCとして、7ギガヘルツ以上のミリ波帯域が用いられてもよい。
通信バンドDは、第1通信バンドの一例であり、TDD用の通信バンドである。通信バンドDとしては、LTEのためのBand41及び/又は5GNRのためのn41を用いることができるが、これに限定されない。例えば、通信バンドDとして、WLANのための周波数バンドが用いられてもよい。また例えば、通信バンドDとして、7ギガヘルツ以上のミリ波帯域が用いられてもよい。
なお、複数の通信バンドが同時通信可能とは、複数の通信バンドで同時送信、同時受信及び同時送受信の少なくとも1つが許容されることを意味する。このとき、複数の通信バンドがそれぞれ単独で利用されることは排除されない。同時通信可能な通信バンドの組み合わせは、例えば通信システムのための標準化団体などによって予め定義される。
また、複数の通信バンドが同時通信不可能とは、複数の通信バンドで同時送信、同時受信及び同時送受信のいずれも許容されないことを意味する。同時通信不可能な通信バンドの組み合わせは、同時通信可能な通信バンドの組み合わせを除く通信バンドの組み合わせである。
低雑音増幅器21は、フィルタ61と高周波出力端子121との間に接続される。低雑音増幅器21は、アンテナ接続端子100から、スイッチ51、整合回路71及びフィルタ61を介して入力された通信バンドAの受信信号を増幅することができる。低雑音増幅器21で増幅された通信バンドAの受信信号は、高周波出力端子121に出力される。
低雑音増幅器22は、フィルタ62と高周波出力端子122との間に接続される。低雑音増幅器22は、アンテナ接続端子100から、スイッチ51、整合回路71及びフィルタ62を介して入力された通信バンドBの受信信号を増幅することができる。低雑音増幅器22で増幅された通信バンドBの受信信号は、高周波出力端子122に出力される。
低雑音増幅器23は、フィルタ63と高周波出力端子123との間に接続される。低雑音増幅器23は、アンテナ接続端子100から、スイッチ51、整合回路72及びフィルタ63を介して入力された通信バンドCの受信信号を増幅することができる。低雑音増幅器23で増幅された通信バンドCの受信信号は、高周波出力端子123に出力される。
低雑音増幅器24は、フィルタ64と高周波出力端子124との間に接続される。低雑音増幅器24は、アンテナ接続端子100から、スイッチ51、整合回路73、フィルタ64及びスイッチ52を介して入力された通信バンドDの受信信号を増幅することができる。低雑音増幅器24で増幅された通信バンドDの受信信号は、高周波出力端子124に出力される。
フィルタ61(A-Rx)は、第2フィルタの一例であり、通信バンドAのダウンリンク動作バンドを含む通過帯域を有する。これにより、フィルタ61は、通信バンドAの受信信号を通過させ、通信バンドAの送信信号と、通信バンドAと重複しない他の通信バンドの送信信号及び受信信号とを減衰させることができる。
フィルタ61は、入力端子611及び出力端子612を有する。入力端子611は、整合回路71及びスイッチ51を介してアンテナ接続端子100に接続される。出力端子612は、低雑音増幅器21の入力に接続されている。
フィルタ62(B-Rx)は、第2フィルタの一例であり、通信バンドBのダウンリンク動作バンドを含む通過帯域を有する。これにより、フィルタ62は、通信バンドBの受信信号を通過させ、通信バンドBの送信信号と、通信バンドBと重複しない他の通信バンドの送信信号及び受信信号とを減衰させることができる。
フィルタ62は、入力端子621及び出力端子622を有する。入力端子621は、整合回路71及びスイッチ51を介してアンテナ接続端子100に接続される。出力端子622は、低雑音増幅器22の入力に接続されている。
フィルタ61及び62は、マルチプレクサを構成している。つまり、フィルタ61及び62は、1つに束ねられてスイッチ51の1つの端子に接続されている。
フィルタ63(C-Rx)は、第3フィルタの一例であり、通信バンドCのダウンリンク動作バンドを含む通過帯域を有する。これにより、フィルタ63は、通信バンドCの受信信号を通過させ、通信バンドCの送信信号と、通信バンドCと重複しない他の通信バンドの送信信号及び受信信号とを減衰させることができる。
フィルタ63は、入力端子631及び出力端子632を有する。入力端子631は、整合回路72及びスイッチ51を介してアンテナ接続端子100に接続される。出力端子632は、低雑音増幅器23の入力に接続されている。
フィルタ64(D-TRx)は、第1フィルタの一例であり、通信バンドDを含む通過帯域を有する。これにより、フィルタ64は、通信バンドDの送信信号及び受信信号を通過させ、通信バンドDと重複しない他の通信バンドの送信信号及び受信信号を減衰させることができる。
フィルタ64は、2つの入出力端子641及び642を有する。入出力端子641は、整合回路73及びスイッチ51を介してアンテナ接続端子100に接続される。入出力端子642は、スイッチ52を介して低雑音増幅器24の入力又は高周波入力端子110に接続される。
スイッチ51は、アンテナ接続端子100とフィルタ61~64との間に接続されている。具体的には、スイッチ51は、端子511~514を有する。端子511は、アンテナ接続端子100に接続されている。端子512は、整合回路71を介してフィルタ61及び62に接続されている。端子513は、整合回路72を介してフィルタ63に接続されている。端子514は、整合回路73を介してフィルタ64に接続されている。
この接続構成において、スイッチ51は、例えばRFIC3からの制御信号に基づいて、端子511を、端子512~514のうちの少なくとも1つに接続することができる。つまり、スイッチ51は、アンテナ2と、フィルタ61~64の各々との接続及び非接続を切り替えることができる。スイッチ51は、例えばマルチ接続型のスイッチ回路で構成され、アンテナスイッチと呼ばれる場合もある。
スイッチ52は、フィルタ64と高周波入力端子110及び低雑音増幅器24との間に接続されている。具体的には、スイッチ52は、端子521~523を有する。端子521は、フィルタ64の入出力端子642に接続されている。端子522は、低雑音増幅器24の入力に接続され、端子523は、高周波入力端子110に接続されている。
この接続構成において、スイッチ52は、例えばRFIC3からの制御信号に基づいて、端子521を端子522及び523のいずれかに接続することができる。つまり、スイッチ52は、フィルタ64及び低雑音増幅器24の接続と、フィルタ64及び高周波入力端子110の接続とを切り替えることができる。スイッチ52は、例えばSPDT(Single Pole Double Throw)型のスイッチ回路で構成され、TDDスイッチと呼ばれる場合もある。
整合回路71は、例えばインダクタ及び/又はキャパシタで構成され、アンテナ2とフィルタ61及び62とのインピーダンス整合をとることができる。整合回路71は、スイッチ51とフィルタ61及び62との間に接続される。具体的には、整合回路71は、フィルタ61の入力端子611及びフィルタ62の入力端子621の両方に接続され、かつ、スイッチ51を介してアンテナ接続端子100に接続される。
整合回路72は、例えばインダクタ及び/又はキャパシタで構成され、アンテナ2とフィルタ63とのインピーダンス整合をとることができる。整合回路72は、スイッチ51とフィルタ63との間に接続される。具体的には、整合回路72は、フィルタ63の入力端子631に接続され、かつ、スイッチ51を介してアンテナ接続端子100に接続される。
整合回路73は、例えばインダクタ及び/又はキャパシタで構成され、アンテナ2とフィルタ64とのインピーダンス整合をとることができる。整合回路73は、スイッチ51とフィルタ64との間に接続される。具体的には、整合回路73は、フィルタ64の入出力端子641に接続され、かつ、スイッチ51を介してアンテナ接続端子100に接続される。
なお、図1に表された回路素子のいくつかは、高周波モジュール1に含まれなくてもよい。例えば、高周波モジュール1は、少なくとも、フィルタ61又は62と、フィルタ64と、を備えればよく、他の回路素子を備えなくてもよい。
[1.2 高周波モジュール1の部品配置]
次に、以上のように構成された高周波モジュール1の部品配置について、図2A~図4を参照しながら具体的に説明する。
次に、以上のように構成された高周波モジュール1の部品配置について、図2A~図4を参照しながら具体的に説明する。
図2A及び図2Bは、実施の形態に係る高周波モジュール1の平面図である。具体的には、図2Aは、z軸正側からモジュール基板91の主面91aを見た図を示す。また、図2Bは、z軸正側からモジュール基板91の主面91bを透視した図を示す。図3は、実施の形態に係る高周波モジュール1の拡大平面図である。具体的には、図3は、図2Aにおける領域iiiの拡大図である。図4は、実施の形態に係る高周波モジュール1の拡大断面図である。図4における高周波モジュール1の断面は、図3のiv-iv切断線における断面である。
図2A及び図2Bに示すように、高周波モジュール1は、図1に示された回路を構成する回路部品に加えて、さらに、モジュール基板91と、複数の外部接続端子150と、を備える。
モジュール基板91は、互いに対向する主面91a及び主面91bを有する。モジュール基板91としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板、高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、又は、プリント基板等を用いることができるが、これらに限定されない。
主面91aは、第1主面の一例であり、上面又は表面と呼ばれる場合がある。主面91aには、図2Aに示すように、低雑音増幅器21~24と、スイッチ51及び52と、フィルタ61~64と、整合回路71~73と、が配置されている。
低雑音増幅器21~24とスイッチ51及び52とは、平面視において矩形状の外形を有する半導体集積回路20に内蔵されている。半導体集積回路20とは、半導体チップ(ダイとも呼ばれる)の表面及び内部に形成された電子回路であり、半導体部品とも呼ばれる。半導体集積回路20は、例えば、CMOS(Complementary Metal Oxide Semiconductor)で構成され、具体的にはSOI(Silicon on Insulator)プロセスにより構成されてもよい。これにより、半導体集積回路20を安価に製造することが可能となる。なお、半導体集積回路20は、GaAs、SiGe及びGaNのうちの少なくとも1つで構成されてもよい。これにより、高品質な半導体集積回路20を実現することができる。
半導体集積回路20は、平面視において、半導体集積回路20の外縁近傍に端子201~206を有する。端子201~206としては、例えば、電極パッド、バンプ電極又はリード電極等を用いることができるが、これに限定されない。
端子201は、第1端子の一例であり、アンテナ接続端子100に接続され、かつ、半導体集積回路20内でスイッチ51の端子511に接続されている。端子202は、配線84によって、整合回路73及びフィルタ64の入出力端子641に接続されている。また、端子202は、半導体集積回路20内においてスイッチ51の端子514に接続されている。端子203は、配線83によって、整合回路72及びフィルタ63の入力端子631に接続されている。また、端子203は、半導体集積回路20内においてスイッチ51の端子513に接続されている。端子204は、配線81及び82によって、整合回路71、フィルタ62の入力端子621及びフィルタ61の入力端子611に接続されている。また、端子204は、半導体集積回路20内においてスイッチ51の端子512に接続されている。
端子201~204は、半導体集積回路20の領域212(ハッチング領域)に配置されている。領域212は、第3領域の一例であり、半導体集積回路20の矩形状の外形を構成する四辺のうちの、第3辺の一例である辺211に沿って延びる仮想的な領域である。これにより、端子201~204は、辺211の近傍に配置される。
端子205は、第2端子の一例であり、高周波出力端子122に接続され、かつ、半導体集積回路20内において低雑音増幅器22の出力に接続されている。端子206は、第2端子の一例であり、高周波出力端子121に接続され、かつ、半導体集積回路20内において低雑音増幅器21の出力に接続されている。
端子205及び206は、半導体集積回路20の領域214に配置されている。領域214は、第4領域の一例であり、半導体集積回路20の矩形状の外形を構成する四辺のうちの、第四辺の一例である辺213に沿って延びる仮想的な領域である。辺213は、辺211に対向している。これにより、端子205及び206は、辺211に対向する辺213の近傍に配置され、端子201~204から離れて配置される。
配線81は、第2配線の一例であり、半導体集積回路20の端子204とフィルタ61とを接続する。具体的には、配線81は、図2A及び図3に示すように、端子204及び整合回路71を接続し、かつ、整合回路71及びフィルタ61の入力端子611を接続する。
配線82は、第2配線の一例であり、半導体集積回路20の端子204とフィルタ62とを接続する。具体的には、配線82は、図2A及び図3に示すように、端子204及び整合回路71を接続し、かつ、整合回路71及びフィルタ62の入力端子621を接続する。端子204と整合回路71とを接続する配線81及び82は共通配線である。
配線83は、第3配線の一例であり、半導体集積回路20の端子203とフィルタ63とを接続する。具体的には、配線83は、図2Aに示すように、端子203及び整合回路72を接続し、かつ、整合回路72及びフィルタ63の入力端子631を接続する。
配線84は、第1配線の一例であり、半導体集積回路20の端子202とフィルタ64とを接続する。具体的には、配線84は、図2Aに示すように、端子202及び整合回路73を接続し、かつ、整合回路73及びフィルタ64の入出力端子641を接続する。
配線81~84としては、主面91a上の平面パターン電極を用いることができるが、これに限定されない。例えば、配線81~84の一部又は全部として、例えば、ボンディングワイヤが用いられてもよい。
ここで、配線81、82及び84の各々の長さは、配線83の長さよりも小さい。つまり、同時通信可能な通信バンドA、B及びDのためのフィルタ61、62及び64の各々とスイッチ51との間の配線は、同時通信不可能な通信バンドCのためのフィルタ63とスイッチ51との間の配線よりも短い。
図4に示すように、配線81及び82並びに整合回路71の直下では、モジュール基板91内の複数の配線層のうちの第2層及び第3層のパターン電極が除去されている。ここでは、配線層の序数は、主面91a側から主面91b側に向かって昇順に振られている。第1層は、主面91a上の配線層である。第2層から第5層は、モジュール基板91内の配線層である。第6層は、主面91b上の配線層である。
なお、パターン電極が除去される配線層は、第2層及び第3層に限定されず、第2層だけであってもよく、第2層~第4層又は第2層~第5層であってもよい。つまり、平面視において、配線81及び82並びに整合回路71の少なくとも1つに重なる領域では、モジュール基板91内の複数の配線層のうちの主面91a側の少なくとも1つに、パターン電極が配置されていない。
これにより、フィルタ61及び62を束ねる配線81及び82とモジュール基板91内のパターン電極との間で発生する寄生容量を低減することができる。その結果、通信バンドA及びBの同時通信において、フィルタ61及び62の寄生容量によるインピーダンス不整合損を低減することができ、高周波モジュール1の電気特性を向上させることができる。
なお、モジュール基板91の配線層の総数は、6層に限定されず、6層よりも多くてもよく、少なくてもよい。
フィルタ61~64は、半導体集積回路20の辺211の近傍に配置されている。フィルタ63は、フィルタ62及び64の間に配置されている。フィルタ61~64としては、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、LCフィルタ、誘電体フィルタ及び分布定数型フィルタが用いられてもよく、さらには、これらに限定されない。
主面91bは、第2主面の一例であり、下面又は裏面と呼ばれる場合がある。主面91bには、図2Bに示すように、複数の外部接続端子150が配置されている。
複数の外部接続端子150は、アンテナ接続端子100、高周波入力端子110、高周波出力端子121~124、及びグランド端子GNDを含む。複数の外部接続端子150は、高周波モジュール1のz軸負方向に配置されたマザー基板上の入出力端子及び/又はグランド電極等に接続される。複数の外部接続端子150としては、パッド電極を用いることができるが、これに限定されない。複数の外部接続端子150として、例えば、主面91bから突出するポスト電極又はバンプ電極が用いられてもよい。
複数の外部接続端子150のうちの1つである高周波入力端子110は、主面91b上の領域912(ハッチング領域)に配置されている。領域912は、第1領域の一例であり、モジュール基板91の矩形状の外形を構成する四辺のうちの、第1辺の一例である辺911に沿って延びる仮想的な領域である。これにより、高周波入力端子110は、辺911の近傍に配置される。
複数の外部接続端子150のうちの1つである高周波出力端子121及び122は、主面91b上の領域914(ハッチング領域)に配置されている。領域914は、第2領域の一例であり、モジュール基板91の矩形状の外形を構成する四辺のうちの、第2辺の一例である辺913に沿って延びる仮想的な領域である。これにより、高周波出力端子121及び122は、辺911に対向する辺913の近傍に配置され、高周波入力端子110から離れて配置される。
高周波入力端子110と高周波出力端子121及び122の各々との間には、グランド端子GNDが配置されている。図2Bでは、領域912及び914の間に位置する主面91b上の中心領域に他の高周波入力端子110よりも大きい2つのグランド端子GNDが配置されている。
[1.3 効果など]
以上のように、本実施の形態に係る高周波モジュール1は、互いに対向する主面91a及び91bを有し、平面視において矩形状の外形を有するモジュール基板91と、主面91bに配置されており、増幅された送信信号を外部から受けるための高周波入力端子110、受信信号を外部に供給するための高周波出力端子121及び124、並びに、アンテナ接続端子100を含む複数の外部接続端子150と、主面91aに配置されており、高周波入力端子110及び高周波出力端子124とアンテナ接続端子100との間に接続され、TDD用の通信バンドDを含む通過帯域を有するフィルタ64と、主面91aに配置されており、高周波出力端子121とアンテナ接続端子100との間に接続され、通信バンドDと同時通信可能な通信バンドAの少なくとも一部を含む通過帯域を有するフィルタ61と、を備え、高周波入力端子110は、モジュール基板91の矩形状の外形を構成する四辺のうちの辺911に沿って延びる、主面91b上の領域912に配置され、高周波出力端子121は、モジュール基板91の矩形状の外形を構成する四辺のうちの、辺911に対向する辺913に沿って延びる、主面91b上の領域914に配置されている。
以上のように、本実施の形態に係る高周波モジュール1は、互いに対向する主面91a及び91bを有し、平面視において矩形状の外形を有するモジュール基板91と、主面91bに配置されており、増幅された送信信号を外部から受けるための高周波入力端子110、受信信号を外部に供給するための高周波出力端子121及び124、並びに、アンテナ接続端子100を含む複数の外部接続端子150と、主面91aに配置されており、高周波入力端子110及び高周波出力端子124とアンテナ接続端子100との間に接続され、TDD用の通信バンドDを含む通過帯域を有するフィルタ64と、主面91aに配置されており、高周波出力端子121とアンテナ接続端子100との間に接続され、通信バンドDと同時通信可能な通信バンドAの少なくとも一部を含む通過帯域を有するフィルタ61と、を備え、高周波入力端子110は、モジュール基板91の矩形状の外形を構成する四辺のうちの辺911に沿って延びる、主面91b上の領域912に配置され、高周波出力端子121は、モジュール基板91の矩形状の外形を構成する四辺のうちの、辺911に対向する辺913に沿って延びる、主面91b上の領域914に配置されている。
これによれば、通信バンドDの増幅された送信信号が入力される高周波入力端子110をモジュール基板91の辺911の近傍に配置し、通信バンドDと同時通信可能な通信バンドAの受信信号が出力される高周波出力端子121をモジュール基板91の辺911に対向する辺913の近傍に配置することができる。したがって、モジュール基板91の主面91b上において、高周波入力端子110及び高周波出力端子121間の距離を増加させることができ、高周波入力端子110及び高周波出力端子121のアイソレーションを向上させることができる。その結果、通信バンドA及びDで同時通信が行われる場合に、高周波入力端子110を流れる増幅された送信信号と高周波出力端子121を流れる受信信号との間の干渉を抑制することができ、受信感度を向上させることができる。特に、本実施の形態では、高周波入力端子110には増幅された送信信号が流れるので、送信信号と受信信号との間の干渉の抑制による受信感度の向上効果は顕著である。
また例えば、本実施の形態に係る高周波モジュール1において、複数の外部接続端子150は、さらに、高周波入力端子110と高周波出力端子121との間に配置されたグランド端子GNDを含んでもよい。
これによれば、高周波入力端子110と高周波出力端子121との間にグランド端子GNDが配置されるので、高周波入力端子110を流れる増幅された送信信号と高周波出力端子121を流れる受信信号との間の干渉をより抑制することができる。
また例えば、本実施の形態に係る高周波モジュール1は、さらに、主面91a又は91bに配置された、平面視において矩形状の外形を有する半導体集積回路20を備えてもよく、半導体集積回路20は、アンテナ接続端子100とフィルタ61及び64との間に接続されたスイッチ51と、フィルタ61及び高周波出力端子121の間に接続された低雑音増幅器21と、アンテナ接続端子100に接続され、半導体集積回路20内でスイッチ51に接続された端子201と、高周波出力端子121に接続され、半導体集積回路20内で低雑音増幅器21の出力に接続された端子206と、を備え、端子201は、半導体集積回路20の矩形状の外形を構成する四辺のうちの辺211に沿って延びる領域212に配置され、端子206は、半導体集積回路20の矩形状の外形を構成する四辺のうちの、辺211に対向する辺213に沿って延びる領域214に配置されてもよい。
これによれば、通信バンドDの送信信号が流れる端子201を半導体集積回路20の辺211の近傍に配置し、通信バンドAの受信信号が流れる端子206を半導体集積回路20の辺211に対向する辺213の近傍に配置することができる。したがって、半導体集積回路20において、端子201及び206間の距離を増加させることができ、端子201及び206のアイソレーションを向上させることができる。その結果、通信バンドA及びDで同時通信が行われる場合に、端子201を流れる増幅された送信信号と端子206を流れる受信信号との間の干渉を抑制することができ、受信感度を向上させることができる。
また例えば、本実施の形態に係る高周波モジュール1は、さらに、主面91aに配置されており、受信信号を外部に供給するための高周波出力端子123とアンテナ接続端子100との間に接続され、通信バンドDと同時通信不可能な通信バンドCの少なくとも一部を含む通過帯域を有するフィルタ63を備えてもよく、フィルタ64及びスイッチ51を接続する配線84とフィルタ61及びスイッチ51を接続する配線81との各々は、フィルタ63及びスイッチ51を接続する配線83よりも短くてもよい。
これによれば、同時通信に用いられるフィルタ61及びフィルタ64とスイッチ51との間の配線81及び84の長さを短縮することができる。したがって、配線81及び84による配線ロス及び不整合損を低減することができ、同時通信における高周波モジュール1の電気特性(例えば雑音指数(NF)など)を改善することができる。
また例えば、本実施の形態に係る高周波モジュール1は、さらに、フィルタ61とフィルタ64との間に配置された導電部品を備えてもよい。
これによれば、通信バンドAの受信信号が流れるフィルタ61と通信バンドDの送信信号及び受信信号が流れるフィルタ64との間に導電部品を配置することができる。したがって、フィルタ61及び64のアイソレーションを向上させることができ、通信バンドDの送信信号と通信バンドAの受信信号との間の干渉を抑制することができ、受信感度を向上させることができる。
また例えば、本実施の形態に係る高周波モジュール1において、上記導電部品は、受信信号を外部に供給するための高周波出力端子123とアンテナ接続端子100との間に接続され、通信バンドDと同時通信不可能な通信バンドCの少なくとも一部を含む通過帯域を有するフィルタ63を含んでもよい。
これによれば、フィルタ61とフィルタ64との間に配置される導電部品として、通信バンドAと同時通信不可能な通信バンドCの受信信号を通過させるフィルタ63を用いることができる。
また例えば、本実施の形態に係る高周波モジュール1において、通信バンドDは、LTEのためのBand41又は5GNRのためのn41であってもよい。
これによれば、通信バンドDとして、Band41又はn41を用いることができる。
また例えば、本実施の形態に係る高周波モジュール1において、通信バンドAは、LTEのためのBand1若しくはBand3、又は、5GNRのためのn75若しくはn76であってもよい。
これによれば、通信バンドAとして、Band1、Band3、n75、又は、n76を用いることができる。
また例えば、本実施の形態に係る高周波モジュール1において、通信バンドCは、LTEのためのBand7又はBand40であってもよい。
これによれば、通信バンドCとして、Band7又はBand40を用いることができる。
また、本実施の形態に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波モジュール1と、を備える。
これによれば、通信装置5は、高周波モジュール1の上記効果と同様の効果を奏することができる。
(他の実施の形態)
以上、本発明に係る高周波モジュール及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波モジュール及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュール及び通信装置を内蔵した各種機器も本発明に含まれる。
以上、本発明に係る高周波モジュール及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波モジュール及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュール及び通信装置を内蔵した各種機器も本発明に含まれる。
例えば、上記実施の形態に係る高周波モジュール及び通信装置の回路構成において、図面に表された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、上記実施の形態において、アンテナ接続端子100とスイッチ51との間にフィルタが挿入されてもよい。また例えば、フィルタ61~64と低雑音増幅器21~24との間にそれぞれ整合回路が挿入されてもよい。
なお、上記実施の形態では、フィルタ61及び62の各々とフィルタ64との間に、フィルタ63が配置されていたが、フィルタ61及び62の各々とフィルタ64との間に配置される部品はこれに限定されない。例えば、整合回路73、制御回路(図示せず)、電源回路(図示せず)又は金属壁がフィルタ61及び62の少なくとも一方とフィルタ64との間に配置されてもよい。つまり、フィルタ61及び62の各々とフィルタ64との間に他の導電部品が配置されてもよい。また、フィルタ61及び62の各々とフィルタ64との間に導電部品が配置されなくてもよい。
なお、上記実施の形態では、モジュール基板91の主面91a及び91bは、樹脂部材でモールドされていなかったが、これに限定されない。つまり、モジュール基板91の主面91a及び/又は91bは、樹脂部材でモールドされてもよい。この場合、樹脂部材の表面は、シールド電極層で覆われてもよい。
なお、上記実施の形態では、高周波入力端子110と高周波出力端子121/122との間にグランド端子GNDが配置されていたが、これに限定されない。つまり、グランド端子GNDは、高周波入力端子110と高周波出力端子121/122との間に配置されなくてもよい。
なお、上記実施の形態では、低雑音増幅器21~24とスイッチ51及び52とは1つの半導体集積回路20に内蔵されていたが、これに限定されない。例えば、なくてもよい。低雑音増幅器21~24とスイッチ51及び52との各々は個別の表面実装部品であってもよい。また、低雑音増幅器21~24とスイッチ51及び52とは、任意の組み合わせで複数の半導体集積回路に内蔵されてもよい。
なお、上記実施の形態では、半導体集積回路20は、モジュール基板91の主面91aに配置されていたが、主面91bに配置されてもよい。
なお、上記実施の形態では、配線81、82及び84の各々が配線83より短かったが、これに限定されない。例えば、配線81、82及び84の少なくとも1つは、配線83よりも長くてもよい。
本発明は、フロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。
1 高周波モジュール
2 アンテナ
3 RFIC
4 BBIC
5 通信装置
20 半導体集積回路
21、22、23、24 低雑音増幅器
51、52 スイッチ
61、62、63、64 フィルタ
71、72、73 整合回路
91 モジュール基板
91a、91b 主面
100 アンテナ接続端子
110 高周波入力端子
121、122、123、124 高周波出力端子
150 外部接続端子
201、202、203、204、205、206、511、512、513、514、521、522、523 端子
611、621、631 入力端子
612、622、632 出力端子
641、642 入出力端子
911、913 辺
912、914 領域
GND グランド端子
2 アンテナ
3 RFIC
4 BBIC
5 通信装置
20 半導体集積回路
21、22、23、24 低雑音増幅器
51、52 スイッチ
61、62、63、64 フィルタ
71、72、73 整合回路
91 モジュール基板
91a、91b 主面
100 アンテナ接続端子
110 高周波入力端子
121、122、123、124 高周波出力端子
150 外部接続端子
201、202、203、204、205、206、511、512、513、514、521、522、523 端子
611、621、631 入力端子
612、622、632 出力端子
641、642 入出力端子
911、913 辺
912、914 領域
GND グランド端子
Claims (10)
- 互いに対向する第1主面及び第2主面を有し、平面視において矩形状の外形を有するモジュール基板と、
前記第2主面に配置されており、増幅された送信信号を外部から受けるための高周波入力端子、受信信号を外部に供給するための第1高周波出力端子及び第2高周波出力端子、並びに、アンテナ接続端子を含む複数の外部接続端子と、
前記第1主面に配置されており、前記高周波入力端子及び前記第1高周波出力端子と前記アンテナ接続端子との間に接続され、時分割複信(TDD)用の第1通信バンドを含む通過帯域を有する第1フィルタと、
前記第1主面に配置されており、前記第2高周波出力端子と前記アンテナ接続端子との間に接続され、前記第1通信バンドと同時通信可能な第2通信バンドの少なくとも一部を含む通過帯域を有する第2フィルタと、を備え、
前記高周波入力端子は、前記モジュール基板の矩形状の外形を構成する四辺のうちの第1辺に沿って延びる、前記第2主面上の第1領域に配置され、
前記第2高周波出力端子は、前記モジュール基板の矩形状の外形を構成する前記四辺のうちの、前記第1辺に対向する第2辺に沿って延びる、前記第2主面上の第2領域に配置されている、
高周波モジュール。 - 前記複数の外部接続端子は、さらに、前記高周波入力端子及び前記第2高周波出力端子の間に配置されたグランド端子を含む、
請求項1に記載の高周波モジュール。 - さらに、
前記第1主面又は前記第2主面に配置された、平面視において矩形状の外形を有する半導体集積回路を備え、
前記半導体集積回路は、
前記アンテナ接続端子と前記第1フィルタ及び前記第2フィルタとの間に接続されたスイッチと、
前記第2フィルタと前記第2高周波出力端子との間に接続された低雑音増幅器と、
前記アンテナ接続端子に接続され、前記半導体集積回路内で前記スイッチに接続された第1端子と、
前記第2高周波出力端子に接続され、前記半導体集積回路内で前記低雑音増幅器の出力に接続された第2端子と、を備え、
前記第1端子は、前記半導体集積回路の矩形状の外形を構成する四辺のうちの第3辺に沿って延びる第3領域に配置され、
前記第2端子は、前記半導体集積回路の矩形状の外形を構成する前記四辺のうちの、前記第3辺に対向する第四辺に沿って延びる第4領域に配置されている、
請求項1又は2に記載の高周波モジュール。 - さらに、
前記第1主面に配置されており、受信信号を外部に供給するための第3高周波出力端子と前記アンテナ接続端子との間に接続され、前記第1通信バンドと同時通信不可能な第3通信バンドの少なくとも一部を含む通過帯域を有する第3フィルタを備え、
前記第1フィルタ及び前記スイッチを接続する第1配線と前記第2フィルタ及び前記スイッチを接続する第2配線との各々は、前記第3フィルタ及び前記スイッチを接続する第3配線よりも短い、
請求項3に記載の高周波モジュール。 - さらに、前記第1フィルタ及び前記第2フィルタの間に配置された導電部品を備える、
請求項1~4のいずれか1項に記載の高周波モジュール。 - 前記導電部品は、受信信号を外部に供給するための第3高周波出力端子と前記アンテナ接続端子との間に接続され、前記第1通信バンドと同時通信不可能な第3通信バンドの少なくとも一部を含む通過帯域を有する第3フィルタを含む、
請求項5に記載の高周波モジュール。 - 前記第1通信バンドは、LTE(Long Term Evolution)のためのBand41又は5GNR(5th Generation New Radio)のためのn41である、
請求項1~6のいずれか1項に記載の高周波モジュール。 - 前記第2通信バンドは、LTEのためのBand1若しくはBand3、又は、5GNRのためのn75若しくn76である、
請求項1~7のいずれか1項に記載の高周波モジュール。 - 前記第3通信バンドは、LTEのためのBand7又はBand40である、
請求項4に記載の高周波モジュール。 - 高周波信号を処理する信号処理回路と、
前記信号処理回路とアンテナとの間で前記高周波信号を伝送する請求項1~9のいずれか1項に記載の高周波モジュールと、を備える、
通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180049848.1A CN115956343A (zh) | 2020-07-28 | 2021-06-30 | 高频模块以及通信装置 |
US18/154,947 US20230155612A1 (en) | 2020-07-28 | 2023-01-16 | Radio frequency module and communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020127779 | 2020-07-28 | ||
JP2020-127779 | 2020-07-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/154,947 Continuation US20230155612A1 (en) | 2020-07-28 | 2023-01-16 | Radio frequency module and communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022024641A1 true WO2022024641A1 (ja) | 2022-02-03 |
Family
ID=80037319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024660 WO2022024641A1 (ja) | 2020-07-28 | 2021-06-30 | 高周波モジュール及び通信装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230155612A1 (ja) |
CN (1) | CN115956343A (ja) |
WO (1) | WO2022024641A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210306018A1 (en) * | 2020-03-31 | 2021-09-30 | Murata Manufacturing Co., Ltd. | Radio frequency module and communication device |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009219023A (ja) * | 2008-03-12 | 2009-09-24 | Hitachi Media Electoronics Co Ltd | 無線信号処理回路及び無線モジュール |
WO2015041125A1 (ja) * | 2013-09-17 | 2015-03-26 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
WO2016194924A1 (ja) * | 2015-06-03 | 2016-12-08 | 株式会社村田製作所 | 高周波フロントエンド回路 |
WO2018088410A1 (ja) * | 2016-11-11 | 2018-05-17 | 株式会社村田製作所 | スイッチic、高周波モジュールおよび通信装置 |
WO2018168653A1 (ja) * | 2017-03-14 | 2018-09-20 | 株式会社村田製作所 | 高周波モジュール |
WO2019065419A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
WO2019065311A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 半導体素子、高周波回路および通信装置 |
JP2019068194A (ja) * | 2017-09-29 | 2019-04-25 | 株式会社村田製作所 | フロントエンドモジュールおよび通信装置 |
JP2019154025A (ja) * | 2018-03-01 | 2019-09-12 | 株式会社村田製作所 | 高周波フロントエンド回路及びそれを備える通信装置 |
WO2019188968A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社村田製作所 | 高周波モジュール及びそれを備える通信装置 |
JP2019192992A (ja) * | 2018-04-20 | 2019-10-31 | 株式会社村田製作所 | フロントエンドモジュールおよび通信装置 |
US20200014429A1 (en) * | 2018-02-06 | 2020-01-09 | Skyworks Solutions, Inc. | Radio-frequency front-end systems |
WO2020066380A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | 回路モジュール及び通信装置 |
WO2020071021A1 (ja) * | 2018-10-05 | 2020-04-09 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
-
2021
- 2021-06-30 CN CN202180049848.1A patent/CN115956343A/zh active Pending
- 2021-06-30 WO PCT/JP2021/024660 patent/WO2022024641A1/ja active Application Filing
-
2023
- 2023-01-16 US US18/154,947 patent/US20230155612A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009219023A (ja) * | 2008-03-12 | 2009-09-24 | Hitachi Media Electoronics Co Ltd | 無線信号処理回路及び無線モジュール |
WO2015041125A1 (ja) * | 2013-09-17 | 2015-03-26 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
WO2016194924A1 (ja) * | 2015-06-03 | 2016-12-08 | 株式会社村田製作所 | 高周波フロントエンド回路 |
WO2018088410A1 (ja) * | 2016-11-11 | 2018-05-17 | 株式会社村田製作所 | スイッチic、高周波モジュールおよび通信装置 |
WO2018168653A1 (ja) * | 2017-03-14 | 2018-09-20 | 株式会社村田製作所 | 高周波モジュール |
WO2019065311A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 半導体素子、高周波回路および通信装置 |
WO2019065419A1 (ja) * | 2017-09-29 | 2019-04-04 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
JP2019068194A (ja) * | 2017-09-29 | 2019-04-25 | 株式会社村田製作所 | フロントエンドモジュールおよび通信装置 |
US20200014429A1 (en) * | 2018-02-06 | 2020-01-09 | Skyworks Solutions, Inc. | Radio-frequency front-end systems |
JP2019154025A (ja) * | 2018-03-01 | 2019-09-12 | 株式会社村田製作所 | 高周波フロントエンド回路及びそれを備える通信装置 |
WO2019188968A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社村田製作所 | 高周波モジュール及びそれを備える通信装置 |
JP2019192992A (ja) * | 2018-04-20 | 2019-10-31 | 株式会社村田製作所 | フロントエンドモジュールおよび通信装置 |
WO2020066380A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社村田製作所 | 回路モジュール及び通信装置 |
WO2020071021A1 (ja) * | 2018-10-05 | 2020-04-09 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210306018A1 (en) * | 2020-03-31 | 2021-09-30 | Murata Manufacturing Co., Ltd. | Radio frequency module and communication device |
US11528044B2 (en) * | 2020-03-31 | 2022-12-13 | Murata Manufacturing Co., Ltd. | Radio frequency module and communication device |
Also Published As
Publication number | Publication date |
---|---|
CN115956343A (zh) | 2023-04-11 |
US20230155612A1 (en) | 2023-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102489366B1 (ko) | 고주파 모듈 및 통신장치 | |
WO2022209751A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022034819A1 (ja) | 高周波モジュール | |
JP2021170701A (ja) | 高周波モジュール及び通信装置 | |
US11528044B2 (en) | Radio frequency module and communication device | |
KR102476616B1 (ko) | 고주파 모듈 및 통신장치 | |
US20230155612A1 (en) | Radio frequency module and communication device | |
WO2022034818A1 (ja) | 高周波モジュール | |
KR102504973B1 (ko) | 고주파 모듈 및 통신 장치 | |
JP2021170702A (ja) | 高周波モジュール及び通信装置 | |
WO2023021792A1 (ja) | 高周波モジュール及び通信装置 | |
WO2023022047A1 (ja) | 高周波モジュール | |
WO2021205702A1 (ja) | 高周波回路、高周波モジュール及び通信装置 | |
WO2022209736A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209734A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209742A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209740A1 (ja) | 高周波モジュール | |
WO2023021982A1 (ja) | 高周波モジュール | |
WO2022209750A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209754A1 (ja) | 高周波モジュール | |
WO2022209738A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209756A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209728A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209741A1 (ja) | 高周波モジュール及び通信装置 | |
WO2022209749A1 (ja) | 高周波モジュール及び通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21848662 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21848662 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |