WO2022034819A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2022034819A1
WO2022034819A1 PCT/JP2021/028538 JP2021028538W WO2022034819A1 WO 2022034819 A1 WO2022034819 A1 WO 2022034819A1 JP 2021028538 W JP2021028538 W JP 2021028538W WO 2022034819 A1 WO2022034819 A1 WO 2022034819A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
filter
low noise
high frequency
noise amplifier
Prior art date
Application number
PCT/JP2021/028538
Other languages
English (en)
French (fr)
Inventor
宏通 北嶋
孝紀 上嶋
邦俊 花岡
基嗣 津田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180058355.4A priority Critical patent/CN116097570A/zh
Publication of WO2022034819A1 publication Critical patent/WO2022034819A1/ja
Priority to US18/154,225 priority patent/US20230145698A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0075Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands
    • H04B1/0078Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands with a common intermediate frequency amplifier for the different intermediate frequencies, e.g. when using switched intermediate frequency filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the present invention relates to a high frequency module.
  • Patent Document 1 discloses a front-end module in which a power amplifier, a switch, a filter, and the like are packaged.
  • the present invention provides a high frequency module capable of improving electrical characteristics.
  • the high frequency module has a pass band including a first power amplifier, a second power amplifier, a first low noise amplifier, and a first communication band included in the first communication band group.
  • a pass band including a first filter connected to the first power amplifier and the first low noise amplifier, and a second communication band included in the second communication band group on the lower frequency side than the first communication band group.
  • the distance between the first power amplifier and the first low noise amplifier is larger than the distance between the second power amplifier and the first low noise amplifier. long.
  • the electrical characteristics can be improved.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • FIG. 2 is a plan view of the high frequency module according to the embodiment.
  • FIG. 3 is a cross-sectional view of the high frequency module according to the embodiment.
  • each figure is a schematic diagram in which emphasis, omission, or ratio is adjusted as appropriate to show the present invention, and is not necessarily exactly illustrated. What is the actual shape, positional relationship, and ratio? May be different. In each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description may be omitted or simplified.
  • the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
  • the x-axis is parallel to the first side of the module substrate and the y-axis is parallel to the second side orthogonal to the first side of the module substrate.
  • the z-axis is an axis perpendicular to the main surface of the module substrate, the positive direction thereof indicates an upward direction, and the negative direction thereof indicates a downward direction.
  • connection includes not only the case of being directly connected by a connection terminal and / or a wiring conductor, but also the case of being electrically connected via another circuit element. Further, “connected between A and B” means that both A and B are connected between A and B.
  • planar view of the module substrate means that an object is projected orthographically projected onto the xy plane from the positive side of the z-axis.
  • distance between A and B in the plan view of the module substrate is the length of the line segment connecting the representative point in the region of A and the representative point in the region of B that are orthographically projected on the xy plane.
  • the representative point the center point of the area or the point closest to the area of the other party can be used, but the point is not limited to this.
  • terms that indicate relationships between elements such as “parallel” and “vertical” terms that indicate the shape of elements such as "rectangle”, and numerical ranges do not mean only strict meanings. It means that a substantially equivalent range, for example, an error of about several percent is included.
  • the component is laminated on another component arranged on the substrate), and a part or all of the component is embedded and arranged in the substrate.
  • the component is arranged on the main surface of the board means that the component is arranged on the main surface in a state of being in contact with the main surface of the board, and the component is mainly arranged without contacting the main surface. This includes arranging above the surface and embedding a part of the component in the substrate from the main surface side.
  • FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 5 according to an embodiment.
  • the communication device 5 includes a high frequency module 1, antennas 2A and 2B, RFIC3, and BBIC4.
  • the high frequency module 1 transmits a high frequency signal between the antennas 2A and 2B and the RFIC3.
  • the internal configuration of the high frequency module 1 will be described later.
  • the antennas 2A and 2B are connected to the antenna connection terminals 101 and 102 of the high frequency module 1, respectively, and transmit the high frequency signal output from the high frequency module 1, and also receive the high frequency signal from the outside and output it to the high frequency module 1. ..
  • RFIC3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the high frequency reception signal input via the reception path of the high frequency module 1 by down-conversion or the like, and outputs the reception signal generated by the signal processing to the BBIC 4. Further, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-conversion or the like, and outputs the high frequency transmission signal generated by the signal processing to the transmission path of the high frequency module 1. Further, the RFIC 3 has a control unit for controlling a switch, an amplifier and the like included in the high frequency module 1. A part or all of the function of the RFIC3 as a control unit may be mounted outside the RFIC3, or may be mounted on, for example, the BBIC4 or the high frequency module 1.
  • the BBIC 4 is a baseband signal processing circuit that processes signals using an intermediate frequency band having a lower frequency than the high frequency signal transmitted by the high frequency module 1.
  • the signal processed by the BBIC 4 for example, an image signal for displaying an image and / or an audio signal for a call via a speaker are used.
  • the antennas 2A and 2B and the BBIC 4 are not essential components.
  • the high frequency module 1 includes power amplifiers 11 and 12, low noise amplifiers 21 and 22, switches 51 to 55, duplexers 61 and 63, transmission / reception filters 62 and 64, and an antenna connection terminal 101. And 102, high frequency input terminals 111 and 112, and high frequency output terminals 121 and 122.
  • the antenna connection terminals 101 and 102 are connected to the antennas 2A and 2B, respectively.
  • Each of the high frequency input terminals 111 and 112 is a terminal for receiving a high frequency transmission signal from the outside of the high frequency module 1.
  • the high frequency input terminal 111 is a terminal for receiving transmission signals of communication bands A and B included in the communication band group X from RFIC3.
  • the high frequency input terminal 112 is a terminal for receiving transmission signals of communication bands C and D included in the communication band group Y from RFIC3.
  • Each of the high frequency output terminals 121 and 122 is a terminal for providing a high frequency reception signal to the outside of the high frequency module 1.
  • the high frequency output terminal 121 is a terminal for providing the RFIC 3 with the reception signals of the communication bands A and B included in the communication band group X.
  • the high frequency output terminal 122 is a terminal for providing the RFIC 3 with the reception signals of the communication bands C and D included in the communication band group Y.
  • the communication band means a frequency band defined in advance by a standardization body or the like (for example, 3GPP (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers)) for a communication system.
  • a standardization body or the like for example, 3GPP (3rd Generation Partnership Project) and IEEE (Institute of Electrical and Electronics Engineers) for a communication system.
  • the communication system means a communication system constructed by using radio access technology (RAT: RadioAccess Technology).
  • RAT RadioAccess Technology
  • the communication system for example, a 5GNR (5th Generation New Radio) system, an LTE (Long Term Evolution) system, a WLAN (Wireless Local Area Network) system, or the like can be used, but the communication system is not limited thereto.
  • the communication band group means a frequency range including a plurality of communication bands.
  • an ultra high band group (3300 to 5000 MHz), a high band group (2300 to 2690 MHz), a middle band group (1427 to 2200 MHz), a low band group (698 to 960 MHz), and the like can be used. , Not limited to these.
  • a communication band group including an unlicensed band of 5 GHz or more or a communication band group of a millimeter wave band may be used.
  • the communication band group X is an example of the first communication band group.
  • the communication band group Y is an example of the second communication band group, and is lower than the communication band group X.
  • As the communication band groups X and Y for example, a high band group and a middle band group can be used, but the communication band groups X and Y are not limited thereto.
  • a middle band group and a low band group may be used, and a high band group and a low band group may be used.
  • Communication band A is an example of the first communication band.
  • a communication band for frequency division duplex (FDD) is used as the communication band A. More specifically, as the communication band A, Band 7 for LTE or n7 for 5G NR is used, but the communication band A is not limited to these.
  • Communication band B is an example of a first communication band or a third communication band.
  • a communication band for time division duplex (TDD: Time Division Duplex) is used as the communication band B. More specifically, as the communication band B, Band 41 or Band 40 for LTE, or n41 or n40 for 5G NR is used, but the communication band B is not limited thereto.
  • Communication band C is an example of a second communication band.
  • a communication band for FDD is used as the communication band C. More specifically, as the communication band C, Band1, Band25, Band3 or Band66 for LTE, or n1, n25, n3 or n66 for 5GNR are used, but the communication band C is not limited thereto. ..
  • the communication band C may be capable of simultaneous communication with the communication bands A and / or B.
  • Communication band D is an example of a second communication band or a fourth communication band.
  • a communication band for TDD is used as the communication band D. More specifically, as the communication band D, Band34 or Band39 for LTE or n34 or n39 for 5GNR is used, but the communication band D is not limited thereto.
  • the communication band D may be capable of simultaneous communication with the communication bands A and / or B.
  • the power amplifier 11 is an example of the first power amplifier, and can amplify the transmission signals of the communication bands A and B received by the high frequency input terminal 111.
  • the input of the power amplifier 11 is connected to the high frequency input terminal 111, and the output of the power amplifier 11 is connected to the switch 52.
  • the power amplifier 12 is an example of a second power amplifier, and can amplify the transmission signals of the communication bands C and D received by the high frequency input terminal 112.
  • the input of the power amplifier 12 is connected to the high frequency input terminal 112, and the output of the power amplifier 12 is connected to the switch 54.
  • each of the power amplifiers 11 and 12 is not particularly limited.
  • the power amplifiers 11 and / or 12 may have a single-stage configuration or a multi-stage configuration.
  • the power amplifier 11 and / or 12 may have a plurality of cascaded amplification elements.
  • the power amplifier 11 and / or 12 may convert a high frequency signal into a differential signal (that is, a complementary signal) and amplify it.
  • Such power amplifiers 11 and / or 12 may be referred to as differential amplifiers.
  • the low noise amplifier 21 is an example of the first low noise amplifier, and can amplify the received signals of the communication bands A and B received by the antenna connection terminal 101 or 102.
  • the received signals of the communication bands A and B amplified by the low noise amplifier 21 are output to the high frequency output terminal 121.
  • the low noise amplifier 22 is an example of the second low noise amplifier, and can amplify the received signals of the communication bands C and D received by the antenna connection terminal 101 or 102.
  • the received signals of the communication bands C and D amplified by the low noise amplifier 22 are output to the high frequency output terminal 122.
  • each of the low noise amplifiers 21 and 22 is not particularly limited.
  • the low noise amplifier 21 and / or 22 may have either a single-stage configuration or a multi-stage configuration, and may be a differential amplifier.
  • the duplexer 61 is an example of the first filter and allows a high frequency signal of the communication band A to pass through.
  • the duplexer 61 transmits the transmission signal and the reception signal of the communication band A by the FDD method.
  • the duplexer 61 includes a transmit filter 61T and a receive filter 61R.
  • the transmission filter 61T is an example of the first transmission filter, and has a pass band including the uplink operating band of the communication band A.
  • One end of the transmission filter 61T is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the transmission filter 61T is connected to the output of the power amplifier 11 via the switch 52.
  • the uplink operation band means a part of the communication band specified for the uplink.
  • the uplink operation band means the transmission band.
  • the reception filter 61R is an example of the first reception filter, and has a pass band including the downlink operating band of the communication band A.
  • One end of the reception filter 61R is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the receive filter 61R is connected to the input of the low noise amplifier 21 via the switch 53.
  • the downlink operation band means a part of the communication band specified for the downlink.
  • the downlink operation band means the reception band.
  • the transmission / reception filter 62 is an example of a first filter or a third filter, and has a pass band including a communication band B.
  • One end of the transmission / reception filter 62 is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the transmit / receive filter 62 is connected to the output of the power amplifier 11 via the switch 52 and to the input of the low noise amplifier 21 via the switches 52 and 53.
  • the duplexer 63 is an example of the second filter, and passes a high frequency signal of the communication band C.
  • the duplexer 63 transmits the transmission signal and the reception signal of the communication band C by the FDD method.
  • the duplexer 63 includes a transmit filter 63T and a receive filter 63R.
  • the transmission filter 63T is an example of the second transmission filter, and has a pass band including the uplink operation band of the communication band C.
  • One end of the transmission filter 63T is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the transmit filter 63T is connected to the output of the power amplifier 12 via the switch 54.
  • the reception filter 63R is an example of the second reception filter, and has a pass band including the downlink operation band of the communication band C.
  • One end of the reception filter 63R is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the receive filter 63R is connected to the input of the low noise amplifier 22 via the switch 55.
  • the transmission / reception filter 64 is an example of a second filter or a fourth filter, and has a pass band including a communication band D.
  • One end of the transmission / reception filter 64 is connected to the antenna connection terminal 101 or 102 via the switch 51.
  • the other end of the transmit / receive filter 64 is connected to the output of the power amplifier 12 via the switch 54 and to the input of the low noise amplifier 22 via the switches 54 and 55.
  • the switch 51 is an example of the first switch.
  • the switch 51 has terminals 511 to 516.
  • the terminals 511 and 512 are connected to the antenna connection terminals 101 and 102, respectively.
  • the terminals 513 to 516 are connected to the duplexer 61, the transmission / reception filter 62, the duplexer 63, and the transmission / reception filter 64, respectively.
  • the switch 51 can connect at least one of terminals 513 to 516 to terminals 511 or 512, for example, based on a control signal from RFIC3. That is, the switch 51 can switch between connection and non-connection between the antennas 2A and 2B and the duplexers 61 and 63 and the transmission / reception filters 62 and 64.
  • the switch 51 is composed of, for example, a multi-connection type switch circuit, and is called an antenna switch.
  • the switch 52 is an example of the second switch.
  • the switch 52 has terminals 521 to 524.
  • the terminals 521 and 522 are connected to the transmission filter 61T and the transmission / reception filter 62, respectively.
  • Terminal 523 is connected to the output of the power amplifier 11.
  • the terminal 524 is connected to the terminal 532 of the switch 53 and is connected to the input of the low noise amplifier 21 via the switch 53.
  • the switch 52 can connect the terminal 521 to the terminal 523 and the terminal 522 to any of the terminals 523 and 524, for example, based on the control signal from the RFIC 3. That is, the switch 52 can switch the connection and disconnection between the transmission filter 61T and the power amplifier 11, and can switch the connection and disconnection between the transmission / reception filter 62 and each of the power amplifier 11 and the low noise amplifier 21.
  • the switch 52 is composed of, for example, a multi-connection type switch circuit.
  • the switch 53 is an example of the third switch.
  • the switch 53 has terminals 531 to 533.
  • Terminal 531 is connected to the input of the low noise amplifier 21.
  • the terminal 532 is connected to the terminal 524 of the switch 52, and is connected to the transmission / reception filter 62 via the switch 52.
  • the terminal 533 is connected to the reception filter 61R.
  • the switch 53 can connect terminals 532 and / or 533 to terminal 531 based on, for example, a control signal from RFIC3. That is, the switch 53 can switch the connection and disconnection between the reception filter 61R and the low noise amplifier 21, and can switch the connection and disconnection between the transmission / reception filter 62 and the low noise amplifier 21.
  • the switch 53 is composed of, for example, a multi-connection type switch circuit.
  • the switch 54 is an example of the second switch.
  • the switch 54 has terminals 541 to 544.
  • the terminals 541 and 542 are connected to the transmission filter 63T and the transmission / reception filter 64, respectively.
  • Terminal 543 is connected to the output of the power amplifier 12.
  • the terminal 544 is connected to the terminal 552 of the switch 55 and is connected to the input of the low noise amplifier 22 via the switch 55.
  • the switch 54 can connect the terminal 541 to the terminal 543 and the terminal 542 to any of the terminals 543 and 544, for example, based on the control signal from the RFIC3. That is, the switch 54 can switch the connection and disconnection between the transmission filter 63T and the power amplifier 12, and can switch the connection and disconnection between the transmission / reception filter 64 and each of the power amplifier 12 and the low noise amplifier 22.
  • the switch 54 is composed of, for example, a multi-connection type switch circuit.
  • the switch 55 is an example of the third switch.
  • the switch 55 has terminals 551 to 553.
  • Terminal 551 is connected to the input of the low noise amplifier 22.
  • the terminal 552 is connected to the terminal 544 of the switch 54, and is connected to the transmission / reception filter 64 via the switch 54.
  • the terminal 553 is connected to the reception filter 63R.
  • the switch 55 can connect the terminals 552 and / or 553 to the terminal 551 based on, for example, a control signal from RFIC3. That is, the switch 55 can switch the connection and disconnection between the reception filter 63R and the low noise amplifier 22, and can switch the connection and disconnection between the transmission / reception filter 64 and the low noise amplifier 22.
  • the switch 55 is composed of, for example, a multi-connection type switch circuit.
  • the high frequency module 1 may include at least power amplifiers 11 and 12, a switch 51, a transmission filter 61T or a transmission / reception filter 62, and a transmission filter 63T or a transmission / reception filter 64, and includes other circuit elements. It does not have to be.
  • FIG. 2 is a plan view of the high frequency module 1 according to the embodiment. Specifically, FIG. 2 shows a view of the main surface 91a of the module substrate 91 from the positive side of the z-axis.
  • FIG. 3 is a cross-sectional view of the high frequency module 1 according to the embodiment. The cross section of the high frequency module 1 in FIG. 3 is the cross section of the iii-iii line of FIG.
  • the high frequency module 1 further includes a module substrate 91, a resin member 92, and ground conductors 93 and 94.
  • a shield electrode layer 95 and a plurality of external connection terminals 150 are provided.
  • the upper part of the resin member 92 and the shield electrode layer 95 is not shown.
  • the module board 91 has main surfaces 91a and 91b facing each other.
  • the module substrate 91 has a rectangular shape in a plan view, but the shape of the module substrate 91 is not limited to this.
  • the module substrate 91 include a low-temperature co-fired ceramics (LTCC: Low Temperature Co-fired Ceramics) substrate having a laminated structure of a plurality of dielectric layers, a high-temperature co-fired ceramics (HTCC: High Temperature Co-fired Ceramics) substrate, and the like.
  • LTCC Low Temperature Co-fired Ceramics
  • HTCC High Temperature Co-fired Ceramics
  • a board having a built-in component, a board having a redistribution layer (RDL: Redistribution Layer), a printed circuit board, or the like can be used, but is not limited thereto.
  • RDL Redistribution Layer
  • the main surface 91a is an example of the first main surface, and may be referred to as an upper surface or a surface.
  • the main surface 91a is divided into three regions R1, R2 and R3 by ground conductors 93 and 94.
  • Each of the ground conductors 93 and 94 is connected to a ground electrode pattern (not shown) in the module substrate 91 and is set to the ground potential. Further, each of the ground conductors 93 and 94 protrudes from the main surface 91a.
  • the ground conductor 93 is a metal wall standing on the main surface 91a and extends along the y-axis.
  • the ground conductor 93 partitions between the regions R1 and R2.
  • the tip portion and the side edge portion of the ground conductor 93 are joined to the shield electrode layer 95.
  • the ground conductor 94 is a metal wall standing on the main surface 91a.
  • the ground conductor 94 comprises a metal wall 941 extending along the x-axis and a metal wall 942 extending along the y-axis joined to the metal wall 941.
  • the ground conductor 94 partitions between the regions R2 and R3. The tip portion and the side edge portion of the ground conductor 94 are joined to the shield electrode layer 95.
  • Region R1 is an example of the first region.
  • the power amplifiers 11 and 12 and the switches 52 and 54 are arranged in the region R1.
  • the switch 52 is arranged next to the power amplifier 11 and is arranged between the power amplifier 11 and the switch 51.
  • the distance between the switch 52 and the power amplifier 11 is shorter than the distance between the power amplifier 11 and the transmit / receive filter 62.
  • the switch 54 is located next to the power amplifier 12 and is located between the power amplifier 12 and the switch 51.
  • the distance between the switch 54 and the power amplifier 12 is shorter than the distance between the power amplifier 12 and the transmit / receive filter 64.
  • Region R2 is an example of the second region.
  • a switch 51, transmission filters 61T and 63T, reception filters 61R and 63R, and transmission / reception filters 62 and 64 are arranged in the area R2.
  • the number of filters for FDD (transmission filters 61T and 63T and reception filters 61R and 63R) is larger than the number of filters for TDD (transmission / reception filters 62 and 64).
  • the transmission / reception filter 62 is arranged between the power amplifier 11 and the switch 51.
  • the transmission / reception filter 64 is arranged between the power amplifier 12 and the switch 51.
  • the transmit filter 61T and the receive filters 61R and 63R are arranged next to the switch 51.
  • the switch 51 is arranged between the transmission filters 61T and 61R and the reception filter 63R.
  • the transmission / reception filter 62 is arranged side by side with the transmission filter 61T and the reception filter 61R along the x-axis
  • the transmission / reception filter 64 is arranged side by side with the reception filter 63R along the x-axis.
  • the transmission filter 63T is arranged in the negative direction of the y-axis of the transmission / reception filter 64, but is not limited to this.
  • the transmission filter 63T may be arranged between the transmission / reception filter 64 and the reception filter 63R.
  • the transmission / reception filter 64 is arranged side by side with the transmission filter 63T and the reception filter 63R along the x-axis.
  • the transmit filters 61T and 63T, the receive filters 61R and 63R, and the transmit and receive filters 62 and 64 are, for example, surface acoustic wave filters, surface acoustic wave filters using BAW (Bulk Acoustic Wave), LC resonance filters, and dielectric filters, respectively. It may be any of, and further, it is not limited to these.
  • Region R3 is an example of the third region.
  • a semiconductor integrated circuit 20 is arranged in the region R3.
  • the semiconductor integrated circuit 20 is an electronic component having an electronic circuit formed on the surface and inside of a semiconductor chip (also referred to as a die).
  • the semiconductor integrated circuit 20 has a rectangular shape in a plan view.
  • the semiconductor integrated circuit 20 includes low noise amplifiers 21 and 22 and switches 53 and 55.
  • the shape of the semiconductor integrated circuit 20 is not limited to a rectangle.
  • the circuit elements built in the semiconductor integrated circuit 20 are not limited to these.
  • the semiconductor integrated circuit 20 is composed of, for example, CMOS (Complementary Metal Oxide Semiconductor), and may be specifically configured by an SOI (Silicon on Insulator) process. This makes it possible to manufacture the semiconductor integrated circuit 20 at low cost.
  • the semiconductor integrated circuit 20 may be composed of at least one of GaAs, SiGe, and GaN. This makes it possible to realize a high-quality semiconductor integrated circuit 20.
  • the distance d1 between the power amplifier 11 and the semiconductor integrated circuit 20 is longer than the distance d2 between the power amplifier 12 and the semiconductor integrated circuit 20. That is, the power amplifier 11 is farther from the low noise amplifiers 21 and 22 than the power amplifier 12.
  • the distance d3 between the transmission filter 61T and the semiconductor integrated circuit 20 is longer than the distance d4 between the transmission filter 63T and the semiconductor integrated circuit 20. That is, the transmission filter 61T is farther from the low noise amplifiers 21 and 22 than the transmission filter 63T.
  • the distance d5 between the switch 52 and the semiconductor integrated circuit 20 is longer than the distance d6 between the switch 54 and the semiconductor integrated circuit 20. That is, the switch 52 is farther from the low noise amplifiers 21 and 22 than the switch 54.
  • the transmission / reception filter 62 is located on the opposite side of the low noise amplifier 21 with respect to the straight line connecting the switches 51 and 52. That is, the transmission / reception filter 62 is arranged in one of the two regions on the main surface 91a divided by the straight line connecting the switches 51 and 52, and the low noise amplifier 21 is arranged in the other of the two regions.
  • a sufficient distance can be provided between the wiring that connects one end of the transmission / reception filter 62 to the switch 51 and the wiring that connects the other end of the transmission / reception filter 62 to the low noise amplifier 21 via the switch 52. .. Therefore, the coupling between the input and the output of the transmission / reception filter 62 can be suppressed, and the deterioration of the signal can be reduced.
  • the straight line connecting the switches 51 and 52 means at least one of a plurality of straight lines connecting an arbitrary point on the switch 51 and an arbitrary point on the switch 52. That is, the transmission / reception filter 62 is located on the opposite side of the low noise amplifier 21 with respect to at least one of the plurality of straight lines.
  • the resin member 92 is arranged on the main surface 91a of the module board 91 and covers the main surface 91a and the circuit components on the main surface 91a.
  • the resin member 92 has a function of ensuring reliability such as mechanical strength and moisture resistance of the parts on the main surface 91a.
  • the shield electrode layer 95 is, for example, a metal thin film formed by a sputtering method, and is formed so as to cover the upper surface and the side surface of the resin member 92 and the side surface of the module substrate 91.
  • the shield electrode layer 95 is set to the ground potential and suppresses external noise from entering the circuit components constituting the high frequency module 1.
  • the main surface 91b is an example of the second main surface, and may be referred to as a lower surface or a back surface. As shown in FIG. 3, a plurality of external connection terminals 150 are arranged on the main surface 91b.
  • the plurality of external connection terminals 150 include antenna connection terminals 101 and 102, high frequency input terminals 111 and 112, and high frequency output terminals 121 and 122 shown in FIG. 1, as well as a ground terminal. Each of the plurality of external connection terminals 150 is connected to an input / output terminal and / or a ground terminal or the like on the mother board arranged in the negative direction of the z-axis of the high frequency module 1. Pad electrodes can be used as the plurality of external connection terminals 150, but the present invention is not limited to this.
  • the high frequency module 1 has a power amplifier 11, a power amplifier 12, a low noise amplifier 21, and a pass band including a communication band A included in the communication band group X. It has a duplexer 61 connected to the power amplifier 11 and the low noise amplifier 21, and a pass band including the communication band C included in the communication band group Y on the lower frequency side than the communication band group X, and is connected to the power amplifier 12.
  • the duplexer 63 is provided with a power amplifier 11, a power amplifier 12, a low noise amplifier 21, and a module board 91 in which the duplexers 61 and 63 are arranged. In a plan view of the module board 91, the power amplifier 11 and the low noise amplifier 21 are provided. The distance d1 between is longer than the distance d2 between the power amplifier 12 and the low noise amplifier 21.
  • the distance d1 between the power amplifier 11 and the low noise amplifier 21 can be made larger than the distance d2 between the power amplifier 12 and the low noise amplifier 21. That is, the power amplifier 11 can be arranged relatively far from the low noise amplifier 21. Therefore, it is possible to suppress the electric field coupling, the magnetic field coupling, or the electromagnetic field coupling between the power amplifier 11 and the low noise amplifier 21, and it is possible to suppress the interference between the transmission signal and the reception signal. As a result, the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, as the frequency is higher, electric field coupling, magnetic field coupling, or electromagnetic field coupling is more likely to occur. Therefore, by moving the power amplifier 11 away from the low noise amplifier 21 than the power amplifier 12, the reception sensitivity in the communication band group X is lowered. It can be effectively suppressed.
  • the communication band A is a communication band for FDD
  • the duplexer 61 has a pass band including the uplink operation band of the communication band A
  • the power amplifier 11 It may have a transmission filter 61T connected to the communication band A and a reception filter 61R having a pass band including the downlink operation band of the communication band A and connected to the low noise amplifier 21.
  • the high frequency module 1 further includes a switch 51 connected to the antenna connection terminals 101 and 102, a switch 52 connected to the power amplifier 11, and a communication band included in the communication band group X.
  • a transmit / receive filter 62 having a pass band including B, one end of which is connected to the antenna connection terminal 101 or 102 via a switch 51 and the other end of which is connected to a power amplifier 11 via a switch 52.
  • the duplexer 61 may be connected to the antenna connection terminal 101 or 102 via the switch 51, and the transmission filter 61T may be connected to the power amplifier 11 via the switch 52.
  • the power amplifier 11 can be shared by the communication bands A and B included in the communication band group X. Therefore, it is possible to reduce the number of parts and contribute to the miniaturization of the high frequency module 1.
  • the high frequency module 1 may further include a switch 53 connected to the low noise amplifier 21, and the reception filter 61R is connected to the low noise amplifier 21 via the switch 53.
  • the other end of the transmit / receive filter 62 may be connected to the low noise amplifier 21 via switches 52 and 53.
  • the low noise amplifier 21 can be shared by the communication bands A and B included in the communication band group X. Therefore, it is possible to reduce the number of parts and contribute to the miniaturization of the high frequency module 1.
  • the high frequency module 1 may further include a low noise amplifier 22, the communication band C is a communication band for FDD, and the duplexer 63 is an uplink operation of the communication band C.
  • a transmission filter 63T having a pass band including a band and being connected to the power amplifier 12, and a reception filter 63R having a pass band including the downlink operation band of the communication band C and being connected to the low noise amplifier 22. May have.
  • the high frequency module 1 can correspond to the communication of the communication band C for FDD.
  • the distance d1 between the power amplifier 11 and the low noise amplifier 22 is the distance d2 between the power amplifier 12 and the low noise amplifier 22. May be larger than.
  • the power amplifier 11 can be arranged relatively far from the low noise amplifier 22. Therefore, it is possible to suppress the electric field coupling, the magnetic field coupling, or the electromagnetic field coupling between the power amplifier 11 and the low noise amplifier 22, and it is possible to suppress the interference between the transmission signal and the reception signal.
  • the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, as the frequency is higher, electric field coupling, magnetic field coupling, or electromagnetic field coupling is more likely to occur. Therefore, by moving the power amplifier 11 away from the low noise amplifier 22 than the power amplifier 12, the reception sensitivity in the communication band group Y is lowered. It can be effectively suppressed.
  • the distance d3 between the transmission filter 61T and the low noise amplifier 21 is the distance d4 between the transmission filter 63T and the low noise amplifier 21. May be larger than.
  • the transmission filter 61T can be arranged relatively far from the low noise amplifier 21. Therefore, the transmission filter 61T can suppress electric field coupling, magnetic field coupling, or electromagnetic field coupling between the low noise amplifiers 21, and can suppress interference between the transmission signal and the reception signal. As a result, the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, as the frequency is higher, electric field coupling, magnetic field coupling, or electromagnetic field coupling is more likely to occur. Therefore, by moving the transmission filter 61T away from the low noise amplifier 21 than the transmission filter 63T, the reception sensitivity in the communication band group X is lowered. It can be effectively suppressed.
  • the distance d3 between the transmission filter 61T and the low noise amplifier 22 is the distance d4 between the transmission filter 63T and the low noise amplifier 22. May be larger than.
  • the transmission filter 61T can be arranged relatively far from the low noise amplifier 22. Therefore, the transmission filter 61T can suppress electric field coupling, magnetic field coupling, or electromagnetic field coupling between the low noise amplifier 22, and can suppress interference between the transmission signal and the reception signal. As a result, the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, the higher the frequency, the more likely it is that electric field coupling, magnetic field coupling, or electromagnetic field coupling will occur. Therefore, by moving the transmission filter 61T away from the low noise amplifier 22 than the transmission filter 63T, the reception sensitivity in the communication band group Y can be reduced. It can be effectively suppressed.
  • the high frequency module 1 further includes a switch 54 connected to the power amplifier 12, a switch 55 connected to the low noise amplifier 22, and communication for TDD included in the communication band group Y.
  • a transmit / receive filter 64 having a pass-through band including band D, one end of which is connected to the antenna connection terminal 101 or 102 via a switch 51 and the other end of which is connected to a power amplifier 12 via a switch 54.
  • a transmit / receive filter 64 connected to the low noise amplifier 22 via switches 54 and 55 may be provided, the duplexer 63 may be connected to the antenna connection terminal 101 or 102 via the switch 51, and the transmit filter 63T may include. It may be connected to the power amplifier 12 via the switch 54 and the receive filter 63R may be connected to the low noise amplifier 22 via the switch 55.
  • the power amplifier 12 and the low noise amplifier 22 can be shared by the communication bands C and D included in the communication band group Y. Therefore, it is possible to reduce the number of parts and contribute to the miniaturization of the high frequency module 1.
  • the distance d5 between the switch 52 and the low noise amplifier 21 is larger than the distance d6 between the switch 54 and the low noise amplifier 21. It may be large.
  • the switch 52 can be arranged relatively far from the low noise amplifier 21. Therefore, the switch 52 can suppress the electric field coupling, the magnetic field coupling, or the electromagnetic field coupling between the low noise amplifiers 21, and can suppress the interference between the transmission signal and the reception signal. As a result, the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, the higher the frequency, the more likely it is that electric field coupling, magnetic field coupling, or electromagnetic field coupling will occur. Therefore, by moving the switch 52 away from the low noise amplifier 21 than the switch 54, it is effective to reduce the reception sensitivity in the communication band group X. Can be suppressed.
  • the distance d5 between the switch 52 and the low noise amplifier 22 is larger than the distance d6 between the switch 54 and the low noise amplifier 22. It may be large.
  • the switch 52 can be arranged relatively far from the low noise amplifier 22. Therefore, the switch 52 can suppress the electric field coupling, the magnetic field coupling, or the electromagnetic field coupling between the low noise amplifiers 22, and can suppress the interference between the transmission signal and the reception signal. As a result, the isolation characteristics between the transmission path and the reception path can be improved, and the electrical characteristics of the high frequency module 1 can be improved. In particular, the higher the frequency, the more likely it is that electric field coupling, magnetic field coupling, or electromagnetic field coupling will occur. Therefore, by moving the switch 52 away from the low noise amplifier 22 than the switch 54, it is effective to reduce the reception sensitivity in the communication band group X. Can be suppressed.
  • the module substrate 91 has main surfaces 91a and 91b facing each other, and the main surfaces 91a include switches 51 to 55, duplexers 61 and 63, and a transmission / reception filter 62. And 64, power amplifiers 11 and 12, and low noise amplifiers 21 and 22 are arranged, and a plurality of external connection terminals 150 may be arranged on the main surface 91b.
  • the surface mount component can be arranged only on one main surface 91a of the module board 91, and the manufacturing process of the high frequency module 1 can be simplified.
  • the high frequency module 1 further includes ground conductors 93 and 94 that partition the main surface 91a into the regions R1, R2, and R3, and the power amplifiers 11 and 12 and the switches 52 and 54 are the regions.
  • the switches 51, the transmit filters 61T and 63T, the receive filters 61R and 63R, the transmit / receive filters 62 and 64 are arranged in the area R2, and the low noise amplifiers 21 and 22 and the switches 53 and 55 are arranged in R1. , May be arranged in region R3.
  • the power amplifiers 11 and 12 and the low noise amplifiers 21 and 22 can be arranged in different regions R1 and R3 of the three regions partitioned by the ground conductors 93 and 94, and the transmission path and Isolation between receiving paths can be improved.
  • the switch 51, the transmission filters 61T and 63T, the reception filters 61R and 63R, and the transmission / reception filters 62 and 64 can be arranged in the same area R2, and the wiring length between the switch 51 and each filter can be set. Can be shortened. Therefore, the electrical characteristics of the high frequency module 1 can be further improved. In particular, when simultaneous communication is performed in a plurality of communication bands, the high frequency module 1 can suppress inconsistency loss due to stray capacitance of wiring, and can contribute to improvement of NF.
  • the ground conductors 93 and 94 may be metal walls standing on the main surface 91a.
  • a plurality of regions R1, R2 and R3 can be separated by a metal wall, and the high frequency module 1 can further improve the isolation between the transmission path and the reception path.
  • the high frequency module 1 further includes a resin member 92 that covers the main surface 91a and a shield electrode layer 95 that covers the surface of the resin member 92, and each of the ground conductors 93 and 94. At least one of the tip portion and the side edge portion may be bonded to the shield electrode layer 95.
  • each of the ground conductors 93 and 94 can be connected to the shield electrode layer 95. Therefore, the ground potentials of the ground conductors 93 and 94 can be stabilized, and the shielding effect of the ground conductors 93 and 94 can be improved.
  • the communication band A may be Band 7 for LTE or n7 for 5 GNR.
  • the communication band C may be Band1, Band25, Band3 or Band66 for LTE, or n1, n25, n3 or n66 for 5G NR.
  • the communication band B may be Band 41 or Band 40 for LTE, or n41 or n40 for 5G NR.
  • the communication band D may be Band34 or Band39 for LTE, or n34 or n39 for 5GNR.
  • the high frequency module 1 can be used for the LTE system and / or the 5GNR system.
  • the communication device 5 includes an RFIC 3 for processing a high frequency signal and a high frequency module 1 for transmitting a high frequency signal between the RFIC 3 and the antennas 2A and 2B.
  • the same effect as that of the high frequency module 1 can be realized.
  • the high frequency module and the communication device according to the present invention have been described above based on the embodiment, the high frequency module and the communication device according to the present invention are not limited to the above embodiment. Another embodiment realized by combining arbitrary components in the above embodiment, or modifications obtained by applying various modifications to the above embodiments that can be conceived by those skilled in the art without departing from the gist of the present invention. Examples and various devices incorporating the high frequency module and the communication device are also included in the present invention.
  • an impedance matching circuit is provided in at least one of the duplexer 61 and the switch 51, the transmit / receive filter 62 and the switch 51, the duplexer 63 and the switch 51, and the transmit / receive filter 64 and the switch 51. It may be inserted. Further, the impedance matching circuit is, for example, between the power amplifier 11 and the switch 52, between the low noise amplifier 21 and the switch 53, between the power amplifier 12 and the switch 54, and between the low noise amplifier 22 and the switch 55. , May be inserted into at least one of.
  • the impedance matching circuit can be composed of, for example, an inductor and / or a capacitor.
  • switches 52 and 53 are used for connecting and disconnecting the duplexer 61 and the transmission / reception filter 62 to the power amplifier 11 and the low noise amplifier 21, but the switch configuration is limited to this. Not done.
  • switches 52 and 53 may be composed of a single switch. In this case, the single switch has five terminals connected to the transmit filter 61T, the receive filter 61R, the transmit / receive filter 62, the output of the power amplifier 11, and the output of the low noise amplifier 21, respectively. Just do it.
  • the switches 54 and 55 may also be composed of a single switch like the switches 52 and 53.
  • the semiconductor integrated circuit 20 and / or the switch 51 may be arranged on the main surface 91b. That is, the module board 91 has main surfaces 91a and 91b facing each other, and the main surface 91a includes a duplexer 61, a transmission / reception filter 62, a duplexer 63, a transmission / reception filter 64, and power amplifiers 11 and 12. 51, 53 and 55, low noise amplifiers 21 and 22, and a plurality of external connection terminals 150 may be arranged on the main surface 91b. In this case, post electrodes and / or bump electrodes may be used as the plurality of external connection terminals 150.
  • the high frequency module 1 can be miniaturized.
  • the switch 52 and / or 54 may be arranged on the main surface 91a. At this time, at least a part of the switch 52 and / or at least a part of the switch 54 is at least a part of the low noise amplifier 21 and / or a low noise amplifier arranged on the main surface 91b in the plan view of the module board 91. It may overlap with at least a part of 22.
  • the high frequency module 1 is provided with two antenna connection terminals 101 and 102 for connecting to the two antennas 2A and 2B, but the number of antenna connection terminals is not limited to this.
  • the number of antenna connection terminals may be one or three or more.
  • the high frequency module 1 is provided with a switch 53 for switching the filter connected to the low noise amplifier 21, but the switch 53 may not be provided.
  • the high frequency module 1 may include two low noise amplifiers instead of the low noise amplifier 21.
  • the other end of the reception filter 61R may be connected to one of the two low noise amplifiers, and the other end of the transmission / reception filter 62 may be connected to the other of the two low noise amplifiers via the switch 52.
  • the high frequency module 1 may include a switch 55.
  • the high frequency module 1 may include two low noise amplifiers instead of the low noise amplifier 22.
  • the other end of the receive filter 63R may be connected to one of the two low noise amplifiers, and the other end of the transmit / receive filter 64 may be connected to the other of the two low noise amplifiers via the switch 54.
  • the present invention can be widely used in communication devices such as mobile phones as a high frequency module arranged in the front end portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

高周波モジュール(1)は、電力増幅器(11)と、電力増幅器(12)と、低雑音増幅器(21)と、通信バンド群Xに含まれる通信バンドAを含む通過帯域を有し、電力増幅器(11)及び低雑音増幅器(21)に接続されるデュプレクサ(61)と、通信バンド群Xよりも低域側の通信バンド群Yに含まれる通信バンドCを含む通過帯域を有し、電力増幅器(12)に接続されるデュプレクサ(63)と、電力増幅器(11)、電力増幅器(12)、低雑音増幅器(21)、デュプレクサ(61及び63)が配置されたモジュール基板(91)と、を備え、モジュール基板(91)の平面視において、電力増幅器(11)及び低雑音増幅器(21)の間の距離(d1)は、電力増幅器(12)及び低雑音増幅器(21)の間の距離(d2)よりも長い。

Description

高周波モジュール
 本発明は、高周波モジュールに関する。
 携帯電話などの移動体通信機器では、特に、マルチバンド化の進展に伴い、高周波フロントエンドモジュールを構成する回路部品の配置構成が複雑化されている。特許文献1には、電力増幅器、スイッチ及びフィルタ等がパッケージ化されたフロントエンドモジュールが開示されている。
米国特許出願公開第2015/0133067号明細書
 このような従来のフロントエンドモジュールでは、電気特性(例えば雑音指数(NF)、ゲイン特性等)の劣化が懸念される。
 そこで、本発明は、電気特性を改善することができる高周波モジュールを提供する。
 本発明の一態様に係る高周波モジュールは、第1電力増幅器と、第2電力増幅器と、第1低雑音増幅器と、第1通信バンド群に含まれる第1通信バンドを含む通過帯域を有し、前記第1電力増幅器及び前記第1低雑音増幅器に接続される第1フィルタと、前記第1通信バンド群よりも低域側の第2通信バンド群に含まれる第2通信バンドを含む通過帯域を有し、前記第2電力増幅器に接続される第2フィルタと、前記第1電力増幅器、前記第2電力増幅器、前記第1低雑音増幅器、前記第1フィルタ及び前記第2フィルタが配置されたモジュール基板と、を備え、前記モジュール基板の平面視において、前記第1電力増幅器及び前記第1低雑音増幅器の間の距離は、前記第2電力増幅器及び前記第1低雑音増幅器の間の距離よりも長い。
 本発明の一態様に係る高周波モジュールによれば、電気特性を改善することができる。
図1は、実施の形態に係る高周波モジュール及び通信装置の回路構成図である。 図2は、実施の形態に係る高周波モジュールの平面図である。 図3は、実施の形態に係る高周波モジュールの断面図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
 なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
 以下の各図において、x軸及びy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。具体的には、平面視においてモジュール基板が矩形状を有する場合、x軸は、モジュール基板の第1辺に平行であり、y軸は、モジュール基板の第1辺と直交する第2辺に平行である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
 本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。また、「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味する。
 本発明の部品配置において、「モジュール基板の平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。また、「モジュール基板の平面視におけるA及びBの間の距離」とは、xy平面に正投影されたAの領域内の代表点とBの領域内の代表点とを結ぶ線分の長さを意味する。ここで、代表点としては、領域の中心点又は相手の領域に最も近い点などを用いることができるが、これに限定されない。また、「平行」及び「垂直」などの要素間の関係性を示す用語、及び、「矩形」などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
 また、「部品が基板に配置される」とは、部品が基板と接触した状態で基板上に配置されることに加えて、基板と接触せずに基板の上方に配置されること(例えば、部品が、基板上に配置された他の部品上に積層されること)、及び、部品の一部又は全部が基板内に埋め込まれて配置されることを含む。また、「部品が基板の主面に配置される」とは、部品が基板の主面と接触した状態で主面上に配置されることに加えて、部品が主面と接触せずに主面の上方に配置されること、及び、部品の一部が主面側から基板内に埋め込まれて配置されることを含む。
 (実施の形態)
 [1.1 高周波モジュール1及び通信装置5の回路構成]
 本実施の形態に係る高周波モジュール1及び通信装置5の回路構成について、図1を参照しながら説明する。図1は、実施の形態に係る高周波モジュール1及び通信装置5の回路構成図である。
 [1.1.1 通信装置5の回路構成]
 まず、通信装置5の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置5は、高周波モジュール1と、アンテナ2A及び2Bと、RFIC3と、BBIC4と、を備える。
 高周波モジュール1は、アンテナ2A及び2BとRFIC3との間で高周波信号を伝送する。高周波モジュール1の内部構成については後述する。
 アンテナ2A及び2Bは、高周波モジュール1のアンテナ接続端子101及び102にそれぞれ接続され、高周波モジュール1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波モジュール1へ出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波モジュール1の受信経路を介して入力された高周波受信信号を、ダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1が有するスイッチ及び増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に実装されてもよく、例えば、BBIC4又は高周波モジュール1に実装されてもよい。
 BBIC4は、高周波モジュール1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。
 なお、本実施の形態に係る通信装置5において、アンテナ2A及び2BとBBIC4とは、必須の構成要素ではない。
 [1.1.2 高周波モジュール1の回路構成]
 次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、電力増幅器11及び12と、低雑音増幅器21及び22と、スイッチ51~55と、デュプレクサ61及び63と、送受信フィルタ62及び64と、アンテナ接続端子101及び102と、高周波入力端子111及び112と、高周波出力端子121及び122と、を備える。
 アンテナ接続端子101及び102は、アンテナ2A及び2Bにそれぞれ接続される。
 高周波入力端子111及び112の各々は、高周波モジュール1の外部から高周波送信信号を受けるための端子である。本実施の形態では、高周波入力端子111は、RFIC3から、通信バンド群Xに含まれる通信バンドA及びBの送信信号を受けるための端子である。高周波入力端子112は、RFIC3から、通信バンド群Yに含まれる通信バンドC及びDの送信信号を受けるための端子である。
 高周波出力端子121及び122の各々は、高周波モジュール1の外部に高周波受信信号を提供するための端子である。本実施の形態では、高周波出力端子121は、RFIC3に、通信バンド群Xに含まれる通信バンドA及びBの受信信号を提供するための端子である。高周波出力端子122は、RFIC3に、通信バンド群Yに含まれる通信バンドC及びDの受信信号を提供するための端子である。
 通信バンドとは、通信システムのために標準化団体など(例えば3GPP(3rd Generation Partnership Project)及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。
 ここでは、通信システムとは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムを意味する。通信システムとしては、例えば5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を用いることができるが、これに限定されない。
 通信バンド群とは、複数の通信バンドを含む周波数範囲を意味する。通信バンド群としては、例えばウルトラハイバンド群(3300~5000MHz)、ハイバンド群(2300~2690MHz)、ミドルバンド群(1427~2200MHz)、及びローバンド群(698~960MHz)等を用いることができるが、これらに限定されない。例えば、通信バンド群として、5ギガヘルツ以上のアンライセンスバンドを含む通信バンド群又はミリ波帯域の通信バンド群が用いられてもよい。
 通信バンド群Xは、第1通信バンド群の一例である。通信バンド群Yは、第2通信バンド群の一例であり、通信バンド群Xよりも低い。通信バンド群X及びYとしては、例えばハイバンド群及びミドルバンド群を用いることができるが、これに限定されない。例えば、通信バンド群X及びYとして、ミドルバンド群及びローバンド群が用いられてもよく、ハイバンド群及びローバンド群が用いられてもよい。
 通信バンドAは、第1通信バンドの一例である。本実施の形態では、通信バンドAとして、周波数分割複信(FDD:Frequency Division Duplex)用の通信バンドが用いられている。より具体的には、通信バンドAとして、LTEのためのBand7又は5GNRのためのn7が用いられるが、通信バンドAは、これらに限定されない。
 通信バンドBは、第1通信バンド又は第3通信バンドの一例である。本実施の形態では、通信バンドBとして、時分割複信(TDD:Time Division Duplex)用の通信バンドが用いられている。より具体的には、通信バンドBとして、LTEのためのBand41若しくはBand40、又は、5GNRのためのn41若しくはn40が用いられるが、通信バンドBは、これらに限定されない。
 通信バンドCは、第2通信バンドの一例である。本実施の形態では、通信バンドCとして、FDD用の通信バンドが用いられている。より具体的には、通信バンドCとして、LTEのためのBand1、Band25、Band3若しくはBand66、又は、5GNRのためのn1、n25、n3若しくはn66が用いられるが、通信バンドCは、これらに限定されない。なお、通信バンドCは、通信バンドA及び/又はBと同時通信可能であってもよい。
 通信バンドDは、第2通信バンド又は第4通信バンドの一例である。本実施の形態では、通信バンドDとして、TDD用の通信バンドが用いられている。より具体的には、通信バンドDとして、LTEのためのBand34若しくはBand39、又は、5GNRのためのn34若しくはn39が用いられるが、通信バンドDは、これらに限定されない。なお、通信バンドDは、通信バンドA及び/又はBと同時通信可能であってもよい。
 電力増幅器11は、第1電力増幅器の一例であり、高周波入力端子111で受けた通信バンドA及びBの送信信号を増幅することができる。ここでは、電力増幅器11の入力は、高周波入力端子111に接続され、電力増幅器11の出力は、スイッチ52に接続されている。
 電力増幅器12は、第2電力増幅器の一例であり、高周波入力端子112で受けた通信バンドC及びDの送信信号を増幅することができる。ここでは、電力増幅器12の入力は、高周波入力端子112に接続され、電力増幅器12の出力は、スイッチ54に接続されている。
 電力増幅器11及び12の各々の構成は特に限定されない。例えば、電力増幅器11及び/又は12は、単段構成であってもよく、多段構成であってもよい。例えば、電力増幅器11及び/又は12は、カスケード接続された複数の増幅素子を有してもよい。また、電力増幅器11及び/又は12は、高周波信号を差動信号(つまり相補信号)に変換して増幅してもよい。このような電力増幅器11及び/又は12は、差動増幅器と呼ばれる場合がある。
 低雑音増幅器21は、第1低雑音増幅器の一例であり、アンテナ接続端子101又は102で受けた通信バンドA及びBの受信信号を増幅することができる。低雑音増幅器21で増幅された通信バンドA及びBの受信信号は、高周波出力端子121に出力される。
 低雑音増幅器22は、第2低雑音増幅器の一例であり、アンテナ接続端子101又は102で受けた通信バンドC及びDの受信信号を増幅することができる。低雑音増幅器22で増幅された通信バンドC及びDの受信信号は、高周波出力端子122に出力される。
 低雑音増幅器21及び22の各々の構成は特に限定されない。例えば、低雑音増幅器21及び/又は22は、単段構成及び多段構成のどちらであってもよく、差動増幅器であってもよい。
 デュプレクサ61は、第1フィルタの一例であり、通信バンドAの高周波信号を通過させる。デュプレクサ61は、通信バンドAの送信信号と受信信号とをFDD方式で伝送する。デュプレクサ61は、送信フィルタ61T及び受信フィルタ61Rを含む。
 送信フィルタ61Tは、第1送信フィルタの一例であり、通信バンドAのアップリンク動作バンド(uplink operating band)を含む通過帯域を有する。送信フィルタ61Tの一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。送信フィルタ61Tの他端は、スイッチ52を介して電力増幅器11の出力に接続される。
 アップリンク動作バンドとは、アップリンク用に指定された、通信バンドの一部を意味する。高周波モジュール1では、アップリンク動作バンドは送信帯域を意味する。
 受信フィルタ61Rは、第1受信フィルタの一例であり、通信バンドAのダウンリンク動作バンド(downlink operating band)を含む通過帯域を有する。受信フィルタ61Rの一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。受信フィルタ61Rの他端は、スイッチ53を介して低雑音増幅器21の入力に接続される。
 ダウンリンク動作バンドとは、ダウンリンク用に指定された、通信バンドの一部を意味する。高周波モジュール1では、ダウンリンク動作バンドは受信帯域を意味する。
 送受信フィルタ62は、第1フィルタ又は第3フィルタの一例であり、通信バンドBを含む通過帯域を有する。送受信フィルタ62の一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。送受信フィルタ62の他端は、スイッチ52を介して電力増幅器11の出力に接続され、スイッチ52及び53を介して低雑音増幅器21の入力に接続される。
 デュプレクサ63は、第2フィルタの一例であり、通信バンドCの高周波信号を通過させる。デュプレクサ63は、通信バンドCの送信信号と受信信号とをFDD方式で伝送する。デュプレクサ63は、送信フィルタ63T及び受信フィルタ63Rを含む。
 送信フィルタ63Tは、第2送信フィルタの一例であり、通信バンドCのアップリンク動作バンドを含む通過帯域を有する。送信フィルタ63Tの一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。送信フィルタ63Tの他端は、スイッチ54を介して電力増幅器12の出力に接続される。
 受信フィルタ63Rは、第2受信フィルタの一例であり、通信バンドCのダウンリンク動作バンドを含む通過帯域を有する。受信フィルタ63Rの一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。受信フィルタ63Rの他端は、スイッチ55を介して低雑音増幅器22の入力に接続される。
 送受信フィルタ64は、第2フィルタ又は第4フィルタの一例であり、通信バンドDを含む通過帯域を有する。送受信フィルタ64の一端は、スイッチ51を介してアンテナ接続端子101又は102に接続される。送受信フィルタ64の他端は、スイッチ54を介して電力増幅器12の出力に接続され、スイッチ54及び55を介して低雑音増幅器22の入力に接続される。
 スイッチ51は、第1スイッチの一例である。スイッチ51は、端子511~516を有する。端子511及び512は、アンテナ接続端子101及び102にそれぞれ接続されている。端子513~516は、デュプレクサ61、送受信フィルタ62、デュプレクサ63及び送受信フィルタ64にそれぞれ接続されている。
 この接続構成において、スイッチ51は、例えばRFIC3からの制御信号に基づいて、端子513~516の少なくとも1つを端子511又は512に接続することができる。つまり、スイッチ51は、アンテナ2A及び2Bと、デュプレクサ61及び63並びに送受信フィルタ62及び64との間の接続及び非接続を切り替えることができる。スイッチ51は、例えばマルチ接続型のスイッチ回路で構成され、アンテナスイッチと呼ばれる。
 スイッチ52は、第2スイッチの一例である。スイッチ52は、端子521~524を有する。端子521及び522は、送信フィルタ61T及び送受信フィルタ62にそれぞれ接続されている。端子523は、電力増幅器11の出力に接続されている。端子524は、スイッチ53の端子532に接続され、スイッチ53を介して低雑音増幅器21の入力に接続される。
 この接続構成において、スイッチ52は、例えばRFIC3からの制御信号に基づいて、端子521を端子523に接続し、端子522を端子523及び524のいずれかに接続することができる。つまり、スイッチ52は、送信フィルタ61Tと電力増幅器11との接続及び非接続を切り替え、送受信フィルタ62と電力増幅器11及び低雑音増幅器21の各々との接続及び非接続を切り替えることができる。スイッチ52は、例えばマルチ接続型のスイッチ回路で構成される。
 スイッチ53は、第3スイッチの一例である。スイッチ53は、端子531~533を有する。端子531は、低雑音増幅器21の入力に接続されている。端子532は、スイッチ52の端子524に接続され、スイッチ52を介して送受信フィルタ62に接続される。端子533は、受信フィルタ61Rに接続されている。
 この接続構成において、スイッチ53は、例えばRFIC3からの制御信号に基づいて、端子532及び/又は533を端子531に接続することができる。つまり、スイッチ53は、受信フィルタ61Rと低雑音増幅器21との接続及び非接続を切り替え、送受信フィルタ62と低雑音増幅器21との接続及び非接続を切り替えることができる。スイッチ53は、例えばマルチ接続型のスイッチ回路で構成される。
 スイッチ54は、第2スイッチの一例である。スイッチ54は、端子541~544を有する。端子541及び542は、送信フィルタ63T及び送受信フィルタ64にそれぞれ接続されている。端子543は、電力増幅器12の出力に接続されている。端子544は、スイッチ55の端子552に接続され、スイッチ55を介して低雑音増幅器22の入力に接続される。
 この接続構成において、スイッチ54は、例えばRFIC3からの制御信号に基づいて、端子541を端子543に接続し、端子542を端子543及び544のいずれかに接続することができる。つまり、スイッチ54は、送信フィルタ63Tと電力増幅器12との接続及び非接続を切り替え、送受信フィルタ64と電力増幅器12及び低雑音増幅器22の各々との接続及び非接続を切り替えることができる。スイッチ54は、例えばマルチ接続型のスイッチ回路で構成される。
 スイッチ55は、第3スイッチの一例である。スイッチ55は、端子551~553を有する。端子551は、低雑音増幅器22の入力に接続されている。端子552は、スイッチ54の端子544に接続され、スイッチ54を介して送受信フィルタ64に接続される。端子553は、受信フィルタ63Rに接続されている。
 この接続構成において、スイッチ55は、例えばRFIC3からの制御信号に基づいて、端子552及び/又は553を端子551に接続することができる。つまり、スイッチ55は、受信フィルタ63Rと低雑音増幅器22との接続及び非接続を切り替え、送受信フィルタ64と低雑音増幅器22との接続及び非接続を切り替えることができる。スイッチ55は、例えばマルチ接続型のスイッチ回路で構成される。
 なお、図1に表された回路素子のいくつかは、高周波モジュール1に含まれなくてもよい。例えば、高周波モジュール1は、少なくとも、電力増幅器11及び12と、スイッチ51と、送信フィルタ61T又は送受信フィルタ62と、送信フィルタ63T又は送受信フィルタ64と、を備えればよく、他の回路素子を備えなくてもよい。
 [1.2 高周波モジュール1の部品配置]
 次に、以上のように構成された高周波モジュール1の部品配置について、図2及び図3を参照しながら具体的に説明する。
 図2は、実施の形態に係る高周波モジュール1の平面図である。具体的には、図2はz軸正側からモジュール基板91の主面91aを見た図を示す。図3は、実施の形態に係る高周波モジュール1の断面図である。図3における高周波モジュール1の断面は、図2のiii-iii線における断面である。
 図2及び図3に示すように、高周波モジュール1は、図1に示された回路素子を含む回路部品に加えて、さらに、モジュール基板91と、樹脂部材92と、グランド導体93及び94と、シールド電極層95と、複数の外部接続端子150と、を備える。なお、図2では、樹脂部材92及びシールド電極層95の上部の図示が省略されている。
 モジュール基板91は、互いに対向する主面91a及び91bを有する。本実施の形態では、モジュール基板91は、平面視において矩形状を有するが、モジュール基板91の形状はこれに限定されない。モジュール基板91としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板、高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、又は、プリント基板等を用いることができるが、これらに限定されない。
 主面91aは、第1主面の一例であり、上面又は表面と呼ばれる場合がある。主面91aは、グランド導体93及び94によって3つの領域R1、R2及びR3に区画されている。
 グランド導体93及び94の各々は、モジュール基板91内のグランド電極パターン(図示せず)に接続され、グランド電位に設定される。また、グランド導体93及び94の各々は、主面91aから突出している。
 グランド導体93は、主面91a上に立つ金属壁であり、y軸に沿って延びている。グランド導体93は、領域R1及びR2の間を仕切っている。グランド導体93の先端部及び側縁部は、シールド電極層95と接合されている。
 グランド導体94は、主面91a上に立つ金属壁である。グランド導体94は、x軸に沿って延びる金属壁941と、金属壁941と接合されたy軸に沿って延びる金属壁942と、からなる。グランド導体94は、領域R2及びR3の間を仕切っている。グランド導体94の先端部及び側縁部は、シールド電極層95と接合されている。
 領域R1は、第1領域の一例である。領域R1には、電力増幅器11及び12と、スイッチ52及び54と、が配置されている。スイッチ52は、電力増幅器11の隣りに配置され、電力増幅器11とスイッチ51との間に配置されている。スイッチ52及び電力増幅器11の間の距離は、電力増幅器11及び送受信フィルタ62の間の距離よりも短い。スイッチ54は、電力増幅器12の隣りに配置され、電力増幅器12とスイッチ51との間に配置されている。スイッチ54及び電力増幅器12の間の距離は、電力増幅器12及び送受信フィルタ64の間の距離よりも短い。
 領域R2は、第2領域の一例である。領域R2には、スイッチ51と、送信フィルタ61T及び63Tと、受信フィルタ61R及び63Rと、送受信フィルタ62及び64と、が配置されている。FDD用のフィルタ(送信フィルタ61T及び63T並びに受信フィルタ61R及び63R)の数は、TDD用のフィルタ(送受信フィルタ62及び64)の数よりも多い。送受信フィルタ62は、電力増幅器11とスイッチ51との間に配置されている。送受信フィルタ64は、電力増幅器12とスイッチ51との間に配置されている。送信フィルタ61T並びに受信フィルタ61R及び63Rは、スイッチ51の隣りに配置されている。
 モジュール基板91の平面視において、スイッチ51は、送信フィルタ61T及び61Rと受信フィルタ63Rとの間に配置されている。送受信フィルタ62は、送信フィルタ61T及び受信フィルタ61Rとx軸に沿って並んで配置されており、送受信フィルタ64は、受信フィルタ63Rとx軸に沿って並んで配置されている。このように配置されることにより、異なるバンド群に対応するフィルタ間のアイソレーションを向上させることができる。
 なお、送信フィルタ63Tは、送受信フィルタ64のy軸の負方向に配置されているが、これに限定さない。送信フィルタ63Tは、送受信フィルタ64及び受信フィルタ63Rの間に配置されてもよい。この場合、送受信フィルタ64は、送信フィルタ63T及び受信フィルタ63Rとx軸に沿って並んで配置される。
 送信フィルタ61T及び63Tと受信フィルタ61R及び63Rと送受信フィルタ62及び64との各々は、例えば、弾性表面波フィルタ、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、LC共振フィルタ、及び誘電体フィルタのいずれであってもよく、さらには、これらには限定されない。
 領域R3は、第3領域の一例である。領域R3には、半導体集積回路20が配置されている。半導体集積回路20は、半導体チップ(ダイとも呼ばれる)の表面及び内部に形成された電子回路を有する電子部品である。本実施の形態では、半導体集積回路20は、平面視において矩形状を有する。また、半導体集積回路20は、低雑音増幅器21及び22並びにスイッチ53及び55を有する。なお、半導体集積回路20の形状は、矩形に限定されない。また、半導体集積回路20に内蔵される回路素子は、これらに限定されない。
 半導体集積回路20は、例えば、CMOS(Complementary Metal Oxide Semiconductor)で構成され、具体的にはSOI(Silicon on Insulator)プロセスにより構成されてもよい。これにより、半導体集積回路20を安価に製造することが可能となる。なお、半導体集積回路20は、GaAs、SiGe及びGaNのうちの少なくとも1つで構成されてもよい。これにより、高品質な半導体集積回路20を実現することができる。
 モジュール基板91の平面視において、電力増幅器11と半導体集積回路20との間の距離d1は、電力増幅器12と半導体集積回路20との間の距離d2よりも長い。つまり、電力増幅器11の方が電力増幅器12よりも低雑音増幅器21及び22から遠い。また、モジュール基板91の平面視において、送信フィルタ61Tと半導体集積回路20との間の距離d3は、送信フィルタ63Tと半導体集積回路20との間の距離d4よりも長い。つまり、送信フィルタ61Tの方が送信フィルタ63Tよりも低雑音増幅器21及び22から遠い。さらに、モジュール基板91の平面視において、スイッチ52と半導体集積回路20との間の距離d5は、スイッチ54と半導体集積回路20との間の距離d6よりも長い。つまり、スイッチ52の方がスイッチ54よりも低雑音増幅器21及び22から遠い。
 また、モジュール基板91の平面視において、送受信フィルタ62は、スイッチ51及び52を結ぶ直線に対して低雑音増幅器21と反対側に位置している。つまり、スイッチ51及び52を結ぶ直線で分割される主面91a上の2つの領域の一方に送受信フィルタ62が配置され、当該2つの領域の他方に低雑音増幅器21が配置されている。これにより、送受信フィルタ62の一端をスイッチ51に接続する配線と、送受信フィルタ62の他端をスイッチ52を介して低雑音増幅器21に接続する配線と、の間に十分な距離を取ることができる。したがって、送受信フィルタ62の入力-出力間の結合を抑制することができ、信号の劣化を低減することができる。
 なお、スイッチ51及び52を結ぶ直線とは、スイッチ51上の任意の点とスイッチ52上の任意の点とを結ぶ複数の直線ののうちの少なくとも1つを意味する。つまり、当該複数の直線のうちの少なくとも1つに対して、送受信フィルタ62は、低雑音増幅器21と反対側に位置する。
 樹脂部材92は、モジュール基板91の主面91a上に配置され、主面91a及び主面91a上の回路部品を覆っている。樹脂部材92は、主面91a上の部品の機械強度及び耐湿性等の信頼性を確保する機能を有する。
 シールド電極層95は、例えばスパッタ法により形成された金属薄膜であり、樹脂部材92の上表面及び側表面と、モジュール基板91の側表面と、を覆うように形成されている。シールド電極層95は、グランド電位に設定され、外来ノイズが高周波モジュール1を構成する回路部品に侵入することを抑制する。
 主面91bは、第2主面の一例であり、下面又は裏面と呼ばれる場合がある。主面91bには、図3に示すように、複数の外部接続端子150が配置されている。
 複数の外部接続端子150は、図1に示したアンテナ接続端子101及び102、高周波入力端子111及び112、並びに、高周波出力端子121及び122に加えて、グランド端子を含む。複数の外部接続端子150の各々は、高周波モジュール1のz軸負方向に配置されたマザー基板上の入出力端子及び/又はグランド端子等に接続される。複数の外部接続端子150としては、パッド電極を用いることができるが、これに限定されない。
 [1.3 効果など]
 以上のように、本実施の形態に係る高周波モジュール1は、電力増幅器11と、電力増幅器12と、低雑音増幅器21と、通信バンド群Xに含まれる通信バンドAを含む通過帯域を有し、電力増幅器11及び低雑音増幅器21に接続されるデュプレクサ61と、通信バンド群Xよりも低域側の通信バンド群Yに含まれる通信バンドCを含む通過帯域を有し、電力増幅器12に接続されるデュプレクサ63と、電力増幅器11、電力増幅器12、低雑音増幅器21、デュプレクサ61及び63が配置されたモジュール基板91と、を備え、モジュール基板91の平面視において、電力増幅器11及び低雑音増幅器21の間の距離d1は、電力増幅器12及び低雑音増幅器21の間の距離d2よりも長い。
 これによれば、電力増幅器11及び低雑音増幅器21の間の距離d1を電力増幅器12及び低雑音増幅器21の間の距離d2よりも大きくすることができる。つまり、電力増幅器11を低雑音増幅器21から比較的遠くに離れて配置することができる。したがって、電力増幅器11及び低雑音増幅器21の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、電力増幅器12よりも電力増幅器11の方を低雑音増幅器21から遠ざけることで、通信バンド群Xにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1において、通信バンドAは、FDD用の通信バンドであり、デュプレクサ61は、通信バンドAのアップリンク動作バンドを含む通過帯域を有し、電力増幅器11に接続される送信フィルタ61Tと、通信バンドAのダウンリンク動作バンドを含む通過帯域を有し、低雑音増幅器21に接続される受信フィルタ61Rと、を有してもよい。
 これによれば、FDD用の通信バンドAにおいて、受信感度の低下を抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、アンテナ接続端子101及び102に接続されたスイッチ51と、電力増幅器11に接続されたスイッチ52と、通信バンド群Xに含まれる通信バンドBを含む通過帯域を有する送受信フィルタ62であって、一端がスイッチ51を介してアンテナ接続端子101又は102に接続され、他端が、スイッチ52を介して電力増幅器11に接続される送受信フィルタ62と、を備えてもよく、デュプレクサ61は、スイッチ51を介してアンテナ接続端子101又は102に接続され、送信フィルタ61Tは、スイッチ52を介して電力増幅器11に接続されてもよい。
 これによれば、通信バンド群Xに含まれる通信バンドA及びBで電力増幅器11を共用することができる。したがって、部品点数を削減して高周波モジュール1の小型化に貢献することができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、低雑音増幅器21に接続されたスイッチ53を備えてもよく、受信フィルタ61Rは、スイッチ53を介して低雑音増幅器21に接続され、送受信フィルタ62の他端は、スイッチ52及び53を介して低雑音増幅器21に接続されてもよい。
 これによれば、通信バンド群Xに含まれる通信バンドA及びBで低雑音増幅器21を共用することができる。したがって、部品点数を削減して高周波モジュール1の小型化に貢献することができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、低雑音増幅器22を備えてもよく、通信バンドCは、FDD用の通信バンドであり、デュプレクサ63は、通信バンドCのアップリンク動作バンドを含む通過帯域を有し、電力増幅器12に接続される送信フィルタ63Tと、通信バンドCのダウンリンク動作バンドを含む通過帯域を有し、低雑音増幅器22に接続される受信フィルタ63Rと、を有してもよい。
 これによれば、高周波モジュール1は、FDD用の通信バンドCの通信に対応することができる。
 また例えば、本実施の形態に係る高周波モジュール1では、モジュール基板91の平面視において、電力増幅器11及び低雑音増幅器22の間の距離d1は、電力増幅器12及び低雑音増幅器22の間の距離d2よりも大きくてもよい。
 これによれば、電力増幅器11を低雑音増幅器22から比較的遠くに離れて配置することができる。したがって、電力増幅器11及び低雑音増幅器22の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、電力増幅器12よりも電力増幅器11の方を低雑音増幅器22から遠ざけることで、通信バンド群Yにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1では、モジュール基板91の平面視において、送信フィルタ61T及び低雑音増幅器21の間の距離d3は、送信フィルタ63T及び低雑音増幅器21の間の距離d4よりも大きくてもよい。
 これによれば、送信フィルタ61Tを低雑音増幅器21から比較的遠くに離れて配置することができる。したがって、送信フィルタ61Tを低雑音増幅器21の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、送信フィルタ63Tよりも送信フィルタ61Tの方を低雑音増幅器21から遠ざけることで、通信バンド群Xにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1では、モジュール基板91の平面視において、送信フィルタ61T及び低雑音増幅器22の間の距離d3は、送信フィルタ63T及び低雑音増幅器22の間の距離d4よりも大きくてもよい。
 これによれば、送信フィルタ61Tを低雑音増幅器22から比較的遠くに離れて配置することができる。したがって、送信フィルタ61Tを低雑音増幅器22の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、送信フィルタ63Tよりも送信フィルタ61Tの方を低雑音増幅器22から遠ざけることで、通信バンド群Yにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、電力増幅器12に接続されたスイッチ54と、低雑音増幅器22に接続されたスイッチ55と、通信バンド群Yに含まれるTDD用の通信バンドDを含む通過帯域を有する送受信フィルタ64であって、一端がスイッチ51を介してアンテナ接続端子101又は102に接続され、他端が、スイッチ54を介して電力増幅器12に接続され、かつ、スイッチ54及び55を介して低雑音増幅器22に接続される送受信フィルタ64と、を備えてもよく、デュプレクサ63は、スイッチ51を介してアンテナ接続端子101又は102に接続され、送信フィルタ63Tは、スイッチ54を介して電力増幅器12に接続され、受信フィルタ63Rは、スイッチ55を介して低雑音増幅器22に接続されてもよい。
 これによれば、通信バンド群Yに含まれる通信バンドC及びDで電力増幅器12及び低雑音増幅器22を共用することができる。したがって、部品点数を削減して高周波モジュール1の小型化に貢献することができる。
 また例えば、本実施の形態に係る高周波モジュール1では、モジュール基板91の平面視において、スイッチ52及び低雑音増幅器21の間の距離d5は、スイッチ54及び低雑音増幅器21の間の距離d6よりも大きくてもよい。
 これによれば、スイッチ52を低雑音増幅器21から比較的遠くに離れて配置することができる。したがって、スイッチ52を低雑音増幅器21の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、スイッチ54よりもスイッチ52の方を低雑音増幅器21から遠ざけることで、通信バンド群Xにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1では、モジュール基板91の平面視において、スイッチ52及び低雑音増幅器22の間の距離d5は、スイッチ54及び低雑音増幅器22の間の距離d6よりも大きくてもよい。
 これによれば、スイッチ52を低雑音増幅器22から比較的遠くに離れて配置することができる。したがって、スイッチ52を低雑音増幅器22の間の電界結合、磁界結合又は電磁界結合を抑制することができ、送信信号と受信信号との干渉を抑制することができる。その結果、送信経路及び受信経路間のアイソレーション特性を向上させることができ、高周波モジュール1の電気特性を改善することができる。特に、周波数が高いほど電界結合、磁界結合又は電磁界結合が生じやすいので、スイッチ54よりもスイッチ52の方を低雑音増幅器22から遠ざけることで、通信バンド群Xにおける受信感度の低下を効果的に抑制することができる。
 また例えば、本実施の形態に係る高周波モジュール1において、モジュール基板91は、互いに対向する主面91a及び91bを有し、主面91aには、スイッチ51~55、デュプレクサ61及び63、送受信フィルタ62及び64、電力増幅器11及び12、並びに、低雑音増幅器21及び22が配置され、主面91bには、複数の外部接続端子150が配置されてもよい。
 これによれば、表面実装部品をモジュール基板91の一方の主面91aのみに配置することができ、高周波モジュール1の製造工程を簡略化することができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、主面91aを領域R1、R2及びR3に区画するグランド導体93及び94を備え、電力増幅器11及び12とスイッチ52及び54は、領域R1に配置され、スイッチ51と、送信フィルタ61T及び63Tと、受信フィルタ61R及び63Rと、送受信フィルタ62及び64とは、領域R2に配置され、低雑音増幅器21及び22とスイッチ53及び55とは、領域R3に配置されてもよい。
 これによれば、電力増幅器11及び12と低雑音増幅器21及び22とを、グランド導体93及び94で区画された3つの領域のうちの異なる領域R1及びR3に配置することができ、送信経路及び受信経路の間のアイソレーションを向上させることができる。さらに、スイッチ51と、送信フィルタ61T及び63Tと、受信フィルタ61R及び63Rと、送受信フィルタ62及び64と、を同一の領域R2に配置することができ、スイッチ51及び各フィルタの間の配線長を短くすることができる。したがって、高周波モジュール1の電気特性をより改善することができる。特に、複数の通信バンドで同時通信が行われる場合に、高周波モジュール1は、配線の浮遊容量による不整合損を抑制することができ、NFの改善に貢献することができる。
 また例えば、本実施の形態に係る高周波モジュール1において、グランド導体93及び94は、主面91a上に立つ金属壁であってもよい。
 これによれば、複数の領域R1、R2及びR3を金属壁で隔てることができ、高周波モジュール1は、送信経路及び受信経路の間のアイソレーションをより向上させることができる。
 また例えば、本実施の形態に係る高周波モジュール1は、さらに、主面91aを覆う樹脂部材92と、樹脂部材92の表面を覆うシールド電極層95と、を備え、グランド導体93及び94の各々の先端部及び側縁部の少なくとも一方は、シールド電極層95と接合されてもよい。
 これによれば、グランド導体93及び94の各々の先端部及び/又は側縁部をシールド電極層95と接続することができる。したがって、グランド導体93及び94のグランド電位を安定させることができ、グランド導体93及び94によるシールド効果を向上させることができる。
 また例えば、本実施の形態に係る高周波モジュール1において、通信バンドAは、LTEのためのBand7又は5GNRのためのn7であってもよい。また例えば、通信バンドCは、LTEのためのBand1、Band25、Band3若しくはBand66、又は、5GNRのためのn1、n25、n3若しくはn66であってもよい。また例えば、通信バンドBは、LTEのためのBand41若しくはBand40、又は、5GNRのためのn41若しくはn40であってもよい。また例えば、通信バンドDは、LTEのためのBand34若しくはBand39、又は、5GNRのためのn34若しくはn39であってもよい。
 これによれば、LTEシステム及び/又は5GNRシステムに、高周波モジュール1を用いることができる。
 また、本実施の形態に係る通信装置5は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2A及び2Bとの間で高周波信号を伝送する高周波モジュール1と、を備える。
 これによれば、通信装置5において、高周波モジュール1と同様の効果を実現することができる。
 (他の実施の形態)
 以上、本発明に係る高周波モジュール及び通信装置について、実施の形態に基づいて説明したが、本発明に係る高周波モジュール及び通信装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュール及び通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記各実施の形態に係る高周波モジュール及び通信装置の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、デュプレクサ61及びスイッチ51の間と、送受信フィルタ62及びスイッチ51の間と、デュプレクサ63及びスイッチ51の間と、送受信フィルタ64及びスイッチ51の間と、の少なくとも1つに、インピーダンス整合回路が挿入されてもよい。また、インピーダンス整合回路は、例えば、電力増幅器11及びスイッチ52の間と、低雑音増幅器21及びスイッチ53の間と、電力増幅器12及びスイッチ54の間と、低雑音増幅器22及びスイッチ55の間と、の少なくとも1つに挿入されてもよい。インピーダンス整合回路は、例えばインダクタ、及び/又は、キャパシタにより構成することができる。
 なお、上記実施の形態では、デュプレクサ61及び送受信フィルタ62と電力増幅器11及び低雑音増幅器21との接続及び非接続に2つのスイッチ52及び53が用いられていたが、スイッチの構成はこれに限定されない。例えば、スイッチ52及び53は、単一のスイッチで構成されてもよい。この場合、単一のスイッチは、送信フィルタ61Tと、受信フィルタ61Rと、送受信フィルタ62と、電力増幅器11の出力と、低雑音増幅器21の出力と、にそれぞれ接続される5つの端子を有すればよい。また、スイッチ54及び55も、スイッチ52及び53と同様に単一のスイッチで構成されてもよい。
 なお、上記実施の形態における部品の配置は、一例であり、これに限定されない。例えば、上記実施の形態において、半導体集積回路20及び/又はスイッチ51は、主面91bに配置されてもよい。つまり、モジュール基板91は、互いに対向する主面91a及び91bを有し、主面91aには、デュプレクサ61と、送受信フィルタ62と、デュプレクサ63と、送受信フィルタ64と、電力増幅器11及び12と、が配置され、主面91bには、スイッチ51、53及び55と、低雑音増幅器21及び22と、複数の外部接続端子150と、が配置されてもよい。この場合、複数の外部接続端子150として、ポスト電極及び/又はバンプ電極が用いられてもよい。これによれば、モジュール基板91の両面に部品を配置できるので、高周波モジュール1の小型化を実現することができる。なお、スイッチ52及び/又は54は、主面91aに配置されてもよい。このとき、スイッチ52の少なくとも一部及び/又はスイッチ54の少なくとも一部は、モジュール基板91の平面視において、主面91bに配置された、低雑音増幅器21の少なくとも一部及び/又は低雑音増幅器22の少なくとも一部と重なってもよい。
 なお、上記実施の形態において、高周波モジュール1は、2つのアンテナ2A及び2Bに接続するために2つのアンテナ接続端子101及び102を備えていたが、アンテナ接続端子の数は、これに限定されない。例えば、アンテナ接続端子の数は、1つであってもよく、3以上であってもよい。
 なお、上記実施の形態では、高周波モジュール1は、低雑音増幅器21に接続されるフィルタを切り替えるためのスイッチ53を備えていたが、スイッチ53を備えなくてもよい。この場合、高周波モジュール1は、低雑音増幅器21の代わりに、2つの低雑音増幅器を備えてもよい。このとき、受信フィルタ61Rの他端は、2つの低雑音増幅器の一方に接続され、送受信フィルタ62の他端は、スイッチ52を介して2つの低雑音増幅器の他方に接続されてもよい。
 同様に、高周波モジュール1は、スイッチ55を備えてもよい。この場合、高周波モジュール1は、低雑音増幅器22の代わりに、2つの低雑音増幅器を備えてもよい。このとき、受信フィルタ63Rの他端は、2つの低雑音増幅器の一方に接続され、送受信フィルタ64の他端は、スイッチ54を介して2つの低雑音増幅器の他方に接続されてもよい。
 本発明は、フロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。
 1 高周波モジュール
 2A、2B アンテナ
 3 RFIC
 4 BBIC
 5 通信装置
 11、12 電力増幅器
 20 半導体集積回路
 21、22 低雑音増幅器
 51、52、53、54、55 スイッチ
 61、63 デュプレクサ
 61R、63R 受信フィルタ
 61T、63T 送信フィルタ
 62、64 送受信フィルタ
 91 モジュール基板
 91a、91b 主面
 92 樹脂部材
 93、94 グランド導体
 95 シールド電極層
 101、102 アンテナ接続端子
 111、112 高周波入力端子
 121、122 高周波出力端子
 150 外部接続端子
 511、512、513、514、515、516、521、522、523、524、531、532、533、541、542、543、544、551、552、553 端子
 941、942 金属壁
 d1、d2、d3、d4、d5、d6 距離
 R1、R2、R3 領域

Claims (20)

  1.  第1電力増幅器と、
     第2電力増幅器と、
     第1低雑音増幅器と、
     第1通信バンド群に含まれる第1通信バンドを含む通過帯域を有し、前記第1電力増幅器及び前記第1低雑音増幅器に接続される第1フィルタと、
     前記第1通信バンド群よりも低域側の第2通信バンド群に含まれる第2通信バンドを含む通過帯域を有し、前記第2電力増幅器に接続される第2フィルタと、
     前記第1電力増幅器、前記第2電力増幅器、前記第1低雑音増幅器、前記第1フィルタ及び前記第2フィルタが配置されたモジュール基板と、を備え、
     前記モジュール基板の平面視において、前記第1電力増幅器及び前記第1低雑音増幅器の間の距離は、前記第2電力増幅器及び前記第1低雑音増幅器の間の距離よりも長い、
     高周波モジュール。
  2.  前記第1通信バンドは、周波数分割複信用の通信バンドであり、
     前記第1フィルタは、
     前記第1通信バンドのアップリンク動作バンドを含む通過帯域を有し、前記第1電力増幅器に接続される第1送信フィルタと、
     前記第1通信バンドのダウンリンク動作バンドを含む通過帯域を有し、前記第1低雑音増幅器に接続される第1受信フィルタと、を有する、
     請求項1に記載の高周波モジュール。
  3.  前記高周波モジュールは、さらに、
     アンテナ接続端子に接続された第1スイッチと、
     前記第1電力増幅器に接続された第2スイッチと、
     前記第1通信バンド群に含まれる第3通信バンドを含む通過帯域を有する第3フィルタであって、一端が前記第1スイッチを介して前記アンテナ接続端子に接続され、他端が、前記第2スイッチを介して前記第1電力増幅器に接続される第3フィルタと、を備え、
     前記第1フィルタは、前記第1スイッチを介して前記アンテナ接続端子に接続され、
     前記第1送信フィルタは、前記第2スイッチを介して前記第1電力増幅器に接続される、
     請求項2に記載の高周波モジュール。
  4.  前記高周波モジュールは、さらに、
     前記第1低雑音増幅器に接続された第3スイッチを備え、
     前記第3フィルタの前記他端は、前記第2スイッチ及び前記第3スイッチを介して前記第1低雑音増幅器に接続され、
     前記第1受信フィルタは、前記第3スイッチを介して前記第1低雑音増幅器に接続される、
     請求項3に記載の高周波モジュール。
  5.  前記高周波モジュールは、さらに、第2低雑音増幅器を備え、
     前記第2通信バンドは、周波数分割複信用の通信バンドであり、
     前記第2フィルタは、
     前記第2通信バンドのアップリンク動作バンドを含む通過帯域を有し、前記第2電力増幅器に接続される第2送信フィルタと、
     前記第2通信バンドのダウンリンク動作バンドを含む通過帯域を有し、前記第2低雑音増幅器に接続される第2受信フィルタと、を有する、
     請求項4に記載の高周波モジュール。
  6.  前記モジュール基板の平面視において、前記第1電力増幅器及び前記第2低雑音増幅器の間の距離は、前記第2電力増幅器及び前記第2低雑音増幅器の間の距離よりも長い、
     請求項5に記載の高周波モジュール。
  7.  前記モジュール基板の平面視において、前記第1送信フィルタ及び前記第1低雑音増幅器の間の距離は、前記第2送信フィルタ及び前記第1低雑音増幅器の間の距離よりも長い、
     請求項5又は6に記載の高周波モジュール。
  8.  前記モジュール基板の平面視において、前記第1送信フィルタ及び前記第2低雑音増幅器の間の距離は、前記第2送信フィルタ及び前記第2低雑音増幅器の間の距離よりも長い、
     請求項5~7のいずれか1項に記載の高周波モジュール。
  9.  前記高周波モジュールは、さらに、
     前記第2電力増幅器に接続された第4スイッチと、
     前記第2低雑音増幅器に接続された第5スイッチと、
     前記第2通信バンド群に含まれる第4通信バンドを含む通過帯域を有する第4フィルタであって、一端が前記第1スイッチを介して前記アンテナ接続端子に接続され、他端が、前記第4スイッチを介して前記第2電力増幅器に接続され、かつ、前記第4スイッチ及び前記第5スイッチを介して前記第2低雑音増幅器に接続される第4フィルタと、を備え、
     前記第2フィルタは、前記第1スイッチを介して前記アンテナ接続端子に接続され、
     前記第2送信フィルタは、前記第4スイッチを介して前記第2電力増幅器に接続され、
     前記第2受信フィルタは、前記第5スイッチを介して前記第2低雑音増幅器に接続される、
     請求項5~8のいずれか1項に記載の高周波モジュール。
  10.  前記モジュール基板の平面視において、前記第2スイッチ及び前記第1低雑音増幅器の間の距離は、前記第4スイッチ及び前記第1低雑音増幅器の間の距離よりも長い、
     請求項9に記載の高周波モジュール。
  11.  前記モジュール基板の平面視において、前記第2スイッチ及び前記第2低雑音増幅器の間の距離は、前記第4スイッチ及び前記第2低雑音増幅器の間の距離よりも長い、
     請求項9又は10に記載の高周波モジュール。
  12.  前記モジュール基板は、互いに対向する第1主面及び第2主面を有し、
     前記第1主面には、前記第1フィルタ、前記第2フィルタ、前記第3フィルタ、前記第4フィルタ、前記第1電力増幅器及び前記第2電力増幅器が配置され、
     前記第2主面には、前記第1スイッチ、前記第3スイッチ、前記第5スイッチ、前記第1低雑音増幅器、前記第2低雑音増幅器及び複数の外部接続端子が配置されている、
     請求項9~11のいずれか1項に記載の高周波モジュール。
  13.  前記モジュール基板は、互いに対向する第1主面及び第2主面を有し、
     前記第1主面には、前記第1スイッチ、前記第2スイッチ、前記第3スイッチ、前記第4スイッチ、前記第5スイッチ、前記第1フィルタ、前記第2フィルタ、前記第3フィルタ、前記第4フィルタ、前記第1電力増幅器、前記第2電力増幅器、前記第1低雑音増幅器及び前記第2低雑音増幅器が配置され、
     前記第2主面には、複数の外部接続端子が配置されている、
     請求項9~11のいずれか1項に記載の高周波モジュール。
  14.  前記高周波モジュールは、さらに、前記第1主面を第1領域、第2領域及び第3領域に区画するグランド導体を備え、
     前記第1電力増幅器、前記第2電力増幅器、前記第2スイッチ及び前記第4スイッチは、前記第1領域に配置され、
     前記第1スイッチ、前記第1フィルタ、前記第2フィルタ、前記第3フィルタ及び前記第4フィルタは、前記第2領域に配置され、
     前記第1低雑音増幅器、前記第2低雑音増幅器、前記第3スイッチ及び前記第5スイッチは、前記第3領域に配置されている、
     請求項13に記載の高周波モジュール。
  15.  前記グランド導体は、前記第1主面上に立つ金属壁体である、
     請求項14に記載の高周波モジュール。
  16.  前記高周波モジュールは、さらに、
     前記第1主面を覆う樹脂部材と、
     前記樹脂部材の表面を覆うシールド電極層と、を備え、
     前記グランド導体の先端部及び側縁部の少なくとも一方は、前記シールド電極層と接合されている、
     請求項14又は15に記載の高周波モジュール。
  17.  前記第1通信バンドは、LTEのためのBand7又は5GNRのためのn7である、
     請求項1~16のいずれか1項に記載の高周波モジュール。
  18.  前記第2通信バンドは、LTEのためのBand1、Band25、Band3若しくはBand66、又は、5GNRのためのn1、n25、n3若しくはn66である、
     請求項1~17のいずれか1項に記載の高周波モジュール。
  19.  前記第3通信バンドは、LTEのためのBand41若しくはBand40、又は、5GNRのためのn41若しくはn40である、
     請求項5~7のいずれか1項に記載の高周波モジュール。
  20.  前記第4通信バンドは、LTEのためのBand34若しくはBand39、又は、5GNRのためのn34若しくはn39である、
     請求項9~11のいずれか1項に記載の高周波モジュール。
PCT/JP2021/028538 2020-08-13 2021-08-02 高周波モジュール WO2022034819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180058355.4A CN116097570A (zh) 2020-08-13 2021-08-02 高频模块
US18/154,225 US20230145698A1 (en) 2020-08-13 2023-01-13 Radio-frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020136566 2020-08-13
JP2020-136566 2020-08-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,225 Continuation US20230145698A1 (en) 2020-08-13 2023-01-13 Radio-frequency module

Publications (1)

Publication Number Publication Date
WO2022034819A1 true WO2022034819A1 (ja) 2022-02-17

Family

ID=80247833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028538 WO2022034819A1 (ja) 2020-08-13 2021-08-02 高周波モジュール

Country Status (3)

Country Link
US (1) US20230145698A1 (ja)
CN (1) CN116097570A (ja)
WO (1) WO2022034819A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340257A (ja) * 2005-06-06 2006-12-14 Renesas Technology Corp マルチモード高周波回路
JP2017152807A (ja) * 2016-02-22 2017-08-31 株式会社村田製作所 スイッチ付ダイプレクサモジュールおよびダイプレクサモジュール
JP2020108069A (ja) * 2018-12-28 2020-07-09 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340257A (ja) * 2005-06-06 2006-12-14 Renesas Technology Corp マルチモード高周波回路
JP2017152807A (ja) * 2016-02-22 2017-08-31 株式会社村田製作所 スイッチ付ダイプレクサモジュールおよびダイプレクサモジュール
JP2020108069A (ja) * 2018-12-28 2020-07-09 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
US20230145698A1 (en) 2023-05-11
CN116097570A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
KR102489366B1 (ko) 고주파 모듈 및 통신장치
WO2022044485A1 (ja) 高周波モジュール及び通信装置
CN215072395U (zh) 高频模块和通信装置
CN214756335U (zh) 高频模块以及通信装置
WO2022034817A1 (ja) 高周波モジュールおよび通信装置
CN215186732U (zh) 高频模块以及通信装置
WO2022034715A1 (ja) 高周波モジュール及び通信装置
US20230261682A1 (en) Radio frequency module and communication device
WO2022034818A1 (ja) 高周波モジュール
US20230155612A1 (en) Radio frequency module and communication device
KR102504973B1 (ko) 고주파 모듈 및 통신 장치
CN215186733U (zh) 高频模块和通信装置
WO2022044526A1 (ja) 高周波モジュール及び通信装置
WO2022034819A1 (ja) 高周波モジュール
CN114142884B (zh) 高频模块和通信装置
WO2021205702A1 (ja) 高周波回路、高周波モジュール及び通信装置
CN214315259U (zh) 高频模块和通信装置
WO2023021792A1 (ja) 高周波モジュール及び通信装置
WO2023022047A1 (ja) 高周波モジュール
WO2022102284A1 (ja) 高周波モジュール及び通信装置
WO2022209736A1 (ja) 高周波モジュール及び通信装置
WO2022209751A1 (ja) 高周波モジュール及び通信装置
WO2023021982A1 (ja) 高周波モジュール
WO2022209728A1 (ja) 高周波モジュール及び通信装置
WO2022209749A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP