WO2022023883A1 - 二次電池の作製方法、及び、二次電池の製造装置 - Google Patents

二次電池の作製方法、及び、二次電池の製造装置 Download PDF

Info

Publication number
WO2022023883A1
WO2022023883A1 PCT/IB2021/056566 IB2021056566W WO2022023883A1 WO 2022023883 A1 WO2022023883 A1 WO 2022023883A1 IB 2021056566 W IB2021056566 W IB 2021056566W WO 2022023883 A1 WO2022023883 A1 WO 2022023883A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode
exterior body
resin layer
separator
Prior art date
Application number
PCT/IB2021/056566
Other languages
English (en)
French (fr)
Inventor
吉富修平
石谷哲二
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202180060119.6A priority Critical patent/CN116134570A/zh
Priority to KR1020237005580A priority patent/KR20230044239A/ko
Priority to JP2022539785A priority patent/JPWO2022023883A1/ja
Priority to US18/006,206 priority patent/US20230335782A1/en
Publication of WO2022023883A1 publication Critical patent/WO2022023883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a secondary battery and a method for manufacturing the secondary battery. Or, it relates to a portable information terminal having a secondary battery, a vehicle, or the like. Or, it relates to a secondary battery manufacturing apparatus.
  • one aspect of the present invention is not limited to the above technical fields.
  • a semiconductor device, a display device, a light emitting device, a power storage device, a storage device, an electronic device, a lighting device, a driving method thereof, or a manufacturing method thereof can be mentioned as an example.
  • the electronic device refers to all devices having a power storage device, and the electro-optical device having the power storage device, the information terminal device having the power storage device, and the like are all electronic devices.
  • a power storage device refers to an element having a power storage function and a device in general.
  • a power storage device also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and the like.
  • Lithium-ion secondary batteries which have particularly high output and high energy density, are portable information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, or hybrid vehicles (HVs), and electric vehicles.
  • HVs hybrid vehicles
  • EVs electric vehicles
  • PSVs plug-in hybrid vehicles
  • Lithium-ion secondary batteries have a positive electrode containing a positive electrode active material such as lithium cobalt oxide (LiCoO 2 ) or lithium iron oxide (LiFePO 4 ), and a negative electrode activity such as a carbon material such as graphite capable of storing and releasing lithium. It is composed of a negative electrode containing a substance and an electrolyte containing an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the lithium ion secondary battery is required to have high capacity, high performance, and safety in various operating environments.
  • Patent Document 1 discloses a laminated battery manufacturing apparatus capable of improving manufacturing efficiency.
  • One of the tasks of one aspect of the present invention is to automate at least a part of the process of manufacturing a secondary battery.
  • One aspect of the present invention is to provide a method for manufacturing a secondary battery having a relatively large size.
  • One of the problems of one aspect of the present invention is to efficiently manufacture a secondary battery in a short time.
  • One of the problems of one aspect of the present invention is to manufacture a secondary battery with a high yield.
  • One of the problems of one aspect of the present invention is to provide a method for manufacturing a secondary battery in which the manufacturing cost is reduced.
  • One of the problems of one aspect of the present invention is to provide a highly reliable method for manufacturing a secondary battery.
  • One of the problems of one aspect of the present invention is to provide a method for manufacturing a secondary battery with high safety.
  • the first electrode is arranged on the first exterior body
  • the separator is arranged on the first electrode
  • the second electrode is arranged on the separator
  • the first electrode and the separator are arranged.
  • an electrolyte is dropped onto at least one of the second electrodes
  • a resin layer is placed on the first exterior body
  • the resin layer is placed on at least one of the first electrode, the separator, and the second electrode.
  • a second exterior body is arranged on the first exterior body so as to cover the first electrode, the separator, and the second electrode, and the resin layer is exposed to ultraviolet light under reduced pressure.
  • the first electrode and the separator are subjected to the first exterior body and the second exterior body under atmospheric pressure.
  • a method for manufacturing a secondary battery which seals the second electrode.
  • One of the first electrode and the second electrode is a positive electrode, and the other is a negative electrode.
  • the first exterior body preferably has recesses. It is preferable that the first electrode, the separator, and the second electrode are arranged in the recess.
  • a plurality of laminates are arranged on the first exterior body, a resin layer is arranged on the first exterior body, and the plurality of laminates are arranged on the first exterior body.
  • a second exterior body is arranged so as to cover it, the resin layer is irradiated with ultraviolet light under reduced pressure, at least a part of the resin layer is cured, the ultraviolet light is irradiated, and then the first is performed under atmospheric pressure.
  • a plurality of laminated bodies are sealed by the outer body and the second outer body, and after sealing, the first outer body and the second outer body are separated, and a secondary battery having the laminated body is individually formed. It is a method of manufacturing a secondary battery that separates into.
  • the first electrode is arranged on the first exterior body, the separator is arranged on the first electrode, the second electrode is arranged on the separator, and the first electrode, It is formed by dropping an electrolyte onto at least one of the separator and the second electrode.
  • One of the first electrode and the second electrode is a positive electrode, and the other is a negative electrode.
  • the first exterior body preferably has a plurality of recesses. It is preferable that one of the plurality of laminated bodies is arranged with respect to one of the plurality of recesses.
  • the resin layer is preferably arranged in a frame shape so as to surround the first electrode, the separator, and the second electrode.
  • the sealing may be performed by irradiating the resin layer with ultraviolet light and curing the resin layer. At this time, it is preferable that the area of the resin layer irradiated with ultraviolet light at the time of sealing is larger than the area irradiated with ultraviolet light under reduced pressure.
  • sealing may be performed by thermocompression bonding.
  • the second exterior body preferably has a function of transmitting ultraviolet light, at least in a region overlapping the resin layer.
  • the second exterior body preferably has a function of blocking ultraviolet light in a region overlapping with at least one of the first electrode, the separator, and the second electrode.
  • the electrolyte preferably contains fluorine.
  • the electrolyte preferably contains an ionic liquid.
  • One or both of the first electrode and the second electrode preferably contain graphene.
  • the first electrode preferably has a first active material layer on one or both sides of the first current collector.
  • the second electrode preferably has a second active material layer on one or both sides of the second current collector.
  • One aspect of the present invention is a manufacturing apparatus for a secondary battery in which a laminate having one or more positive electrodes, a separator, and a negative electrode is provided between a first exterior body and a second exterior body.
  • the manufacturing apparatus has a transport chamber, a first processing chamber, and a second processing chamber.
  • the transport chamber has a function of transporting the secondary battery being manufactured from the first processing chamber to the second processing chamber.
  • the first processing chamber has a first stage, an adsorption mechanism, an electrolyte dropping mechanism, and a sealing material supply mechanism.
  • the first stage has a function of supporting the secondary battery being manufactured.
  • the suction mechanism has a function of sucking the members constituting the laminated body and arranging them on the first exterior body.
  • the electrolyte dropping mechanism has a function of dropping an electrolyte on a member constituting the laminated body.
  • the sealing material supply mechanism has a function of forming a resin layer on the first exterior body.
  • the second processing chamber has a second stage, an exhaust mechanism, an exterior body support mechanism, and a first ultraviolet light irradiation mechanism.
  • the second stage has a function of supporting the secondary battery being manufactured, which is conveyed from the first processing chamber.
  • the exhaust mechanism has a function of reducing the pressure inside the second processing chamber.
  • the exterior body support mechanism has a function of supporting the second exterior body at a position facing the secondary battery being manufactured, which is conveyed from the first processing chamber.
  • the first ultraviolet light irradiation mechanism has a function of irradiating at least a part of the resin layer with ultraviolet light via the first exterior body or the second exterior body.
  • the suction mechanism preferably has a function of sucking the first exterior body and arranging it on the first stage.
  • the first treatment chamber preferably has an inert gas supply mechanism.
  • the inert gas supply mechanism preferably has a function of supplying the inert gas to the inside of the first treatment chamber.
  • the inert gas is preferably argon gas.
  • the manufacturing apparatus of one aspect of the present invention preferably further has a third processing chamber.
  • the third processing chamber has a second ultraviolet light irradiation mechanism.
  • the second ultraviolet light irradiation mechanism has a function of irradiating the resin layer with ultraviolet light via the first exterior body or the second exterior body.
  • the area of the resin layer irradiated with ultraviolet light by the second ultraviolet light irradiation mechanism is larger than the area irradiated with ultraviolet light by the first ultraviolet light irradiation mechanism.
  • At least a part of the manufacturing process of the secondary battery can be automated.
  • the present invention it is possible to provide a method for manufacturing a secondary battery having a relatively large size.
  • the number of mounted secondary batteries can be reduced as compared with the case where a small secondary battery is mounted.
  • By reducing the number of secondary batteries to be mounted it becomes easier to control individual batteries and the burden on the charge control circuit is reduced.
  • the manufacturing step for the secondary battery can be significantly shortened. Therefore, the manufacturing cost of the secondary battery can be reduced.
  • the secondary battery can be efficiently manufactured in a short time.
  • the secondary battery can be manufactured with a high yield.
  • FIG. 1A is a cross-sectional view showing an example of a secondary battery.
  • FIG. 1B is a top view illustrating a state after dropping an electrolyte on an electrode.
  • FIG. 1C is a top view illustrating multi-chamfering.
  • FIG. 2 is a top view showing an example of a secondary battery manufacturing apparatus.
  • FIG. 3 is a flow chart showing an example of a method for manufacturing a secondary battery.
  • 4A to 4D are cross-sectional views showing an example of a method for manufacturing a secondary battery.
  • 5A to 5C are cross-sectional views showing an example of a method for manufacturing a secondary battery.
  • 6A and 6B are perspective views showing an example of a method for manufacturing a secondary battery.
  • FIG. 7A and 7B are perspective views showing an example of a method for manufacturing a secondary battery.
  • FIG. 8A is a top view showing an example of a method for manufacturing a secondary battery.
  • FIG. 8B is a cross-sectional view showing an example of the secondary battery being manufactured.
  • FIG. 8C is a top view showing an example of the secondary battery being manufactured.
  • 9A and 9B are top views showing an example of a method for manufacturing a secondary battery.
  • FIG. 10 is a top view showing an example of a method for manufacturing a secondary battery.
  • FIG. 11 is a top view showing an example of a method for manufacturing a secondary battery.
  • FIG. 12 is a diagram illustrating the crystal structure of the positive electrode active material.
  • FIG. 13 is a diagram illustrating the crystal structure of the positive electrode active material.
  • FIG. 14A to 14C are views showing an example of the appearance of the secondary battery.
  • 15A and 15B are views showing an example of the appearance of the secondary battery.
  • 16A to 16C are views showing an example of a method for manufacturing a secondary battery.
  • FIG. 17A is a perspective view showing an example of a battery pack.
  • FIG. 17B is a block diagram showing an example of a battery pack.
  • FIG. 17C is a block diagram showing an example of a vehicle having a motor.
  • 18A to 18D are views showing an example of a transportation vehicle.
  • 19A and 19B are diagrams showing an example of a power storage device.
  • 20A to 20E are diagrams showing an example of an electronic device.
  • membrane and the word “layer” can be interchanged with each other in some cases or depending on the situation.
  • conductive layer can be changed to the term “conductive layer”.
  • insulating film can be changed to the term “insulating layer”.
  • a laminate having a positive electrode, a separator, and a negative electrode is often placed in a can or bag-shaped exterior body, then an electrolytic solution is injected, and then sealed.
  • an electrolytic solution is injected, and then sealed.
  • the impregnation of the electrolyte into the inside of the positive electrode and the negative electrode may be insufficient.
  • lithium ions may diffuse outward from the injection port.
  • such a method tends to increase the number of steps.
  • the first electrode is arranged on the first exterior body, the separator is arranged on the first electrode, and the second electrode is arranged on the separator.
  • the electrolyte is dropped onto at least one of the arranged first electrode, separator, and second electrode.
  • a frame-shaped resin layer is arranged on the first exterior body. It is preferable to use an ultraviolet photocurable resin for the resin layer. Then, a second exterior body is arranged on the first exterior body so as to cover the laminated structure of the first electrode, the separator, and the second electrode (hereinafter, also referred to as the laminated body), and the pressure is reduced. By irradiating the resin layer with ultraviolet light (also referred to as a reduced pressure atmosphere), at least a part of the resin layer is cured. It is preferable to use an exterior film for each of the first exterior body and the second exterior body.
  • the secondary battery being manufactured After curing at least a part of the resin layer in an atmosphere depressurized from atmospheric pressure, the secondary battery being manufactured is exposed to atmospheric pressure (also referred to as atmospheric pressure atmosphere or normal pressure).
  • atmospheric pressure also referred to as atmospheric pressure atmosphere or normal pressure
  • the exterior body and the second exterior body are pressurized by atmospheric pressure.
  • the decompressed state of the space surrounded by the first exterior body, the second exterior body, and the frame-shaped resin layer is maintained. Therefore, it is possible to prevent impurities from being mixed into the secondary battery.
  • the dropped electrolyte can be widely permeated into the member in a short time by being exposed to the atmospheric pressure atmosphere from the reduced pressure atmosphere. Therefore, it is possible to shorten the time for the electrolyte to impregnate the surfaces of the positive electrode and the negative electrode, and even the inside. Then, the inside of the positive electrode and the negative electrode can be sufficiently impregnated with the electrolyte.
  • the lead electrode (also referred to as a lead wiring or a lead terminal) that functions as a terminal for taking out the outside shall be projected to the outside of the exterior body.
  • the lead electrode is provided to pull out the positive electrode or the negative electrode of the secondary battery to the outside of the exterior body.
  • the laminated body is sealed by the first exterior body and the second exterior body under atmospheric pressure.
  • the outer peripheral edges of the first exterior body and the second exterior body in the case of a rectangular parallelepiped with a thin secondary battery shape, the four sides when viewed from the top surface) are sealed without gaps. Stop.
  • a sealing method a method of irradiating the resin layer with light such as ultraviolet light, a method of thermocompression bonding the exterior body, or the like can be used.
  • sealing refers to blocking a certain closed area from the outside air, and in a secondary battery, the laminated body and its surroundings are set as a closed area, and the outside of the closed area is surrounded by an exterior body from the outside air. Blocking is called sealing.
  • the end portion of the exterior body is bent to increase the sealing strength and prevent impurities from entering from the outside or releasing gas or the like from the inside.
  • the method for producing a secondary battery at least from the step of forming a laminate on the first exterior body to the step of curing the resin layer under reduced pressure, one device is continuously used. Since this can be done, it is possible to prevent impurities from being mixed into the secondary battery.
  • One of the first electrode and the second electrode is a positive electrode, and the other is a negative electrode.
  • the laminated body may be laminated in the order of the positive electrode, the separator, and the negative electrode, or may be laminated in the order of the negative electrode, the separator, and the positive electrode.
  • the separator is used to prevent a short circuit between the positive electrode and the negative electrode.
  • one common separator may be bent and used in order to reduce the number of parts.
  • a plurality of laminated bodies may be arranged on the first exterior body.
  • the resin layer one frame-shaped resin layer surrounding all of the plurality of laminated bodies may be formed, or a plurality of frame-shaped resin layers surrounding one or a plurality of laminated bodies may be formed. ..
  • one frame-shaped resin layer may be formed for one laminated body.
  • the second exterior body is arranged on the first exterior body so as to cover the plurality of laminated bodies. Then, the resin layer is irradiated with ultraviolet light under reduced pressure, and a plurality of laminated bodies are sealed by the first exterior body and the second exterior body under atmospheric pressure. After sealing, the first exterior body and the second exterior body are separated to individually separate the secondary battery having the laminated body.
  • the material of the resin layer includes a photo-curing resin such as an ultraviolet photo-curing resin (also referred to as a photo-curing adhesive), a thermo-curing resin (also referred to as a thermo-curing adhesive), a reaction-curing adhesive, and an anaerobic adhesive.
  • a photo-curing resin such as an ultraviolet photo-curing resin (also referred to as a photo-curing adhesive), a thermo-curing resin (also referred to as a thermo-curing adhesive), a reaction-curing adhesive, and an anaerobic adhesive.
  • a photo-curing resin such as an ultraviolet photo-curing resin (also referred to as a photo-curing adhesive), a thermo-curing resin (also referred to as a thermo-curing adhesive), a reaction-curing adhesive, and an anaerobic adhesive.
  • Various curable adhesives such as these can be used.
  • adhesives examples include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like. ..
  • a material having a high gas barrier property such as an epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • the resin layer can be cured by irradiating the resin layer with light under reduced pressure.
  • the decompression state of the space surrounded by the first exterior body, the second exterior body, and the frame-shaped resin layer is maintained. Therefore, it is possible to prevent impurities from being mixed into the secondary battery.
  • the photocurable resin it is not necessary to expose the secondary battery to a high temperature when curing the resin layer, so that deterioration of the secondary battery can be suppressed and a highly reliable secondary battery can be manufactured.
  • thermosetting resin When a thermosetting resin is used, it is preferable to perform thermocompression bonding or welding under reduced pressure. As a result, even if the secondary battery being manufactured is exposed to atmospheric pressure, the decompression state of the space surrounded by the first exterior body, the second exterior body, and the frame-shaped resin layer is maintained. Therefore, it is possible to prevent impurities from being mixed into the secondary battery.
  • thermosetting resin By using a thermosetting resin, it is not necessary to introduce a light irradiation device, so that the cost for introducing the device may be reduced.
  • thermocompression bonding or welding when thermocompression bonding or welding is performed under reduced pressure, it may not be necessary to perform the step of forming the resin layer.
  • a resin thermoplastic film material, etc.
  • a space surrounded by a first exterior body, a second exterior body, and a frame-shaped resin layer can be used.
  • the decompressed state can be maintained under atmospheric pressure. As a result, the manufacturing process of the secondary battery can be reduced.
  • the secondary battery 500 shown in FIG. 1A has an exterior body 509a, an exterior body 509b, and a laminated body 512 arranged between the exterior bodies 509a and 509b.
  • the laminate 512 has a positive electrode 503, a negative electrode 506, and a separator 507.
  • the positive electrode 503 and the negative electrode 506 are superimposed, and the separator 507 is arranged between the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501 and a positive electrode active material layer 502.
  • the positive electrode active material layers 502 are provided on both sides of the positive electrode current collector 501.
  • the positive electrode active material layer 502 may be provided on only one side of the positive electrode current collector 501.
  • the negative electrode 506 includes a negative electrode current collector 504 and a negative electrode active material layer 505.
  • a negative electrode current collector 504 receives negative electrode current from an external source.
  • the negative electrode active material layers 505 are provided on both sides of the negative electrode current collector 504.
  • the negative electrode active material layer 505 may be provided on only one side of the negative electrode current collector 504.
  • the positive electrode active material layer 502 and the negative electrode active material layer 505 are preferably arranged so as to face each other with the separator 507 interposed therebetween.
  • FIG. 1A shows an example in which the secondary battery 500 has four sets of a positive electrode active material layer 502 and a negative electrode active material layer 505 facing each other with the separator 507 interposed therebetween.
  • the number of pairs of the positive electrode active material layer 502 and the negative electrode active material layer 505 is not particularly limited, and may be, for example, one or more and 50 or less.
  • the electrolyte is uniformly or sufficiently dropped by dropping a plurality of drops of the electrolyte on any one or more of the positive electrode 503, the negative electrode 506, and the separator 507. , Can be impregnated.
  • FIG. 1B shows an example in which a plurality of drops of the electrolyte 515a are dropped on the positive electrode 503.
  • the electrode of the secondary battery has an active material layer on the current collector, and the active material layer has an active material, a conductive material, a binder, and the like, and has a gap between them. There is. It is preferable that the dropped electrolyte moves from the dropping position to the gap of the active material layer and is uniformly impregnated with the electrolyte, ideally having no voids.
  • FIG. 1B illustrates droplets of the electrolyte 515a at 140 locations (20 rows ⁇ 7 columns) at equal intervals on the positive electrode 503, but the number and positions of the droplets are not particularly limited, and the practitioner May be determined as appropriate.
  • an image pickup mechanism an image pickup element such as a CCD element.
  • the dropping processing time can be shortened, which is preferable.
  • Multi-chamfering is a method of manufacturing a plurality of secondary batteries by arranging a plurality of laminated bodies on one large exterior body, manufacturing a secondary battery, and then dividing each laminated body in a plane. It points to. By performing multi-chamfering, the manufacturing time per secondary battery can be shortened. Further, by performing multi-chamfering using the method for manufacturing a secondary battery according to one aspect of the present invention, it is easy to make the characteristics of a plurality of secondary batteries uniform, and the secondary battery can be manufactured with a high yield.
  • a plurality of secondary batteries can be efficiently manufactured from one large-area exterior film.
  • a large-area exterior film having a size of 1500 mm ⁇ 1800 mm, 1800 mm ⁇ 2000 mm, 2000 mm ⁇ 2100 mm, 2200 mm ⁇ 2600 mm, 2600 mm ⁇ 3100 mm can be used.
  • the exterior body can also be called a packaging material.
  • FIG. 1C also shows an example of arrangement of the resin layer.
  • resin layers 518 may be provided at the four corners of the exterior body 509b, and a plurality of frame-shaped resin layers 513 may be provided so as to surround one laminated body 512.
  • the resin layer 518 may be cured under reduced pressure, and then the frame-shaped resin layer 513 may be cured under atmospheric pressure. If the resin layer 518 is cured under reduced pressure, even if the frame-shaped resin layer 513 is uncured, the reduced pressure state of the space surrounded by the two exterior bodies and the frame-shaped resin layer 513 is under atmospheric pressure. It is held at.
  • FIG. 2 shows an example of a manufacturing apparatus that can be used for manufacturing a secondary battery according to an aspect of the present invention.
  • the manufacturing apparatus 300 shown in FIG. 2 has a member charging chamber 301, a transport chamber 302, a processing chamber 303, a processing chamber 304, a processing chamber 305, and a member taking-out chamber 306.
  • Each room can be configured to be connected to various exhaust mechanisms according to the intended use.
  • each room can be configured to be connected to various gas supply mechanisms according to the intended use.
  • the inert gas is supplied into the manufacturing apparatus 300.
  • the gas supplied to the inside of the manufacturing apparatus 300 it is preferable to use a gas that has been highly purified by a gas purifier before being introduced into the manufacturing apparatus 300.
  • the member charging chamber 301 is a room for charging the positive electrode 503, the separator 507, the negative electrode 506, the exterior body 509a, the exterior body 509b, and the like into the manufacturing apparatus 300.
  • the transfer chamber 302 serves as a transfer chamber for transporting members and the like from any one of the member input chamber 301, the processing chamber 303, the processing chamber 304, the processing chamber 305, and the member extraction chamber 306 to the other chamber. Function.
  • the secondary battery being manufactured can be transported from the processing chamber 303 to the processing chamber 304.
  • the transport chamber 302 has a transport mechanism 320.
  • the processing chamber 303 has a function of laminating and arranging a positive electrode 503, a separator 507, and a negative electrode 506 on the exterior body 509b, and a function of forming a resin layer on the exterior body 509b.
  • the processing chamber 303 has a stage, an adsorption mechanism, an electrolyte dropping mechanism, and a sealing material supply mechanism.
  • the stage has the function of supporting the secondary battery being manufactured.
  • the suction mechanism has a function of sucking a member (positive electrode 503, separator 507, or negative electrode 506) constituting the laminated body and arranging it on the exterior body 509b.
  • the suction mechanism may further have a function of sucking the exterior body 509b (or the temporary support substrate on which the exterior body 509b is arranged) and arranging it on the stage.
  • the electrolyte dropping mechanism has a function of dropping an electrolyte on a member constituting the laminated body.
  • the sealing material supply mechanism has a function of forming a resin layer on the exterior body 509b.
  • the sealing material supply mechanism has, for example, a function of supplying an ultraviolet photocurable resin.
  • the processing chamber 303 further has a holder for accommodating each of a plurality of positive electrodes 503, a plurality of separators 507, and a plurality of negative electrodes 506. These members are carried to or near the stage by a transfer mechanism such as a robot arm or a robot hand when necessary. Alternatively, the suction mechanism may directly suck the member in the holder.
  • the treatment chamber 303 preferably has an inert gas supply mechanism.
  • the inert gas supply mechanism preferably has a function of supplying the inert gas to the inside of the treatment chamber 303.
  • the inert gas nitrogen or a rare gas can be used, and an argon gas is preferable.
  • the treatment chamber 304 has a function of curing the resin layer under reduced pressure.
  • a case where an ultraviolet photocurable resin is used for the resin layer will be described as an example. That is, the processing chamber 304 has a function of irradiating the resin layer with ultraviolet light under reduced pressure.
  • the processing chamber 304 has a stage, an exhaust mechanism, an exterior body support mechanism, and an ultraviolet light irradiation mechanism.
  • the stage has a function of supporting the secondary battery being manufactured, which is conveyed from the processing chamber 303.
  • the exhaust mechanism has a function of reducing the pressure inside the processing chamber 304.
  • Examples of the exhaust mechanism include a dry pump, a rotary pump, a diaphragm pump, and the like.
  • Examples of the exhaust mechanism include an exhaust mechanism equipped with a pump having an adsorption means such as a cryopump, a sputter ion pump, and a titanium sublimation pump, and an exhaust mechanism provided with a cold trap in a turbo molecular pump. Be done.
  • the processing chamber 304 can be evacuated to a vacuum, and it is preferable that the treatment chamber 304 has a function of introducing an inert gas to make the atmospheric pressure after the vacuum exhaust. It is preferable that the processing chamber 303 also has this function. Further, it is preferable that each of the other chambers of the manufacturing apparatus 300 also has the said function.
  • the processing chamber 304 can set the ultimate vacuum degree to about 0.1 Pa, and can further control the back diffusion of impurities from the pump side and the exhaust system.
  • the exterior body support mechanism has a function of supporting the exterior body 509a (or the temporary support substrate on which the exterior body 509a is arranged) at a position facing the secondary battery being manufactured, which is conveyed from the processing chamber 303.
  • the exterior body support mechanism for example, one or more of an adsorption mechanism, an electrostatic mechanism, a slight adhesive mechanism, and the like can be used.
  • the processing chamber 304 has an ultraviolet light irradiation mechanism.
  • the ultraviolet light irradiation mechanism has a function of irradiating at least a part of the resin layer with ultraviolet light via the exterior body 509a or the exterior body 509b.
  • the manufacturing apparatus 300 can cure the resin layer under reduced pressure in the processing chamber 304 without exposing it to the atmosphere after dropping the electrolyte in the processing chamber 303. As a result, it is possible to prevent impurities from entering the secondary battery being manufactured. Further, the manufacturing apparatus 300 can further seal the secondary battery in the processing chamber 305 without exposing it to the atmosphere. In this way, the reliability of the secondary battery can be improved by performing the processing continuously by one device.
  • the processing chamber 305 has a function of sealing.
  • the processing chamber 305 when sealing is performed by irradiating with ultraviolet light, the processing chamber 305 has an ultraviolet light irradiation mechanism. At this time, the ultraviolet light irradiation mechanism of the processing chamber 305 may be the same as or different from that of the processing chamber 304.
  • the processing chamber 305 can have an atmospheric pressure atmosphere.
  • the processing chamber 305 when sealing is performed by thermocompression bonding, has a thermocompression bonding mechanism.
  • the processing chamber 305 can have an atmospheric pressure atmosphere or a reduced pressure atmosphere.
  • the resin layer is cured under reduced pressure in the processing chamber 304 and then exposed to atmospheric pressure, the exterior body 509a, the exterior body 509b, and the exterior body 509b are exposed.
  • the decompressed state of the space surrounded by the frame-shaped resin layer is maintained. Even if thermocompression bonding is performed under atmospheric pressure, a highly reliable secondary battery can be manufactured.
  • processing chamber 305 may not be provided, and after the processing in the processing chamber 304 is completed, the processing chamber 305 may be transported to the member take-out chamber 306 and taken out to the outside of the manufacturing apparatus 300. Then, sealing may be performed outside the manufacturing apparatus 300.
  • the member take-out room 306 is a room for taking out the manufactured secondary battery to the outside of the manufacturing apparatus 300.
  • FIG. 3 is a flow chart showing a method for manufacturing a secondary battery according to an aspect of the present invention.
  • 4 and 5 are cross-sectional views showing a method for manufacturing a secondary battery according to an aspect of the present invention, and correspond to a cross-sectional view between the two-dot chain lines AB shown in FIG. 1C.
  • an example of a manufacturing method using the above-mentioned manufacturing apparatus 300 will be described.
  • step S00 the process is started.
  • step S01 the exterior body 509b is arranged on the stage 331 of the processing chamber 303.
  • the exterior body 509b may be temporarily fixed to a temporary support substrate or the like (in other words, fixed by a detachable method) and placed on the stage 331. It is preferable to use an exterior film as the exterior body 509b.
  • step S02 the positive electrode 503 is arranged on the exterior body 509b (FIG. 4A).
  • the positive electrode 503, the exterior body 509b, the stage 331, and the like are arranged in the chamber of the processing chamber 303, but for the sake of simplicity, the inner wall of the chamber and the like are not shown here.
  • the stage 331 may be movable back and forth, left and right, or up and down, respectively.
  • Examples of the fixing mechanism for fixing the member or the like arranged on the stage 331 include a mechanical chuck, a suction chuck, and a chuck such as an electrostatic chuck.
  • a porous chuck may be used.
  • the member may be fixed to an adhesive sheet, a suction table, a heater table, a spinner table, or the like.
  • the stage 331 may have a heating mechanism. By heating the stage 331 during the process in the treatment chamber 303, the member can be impregnated with the electrolyte more quickly.
  • FIG. 4A shows an example in which the positive electrode 503 is carried to a predetermined position in a state of being sucked by the suction jig 333. Although only one suction jig 333 is shown in FIG. 4A, a plurality of suction jigs may be used.
  • the processing chamber 303 preferably has an alignment camera 332 in order to facilitate alignment.
  • step S03 the electrolyte 515a is dropped onto the positive electrode 503.
  • 4B and 4C show a state in which the electrolyte 515a is dropped from the nozzle 334 to the positive electrode 503.
  • the electrolyte 515a By moving the nozzle 334, the electrolyte 515a can be dropped over the entire surface of the positive electrode 503. Alternatively, the electrolyte 515a may be dropped over the entire surface of the positive electrode 503 by moving the stage 331.
  • the electrolyte is dropped once or divided into a plurality of times at a uniform pitch with respect to the plane of the surface to be dropped.
  • the dropping method for example, any one of a dispense method, a spray method, an inkjet method and the like can be used.
  • the dispense method is a method using a liquid quantitative discharge device, and a fixed amount of liquid can be dropped from a nozzle. If a plurality of liquid quantitative discharge devices are used, the manufacturing time can be shortened. Dropping can also be performed at regular distance intervals by relatively moving the nozzle or the object to be dropped (one or more of the positive electrode, the separator, and the negative electrode).
  • the electrolyte of 0.01 cc ⁇ n can be impregnated by dropping at n (n> 1) places.
  • the total amount can be precisely controlled. For example, in the case of a positive electrode, dropping at n (n> 1) points on a flat surface can shorten the time for impregnating the entire positive electrode by dropping at multiple positive electrodes as compared with dropping at only one point on the positive electrode. The manufacturing time can be shortened. Further, an ODF (One Drop Fill) method can be used for dropping the electrolyte.
  • ODF One Drop Fill
  • the viscosity of the electrolyte dropped from the nozzle or the like is in the range of 0.3 mPa ⁇ s or more and 1000 mPa ⁇ s or less at room temperature (25 ° C.), the electrolyte can be dropped from the nozzle.
  • the viscosity of the electrolyte is preferably 10 mPa ⁇ s or more and 95 mPa ⁇ s or less.
  • a rotary viscometer (for example, TVE-35L of Toki Sangyo) is used for viscosity measurement.
  • an organic solvent also referred to as an organic electrolytic solution
  • an ionic liquid can be used as the dropping electrolyte.
  • the method for manufacturing a secondary battery according to the present embodiment includes a step of performing under reduced pressure.
  • Ionic liquids are preferable because they hardly volatilize even in a high vacuum.
  • an ionic liquid mixed with an organic solvent may be used as the electrolyte.
  • an organic solvent is contained as the electrolyte, it is desirable that the degree of vacuum in the treatment chamber is lower than about 5 ⁇ 10 -1 Pa.
  • step S04 the separator 507 is placed on the positive electrode 503.
  • the separator 507 is arranged so as to overlap the entire surface of the positive electrode 503. As a result, it is possible to prevent the positive electrode 503 and the negative electrode 506 arranged later from coming into contact with each other and causing a short circuit.
  • step S05 the electrolyte 515b is dropped onto the separator 507.
  • FIG. 4D shows a state in which the electrolyte 515b is dropped onto the separator 507.
  • the electrolyte 515b can be dropped using the nozzle 334 described above.
  • step S06 the negative electrode 506 is placed on the separator 507.
  • the negative electrodes 506 are arranged so as to overlap each other so as not to protrude from the separator 507 when viewed from above. As a result, it is possible to prevent the positive electrode 503 and the negative electrode 506 to be arranged from coming into contact with each other and causing a short circuit.
  • step S07 the electrolyte 515c is dropped onto the negative electrode 506.
  • FIG. 5A shows a state in which the electrolyte 515c is dropped onto the negative electrode 506.
  • the electrolyte 515c can be added dropwise using the nozzle 334 described above.
  • the laminated body of the positive electrode 503, the separator 507, and the negative electrode 506 can be further laminated.
  • the laminated body 512 shown in FIG. 1A can be produced. After arranging any one of the positive electrode 503, the negative electrode 506, and the separator 507, it is preferable to drop the electrolyte every time.
  • the positive electrode 503, the separator 507, and the negative electrode 506 are laminated in this order, but the present invention is not limited to this.
  • the negative electrode 506, the separator 507, and the positive electrode 503 may be laminated in this order.
  • the lamination may be started from the separator 507, for example, the separator 507, the positive electrode 503, the separator 507, and the negative electrode 506 may be laminated in this order, or the separator 507, the negative electrode 506, the separator 507, and the positive electrode 503 may be laminated in this order. ..
  • step S03, step S05, and step S07 may be performed. That is, the electrolyte may be dropped onto at least one of the positive electrode 503, the negative electrode 506, and the separator 507. For example, the electrolyte may be dropped only on the positive electrode 503 and the negative electrode 506. Alternatively, the electrolyte may be added dropwise only to the separator 507. Further, the electrolytes dropped on the positive electrode 503, the negative electrode 506, and the separator 507 may all be the same material, or some or all of them may be different materials.
  • step S08 a resin layer is formed on the exterior body 509b.
  • FIG. 1C shows an example of forming a frame-shaped resin layer 513 and a resin layer 518 at four corners.
  • FIG. 5B shows how the resin 517 is discharged from the nozzle 335 onto the exterior body 509b.
  • the timing of forming the resin layer on the exterior body 509b may be any time before step S09, and may be performed after step S01, for example.
  • a lead electrode may be connected to each of the positive electrode 503 and the negative electrode 506 after step S07 and before step S09.
  • any one of a dispense method, a spray method, an inkjet method and the like can be used.
  • the above-mentioned various adhesives can be used.
  • this step may not be necessary.
  • the material of the resin layer it is preferable to use a photocurable resin, and it is particularly preferable to use an ultraviolet photocurable resin.
  • the material of the resin layer may be mixed with the electrolyte, which may reduce the reliability of the secondary battery. Therefore, it is preferable to form the electrolyte and the resin layer so that they do not come into contact with each other. This makes it possible to improve the reliability of the secondary battery.
  • step S09 At least a part of the resin layer is irradiated with ultraviolet light under reduced pressure.
  • the exterior body 509a is arranged on the exterior body 509b so as to cover the positive electrode 503, the separator 507, and the negative electrode 506, and the resin layer is irradiated with ultraviolet light under reduced pressure to at least the resin layer. Harden a part.
  • the area in which the secondary battery being manufactured can be irradiated with ultraviolet light may be limited. Therefore, in the method for manufacturing a secondary battery according to one aspect of the present invention, a part of the resin layer can be cured so that the reduced pressure state inside the secondary battery being manufactured can be maintained even under atmospheric pressure under reduced pressure. Just do it. Thereby, the sealing step can be performed under atmospheric pressure.
  • the exterior body 509a transmits ultraviolet light at least in a region overlapping the resin layer 518.
  • the resin layer may be cured by irradiating with light other than ultraviolet light.
  • the resin layer may be cured by, for example, thermocompression bonding or welding (also referred to as fusion or thermal adhesion). Examples of welding include high frequency welding, heat welding, ultrasonic welding and the like.
  • step S10 sealing is performed under atmospheric pressure.
  • the sealing step of step S10 can be performed under atmospheric pressure.
  • the sealing step is preferably carried out in an inert atmosphere such as an argon atmosphere or a nitrogen atmosphere.
  • the frame-shaped resin layer 513 can be sealed by irradiating it with ultraviolet light and curing it.
  • the area of the resin layer irradiated with ultraviolet light at the time of sealing is larger than the area irradiated with ultraviolet light under reduced pressure.
  • sealing may be performed by thermocompression bonding or welding.
  • thermocompression bonding or welding when one frame-shaped resin layer (see later, see frame-shaped resin layer 521 shown in FIG. 9A) surrounding all of the plurality of laminated bodies is provided, thermocompression bonding or welding is performed. It is preferable to perform sealing.
  • FIG. 5C shows a state in which the positive electrode 503, the separator 507, and the negative electrode 506 are sealed by the exterior body 509a and the exterior body 509b.
  • Step S11> Through the above steps, the process is completed in step S11.
  • the exterior body 509b when a plurality of secondary batteries are manufactured on the exterior body 509b, these secondary batteries are individually separated by dividing the exterior body 509a and the exterior body 509b. Can be done.
  • the exterior body can be divided by using a laser beam or the like.
  • the exterior body 509b preferably has a recess.
  • the positive electrode 503, the separator 507, and the negative electrode 506 are preferably arranged in the recesses. By arranging them in the recesses, it becomes easy to arrange the positive electrode 503, the separator 507, and the negative electrode 506 at desired positions, and it is possible to prevent the positions of these members from shifting. As a result, a highly reliable secondary battery can be manufactured.
  • FIG. 6A shows an example in which the exterior body 509b having a plurality of recesses 509c is arranged in step S01.
  • each recess 509c It is preferable that one secondary battery can be manufactured for each recess 509c. Therefore, it is preferable to determine the shape of the recess (width, length, depth, etc.) according to the shape of the secondary battery to be manufactured.
  • the recesses are preferably formed in advance by press working or the like.
  • the depth of the recesses is preferably equal to or greater than the thickness of the laminate.
  • the area of the bottom of the recess is preferably larger than the area of the positive electrode.
  • the area of the bottom of the recess is preferably larger than the area of the negative electrode.
  • the area of the bottom of the recess is preferably larger than the area of the laminated body. It is preferable that the recess has a space inside which a region of the positive electrode and the negative electrode excluding at least the tab region can be arranged.
  • FIG. 6B shows an example in which one positive electrode 503 is arranged for one recess in step S02.
  • step S04 one separator 507 is arranged in one recess
  • step S06 one negative electrode 506 is arranged in one recess.
  • one laminated body 512 can be arranged in one recess (FIG. 7A).
  • FIG. 7A the positive electrode 503, the separator 507, and the negative electrode 506 are shown one by one as the laminated body 512, but the configuration of the laminated body 512 is not limited to this.
  • the laminated body 512 may have a plurality of positive electrodes 503, separators 507, and negative electrodes 506, respectively.
  • FIG. 8A shows a top view of the laminated body 512 after arranging the laminated body 512 in the recess 509c of the exterior body 509b.
  • a cross-sectional view between the alternate long and short dash lines AB in FIG. 8A is shown in FIG. 8B.
  • the positive electrode 503, the separator 507, and the negative electrode 506 are laminated and arranged in the recess 509c.
  • FIG. 8B shows an example in which the laminated body 512 has three positive electrodes 503, four separators, and two negative electrodes 506.
  • the thickness of the laminate 512 is preferably equal to or less than the depth of the recess 509c. As a result, it is possible to particularly prevent the laminated body 512 and the members constituting the laminated body 512 from being displaced from the desired positions.
  • the positive electrode 503 has a region (hereinafter referred to as a tab region) in which the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the tab regions are arranged so as to overlap each other.
  • the overlapping tab regions and the positive electrode lead electrodes may be overlapped and joined by ultrasonic welding or the like.
  • the tab regions are arranged so as to overlap each other.
  • the overlapping tab regions and the negative electrode lead electrode may be overlapped and joined by ultrasonic welding or the like.
  • the timing of joining using ultrasonic welding or the like may be appropriately selected by the practitioner, and may be before or after sealing.
  • FIG. 8A shows an example in which the tab regions of the positive electrode 503 and the negative electrode 506 are all contained inside the recess 509c, but as shown in FIG. 8C, the tab region extends to the outside of the recess 509c. May have.
  • the exterior body 509a transmits ultraviolet light at least in the region overlapping the resin layer.
  • the exterior body 509a preferably blocks ultraviolet light in a region overlapping with at least one of the positive electrode 503, the separator 507, and the negative electrode 506.
  • the exterior body 509a preferably blocks ultraviolet light, especially in a region overlapping the laminated body 512. As a result, it is possible to prevent the laminated body 512 from being irradiated with ultraviolet light and deteriorating the secondary battery.
  • FIG. 7B shows an example in which an exterior body 509a having an ultraviolet light transmitting region 529a and an ultraviolet light shading region 529b is used in step S09.
  • the ultraviolet light shading region 529b is arranged so as to overlap with the recess of the exterior body 509b.
  • the ultraviolet light shading region 529b has the same width and length as compared with the concave portion of the exterior body 509b, respectively. With such a configuration, it is possible to particularly prevent the laminated body 512 from being irradiated with ultraviolet light, and it is possible to improve the reliability of the secondary battery.
  • the ultraviolet light transmission region 529a may transmit visible light.
  • the resin layer 518 overlaps with the ultraviolet light transmitting region 529a of the exterior body 509a.
  • the resin layer 518 can be cured by irradiating the resin layer 518 with ultraviolet light through the ultraviolet light transmitting region 529a of the exterior body 509a.
  • a positive electrode positive electrode active material layer 502 and positive electrode current collector 501
  • a separator 507 and a negative electrode (negative electrode active material layer 505 and negative electrode current collector 504) are provided in the recess 509c of the exterior body 509b.
  • a positive electrode lead electrode 510 is bonded to the positive electrode current collector 501
  • a negative electrode lead electrode 511 is bonded to the negative electrode current collector 504.
  • FIG. 9A shows an example in which a frame-shaped resin layer 521 is provided along the four sides of the exterior body 509b.
  • step S09 it is preferable to irradiate the frame-shaped resin layer 521 with ultraviolet light under reduced pressure to cure at least a part of the frame-shaped resin layer 521.
  • step S10 it is preferable to perform thermocompression bonding and seal.
  • the frame-shaped resin layer 521 is provided in the vicinity of the end portion of the exterior body 509b or in the outer portion sufficiently distant from the region where the secondary battery is formed. This makes it possible to prevent the material of the resin layer from being mixed with the electrolyte.
  • the resin layer is provided so as to be overlapped with the lead electrodes, it is preferable to use a resin material having high insulating properties so that the lead electrodes do not conduct with each other. Alternatively, it is preferable to form a protective layer between the lead electrode and the resin layer so that the resin layer does not come into contact with the lead electrode.
  • FIG. 10 shows an example of the upper surface layout of the seal region 525 formed by thermocompression bonding.
  • One seal area 525 is provided for one secondary battery.
  • the exterior body 509a is bonded to the exterior body 509b (not shown) by a frame-shaped resin layer 521 and a seal region 525.
  • a frame-shaped resin layer 521 and a seal region 525 An example of applying the above-mentioned configuration having an ultraviolet light transmitting region 529a and an ultraviolet light shading region 529b to the exterior body 509a is shown.
  • the seal region 525 is provided so as to surround the positive electrode, the separator, and the negative electrode.
  • the positive electrode lead electrode 510 and the negative electrode lead electrode 511 each have a sealing layer 519 at a position overlapping the seal region 525.
  • FIG. 9B shows an example in which one frame-shaped resin layer 513 is provided for one recess 509c.
  • the frame-shaped resin layer 513 is provided on the exterior body 509b so as to surround the recess 509c.
  • step S09 it is preferable to irradiate the frame-shaped resin layer 513 with ultraviolet light under reduced pressure to cure at least a part of the frame-shaped resin layer 513.
  • step S10 it is preferable to irradiate the entire frame-shaped resin layer 513 with ultraviolet light under atmospheric pressure to cure the entire frame-shaped resin layer 513.
  • thermocompression bonding may be performed to seal the seal.
  • the frame-shaped resin layer 513 may be partially uncured.
  • step S10 when each of the plurality of frame-shaped resin layers 513 is cured under reduced pressure and the secondary batteries are individually sealed, step S10 may not be performed.
  • FIG. 11 shows an example of the upper surface layout of the seal region 525 formed by thermocompression bonding.
  • One seal area 525 is provided for one secondary battery.
  • the seal region 525 is preferably provided inside the frame-shaped resin layer 513.
  • the exterior body 509a is not shown.
  • the seal region 525 is provided so as to surround the positive electrode, the separator, and the negative electrode.
  • the positive electrode lead electrode 510 and the negative electrode lead electrode 511 each have a sealing layer 519 at a position overlapping the seal region 525.
  • a secondary battery using a metal can be used. It is also lightweight, and a thin secondary battery can be manufactured.
  • a metal foil having an adhesive layer (also called a heat seal layer) on one surface or both surfaces is used.
  • the first adhesive layer of the first laminated film and the second adhesive layer of the second laminated film are thermocompression bonded in a state where the first adhesive layer and the second adhesive layer are in close contact with each other so as to be inside.
  • thermoplastic film material a thermocurable adhesive, an anaerobic adhesive, a photocurable adhesive such as an ultraviolet photocurable adhesive, or a reaction curable adhesive
  • material of these adhesives epoxy resin, acrylic resin, silicone resin, phenol resin and the like can be used.
  • the seal region 525 has a frame shape or a closed loop shape.
  • a laminate having a positive electrode 503, a separator 507, and a negative electrode 506 is arranged and sealed in the region surrounded by the seal region 525. Therefore, the area of the region surrounded by the seal region 525 is at least larger than the area of the positive electrode 503 of the secondary battery.
  • the film used for the exterior of the secondary battery is a metal film (aluminum, stainless steel, nickel steel, gold, silver, copper, titanium, nichrome, iron, tin, tantalum, niobium, molybdenum, zirconium, zinc, etc.). Select from metal or alloy), plastic film made of organic material, hybrid material film containing organic material (organic resin or fiber, etc.) and inorganic material (ceramic, etc.), carbon-containing inorganic film (carbon film, graphite film, etc.) A single-layer film or a laminated film composed of a plurality of these can be used.
  • the sealing structure of the secondary battery is such that two exterior bodies are stacked and the four sides of the exterior body are fixed with an adhesive layer to close the exterior body.
  • one rectangular exterior body is bent at the center, two ends of the four corners sandwiching the bent portion are overlapped, and the four sides are fixed with an adhesive layer to close the structure.
  • the shape of the battery produced by the method for producing a secondary battery according to one aspect of the present invention is not particularly limited, and the winding type is not particularly limited. It is also possible to apply it to.
  • the electrolyte may be dropped onto the wound body, or may be dropped before the wound body is manufactured, that is, before the wound body is wound.
  • the wound body refers to a band-shaped positive electrode, a band-shaped separator, and a band-shaped negative electrode that are stacked in this order and wound while being stacked.
  • At least one of a positive electrode, a separator, and a negative electrode is used at the stage of laminating a positive electrode, a separator, and a negative electrode to prepare a laminated body.
  • a plurality of drops of the electrolyte are dropped.
  • the positive electrode, the separator, or the negative electrode can be uniformly or sufficiently impregnated with the electrolyte.
  • the space surrounded by the exterior body and the frame-shaped resin layer can be put into a reduced pressure state by curing the resin layer under reduced pressure. .. Therefore, it is possible to prevent impurities from being mixed into the secondary battery.
  • the dropped electrolyte permeates widely in a short time. As a result, the time for the electrolyte to impregnate the surfaces of the positive and negative electrodes and even the inside can be shortened. Then, the inside of the positive electrode and the negative electrode can be sufficiently impregnated with the electrolyte. Further, since the sealing can be performed under atmospheric pressure after that, the options for the sealing method can be expanded.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer has a positive electrode active material.
  • the positive electrode active material layer may further have one or both of a conductive material and a binder.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector.
  • the negative electrode active material layer has a negative electrode active material.
  • the negative electrode active material layer may further have one or both of a conductive material and a binder.
  • Electrode current collectors and negative electrode current collectors metals such as stainless steel, gold, platinum, zinc, iron, nickel, copper, aluminum, titanium, and tantalum, and alloys thereof, etc., have high conductivity and lithium ions, etc. A material that does not alloy with the carrier ions of can be used.
  • an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used.
  • one or both of the positive electrode current collector and the negative electrode current collector may be formed of a metal element that reacts with silicon to form silicide.
  • Metallic elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • a foil-like shape, a plate-like shape (sheet-like shape), a net-like shape, a columnar shape, a coil-like shape, a punching metal-like shape, an expanded metal-like shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 10 ⁇ m or more and 30 ⁇ m or less.
  • a titanium compound may be laminated on the metal shown above as a current collector.
  • the titanium compound include titanium nitride, titanium oxide, titanium nitride in which a part of nitrogen is replaced with oxygen, titanium oxide in which a part of oxygen is replaced with nitrogen, and titanium oxide (TIM x N y , 0).
  • titanium nitride is particularly preferable because it has high conductivity and a high function of suppressing oxidation.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • the active material layer such as the positive electrode active material layer and the negative electrode active material layer has a conductive material (also referred to as a conductive agent or a conductive auxiliary agent).
  • a conductive material also referred to as a conductive agent or a conductive auxiliary agent.
  • the conductive material it is preferable to have a carbon-based material such as a graphene compound, carbon black, graphite, carbon fiber, fullerene, etc., and it is particularly preferable to have a graphene compound.
  • the carbon black for example, acetylene black (AB) or the like can be used.
  • the graphite for example, natural graphite, artificial graphite such as mesocarbon microbeads, or the like can be used.
  • these carbon-based materials may function as an active material.
  • the carbon fiber for example, a mesophase pitch type carbon fiber, an isotropic pitch type carbon fiber, or the like can be used. Further, as the carbon fiber, carbon nanofiber, carbon nanotube, or the like can be used. The carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • the active material layer may have a metal powder such as copper, nickel, aluminum, silver, or gold, a metal fiber, a conductive ceramic material, or the like as the conductive material.
  • the content of the conductive material with respect to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, and more preferably 1 wt% or more and 5 wt% or less.
  • graphene compounds enable surface contact with low contact resistance. Therefore, the electric conductivity between the granular active material and the graphene compound can be improved with a smaller amount than that of a normal conductive material. Therefore, the ratio of the active material in the active material layer can be increased. As a result, the discharge capacity of the secondary battery can be increased.
  • Particle-like carbon-containing compounds such as carbon black and graphite, or fibrous carbon-containing compounds such as carbon nanotubes are likely to enter minute spaces.
  • the minute space refers to, for example, a region between a plurality of active materials.
  • the active material layer preferably has a binder.
  • the binder binds or fixes the electrolyte and the active material, for example. Further, the binder can bind or fix an electrolyte and a carbon-based material, an active material and a carbon-based material, a plurality of active materials, a plurality of carbon-based materials, and the like.
  • binders polystyrene, methyl polyacrylate, methyl polymethacrylate (polymethylmethacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride, polytetra It is preferable to use materials such as fluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylenepropylene diene polymer, polyvinyl acetate, and nitrocellulose.
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • Polyimide has excellent stable properties thermally, mechanically and chemically.
  • Fluoropolymer which is a polymer material having fluorine, specifically, polyvinylidene fluoride (PVDF) and the like can be used.
  • PVDF is a resin having a melting point in the range of 134 ° C. or higher and 169 ° C. or lower, and is a material having excellent thermal stability.
  • a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, or ethylene-propylene-diene copolymer as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • a water-soluble polymer for example, a polysaccharide or the like can be used.
  • a polysaccharide such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, or regenerated cellulose, or starch or the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • the binder may be used in combination of a plurality of the above.
  • the graphene compound refers to graphene, multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene oxide, multi-graphene oxide, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide, etc. It also includes graphene quantum dots and the like.
  • the graphene compound has carbon, has a flat plate shape, a sheet shape, or the like, and has a two-dimensional structure formed by a carbon 6-membered ring. The two-dimensional structure formed by the carbon 6-membered ring may be called a carbon sheet.
  • the graphene compound may have a functional group. Further, the graphene compound preferably has a bent shape. The graphene compound may also be curled up into carbon nanofibers.
  • graphene oxide means, for example, one having carbon and oxygen, having a sheet-like shape, and having a functional group, particularly an epoxy group, a carboxy group, or a hydroxy group.
  • the reduced graphene oxide means, for example, one having carbon and oxygen, having a sheet-like shape, and having a two-dimensional structure formed by a carbon 6-membered ring. It may be called a carbon sheet. Although one reduced graphene oxide functions, a plurality of reduced graphene oxides may be laminated.
  • the reduced graphene oxide preferably has a portion having a carbon concentration of more than 80 atomic% and an oxygen concentration of 2 atomic% or more and 15 atomic% or less. By setting such carbon concentration and oxygen concentration, it is possible to function as a highly conductive material even in a small amount.
  • the reduced graphene oxide has an intensity ratio G / D of G band to D band of 1 or more in the Raman spectrum.
  • the reduced graphene oxide having such a strength ratio can function as a highly conductive material even in a small amount.
  • the sheet-like graphene compound is dispersed substantially uniformly in the internal region of the active material layer. Since the plurality of graphene compounds are formed so as to partially cover the plurality of granular active substances or to stick to the surface of the plurality of granular active substances, they are in surface contact with each other.
  • a network-like graphene compound sheet (hereinafter, referred to as graphene compound net or graphene net) can be formed by binding a plurality of graphene compounds to each other.
  • the graphene net can also function as a binder for binding the active materials to each other. Therefore, since the amount of the binder can be reduced or not used, the ratio of the active material to the electrode volume or the electrode weight can be improved. That is, the charge / discharge capacity of the secondary battery can be increased.
  • graphene oxide as the graphene compound, mix it with an active material to form a layer to be an active material layer, and then reduce the layer. That is, it is preferable that the active material layer after completion has reduced graphene oxide.
  • the graphene compound can be dispersed substantially uniformly in the internal region of the active material layer.
  • the graphene compounds remaining in the active material layer partially overlap and are dispersed to such an extent that they are in surface contact with each other. Can form a three-dimensional conductive path.
  • the graphene oxide may be reduced, for example, by heat treatment or by using a reducing agent.
  • a graphene compound which is a conductive material, is formed as a film by covering the entire surface of the active material, and the active materials are electrically connected to each other with the graphene compound to form a conductive path. It can also be formed.
  • the graphene compound may be mixed with the material used for forming the graphene compound and used for the active material layer.
  • particles used as a catalyst for forming a graphene compound may be mixed with the graphene compound.
  • a catalyst for forming the graphene compound for example, one of silicon oxide (SiO 2 , SiO x (x ⁇ 2)), aluminum oxide, iron, nickel, ruthenium, iridium, platinum, copper, germanium and the like. Examples include particles having one or more.
  • the particles preferably have an average particle diameter (D50: also referred to as a median diameter) of 1 ⁇ m or less, and more preferably 100 nm or less.
  • Negative electrode active materials include materials that can react with carrier ions of secondary batteries, materials that can insert and remove carrier ions, materials that can alloy with metals that become carrier ions, and carrier ions. It is preferable to use a material capable of dissolving and precipitating the metal.
  • a metal or compound having one or more elements selected from silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, and indium can be used.
  • alloy compounds using such elements include Mg 2 Si, Mg 2 Ge, Mg 2 Sn, SnS 2 , V2 Sn 3 , FeSn 2 , CoSn 2 , Ni 3 Sn 2 , and Cu 6 Sn 5 .
  • a material having a low resistance may be used by adding one or more of phosphorus, arsenic, boron, aluminum, gallium and the like as an impurity element to silicon.
  • a silicon material predoped with lithium may be used.
  • a predoping method there are methods such as mixing and annealing lithium fluoride, lithium carbonate and the like with silicon, a mechanical alloy of lithium metal and silicon, and the like.
  • lithium is doped by a charge / discharge reaction in combination with an electrode such as lithium metal, and then an electrode that becomes a counter electrode using the doped electrode (for example, a positive electrode with respect to a pre-doped negative electrode). May be combined to produce a secondary battery.
  • silicon nanoparticles can be used as the negative electrode active material.
  • the average diameter of the silicon nanoparticles is, for example, preferably 5 nm or more and less than 1 ⁇ m, more preferably 10 nm or more and 300 nm or less, and further preferably 10 nm or more and 100 nm or less.
  • the silicon nanoparticles may have crystallinity. Further, the silicon nanoparticles may have a crystalline region and an amorphous region.
  • the material having silicon for example, a material represented by SiO x (x is preferably smaller than 2, more preferably 0.5 or more and 1.6 or less) can be used.
  • carbon-based materials such as graphite, graphitizable carbon, non-graphitizable carbon, carbon nanotubes, carbon black, and graphene compounds can be used.
  • an oxide having one or more elements selected from titanium, niobium, tungsten, and molybdenum can be used as the negative electrode active material.
  • the negative electrode active material SnO, SnO 2 , titanium dioxide (TIO 2 ), lithium titanium oxide (Li 4 Ti 5 O 12 ), lithium-graphite interlayer compound (Li x C 6 ), niobium pentoxide (Nb 2 ). Oxides such as O 5 ), tungsten oxide (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g) and is preferable.
  • a double nitride of lithium and a transition metal as a negative electrode material because it can be combined with a material such as V2 O 5 and Cr 3 O 8 which does not contain lithium ions as a positive electrode material. Even when a material containing lithium ions is used as the positive electrode material, a double nitride of lithium and a transition metal can be used as the negative electrode material by desorbing the lithium ions contained in the positive electrode material in advance.
  • a material that causes a conversion reaction can also be used as a negative electrode active material.
  • a transition metal oxide that does not undergo an alloying reaction with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • CoO cobalt oxide
  • NiO nickel oxide
  • FeO iron oxide
  • Materials that cause a conversion reaction include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 .
  • the negative electrode active material a plurality of the metals, materials, compounds, etc. shown above can be used in combination.
  • Positive electrode active material examples include an olivine-type crystal structure, a layered rock salt-type crystal structure, a spinel-type crystal structure, and a lithium-containing material.
  • a positive electrode active material having a layered crystal structure for the secondary battery of one aspect of the present invention.
  • Examples of the layered crystal structure include a layered rock salt type crystal structure.
  • the lithium-containing material represented by 2) can be used.
  • M is a metal element, preferably one or more selected from cobalt, manganese, nickel, and iron.
  • M is two or more selected from, for example, cobalt, manganese, nickel, iron, aluminum, titanium, zirconium, lantern, copper and zinc.
  • lithium-containing material represented by LiM x Oy examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , and the like. Further, as a NiCo-based material represented by LiNi x Co 1-x O 2 (0 ⁇ x ⁇ 1) and a lithium-containing material represented by LiM x Oy, for example, LiNi x Mn 1-x O 2 (0 ⁇ Examples thereof include a NiMn system represented by x ⁇ 1).
  • lithium-containing material represented by LiMO 2 for example, a NiComn system (NCM) represented by LiNi x Coy Mn z O 2 (x> 0, y > 0, 0.8 ⁇ x + y + z ⁇ 1.2). Also called).
  • NCM NiComn system
  • lithium-containing material having a layered rock salt type crystal structure examples include Li 2 MnO 3 and Li 2 MnO 3 -LiMeO 2 (Me is Co, Ni, Mn).
  • a positive electrode active material having a layered crystal structure as represented by the above-mentioned lithium-containing material it may be possible to realize a secondary battery having a large lithium content per volume and a high capacity per volume.
  • the amount of desorption of lithium per volume due to charging is large, and in order to perform stable charging and discharging, it is required to stabilize the crystal structure after desorption.
  • high-speed charging or high-speed discharging may be hindered by the collapse of the crystal structure during charging and discharging.
  • a lithium manganese composite oxide that can be represented by the composition formula Li a Mn b M c Od can be used.
  • the element M a metal element selected from other than lithium and manganese, silicon, and phosphorus are preferably used, and nickel is more preferable.
  • the lithium manganese composite oxide refers to an oxide containing at least lithium and manganese, and includes chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, and silicon. And at least one element selected from the group consisting of phosphorus and the like may be contained.
  • a material having a layered rock salt type crystal structure such as lithium cobalt oxide (LiCoO 2 ) has a high discharge capacity and is excellent as a positive electrode active material for a secondary battery.
  • the material having a layered rock salt type crystal structure include a composite oxide represented by LiMO 2 .
  • the metal M contains the metal Me1.
  • the metal Me1 is one or more metals containing cobalt. Further, the metal M can further contain a metal in addition to the metal Me1.
  • the metal is one or more metals selected from magnesium, calcium, zirconium, lanthanum, barium, copper, potassium, sodium and zinc.
  • the amount of lithium that can be inserted and removed in the positive electrode active material is indicated by x in the composition formula, for example, x in Li x CoO 2 , or x in Li x MO 2 .
  • Li x CoO 2 in the present specification can be appropriately read as Li x MO 2 .
  • the fact that x in Li x CoO 2 is small means, for example, 0.1 ⁇ x ⁇ 0.24.
  • the positive electrode active material will be described with reference to FIGS. 12 and 13.
  • the layered rock salt type composite oxide has a high discharge capacity, has a two-dimensional lithium ion diffusion path, is suitable for a lithium ion insertion / desorption reaction, and is excellent as a positive electrode active material for a secondary battery. Therefore, it is particularly preferable that the inside, which occupies most of the volume of the positive electrode active material, has a layered rock salt type crystal structure.
  • FIG. 12 shows the layered rock salt type crystal structure with R-3m O3.
  • the surface layer portion is a region where lithium ions are first released during charging, and is a region where the lithium concentration tends to be lower than that inside. Further, it can be said that the atoms on the surface of the positive electrode active material having the surface layer portion are in a state where some bonds are broken. Therefore, it can be said that the surface layer portion tends to be unstable and the deterioration of the crystal structure tends to start. On the other hand, if the surface layer portion can be made sufficiently stable, even when x in Li x CoO 2 is small, for example, even if x is 0.24 or less, the layered structure composed of the internal transition metal M and the octahedron of oxygen is made difficult to break. Can be done. Furthermore, it is possible to suppress the displacement of the layer composed of the internal transition metal M and the octahedron of oxygen.
  • the surface layer portion preferably has the additive element A, and more preferably has a plurality of additive elements A. Further, it is preferable that the concentration of one or more selected from the additive element A is higher in the surface layer portion than in the inside. Further, it is preferable that one or more selected from the additive elements A contained in the positive electrode active material have a concentration gradient. Further, it is more preferable that the distribution of the positive electrode active material differs depending on the additive element A. For example, it is more preferable that the depth of the concentration peak from the surface differs depending on the added element A.
  • the concentration peak here means the maximum value of the concentration at 50 nm or less from the surface layer portion or the surface.
  • a part of the additive element A preferably has a concentration gradient that increases from the inside toward the surface.
  • An element having such a concentration gradient is referred to as an additive element X.
  • magnesium which is one of the additive elements X, is divalent, and magnesium ions are more stable in the lithium site than in the transition metal M site in the layered rock salt type crystal structure, so that they are more likely to enter the lithium site.
  • the presence of magnesium in the lithium site of the surface layer at an appropriate concentration makes it easier to maintain the layered rock salt type crystal structure. It is presumed that this is because the magnesium present in the lithium site functions as a pillar that supports the two CoO layers. Further, the presence of magnesium can suppress the withdrawal of oxygen around magnesium in a state where x in Li x CoO 2 is, for example, 0.24 or less.
  • the presence of magnesium can be expected to increase the density of the positive electrode active material. Further, when the magnesium concentration in the surface layer portion is high, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the amount of magnesium contained in the entire positive electrode active material is an appropriate amount.
  • the atomic number of magnesium is preferably 0.001 times or more and 0.1 times or less, more preferably greater than 0.01 times and less than 0.04 times, still more preferably about 0.02 times.
  • the amount of magnesium contained in the entire positive electrode active material referred to here may be a value obtained by performing elemental analysis of the entire positive electrode active material using, for example, GD-MS, ICP-MS, or the like, or the positive electrode active material. It may be based on the value of the composition of the raw materials in the manufacturing process.
  • Aluminum which is one of the additive elements A, may be present at the transition metal M site in the layered rock salt type crystal structure. Since aluminum is a typical trivalent element and its valence does not change, lithium around aluminum does not easily move during charging and discharging. Therefore, aluminum and the lithium around it function as pillars and can suppress changes in the crystal structure. In addition, aluminum has the effect of suppressing the elution of the surrounding transition metal M and improving the continuous charge resistance. Moreover, since the Al—O bond is stronger than the Co—O bond, it is possible to suppress the withdrawal of oxygen around aluminum. These effects improve thermal stability. Therefore, if aluminum is included as the additive element A, the safety when used in a secondary battery can be improved. Further, it is possible to obtain a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging.
  • the amount of aluminum contained in the entire positive electrode active material is an appropriate amount.
  • the total number of atoms of aluminum contained in the positive electrode active material is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, and 0.3% or more and 1.5% of the atomic number of cobalt. The following are more preferable. Alternatively, it is preferably 0.05% or more and 2% or less. Alternatively, 0.1% or more and 4% or less are preferable.
  • the amount of the entire positive electrode active material referred to here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material using GD-MS, ICP-MS, or the like, or may be used to prepare the positive electrode active material. It may be based on the value of the composition of the raw materials in the process.
  • the crystal structure continuously changes from the inside of the layered rock salt type toward the rock salt type, or the surface and the surface layer having the characteristics of both the rock salt type and the layered rock salt type.
  • the surface layer having the characteristics of the rock salt type or both the rock salt type and the layered rock salt type and the internal orientation of the layered rock salt type are substantially the same.
  • the layered rock salt type crystal structure belonging to the space group R-3m, which is possessed by the composite oxide containing the transition metal M such as lithium and cobalt. It has a rock salt-type ion arrangement to be arranged, and a crystal structure capable of two-dimensional diffusion of lithium because the transition metal M and lithium are regularly arranged to form a two-dimensional plane. There may be defects such as cation or anion defects. Strictly speaking, the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure has a cubic crystal structure including the space group Fm-3m, and cations and anions are alternately arranged. There may be a cation or anion deficiency.
  • having both the characteristics of the layered rock salt type and the rock salt type crystal structure means electron beam diffraction, TEM (Transmission Electron Microscope) image, cross section STEM (Scanning Transmission Electron Microscope) image, etc. Can be judged by.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). It is presumed that the anion also has a cubic close-packed structure in the O3'type crystal (also referred to as pseudo-spinel type crystal) described later. Therefore, when the layered rock salt type crystal and the rock salt type crystal come into contact with each other, there is a crystal plane in which the directions of the cubic close-packed structure composed of anions are aligned.
  • the anions in the ⁇ 111 ⁇ plane of the cubic crystal structure have a triangular lattice.
  • the layered rock salt type is a space group R-3m and has a rhombohedral structure, but is generally represented by a composite hexagonal lattice to facilitate understanding of the structure, and the layered rock salt type (000l) plane has a hexagonal lattice.
  • the cubic ⁇ 111 ⁇ plane triangular lattice has an atomic arrangement similar to that of the layered rock salt type (000 l) plane hexagonal lattice. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of layered rock salt type crystals and O3'type crystals is R-3m, which is different from the space group Fm-3m of rock salt type crystals (space group of general rock salt type crystals).
  • the mirror index of the crystal plane to be filled is different between the layered rock salt type crystal and the O3'type crystal and the rock salt type crystal.
  • the orientations of the crystals are substantially the same when the orientations of the cubic close-packed structures composed of anions are aligned.
  • TEM image STEM image
  • HAADF-STEM High-angle Anal Dark Field Scanning TEM, high-angle scattering annular dark-field scanning transmission electron microscope
  • ABF-STEM Annular
  • FFTs such as Bright-Field Scanning Transmission Electron Microscopy, annular bright-field scanning transmission electron microscope) images, electron beam diffraction, TEM images, and STEM images.
  • XRD X-ray Diffraction, X-ray diffraction
  • neutron diffraction and the like can also be used as judgment materials.
  • lithium occupies the octahedral site, and there are three CoO two layers in the unit cell. Therefore, this crystal structure may be called an O3 type crystal structure.
  • the CoO 2 layer is a structure in which an octahedral structure in which oxygen is coordinated to cobalt is continuous with a plane in a shared ridge state. This may be referred to as a layer composed of an octahedron of cobalt and oxygen.
  • one CoO layer is present in the unit cell. Therefore, it may be called O1 type or monoclinic O1 type.
  • the H1-3 type crystal structure sets the coordinates of cobalt and oxygen in the unit cell to Co (0, 0, 0.42150 ⁇ 0.00016) and O 1 (0, 0, 0.27671 ⁇ 0.00045). ), O 2 (0, 0, 0.11535 ⁇ 0.00045).
  • O 1 and O 2 are oxygen atoms, respectively.
  • Which unit cell should be used to represent the crystal structure of the positive electrode active material can be determined, for example, by Rietveld analysis of XRD. In this case, a unit cell having a small GOF (goodness of fit) value may be adopted.
  • the conventional lithium cobaltate When charging and discharging so that x in Li x CoO 2 becomes 0.24 or less are repeated, the conventional lithium cobaltate has an H1-3 type crystal structure and a discharged state R-3m O3 structure. Changes in crystal structure (that is, non-equilibrium phase changes) will be repeated between them.
  • these two crystal structures have a large difference in volume.
  • the difference in volume between the H1-3 type crystal structure and the discharged R-3m O3 type crystal structure exceeds 3.5%, typically 3.9% or more. ..
  • the structure of the H1-3 type crystal structure in which two CoO layers are continuous is likely to be unstable.
  • the conventional crystal structure of lithium cobalt oxide collapses.
  • the collapse of the crystal structure causes deterioration of the cycle characteristics. This is because the collapse of the crystal structure reduces the number of sites where lithium can stably exist, and it becomes difficult to insert and remove lithium.
  • the difference in volume per cobalt atom of the same number of O3'-type crystal structures from R-3m (O3) in the discharged state is 2.5% or less, more specifically 2.2% or less, typically 1. It is 8%.
  • the change in the crystal structure when x in Li x CoO 2 is small, that is, when a large amount of lithium is removed, is suppressed as compared with the conventional positive electrode active material.
  • the change in volume when compared per the same number of cobalt atoms is also suppressed. Therefore, the positive electrode active material according to one aspect of the present invention does not easily lose its crystal structure even after repeated charging and discharging so that x becomes 0.24 or less. Therefore, the positive electrode active material of one aspect of the present invention suppresses a decrease in charge / discharge capacity in the charge / discharge cycle.
  • the positive electrode active material of one aspect of the present invention has a large discharge capacity per weight and volume. Therefore, by using the positive electrode active material of one aspect of the present invention, a secondary battery having a high discharge capacity per weight and per volume can be manufactured.
  • the positive electrode active material may have an O3'type crystal structure when x in Li x CoO 2 is 0.15 or more and 0.24 or less, and x exceeds 0.24 to 0. It is presumed to have an O3'type crystal structure even at 27 or less.
  • the crystal structure is not necessarily limited to the above range of x because it is affected not only by x in Li x CoO 2 but also by the number of charge / discharge cycles, charge / discharge current, temperature, electrolyte, and the like.
  • the positive electrode active material does not have to have an O3'type crystal structure inside the positive electrode active material. It may contain other crystal structures or may be partially amorphous.
  • a state in which x in Li x CoO 2 is small can be rephrased as a state in which the battery is charged with a high charging voltage.
  • a charging voltage of 4.6 V or higher based on the potential of lithium metal is a high charging voltage.
  • the charging voltage is expressed with reference to the potential of lithium metal.
  • the positive electrode active material of one aspect of the present invention is preferable because it can maintain a crystal structure having symmetry of R-3m O3 even when charged at a high charging voltage, for example, a voltage of 4.6 V or more at 25 ° C. In other words. Further, it can be said that it is preferable because an O3'type crystal structure can be obtained when the battery is charged at a higher charging voltage, for example, a voltage of 4.65 V or more and 4.7 V or less at 25 ° C.
  • the positive electrode active material of one aspect of the invention may have an O3'type crystal structure.
  • the voltage of the secondary battery is lower than the above by the potential of graphite.
  • the potential of graphite is about 0.05V to 0.2V with respect to the potential of lithium metal. Therefore, a secondary battery using graphite as the negative electrode active material has the same crystal structure when the voltage is obtained by subtracting the graphite potential from the above voltage.
  • the lattice constant of the a-axis of the O3'type crystal structure is 2.817 ⁇ 10-10 m
  • the lattice constant of the c-axis is 13.781 ⁇ 10-10 m.
  • the coordinates of cobalt and oxygen in the unit cell are set to Co (0,0,0.5), O (0,0,x), 0.20 ⁇ x ⁇ 0.25. Can be shown within range.
  • D50 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • a positive electrode active material is a positive electrode active material of one aspect of the present invention having an O3'type crystal structure when x in Li x CoO 2 is small is a positive electrode having a small x in Li x CoO 2 .
  • the positive electrode having an active material can be determined by analyzing it using XRD, electron diffraction, neutron diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR), or the like.
  • ESR electron spin resonance
  • NMR nuclear magnetic resonance
  • XRD can analyze the symmetry of transition metals such as cobalt possessed by the positive electrode active material with high resolution, compare the height of crystallinity and the orientation of crystals, and analyze the periodic strain and crystallite size of the lattice. It is preferable in that sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • the positive electrode active material is characterized in that the crystal structure does not change much between when x in Li x CoO 2 is 1 and when x is 0.24 or less.
  • a material in which a crystal structure in which a large change in crystal structure occupies 50% or more when charged at a high voltage is not preferable because it cannot withstand high voltage charging / discharging.
  • the O3'type crystal structure may not be obtained only by adding the additive element A.
  • x in Li x CoO 2 is 0.24 depending on the concentration and distribution of the additive element A.
  • the O3'type crystal structure is 60% or more, and cases where the H1-3 type crystal structure occupies 50% or more.
  • an H1-3 type or a trigonal O1 type crystal structure is formed when x is too small, such as 0.1 or less, or when the charging voltage exceeds 4.9 V. In some cases. Therefore, in order to determine whether or not it is the positive electrode active material of one aspect of the present invention, it is necessary to analyze the crystal structure including XRD and information such as charge capacity or charge voltage.
  • the positive electrode active material in a state where x is small or in a discharged state may change its crystal structure when exposed to the atmosphere.
  • the O3'type crystal structure may change to the H1-3 type crystal structure. Therefore, it is preferable to handle all the samples used for the analysis of the crystal structure in an inert atmosphere such as an atmosphere containing argon.
  • Whether or not the distribution of the additive element A possessed by a certain positive electrode active material is in the state as described above can be determined by analysis using, for example, XPS, EDX, EPMA (electron probe microanalysis) or the like. ..
  • the crystal structure such as the surface layer portion and the crystal grain boundary can be analyzed by electron diffraction or the like of the cross section of the positive electrode active material.
  • a liquid electrolyte (also referred to as an electrolytic solution) is used for the secondary battery, for example, as the electrolyte, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ - Valerolactone, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3- Any one of dioxane, 1,4-dioxane, dimethoxyethane (DME), dimethylsulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane,
  • DMC dimethyl carbon
  • the electrolyte preferably contains fluorine.
  • the electrolyte containing fluorine for example, an electrolyte having one or more kinds of fluorinated cyclic carbonates and lithium ions can be used.
  • the fluorinated cyclic carbonate can improve the nonflammability and enhance the safety of the lithium ion secondary battery.
  • fluorinated cyclic carbonate fluorinated ethylene carbonate
  • fluorinated ethylene carbonate for example, monofluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), tetrafluoroethylene carbonate (F4EC) ) Etc.
  • FEC fluorinated ethylene carbonate
  • FEC fluoroethylene carbonate
  • F1EC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • F3EC trifluoroethylene carbonate
  • F4EC tetrafluoroethylene carbonate
  • Etc fluorinated ethylene carbonate
  • DFEC has isomers such as cis-4,5 and trans-4,5. It is important to solvate lithium ions using one or more fluorinated cyclic carbonates as the electrolyte and transport them in the electrolyte contained in the electrode during charging and discharging in order
  • fluorinated cyclic carbonate is contributed to the transport of lithium ions during charging and discharging rather than as a small amount of additive, it is possible to operate at a low temperature. Lithium ions move in a mass of several or more and several tens in a secondary battery.
  • the desolvation energy required for the lithium ions solvated in the electrolyte contained in the electrode to enter the active material particles is reduced. If the energy of this desolvation can be reduced, lithium ions can be easily inserted into or desorbed from the active material particles even in a low temperature range. Lithium ions may move in a solvated state, but a hopping phenomenon may occur in which the coordinating solvent molecules are replaced. When the lithium ion is easily desolvated, it is easy to move due to the hopping phenomenon, and the lithium ion may be easily moved.
  • a plurality of solvated lithium ions may form clusters in the electrolyte and move in the negative electrode, between the positive electrode and the negative electrode, in the positive electrode, and the like.
  • the monofluoroethylene carbonate (FEC) is represented by the following formula (1).
  • Tetrafluoroethylene carbonate (F4EC) is represented by the following formula (2).
  • DFEC Difluoroethylene carbonate
  • Ionic liquids normally temperature molten salt
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • organic cation examples include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • organic cation examples include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • an ionic liquid represented by the following general formula (G1) can be used as the ionic liquid having an imidazolium cation.
  • R 1 represents an alkyl group having 1 or more and 4 or less carbon atoms
  • R 2 to R 4 independently represent a hydrogen atom or an alkyl group having 1 or more and 4 or less carbon atoms.
  • R5 represents an alkyl group having 1 or more and 6 or less carbon atoms or a main chain composed of two or more selected atoms of C, O, Si, N, S and P is represented.
  • a substituent may be introduced into the main chain of R5 . Examples of the substituent to be introduced include an alkyl group and an alkoxy group.
  • an ionic liquid represented by the following general formula (G2) may be used.
  • R 6 is mainly composed of an alkyl group having 1 or more and 6 or less carbon atoms, or two or more atoms selected from C, O, Si, N, S, and P atoms.
  • R 7 to R 11 each independently represent a hydrogen atom or an alkyl group having 1 or more and 4 or less carbon atoms.
  • a substituent may be introduced into the main chain of R6 . Examples of the substituent to be introduced include an alkyl group and an alkoxy group.
  • an ionic liquid having a quaternary ammonium cation for example, an ionic liquid represented by the following general formulas (G3) to (G6) can be used.
  • R 28 to R 31 each independently represent any one of an alkyl group having 1 or more and 20 or less carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, or a hydrogen atom.
  • R 12 and R 17 each independently represent an alkyl group having 1 or more and 3 or less carbon atoms
  • R 13 to R 16 independently represent hydrogen atoms or carbon atoms, respectively.
  • the cation represented by the general formula (G4) there is a 1-methyl-1-propylpyrrolidinium cation and the like.
  • R 18 and R 24 each independently represent an alkyl group having 1 or more and 3 or less carbon atoms
  • R 19 to R 23 independently represent hydrogen atoms or carbon atoms, respectively.
  • the cation represented by the general formula (G5) there are N-methyl-N-propylpiperidinium cation, 1,3-dimethyl-1-propylpiperidinium cation and the like.
  • n and m are 1 or more and 3 or less.
  • is 0 or more and 6 or less, when n is 1, ⁇ is 0 or more and 4 or less, when n is 2, ⁇ is 0 or more and 5 or less, and when n is 3, ⁇ is 0 or more and 6 or less.
  • Is. ⁇ is 0 or more and 6 or less, when m is 1, ⁇ is 0 or more and 4 or less, when m is 2, ⁇ is 0 or more and 5 or less, and when m is 3, ⁇ is 0 or more and 6 or less. Is.
  • X or Y is a substituent, which is a linear or side chain alkyl group having 1 or more and 4 or less carbon atoms, a linear or side chain alkoxy group having 1 or more and 4 or less carbon atoms, or Represents a linear or side chain alkoxyalkyl group having 1 or more and 4 or less carbon atoms.
  • an ionic liquid represented by the following general formula (G7) can be used as the ionic liquid having a tertiary sulfonium cation.
  • R 25 to R 27 each independently represent a hydrogen atom, an alkyl group having 1 or more and 4 or less carbon atoms, or a phenyl group.
  • a main chain composed of two or more selected from the atoms of C, O, Si, N, S, and P may be used for at least one of R 25 to R 27 .
  • an ionic liquid represented by the following general formula (G8) can be used as the ionic liquid having a quaternary phosphonium cation.
  • R 32 to R 35 each independently represent a hydrogen atom, an alkyl group having 1 or more and 4 or less carbon atoms, or a phenyl group.
  • a main chain composed of two or more selected from the atoms of C, O, Si, N, S, and P may be used for at least one of R 32 to R 35 .
  • a ⁇ represented by the general formula (G1) to the general formula (G8) a monovalent amide anion, a monovalent methide anion, a fluorosulfonic acid anion, a perfluoroalkyl sulfonic acid anion, a tetrafluoroborate anion, and a perfluoro
  • a monovalent amide anion a monovalent methide anion, a fluorosulfonic acid anion, a perfluoroalkyl sulfonic acid anion, a tetrafluoroborate anion, and a perfluoro
  • an alkyl borate anion, a hexafluorophosphate anion, a perfluoroalkyl phosphate anion, and the like can be used.
  • (Cn F 2n + 1 SO 2 ) 2 N ⁇ (n is 0 or more and 3 or less), as a monovalent cyclic amide anion, (CF 2 SO 2 ) 2 N ⁇ , etc. can be used.
  • As a monovalent methide anion, (C n F 2n + 1 SO 2 ) 3 C ⁇ (n is 0 or more and 3 or less), and as a monovalent cyclic methide anion, (CF 2 SO 2 ) 2 C ⁇ ( CF 3 SO 2 ) and the like can be used.
  • fluoroalkyl sulfonic acid anion examples include (Cm F 2m + 1 SO 3 ) ⁇ ( m is 0 or more and 4 or less).
  • fluoroalkyl borate anion examples include ⁇ BF n ( Cm H k F 2m + 1-k ) 4-n ⁇ - (n is 0 or more and 3 or less, m is 1 or more and 4 or less, k is 0 or more and 2 m or less). Be done.
  • fluoroalkyl phosphate anion examples include ⁇ PF n ( Cm H k F 2m + 1-k ) 6-n ⁇ - (n is 0 or more and 5 or less, m is 1 or more and 4 or less, k is 0 or more and 2 m or less). Be done.
  • the monovalent amide anion for example, one or more of a bis (fluorosulfonyl) amide anion and a bis (trifluoromethanesulfonyl) amide anion can be used.
  • the ionic liquid may have one or more of the hexfluorophosphate anion and the tetrafluoroborate anion.
  • the anion represented by (FSO 2 ) 2 N ⁇ may be referred to as an FSA anion, and the anion represented by (CF 3 SO 2 ) 2 N ⁇ may be referred to as a TFSA anion.
  • the secondary battery of one aspect of the present invention has, for example, lithium ions as carrier ions. Further, the secondary battery of one aspect of the present invention contains alkali metal ions such as sodium ion and potassium ion, and alkaline earth metal ions such as calcium ion, strontium ion, barium ion, beryllium ion and magnesium ion as carrier ions. You may be doing it.
  • alkali metal ions such as sodium ion and potassium ion
  • alkaline earth metal ions such as calcium ion, strontium ion, barium ion, beryllium ion and magnesium ion as carrier ions. You may be doing it.
  • the electrolyte contains a lithium salt.
  • Lithium salts include, for example, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li CF 3 SO 3 , LiCF 3 SO 3 .
  • LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ) ), LiN (C 2 F 5 SO 2 ) 2 , etc. can be used.
  • electrolyte is a generic term that includes solid, liquid, semi-solid materials, and the like.
  • Deterioration is likely to occur at the interface existing in the secondary battery, for example, the interface between the active material and the electrolyte.
  • having an electrolyte having fluorine prevents deterioration, typically alteration of the electrolyte, or increase in viscosity of the electrolyte, which may occur at the interface between the active material and the electrolyte. Can be done.
  • the electrolyte having fluorine may be configured to cling to or retain a binder, a graphene compound, or the like.
  • DFEC with two fluorine bonds and F4EC with four fluorine bonds have lower viscosities, are smoother, and have weaker coordination bonds with lithium, respectively, than FECs with one fluorine bond. Become. Therefore, it is possible to reduce the adhesion of highly viscous decomposition products to the active material particles. If highly viscous decomposition products adhere to or cling to the active material particles, it becomes difficult for lithium ions to move at the interface of the active material particles.
  • the fluorinated electrolyte alleviates the formation of decomposition products on the surface of the active material (positive electrode active material or negative electrode active material) by solvating. Further, by using an electrolyte having fluorine, it is possible to prevent the generation and growth of dendrite by preventing the decomposition products from adhering to the electrolyte.
  • One of the features of the secondary battery of one aspect of the present invention is that an electrolyte having fluorine is used as a main component, and the electrolyte having fluorine is 5% by volume or more, 10% by volume or more, preferably 30% by volume. It is 100% by volume or less.
  • the main component of the electrolyte means that it is 5% by volume or more of the total electrolyte of the secondary battery. Further, 5% by volume or more of the total electrolyte of the secondary battery referred to here refers to the ratio of the total electrolyte measured at the time of manufacturing the secondary battery. In addition, when disassembling after manufacturing a secondary battery, it is difficult to quantify the proportion of each of the multiple types of electrolytes, but one type of organic compound accounts for 5% by volume or more of the total amount of electrolytes. It can be determined whether or not it exists.
  • an electrolyte having fluorine By using an electrolyte having fluorine, it is possible to realize a secondary battery that can operate in a wide temperature range, specifically, ⁇ 40 ° C. or higher and 150 ° C. or lower, preferably ⁇ 40 ° C. or higher and 85 ° C. or lower.
  • an additive such as vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), lithium bis (oxalate) borate (LiBOB), or a dinitrile compound such as succinonitrile or adiponitrile is added to the electrolyte. May be good.
  • concentration of the additive may be, for example, 0.1% by volume or more and less than 5% by volume with respect to the entire electrolyte.
  • the electrolyte may have one or more aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • Typical examples of the polymer material to be gelled include silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, and fluoropolymer gel.
  • polymer material for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, etc., and a copolymer containing them can be used.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • a separator is placed between the positive electrode and the negative electrode.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, nylon resin (polyamide), vinylon resin (polyvinyl alcohol-based fiber), polyester resin, acrylic resin, polyolefin resin, and polyurethane resin. It is possible to use the one formed of synthetic fiber or the like using. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator is a porous material having pores having a size of about 20 nm, preferably pores having a size of 6.5 nm or more, and more preferably pores having a diameter of at least 2 nm.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic-based material, a fluorine-based material, a polyamide-based material, or a material obtained by mixing these.
  • a ceramic-based material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • the exterior body of the secondary battery may be a can type using a metal material such as aluminum or a case type using a resin material.
  • a film-shaped exterior body also referred to as an exterior film
  • the exterior film for example, a highly flexible metal thin film such as aluminum, stainless steel, copper, or nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide, and the metal is further provided.
  • a film having a three-layer structure in which an insulating synthetic resin film such as a polyamide resin or a polyester resin is provided on the thin film as the outer surface of the exterior body can be used.
  • a fluororesin film As the exterior film.
  • the fluororesin film has high stability against acids, alkalis, organic solvents, etc., suppresses side reactions, corrosion, etc. associated with the reaction of the secondary battery, and can realize an excellent secondary battery.
  • a fluororesin film PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane: a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether), FEP (perfluoroethylene propene copolymer: a combination of tetrafluoroethylene and hexafluoropropylene).
  • Polymer polymer
  • ETFE ethylene tetrafluoroethylene copolymer: a copolymer of tetrafluoroethylene and ethylene
  • the secondary battery shown in FIG. 14A has a positive electrode 503, a negative electrode 506, a separator 507, and an exterior body 509.
  • the exterior body 509 is sealed by the seal region 514.
  • the positive electrode 503, the negative electrode 506, and the separator 507 are laminated and arranged inside the exterior body 509.
  • a positive electrode lead electrode 510 is bonded to the positive electrode 503.
  • the positive electrode lead electrode 510 is exposed to the outside of the exterior body 509.
  • the negative electrode lead electrode 511 is bonded to the negative electrode 506, and the negative electrode lead electrode 511 is exposed to the outside of the exterior body 509.
  • FIG. 16A shows an external view of the positive electrode 503.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501. Further, the positive electrode 503 has a tabbed region.
  • FIG. 16B shows an external view of the negative electrode 506.
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504. Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area or shape of the tab region of the positive electrode and the negative electrode is not limited to the examples shown in FIGS. 16A and 16B.
  • FIG. 16C is a diagram illustrating joining of lead electrodes.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are laminated.
  • 16C shows a negative electrode 506, a separator 507, and a positive electrode 503 laminated.
  • the laminate composed of the negative electrode, the separator, and the positive electrode has 5 sets of negative electrodes and 4 sets of positive electrodes.
  • the tab regions of the positive electrode 503 are bonded to each other, and the positive electrode lead electrode 510 is bonded to the tab region of the positive electrode on the outermost surface.
  • For joining for example, ultrasonic welding or the like can be used.
  • the positive electrode lead electrode 510 and the negative electrode lead electrode 511 each have a sealing layer 519 (also referred to as a resin layer or the like).
  • a sealing layer 519 also referred to as a resin layer or the like.
  • the exterior body 509 and the sealing layer 519 can be thermocompression bonded, and it is possible to suppress the formation of a gap during sealing.
  • the lead electrode and the exterior body 509 can be fixed to each other.
  • a thermoplastic resin can be used for the sealing layer 519, for example, polypropylene or the like can be used.
  • FIG. 14B shows an example in which the end portions are folded on two sides of the side surface of the exterior body 509.
  • the strength of the exterior body 509 can be increased.
  • FIG. 14C shows an example of folding three sides.
  • FIG. 14A to 14C show an example in which the positive electrode lead electrode 510 and the negative electrode lead electrode 511 are arranged on the same side, but the positive electrode lead electrode 510 and the negative electrode lead electrode 511 are placed on different sides, for example, the upper and lower sides as shown in FIG. 15A. It may be arranged in each.
  • FIG. 15B shows an example in which the left side and the right side of the exterior body 509 are folded in FIG. 15A.
  • FIG. 17C shows a block diagram of a vehicle having a motor.
  • the electric vehicle is equipped with a first battery 1301a and 1301b as a main drive secondary battery and a second battery 1311 that supplies electric power to the inverter 1312 that starts the motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • a secondary battery manufactured by using the method for manufacturing a secondary battery shown in the first embodiment can be used for one or both of the first batteries 1301a and 1301b.
  • first batteries 1301a and 1301b are connected in parallel, but three or more batteries may be connected in parallel. Further, if the first battery 1301a can store sufficient electric power, the first battery 1301b may not be present.
  • the plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series. Multiple secondary batteries are also called assembled batteries.
  • a service plug or a circuit breaker capable of cutting off a high voltage without using a tool is provided, and the first battery 1301a has. It will be provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but the 42V system (high voltage system) in-vehicle parts (electric power steering 1307, heater 1308) via the DCDC circuit 1306. , And Defogger 1309, etc.). Even if the rear wheel has a rear motor 1317, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies electric power to 14V system (low voltage system) in-vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • 14V system low voltage system
  • in-vehicle components audio 1313, power window 1314, lamps 1315, etc.
  • first battery 1301a will be described with reference to FIG. 17A.
  • FIG. 17A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator.
  • a fixing portion 1413 made of an insulator In the present embodiment, an example of fixing with the fixing portions 1413 and 1414 is shown, but the configuration may be such that the battery is stored in a battery storage box (also referred to as a housing). Since it is assumed that the vehicle is vibrated or shaken from the outside (road surface or the like), it is preferable to fix a plurality of secondary batteries in a battery accommodating box or the like by fixing portions 1413 and 1414. Further, one of the electrodes is electrically connected to the control circuit unit 1320 by the wiring 1421. The other electrode is electrically connected to the control circuit unit 1320 by wiring 1422.
  • control circuit unit 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charge control circuit or a battery control system having a memory circuit including a transistor using an oxide semiconductor may be referred to as a BTOS (Battery operating system or Battery oxide semiconductor).
  • the control circuit unit 1320 detects the terminal voltage of the secondary battery and manages the charge / discharge state of the secondary battery. For example, in order to prevent overcharging, both the output transistor of the charging circuit and the cutoff switch can be turned off almost at the same time.
  • FIG. 17B An example of the block diagram of the battery pack 1415 shown in FIG. 17A is shown in FIG. 17B.
  • the control circuit unit 1320 includes a switch unit 1324 including at least a switch for preventing overcharging and a switch for preventing overdischarging, a control circuit 1322 for controlling the switch unit 1324, and a voltage measuring unit for the first battery 1301a. And have.
  • the control circuit unit 1320 sets the upper limit voltage and the lower limit voltage of the secondary battery to be used, and limits the upper limit of the current from the outside, the upper limit of the output current to the outside, and the like.
  • the range from the lower limit voltage to the upper limit voltage of the secondary battery is the voltage range recommended for use, and if it is out of the range, the switch unit 1324 operates and functions as a protection circuit.
  • control circuit unit 1320 can also be called a protection circuit because it controls the switch unit 1324 to prevent over-discharging or over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch of the switch unit 1324 is turned off to cut off the current. Further, a PTC element may be provided in the charge / discharge path to provide a function of cutting off the current in response to an increase in temperature. Further, the control circuit unit 1320 has an external terminal 1325 (+ IN) and an external terminal 1326 ( ⁇ IN).
  • the switch unit 1324 can be configured by combining one or both of an n-channel type transistor and a p-channel type transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal silicon, and is not limited to, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), and InP (phosphide).
  • the switch unit 1324 may be formed by a power transistor having indium phosphide, SiC (silicon carbide), ZnSe (zinc selenium), GaN (gallium arsenide), GaOx (gallium oxide; x is a real number larger than 0) and the like.
  • the storage element using the OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost. That is, it is also possible to stack the control circuit unit 1320 using the OS transistor on the switch unit 1324 and integrate them into one chip. Since the occupied volume of the control circuit unit 1320 can be reduced, the size can be reduced.
  • the first batteries 1301a and 1301b mainly supply electric power to high-voltage in-vehicle devices, and the second battery 1311 supplies electric power to low-voltage in-vehicle devices.
  • a lead-acid battery is often used as the second battery 1311 because of its cost advantage.
  • a lithium ion secondary battery is used for both the first battery 1301a and the second battery 1311.
  • the second battery 1311 may use a lead storage battery, an all-solid-state battery, or an electric double layer capacitor.
  • the regenerative energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and is charged from the motor controller 1303 or the battery controller 1302 to the second battery 1311 via the control circuit unit 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerative energy, it is desirable that the first batteries 1301a and 1301b can be quickly charged.
  • the battery controller 1302 can set the charging voltage, charging current, and the like of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and quickly charge the battery.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • the electric power supplied from the external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit may be provided and the function of the battery controller 1302 may not be used, but the first batteries 1301a and 1301b are charged via the control circuit unit 1320 in order to prevent overcharging. Is preferable.
  • the connection cable or the connection cable of the charger is provided with a control circuit.
  • the control circuit unit 1320 may be referred to as an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Control Area Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU also includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV)
  • HV hybrid vehicle
  • EV electric vehicle
  • PHS plug-in hybrid vehicle
  • agricultural machinery, motorized bicycles including electrically assisted bicycles, motorcycles, electric wheelchairs, electric carts, small or large vessels, submarines, aircraft such as fixed-wing or rotary-wing aircraft, rockets, artificial satellites, space explorers or Secondary batteries can also be mounted on transportation vehicles such as planetary explorers and spacecraft.
  • the automobile 2001 shown in FIG. 18A is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for traveling.
  • the automobile 2001 shown in FIG. 18A has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Further, it is preferable to have a charge control device that is electrically connected to the secondary battery module.
  • the automobile 2001 can charge the secondary battery of the automobile 2001 by receiving electric power from an external charging facility by a plug-in method, a non-contact power feeding method, or the like.
  • the charging method or the standard of the connector may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • the secondary battery may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the power storage device mounted on the automobile 2001 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device on a vehicle and supply electric power from a ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running. Further, power may be transmitted and received between two vehicles by using this contactless power feeding method. Further, a solar cell may be provided on the exterior portion of the vehicle to charge the secondary battery when the vehicle is stopped or running. An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 18B shows a large transport vehicle 2002 having a motor controlled by electricity as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has, for example, a secondary battery of 3.5 V or more and 4.7 V or less as a four-cell unit, and has a maximum voltage of 170 V in which 48 cells are connected in series. Since it has the same functions as those in FIG. 18A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2201 is different, the description thereof will be omitted.
  • FIG. 18C shows, as an example, a large transport vehicle 2003 having a motor controlled by electricity.
  • the secondary battery module of the transport vehicle 2003 has, for example, a maximum voltage of 600 V in which 100 or more secondary batteries of 3.5 V or more and 4.7 V or less are connected in series. Therefore, a secondary battery having a small variation in characteristics is required.
  • the method for manufacturing a secondary battery shown in the first embodiment it is possible to manufacture a secondary battery having stable battery characteristics, and mass production is possible at low cost from the viewpoint of yield. Further, since it has the same functions as those in FIG. 18A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, the description thereof will be omitted.
  • FIG. 18D shows, as an example, an aircraft 2004 with an engine that burns fuel. Since the aircraft 2004 shown in FIG. 18D has wheels for takeoff and landing, it can be said to be a part of a transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, which is charged with the secondary battery module. It has a battery pack 2203 including a control device.
  • the secondary battery module of the aircraft 2004 has, for example, a maximum voltage of 32V in which eight 4V secondary batteries are connected in series. Since it has the same functions as those in FIG. 18A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2203 is different, the description thereof will be omitted.
  • the house shown in FIG. 19A has a power storage device 2612 having a secondary battery having stable battery characteristics and a solar panel 2610 by using the method for manufacturing the secondary battery shown in the first embodiment.
  • the power storage device 2612 is electrically connected to the solar panel 2610 via wiring 2611 and the like. Further, the power storage device 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • the electric power obtained by the solar panel 2610 can be charged to the power storage device 2612. Further, the electric power stored in the power storage device 2612 can be charged to the secondary battery of the vehicle 2603 via the charging device 2604.
  • the power storage device 2612 is preferably installed in the underfloor space. By installing it in the underfloor space, the space above the floor can be effectively used. Alternatively, the power storage device 2612 may be installed on the floor.
  • the electric power stored in the power storage device 2612 can also be supplied to other electronic devices in the house. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the electronic device can be used by using the power storage device 2612 as an uninterruptible power supply.
  • FIG. 19B shows an example of the power storage device 700 according to one aspect of the present invention.
  • a large power storage device 791 obtained by the method for manufacturing a secondary battery shown in the first embodiment is installed in the underfloor space portion 796 of the building 799.
  • a control device 790 is installed in the power storage device 791, and the control device 790 is connected to a distribution board 703, a power storage controller 705 (also referred to as a control device), a display 706, and a router 709 by wiring. It is electrically connected.
  • Electric power is sent from the commercial power supply 701 to the distribution board 703 via the drop line mounting portion 710. Further, electric power is transmitted to the distribution board 703 from the power storage device 791 and the commercial power supply 701, and the distribution board 703 transfers the transmitted electric power to a general load via an outlet (not shown). It supplies 707 and the power storage system load 708.
  • the general load 707 is, for example, an electric device such as a television or a personal computer
  • the storage system load 708 is, for example, an electric device such as a microwave oven, a refrigerator, or an air conditioner.
  • the power storage controller 705 includes a measurement unit 711, a prediction unit 712, and a planning unit 713.
  • the measuring unit 711 has a function of measuring the amount of electric power consumed by the general load 707 and the power storage system load 708 during one day (for example, from 0:00 to 24:00). Further, the measuring unit 711 may have a function of measuring the electric power of the power storage device 791 and the electric power supplied from the commercial power source 701.
  • the prediction unit 712 is based on the amount of electric power consumed by the general load 707 and the power storage system load 708 during the next day, and the demand consumed by the general load 707 and the power storage system load 708 during the next day. It has a function to predict the amount of electric power.
  • the planning unit 713 has a function of making a charge / discharge plan of the power storage device 791 based on the power demand amount predicted by the prediction unit 712.
  • the amount of electric power consumed by the general load 707 and the power storage system load 708 measured by the measuring unit 711 can be confirmed by the display 706. It can also be confirmed in an electric device such as a television or a personal computer via a router 709. Further, it can be confirmed by a portable electronic terminal such as a smartphone or a tablet via the router 709. Further, the amount of power demand for each time zone (or every hour) predicted by the prediction unit 712 can be confirmed by the display 706, the electric device, and the portable electronic terminal.
  • the secondary battery of one aspect of the present invention can be used, for example, for one or both of an electronic device and a lighting device.
  • the electronic device include a mobile phone, a smartphone, a portable information terminal such as a notebook computer, a portable game machine, a portable music player, a digital camera, and a digital video camera.
  • the personal computer 2800 shown in FIG. 20A has a housing 2801, a housing 2802, a display unit 2803, a keyboard 2804, a pointing device 2805, and the like.
  • a secondary battery 2807 is provided inside the housing 2801, and a secondary battery 2806 is provided inside the housing 2802.
  • a touch panel is applied to the display unit 2803.
  • the personal computer 2800 can be used as a tablet terminal by removing the housing 2801 and the housing 2802 and using only the housing 2802.
  • the large-sized secondary battery obtained by the method for manufacturing a secondary battery shown in the first embodiment can be applied to one or both of the secondary battery 2806 and the secondary battery 2807.
  • the shape of the secondary battery obtained by the method for manufacturing the secondary battery shown in the first embodiment can be freely changed by changing the shape of the exterior body.
  • the capacity of the secondary batteries can be increased and the usage time of the personal computer 2800 can be lengthened.
  • the weight of the personal computer 2800 can be reduced.
  • a flexible display is applied to the display unit 2803 of the housing 2802.
  • a large-sized secondary battery obtained by the method for manufacturing a secondary battery shown in the first embodiment is applied to the secondary battery 2806.
  • a bendable secondary battery can be obtained by using a flexible film for the exterior body.
  • the housing 2802 can be bent and used.
  • a part of the display unit 2803 can also be used as a keyboard.
  • housing 2802 can be folded so that the display unit 2803 is on the inside as shown in FIG. 20D, or the housing 2802 can be folded so that the display unit 2803 is on the outside as shown in FIG. 20E.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • the crystal plane and the direction are indicated by the Miller index.
  • the notation of the crystal plane and direction is to add a superscript bar to the number, but in this specification etc., due to the limitation of the application notation, instead of adding a bar above the number,-(minus) before the number. It may be expressed with a sign).
  • the individual orientation indicating the direction in the crystal is []
  • the aggregate orientation indicating all equivalent directions is ⁇ >
  • the individual plane indicating the crystal plane is ()
  • the aggregate plane having equivalent symmetry is ⁇ . Express each with.
  • the surface layer portion of the particles of the active material or the like is preferably, for example, a region within 50 nm, more preferably 35 nm or less, still more preferably 20 nm or less from the surface.
  • the surface created by cracks or cracks can also be called the surface.
  • the area deeper than the surface layer is called the inside.
  • the layered rock salt type crystal structure of the composite oxide containing lithium and the transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and lithium are present.
  • a crystal structure capable of two-dimensional diffusion of lithium because it is regularly arranged to form a two-dimensional plane.
  • the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged. There may be a cation or anion deficiency.
  • the pseudo-spinel-type crystal structure of the composite oxide containing lithium and the transition metal is the space group R-3m, and although it is not a spinel-type crystal structure, ions such as cobalt and magnesium are formed. Occupies the oxygen 6-coordination position, and refers to a crystal structure in which the arrangement of cations has symmetry similar to that of the spinel type.
  • the angle formed by the repetition of the bright line and the dark line between the crystals is 5 degrees or less, more preferably 2.5 degrees or less. It can be observed. In some cases, light elements such as oxygen and fluorine cannot be clearly observed in the TEM image or the like, but in that case, the alignment of the metal elements can be used to determine the alignment.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charging depth when all the insertable and desorbable lithium is inserted is 0, and the charging depth when all the insertable and desorbable lithium contained in the positive electrode active material is desorbed is 1. do.
  • charging means moving lithium ions from the positive electrode to the negative electrode in the battery and moving electrons from the positive electrode to the negative electrode in an external circuit.
  • the positive electrode active material the release of lithium ions is called charging.
  • a positive electrode active material having a charging depth of 0.7 or more and 0.9 or less may be referred to as a positive electrode active material charged at a high voltage.
  • discharging means moving lithium ions from the negative electrode to the positive electrode in the battery and moving electrons from the negative electrode to the positive electrode in an external circuit.
  • inserting lithium ions is called electric discharge.
  • a positive electrode active material having a charging depth of 0.06 or less, or a positive electrode active material in which a capacity of 90% or more of the charging capacity is discharged from a state of being charged at a high voltage is defined as a sufficiently discharged positive electrode active material. ..
  • the non-equilibrium phase change means a phenomenon that causes a non-linear change of a physical quantity.
  • an unbalanced phase change occurs before and after the peak in the dQ / dV curve obtained by differentiating the capacitance (Q) with the voltage (V) (dQ / dV), and the crystal structure changes significantly. ..
  • the secondary battery has, for example, a positive electrode and a negative electrode.
  • a positive electrode active material As a material constituting the positive electrode, there is a positive electrode active material.
  • the positive electrode active material is, for example, a substance that undergoes a reaction that contributes to the charge / discharge capacity.
  • the positive electrode active material may contain a substance that does not contribute to the charge / discharge capacity as a part thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

二次電池の作製工程の少なくとも一部を自動化する。信頼性の高い二次電池を提供する。 第1の外装体上に第1の電極を配置し、第1の電極上にセパレータを配置し、セパレータ上に第2の電極を配置し、第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を滴下し、第1の外装体上に樹脂層を配置し、第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を含浸させた後、第1の外装体上に、第1の電極、セパレータ、及び、第2の電極を覆うように、第2の外装体を配置し、減圧下で樹脂層に紫外光を照射することで、樹脂層の少なくとも一部を硬化し、紫外光の照射を行った後、大気圧下で、第1の外装体と第2の外装体とによって、第1の電極、セパレータ、及び、第2の電極を封止することで二次電池を作製する。

Description

二次電池の作製方法、及び、二次電池の製造装置
本発明の一態様は、二次電池及びその作製方法に関する。または、二次電池を有する携帯情報端末、車両等に関する。または、二次電池の製造装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、または、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
リチウムイオン二次電池は、コバルト酸リチウム(LiCoO)またはリン酸鉄リチウム(LiFePO)などの正極活物質を含む正極と、リチウムの吸蔵・放出が可能な黒鉛等の炭素材料などの負極活物質を含む負極と、エチレンカーボネート(EC)またはジエチルカーボネート(DEC)などの有機溶媒などを含む電解質により構成される。
また、リチウムイオン二次電池には、高容量、高性能、及びさまざまな動作環境での安全性などが求められている。
特許文献1には製造の効率化を図ることのできる積層型電池の製造装置が開示されている。
特開2017−117729号公報
本発明の一態様は、二次電池の作製工程の少なくとも一部を自動化することを課題の一つとする。
本発明の一態様は、サイズが比較的大きな二次電池の作製方法を提供することを課題の一つとする。
本発明の一態様は、二次電池を、効率よく短時間で作製することを課題の一つとする。本発明の一態様は、二次電池を、歩留まりよく作製することを課題の一つとする。本発明の一態様は、製造コストが低減された二次電池の作製方法を提供することを課題の一つとする。
本発明の一態様は、信頼性の高い二次電池の作製方法を提供することを課題の一つとする。本発明の一態様は、安全性の高い二次電池の作製方法を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の外装体上に第1の電極を配置し、第1の電極上にセパレータを配置し、セパレータ上に第2の電極を配置し、第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を滴下し、第1の外装体上に樹脂層を配置し、第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を含浸させた後、第1の外装体上に、第1の電極、セパレータ、及び、第2の電極を覆うように、第2の外装体を配置し、減圧下で樹脂層に紫外光を照射することで、樹脂層の少なくとも一部を硬化し、紫外光の照射を行った後、大気圧下で、第1の外装体と第2の外装体とによって、第1の電極、セパレータ、及び、第2の電極を封止する、二次電池の作製方法である。第1の電極と第2の電極とは、一方が正極であり、他方が負極である。
第1の外装体は、凹部を有することが好ましい。第1の電極、セパレータ、及び、第2の電極は、凹部に配置されることが好ましい。
または、本発明の一態様は、第1の外装体上に複数の積層体を配置し、第1の外装体上に樹脂層を配置し、第1の外装体上に、複数の積層体を覆うように、第2の外装体を配置し、減圧下で樹脂層に紫外光を照射し、樹脂層の少なくとも一部を硬化し、紫外光を照射した後、大気圧下で、第1の外装体と第2の外装体とによって、複数の積層体を封止し、封止の後、第1の外装体及び第2の外装体を分断して、積層体を有する二次電池を個々に分離する、二次電池の作製方法である。複数の積層体のそれぞれは、第1の外装体上に第1の電極を配置し、第1の電極上にセパレータを配置し、セパレータ上に第2の電極を配置し、第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を滴下することで形成する。第1の電極と第2の電極とは、一方が正極であり、他方が負極である。
第1の外装体は、複数の凹部を有することが好ましい。複数の凹部の1つに対して、複数の積層体の1つが配置されることが好ましい。
樹脂層は、第1の電極、セパレータ、及び、第2の電極を囲うように、枠状に配置されることが好ましい。
封止は、樹脂層に紫外光を照射し、樹脂層を硬化させることで行ってもよい。このとき、樹脂層は、減圧下で紫外光が照射された面積よりも、封止の際に紫外光が照射された面積の方が広いことが好ましい。
または、封止は、熱圧着により行ってもよい。
第2の外装体は、少なくとも樹脂層と重なる領域において、紫外光を透過する機能を有することが好ましい。
第2の外装体は、少なくとも、第1の電極、セパレータ、及び、第2の電極の少なくとも一つと重なる領域において、紫外光を遮る機能を有することが好ましい。
減圧下で紫外光を照射する前に、第1の電極に、第1のリード電極を接続させる工程と、第2の電極に、第2のリード電極を接続させる工程と、を有することが好ましい。
電解質は、フッ素を含むことが好ましい。
電解質は、イオン液体を含むことが好ましい。
第1の電極及び第2の電極の一方または双方は、グラフェンを含むことが好ましい。
第1の電極は、第1の集電体の一方の面または両面に、第1の活物質層を有することが好ましい。
第2の電極は、第2の集電体の一方の面または両面に、第2の活物質層を有することが好ましい。
本発明の一態様は、第1の外装体と第2の外装体の間に、正極、セパレータ、及び、負極をそれぞれ1つ以上有する積層体が設けられた二次電池の、製造装置である。当該製造装置は、搬送室、第1の処理室、及び、第2の処理室を有する。搬送室は、第1の処理室から第2の処理室に作製中の二次電池を搬送する機能を有する。第1の処理室は、第1のステージ、吸着機構、電解質滴下機構、及び、シール材料供給機構を有する。第1のステージは、作製中の二次電池を支持する機能を有する。吸着機構は、積層体を構成する部材を吸着し、第1の外装体上に配置する機能を有する。電解質滴下機構は、積層体を構成する部材上に、電解質を滴下する機能を有する。シール材料供給機構は、第1の外装体上に、樹脂層を形成する機能を有する。第2の処理室は、第2のステージ、排気機構、外装体支持機構、及び、第1の紫外光照射機構を有する。第2のステージは、第1の処理室から搬送された作製中の二次電池を支持する機能を有する。排気機構は、第2の処理室の内部を減圧する機能を有する。外装体支持機構は、第2の外装体を、第1の処理室から搬送された作製中の二次電池と対向する位置で支持する機能を有する。第1の紫外光照射機構は、第1の外装体または第2の外装体を介して、樹脂層の少なくとも一部に紫外光を照射する機能を有する。
吸着機構は、第1の外装体を吸着し、第1のステージ上に配置する機能を有することが好ましい。
第1の処理室は、不活性ガス供給機構を有することが好ましい。不活性ガス供給機構は、第1の処理室の内部に不活性ガスを供給する機能を有することが好ましい。不活性ガスは、アルゴンガスであることが好ましい。
本発明の一態様の製造装置は、さらに、第3の処理室を有することが好ましい。第3の処理室は、第2の紫外光照射機構を有する。第2の紫外光照射機構は、第1の外装体または第2の外装体を介して、樹脂層に紫外光を照射する機能を有する。樹脂層は、第1の紫外光照射機構により紫外光が照射された面積よりも、第2の紫外光照射機構により紫外光が照射された面積の方が広い。
本発明の一態様により、二次電池の作製工程の少なくとも一部を自動化できる。
本発明の一態様により、サイズが比較的大きな二次電池の作製方法を提供できる。大容量の二次電池を搭載する場合、小型の二次電池を搭載する場合に比べて、搭載する二次電池の個数を低減することができる。搭載する二次電池の個数を低減することで、個々の電池の制御が容易となり、充電制御回路の負担が低減される。
本発明の一態様の二次電池の作製方法では、複数の二次電池の封止工程を一度に行うことができるため、二次電池の作製工程を大幅に短縮することができる。したがって、二次電池の製造コストを低減することができる。また、二次電池を、効率よく短時間で作製することができる。また、二次電池を、歩留まりよく作製することができる。
本発明の一態様により、信頼性の高い二次電池の作製方法を提供できる。また、本発明の一態様により、安全性の高い二次電池の作製方法を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、二次電池の一例を示す断面図である。図1Bは、電極に電解質を滴下した後の状態を説明する上面図である。図1Cは、多面取りを説明する上面図である。
図2は、二次電池の製造装置の一例を示す上面図である。
図3は、二次電池の作製方法の一例を示すフロー図である。
図4A乃至図4Dは、二次電池の作製方法の一例を示す断面図である。
図5A乃至図5Cは、二次電池の作製方法の一例を示す断面図である。
図6A及び図6Bは、二次電池の作製方法の一例を示す斜視図である。
図7A及び図7Bは、二次電池の作製方法の一例を示す斜視図である。
図8Aは、二次電池の作製方法の一例を示す上面図である。図8Bは、作製中の二次電池の一例を示す断面図である。図8Cは、作製中の二次電池の一例を示す上面図である。
図9A及び図9Bは、二次電池の作製方法の一例を示す上面図である。
図10は、二次電池の作製方法の一例を示す上面図である。
図11は、二次電池の作製方法の一例を示す上面図である。
図12は、正極活物質の結晶構造を説明する図である。
図13は、正極活物質の結晶構造を説明する図である。
図14A乃至図14Cは、二次電池の外観の一例を示す図である。
図15A及び図15Bは、二次電池の外観の一例を示す図である。
図16A乃至図16Cは、二次電池の作製方法の一例を示す図である。
図17Aは、電池パックの一例を示す斜視図である。図17Bは電池パックの一例を示すブロック図である。図17Cは、モータを有する車両の一例を示すブロック図である。
図18A乃至図18Dは、輸送用車両の一例を示す図である。
図19A及び図19Bは、蓄電装置の一例を示す図である。
図20A乃至図20Eは、電子機器の一例を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、及び、範囲などは、理解の簡単のため、実際の位置、大きさ、及び、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、及び、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の二次電池の作製方法について図1乃至図11を用いて説明する。
二次電池の作製工程では、正極、セパレータ、及び、負極を有する積層体を、缶または袋状の外装体に入れた後に電解液を注入し、その後、封止することが多い。このような方法では、正極及び負極の内部まで電解質が含浸するまでの時間が長くなる場合がある。また、このような方法では、正極及び負極の内部への電解質の含浸が不十分となる場合がある。また、このような方法では、リチウムイオンが注入口から外方拡散する恐れがある。また、このような方法は、工程数が多くなりやすい。また、電解液を注入する量を精度よく調節することが困難な場合がある。二次電池に必要な量の電解液を正確に提供することが、均一な特性を有する二次電池の大量生産につながるといえる。
本発明の一態様の二次電池の作製方法では、第1の外装体上に第1の電極を配置し、第1の電極上にセパレータを配置し、セパレータ上に第2の電極を配置し、配置された第1の電極、セパレータ、及び、第2の電極の少なくとも一つに、電解質を滴下する。電解質を複数滴、滴下することで、第1の電極、セパレータ、または、第2の電極に電解質を均一に、または、十分に、含浸させることができる。
また、本発明の一態様の二次電池の作製方法では、第1の外装体上に枠状の樹脂層を配置する。樹脂層には、紫外光硬化樹脂を用いることが好ましい。そして、第1の外装体上に、第1の電極、セパレータ、及び、第2の電極の積層構造(以下、積層体ともいう)を覆うように、第2の外装体を配置し、減圧下(減圧雰囲気下ともいう)で樹脂層に紫外光を照射することで、樹脂層の少なくとも一部を硬化する。第1の外装体及び第2の外装体には、それぞれ、外装フィルムを用いることが好ましい。
大気圧よりも減圧された雰囲気下で樹脂層の少なくとも一部を硬化した後、作製中の二次電池を大気圧下(大気圧雰囲気下、常圧下ともいう)に曝すことで、第1の外装体と第2の外装体が大気圧によって加圧される。これにより、第1の外装体、第2の外装体、及び枠状の樹脂層に囲まれた空間の減圧状態が保持される。したがって、不純物が二次電池内に混入することを抑制できる。
また、滴下した電解質は、減圧雰囲気から大気圧雰囲気に曝されることで、短時間で広く部材に浸透させることができる。したがって、電解質が、正極及び負極の表面、さらには、内部にまで含浸する時間を短縮することができる。そして、正極及び負極の内部に、電解質を十分に含浸させることができる。
なお、外部取り出しのための端子として機能するリード電極(引き出し配線、または、リード端子ともいう)は外装体の外側に突出させるものとする。リード電極は、二次電池の正極または負極を外装体の外側へ引き出すために設けられる。
その後、本発明の一態様の二次電池の作製方法では、大気圧下で、第1の外装体と第2の外装体とによって、積層体を封止する。例えば、薄型(ラミネート型)の二次電池の場合、第1の外装体と第2の外装体の外周縁(二次電池の形状が薄い直方体の場合、上面から見て四辺)を隙間なく封止する。封止の方法としては、樹脂層に紫外光などの光を照射する方法、外装体を熱圧着する方法等を用いることができる。
本明細書等において、封止とは、ある密閉領域を外気から遮断することを指し、二次電池においては積層体及びその周辺を密閉領域として、密閉領域の外側を外装体で囲み、外気から遮断することを封止とする。また、封止後は、外装体の端部を折り曲げて封止強度を上げ、外部からの不純物侵入または内部からのガスなどの放出を防止する。
減圧下、または、大気圧下で、光を照射して樹脂層を硬化する工程は、二次電池を高温に曝す必要がないため、二次電池の劣化を抑制し、二次電池の信頼性を高めることができる。
本発明の一態様の二次電池の作製方法は、少なくとも、第1の外装体上に積層体を形成する工程から、減圧下で樹脂層を硬化する工程までを、1つの装置で連続して行うことができるため、不純物が二次電池内に混入することを抑制できる。
なお、第1の電極と第2の電極とは、一方が正極であり、他方が負極である。積層体は、正極、セパレータ、及び負極の順に積層されたものであってもよいし、負極、セパレータ、及び正極の順に積層されたものであってもよい。また、セパレータは、正極と負極の短絡防止のために用いる。二次電池の容量を大きくするために、正極及び負極を複数積層する構成とする場合には、部品点数を低減するため、1枚の共通のセパレータを折り曲げて用いる構成としてもよい。
また、本発明の一態様の二次電池の作製方法では、第1の外装体上に複数の積層体を配置してもよい。このとき、樹脂層としては、複数の積層体全てを囲う1つの枠状の樹脂層を形成してもよく、1つまたは複数の積層体を囲う枠状の樹脂層を複数形成してもよい。例えば、1つの積層体につき、1つの枠状の樹脂層を形成してもよい。また、第1の外装体上に、複数の積層体を覆うように、第2の外装体を配置する。そして、減圧下で樹脂層に対して紫外光の照射を行い、大気圧下で、第1の外装体と第2の外装体とによって、複数の積層体を封止する。封止の後、第1の外装体及び第2の外装体を分断して、積層体を有する二次電池を個々に分離する。
また、上記では、樹脂層の材料に、紫外光硬化樹脂を用いる例を示したが、本発明の一態様はこれに限られない。樹脂層の材料には、紫外光硬化樹脂等の光硬化樹脂(光硬化型接着剤などともいう)、熱硬化樹脂(熱硬化型接着剤ともいう)、反応硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としては、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等のガスバリア性の高い材料が好ましい。また、二液混合型の樹脂を用いてもよい。
各種光硬化樹脂を用いる場合は、減圧下で樹脂層に光を照射することで、樹脂層の少なくとも一部を硬化することができる。これにより、作製中の二次電池を大気圧下に曝しても、第1の外装体、第2の外装体、及び枠状の樹脂層に囲まれた空間の減圧状態が保持される。したがって、不純物が二次電池内に混入することを抑制できる。光硬化樹脂を用いることで、樹脂層を硬化する際に二次電池を高温に曝す必要がないため、二次電池の劣化を抑制し、信頼性の高い二次電池を作製することができる。
また、熱硬化樹脂を用いる場合は、減圧下で熱圧着または溶着を行うことが好ましい。これにより、作製中の二次電池を大気圧下に曝しても、第1の外装体、第2の外装体、及び枠状の樹脂層に囲まれた空間の減圧状態が保持される。したがって、不純物が二次電池内に混入することを抑制できる。熱硬化樹脂を用いることで、光照射装置を導入する必要がないため、装置導入のためのコストを削減できる場合がある。
また、減圧下で、熱圧着または溶着を行う場合、樹脂層を形成する工程を行わなくてもよいことがある。例えば、外装フィルムの内面の樹脂(熱可塑性フィルム材料など)を用いて熱圧着または溶着することで、第1の外装体、第2の外装体、及び枠状の樹脂層に囲まれた空間の減圧状態を、大気圧下で保持できることがある。これにより、二次電池の製造工程を削減できる。
なお、減圧下で、複数の二次電池を個別に封止する場合などには、大気圧下での封止工程を削減することができる。
本発明の一態様の二次電池の例について、図1Aを用いて説明する。
図1Aに示す二次電池500は、外装体509aと、外装体509bと、外装体509a、509bの間に配置される積層体512と、を有する。積層体512は、正極503、負極506、及び、セパレータ507を有する。積層体512において、正極503と負極506は重畳し、正極503と負極506の間にセパレータ507が配置される。
正極503は、正極集電体501と、正極活物質層502と、を有する。本実施の形態では、正極集電体501の両面に正極活物質層502が設けられる例を示す。なお、正極活物質層502は、正極集電体501の片面のみに設けられてもよい。
負極506は、負極集電体504と、負極活物質層505と、を有する。本実施の形態では、負極集電体504の両面に負極活物質層505が設けられる例を示す。なお、負極活物質層505は、負極集電体504の片面のみに設けられてもよい。
正極活物質層502と負極活物質層505は、セパレータ507を挟んで互いに向かい合うように配置されることが好ましい。図1Aには、二次電池500が、セパレータ507を挟んで向かい合う正極活物質層502と負極活物質層505とを4組、有する例を示す。正極活物質層502と負極活物質層505の組数は特に限定されず、例えば、1組以上50組以下とすることができる。
本発明の一態様の二次電池は、正極503、負極506、及び、セパレータ507のいずれか一または複数に対して、電解質を複数滴、滴下することで、電解質を均一に、または、十分に、含浸させることができる。
図1Bは、正極503に対して、電解質515aを複数滴、滴下した例を示す。二次電池の電極は、集電体上に活物質層を有しており、活物質層は、活物質、導電材料、及び、バインダなどを有しており、その間には隙間を有している。滴下した電解質は、滴下位置から活物質層の隙間に移動し、均一に電解質が含浸された状態として、理想的には空隙のない状態とすることが好ましい。
図1Bでは、正極503上に等間隔で140箇所(20行×7列)の電解質515aの液滴を図示しているが、液滴の数、及び、位置などは特に限定されず、実施者が適宜決定すればよい。一つのノズルを用いる場合には、滴下位置を撮像機構(CCD素子などの撮像素子)で確認しながら順次走査することが好ましい。また、複数のノズルから同時に液滴を滴下する場合には、滴下の処理時間を短縮でき、好ましい。
なお、毎回の滴下量が同量となるよう、滴下の際には、電解質を量り取ることが好ましい。例えば、ピペット(マイクロピペットなど)を用いて、滴下を行うことが好ましい。
また、図1Cに示すように、外装体509b上に複数の積層体512を配置することで、多面取りを行うことができる。多面取りとは、1枚の大きな外装体上に複数の積層体を配置し、二次電池を作製した後、積層体ごとに平面的に分割することにより、複数の二次電池を作製する方式のことを指している。多面取りを行うことによって1つの二次電池あたりの作製時間を短縮することができる。また、本発明の一態様の二次電池の作製方法を用いて多面取りを行うことで、複数の二次電池の特性を均一にしやすく、歩留まりよく二次電池を作製することができる。
例えば、外装体509a及び外装体509bとして、広い面積の外装フィルムを用いることで一度に多くの二次電池を作製することができる。例えば、サイズが、320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mmのような大面積の外装フィルムを用いることが好ましい。これにより、1枚の大面積の外装フィルムから効率よく複数の二次電池を作製することができる。さらには、サイズが、1500mm×1800mm、1800mm×2000mm、2000mm×2100mm、2200mm×2600mm、2600mm×3100mmのような大面積の外装フィルムを用いることもできる。また、外装体は、包材と呼ぶこともできる。
図1Cには、樹脂層の配置例も示す。例えば、外装体509bの4隅に樹脂層518を設け、また、1つの積層体512を囲う、枠状の樹脂層513を複数設けてもよい。例えば、減圧下にて、樹脂層518を硬化し、その後、大気圧下で、枠状の樹脂層513を硬化してもよい。減圧下で樹脂層518を硬化させれば、枠状の樹脂層513が未硬化であっても、2つの外装体及び枠状の樹脂層513に囲まれた空間の減圧状態は、大気圧下で保持される。
[二次電池の製造装置例]
図2に、本発明の一態様の二次電池の作製に用いることができる、製造装置の一例を示す。
図2に示す製造装置300は、部材投入室301、搬送室302、処理室303、処理室304、処理室305、及び、部材取り出し室306を有する。各室は、使用用途に応じて、各種排気機構と接続される構成を適用できる。
また、各室は、使用用途に応じて、各種ガス供給機構と接続される構成を適用できる。製造装置300内に不純物が侵入することを抑制するため、製造装置300内には、不活性ガスが供給されることが好ましい。なお、製造装置300の内部に供給されるガスは、製造装置300内に導入される前にガス精製機により高純度化されたものを用いることが好ましい。
部材投入室301は、正極503、セパレータ507、負極506、外装体509a、及び、外装体509b等を製造装置300内に投入するための部屋である。
搬送室302は、部材投入室301、処理室303、処理室304、処理室305、及び、部材取り出し室306のうち、いずれか一室から他の一室に部材等を搬送する、受け渡し室として機能する。例えば、処理室303から処理室304に、作製中の二次電池を搬送することができる。搬送室302は、搬送機構320を有する。
処理室303は、外装体509b上に、正極503、セパレータ507、及び、負極506を積層して配置する機能と、外装体509b上に、樹脂層を形成する機能と、を有する。
処理室303は、ステージ、吸着機構、電解質滴下機構、及び、シール材料供給機構を有する。
ステージは、作製中の二次電池を支持する機能を有する。
吸着機構は、積層体を構成する部材(正極503、セパレータ507、または、負極506)を吸着し、外装体509b上に配置する機能を有する。吸着機構は、さらに、外装体509b(または、外装体509bが配置された仮支持基板)を吸着し、ステージ上に配置する機能を有していてもよい。
電解質滴下機構は、積層体を構成する部材上に、電解質を滴下する機能を有する。
シール材料供給機構は、外装体509b上に、樹脂層を形成する機能を有する。シール材料供給機構は、例えば、紫外光硬化樹脂を供給する機能を有する。
処理室303は、さらに、複数の正極503、複数のセパレータ507、及び、複数の負極506のそれぞれを収納するホルダを有する。これら部材は、必要な時に、ロボットアーム、または、ロボットハンド等の搬送機構により、ステージまたはその近傍に運ばれる。または、吸着機構が直接、ホルダにある部材を吸着してもよい。
処理室303は、不活性ガス供給機構を有することが好ましい。不活性ガス供給機構は、処理室303の内部に不活性ガスを供給する機能を有することが好ましい。不活性ガスとしては、窒素または希ガスを用いることができ、アルゴンガスであることが好ましい。
処理室304は、減圧下で樹脂層を硬化する機能を有する。本実施の形態では、樹脂層に紫外光硬化樹脂を用いる場合を例に挙げて説明する。つまり、処理室304は、減圧下で樹脂層に紫外光を照射する機能を有する。
処理室304は、ステージ、排気機構、外装体支持機構、及び、紫外光照射機構を有する。
ステージは、処理室303から搬送された作製中の二次電池を支持する機能を有する。
排気機構は、処理室304の内部を減圧する機能を有する。排気機構としては、例えば、ドライポンプ、ロータリーポンプ、ダイアフラムポンプ等が挙げられる。また、排気機構としては、例えば、クライオポンプ、スパッタイオンポンプ、チタンサブリメーションポンプ等の、吸着手段を有するポンプを備えた排気機構、及び、ターボ分子ポンプにコールドトラップを備えた排気機構等が挙げられる。
処理室304は、真空排気して真空にすることもでき、真空排気した後、不活性ガスを導入して大気圧にする機能を有することが好ましい。なお、処理室303も当該機能を有することが好ましい。また、製造装置300が有する他の室においても、それぞれ、当該機能を有することが好ましい。
例えば、処理室304は、到達真空度を0.1Pa程度にすることができ、さらにポンプ側及び排気系からの不純物の逆拡散を制御することができる。
外装体支持機構は、外装体509a(または、外装体509aが配置された仮支持基板)を、処理室303から搬送された作製中の二次電池と対向する位置で支持する機能を有する。外装体支持機構として、例えば、吸着機構、静電機構、及び、微粘着機構等のうち一つまたは複数を用いることができる。
処理室304は、紫外光照射機構を有する。紫外光照射機構は、外装体509aまたは外装体509bを介して、樹脂層の少なくとも一部に紫外光を照射する機能を有する。
製造装置300は、処理室303で電解質の滴下を行った後、大気に曝すことなく、処理室304で、減圧下で樹脂層を硬化できる。これにより、作製中の二次電池に不純物が入ることを抑制できる。また、製造装置300は、さらに、大気に曝すことなく、処理室305で、二次電池を封止することができる。このように、1台の装置で連続して処理をすることで、二次電池の信頼性を高めることができる。
処理室305は、封止を行う機能を有する。
例えば、紫外光を照射することで封止を行う場合、処理室305は、紫外光照射機構を有する。このとき、処理室305の紫外光照射機構は、処理室304と同様であってもよく、異なっていてもよい。処理室305は、大気圧雰囲気とすることができる。
例えば、熱圧着により封止を行う場合、処理室305は、熱圧着機構を有する。処理室305は、大気圧雰囲気、または、減圧雰囲気とすることができる。
なお、本発明の一態様の二次電池の作製方法では、処理室304にて、減圧下で樹脂層を硬化させた後、大気圧下に曝しても、外装体509a、外装体509b、及び枠状の樹脂層に囲まれた空間の減圧状態が保持される。大気圧下で熱圧着を行っても、信頼性の高い二次電池を作製することができる。
また、処理室305を設けず、処理室304での処理が終了した後、部材取り出し室306に搬送し、製造装置300の外部に取り出してもよい。そして、製造装置300の外部にて封止を行ってもよい。
部材取り出し室306は、作製された二次電池を製造装置300の外部に取り出すための部屋である。
[二次電池の作製方法例]
次に、図3乃至図5を用いて、本発明の一態様の二次電池の作製方法について説明する。図3は、本発明の一態様の二次電池の作製方法を示すフロー図である。図4及び図5は、本発明の一態様の二次電池の作製方法を示す断面図であり、図1Cに示す二点鎖線A−B間の断面図に相当する。なお、一部ステップにおいては、上述した製造装置300を用いた作製方法例を説明する。
<ステップS00>
ステップS00において、処理を開始する。
<ステップS01>
ステップS01において、処理室303のステージ331上に、外装体509bを配置する。外装体509bの搬送と配置を容易とするため、外装体509bを仮支持基板等に仮固定して(言い換えると、着脱可能な方法で固定して)、ステージ331上に配置してもよい。外装体509bとしては、外装フィルムを用いることが好ましい。
<ステップS02>
ステップS02において、外装体509b上に、正極503を配置する(図4A)。正極503、外装体509b、及び、ステージ331等は、処理室303のチャンバー内に配置されているが、簡略化のため、ここではチャンバー内壁などを図示しない。
ステージ331は、前後、左右、または、上下にそれぞれ移動可能であってもよい。ステージ331上に配置された部材等を固定するための固定機構としては、メカニカルチャック、吸引チャック、及び、静電チャック等のチャックが挙げられる。例えば、ポーラスチャックを用いてもよい。また、粘着シート、吸着テーブル、ヒーターテーブル、または、スピンナーテーブル等に部材を固定してもよい。
ステージ331は、加熱機構を有していてもよい。処理室303での工程中に、ステージ331を加熱することで、部材に電解質をより迅速に含浸させることができる。
図4Aでは、正極503が、吸着治具333によって吸着された状態で、所定の位置に運ばれる例を示す。図4Aでは、吸着治具333を1つのみ示すが、複数の吸着治具を用いてもよい。位置合わせを容易とするため、処理室303は、アライメントカメラ332を有することが好ましい。
<ステップS03>
次に、ステップS03において、正極503上に、電解質515aを滴下する。図4B及び図4Cでは、電解質515aを、ノズル334から正極503に滴下する様子を示す。
ノズル334を動かすことにより、正極503の全面にわたって電解質515aを滴下することができる。または、ステージ331を動かすことにより、正極503の全面にわたって電解質515aを滴下してもよい。
電解質を複数滴下する際には、被滴下面の平面に対して均一のピッチで一回または複数回に分けて滴下する。滴下の方法は、例えば、ディスペンス法、スプレー法、インクジェット法などのうちいずれか一を用いることができる。ディスペンス法とは、液体定量吐出装置を用いた方法であり、ノズルから一定量の滴下を行うことができる。複数の液体定量吐出装置を用いれば、製造時間短縮を図ることもできる。ノズルまたは滴下する対象物(正極、セパレータ、及び負極のいずれか一または複数)を相対的に移動させることによって一定の距離間隔で滴下を行うこともできる。あるノズル径での一箇所への滴下量を0.01ccとすると、n(n>1)箇所滴下することで0.01cc×nの電解質を含浸させることができるため、滴下する落下点または滴下総量を精密制御することができる。平面に対してn(n>1)箇所滴下することは、例えば正極の場合、正極一点のみへの滴下に比べて、正極複数個所滴下するほうが正極全体に含浸させる時間を短縮することができ、製造時間の短縮を図ることができる。また、電解質の滴下には、ODF(One Drop Fill)方式を用いることができる。
また、ノズルなどから滴下する電解質の粘度は適宜調節することが好ましい。電解質全体の粘度が室温(25℃)において、0.3mPa・s以上1000mPa・s以下の範囲内であればノズルから滴下することができる。例えば、電解質の粘度を、10mPa・s以上95mPa・s以下とすることが好ましい。なお、粘度測定には回転式の粘度計(例えば、東機産業のTVE−35L)を用いる。
滴下する電解質としては、有機溶媒(有機電解液ともいう)またはイオン液体を用いることができる。
本実施の形態の二次電池の作製方法では、減圧下で行う工程を有する。イオン液体は、高真空であってもほとんど揮発しないため、好ましい。また、電解質として、イオン液体に有機溶媒を混合させたものを用いてもよい。電解質として有機溶媒を含む場合、処理室の真空度は5×10−1Pa程度よりも低真空とすることが望ましい。
<ステップS04>
次に、ステップS04において、正極503上に、セパレータ507を配置する。セパレータ507は、正極503の一面全体と重なるように配置する。これにより、正極503と、後に配置する負極506とが接触しショートすることを防止できる。
<ステップS05>
次に、ステップS05において、セパレータ507上に、電解質515bを滴下する。図4Dでは、電解質515bをセパレータ507に滴下した様子を示す。電解質515bは、上述のノズル334を用いて滴下することができる。
<ステップS06>
次に、ステップS06において、セパレータ507上に、負極506を配置する。負極506は、上面視においてセパレータ507からはみ出さないように、重ねて配置する。これにより、正極503と、配置する負極506とが接触しショートすることを防止できる。
<ステップS07>
次に、ステップS07において、負極506上に、電解質515cを滴下する。図5Aでは、電解質515cを、負極506に滴下した様子を示す。電解質515cは、上述のノズル334を用いて滴下することができる。
ステップS07の後に、正極503、セパレータ507、及び、負極506の積層体をさらに積層することもできる。例えばステップS07の後に、セパレータ507、正極503、セパレータ507、負極506、セパレータ507、正極503、を順に積層することにより、図1Aに示す積層体512を作製することができる。正極503、負極506、及び、セパレータ507のいずれかを配置した後には、毎回、電解質を滴下することが好ましい。
なお、本実施の形態では、正極503、セパレータ507、及び、負極506の順に積層する例を示すが、これに限定されない。例えば、負極506、セパレータ507、及び正極503の順に積層してもよい。または、セパレータ507から積層を始めてもよく、例えば、セパレータ507、正極503、セパレータ507、及び、負極506の順、または、セパレータ507、負極506、セパレータ507、及び正極503の順に積層してもよい。
なお、本発明の一態様の二次電池の作製方法では、ステップS03、ステップS05、及びステップS07のうち、少なくとも1つのステップを行えばよい。つまり、正極503上、負極506上、及び、セパレータ507上の少なくとも1つに、電解質を滴下すればよい。例えば、正極503上、及び、負極506上にのみ、電解質を滴下してもよい。または、セパレータ507にのみ、電解質を滴下してもよい。また、正極503上、負極506上、及び、セパレータ507上にそれぞれ滴下する電解質は、いずれも同一の材料であってもよく、一部または全てが異なる材料であってもよい。
<ステップS08>
次に、ステップS08において、外装体509b上に樹脂層を形成する。図1Cでは、枠状の樹脂層513と4隅の樹脂層518を形成する例を示す。図5Bでは、樹脂517を、ノズル335から外装体509b上に吐出する様子を示す。
なお、外装体509b上に樹脂層を形成するタイミングは、ステップS09の前であればいつでもよく、例えば、ステップS01の後に行ってもよい。
なお、ステップS07の後、かつ、ステップS09の前の間に、正極503及び負極506のそれぞれに、リード電極を接続させてもよい。
樹脂層の形成には、例えば、ディスペンス法、スプレー法、インクジェット法などのうちいずれか一を用いることができる。
樹脂層の材料としては、上述の各種接着剤を用いることができる。または、外装体を構成する樹脂層を用いる場合は、本工程を行わなくてもよい場合がある。
樹脂層の材料としては、光硬化樹脂を用いることが好ましく、紫外光硬化樹脂を用いることが特に好ましい。
なお、電解質に樹脂層の材料が混入することで、二次電池の信頼性を低下させてしまう恐れがある。そのため、電解質と樹脂層は接しないように形成することが好ましい。これにより、二次電池の信頼性を高めることができる。
<ステップS09>
次に、ステップS09において、減圧下で、樹脂層の少なくとも一部に紫外光を照射する。
具体的には、外装体509b上に、正極503、セパレータ507、及び負極506を覆うように、外装体509aを配置し、減圧下で樹脂層に紫外光を照射することで、樹脂層の少なくとも一部を硬化する。
ここでは、外装体509bの4隅に設けた樹脂層518を硬化する例を示す。これにより、作製中の二次電池を大気圧下に曝した際に、外装体509a及び外装体509bが大気圧によって加圧される。そして、外装体509a、外装体509b、及び、枠状の樹脂層513に囲まれた空間の減圧状態が保持される。したがって、外部から不純物が作製中の二次電池に侵入することを抑制できる。
減圧下では、作製中の二次電池に対して、紫外光を照射できる領域が限られてしまう場合がある。そのため、本発明の一態様の二次電池の作製方法において、減圧下では、大気圧下においても作製中の二次電池内部の減圧状態が保持できるように、樹脂層の一部を硬化させればよい。これにより、封止工程を、大気圧下で行うことができる。
外装体509aは、少なくとも樹脂層518と重なる領域において、紫外光を透過する。
本実施の形態では、紫外光を照射して樹脂層を硬化させる例を示すが、本発明の一態様はこれに限られない。例えば、紫外光以外の光を照射して樹脂層を硬化させてもよい。または、例えば、熱圧着または溶着(融着、熱接着などともいう)により、樹脂層を硬化させてもよい。溶着としては、高周波溶着、熱溶着、及び、超音波溶着等が挙げられる。
<ステップS10>
次に、ステップS10において、大気圧下で封止を行う。
ステップS09にて、減圧下で処理を行っているため、ステップS10の封止工程は、大気圧下で行うことができる。封止工程は、アルゴン雰囲気または窒素雰囲気などの不活性雰囲気下で行うことが好ましい。
例えば、枠状の樹脂層513に紫外光を照射し硬化させることで封止を行うことができる。このように、樹脂層は、減圧下で紫外光が照射された面積よりも、封止の際に紫外光が照射された面積の方が広いことが好ましい。光照射により封止を行うことで、二次電池を高温に曝す必要がないため、二次電池の劣化を抑制し、信頼性の高い二次電池を作製することができる。
また、熱圧着または溶着により、封止を行ってもよい。例えば、ステップS08にて、複数の積層体全てを囲う1つの枠状の樹脂層(後述する、図9Aに示す枠状の樹脂層521参照)を設けた場合などは、熱圧着または溶着により、封止を行うことが好ましい。
図5Cには、外装体509a及び外装体509bにより、正極503、セパレータ507、及び、負極506を封止した様子を示す。
<ステップS11>
以上の工程を経て、ステップS11において、処理を終了する。
なお、図1Cに示すように、外装体509b上に複数の二次電池を作製した場合には、外装体509a及び外装体509bを分断することで、これらの二次電池を個々に分離することができる。外装体は、レーザ光などを用いて分断することができる。
<外装体509bの変形例>
外装体509bは、凹部を有することが好ましい。このとき、正極503、セパレータ507、及び、負極506は、凹部に配置されることが好ましい。凹部に配置することで、正極503、セパレータ507、及び、負極506を所望の位置に配置することが容易となり、かつ、これらの部材の位置がずれることを抑制することができる。これにより、信頼性の高い二次電池を作製することができる。
図6Aに、ステップS01において、複数の凹部509cを有する外装体509bを配置する例を示す。
1つの凹部509cにつき、1つの二次電池が作製できることが好ましい。そのため、凹部の形状(幅、長さ、及び、深さ等)は、作製する二次電池の形状に合わせて決定することが好ましい。
凹部は、プレス加工等により、予め形成しておくことが好ましい。凹部の深さは、積層体の厚さと同じか、それよりも大きいことが好ましい。上面視において、凹部の底部の面積は、正極の面積よりも大きいことが好ましい。また、上面視において、凹部の底部の面積は、負極の面積より大きいことが好ましい。また、上面視において、凹部の底部の面積は、積層体の面積より大きいことが好ましい。凹部は、正極及び負極の、少なくともタブ領域を除く領域を内部に配置できるスペースを有することが好ましい。
図6Bに、ステップS02において、1つの凹部につき、1つの正極503を配置する例を示す。
同様に、ステップS04では、1つの凹部につき、1つのセパレータ507を配置し、ステップS06では、1つの凹部につき、1つの負極506を配置する。これにより、1つの凹部に1つの積層体512を配置することができる(図7A)。なお、図7Aでは、積層体512として、正極503、セパレータ507、及び、負極506を、1つずつ図示しているが、積層体512の構成はこれに限定されない。積層体512は、正極503、セパレータ507、及び、負極506を、それぞれ、複数有していてもよい。
図8Aに、外装体509bの凹部509cに積層体512を配置した後の上面図を示す。図8Aにおける一点鎖線A−B間の断面図を図8Bに示す。
図8A及び図8Bに示すように、凹部509cには、正極503、セパレータ507、及び、負極506が積層して配置されている。図8Bでは、積層体512が、3つの正極503と、4つのセパレータと、2つの負極506と、を有する例を示す。積層体512の厚さは、凹部509cの深さと同じか、それ以下であることが好ましい。これにより、積層体512、及び、積層体512を構成する各部材が、所望の位置からずれてしまうことを特に抑制できる。
正極503は、正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は、負極集電体504が一部露出する領域、すなわちタブ領域を有する。
複数の正極集電体501においては、例えば、各々のタブ領域は重ねて配置される。重なり合ったタブ領域と、正極リード電極と、を重ね合わせ、超音波溶接等を用いて接合してもよい。また、複数の負極集電体504においては、例えば、各々のタブ領域は重ねて配置される。重なり合ったタブ領域と、負極リード電極と、を重ね合わせ、超音波溶接等を用いて接合してもよい。超音波溶接等を用いて接合するタイミングは実施者が適宜選択すればよく、封止前でも封止後でもよい。
また、図8Aでは、正極503及び負極506のタブ領域が凹部509cの内部に全て収まっている例を示すが、図8Cに示すように、当該タブ領域は、凹部509cの外側に延在する部分を有していてもよい。
<外装体509aの変形例>
上述の通り、外装体509aは、少なくとも樹脂層と重なる領域において、紫外光を透過する。外装体509aは、少なくとも、正極503、セパレータ507、及び、負極506の少なくとも一つと重なる領域において、紫外光を遮ることが好ましい。外装体509aは、特に、積層体512と重なる領域において、紫外光を遮ることが好ましい。これにより、積層体512に紫外光が照射され、二次電池が劣化することを抑制することができる。
図7Bに、ステップS09において、紫外光透過領域529aと紫外光遮光領域529bとを有する外装体509aを用いる例を示す。紫外光遮光領域529bは、外装体509bの凹部と重なるように配置されている。上面視において、紫外光遮光領域529bは、外装体509bの凹部と比較して、幅及び長さが、それぞれ、同じかそれ以上であることが好ましい。このような構成とすることで、積層体512に紫外光が照射されることを特に防ぐことができ、二次電池の信頼性を高めることができる。なお、紫外光透過領域529aは、可視光を透過してもよい。
図7Bにおいて、樹脂層518は、外装体509aの紫外光透過領域529aと重なる。外装体509aの紫外光透過領域529aを介して、樹脂層518に紫外光が照射されることで、樹脂層518を硬化させることができる。
<樹脂層の上面レイアウト>
次に、外装体509b上に設ける樹脂層の上面レイアウトの例について説明する。
図9A、図9Bでは、外装体509bの凹部509cに、正極(正極活物質層502及び正極集電体501)、セパレータ507、及び、負極(負極活物質層505及び負極集電体504)が配置されている。また、正極集電体501には、正極リード電極510が接合され、負極集電体504には、負極リード電極511が接合されている。
図9Aは、外装体509bの四辺に沿って枠状の樹脂層521を設ける例を示す。この場合、ステップS09で、減圧下にて、枠状の樹脂層521に紫外光を照射し、枠状の樹脂層521の少なくとも一部を硬化させることが好ましい。そして、ステップS10では、熱圧着を行い、封止することが好ましい。このように、枠状の樹脂層521は、外装体509bにおける、端部近傍、または、二次電池が形成される領域から十分に離れた外側の部分に設けることが好ましい。これにより、樹脂層の材料が電解質に混入することを抑制することができる。なお、リード電極と重ねて樹脂層を設ける場合、リード電極同士が導通しないよう、絶縁性の高い樹脂材料を用いることが好ましい。または、リード電極と樹脂層との間に保護層を形成し、樹脂層を、リード電極と接しないように形成することが好ましい。
図10に、熱圧着により形成されたシール領域525の上面レイアウトの一例を示す。シール領域525は、1つの二次電池に対し、1つ設けられている。
外装体509aは、外装体509b(図示せず)と、枠状の樹脂層521、及び、シール領域525によって、貼り合わされている。外装体509aには、上述した、紫外光透過領域529aと紫外光遮光領域529bとを有する構成を適用する例を示す。
シール領域525は、正極、セパレータ、及び、負極を囲うように設けられている。正極リード電極510及び負極リード電極511は、それぞれ、シール領域525と重なる位置に、封止層519を有する。これにより、外装体同士だけでなく、リード電極と外装体とも、互いに固定することができ、二次電池の信頼性を高めることができる。
図9Bは、1つの凹部509cに対し、1つの枠状の樹脂層513を設ける例を示す。具体的には、枠状の樹脂層513は、凹部509cを囲うように、外装体509b上に設けられている。この場合、ステップS09で、減圧下にて、枠状の樹脂層513に紫外光を照射し、枠状の樹脂層513の少なくとも一部を硬化させることが好ましい。特に、複数の枠状の樹脂層513それぞれについて、少なくとも一部を硬化させることが好ましい。
そして、ステップS10では、大気圧下で、枠状の樹脂層513の全体に紫外光を照射し、枠状の樹脂層513の全体を硬化させることが好ましい。
または、ステップS10では、熱圧着を行い、封止してもよい。このとき、枠状の樹脂層513は、一部が未硬化であってもよい。
また、ステップS09において、減圧下で、複数の枠状の樹脂層513それぞれについて硬化を行い、二次電池を個別に封止した場合などには、ステップS10を行わなくてもよい。
図11に、熱圧着により形成されたシール領域525の上面レイアウトの一例を示す。シール領域525は、1つの二次電池に対し、1つ設けられている。シール領域525は、枠状の樹脂層513の内側に設けることが好ましい。なお、図11では、外装体509aの図示を省略する。
シール領域525は、正極、セパレータ、及び、負極を囲うように設けられている。正極リード電極510及び負極リード電極511は、それぞれ、シール領域525と重なる位置に、封止層519を有する。これにより、外装体同士だけでなく、リード電極と外装体とも、互いに固定することができ、二次電池の信頼性を高めることができる。
外装体509a及び外装体509bとして、金属箔(アルミニウム、ステンレスなど)と樹脂(熱融着性樹脂)の積層を含むフィルム(ラミネートフィルムとも呼ぶ)を用いると、金属缶を用いた二次電池よりも軽量であり、薄型の二次電池を作製することができる。金属箔の一方の面または両方の面に接着層(ヒートシール層とも呼ぶ)を有するものを用いる。第1のラミネートフィルムの第1の接着層と、第2のラミネートフィルムの第2の接着層とを、第1の接着層及び第2の接着層が内側になるよう密着させた状態で熱圧着を行うことで、シール領域525が形成される。また、熱圧着に限定されず、熱硬化樹脂などを用いてシール領域525を形成してもよい。
接着層は、熱可塑性フィルム材料、熱硬化型接着剤、嫌気型接着剤、紫外光硬化型接着剤など光硬化型の接着剤、反応硬化型接着剤を用いることができる。これらの接着剤の材質としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、またはフェノール樹脂などを用いることができる。
シール領域525は、枠状、または、閉ループ状とする。シール領域525に囲まれた領域内に、正極503、セパレータ507、及び、負極506を有する積層体を配置して密閉する。従って、シール領域525に囲まれた領域の面積は、少なくとも二次電池の正極503の面積よりも広くする。
二次電池の外装体に用いるフィルムとしては、金属フィルム(アルミニウム、ステンレス、ニッケル鋼、金、銀、銅、チタン、ニクロム、鉄、錫、タンタル、ニオブ、モリブデン、ジルコニウム、亜鉛など金属箔となる金属または合金など)、有機材料からなるプラスチックフィルム、有機材料(有機樹脂または繊維など)と無機材料(セラミックなど)とを含むハイブリッド材料フィルム、炭素含有無機フィルム(カーボンフィルム、グラファイトフィルムなど)から選ばれる単層フィルムまたはこれら複数からなる積層フィルムなどを用いることができる。
また、二次電池の封止構造は、2枚の外装体を重ね、外装体の4辺を接着層で固定して閉塞させる構造とする。または、1枚の長方形の外装体を中央で折り曲げて、四隅のうち、曲げる箇所を挟む2つの端部を重ね、4辺を接着層で固定して閉塞させる構造とする。このような構成とすると、正極、セパレータ、及び負極の積層体は、外装体に包まれるように収納される。
なお、本実施の形態では、薄型電池(ラミネート型)の例を主に説明したが、本発明の一態様の二次電池の作製方法で作製する電池の形状は特に限定されず、捲回型に応用することも可能である。捲回型の場合は、捲回体に電解質を滴下する、または、捲回体を作製する前、即ち捲回する前に滴下すればよい。捲回体とは、帯状の正極、帯状のセパレータ、帯状の負極の順で重ね、重ねたまま捲回させたものを指す。
以上のように、本発明の一態様の二次電池の作製方法では、正極、セパレータ、及び、負極を積層して、積層体を作製する段階で、正極、セパレータ、及び、負極の少なくとも一つに、電解質を複数滴、滴下する。これにより、正極、セパレータ、または、負極に電解質を均一に、または、十分に、含浸させることができる。
また、本発明の一態様の二次電池の作製方法では、減圧下で樹脂層の硬化を行うなどにより、外装体と枠状の樹脂層とで囲まれた空間を減圧状態とすることができる。したがって、不純物が二次電池内に混入することを抑制できる。また、減圧雰囲気から大気圧雰囲気に曝した際に、滴下した電解質が、短時間で広く浸透する。これにより、電解質が、正極及び負極の表面、さらには、内部にまで含浸する時間を短縮することができる。そして、正極及び負極の内部に、電解質を十分に含浸させることができる。また、その後、大気圧下で封止を行うこともできるため、封止方法の選択肢を広げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の二次電池構成要素及び材料などについて説明する。
〔正極〕
正極は、正極活物質層及び正極集電体を有する。正極活物質層は正極活物質を有する。正極活物質層は、さらに、導電材料及びバインダの一方または双方を有していてもよい。
〔負極〕
負極は、負極活物質層及び負極集電体を有する。負極活物質層は負極活物質を有する。負極活物質層は、さらに、導電材料及びバインダの一方または双方を有していてもよい。
[集電体]
正極集電体及び負極集電体として、それぞれ、ステンレス、金、白金、亜鉛、鉄、ニッケル、銅、アルミニウム、チタン、タンタル等の金属、及びこれらの合金など、導電性が高く、リチウムイオン等のキャリアイオンと合金化しない材料を用いることができる。
また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で正極集電体及び負極集電体の一方または双方を形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、及び、ニッケル等がある。
集電体は、箔状、板状(シート状)、網状、円柱状、コイル状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが10μm以上30μm以下のものを用いるとよい。
集電体として上記に示す金属の上に、チタン化合物を積層してもよい。チタン化合物としては、例えば、窒化チタン、酸化チタン、窒素の一部が酸素に置換された窒化チタン、酸素の一部が窒素に置換された酸化チタン、及び酸化窒化チタン(TiO、0<x<2、0<y<1)から選ばれる一を、あるいは二以上を、混合または積層して、用いることができる。中でも窒化チタンは導電性が高く、かつ、酸化を抑制する機能が高いため、特に好ましい。チタン化合物を集電体の表面に設けることにより、例えば、集電体上に形成される活物質層が有する材料と金属との反応が抑制される。活物質層が酸素を有する化合物を含む場合には、金属元素と酸素との酸化反応を抑制することができる。例えば集電体としてアルミニウムを用い、活物質層が後述する酸化グラフェンを用いて形成される場合には、酸化グラフェンが有する酸素とアルミニウムとの酸化反応が懸念される場合がある。このような場合において、アルミニウムの上にチタン化合物を設けることにより、集電体と酸化グラフェンとの酸化反応を抑制することができる。
[導電材料]
正極活物質層、負極活物質層、等の活物質層は、導電材料(導電剤、導電助剤ともいう)を有することが好ましい。導電材料として、グラフェン化合物、カーボンブラック、黒鉛、炭素繊維、フラーレン、等の炭素系材料を有することが好ましく、特にグラフェン化合物を有することが好ましい。カーボンブラックとして、例えば、アセチレンブラック(AB)等を用いることができる。黒鉛として、例えば、天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛等を用いることができる。なお、これらの炭素系材料は、活物質として機能してもよい。
炭素繊維としては、例えば、メソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。
また、活物質層は、導電材料として、銅、ニッケル、アルミニウム、銀、金などの金属粉末、または、金属繊維、導電性セラミックス材料等を有してもよい。
活物質層の総量に対する導電材料の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
活物質と点接触するカーボンブラック等の粒状の導電材料と異なり、グラフェン化合物は接触抵抗の低い面接触を可能とするものである。したがって、通常の導電材料よりも少量で、粒状の活物質とグラフェン化合物との電気伝導性を向上させることができる。よって、活物質の活物質層における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
カーボンブラック、黒鉛、等の粒子状の炭素含有化合物、または、カーボンナノチューブ等の繊維状の炭素含有化合物は、微小な空間に入りやすい。微小な空間とは、例えば、複数の活物質の間の領域等を指す。微小な空間に入りやすい炭素含有化合物と、複数の粒子にわたって導電性を付与できるグラフェンなどのシート状の炭素含有化合物と、を組み合わせて使用することにより、電極の密度を高め、優れた導電パスを形成することができる。本発明の一態様の作製方法で得られる二次電池は、安定性を備えることができ、車載用の二次電池として有効である。二次電池の数を増やすと制御が複雑となる。大型の二次電池を用いることで、二次電池の数を低減し、充電制御回路の負担を軽減することができる。
[バインダ]
活物質層は、バインダを有することが好ましい。バインダは、例えば、電解質と活物質とを束縛または固定する。また、バインダは、電解質と炭素系材料、活物質と炭素系材料、複数の活物質同士、複数の炭素系材料、等を束縛または固定することができる。
バインダとして、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
ポリイミドは熱的、機械的、化学的に非常に優れた安定な性質を有する。
フッ素を有する高分子材料であるフッ素ポリマー、具体的にはポリフッ化ビニリデン(PVDF)などを用いることができる。PVDFは融点を134℃以上169℃以下の範囲に有する樹脂であり、熱安定性に優れた材料である。
また、バインダとして、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体または、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
<グラフェン化合物>
本明細書等において、グラフェン化合物とは、グラフェン、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、及び、グラフェン量子ドット等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
本明細書等において、酸化グラフェンとは、例えば、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基、または、ヒドロキシ基を有するものをいう。
本明細書等において、還元された酸化グラフェンとは、例えば、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。炭素シートといってもよい。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度及び酸素濃度とすることで、少量でも導電性の高い導電材料として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であるであることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電材料として機能することができる。
酸化グラフェンを還元することにより、グラフェン化合物に孔を設けることができる場合がある。
また、グラフェンの端部をフッ素で終端させた材料を用いてもよい。
活物質層の縦断面においては、活物質層の内部領域において概略均一にシート状のグラフェン化合物が分散する。複数のグラフェン化合物は、複数の粒状の活物質を一部覆うように、あるいは複数の粒状の活物質の表面上に張り付くように形成されているため、互いに面接触している。
ここで、複数のグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下、グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、または、使用しないことができるため、電極体積または電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の充放電容量を増加させることができる。
ここで、グラフェン化合物として酸化グラフェンを用い、活物質と混合して活物質層となる層を形成後、還元することが好ましい。つまり完成後の活物質層は還元された酸化グラフェンを有することが好ましい。グラフェン化合物の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェン化合物を活物質層の内部領域において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層に残留するグラフェン化合物は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
また、予め、スプレードライ装置を用いることで、活物質の表面全体を覆って導電材料であるグラフェン化合物を被膜として形成し、さらに活物質同士間をグラフェン化合物で電気的に接続し、導電パスを形成することもできる。
またグラフェン化合物と共に、グラフェン化合物を形成する際に用いる材料を混合して活物質層に用いてもよい。例えばグラフェン化合物を形成する際の触媒として用いる粒子を、グラフェン化合物と共に混合してもよい。グラフェン化合物を形成する際の触媒としては、例えば、酸化ケイ素(SiO、SiO(x<2))、酸化アルミニウム、鉄、ニッケル、ルテニウム、イリジウム、プラチナ、銅、及び、ゲルマニウム等のうち一つまたは複数を有する粒子が挙げられる。該粒子は平均粒子径(D50:メディアン径ともいう。)が1μm以下であると好ましく、100nm以下であることがより好ましい。
[負極活物質]
負極活物質として、二次電池のキャリアイオンとの反応が可能な材料、キャリアイオンの挿入及び脱離が可能な材料、キャリアイオンとなる金属との合金化反応が可能な材料、キャリアイオンとなる金属の溶解及び析出が可能な材料、等を用いることが好ましい。
以下に、負極活物質の一例について説明する。
負極活物質として、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウムから選ばれる一以上の元素を有する金属、または化合物を用いることができる。このような元素を用いた合金系化合物としては、例えば、MgSi、MgGe、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、及び、SbSn等が挙げられる。
また、シリコンに、不純物元素として、リン、ヒ素、ホウ素、アルミニウム、及び、ガリウム等のうち一つまたは複数を添加し、低抵抗化した材料を用いてもよい。また、リチウムをプリドープしたシリコン材料を用いてもよい。プリドープの方法としては、フッ化リチウム、炭酸リチウム等とシリコンを混合してアニールする、リチウム金属とシリコンとのメカニカルアロイ、等の方法がある。また、電極として形成した後にリチウム金属等の電極と組み合わせて充放電反応によりリチウムをドープし、その後、ドープされた電極を用いて対極となる電極(例えば、プリドープされた負極に対して、正極)を組み合わせて二次電池を作製してもよい。
負極活物質として、例えば、シリコンナノ粒子を用いることができる。シリコンナノ粒子の平均径は、例えば、好ましくは5nm以上1μm未満、より好ましくは10nm以上300nm以下、さらに好ましくは10nm以上100nm以下である。
シリコンナノ粒子は結晶性を有してもよい。また、シリコンナノ粒子が、結晶性を有する領域と、非晶質の領域と、を有してもよい。
シリコンを有する材料として、例えば、SiO(xは好ましくは2より小さく、より好ましくは0.5以上1.6以下)で表される材料を用いることができる。
また、負極活物質として、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、カーボンナノチューブ、カーボンブラック、及び、グラフェン化合物などの炭素系材料を用いることができる。
また、負極活物質として、チタン、ニオブ、タングステン、及び、モリブデンから選ばれる一以上の元素を有する酸化物を用いることができる。
また、負極活物質として、SnO、SnO、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g)を示し好ましい。
リチウムと遷移金属の複窒化物を負極材料として用いると、正極材料としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極材料にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極材料に含まれるリチウムイオンを脱離させることで、負極材料としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムと合金化反応を行わない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。なお、上記フッ化物の電位は高いため、正極材料として用いてもよい。
負極活物質として、上記に示す金属、材料、化合物、等を複数組み合わせて用いることができる。
[正極活物質]
正極活物質として、例えば、オリビン型の結晶構造、層状岩塩型の結晶構造、または、スピネル型の結晶構造を有するリチウム含有材料等が挙げられる。
本発明の一態様の二次電池には、層状の結晶構造を有する正極活物質を用いることが好ましい。
層状の結晶構造としては、例えば、層状岩塩型の結晶構造が挙げられる。層状岩塩型の結晶構造を有するリチウム含有材料として、例えば、LiM(x>0かつy>0、より具体的には、例えば、y=2、かつ、0.8<x<1.2)で表されるリチウム含有材料を用いることができる。ここで、Mは金属元素であり、好ましくはコバルト、マンガン、ニッケル、及び、鉄から選ばれる一以上である。あるいは、Mは、例えば、コバルト、マンガン、ニッケル、鉄、アルミニウム、チタン、ジルコニウム、ランタン、銅、亜鉛から選ばれる二以上である。
LiMで表されるリチウム含有材料として、例えば、LiCoO、LiNiO、及び、LiMnO等が挙げられる。また、LiNiCo1−x(0<x<1)で表されるNiCo系、LiMで表されるリチウム含有材料として、例えば、LiNiMn1−x(0<x<1)で表されるNiMn系、等が挙げられる。
また、LiMOで表されるリチウム含有材料として、例えば、LiNiCoMn(x>0、y>0、0.8<x+y+z<1.2)で表されるNiCoMn系(NCMともいう)が挙げられる。具体的には、例えば、0.1x<y<8xかつ0.1x<z<8xを満たすことが好ましい。一例として、x、y及びzは、x:y:z=1:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、y及びzは、x:y:z=5:2:3またはその近傍の値を満たすことが好ましい。または一例として、x、y及びzは、x:y:z=8:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、y及びzは、x:y:z=6:2:2またはその近傍の値を満たすことが好ましい。または一例として、x、y及びzは、x:y:z=1:4:1またはその近傍の値を満たすことが好ましい。
また、層状岩塩型の結晶構造を有するリチウム含有材料として、例えば、LiMnO、及び、LiMnO−LiMeO(MeはCo、Ni、Mn)等が挙げられる。
上記のリチウム含有材料に代表されるような層状の結晶構造を有する正極活物質では、体積あたりのリチウム含有量が多く、体積あたりの容量が高い二次電池を実現することができる場合がある。このような正極活物質では、充電に伴う体積あたりのリチウムの脱離量も多く、安定した充放電を行うためには、脱離した後の結晶構造の安定化が求められる。また充放電において結晶構造が崩れることにより高速充電または高速放電が阻害される場合がある。
正極活物質としてLiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiOまたはLiNi1−x(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
また、正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、c>0、かつ、0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICP−MS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、及びリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
<正極活物質の構造>
コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料として、例えば、LiMOで表される複合酸化物が挙げられる。金属Mは金属Me1を含む。金属Me1は、コバルトを含む1種以上の金属である。また、金属Mは、金属Me1に加えて、さらに金属を含むことができる。当該金属は、マグネシウム、カルシウム、ジルコニウム、ランタン、バリウム、銅、カリウム、ナトリウム、亜鉛から選ばれる一以上の金属である。
正極活物質中に挿入脱離可能なリチウムがどの程度残っているかを、組成式中のx、例えばLiCoO中のx、またはLiMO中のxで示す。本明細書中のLiCoOは適宜LiMOに読み替えることができる。二次電池中の正極活物質の場合、x=充電容量/理論容量とすることができる。例えばLiCoOを正極活物質に用いた二次電池を219.2mAh/g充電した場合、Li0.8CoOまたはx=0.8ということができる。LiCoO中のxが小さいとは、例えば0.1<x≦0.24をいう。
遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいてxが小さくなるような充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、LiCoO中のxが小さいときの充放電の耐性がより優れる場合があり好ましい。
図12及び図13を用いて、正極活物質について説明する。
<結晶構造>
≪LiCoO中のxが1のとき≫
本発明の一態様の正極活物質は放電状態、つまりLiCoO中のx=1の場合に、空間群R−3mに帰属する層状岩塩型の結晶構造を有することが好ましい。層状岩塩型の複合酸化物は、放電容量が高く、二次元的なリチウムイオンの拡散経路を有しリチウムイオンの挿入/脱離反応に適しており、二次電池の正極活物質として優れる。そのため特に、正極活物質の体積の大半を占める内部が層状岩塩型の結晶構造を有することが好ましい。図12に層状岩塩型の結晶構造をR−3m O3を付して示す。
表層部は充電時にリチウムイオンが最初に離脱する領域であり、内部よりもリチウム濃度が低くなりやすい領域である。また表層部が有する正極活物質の表面の原子は、一部の結合が切断された状態ともいえる。そのため表層部は不安定になりやすく、結晶構造の劣化が始まりやすい領域といえる。一方で表層部を十分に安定にできれば、LiCoO中のxが小さいときでも、例えばxが0.24以下でも内部の遷移金属Mと酸素の8面体からなる層状構造を壊れにくくすることができる。さらには、内部の遷移金属Mと酸素の8面体からなる層のずれを抑制することができる。
表層部を安定な組成及び結晶構造とするために、表層部は添加元素Aを有することが好ましく、添加元素Aを複数有することがより好ましい。また表層部は内部よりも添加元素Aから選ばれた一または二以上の濃度が高いことが好ましい。また正極活物質が有する添加元素Aから選ばれた一または二以上は濃度勾配を有していることが好ましい。また正極活物質は添加元素Aによって分布が異なっていることがより好ましい。例えば添加元素Aによって濃度ピークの表面からの深さが異なっていることがより好ましい。ここでいう濃度ピークとは、表層部または表面から50nm以下における濃度の極大値をいうこととする。
例えば添加元素Aの一部、マグネシウム、フッ素、チタン、ケイ素、リン、ホウ素、カルシウム等は、内部から表面に向かって高くなる濃度勾配を有することが好ましい。このような濃度勾配を有する元素を添加元素Xと呼ぶこととする。
例えば添加元素Xの一つであるマグネシウムは2価で、マグネシウムイオンは層状岩塩型の結晶構造における遷移金属Mサイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部のリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。これはリチウムサイトに存在するマグネシウムが、CoO層同士を支える柱として機能するためと推測される。またマグネシウムが存在することで、LiCoO中のxが例えば0.24以下の状態においてマグネシウムの周囲の酸素の離脱を抑制することができる。またマグネシウムが存在することで正極活物質の密度が高くなることが期待できる。また表層部のマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入及び離脱に悪影響を及ぼさず上記のメリットを享受できる。しかしマグネシウムが過剰であるとリチウムの挿入及び離脱に悪影響が出る恐れがある。さらに結晶構造の安定化への効果が小さくなってしまう場合がある。これはマグネシウムが、リチウムサイトに加えて遷移金属Mサイトにも入るようになるためと考えられる。加えて、リチウムサイトにも遷移金属Mサイトにも置換しない、不要なマグネシウム化合物(酸化物及びフッ化物等)が正極活物質の表面等に偏析し、二次電池の抵抗成分となる恐れがある。また正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の放電容量が減少することがある。これはリチウムサイトにマグネシウムが入りすぎ、充放電に寄与するリチウム量が減少するためと考えられる。
そのため、正極活物質全体が有するマグネシウムが適切な量であることが好ましい。例えばマグネシウムの原子数はコバルトの原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。ここでいう正極活物質全体が有するマグネシウムの量とは、例えばGD−MS、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいたものであってもよい。
また添加元素Aの一つであるアルミニウムは層状岩塩型の結晶構造における遷移金属Mサイトに存在しうる。アルミニウムは3価の典型元素であり価数が変化しないため、充放電の際もアルミニウム周辺のリチウムは移動しにくい。そのためアルミニウムとその周辺のリチウムが柱として機能し、結晶構造の変化を抑制しうる。またアルミニウムは周囲の遷移金属Mの溶出を抑制し、連続充電耐性を向上する効果がある。またAl−Oの結合はCo−O結合よりも強いため、アルミニウムの周囲の酸素の離脱を抑制することができる。これらの効果により、熱安定性が向上する。そのため添加元素Aとしてアルミニウムを有すると、二次電池に用いたときの安全性を向上できる。また充放電を繰り返しても結晶構造が崩れにくい正極活物質とすることができる。
一方でアルミニウムが過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。
そのため正極活物質全体が有するアルミニウムが適切な量であることが好ましい。例えば正極活物質の全体が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.3%以上1.5%以下がより好ましい。または0.05%以上2%以下が好ましい。または0.1%以上4%以下が好ましい。ここでいう正極活物質全体が有する量とは例えば、GD−MS、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
例えば層状岩塩型の内部から、岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表面及び表層部に向かって結晶構造が連続的に変化することが好ましい。または岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表層部と、層状岩塩型の内部の配向が概略一致していることが好ましい。
なお本明細書等において、リチウムとコバルトをはじめとする遷移金属Mを含む複合酸化物が有する、空間群R−3mに帰属する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属Mとリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
また岩塩型の結晶構造とは、空間群Fm−3mをはじめとする立方晶系の結晶構造を有し、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
また層状岩塩型と岩塩型の結晶構造の特徴の両方を有することは、電子線回折、TEM(Transmission Electron Microscope、透過電子顕微鏡)像、断面STEM(Scanning Transmission Electron Microscope、走査透過電子顕微鏡)像等によって判断することができる。
層状岩塩型結晶、及び岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。後述するO3’型結晶(擬スピネル型結晶とも呼ぶ)も、陰イオンは立方最密充填構造をとると推定される。そのため層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
または、以下のように説明することもできる。立方晶の結晶構造の{111}面における陰イオンは三角格子を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(000l)面は六角格子を有する。立方晶{111}面の三角格子は、層状岩塩型の(000l)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
ただし、層状岩塩型結晶及びO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶及びO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型及び岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
二つの領域の結晶の配向が概略一致することは、TEM像、STEM像、HAADF−STEM(High−angle Annular Dark Field Scanning TEM、高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(Annular Bright−Field Scanning Transmission Electron Microscopy、環状明視野走査透過電子顕微鏡)像、電子線回折、TEM像及びSTEM像等のFFT等から判断することができる。XRD(X−ray Diffraction、X線回折)、中性子線回折等も判断の材料にすることができる。
図13にR−3m O3を付してLiCoO中のx=1のコバルト酸リチウムが有する結晶構造を示す。この結晶構造はリチウムが8面体(Octahedral)サイトを占有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造をO3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。これをコバルトと酸素の8面体からなる層、という場合もある。
また従来のコバルト酸リチウムは、x=0.5程度のときリチウムの対称性が高まり、単斜晶系の空間群P2/mに帰属する結晶構造を有することが知られている。この構造はユニットセル中にCoO層が1層存在する。そのためO1型、または単斜晶O1型と呼ぶ場合がある。
またx=0のときの正極活物質は、三方晶系の空間群P−3m1の結晶構造を有し、やはりユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型、または三方晶O1型と呼ぶ場合がある。また三方晶を複合六方格子に変換し、六方晶O1型と呼ぶ場合もある。
またx=0.12程度のときの従来のコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、三方晶O1型のようなCoOの構造と、R−3m O3のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際のリチウムの挿入離脱にはムラが生じうるため、実験的にはx=0.25程度からH1−3型結晶構造が観測される。また、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図13をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
H1−3型結晶構造は、一例として、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O(0、0、0.27671±0.00045)、O(0、0、0.11535±0.00045)と表すことができる。O及びOはそれぞれ酸素原子である。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すべきかは、例えばXRDのリートベルト解析により判断することができる。この場合はGOF(goodness of fit)の値が小さくなるユニットセルを採用すればよい。
LiCoO中のxが0.24以下になるような充電と、放電とを繰り返すと、従来のコバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m O3の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図13に点線及び矢印で示すように、H1−3型結晶構造では、CoO層が放電状態のR−3m O3から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
さらにこれらの2つの結晶構造は体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のR−3m O3型結晶構造の体積の差は3.5%を超え、代表的には3.9%以上である。
加えて、H1−3型結晶構造が有する、三方晶O1型のようにCoO層が連続した構造は不安定である可能性が高い。
そのため、xが0.24以下になるような充放電を繰り返すと従来のコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためである。
図12中に点線で示すように、放電状態のR−3m(O3)と、O3’型結晶構造とではCoO層のずれがほとんどない。
また放電状態のR−3m(O3)と、O3’型結晶構造の同数のコバルト原子あたりの体積の差は2.5%以下、より詳細には2.2%以下、代表的には1.8%である。
このように本発明の一態様の正極活物質では、LiCoO中のxが小さいとき、つまり多くのリチウムが離脱したときの結晶構造の変化が、従来の正極活物質よりも抑制されている。また同数のコバルト原子あたりで比較した場合の体積の変化も抑制されている。そのため本発明の一態様の正極活物質は、xが0.24以下になるような充放電を繰り返しても結晶構造が崩れにくい。そのため、本発明の一態様の正極活物質は充放電サイクルにおける充放電容量の低下が抑制される。また従来の正極活物質よりも多くのリチウムを安定して利用できるため、本発明の一態様の正極活物質は重量あたり及び体積あたりの放電容量が大きい。そのため本発明の一態様の正極活物質を用いることで、重量あたり及び体積あたりの放電容量の高い二次電池を作製できる。
なお正極活物質は、LiCoO中のxが0.15以上0.24以下のときO3’型の結晶構造を有する場合があることが確認され、xが0.24を超えて0.27以下でもO3’型の結晶構造を有すると推定されている。しかし結晶構造はLiCoO中のxだけでなく充放電サイクル数、充放電電流、温度、電解質等の影響を受けるため、必ずしも上記のxの範囲に限定されない。
そのため正極活物質はLiCoO中のxが0.1を超えて0.24以下のとき、正極活物質の内部のすべてがO3’型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。
またLiCoO中のxが小さい状態にするには、一般的には高い充電電圧で充電する必要がある。そのためLiCoO中のxが小さい状態を、高い充電電圧で充電した状態と言い換えることができる。例えばリチウム金属の電位を基準として4.6V以上の電圧で、25℃の環境でCC/CV充電すると、従来の正極活物質ではH1−3型結晶構造が現れる。そのためリチウム金属の電位を基準として4.6V以上の充電電圧は高い充電電圧ということができる。また本明細書等において、特に言及しない場合、充電電圧はリチウム金属の電位を基準として表すとする。
そのため本発明の一態様の正極活物質は、高い充電電圧、例えば25℃において4.6V以上の電圧で充電しても、R−3m O3の対称性を有する結晶構造を保持できるため好ましい、と言い換えることができる。またより高い充電電圧、例えば25℃において4.65V以上4.7V以下の電圧で充電したときO3’型の結晶構造を取り得るため好ましい、と言い換えることができる。
正極活物質でもさらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。また上述したように結晶構造は充放電サイクル数、充放電電流、電解質等の影響を受けるため、充電電圧がより低い場合、例えば充電電圧が25℃において4.5V以上4.6V未満でも、本発明の一態様の正極活物質はO3’型結晶構造を取り得る場合が有る。
なお、二次電池において例えば負極活物質として黒鉛を用いる場合、上記よりも黒鉛の電位の分だけ二次電池の電圧が低下する。黒鉛の電位はリチウム金属の電位を基準として0.05V乃至0.2V程度である。そのため負極活物質として黒鉛を用いた二次電池の場合は、上記の電圧から黒鉛の電位を差し引いた電圧のとき同様の結晶構造を有する。
また、図12に示すように、O3’型の結晶構造のa軸の格子定数は2.817×10−10m、c軸の格子定数は13.781×10−10mである。
なお、O3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
<正極活物質の粒径>
正極活物質の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、D50は、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
<分析方法>
ある正極活物質が、LiCoO中のxが小さいときO3’型の結晶構造を有する本発明の一態様の正極活物質であるか否かは、LiCoO中のxが小さい正極活物質を有する正極を、XRD、電子線回折、中性子線回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さ及び結晶の配向性を比較できる、格子の周期性歪み及び結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
正極活物質は、これまで述べたようにLiCoO中のxが1のときと、0.24以下のときと、で結晶構造の変化が少ないことが特徴である。高電圧で充電したとき、結晶構造の変化が大きな結晶構造が50%以上を占める材料は、高電圧の充放電に耐えられないため好ましくない。
また、添加元素Aを添加するだけではO3’型の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウム及びフッ素を有するコバルト酸リチウム、またはマグネシウム及びアルミニウムを有するコバルト酸リチウム、という点で共通していても、添加元素Aの濃度及び分布次第で、LiCoO中のxが0.24以下でO3’型の結晶構造が60%以上になる場合と、H1−3型結晶構造が50%以上を占める場合と、がある。
また本発明の一態様の正極活物質でも、xが0.1以下など小さすぎる場合、または充電電圧が4.9Vを超えるような条件ではH1−3型または三方晶O1型の結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質であるか否かを判断するには、XRDをはじめとする結晶構造についての解析と、充電容量または充電電圧等の情報が必要である。
ただし、xが小さい状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、結晶構造の分析に供するサンプルはすべてアルゴンを含む雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
またある正極活物質が有する添加元素Aの分布が、上記で説明したような状態であるか否かは、例えばXPS、EDX、EPMA(電子プローブ微小分析)等を用いて解析することで判断できる。
また表層部、結晶粒界等の結晶構造は、正極活物質の断面の電子線回折等で分析することができる。
〔電解質〕
二次電池に液状の電解質(電解液ともいう)を用いる場合、例えば、電解質として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、またはこれらのうちの2種以上を任意の組み合わせ及び比率で用いることができる。
また、電解質はフッ素を含むことが好ましい。フッ素を含む電解質として、例えば、フッ素化環状カーボネートの一種または二種以上と、リチウムイオンと、を有する電解質を用いることができる。フッ素化環状カーボネートは不燃性を向上させ、リチウムイオン二次電池の安全性を高めることができる。
フッ素化環状カーボネートとして、フッ化エチレンカーボネート、例えば、モノフルオロエチレンカーボネート(炭酸フルオロエチレン、FEC、F1EC)、ジフルオロエチレンカーボネート(DFEC、F2EC)、トリフルオロエチレンカーボネート(F3EC)、テトラフルオロエチレンカーボネート(F4EC)などを用いることができる。なお、DFECには、シスー4,5、トランス−4,5などの異性体がある。電解質として、フッ素化環状カーボネートを一種または二種以上を用いてリチウムイオンを溶媒和させて、充放電時に電極が含む電解質内において輸送させることが低温で動作させる上で重要である。フッ素化環状カーボネートを少量の添加剤としてではなく、充放電時のリチウムイオンの輸送に寄与させると低温での動作が可能となる。二次電池内においてリチウムイオンは数個以上数十個程度の塊で移動する。
フッ素化環状カーボネートを電解質に用いることで、電極が含む電解質内において溶媒和しているリチウムイオンが活物質粒子へ入る際に必要となる脱溶媒和のエネルギーを小さくする。この脱溶媒和のエネルギーを小さくできれば、低温範囲においてもリチウムイオンが活物質粒子へ挿入あるいは脱離しやすくなる。なお、リチウムイオンは溶媒和した状態のまま移動することもあるが、配位する溶媒分子が入れ替わるホッピング現象が生じる場合もある。リチウムイオンが脱溶媒和しやすくなると、ホッピング現象による移動がしやすくなり、リチウムイオンの移動がしやすくなる場合がある。二次電池の充放電における電解質の分解生成物が、活物質の表面にまとわりつくことにより、二次電池の劣化が起こる懸念がある。しかしながら電解質がフッ素を有する場合には電解質の粘度が低く、電解質の分解生成物は活物質の表面に付着しづらくなる。このため、二次電池の劣化を抑制することができる。
溶媒和したリチウムイオンは、電解質において、複数がクラスタを形成し、負極内、正極と負極の間、正極内、等を移動する場合がある。
以下に、フッ素化環状カーボネートの構造式の一例を示す。
モノフルオロエチレンカーボネート(FEC)は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
テトラフルオロエチレンカーボネート(F4EC)は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000002
ジフルオロエチレンカーボネート(DFEC)は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000003
また、電解質の溶媒として、難燃性及び難揮発性であるイオン液体(常温溶融塩)を一つまたは複数用いることで、二次電池の内部領域短絡、または、過充電等による内部領域の温度上昇が生じても、二次電池の破裂及び発火の一方または双方を防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、及び四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオン及びピリジニウムカチオン等の芳香族カチオンが挙げられる。また、アニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、及び、パーフルオロアルキルホスフェートアニオン等が挙げられる。
イミダゾリウムカチオンを有するイオン液体として、例えば、下記一般式(G1)で表されるイオン液体を用いることができる。一般式(G1)中において、Rは、炭素数が1以上4以下のアルキル基を表し、R乃至Rは、それぞれ独立に、水素原子または炭素数が1以上4以下のアルキル基を表し、Rは、炭素数が1以上6以下のアルキル基、または、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を表す。また、Rの主鎖に置換基が導入されていてもよい。導入される置換基としては、例えば、アルキル基、及び、アルコキシ基などが挙げられる。
Figure JPOXMLDOC01-appb-C000004
一般式(G1)で表されるカチオンの一例として、1−エチル−3−メチルイミダゾリウムカチオン、1−ブチル−3−メチルイミダゾリウムカチオン、1−メチル−3−(プロポキシエチル)イミダゾリウムカチオン、及び、1−ヘキシル−3−メチルイミダゾリウムカチオン等が挙げられる。
ピリジニウムカチオンを有するイオン液体として、例えば、下記一般式(G2)で表されるイオン液体を用いてもよい。一般式(G2)中において、Rは、炭素数が1以上6以下のアルキル基、または、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を表し、R乃至R11は、それぞれ独立に、水素原子または炭素数が1以上4以下のアルキル基を表す。また、Rの主鎖に置換基が導入されていてもよい。導入される置換基としては、例えば、アルキル基、及び、アルコキシ基などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
四級アンモニウムカチオンを有するイオン液体として、例えば、下記一般式(G3)乃至一般式(G6)で表されるイオン液体を用いることができる。
Figure JPOXMLDOC01-appb-C000006
一般式(G3)中、R28乃至R31は、それぞれ独立に、炭素数が1以上20以下のアルキル基、メトキシ基、メトキシメチル基、メトキシエチル基、または水素原子のいずれかを表す。
Figure JPOXMLDOC01-appb-C000007
一般式(G4)中、R12及びR17は、それぞれ独立に、炭素数が1以上3以下のアルキル基を表し、R13乃至R16は、それぞれ独立に、水素原子、または、炭素数が1以上3以下のアルキル基のいずれかを表す。一般式(G4)で表されるカチオンの一例として、1−メチル−1−プロピルピロリジニウムカチオンなどがある。
Figure JPOXMLDOC01-appb-C000008
一般式(G5)中、R18及びR24は、それぞれ独立に、炭素数が1以上3以下のアルキル基を表し、R19乃至R23は、それぞれ独立に、水素原子、または、炭素数が1以上3以下のアルキル基のいずれかを表す。一般式(G5)で表されるカチオンの一例として、N−メチル−N−プロピルピペリジニウムカチオン、及び、1,3−ジメチル−1−プロピルピペリジニウムカチオンなどがある。
Figure JPOXMLDOC01-appb-C000009
一般式(G6)中、n及びmは1以上3以下である。αは0以上6以下とし、nが1の場合、αは0以上4以下であり、nが2の場合、αは0以上5以下であり、nが3の場合、αは0以上6以下である。βは0以上6以下とし、mが1の場合、βは0以上4以下であり、mが2の場合、βは0以上5以下であり、mが3の場合、βは0以上6以下である。なお、αまたはβが0であるとは、無置換であることを表す。また、αとβが共に0である場合は除くものとする。XまたはYは、置換基であり、炭素数が1以上4以下の直鎖状もしくは側鎖状のアルキル基、炭素数が1以上4以下の直鎖状もしくは側鎖状のアルコキシ基、または、炭素数が1以上4以下の直鎖状もしくは側鎖状のアルコキシアルキル基を表す。
三級スルホニウムカチオンを有するイオン液体として、例えば、下記一般式(G7)で表されるイオン液体を用いることができる。一般式(G7)中において、R25乃至R27は、それぞれ独立に、水素原子、炭素数が1以上4以下のアルキル基、またはフェニル基を表す。または、R25乃至R27の少なくとも一つに、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を用いてもよい。
Figure JPOXMLDOC01-appb-C000010
四級ホスホニウムカチオンを有するイオン液体として、例えば、下記一般式(G8)で表されるイオン液体を用いることができる。一般式(G8)中において、R32乃至R35は、それぞれ独立に、水素原子、炭素数が1以上4以下のアルキル基、またはフェニル基を表す。または、R32乃至R35の少なくとも一つに、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を用いてもよい。
Figure JPOXMLDOC01-appb-C000011
一般式(G1)乃至一般式(G8)に示すAとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、及びパーフルオロアルキルホスフェートアニオン等の一以上を用いることができる。
1価のアミド系アニオンとしては、(C2n+1SO(nは0以上3以下)、1価の環状のアミド系アニオンとしては、(CFSOなどを用いることができる。1価のメチド系アニオンとしては、(C2n+1SO(nは0以上3以下)、1価の環状のメチド系アニオンとしては、(CFSO(CFSO)などを用いることができる。フルオロアルキルスルホン酸アニオンとしては、(C2m+1SO(mは0以上4以下)などが挙げられる。フルオロアルキルボレートアニオンとしては、{BF(C2m+1−k4−n(nは0以上3以下、mは1以上4以下、kは0以上2m以下)などが挙げられる。フルオロアルキルホスフェートアニオンとしては、{PF(C2m+1−k6−n(nは0以上5以下、mは1以上4以下、kは0以上2m以下)などが挙げられる。
また、一価のアミド系アニオンとして、例えば、ビス(フルオロスルホニル)アミドアニオン及びビス(トリフルオロメタンスルホニル)アミドアニオンの一以上を用いることができる。
また、イオン液体は、ヘキフルオロホスフェートアニオン及びテトラフルオロボレートアニオンの一以上を有してもよい。
以降、(FSOで表されるアニオンをFSAアニオン、(CFSOで表されるアニオンをTFSAアニオンと表す場合がある。
本発明の一態様の二次電池は、例えば、リチウムイオンをキャリアイオンとして有する。また、本発明の一態様の二次電池は、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン、ベリリウムイオン、マグネシウムイオンなどのアルカリ土類金属イオンをキャリアイオンとして有していてもよい。
キャリアイオンとしてリチウムイオンを用いる場合には、例えば、電解質はリチウム塩を含む。リチウム塩として例えば、LiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等を用いることができる。
本明細書において、電解質は、固体、液体、または半固体の材料などを含む総称である。
二次電池内に存在する界面、例えば活物質と電解質との界面で劣化が生じやすい。本発明の一態様の二次電池においては、フッ素を有する電解質を有することで、活物質と電解質との界面で生じうる、劣化、代表的には電解質の変質または電解質の高粘度化を防ぐことができる。また、フッ素を有する電解質に対して、バインダ及びグラフェン化合物などをまとわりつかせる、または保持させる構成としてもよい。当該構成とすることで、電解質の粘度を低下させた状態、別言すると電解質のさらさらな状態を維持することが可能となり、二次電池の信頼性を向上させることができる。フッ素が2つ結合しているDFEC及び4つ結合しているF4ECは、それぞれ、フッ素が1つ結合しているFECに比べて、粘度が低く、さらさらであり、リチウムとの配位結合が弱くなる。従って、活物質粒子に粘度の高い分解物が付着することを低減することができる。活物質粒子に粘度の高い分解物が付着する、あるいはまとわりつくと活物質粒子の界面でリチウムイオンが移動しにくくなる。フッ素を有する電解質は、溶媒和することで活物質(正極活物質または負極活物質)表面につく分解物の生成を緩和する。また、フッ素を有する電解質を用いることにより、分解物が付着することを防ぐことでデンドライトの発生及び成長を防止することができる。
本発明の一態様の二次電池は、フッ素を有する電解質を主成分として用いることも特徴の一つであり、フッ素を有する電解質は、5体積%以上、10体積%以上、好ましくは30体積%以上100体積%以下とする。
本明細書において、電解質の主成分とは、二次電池の電解質全体の5体積%以上であることを指している。また、ここでいう二次電池の電解質全体の5体積%以上とは二次電池の製造時に計量された電解質全体の占める割合を指している。また、二次電池を作製後に分解する場合には、複数種類の電解質がそれぞれどれくらいの割合であったかを定量することは困難であるが、ある一種類の有機化合物が電解質全体の5体積%以上であるかは判定することができる。
フッ素を有する電解質を用いることで、幅広い温度範囲、具体的には、−40℃以上150℃以下、好ましくは−40℃以上85℃以下で動作可能な二次電池を実現することができる。
また、電解質にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、リチウムビス(オキサレート)ボレート(LiBOB)、または、スクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば電解質全体に対して0.1体積%以上5体積%未満とすればよい。
また、電解質は上記の他に、γーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン等の非プロトン性有機溶媒の一つまたは複数を有してもよい。
また、電解質がゲル化される高分子材料を有することで、漏液性等に対する安全性が高まる。ゲル化される高分子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、及び、フッ素系ポリマーのゲル等がある。
高分子材料としては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、ポリアクリロニトリル等、及びそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成される高分子は、多孔質形状を有してもよい。
〔セパレータ〕
正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、あるいはナイロン樹脂(ポリアミド)、ビニロン樹脂(ポリビニルアルコール系繊維)、ポリエステル樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂を用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは、20nm程度の大きさの孔、好ましくは6.5nm以上の大きさの孔、さらに好ましくは少なくとも直径2nmの孔を有する多孔質材料である。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合した材料等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
〔外装体〕
二次電池が有する外装体としては、例えばアルミニウムなどの金属材料を用いる缶タイプ、または、樹脂材料を用いるケースタイプとすることができる。または、フィルム状の外装体(外装フィルムとも呼ぶ)を用いることもできる。外装フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、またはポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、またはニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、またはポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。このような三層構造とすることで、電解質及び気体の透過を遮断するとともに、絶縁性を確保し、併せて耐電解質性を有することができる。外装フィルムの2つの内面を向かい合わせて重ねて熱を加えることにより、内面の材料が融け2つの外装フィルムを融着することができ、封止構造を作製することができる。
また、外装フィルムとしてフッ素樹脂フィルムを用いることが好ましい。フッ素樹脂フィルムは、酸、アルカリ、有機溶剤等に対する安定性が高く、二次電池の反応などに伴う副反応、腐食等を抑制し、優れた二次電池を実現することができる。フッ素樹脂フィルムとしてPTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン:テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体)、FEP(パーフルオロエチレンプロペンコポリマー:テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、及び、ETFE(エチレンテトラフルオロエチレンコポリマー:テトラフルオロエチレンとエチレンの共重合体)等が挙げられる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の二次電池の具体的な構成例について図14乃至図16を用いて説明する。
本発明の一態様の二次電池の外観図の一例を図14及び図15に示す。
図14Aに示す二次電池は、正極503、負極506、セパレータ507、及び外装体509を有する。外装体509は、シール領域514により封止される。正極503、負極506及びセパレータ507は積層され、外装体509の内部に配置される。
図14Aにおいて、正極503には正極リード電極510が接合される。正極リード電極510は外装体509の外側に露出される。また負極506には負極リード電極511が接合され、負極リード電極511が外装体509の外側に露出される。
リード電極の接合について、図16を用いて説明する。
図16Aは正極503の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503はタブ領域を有する。
図16Bは負極506の外観図を示す。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積または形状は、図16A及び図16Bに示す例に限られない。
図16Cは、リード電極の接合について説明する図である。まず、負極506、セパレータ507、及び、正極503を積層する。図16Cに積層された負極506、セパレータ507、及び、正極503を示す。ここでは、負極とセパレータと正極からなる積層体は、負極を5組、正極を4組有する。正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いることができる。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。正極リード電極510及び負極リード電極511は、それぞれ、封止層519(樹脂層などとも呼べる)を有する。封止層519を設けることで、外装体509と封止層519とを熱圧着することができ、封止の際に隙間が生じることを抑制できる。また、リード電極と外装体509とを互いに固定することができる。封止層519には熱可塑性樹脂を用いることができ、例えばポリプロピレン等を用いることができる。
図14Bに示す外観図は、外装体509の側面の2辺において、端部を折り畳む例を示す。外装体509の端部を折り畳むことにより、外装体509の強度を高めることができる。例えば二次電池500に外力が加わった場合、あるいは外装体509の内部においてガス等が発生して二次電池500が膨張した場合、等において、封止が緩む等の不具合を抑制することができる。また、図14Cには3辺を折り畳む例を示す。
図14A乃至図14Cでは、正極リード電極510と負極リード電極511を同じ辺に配置する例を示すが、正極リード電極510と負極リード電極511を異なる辺、例えば図15Aに示すように上下の辺にそれぞれ配置してもよい。図15Bは、図15Aにおいて、外装体509の左辺及び右辺を折り畳む例を示す。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の二次電池の適用例について図17乃至図20を用いて説明する。
[電気自動車]
まず、本発明の一態様の二次電池を電気自動車(EV)に適用する例を示す。
図17Cに、モータを有する車両のブロック図を示す。電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリ(スターターバッテリとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
例えば、第1のバッテリ1301a、1301bの一方または双方に、実施の形態1に示す二次電池の作製方法を用いて作製された二次電池を用いることができる。
本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系(高電圧系)の車載部品(電動パワステ1307、ヒーター1308、及び、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
また、第2のバッテリ1311は、DCDC回路1310を介して14V系(低電圧系)の車載部品(オーディオ1313、パワーウィンドウ1314、及び、ランプ類1315など)に電力を供給する。
また、第1のバッテリ1301aについて、図17Aを用いて説明する。
図17Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414により電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、または電池制御システムを、BTOS(Battery operating system、またはBattery oxide semiconductor)と呼称する場合がある。
制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理する。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
また、図17Aに示す電池パック1415のブロック図の一例を図17Bに示す。
制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチと、を含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧とが設定されており、外部からの電流上限、または、外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲は、使用が推奨されている電圧範囲であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電または過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
スイッチ部1324は、nチャネル型のトランジスタ及びpチャネル型のトランジスタの一方または双方を組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
第1のバッテリ1301a、1301bは、主に高電圧系の車載機器に電力を供給し、第2のバッテリ1311は低電圧系の車載機器に電力を供給する。第2のバッテリ1311には、鉛蓄電池がコスト上有利のため採用されることが多い。
本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。
また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303またはバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
次に、本発明の一態様の二次電池を、車両、代表的には輸送用車両に実装する例について説明する。
本発明の一態様の二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、またはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型または大型船舶、潜水艦、固定翼機または回転翼機等の航空機、ロケット、人工衛星、宇宙探査機または惑星探査機、宇宙船などの輸送用車両に二次電池を搭載することもできる。実施の形態1に示す二次電池の作製方法を用いることで、大型の二次電池とすることができる。そのため、本発明の一態様の二次電池は、輸送用車両に好適に用いることができる。
図18A乃至図18Dに、本発明の一態様の二次電池を用いた輸送用車両を示す。図18Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、二次電池は一箇所または複数箇所に設置する。図18Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
また、自動車2001は、自動車2001が有する二次電池にプラグイン方式または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法またはコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両同士で電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
図18Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば3.5V以上4.7V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが異なる以外は、図18Aと同様な機能を備えているため説明は省略する。
図18Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば3.5V以上4.7V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。実施の形態1に示す二次電池の作製方法を用いることで、安定した電池特性を有する二次電池を製造することができ、歩留まりの観点から低コストで大量生産が可能である。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが異なる以外は、図18Aと同様な機能を備えているため説明は省略する。
図18Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図18Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが異なる以外は、図18Aと同様な機能を備えているため説明は省略する。
[建築物]
次に、本発明の一態様の二次電池を建築物に実装する例について図19を用いて説明する。
図19Aに示す住宅は、実施の形態1に示す二次電池の作製方法を用いることで、安定した電池特性を有する二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
図19Bに、本発明の一態様に係る蓄電装置700の一例を示す。図19Bに示すように、建物799の床下空間部796には、実施の形態1に示す二次電池の作製方法で得られる大型の蓄電装置791が設置されている。
蓄電装置791には、制御装置790が設置されており、制御装置790は、配線によって、分電盤703と、蓄電コントローラ705(制御装置ともいう)と、表示器706と、ルータ709と、に電気的に接続されている。
商業用電源701から、引込線取付部710を介して、電力が分電盤703に送られる。また、分電盤703には、蓄電装置791と、商業用電源701と、から電力が送られ、分電盤703は、送られた電力を、コンセント(図示せず)を介して、一般負荷707及び蓄電系負荷708に供給する。
一般負荷707は、例えば、テレビまたはパーソナルコンピュータなどの電気機器であり、蓄電系負荷708は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
蓄電コントローラ705は、計測部711と、予測部712と、計画部713と、を有する。計測部711は、一日(例えば、0時から24時)の間に、一般負荷707、蓄電系負荷708で消費された電力量を計測する機能を有する。また、計測部711は、蓄電装置791の電力量と、商業用電源701から供給された電力量と、を計測する機能を有していてもよい。また、予測部712は、一日の間に一般負荷707及び蓄電系負荷708で消費された電力量に基づいて、次の一日の間に一般負荷707及び蓄電系負荷708で消費される需要電力量を予測する機能を有する。また、計画部713は、予測部712が予測した需要電力量に基づいて、蓄電装置791の充放電の計画を立てる機能を有する。
計測部711によって計測された一般負荷707及び蓄電系負荷708で消費された電力量は、表示器706によって確認することができる。また、ルータ709を介して、テレビまたはパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ709を介して、スマートフォンまたはタブレットなどの携帯電子端末によっても確認することができる。また、表示器706、電気機器、携帯電子端末によって、予測部712が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
[電子機器]
本発明の一態様の二次電池は、例えば、電子機器及び照明装置の一方または双方に用いることができる。電子機器としては、例えば、携帯電話、スマートフォン、及び、ノート型コンピュータ等の携帯情報端末、携帯型ゲーム機、携帯音楽プレーヤ、デジタルカメラ、並びに、デジタルビデオカメラなどが挙げられる。
図20Aに示すパーソナルコンピュータ2800は、筐体2801、筐体2802、表示部2803、キーボード2804、及びポインティングデバイス2805等を有する。筐体2801の内側に二次電池2807を備え、筐体2802の内側に二次電池2806を備える。また表示部2803には、タッチパネルが適用されている。パーソナルコンピュータ2800は、図20Bに示すように筐体2801と筐体2802を取り外し、筐体2802のみでタブレット端末として使用することができる。
実施の形態1に示す二次電池の作製方法で得られる大型の二次電池を、二次電池2806及び二次電池2807の一方または双方に適用することができる。実施の形態1に示す二次電池の作製方法で得られる二次電池は、外装体の形状を変えることにより形状を自由に変更することができる。二次電池2806、2807を例えば、筐体2801、2802の形状に合わせた形状とすることにより、二次電池の容量を高め、パーソナルコンピュータ2800の使用時間を長くすることができる。また、パーソナルコンピュータ2800を軽量化することができる。
また筐体2802の表示部2803にはフレキシブルディスプレイが適用されている。二次電池2806には、実施の形態1に示す二次電池の作製方法で得られる大型の二次電池が適用されている。実施の形態1に示す二次電池の作製方法で得られる大型の二次電池において、外装体に可撓性を有するフィルムを用いることにより、曲げることが可能な二次電池とすることができる。これにより、図20Cに示すように、筐体2802を折り曲げて使用することができる。このとき、図20Cに示すように、表示部2803の一部をキーボードとして使用することもできる。
また、図20Dに示すように表示部2803が内側になるように筐体2802を折り畳むこと、または、図20Eに示すように表示部2803が外側になるように筐体2802を折り畳むこともできる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(本明細書等の記載に関する付記)
本明細書等において、結晶面及び方向はミラー指数で示す。結晶面及び方向の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。
本明細書等において、活物質等の粒子の表層部とは例えば、表面から50nm以内、より好ましくは35nm以内、さらに好ましくは20nm以内の領域であることが好ましい。ひび、またはクラックにより生じた面も表面といってよい。また表層部より深い領域を、内部という。
本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
また、本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
また、本明細書等において、リチウムと遷移金属を含む複合酸化物が有する擬スピネル型の結晶構造とは、空間群R−3mであり、スピネル型結晶構造ではないものの、コバルト、マグネシウム等のイオンが酸素6配位位置を占め、陽イオンの配列がスピネル型と似た対称性を有する結晶構造をいう。
二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等から判断することができる。XRD、電子線回折、中性子線回折等も判断の材料にすることができる。TEM像等では、陽イオンと陰イオンの配列が、明線と暗線の繰り返しとして観察できる。層状岩塩型結晶と岩塩型結晶において立方最密充填構造の向きが揃うと、結晶間で、明線と暗線の繰り返しのなす角度が5度以下、より好ましくは2.5度以下である様子が観察できる。なお、TEM像等では酸素、フッ素をはじめとする軽元素は明確に観察できない場合があるが、その場合は金属元素の配列で配向の一致を判断することができる。
本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えばLiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
本明細書等において、挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
本明細書等において、充電とは、電池内において正極から負極にリチウムイオンを移動させ、外部回路において正極から負極に電子を移動させることをいう。正極活物質については、リチウムイオンを離脱させることを充電という。また充電深度が0.7以上0.9以下の正極活物質を、高電圧で充電された正極活物質と呼ぶ場合がある。
同様に、放電とは、電池内において負極から正極にリチウムイオンを移動させ、外部回路において負極から正極に電子を移動させることをいう。正極活物質については、リチウムイオンを挿入することを放電という。また充電深度が0.06以下の正極活物質、または高電圧で充電された状態から充電容量の90%以上の容量を放電した正極活物質を、十分に放電された正極活物質ということとする。
本明細書等において、非平衡な相変化とは、物理量の非線形変化を起こす現象をいうこととする。例えば容量(Q)を電圧(V)で微分(dQ/dV)することで得られるdQ/dV曲線におけるピークの前後では、非平衡な相変化が起き、結晶構造が大きく変わっていると考えられる。
二次電池は例えば正極及び負極を有する。正極を構成する材料として、正極活物質がある。正極活物質は例えば、充放電の容量に寄与する反応を行う物質である。なお、正極活物質は、その一部に、充放電の容量に寄与しない物質を含んでもよい。
300:製造装置、301:部材投入室、302:搬送室、303:処理室、304:処理室、305:処理室、306:部材取り出し室、320:搬送機構、331:ステージ、332:アライメントカメラ、333:吸着治具、334:ノズル、335:ノズル、500:二次電池、501:正極集電体、502:正極活物質層、503:正極、504:負極集電体、505:負極活物質層、506:負極、507:セパレータ、509a:外装体、509b:外装体、509c:凹部、509:外装体、510:正極リード電極、511:負極リード電極、512:積層体、513:樹脂層、514:シール領域、515a:電解質、515b:電解質、515c:電解質、517:樹脂、518:樹脂層、519:封止層、521:樹脂層、525:シール領域、529a:紫外光透過領域、529b:紫外光遮光領域、700:蓄電装置、701:商業用電源、703:分電盤、705:蓄電コントローラ、706:表示器、707:一般負荷、708:蓄電系負荷、709:ルータ、710:引込線取付部、711:計測部、712:予測部、713:計画部、790:制御装置、791:蓄電装置、796:床下空間部、799:建物、1300:角型二次電池、1301a:第1のバッテリ、1301b:第1のバッテリ、1302:バッテリーコントローラ、1303:モータコントローラ、1304:モータ、1305:ギア、1306:DCDC回路、1307:電動パワステ、1308:ヒーター、1309:デフォッガ、1310:DCDC回路、1311:第2のバッテリ、1312:インバータ、1313:オーディオ、1314:パワーウィンドウ、1315:ランプ類、1316:タイヤ、1317:リアモータ、1320:制御回路部、1321:制御回路部、1322:制御回路、1324:スイッチ部、1413:固定部、1414:固定部、1415:電池パック、1421:配線、1422:配線、2001:自動車、2002:輸送車、2003:輸送車両、2004:航空機、2200:電池パック、2201:電池パック、2202:電池パック、2203:電池パック、2603:車両、2604:充電装置、2610:ソーラーパネル、2611:配線、2612:蓄電装置、2800:パーソナルコンピュータ、2801:筐体、2802:筐体、2803:表示部、2804:キーボード、2805:ポインティングデバイス、2806:二次電池、2807:二次電池

Claims (20)

  1.  第1の外装体上に、第1の電極を配置し、
     前記第1の電極上に、セパレータを配置し、
     前記セパレータ上に、第2の電極を配置し、
     前記第1の電極、前記セパレータ、及び、前記第2の電極の少なくとも一つに、電解質を滴下し、
     前記第1の外装体上に、樹脂層を配置し、
     前記第1の電極、前記セパレータ、及び、前記第2の電極の少なくとも一つに、前記電解質を含浸させた後、前記第1の外装体上に、前記第1の電極、前記セパレータ、及び、前記第2の電極を覆うように、第2の外装体を配置し、
     減圧下で前記樹脂層に紫外光を照射することで、前記樹脂層の少なくとも一部を硬化し、
     前記紫外光の照射を行った後、大気圧下で、前記第1の外装体と前記第2の外装体とによって、前記第1の電極、前記セパレータ、及び、前記第2の電極を封止し、
     前記第1の電極と前記第2の電極とは、一方が正極であり、他方が負極である、二次電池の作製方法。
  2.  請求項1において、
     前記第1の外装体は、凹部を有し、
     前記第1の電極、前記セパレータ、及び、前記第2の電極は、前記凹部に配置される、二次電池の作製方法。
  3.  第1の外装体上に、複数の積層体を配置し、
     前記第1の外装体上に、樹脂層を配置し、
     前記第1の外装体上に、前記複数の積層体を覆うように、第2の外装体を配置し、
     減圧下で前記樹脂層に紫外光を照射し、前記樹脂層の少なくとも一部を硬化し、
     前記紫外光を照射した後、大気圧下で、前記第1の外装体と前記第2の外装体とによって、前記複数の積層体を封止し、
     前記封止の後、前記第1の外装体及び前記第2の外装体を分断して、前記積層体を有する二次電池を個々に分離する、二次電池の作製方法であり、
     前記複数の積層体のそれぞれは、
     前記第1の外装体上に、第1の電極を配置し、
     前記第1の電極上に、セパレータを配置し、
     前記セパレータ上に、第2の電極を配置し、
     前記第1の電極、前記セパレータ、及び、前記第2の電極の少なくとも一つに、電解質を滴下することで形成し、
     前記第1の電極と前記第2の電極とは、一方が正極であり、他方が負極である、二次電池の作製方法。
  4.  請求項3において、
     前記第1の外装体は、複数の凹部を有し、
     前記複数の凹部の1つに対して、前記複数の積層体の1つが配置される、二次電池の作製方法。
  5.  請求項1乃至4のいずれか一において、
     前記樹脂層は、前記第1の電極、前記セパレータ、及び、前記第2の電極を囲うように、枠状に配置される、二次電池の作製方法。
  6.  請求項1乃至5のいずれか一において、
     前記封止は、前記樹脂層に紫外光を照射し、前記樹脂層を硬化させることで行われ、
     前記樹脂層は、減圧下で紫外光が照射された面積よりも、前記封止の際に紫外光が照射された面積の方が広い、二次電池の作製方法。
  7.  請求項1乃至5のいずれか一において、
     前記封止は、熱圧着により行われる、二次電池の作製方法。
  8.  請求項1乃至7のいずれか一において、
     前記第2の外装体は、少なくとも前記樹脂層と重なる領域において、紫外光を透過する機能を有する、二次電池の作製方法。
  9.  請求項1乃至8のいずれか一において、
     前記第2の外装体は、少なくとも、前記第1の電極、前記セパレータ、及び、前記第2の電極の少なくとも一つと重なる領域において、紫外光を遮る機能を有する、二次電池の作製方法。
  10.  請求項1乃至9のいずれか一において、
     前記減圧下で紫外光を照射する前に、前記第1の電極に、第1のリード電極を接続させる工程と、前記第2の電極に、第2のリード電極を接続させる工程と、を有する、二次電池の作製方法。
  11.  請求項1乃至10のいずれか一において、
     前記電解質は、フッ素を含む、二次電池の作製方法。
  12.  請求項1乃至11のいずれか一において、
     前記電解質は、イオン液体を含む、二次電池の作製方法。
  13.  請求項1乃至12のいずれか一において、
     前記第1の電極及び前記第2の電極の一方または双方は、グラフェンを含む、二次電池の作製方法。
  14.  請求項1乃至13のいずれか一において、
     前記第1の電極は、第1の集電体の一方の面または両面に、第1の活物質層を有する、二次電池の作製方法。
  15.  請求項1乃至14のいずれか一において、
     前記第2の電極は、第2の集電体の一方の面または両面に、第2の活物質層を有する、二次電池の作製方法。
  16.  第1の外装体と第2の外装体の間に、正極、セパレータ、及び、負極をそれぞれ1つ以上有する積層体が設けられた二次電池の、製造装置であり、
     搬送室、第1の処理室、及び、第2の処理室を有し、
     前記搬送室は、前記第1の処理室から前記第2の処理室に作製中の前記二次電池を搬送する機能を有し、
     前記第1の処理室は、第1のステージ、吸着機構、電解質滴下機構、及び、シール材料供給機構を有し、
     前記第1のステージは、前記作製中の二次電池を支持する機能を有し、
     前記吸着機構は、前記積層体を構成する部材を吸着し、前記第1の外装体上に配置する機能を有し、
     前記電解質滴下機構は、前記積層体を構成する部材上に、電解質を滴下する機能を有し、
     前記シール材料供給機構は、前記第1の外装体上に、樹脂層を形成する機能を有し、
     前記第2の処理室は、第2のステージ、排気機構、外装体支持機構、及び、第1の紫外光照射機構を有し、
     前記第2のステージは、前記第1の処理室から搬送された作製中の二次電池を支持する機能を有し、
     前記排気機構は、前記第2の処理室の内部を減圧する機能を有し、
     前記外装体支持機構は、前記第2の外装体を、前記第1の処理室から搬送された作製中の二次電池と対向する位置で支持する機能を有し、
     前記第1の紫外光照射機構は、前記第1の外装体または前記第2の外装体を介して、前記樹脂層の少なくとも一部に紫外光を照射する機能を有する、二次電池の製造装置。
  17.  請求項16において、
     前記吸着機構は、前記第1の外装体を吸着し、前記第1のステージ上に配置する機能を有する、二次電池の製造装置。
  18.  請求項16または17において、
     前記第1の処理室は、不活性ガス供給機構を有し、
     前記不活性ガス供給機構は、前記第1の処理室の内部に不活性ガスを供給する機能を有する、二次電池の製造装置。
  19.  請求項18において、
     前記不活性ガスは、アルゴンガスである、二次電池の製造装置。
  20.  請求項16乃至19のいずれか一において、
     さらに、第3の処理室を有し、
     前記第3の処理室は、第2の紫外光照射機構を有し、
     前記第2の紫外光照射機構は、前記第1の外装体または前記第2の外装体を介して、前記樹脂層に紫外光を照射する機能を有し、
     前記樹脂層は、前記第1の紫外光照射機構により紫外光が照射された面積よりも、前記第2の紫外光照射機構により紫外光が照射された面積の方が広い、二次電池の製造装置。
PCT/IB2021/056566 2020-07-31 2021-07-21 二次電池の作製方法、及び、二次電池の製造装置 WO2022023883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180060119.6A CN116134570A (zh) 2020-07-31 2021-07-21 二次电池的制造方法以及二次电池的制造装置
KR1020237005580A KR20230044239A (ko) 2020-07-31 2021-07-21 이차 전지의 제작 방법 및 이차 전지의 제조 장치
JP2022539785A JPWO2022023883A1 (ja) 2020-07-31 2021-07-21
US18/006,206 US20230335782A1 (en) 2020-07-31 2021-07-21 Method for fabricating secondary battery and manufacturing apparatus for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130900 2020-07-31
JP2020130900 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022023883A1 true WO2022023883A1 (ja) 2022-02-03

Family

ID=80037722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/056566 WO2022023883A1 (ja) 2020-07-31 2021-07-21 二次電池の作製方法、及び、二次電池の製造装置

Country Status (5)

Country Link
US (1) US20230335782A1 (ja)
JP (1) JPWO2022023883A1 (ja)
KR (1) KR20230044239A (ja)
CN (1) CN116134570A (ja)
WO (1) WO2022023883A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141102A (ja) * 2000-11-06 2002-05-17 Toshiba Corp 電池の製造方法および製造装置
JP2007257859A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd バイポーラ電池
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2012174442A (ja) * 2011-02-21 2012-09-10 Sumitomo Electric Ind Ltd 溶融塩電池及びその製造方法
JP2013016286A (ja) * 2011-06-30 2013-01-24 Ulvac Japan Ltd 薄膜リチウム二次電池形成装置
JP2013519196A (ja) * 2010-02-08 2013-05-23 キネテイツク・リミテツド 薄型電気化学セル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618352B2 (ja) 2015-12-25 2019-12-11 三洋化成工業株式会社 積層電池の製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141102A (ja) * 2000-11-06 2002-05-17 Toshiba Corp 電池の製造方法および製造装置
JP2007257859A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd バイポーラ電池
JP2013519196A (ja) * 2010-02-08 2013-05-23 キネテイツク・リミテツド 薄型電気化学セル
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2012174442A (ja) * 2011-02-21 2012-09-10 Sumitomo Electric Ind Ltd 溶融塩電池及びその製造方法
JP2013016286A (ja) * 2011-06-30 2013-01-24 Ulvac Japan Ltd 薄膜リチウム二次電池形成装置

Also Published As

Publication number Publication date
US20230335782A1 (en) 2023-10-19
KR20230044239A (ko) 2023-04-03
JPWO2022023883A1 (ja) 2022-02-03
CN116134570A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2021240298A1 (ja) 二次電池および車両
WO2022029575A1 (ja) 電極、負極活物質、負極、二次電池、移動体および電子機器、負極活物質の作製方法、ならびに負極の作製方法
WO2022023883A1 (ja) 二次電池の作製方法、及び、二次電池の製造装置
WO2022029558A1 (ja) 二次電池の作製方法、及び、二次電池の製造装置
WO2022018573A1 (ja) 二次電池の作製方法
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2021255572A1 (ja) グラフェン化合物、二次電池、移動体および電子機器
US20230327092A1 (en) Electrode, secondary battery, moving vehicle, electronic device, and method for manufacturing electrode for lithium-ion secondary battery
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2021240292A1 (ja) 二次電池および二次電池を有する車両
WO2021234501A1 (ja) 二次電池および二次電池を有する車両
WO2022009019A1 (ja) 電極、二次電池、移動体および電子機器
US20240097099A1 (en) Electrode manufacturing method
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2022038449A1 (ja) 二次電池、電子機器および車両
WO2021181197A1 (ja) 二次電池およびその作製方法、及び車両
US20230006203A1 (en) Positive electrode active material, secondary battery, and vehicle
WO2022023865A1 (ja) 二次電池及びその作製方法
JP2022076094A (ja) 二次電池、及び車両
KR20230160267A (ko) 축전 장치 관리 시스템 및 전자 기기
JP2023157581A (ja) リチウムイオン電池
KR20230021001A (ko) 양극 활물질, 양극 활물질층, 이차 전지, 전자 기기, 및 차량

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539785

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005580

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850022

Country of ref document: EP

Kind code of ref document: A1