WO2022022355A1 - 组合物及其制备方法和应用及油气田固井自修复方法 - Google Patents

组合物及其制备方法和应用及油气田固井自修复方法 Download PDF

Info

Publication number
WO2022022355A1
WO2022022355A1 PCT/CN2021/107562 CN2021107562W WO2022022355A1 WO 2022022355 A1 WO2022022355 A1 WO 2022022355A1 CN 2021107562 W CN2021107562 W CN 2021107562W WO 2022022355 A1 WO2022022355 A1 WO 2022022355A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
composition
gas field
thermoplastic elastomer
hydrogenated styrene
Prior art date
Application number
PCT/CN2021/107562
Other languages
English (en)
French (fr)
Inventor
梁红文
彭鸽威
张海良
莫笑君
杨帆
张君花
王旭
王其春
曾敏
Original Assignee
中国石油化工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司 filed Critical 中国石油化工股份有限公司
Priority to DE112021004033.2T priority Critical patent/DE112021004033T5/de
Priority to JP2023506115A priority patent/JP2023537305A/ja
Priority to ES202390002A priority patent/ES2939813R1/es
Priority to US18/005,914 priority patent/US20230295483A1/en
Publication of WO2022022355A1 publication Critical patent/WO2022022355A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • C09K8/493Additives for reducing or preventing gas migration
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/368Baryte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2676Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the invention belongs to the technical field of cementing slurry materials for oil and gas fields, and in particular relates to a styrene thermoplastic elastomer composition containing surface polarization, a preparation method thereof, application as a cementing self-repairing agent for oil and gas fields, and cementing cement slurry for oil and gas fields and oil and gas field cementing.
  • Cementing engineering is a key link between drilling operations and oil and gas resource development.
  • the procedure includes running a certain specification of casing downhole, and after the casing is run, cement slurry is injected into the annular pump between the casing and the well wall.
  • the injected cement slurry which is a hydraulic cementitious material, solidifies and hardens into a cement sheath within a certain period of time, forming oil and gas field cementing.
  • the functions of the cement sheath include supporting the casing and preventing the formation fluid from corroding the casing, sealing off complex formations such as lost layers and slump layers, and sealing off oil, gas and water layers to lay the foundation for resource stratified development.
  • a high-quality cement sheath should maintain long-term sealing integrity, which is critical to the production life of oil and gas wells and directly affects subsequent oil and gas production.
  • the cement sheath of the oil well is cracked, and the oil and gas leakage caused by it is a worldwide problem and causes huge economic losses. Therefore, it is very necessary to repair the cracks generated by the cement sheath.
  • the cementing cement sheath repair technology at home and abroad mainly includes cement extrusion operation and cement-based material micro-crack self-repair technology.
  • the former has high operation risk, low success rate, and high cost, and is not suitable for the further development of cementing operations; while the latter has been widely used in the self-repair of cement-based materials, and is one of the research hotspots in cement cementing.
  • hollow fibers, microcapsules, thermally reversible cross-linking reactions, stimuli-responsive polymer technologies Liquid core or hollow fiber technology and microcapsule technology are to preset repairing agent in the cement matrix, and the repairing agent is placed in the coating material.
  • the thermally reversible cross-linking reaction technology is to pre-place the cross-linked polymer with thermally reversible reaction characteristics in the cement matrix, which can be repaired multiple times with the change of the ambient temperature, but the high research cost of this kind of technology limits its practical application.
  • the stimuli-responsive polymer technology is a pre-installed polymer material that is responsive to oil and gas. When encountering oil and gas, it will absorb and expand, thereby blocking the gap to achieve self-healing effect.
  • the polymers used in stimuli-responsive polymer technology are usually oil-absorbing resins or elastomer latexes. Although they have good self-healing effects, these polymers have poor heat resistance and durability, which limits their engineering applications.
  • Applications. CN105952413A reported a self-healing cement containing styrene-butadiene-styrene or styrene-isoprene-styrene polymer particles, but the self-healing cement still needs to be further improved in terms of self-healing effect and service life improve.
  • the purpose of the present invention is to overcome the above problems existing in the prior art and provide a new self-healing agent, which has better self-healing effect and longer service life.
  • one aspect of the present invention provides a composition, which is characterized in that: the density of the composition is 1.2-2 g/cm 3 , the water contact angle is less than 90°, preferably less than 85°, and diesel and/or natural gas absorbs and expands
  • the magnification is 5-15 times, preferably 8-12 times.
  • a second aspect of the present invention provides a method for preparing a composition, the method comprising the following steps:
  • step (1) The granules obtained in step (1) are coated with a hydrophilic polymer to obtain granular materials.
  • the third aspect of the present invention provides oil and gas field cementing slurry containing the above composition or the composition prepared by the above preparation method.
  • the fourth aspect of the present invention also provides the application of the above-mentioned composition or the composition prepared by the above-mentioned preparation method in oil and gas field cementing, preferably as the application of the oil and gas field cementing self-healing agent.
  • a fifth aspect of the present invention provides a cement block formed from the above-mentioned oil and gas field cementing slurry and oil and gas field cementing.
  • a sixth aspect of the present invention provides a self-repairing method for oil and gas field cementing, the method comprising using the above oil and gas field cementing cement slurry or the above oil and gas field cementing cement block to form oil and gas field cementing, and then when cracks appear in the oil and gas field cementing, making The oil and gas field cementing is in contact with oil and gas.
  • the composition provided by the present invention forms a granular material similar to a core-shell structure by coating a hydrogenated styrene thermoplastic elastomer/inorganic filler composite with an inorganic filler for weight gain and a hydrophilic (surface polarized) polymer , to ensure the density and water contact angle of the composition and the oil and gas absorption expansion coefficient, so that when the composition is used for oil and gas field cementing, it has both the density and compatibility that match the cement mortar, and can form uniform and stable oil and gas field cementing.
  • cement slurry it has good oil and gas absorption and expansion performance, so that it can expand and self-repair after absorbing oil and gas.
  • composition of the present invention in addition to the use of hydrophilic polymers to provide hydrophilicity and inorganic fillers to provide a density compatible with cement, also uses hydrogenated thermoplastic elastomers.
  • the inorganic fillers and hydrophilic polymers are improved.
  • it also improves the anti-aging performance of the composition, thereby greatly improving the self-healing effect and service life when used as a self-healing agent.
  • the present invention has the following beneficial effects:
  • the self-healing agent of the present invention as an expansion agent for absorbing oil and gas, has the characteristics of fast oil absorption rate, high magnification rate, good heat resistance, durability, and good mechanical properties of the expanding body.
  • the self-healing agent of the present invention has similar densities to cement slurry, has good affinity, can be uniformly and stably dispersed in the cement slurry, and is convenient for engineering application.
  • the self-healing agent of the present invention has an ideal effect of reducing the elastic modulus of cement slurry, can effectively reduce the generation of micro-annulus and micro-cracks, and improve the long-term sealing performance of the cement sheath of oil and gas wells.
  • Figure 1 is a photo showing the dispersion of the self-repairing agent composition in the cement stone when the particle size is 80 mesh, wherein the white part is the self-repairing agent composition, and the dark gray part is the cement stone. It can be seen from the figure that the self-healing agent is evenly distributed in the cement stone;
  • Example 2 is a graph showing the self-healing effect of the self-healing composition prepared in Example 1 of the present invention
  • Example 4 is a graph showing the wire drawing phenomenon of the self-healing composition prepared in Example 1 of the present invention at different temperatures;
  • Figure 5 is a photograph of cement blocks made by using the self-healing compositions of different mesh numbers provided by the present invention.
  • the density of the composition provided by the first aspect of the present invention is 1.2-2 g/cm 3 , preferably 1.3-1.8 g/cm 3 , more preferably 1.4-1.8 g/cm 3 , the water contact angle is less than 90°, preferably less than 85°, the diesel oil And/or the natural gas absorption expansion ratio is 5-15 times, preferably 8-12 times.
  • compositions may be in various shapes, such as granules or powders.
  • the composition is a 20-200-mesh sieve, preferably a 20-100-mesh sieve.
  • the density of the composition of the present invention is the actual density, which is measured by the method of GB/T 21354-2008.
  • the water contact angle is measured by the method of GB/T 36086-2018.
  • the water contact angle is used to indicate the compatibility (affinity) with cement when the composition of the present invention is used as a self-healing agent for cement slurry in oil and gas fields.
  • the larger the water contact angle the lower the compatibility with cement.
  • the water contact angle of the composition of the present invention is less than 90°, preferably less than 85°, and has suitable cement compatibility.
  • the water contact angle of the composition can be, for example, 70°, 71°, 72°, 73°, 74°, 75°, 76°, 77°, 78°, 79°, 80°, 81°, 82°, 83° °, 84°, 85°, 85.5°, 86°, 87°, 88°, 89°.
  • the absorption expansion ratio of diesel and/or natural gas refers to the ratio of the volume of the composition to the volume before contact when the composition is fully contacted with diesel and/or natural gas to achieve saturated adsorption.
  • the composition is contacted with diesel oil and/or natural gas to achieve saturated adsorption.
  • the composition contains a hydrogenated styrene thermoplastic elastomer, an inorganic filler and a hydrophilic substance (such as a hydrophilic polymer), and the hydrophilic substance is coated on the hydrogenated styrene thermoplastic Surfaces of elastomers and inorganic fillers.
  • the weight ratio of hydrogenated styrene thermoplastic elastomer and inorganic filler is 30:70-70:30, preferably 40:60-60:40 .
  • the hydrophilic polymer is used to provide the composition with sufficient hydrophilicity to ensure a suitable water contact angle.
  • the hydrophilic polymer generally contains a hydrophilic functional group, and the hydrophilic functional group is preferably one or more of a hydroxyl group, an amino group, a carboxyl group, and a sulfonic acid group.
  • the number of the above-mentioned hydrophilic functional groups may each be one or more.
  • the amino group can be one or more of primary amino group, secondary amino group, tertiary amino group and quaternary ammonium salt.
  • the carboxyl group can be represented by -COOM, and the sulfonic acid group can be represented by -SO 3 M, wherein M can be any one or more of H or alkali metal elements such as K, Na and the like.
  • the hydrophilic polymer is polyvinyl alcohol, poly(meth)acrylic acid and its (alkali) metal salts, chitosan, guar gum, sodium alginate, starch, carboxymethyl cellulose (sodium) etc. one or two or more.
  • the number average molecular weight of the hydrophilic polymer may be 100-300,000.
  • the content of polar groups (hydrophilic functional groups) of the hydrophilic polymer is 0.1-0.6 g/g polymer.
  • the content of polar groups can be measured by 1 HNMR.
  • the content of polar groups in the raw material can be obtained from the information provided by the raw material supplier.
  • the water-soluble polymer coats the inorganic filler or the surface of the particle formed by the inorganic filler and the hydrogenated styrene thermoplastic elastomer.
  • the density of the inorganic filler is 2.5-6.0 g/cm 3 .
  • the particle size of the inorganic filler is 10-15 microns.
  • the inorganic filler can be a variety of inorganic granules with smaller particles and better compatibility with cement, preferably, the inorganic filler is heavy calcium carbonate, barite, barium sulfate, iron ore powder, cement, quartz One or more of the sands.
  • inorganic fillers can increase the density of the composition, enable the composition to form a uniform and stable slurry with cement, and improve the stability of cementing cement slurry when used as a self-healing agent.
  • the composition has a density of 1.2-1.8 grams per cubic centimeter such as 1.2, 1.25, 1.30, 1.34, 1.36, 1.40, 1.45, 1.50, 1.55, 1.60, 1.70, 1.75 grams per cubic centimeter.
  • the hydrogenated styrene-based thermoplastic elastomer and the inorganic filler are obtained by extrusion and pelletization under the melting condition of the hydrogenated styrene-based thermoplastic elastomer, so that the hydrogenated styrene-based thermoplastic elastomer contains On the surface of the inorganic filler, the hydrophilic polymer is further coated on the surface of the hydrogenated styrene thermoplastic elastomer and the inorganic filler.
  • the weight ratio of the hydrogenated styrene thermoplastic elastomer and the hydrophilic polymer is 1:0.01-1:0.1.
  • the hydrogenation degree of the hydrogenated styrene thermoplastic elastomer is 95-100%, preferably 97-100%.
  • the hydrogenated styrene-based thermoplastic elastomer may have a linear structure or a star-shaped structure.
  • the number-average molecular weight of the hydrogenated styrene-based thermoplastic elastomer is 40,000-150,000
  • the number-average molecular weight of the star-shaped structure is 40,000-150,000. 120,000-320,000.
  • the number average molecular weight is measured by gel chromatography.
  • the hydrogenated styrene-based thermoplastic elastomer may be a hydrogenated styrene/conjugated diene copolymer, and the copolymer contains a styrene-based structural unit represented by formula 1, a hydrogenated copolymer represented by formula 2 Conjugated diene-based structural unit and/or hydrogenated conjugated diene-based structural unit represented by formula 3,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are each H, C1-C3 alkyl, and R 10 is H or C1-C4 alkyl .
  • the hydrogenated styrene thermoplastic elastomer is hydrogenated styrene-butadiene-styrene triblock copolymer, hydrogenated styrene-isoprene-styrene triblock copolymer, styrene-isobutylene - One or two or more of styrene triblock copolymers.
  • the content of the styrene structural unit in the hydrogenated styrene-based thermoplastic elastomer is 20-50% by weight, preferably 25-50% by weight, 1,2 -
  • the structure content is 25-50% by weight, preferably 25-40% by weight, more preferably 25-35% by weight.
  • the above-mentioned styrene thermoplastic elastomer can regulate its oil-gas expansion performance on the premise of ensuring the polarity of the self-healing agent, and can save the manufacturing cost.
  • the above composition can be prepared by first mixing the hydrogenated styrene elastomer polymer and the inorganic filler uniformly, then melting and extruding pelletizing under the melting conditions of the polymer, and then using the hydrophilic polymer material is coated.
  • a second aspect of the present invention provides a method for preparing the above composition, the method comprising the following steps:
  • step (2) Coating the pellets obtained in step (1) with a hydrophilic polymer to obtain granular self-healing particles.
  • a core-shell structure similar to the core-shell structure is formed by melting the hydrogenated styrene thermoplastic elastomer and granulating together with the inorganic filler, and then coating the surface of the particles with a hydrophilic polymer with relatively high water solubility. self-healing agent.
  • the hydrogenated styrene thermoplastic elastomer is melted and then melt-blended and granulated together with the inorganic filler, and then the material obtained from the granulation is freeze-pulverized and then sieved to obtain the desired particle size.
  • the pellets are then coated with a hydrophilic polymer.
  • hydrophilic polymers have relatively high water solubility
  • the effect of hydrophilic polymers on inorganic fillers can be achieved by impregnating/immersing the pellets obtained in step (1) with a solution containing hydrophilic polymers and then drying to obtain the self-healing agent composition of the present invention.
  • the hydrophilic polymer can be dissolved/swollen in water and/or organic solvent to obtain a solution of the hydrophilic polymer.
  • the amount of water and/or organic solvent used is not particularly limited, as long as the hydrophilic polymer can be sufficiently dissolved/swollen in water and/or organic solvent to satisfy the requirements of immersion/immersion in order to achieve coating.
  • the method further comprises passing the granules obtained by extrusion granulation and freezing and pulverization through a 20-200-mesh, preferably 20-100-mesh sieve, and taking the undersize.
  • the hydrogenated styrene-based thermoplastic elastomer that meets the relevant requirements in the present invention can be prepared by referring to the prior art methods, for example, polymerization is performed first, and then selective hydrogenation is performed. It can also be directly obtained commercially, for example, it can be a commercial product of Sinopec Baling Petrochemical.
  • composition of the present invention is added as a self-healing agent to cement slurry for oil and gas field cementing in a proportion of 5-15% by weight to prepare cement slurry with stable performance.
  • the oil and gas can be various kinds of oil, gas or their mixtures stored in oil and gas wells, such as methane gas, petroleum crude oil, and the like.
  • the third aspect of the present invention provides oil and gas field cementing slurry of the above composition and the composition prepared by the above preparation method.
  • the content of the composition is 5-15 wt % based on the total amount of cementing slurry of the oil and gas field.
  • the grout generally contains water and cement.
  • the fourth aspect of the present invention provides the application of the above composition in oil and gas field cementing, preferably as the application of the oil and gas field cementing self-healing agent.
  • a fifth aspect of the present invention provides oil and gas field cementing blocks and oil and gas field cementing formed from the above-mentioned oil and gas field cementing slurry.
  • the density of the oil and gas field cementing block provided by the present invention is 1.6-2 g/cm3, preferably 1.7-2 g/cm3.
  • the flexural strength of the oil cementing block is 6-8 MPa
  • the elastic modulus is 5-7 GPa
  • the compressive strength is 25-35 MPa.
  • a sixth aspect of the present invention provides a self-repairing method for oil and gas field cementing.
  • Cement blocks rings are used to form oil and gas field cementing, and then the oil and gas field cementing is brought into contact with oil and gas when cracks appear in the oil and gas field cementing.
  • the oil and gas field cementing slurry can be made into a cement sheath in advance, and then one or more cement sheaths can be superimposed to form an oil and gas field cementing.
  • the oil and gas field cementing material contains the above-mentioned self-healing composition capable of absorbing oil and gas and capable of volume expansion after absorbing oil and gas
  • the self-healing composition in oil and gas field cementing is made by contacting with oil and gas when the oil and gas field cementing has fractures. It absorbs oil and gas and expands in volume after absorbing oil and gas, realizing filling and repairing of cracks.
  • the meaning of contacting the oil and gas field cementing with oil and gas refers to maintaining the state of contact between the oil and gas field cementing and oil and gas when a crack occurs. Cementing is in contact with oil and gas, so that the repair performance can be brought into play in advance and the occurrence of cracks can be prevented. In fact, in actual oilfields, oil and gas field cementing has been in contact with oil and gas, so the use of the composition of the present invention can prevent the occurrence of cracks or repair the cracks in time after the cracks are generated.
  • the oil and gas can be one or more of diesel oil, natural gas, and petroleum crude oil.
  • the contact conditions include oil and gas pressure of 1-10 MPa, preferably 3-8 MPa.
  • the contact time is based on the fact that the cracks are filled up or air leakage no longer occurs, generally not more than 10 hours, preferably not more than 5 hours.
  • the pressure refers to gauge pressure
  • the composition provided by the invention has good anti-aging property and good compatibility with cement
  • the prepared cement sheath and oil and gas field cementing have good anti-aging property and self-repairing performance, and can quickly and effectively Realize self-repair of oil and gas field cementing, and maintain the plugging effect for a long time.
  • the oil and gas field cementing of the present invention continues to feed natural gas with an initial flow rate of 1600ml/min of natural gas at 100°C until the pressure is constant at 5MPa, and the flow rate of natural gas drops to 0 (that is, the repair rate) within 5 hours. 100%); while some of the existing technologies require more than 100 hours.
  • the water-soluble polymers are all commercially available products
  • the styrene-based thermoplastic elastomers are all commercially available products of Sinopec Baling Petrochemical Company.
  • Cement slurry 1 for oil and gas field cementing is obtained by mixing Jiahua brand LHEC 42.5 cement and water in a weight ratio of 1:1, and the density is 1.85 g/cm 3 .
  • the cement slurry 2 for cementing in oil and gas fields is obtained by mixing Jiahua brand LHEC 32.5 cement and water at a weight ratio of 1:1, and the density is 1.87 g/cm 3 .
  • the cement slurry 3 for cementing in oil and gas fields is obtained by mixing Conch brand P-C42.5 cement and water in a weight ratio of 1:1, and the density is 1.87 g/cm 3 .
  • Test method for solid density GB T 21354-2008 method
  • Test method for water contact angle GB/T 36086-2018 method
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30 wt %, 1,2-structure content 37.7 wt %, hydrogenation degree 97.9 % by mass percentage ) 50% and precipitated barium sulfate (particle size is 15 microns, density is 4.4g/cm 3 ) 50% are mixed uniformly, and styrene thermoplastic elastomer and inorganic
  • the composite particles of the filler further add 200 g of the prepared composite particles into 200 ml of an aqueous solution of polyvinyl alcohol (PEG4000, a polymer with a hydroxyl value of 0.38 g/g) with a concentration of 3% by weight, stir evenly, dry and pass A 40-mesh sieve was used to obtain a polyvinyl alcohol-coated styrene thermoplastic elastomer composite self-healing
  • the solid density of the self-healing agent particles is 1.45 g/cm 3 , and the DSC curve is shown in FIG. 3 . It can be seen from the DSC curve that the self-healing particles contain hydrogenated styrene-butadiene-styrene triblock copolymer SEBS.
  • the self-healing agent particles are uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain cement slurry for oil and gas fields. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 5% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination. The results are shown in Figure 1.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30 wt %, 1,2-structure content 37.7 wt %, hydrogenation degree 97.9 % by mass percentage ) 50% and precipitated barium sulfate (particle size is 15 microns, density is 4.4g/cm 3 ) 50% are mixed uniformly, and styrene thermoplastic elastomer and inorganic filler are obtained by melt blending-granulation-pulverization-40 mesh sieving 200 g of the prepared composite particles were added to 200 ml of an aqueous solution of polyvinyl alcohol (number-average molecular weight 4000, hydroxyl value 0.38 g/g polymer) with a concentration of 3 wt %, stirring uniformly, Dry, pulverize and pass through a 40-mesh sieve to obtain a borax cross-linked polyvinyl
  • the solid density of the self-healing agent particles is 1.45 g/cm 3 , and is uniformly mixed with cement slurry 2 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 10% by weight. After standing for 12 hours, the cement slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30%, 1,2-structure content 37.7%, hydrogenation degree 97.9%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler Further, 200 g of the prepared composite particles were added to 200 ml of an aqueous solution of guar gum (Guangrao Liuhe Chemical Industry Co., Ltd., number-average molecular weight 200,000, hydroxyl value 0.6 g/g guar gum) with a concentration of 3% by weight, and stirred.
  • guar gum Guangrao Liuhe Chemical Industry Co., Ltd., number-average mo
  • the particle density of the self-healing agent is 1.46 g/cm 3
  • the self-healing agent is uniformly mixed with cement slurry 3 for oil and gas fields to obtain cement slurry for oil and gas fields. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 15% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30%, 1,2-structure content 37.7%, hydrogenation degree 97.9%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieve to obtain a composite of styrene thermoplastic elastomer and inorganic filler Further, 200 g of the prepared composite particles were added to 200 ml of an aqueous solution of chitosan (Nanjing Songguan Biotechnology Co., Ltd., number average molecular weight 50000, hydroxyl value 0.4 g/g) with a concentration of 3 wt%.
  • chitosan Najing Songguan Biotechnology Co., Ltd., number average molecular weight 50000, hydroxyl
  • the particle density of the self-healing agent is 1.44 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 8% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30%, 1,2-structure content 37.7%, hydrogenation degree 97.9%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler Further, 200 g of the prepared composite particles were added to 200 ml of an aqueous solution of chitosan (Nanjing Songguan Biotechnology Co., Ltd., number average molecular weight 50000, hydroxyl value 0.4 g/g) with a concentration of 2 wt%.
  • chitosan Najing Songguan Biotechnology Co., Ltd., number average molecular weight 50000, hydroxy
  • the particle density of the self-healing agent is 1.47 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry.
  • the content of the composition is 6 wt % based on the total amount of cement slurry of the oil and gas field. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-isoprene-styrene triblock copolymer (number average molecular weight 64179, styrene structural unit content 30%, 1,2-structure content 31.6%, hydrogenation degree 97.7%) 40% and Portland cement (particle size 10 microns, density 3.70g/cm 3 ) 60% are mixed uniformly, and the styrene thermoplastic elastomer and inorganic filler are obtained by melt blending - granulation - crushing - 40 mesh sieving 200 g of the prepared composite particles were further added to 400 ml of an aqueous solution of polymethacrylic acid (number average molecular weight 6000, carboxyl content 0.37 g/g polymer) with a concentration of 3 wt%, and stirred evenly , drying, pulverizing, and sieving through a 20-mesh sieve to obtain a self-healing agent for polymethacrylic acid-coated styrene thermoplastic
  • the particle density of the self-healing agent is 1.36 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry.
  • the content of the composition is 6 wt % based on the total amount of cement slurry of the oil and gas field. After standing for 12 hours, the cement slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-isobutylene-styrene triblock copolymer (number average molecular weight 65009, styrene structural unit content 25%, 1,2-structure content 37.6%, hydrogenation degree 98.1%) 60% and Heavy calcium carbonate (particle size 15 microns, density 2.8 g/cm 3 ) 40% mixed uniformly, through melt blending - granulation - crushing - 200 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler particles; further add 200 g of the prepared composite particles into 400 ml of an aqueous solution of polymethacrylic acid with a concentration of 6 wt % (number average molecular weight is 6000, carboxyl content is 0.37 g/g polymer), stir evenly, dry, Pulverize and sieve with 80 meshes to obtain a self-healing agent for polymethacrylic acid-coated styrene thermoplastic elasto
  • the particle density of the self-healing agent is 1.28 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 5.5% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 677031, styrene structural unit content 40%, 1,2-structure content 38.2%, hydrogenation degree 98.5%) 50 by mass percentage % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler compound particles; further add 200 g of the prepared composite particles into 200 ml of sodium alginate (Sichuan Huatang Jurui, number average molecular weight is 20000, and the content of carboxyl-COOH is 0.3 g/g) aqueous solution with a concentration of 3% by weight.
  • the particle density of the self-healing agent is 1.46 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 13% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 95300, styrene structural unit content 30%, 1,2-structure content 37.6%, hydrogenation degree 97.9%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler compound particles; further add 200 g of the prepared composite particles into 200 ml of sodium alginate (Sichuan Huatang Jurui, number average molecular weight is 20000, and the content of carboxyl-COOH is 0.3 g/g) aqueous solution with a concentration of 3% by weight.
  • the particle density of the self-healing agent is 1.47g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing slurry. Based on the total amount of the oil and gas field cementing slurry, the composition is The content was 13% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 136901, styrene structural unit content 30%, 1,2-structure content 38.1%, hydrogenation degree 98.0%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler compound particles; further add 200 g of the prepared composite particles into 200 ml of sodium alginate (Sichuan Huatang Jurui, number average molecular weight is 20000, and the content of carboxyl-COOH is 0.3 g/g) aqueous solution with a concentration of 3% by weight.
  • the particle density of the self-healing agent is 1.48 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 13% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • Hydrogenated styrene-butadiene-styrene triblock copolymer (number average molecular weight 65270, styrene structural unit content 30%, 1,2-structure content 37.7%, hydrogenation degree 97.9%) 50 % and precipitated barium sulfate (particle size 15 microns, density 4.4 g/cm 3 ) 50% mixed uniformly, through melt blending - granulation - crushing - 40 mesh sieving to obtain a composite of styrene thermoplastic elastomer and inorganic filler compound particles; further add 200 g of the prepared composite particles into 200 ml of sodium alginate (Sichuan Huatang Jurui, number average molecular weight is 20000, and the content of carboxyl-COOH is 0.3 g/g) aqueous solution with a concentration of 3% by weight.
  • the particle density of the self-healing agent is 1.45 g/cm 3 , and it is uniformly mixed with cement slurry 1 for oil and gas field cementing to obtain oil and gas field cementing cement slurry. Based on the total amount of cement slurry in the oil and gas field, the content of the composition is 13% by weight. After standing for 12 hours, the cementing slurry of oil and gas field showed no obvious delamination.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the 1,2-structure content of the hydrogenated styrene-butadiene-styrene triblock copolymer was 20.5%.
  • the results of uniform mixing with cement slurry 1 for oil and gas field cementing are shown in Table 1.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the 1,2-structure content of the hydrogenated styrene-butadiene-styrene triblock copolymer was 48.5%.
  • Table 1 shows the results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the weight ratio of the hydrogenated styrene-butadiene-styrene triblock copolymer and the precipitated barium sulfate was 25:75.
  • the solid density of the obtained self-healing agent particles is 1.65 g/cm 3 , and the results of uniform mixing with the cement slurry 1 for oil and gas field cementing are shown in Table 1.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the hydrogenation degree of the hydrogenated styrene-butadiene-styrene triblock copolymer was 90.0%.
  • Table 1 shows the results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the polymer was a star-shaped hydrogenated styrene-butadiene block copolymer, the number average molecular weight of one arm was 80295, the total average molecular weight was 250679, and the The ethylene structural unit content was 32% by weight, the 1,2-structure content was 37.7% by weight, and the degree of hydrogenation was 98.1%.
  • Table 1 shows the results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the polymer was a star-shaped hydrogenated styrene-butadiene block copolymer, its single-arm number average molecular weight was 90548, the total average molecular weight was 291533, and the benzene
  • the ethylene structural unit content was 32% by weight, the 1,2-structure content was 37.9% by weight, and the degree of hydrogenation was 98.0%.
  • Table 1 The results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing are shown in Table 1.
  • the self-healing agent composition was prepared according to the method of Example 4, except that the polymer was a star-shaped hydrogenated styrene-butadiene block copolymer, its single-arm number average molecular weight was 99270, the total average molecular weight was 310590, and the benzene
  • the ethylene structural unit content was 32% by weight, the 1,2-structure content was 38.5% by weight, and the degree of hydrogenation was 97.5%.
  • Table 1 shows the results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing.
  • the self-healing agent composition was prepared according to the method of Example 4, except that after the hydrogenated styrene-butadiene-styrene triblock copolymer, chitosan and precipitated barium sulfate were mixed uniformly, melt-blending- Granulation-crushing-40 mesh sieve is obtained from the restorative granules.
  • Table 1 The results of uniform mixing with cement slurry 1 for oil and gas field cementing are shown in Table 1.
  • a self-healing agent composition was prepared according to the method of Example 4, except that the hydrogenated styrene-butadiene-styrene triblock copolymer was composed of the same weight of unhydrogenated styrene-butadiene-styrene triblock Instead of the block copolymer, the styrene-butadiene-styrene triblock copolymer has approximately the same number average molecular weight, styrene structural unit content, and 1,2-structure content as the hydrogenated polymer of Example 4. Table 1 shows the results of uniform mixing of the obtained self-healing agent particles with the cement slurry 1 for oil and gas field cementing.
  • SBS#3 in Table 1 is used as self-healing agent.
  • the results of uniform mixing with cement slurry 1 for oil and gas field cementing are shown in Table 1.
  • a simulated cylindrical well with a diameter of 1m and a height of 1m was built with the above cement blocks, and a 500-micron ⁇ 350-micron crack was formed on each brick.
  • the natural gas was continuously fed into the well at an initial flow rate of 1600ml/min.
  • the pressure in the well was constant at 5MPa
  • the time when the natural gas flow rate decreased to 0 was recorded.
  • the results are shown in Figure 2 and Table 2 below.
  • the wire drawing phenomenon of Example 1 is shown in FIG. 4 .
  • composition of the present invention has significantly better self-healing performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明涉及一种自修复组合物及其制备方法和应用,该组合物为核-壳结构,核含有氢化苯乙烯类热塑性弹性体聚合物和无机填料,所述壳含有亲水性聚合物,该组合物的密度为1.2-2g/cm 3,水接触角不大于90°,柴油和/或天然气吸收膨胀倍率为5-15倍。本发明提供的组合物,通过使用亲水性(表面极性化)聚合物包覆氢化苯乙烯类热塑性弹性体和无机填料,形成核壳结构并保证组合物的密度和水接触角以及油气吸收膨胀系数,使得该组合物用于油气田固井时,既具有与水泥砂浆相匹配的密度和相容性,能够形成均一稳定的油气田固井用水泥浆料,同时又具有较好的吸收油气膨胀性能,从而能够在吸收油气后进行膨胀,进行自修复。

Description

组合物及其制备方法和应用及油气田固井自修复方法
相关申请的交叉引用
本申请要求2020年07月31日提交的中国专利申请202010759397.8的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明属于油气田固井水泥浆材料技术领域,具体涉及一种含有表面极性化的苯乙烯类热塑性弹性体组合物及其制备方法和作为油气田固井自修复剂的应用以及油气田固井水泥浆和油气田固井。
背景技术
固井工程是联系钻井作业和油气资源开釆的关键环节,其程序包括向井下下入一定规格的套管,下套管结束后向套管和井壁间的环空泵注入水泥浆。注入的水泥浆这一水硬性胶凝材料在一定时间内凝结硬化为水泥环,形成油气田固井。水泥环的作用包括支撑套管并防止地层流体对套管的腐烛、封隔漏失层和坍塌层等复杂地层、封隔油气水层为实现资源分层开发奠定基础。优质的水泥环应维持长期密封完整性,这对油气井生产寿命至关重要,并直接影响后期油气开采。然而,由于受到冲击荷载或复杂地层运动、以及腐蚀介质的长期化学腐蚀等作用,导致油井水泥环开裂,引起的油气渗漏是一个世界性难题,造成了巨大的经济损失。因此,对水泥环产生的裂缝进行修复是十分必要的。
目前,国内外的固井水泥环修复技术主要有挤水泥作业和水泥基材料微裂缝自修复技术。前者作业风险高、成功率低、成本较高,不适合固井作业的进一步发展;而后者已广泛应用于水泥基材料的自修复,在水泥固井方面属于研究热点之一,主要有液芯或空心纤维、微胶囊、热可逆交联反应、刺激响应型聚合物技术。液芯或空心纤维技术和微胶囊技术是在水泥基体中预置修复剂,修复剂置于包覆材料内,一旦受压力或温度等因素的影响,包覆材料破裂并释放出修复剂来修复裂缝,但该技术对包覆材料的要求高。热可逆交联反应技术是将具有热可逆反应特性的交联聚合物预置于水泥基体内,随环境温度的变化可实现多次修复,但此类技术研究成本高,限制了其实际应用。刺激响应型聚合物技术是预置一种对油气具有响应性的聚合物材料,遇油气会吸收膨胀,从而堵塞缝隙达到自修复效果。
刺激响应型聚合物技术中使用的聚合物通常为吸油树脂或弹性体胶乳,虽然具有较好的自修复效果,但这些聚合物的耐热性和耐久性都不好,限制了其在工程上的应用。CN105952413A报道了一种包含苯乙烯-丁二烯-苯乙烯或苯乙烯-异戊二烯-苯乙烯聚合物颗粒的自修复水泥,但该自修复水泥在自修复效果和使用寿命方面仍有待进一步提高。
发明内容
本发明的目的是为了克服现有技术存在的上述问题,提供新的自修复剂,该自修复剂具有较好的自修复效果和较长的使用寿命。
为了实现上述目的,本发明一方面提供一种组合物,其特征在于:该组合物的密度为1.2-2g/cm 3,水接触角小于90°优选小于85°,柴油和/或天然气吸收膨胀倍率为5-15倍优选8-12倍。
本发明第二方面提供一种组合物的制备方法,该方法包括以下步骤:
(1)将氢化苯乙烯类热塑性弹性体与无机填料混合均匀,得到混合物料,然后在氢化苯乙烯类热塑性弹性体的熔融条件下对混合物料进行挤出造粒;
(2)将步骤(1)所得粒料用亲水性聚合物进行包覆,得到颗粒状物料。
本发明第三方面提供含有上述组合物或上述制备方法制得的组合物的油气田固井水泥浆。
本发明第四方面还提供上述组合物或上述制备方法制得的组合物在油气田固井中的应用,优选作为油气田固井自修复剂的应用。
本发明第五方面提供由上述油气田固井水泥浆形成的水泥块和油气田固井。
本发明第六方面提供一种油气田固井的自修复方法,该方法包括使用上述油气田固井水泥浆或上述油气田固井水泥块形成油气田固井,然后在所述油气田固井出现裂缝时,使所述油气田固井与油气接触。
本发明提供的组合物,通过使用无机填料增重和亲水性(表面极性化)聚合物包覆氢化苯乙烯类热塑性弹性体/无机填料复合物,形成类似于核壳结构的颗粒状物料,保证了组合物的密度和水接触角以及油气吸收膨胀系数,使得该组合物用于油气田固井时,既具有与水泥砂浆相匹配的密度和相容性,能够形成均一稳定的油气田固井用水泥浆料,同时又具有较好的吸收油气膨胀性能,从而能够在吸收油气后进行膨胀,进行自修复。
本发明的组合物,除了使用提供亲水性的亲水性聚合物和提供与水泥相适应的密度的无机填料,还使用了氢化热塑性弹性体,一方面提高了无机填料和亲水性聚合物之间 的结合力,同时还提高了组合物的抗老化性能,由此作为自修复剂时大大提高了自修复效果和使用寿命。具体的,本发明具有如下有益效果:
1、本发明的自修复剂作为遇油气吸收膨胀剂,具有吸油气速度快、倍率高、耐热性、耐久性好,膨胀体力学性能佳等特点。
2、本发明的自修复剂与水泥浆密度相近,且具有较好的亲和性,能够均匀稳定的分散在水泥浆中,方便进行工程化应用。
3、本发明的自修复剂降低水泥浆弹性模量的效果理想,可以有效降低微环隙、微裂隙的生成,提高了油气井水泥环的长效密封性。
附图说明
图1是显示自修剂组合物粒径在80目时在水泥石中的分散情况的照片,其中白色的部分为自修复剂组合物,黑灰色部分为水泥石。由图可知,自修复剂在水泥石中分布均匀;
图2是显示本发明实施例1制备的自修复组合物的自修复效果的图;
图3是本发明实施例1制备的自修复组合物的DSC曲线;
图4是显示本发明实施例1制备的自修复组合物在不同温度下的拉丝现象的图;
图5是采用本发明提供的不同目数的自修复组合物制成的水泥块的照片。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供的组合物的密度为1.2-2g/cm 3,优选1.3-1.8g/cm 3,更优选1.4-1.8g/cm 3,水接触角小于90°优选小于85°,柴油和/或天然气吸收膨胀倍率为5-15倍优选8-12倍。
上述组合物可以为各种形状,例如颗粒状或粉末状。优选地,该组合物为20目~200目过筛物优选20-100目过筛物。
本发明组合物的密度为实密度,通过GB/T 21354-2008方法测得。
本发明中,水接触角采用GB/T 36086-2018方法来测得。水接触角用于表示本发明的组合物用作油气田固井水泥浆自修复剂时与水泥的相容性(亲和力),水接触角越大,表示与水泥的相容性越小。本发明的组合物的水接触角小于90°优选小于85°,具有较合适的水泥相容性。该组合物的水接触角例如可以为70°、71°、72°、73°、74°、75°、76°、77°、78°、79°、80°、81°、82°、83°、84°、85°、85.5°、86°、87°、88°、89°。
本发明中,柴油和/或天然气吸收膨胀倍率是指在组合物充分与柴油和/或天然气接触达到饱和吸附时组合物的体积与接触前的体积的比值。柴油和/或天然气吸收膨胀倍率越大,表示自修复能力越强,反之亦然。
本发明通过将组合物充分浸渍/浸泡在过量的柴油和/或天然气,直至组合物的体积不再膨胀,视为组合物与柴油和/或天然气接触达到饱和吸附。
根据本发明的一种优选实施方式,该组合物含有氢化苯乙烯类热塑性弹性体、无机填料及亲水性物质(如亲水性聚合物),亲水性物质包覆在氢化苯乙烯类热塑性弹性体和无机填料的表面。
为了使组合物获得较好的水泥配合能力和自修复能力,本发明中,氢化苯乙烯类热塑性弹性体与无机填料的重量比为30:70-70:30优选为40:60-60:40。
本发明中,亲水性聚合物用于提供组合物足够的亲水性,确保合适的水接触角。所述亲水性聚合物一般含有亲水性官能团,所述亲水性官能团优选为羟基、氨基、羧基、磺酸基中的一种或多种。上述亲水性官能团的数量各自可以为一个或多个。所述氨基可以为伯氨基、仲氨基、叔氨基、季铵盐中的一种或多种。所述羧基可以用-COOM来表示,磺酸基可以用-SO 3M来表示,其中M可以H或碱金属元素如K、Na等中的任意一种或多种。
优选地,所述亲水性聚合物为聚乙烯醇类、聚(甲基)丙烯酸及其(碱)金属盐类、壳聚糖、瓜尔胶、海藻酸钠、淀粉、羧甲基纤维素(钠)等中的一种或两种以上。
优选地,所述亲水性聚合物的数均分子量可以为100-300000。
优选地,所述亲水性聚合物的极性基团(亲水性官能团)的含量为0.1-0.6g/g聚合物。
本发明中,极性基团的含量可以通过 1HNMR来测得。原料中极性基团的含量可以从原料供应商提供的信息中获取。
本发明中,所述水溶性聚合物包覆在无机填料或者无机填料和氢化苯乙烯类热塑性弹性体形成的颗粒的表面。
为了作为自修复剂更好的与水泥配合,优选地,所述无机填料的密度为2.5-6.0克/立方厘米。
优选地,所述无机填料的粒径为10-15微米。
所述无机填料可以是各种颗粒较小且能够与水泥较好配合的无机粒料,优选地,所述无机填料为重质碳酸钙、重晶石、硫酸钡、铁矿粉、水泥、石英砂中的一种或两种以上。
无机填料的加入可以增加组合物的密度,使组合物能够与水泥形成均一稳定的浆料,提高作为自修复剂时固井水泥浆的稳定性。
优选地,所述组合物的密度为1.2-1.8克/立方厘米例如为1.2、1.25、1.30、1.34、1.36、1.40、1.45、1.50、1.55、1.60、1.70、1.75克/立方厘米。
根据本发明的一种优选实施方式,氢化苯乙烯类热塑性弹性体与无机填料通过在氢化苯乙烯类热塑性弹性体的熔融条件下挤出造粒得到,从而所述氢化苯乙烯类热塑性弹性体包覆在无机填料的表面,亲水性聚合物进一步包覆在所述氢化苯乙烯类热塑性弹性体和无机填料的表面。
优选地,所述氢化苯乙烯类热塑性弹性体和亲水性聚合物的重量比为1:0.01-1:0.1。
优选地,所述氢化苯乙烯类热塑性弹性体的氢化度为95-100%优选为97-100%。
氢化苯乙烯类热塑性弹性体的制备方法及氢化度的测试方法可以参见WO2020/088454的记载,在此一并引入作为参考。
所述氢化苯乙烯类热塑性弹性体可以为线性结构或星型结构,优选地,所述氢化苯乙烯类热塑性弹性体的数均分子量为4万-15万,所述星型结构的数均分子量为12万-32万。通过选择上述大小的氢化苯乙烯类热塑性弹性体能够在确保较好的自修复能力的同时获得更好的经济性。
本发明中,数均分子量采用凝胶色谱法测得。
本发明中,所述氢化苯乙烯类热塑性弹性体可以是一种氢化苯乙烯/共轭二烯烃共聚物,该共聚物含有式1所示的苯乙烯类结构单元、式2所示的氢化共轭二烯烃类结构单元和/或式3所示的氢化共轭二烯烃类结构单元,
Figure PCTCN2021107562-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9各自为H、C1-C3的烷基,R 10为H或C1-C4的烷基。
优选地,所述氢化苯乙烯类热塑性弹性体为氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物、氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物、苯乙烯-异丁烯-苯乙烯三嵌段共聚物的一种或两种以上。
优选地,以所述氢化苯乙烯类热塑性弹性体的重量为基准,所述氢化苯乙烯类热塑性弹性体中苯乙烯结构单元的含量为20-50重量%优选25-50重量%,1,2-结构含量25-50重量%优选25-40重量%更优选25-35重量%。通过控制苯乙烯结构单元和1,2-结构含量在上述范围内,一方面可以确保组合物和水泥块具有较好的自修复能力,同时还能长期维持组合物和水泥块的自修复能力,防止组合物和水泥块过量吸收天然气而降低甚至失去修复能力。
上述苯乙烯类热塑性弹性体可以在保证该自修复剂极性的前提下调控其油气膨胀性能,且能节省制造成本。
上述组合物可以先通过将氢化苯乙烯类弹性体聚合物和无机填料混合均匀,然后在聚合物的熔融条件下进行熔融、挤出造粒来制得粒料,之后用所述亲水性聚合物进行包覆。
本发明第二方面提供上述组合物的制备方法,该方法包括以下步骤:
(1)将氢化苯乙烯类热塑性弹性体与无机填料混合均匀,得到混合物料,然后在氢化苯乙烯类热塑性弹性体的熔融条件下对混合物料进行挤出造粒;
(2)将步骤(1)所得粒料用亲水性聚合物进行包覆,得到颗粒状的自修复粒子。
氢化苯乙烯类热塑性弹性体、亲水性聚合物与无机填料的种类和用量等相关要求已在上文中进行描述,在此不再赘述。
本发明中,通过将氢化苯乙烯类热塑性弹性体熔融后与无机填料一起造粒,然后将具有相对较高的水溶性的亲水性聚合物包覆在粒子表面,形成类似于核-壳结构的自修复剂。
根据本发明的一种优选实施方式,将氢化苯乙烯类热塑性弹性体熔融后与无机填料一起进行熔融共混、造粒,然后将造粒所得物料进行冷冻粉碎后过筛,得到所需粒度的粒料后再进行亲水性聚合物的包覆。
由于亲水性聚合物具有相对较高的水溶性,因此可以通过用含亲水性聚合物的溶液浸渍/浸没步骤(1)所得粒料然后干燥的方式来实现亲水性聚合物对无机填料的包覆,从而获得本发明的自修复剂组合物。
所述亲水性聚合物可以溶解/溶胀在水和/或有机溶剂中,得到亲水性聚合物的溶液。水和/或有机溶剂的用量没有特别限定,只要能使所述亲水性聚合物充分溶解/溶胀在水和/或有机溶剂中满足浸渍/浸没从而达到包覆的要求即可。
优选地,该方法还包括将挤出造粒、冷冻粉碎得到的颗粒过20目-200目优选20-100目的筛,取筛下物。
熔融条件以及挤出造粒、冷冻粉碎和过筛的操作可以参照现有技术进行,在此不再赘述。
符合本发明中有关要求的氢化苯乙烯类热塑性弹性体可以参照现有技术方法进行制备,例如先聚合,然后进行选择性氢化,具体氢化方法例如可参见WO 2020/088454的记载。也可以直接商购得到,例如可以为中石化巴陵石化市售品。
将本发明的组合物作为自修复剂以5-15重量%的比例加入油气田固井用水泥浆中,可配制出性能稳定的固井水泥浆,水泥浆固化后,具有遇油气自修复性能。
所述油气可以是油气井中储存的各种油、气或者它们的混合物,如甲烷气、石油原油等。
本发明第三方面提供了上述组合物和上述制备方法制得的组合物的油气田固井水泥浆。
优选地,以所述油气田固井水泥浆的总量为基准,所述组合物的含量为5-15重量%。
除了上述组合物,所述水泥浆一般还含有水和水泥。
本发明第四方面提供了上述组合物在油气田固井中的应用,优选作为油气田固井自修复剂的应用。
本发明第五方面提供了由上述油气田固井水泥浆形成的油气田固井水泥块和油气田固井。
本发明提供的油气田固井水泥块的密度为1.6-2克/立方厘米优选为1.7-2克/立方厘米。
优选地,该油固井水泥块的抗折强度为6-8MPa,弹性模量为5-7GPa,抗压强度为25-35MPa。
本发明第六方面提供了一种油气田固井的自修复方法,该方法包括使用上述油气田固井水泥浆形成油气田固井,或者先用油气田固井水泥浆制成水泥块(环),之后再用水泥块(环)形成油气田固井,然后在所述油气田固井出现裂缝时,使所述油气田固井与油气接触。
可以预先将上述油气田固井水泥浆制成水泥环,然后再通过将一个或多个水泥环叠加使用,制成油气田固井。
由于油气田固井材料中含有上述能够吸收油气且吸收油气后能够发生体积膨胀的自修复组合物,因此在油气田固井具有裂缝时通过使其与油气接触,从而使油气田固井中的自修复组合物吸收油气且吸收油气后发生体积膨胀,实现对裂缝的填补修复。
本发明中,在所述油气田固井出现裂缝时,使所述油气田固井与油气接触的含义是指在出现裂缝时,保持油气田固井与油气接触的状态,可以在裂缝出现之前,即使油气田固井与油气接触,从而使修复性能提前发挥,防止裂缝的产生;也可以在裂缝出现之后,使油气田固井与油气接触,实现对裂缝的修复。事实上,在实际油田中,油气田固井一直在与油气接触,从而使用本发明的组合物,能够防止裂缝的产生或者在裂缝产生后及时对裂缝进行修复。
所述油气可以为柴油、天然气、石油原油中的一种或多种。
接触的条件包括油气压力为1-10MPa,优选3-8MPa。接触的时间以裂缝填满或者不再出现漏气现象为准,一般不超过10小时,优选不超过5小时。
本发明中,除非另有说明,所述压力指表压。
由于本发明提供的组合物具有较好的抗老化性和与水泥较好的相容性,因此制成的水泥环和油气田固井具有较好的抗老化性和自修复性能,能够快速有效的实现对油气田固井的自修复,并长期保持封堵效果。
从后面的实施例可以看出,本发明的油气田固井,在100℃下以1600ml/min的天然气初始流速持续通入天然气至压力恒定在5MPa,5小时内天然气流速下降为0(即修复率100%);而现有技术有的需要高达100小时以上。
以下将通过实施例对本发明进行详细描述。下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。以下实施例中,水溶性聚合物均为市售品,苯乙烯类热塑性弹性体均为中石化巴陵石化分公司的市售品。油气田固井用水泥浆1为嘉华牌LHEC 42.5牌号的水泥与水按1:1重量比混合得到,密度为1.85g/cm 3。油气田固井用水泥浆2为嘉华牌LHEC 32.5牌号的水泥与水按1:1重量比混合得到,密度为1.87g/cm 3。油气田固井用水泥浆3为海螺牌P-C42.5水泥与水按1:1重量比混合得到,密度为1.87g/cm 3
实密度的测试方法:GB T 21354-2008方法
水接触角的测试方法:GB/T 36086-2018方法
水泥物理性能(抗折强度、弹性模量、抗压强度)测试方法:GB/T50080-2016方法
柴油和/或天然气吸收膨胀倍率的测试方法:将聚合物颗粒(初始体积记为V 0)完全浸没于柴油和天然气(1:1体积比)的混合油气中,聚合物颗粒与混合油气的体积比为1:100,每隔1小时测量一次聚合物颗粒的体积,至连续三次测量体积不再变化时,将该体积作为膨胀后的聚合物颗粒的体积,记为V,根据下述公式计算膨胀倍率:膨胀倍率=V/V 0
以下实施例和对比例中,除非另有说明,表示含量、浓度的“%”均为“重量%”。
实施例1
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30重量%、1,2-结构含量为37.7重量%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-冷冻粉碎-过40目筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的聚乙烯醇(PEG4000,羟值为0.38g/g聚合物)水溶液中,搅拌均匀,干燥、过40目筛得聚乙烯醇包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒的实密度为1.45g/cm 3,DSC曲线如图3所示。从DSC曲线可以看出该自修复颗粒含有氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物SEBS。 将该自修复剂颗粒与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为5重量%。静置12小时,油气田固井水泥浆未见明显分层。结果如图1所示。
实施例2
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30重量%、1,2-结构含量为37.7重量%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的聚乙烯醇(数均分子量为4000,羟值为0.38g/g聚合物)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得硼砂交联聚乙烯醇包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒的实密度为1.45g/cm 3,与油气田固井用水泥浆2均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为10重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例3
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30%、1,2-结构含量为37.7%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的瓜尔胶(广饶六合化工,数均分子量为200000,羟值0.6g/g瓜尔胶)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得硼砂交联瓜尔胶包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.46g/cm 3,与油气田固井水泥浆3均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为15重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例4
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30%、1,2-结构含量为37.7%,氢化度为97.9%)50%和沉淀硫酸钡(颗 粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-过40目筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的壳聚糖(南京松冠生物科技有限公司,数均分子量为50000,羟值为0.4g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得壳聚糖包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.44g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为8重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例5
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30%、1,2-结构含量为37.7%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为2重量%的壳聚糖(南京松冠生物科技有限公司,数均分子量为50000,羟值为0.4g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得壳聚糖包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.47g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为6重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例6
按质量百分比将氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物(数均分子量64179、苯乙烯结构单元含量30%、1,2-结构含量为31.6%,氢化度为97.7%)40%和硅酸盐水泥(颗粒大小10微米,密度为3.70g/cm 3)60%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到400ml的浓度为3重量%的聚甲基丙烯酸(数均分子量为6000,羧基含量为0.37g/g聚合物)水溶液中,搅拌均匀,干燥、粉碎、过20目筛得聚甲基丙烯酸包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.36g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为6重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例7
按质量百分比将氢化苯乙烯-异丁烯-苯乙烯三嵌段共聚物(数均分子量65009、苯乙烯结构单元含量25%、1,2-结构含量为37.6%,氢化度为98.1%)60%和重质碳酸钙(颗粒大小15微米,密度为2.8g/cm 3)40%混合均匀,通过熔融共混-造粒-粉碎-200目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到400ml的浓度为6重量%的聚甲基丙烯酸(数均分子量为6000,羧基含量为0.37g/g聚合物)水溶液中,搅拌均匀,干燥、粉碎、80目过筛得聚甲基丙烯酸包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.28g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为5.5重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例8
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量677031、苯乙烯结构单元含量40%、1,2-结构含量为38.2%,氢化度为98.5%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的海藻酸钠(四川华堂聚瑞,数均分子量为20000,羧基-COOH的含量为0.3g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得海藻酸钠包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.46g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为13重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例9
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量95300、苯乙烯结构单元含量30%、1,2-结构含量为37.6%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的海藻酸钠(四川华堂聚瑞,数均分子量为20000,羧 基-COOH的含量为0.3g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得海藻酸钠包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.47g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆,以所述油气田固井水泥浆的总量为基准,所述组合物的含量为13重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例10
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量136901、苯乙烯结构单元含量30%、1,2-结构含量为38.1%,氢化度为98.0%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的海藻酸钠(四川华堂聚瑞,数均分子量为20000,羧基-COOH的含量为0.3g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得海藻酸钠包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.48g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为13重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例11
按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(数均分子量65270、苯乙烯结构单元含量30%、1,2-结构含量为37.7%,氢化度为97.9%)50%和沉淀硫酸钡(颗粒大小15微米,密度为4.4g/cm 3)50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒;进一步将所制备的复合物颗粒200g加入到200ml的浓度为3重量%的海藻酸钠(四川华堂聚瑞,数均分子量为20000,羧基-COOH的含量为0.3g/g)水溶液中,搅拌均匀,干燥、粉碎、过40目筛得海藻酸钠包覆的苯乙烯类热塑性弹性体复合物自修复剂。该自修复剂颗粒实密度为1.45g/cm 3,与油气田固井用水泥浆1均匀混合,得油气田固井水泥浆。以所述油气田固井水泥浆的总量为基准,所述组合物的含量为13重量%。静置12小时,油气田固井水泥浆未见明显分层。
实施例12
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物的1,2-结构含量为20.5%。与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例13
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物的1,2-结构含量为48.5%。所得自修复剂颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例14
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物和沉淀硫酸钡的重量比为25:75。所得自修复剂颗粒实密度为1.65g/cm 3,与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例15
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物的氢化度为90.0%。所得自修复剂颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例16
按照实施例4的方法制备自修复剂组合物,不同的是,聚合物为星型氢化苯乙烯-丁二烯嵌段共聚物,其单臂数均分子量为80295,总数均分子量为250679、苯乙烯结构单元含量32重量%、1,2-结构含量为37.7重量%,氢化度为98.1%。所得自修复剂颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例17
按照实施例4的方法制备自修复剂组合物,不同的是,聚合物为星型氢化苯乙烯-丁二烯嵌段共聚物,其单臂数均分子量为90548,总数均分子量为291533、苯乙烯结构单元含量32重量%、1,2-结构含量为37.9重量%,氢化度为98.0%。所得自修复剂颗粒 与油气田固井用水泥浆1均匀混合的结果如表1所示。
实施例18
按照实施例4的方法制备自修复剂组合物,不同的是,聚合物为星型氢化苯乙烯-丁二烯嵌段共聚物,其单臂数均分子量为99270,总数均分子量为310590、苯乙烯结构单元含量32重量%、1,2-结构含量为38.5重量%,氢化度为97.5%。所得自修复剂颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
对比例1
按照实施例4的方法制备自修复剂,不同的是,不包括与壳聚糖水溶液混合步骤,即按质量百分比将氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物50%和沉淀硫酸钡50%混合均匀,通过熔融共混-造粒-粉碎-40目过筛得苯乙烯类热塑性弹性体和无机填料的复合物颗粒。该复合物颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
对比例2
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物、壳聚糖和沉淀硫酸钡一起混合均匀后,通过熔融共混-造粒-粉碎-过40目筛得自修复剂颗粒。与油气田固井用水泥浆1均匀混合的结果如表1所示。
对比例3
按照实施例4的方法制备自修复剂组合物,不同的是,氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物由相同重量的未氢化的苯乙烯-丁二烯-苯乙烯三嵌段共聚物代替,苯乙烯-丁二烯-苯乙烯三嵌段共聚物的数均分子量、苯乙烯结构单元含量、1,2-结构含量与实施例4的氢化聚合物大致相同。所得自修复剂颗粒与油气田固井用水泥浆1均匀混合的结果如表1所示。
对比例4
按照CN105952413A实施例表1中SBS#3作为自修复剂。与油气田固井用水泥浆1均匀混合的结果如表1所示。
表1
Figure PCTCN2021107562-appb-000002
性能测试
使用上述实施例和对比例的水泥浆各自制成4×4×15cm的水泥块,其中实施例1的外形照片如图5所示。各实施例和对比例水泥块在80℃养护48小时后的力学性能如下表2所示。
用上述水泥块堆砌成直径为1m、高为1m的模拟圆筒井,并在各块砖上形成500 微米×350微米的裂缝,在100℃,将天然气以初始流速1600ml/min,持续通入井内至井内压力恒定为5MPa,记录天然气流速下降为0(即修复率100%)的时间,结果如图2和下表2所示。实施例1的拉丝现象如图4所示。
表2
Figure PCTCN2021107562-appb-000003
Figure PCTCN2021107562-appb-000004
通过上表的结果可以看出,采用本发明的组合物具有明显更好的自修复性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (30)

  1. 一种组合物,其特征在于,该组合物的密度为1.2-2g/cm 3优选1.4-1.8g/cm 3,水接触角不大于90°优选小于85°,柴油和/或天然气吸收膨胀倍率为5-15倍优选8-12倍。
  2. 根据权利要求1所述的组合物,其中,该组合物含有氢化苯乙烯类热塑性弹性体、亲水性聚合物和无机填料,所述亲水性聚合物包覆在氢化苯乙烯类热塑性弹性体和无机填料的表面,氢化苯乙烯类热塑性弹性体与无机填料的重量比为30:70-70:30。
  3. 根据权利要求1或2所述的组合物,其中,所述氢化苯乙烯类热塑性弹性体和亲水性聚合物的重量比为1:0.01-1:0.1。
  4. 根据权利要求1-3中任意一项所述的组合物,其中,该组合物为20目~200目过筛物。
  5. 根据权利要求1-4中任意一项所述的组合物,其中,所述氢化苯乙烯类热塑性弹性体为氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物、氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物、苯乙烯-异丁烯-苯乙烯三嵌段共聚物的一种或两种以上。
  6. 根据权利要求1-5中任意一项所述的组合物,其中,所述氢化苯乙烯类热塑性弹性体的氢化度为95-100%。
  7. 根据权利要求1-6中任意一项所述的组合物,其中,所述氢化苯乙烯类热塑性弹性体为线性结构或星型结构,所述线性结构的数均分子量为4万-15万,所述星型结构的数均分子量为12万-32万。
  8. 根据权利要求1-7中任意一项所述的组合物,其中,以所述氢化苯乙烯类热塑性弹性体的重量为基准,所述氢化苯乙烯类热塑性弹性体中苯乙烯结构单元的含量为20-50重量%,1,2-结构含量25-40重量%。
  9. 根据权利要求1-8中任意一项所述的组合物,其中,所述无机填料的密度为2.5-6克/立方厘米,无机填料的大小为5-20μm。
  10. 根据权利要求1-9中任意一项所述的组合物,其中,所述无机填料为重质碳酸钙、硫酸钡、铁矿粉、水泥、石英砂、重晶石中的一种或两种以上。
  11. 根据权利要求1-10中任意一项所述的组合物,其中,所述亲水性聚合物含有亲水性官能团,所述亲水性官能团为羟基、氨基、羧基中的一种或多种。
  12. 根据权利要求11所述的组合物,其中,所述亲水性聚合物的亲水性官能团的含量为0.1-0.6g/g聚合物。
  13. 一种组合物的制备方法,该方法包括以下步骤:
    (1)将氢化苯乙烯类热塑性弹性体与无机填料混合均匀,得到混合物料,然后在氢化苯乙烯类热塑性弹性体的熔融条件下对混合物料进行挤出造粒;
    (2)将步骤(1)所得粒料用亲水性聚合物进行包覆,得到颗粒状物料。
  14. 根据权利要求13所述的制备方法,其中,无机填料和氢化苯乙烯类热塑性弹性体重量比为30:70-70:30,且氢化苯乙烯类热塑性弹性体和亲水性聚合物的重量比为1:0.01-1:0.1。
  15. 根据权利要求13或14所述的制备方法,其中,所述氢化苯乙烯类热塑性弹性体为氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物、氢化苯乙烯-异戊二烯-苯乙烯三嵌段共聚物、苯乙烯-异丁烯-苯乙烯三嵌段共聚物的一种或两种以上。
  16. 根据权利要求13-15中任意一项所述的制备方法,其中,所述氢化苯乙烯类热塑性弹性体的氢化度为95-100%。
  17. 根据权利要求13-16中任意一项所述的制备方法,其中,所述氢化苯乙烯类热塑性弹性体为线性结构或星型结构,所述线性结构的数均分子量为4万-15万,所述星型结构的数均分子量为12万-32万。
  18. 根据权利要求13-17中任意一项所述的制备方法,其中,以所述氢化苯乙烯类热塑性弹性体的重量为基准,所述氢化苯乙烯类热塑性弹性体中苯乙烯结构单元的含量为20-50重量%,1,2-结构含量25-40重量%。
  19. 根据权利要求13-18中任意一项所述的制备方法,其中,所述无机填料的密度为2.5-6克/立方厘米,无机填料的大小为5-20μm;
    优选地,所述无机填料为重质碳酸钙、硫酸钡、铁矿粉、水泥、石英砂、重晶石中的一种或两种以上。
  20. 根据权利要求13-19中任意一项所述的制备方法,其中,所述亲水性聚合物含有亲水性官能团,所述亲水性官能团为羟基、氨基、羧基中的一种或多种。
  21. 根据权利要求20所述的制备方法,其中,所述亲水性聚合物的亲水性官能团的含量为0.1-0.6g/g聚合物。
  22. 根据权利要求13-21中任意一项所述的制备方法,其中,所述包覆的方式为用含亲水性聚合物的溶液浸渍步骤(1)所得粒料,然后干燥。
  23. 根据权利要求13-22中任意一项所述的制备方法,该方法还包括将挤出造粒得到的颗粒过20目-200目的筛。
  24. 含有权利要求1-12中任意一项所述的组合物或权利要求13-23中任意一项所述的制备方法制得的组合物的油气田固井水泥浆。
  25. 根据权利要求24所述的油气田固井水泥浆,其中,以所述油气田固井水泥浆的总量为基准,所述组合物的含量为5-15重量%。
  26. 权利要求1-12中任意一项所述的组合物或权利要求13-23中任意一项所述的制备方法制得的组合物在油气田固井中的应用,优选作为油气田固井自修复剂的应用。
  27. 由权利要求24或25所述的油气田固井水泥浆形成的油气田固井水泥块。
  28. 根据权利要求27所述的油气田固井水泥块,其中,该油气田固井水泥块的密度为1.6-2克/立方厘米,抗折强度为6-8MPa,弹性模量为5-7GPa,抗压强度为25-35MPa。
  29. 由权利要求24或25所述的油气田固井水泥浆或者权利要求28或29所述的油气田固井水泥块形成的油气田固井。
  30. 一种油气田固井的自修复方法,该方法包括使用权利要求24或25所述的油气田固井水泥浆或者权利要求26或27所述的油气田固井水泥块形成油气田固井,然后在所述油气田固井出现裂缝时,使所述油气田固井与油气接触。
PCT/CN2021/107562 2020-07-31 2021-07-21 组合物及其制备方法和应用及油气田固井自修复方法 WO2022022355A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021004033.2T DE112021004033T5 (de) 2020-07-31 2021-07-21 Zusammensetzung, Herstellungsverfahren dafür und Anwendung der Zusammensetzung und Selbstheilungsverfahren für eine Bohrlochzementierung in einem Öl/Gasfeld
JP2023506115A JP2023537305A (ja) 2020-07-31 2021-07-21 組成物、その製造方法及び使用、並びに油ガス田の坑井セメンチング自己修復方法。
ES202390002A ES2939813R1 (es) 2020-07-31 2021-07-21 Composicion, metodo de preparacion para y aplicacion de la composicion, y metodo de autocuracion para cementacion de pozos en yacimiento petrolero/de gas
US18/005,914 US20230295483A1 (en) 2020-07-31 2021-07-21 Composition, preparation method for and application of composition, and self-healing method for well cementing in oil/gas field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010759397.8 2020-07-31
CN202010759397.8A CN114058035A (zh) 2020-07-31 2020-07-31 组合物及其制备方法和应用及油气田固井自修复方法

Publications (1)

Publication Number Publication Date
WO2022022355A1 true WO2022022355A1 (zh) 2022-02-03

Family

ID=80037111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107562 WO2022022355A1 (zh) 2020-07-31 2021-07-21 组合物及其制备方法和应用及油气田固井自修复方法

Country Status (6)

Country Link
US (1) US20230295483A1 (zh)
JP (1) JP2023537305A (zh)
CN (1) CN114058035A (zh)
DE (1) DE112021004033T5 (zh)
ES (1) ES2939813R1 (zh)
WO (1) WO2022022355A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636591A1 (en) * 1993-07-29 1995-02-01 ENIRICERCHE S.p.A. Cementitious composition for the cementation of oil wells
US6516884B1 (en) * 2002-07-23 2003-02-11 Halliburton Energy Services, Inc. Stable well cementing methods and compositions
US7530396B1 (en) * 2008-01-24 2009-05-12 Halliburton Energy Services, Inc. Self repairing cement compositions and methods of using same
CN102031097A (zh) * 2009-09-29 2011-04-27 中国石油集团西部钻探工程有限公司克拉玛依钻井工艺研究院 一种增强油井水泥浆的方法
CN104177555A (zh) * 2014-08-18 2014-12-03 清华大学 一种用于水泥基材料吸油膨胀的聚合物胶乳及其制备方法
CN104448087A (zh) * 2013-09-18 2015-03-25 中国石油天然气集团公司 一种核壳型聚合物微球及其制备和应用
CN106554764A (zh) * 2015-09-25 2017-04-05 中国石油化工股份有限公司 增塑剂及其制备方法和包括该增塑剂的水泥浆
CN106565383A (zh) * 2015-10-13 2017-04-19 中国石油化工股份有限公司 一种复合颗粒、其制备方法和应用
US20180037798A1 (en) * 2014-09-29 2018-02-08 Halliburton Energy Services, Inc. Self-healing cement comprising polymer capable of swelling in gaseous environment
CN108219332A (zh) * 2017-12-29 2018-06-29 中海石油(中国)有限公司湛江分公司 一种吸油膨胀材料及其制备方法和应用
US20190161669A1 (en) * 2016-04-08 2019-05-30 Schlumberger Technology Corporation Slurry comprising an encapsulated expansion agent for well cementing
CN111039591A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 一种油气井固井采用的自修复材料及制备方法
CN111040746A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 一种油气井固井采用的自修复材料及制备方法
CN111255411A (zh) * 2020-04-23 2020-06-09 中石化石油工程技术服务有限公司 采用核壳型耐高温堵漏剂进行高温井堵漏的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740070B2 (en) * 2008-06-16 2010-06-22 Halliburton Energy Services, Inc. Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same
US8450391B2 (en) * 2009-07-29 2013-05-28 Halliburton Energy Services, Inc. Weighted elastomers, cement compositions comprising weighted elastomers, and methods of use
EP2450417B1 (en) 2010-08-17 2016-05-18 Services Pétroliers Schlumberger Self-repairing cements
US9657213B2 (en) * 2014-10-20 2017-05-23 Kraton Polymers U.S. Llc Curable, resealable, swellable, reactive sealant composition for zonal isolation and well integrity
CN112752777B (zh) 2018-10-30 2022-10-14 中国石油化工股份有限公司 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636591A1 (en) * 1993-07-29 1995-02-01 ENIRICERCHE S.p.A. Cementitious composition for the cementation of oil wells
US6516884B1 (en) * 2002-07-23 2003-02-11 Halliburton Energy Services, Inc. Stable well cementing methods and compositions
US7530396B1 (en) * 2008-01-24 2009-05-12 Halliburton Energy Services, Inc. Self repairing cement compositions and methods of using same
CN102031097A (zh) * 2009-09-29 2011-04-27 中国石油集团西部钻探工程有限公司克拉玛依钻井工艺研究院 一种增强油井水泥浆的方法
CN104448087A (zh) * 2013-09-18 2015-03-25 中国石油天然气集团公司 一种核壳型聚合物微球及其制备和应用
CN104177555A (zh) * 2014-08-18 2014-12-03 清华大学 一种用于水泥基材料吸油膨胀的聚合物胶乳及其制备方法
US20180037798A1 (en) * 2014-09-29 2018-02-08 Halliburton Energy Services, Inc. Self-healing cement comprising polymer capable of swelling in gaseous environment
CN106554764A (zh) * 2015-09-25 2017-04-05 中国石油化工股份有限公司 增塑剂及其制备方法和包括该增塑剂的水泥浆
CN106565383A (zh) * 2015-10-13 2017-04-19 中国石油化工股份有限公司 一种复合颗粒、其制备方法和应用
US20190161669A1 (en) * 2016-04-08 2019-05-30 Schlumberger Technology Corporation Slurry comprising an encapsulated expansion agent for well cementing
CN108219332A (zh) * 2017-12-29 2018-06-29 中海石油(中国)有限公司湛江分公司 一种吸油膨胀材料及其制备方法和应用
CN111039591A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 一种油气井固井采用的自修复材料及制备方法
CN111040746A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 一种油气井固井采用的自修复材料及制备方法
CN111255411A (zh) * 2020-04-23 2020-06-09 中石化石油工程技术服务有限公司 采用核壳型耐高温堵漏剂进行高温井堵漏的方法

Also Published As

Publication number Publication date
ES2939813R1 (es) 2023-04-28
US20230295483A1 (en) 2023-09-21
DE112021004033T5 (de) 2023-06-01
ES2939813A2 (es) 2023-04-27
JP2023537305A (ja) 2023-08-31
CN114058035A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP5096486B2 (ja) マイクロカプセル
US9018147B2 (en) Cement-based particulates and methods of use
CN100572494C (zh) 延缓油气井工作液外加剂释放的微胶囊及其制备方法
WO2019129148A1 (zh) 一种改性沥青及其制备方法
CN105524600A (zh) 一种油基钻井液用随钻堵漏剂及其制备方法
AU2019333270B2 (en) Re-crosslinking particle gel for CO2 Conformance Control and CO2 Leakage Blocking
CN102733175B (zh) 一种多元分散相阻燃型剪切增稠液体及其制备方法与应用
WO2022022355A1 (zh) 组合物及其制备方法和应用及油气田固井自修复方法
CN106732222A (zh) 沥青裂缝自修复微胶囊及其制备方法
WO2018152869A1 (zh) 一种防火胶液基质及其制备方法和防火胶液及其制备方法
CN111073028A (zh) 一种无机材料修饰的微胶囊及其制备方法和应用
CN114716208A (zh) 一种冬施微膨胀混凝土及其制备方法
Zou et al. Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage
CN114874762A (zh) 一种聚苯乙烯复合压裂支撑剂及其制备方法
WO2020019165A1 (zh) 钻井用凝胶堵漏浆以及堵漏浆的制备方法和段塞堵漏方法
RU2804388C1 (ru) Композиция, способ получения и применение композиции и способ самовосстановления цементной крепи скважины на нефтегазовом месторождении
KR102635893B1 (ko) 마이크로캡슐화된 상변화물질 적용 조적벽돌 쌓기용 고축열 시멘트질 모르타르 접착제 및 이의 제조방법
CN114804706B (zh) 一种混凝土外加剂、使用外加剂的混凝土及其制备方法
CN114773516A (zh) 复合压敏树脂颗粒及复合压敏树脂堵漏剂
CN212680964U (zh) 一种自修复微胶囊
CN102766305B (zh) 一种高强度耐热聚苯乙烯系复合交联微球材料及其制备方法
CN105112031A (zh) 一种采用高分子聚合冻胶堵漏剂进行浅井堵漏的方法
CN114181352B (zh) 一种聚合物材料及其制备方法与固井水泥浆体系
CN110016330B (zh) 一种支撑剂及其制备方法
CN116333505B (zh) 一种生物质自愈合改性沥青卷材的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023101003

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 21850310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523442238

Country of ref document: SA