WO2022022116A1 - 一种两镜片小直径大视场角的镜头 - Google Patents

一种两镜片小直径大视场角的镜头 Download PDF

Info

Publication number
WO2022022116A1
WO2022022116A1 PCT/CN2021/099857 CN2021099857W WO2022022116A1 WO 2022022116 A1 WO2022022116 A1 WO 2022022116A1 CN 2021099857 W CN2021099857 W CN 2021099857W WO 2022022116 A1 WO2022022116 A1 WO 2022022116A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
view
image side
stop
large field
Prior art date
Application number
PCT/CN2021/099857
Other languages
English (en)
French (fr)
Inventor
陈俊宏
张若金
Original Assignee
湖北华鑫光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北华鑫光电有限公司 filed Critical 湖北华鑫光电有限公司
Publication of WO2022022116A1 publication Critical patent/WO2022022116A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the invention relates to the technical field of lenses, in particular to a lens with two lenses having small diameters and large viewing angles.
  • the shooting space is small, or the installation space of the lens is small, not only the outer diameter of the lens is required to be small, but also to meet the needs of large function of the field of view.
  • the present invention provides a two-lens lens with a small diameter and a large field of view, which can not only shoot in a narrow space, but also meet the requirements of the small size of the outer diameter of the lens and the function of a large field of view.
  • the present invention provides the following technical solutions:
  • a lens with two lenses of small diameter and large field of view characterized in that, starting from the object side, along the optical axis to the image side, sequentially provided with: a first lens (L1), an aperture stop (Stop) and a second lens (L2); wherein, the first lens (L1) is a negative lens, which has a first surface and a second surface whose central position is concave toward the image side; the second lens (L2) is a positive lens, which has a first surface Three surfaces and a fourth surface convex toward the image side; the aperture stop (Stop) is located between the first lens (L1) and the second lens (L2), and is used to balance the outer diameters of the two lenses.
  • the surfaces of the first lens (L1) and the second lens (L2) are spherical or aspherical.
  • an optical filter is provided on the image side of the second lens (L2).
  • the lens satisfies the following conditions: 0.1 ⁇ (Tfs/f)/tan(HFOV) ⁇ 0.5; wherein, Tfs is: the first lens (L1 ) The distance from the center of the object surface to the aperture stop (Stop); f is the effective focal length of the lens; HFOV is half of the maximum field of view.
  • the lens satisfies the following conditions: 1 ⁇ f/f2 ⁇ 2; where f is the effective focal length of the lens; f2 is the focal length of the second lens.
  • the lens satisfies the following conditions: 0.1 ⁇ [Ho/tan(HFOV)]/f ⁇ 0.5; wherein, Ho is the first angle of view at the maximum field of view.
  • Ho is the first angle of view at the maximum field of view.
  • the present invention has the following characteristics:
  • the first lens (L1) is a negative lens, which is conducive to realizing a large field of view;
  • the aperture stop (Stop) is located between the two lenses, which balances the outer diameters of the two lenses, which is conducive to realizing the requirements of the small outer diameter of the lens;
  • the second lens (L2) is a positive lens, and the optical power required for imaging of the lens is mainly provided by the second lens;
  • the invention adopts two lenses, can shoot in a narrow space, meets the size requirements of small outer diameter of the lens and the function of large field of view, and can be used in the field where the shooting space is narrow or the installation space of the lens is narrow.
  • Figure 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 3 is a ray fan diagram of Embodiment 1 of the present invention.
  • FIG. 4 is a field curvature and distortion curve diagram of Embodiment 1 of the present invention.
  • FIG. 5 is an MTF resolution graph of Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 7 is a ray fan diagram of Embodiment 2 of the present invention.
  • FIG. 8 is a graph of field curvature and distortion curve of Embodiment 2 of the present invention.
  • FIG. 9 is an MTF resolution curve diagram of Embodiment 2 of the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 11 is a ray fan diagram of Embodiment 3 of the present invention.
  • FIG. 12 is a graph of field curvature and distortion curve of Embodiment 3 of the present invention.
  • FIG. 13 is an MTF resolution curve diagram of Embodiment 3 of the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 4 of the present invention.
  • FIG. 15 is a ray fan diagram of Embodiment 4 of the present invention.
  • FIG. 16 is a graph of field curvature and distortion curve of Example 4 of the present invention.
  • FIG. 17 is an MTF resolution graph of Embodiment 4 of the present invention.
  • FIG. 2 is a schematic diagram of an optical lens according to the first embodiment of the present invention.
  • a first lens L1 an aperture stop Stop, a second lens L2, an optical filter (IR) and a Imaging surface Image
  • the first lens L1 has a first surface S1 and a second surface S2 concave to the image side at the center
  • the aperture stop Stop has a surface S3
  • the second lens L2 has a third surface S4 and a convex image side
  • the filter IR has a first surface S6 facing the object side and a second surface S7 facing the image side;
  • the imaging surface Image has a surface S8.
  • the lens data of the above-mentioned lenses are shown in Tables 1 and 2 below.
  • FIGS. 6-9 are schematic diagram of an optical lens according to a second embodiment of the present invention.
  • a first lens L1 an aperture stop Stop, a second lens L2 , an optical filter (IR) and a Imaging surface Image
  • the first lens L1 has a first surface S1 and a second surface S2 concave to the image side at the center
  • the aperture stop Stop has a surface S3
  • the second lens L2 has a third surface S4 and a convex image side
  • the filter IR has a first surface S6 facing the object side and a second surface S7 facing the image side;
  • the imaging surface Image has a surface S8.
  • the lens data of the above-mentioned lenses are shown in Table 4 below.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 10 is a schematic diagram of an optical lens according to a third embodiment of the present invention.
  • a first lens L1, an aperture stop Stop, a second lens L2, an optical filter IR and an imaging surface are sequentially arranged along the optical axis from the object side to the image side Image;
  • the first lens L1 has a first surface S1 and a second surface S2 that is concave to the image side at the center;
  • the aperture stop Stop has a surface S3;
  • the second lens L2 has a third surface S4 and a second surface S4 that is convex to the image side Four surfaces S5;
  • the filter IR has a first surface S6 facing the object side and a second surface S7 facing the image side;
  • the imaging plane Image has a surface S8.
  • the lens data of the above-mentioned lenses are shown in Table 6 below.
  • MTF resolution curve As shown in Figure 13 (MTF resolution curve), it can be seen from the curve that the MTF curves of the meridian and sagittal of each field of view are relatively close, indicating that the lens has two directions of meridian (T) and sagittal (S). The imaging consistency is relatively good, and the lens has better imaging effect and resolution.
  • FIGS. 14-17 is a schematic diagram of an optical lens according to a fourth embodiment of the present invention.
  • a first lens L1 , an aperture stop Stop, a second lens L2 , a filter IR and an imaging surface are sequentially arranged along the optical axis from the object side to the image side Image;
  • the first lens L1 has a surface S1 and a second surface S2 concave in the center to the image side;
  • the aperture stop Stop has a surface S3;
  • the second lens L2 has a third surface S4 and a fourth surface S4 convex to the image side Surface S5;
  • filter IR has a first surface S6 towards the object side and a second surface S7 towards the image side;
  • the imaging plane Image has a surface S8.
  • the lens data of the above-mentioned lenses are shown in Table 8 below.
  • MTF resolution curve As shown in Figure 17 (MTF resolution curve), it can be seen from the curve that the MTF curves of the meridian and sagittal of each field of view are relatively close, indicating that the lens has two directions of meridian (T) and sagittal (S). The imaging consistency is relatively good, and the lens has better imaging effect and resolution.
  • the lens of the present invention has two lenses with a small diameter and a large field of view.
  • the lens not only satisfies the requirements of small outer diameter of the lens and the function of large field of view, but also has a simple structure and can be photographed in a narrow space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种两镜片小直径大视场角的镜头,从物方开始,沿光轴到像方,依次设置有:第一透镜(L1)、孔径光阑(Stop)以及第二透镜(L2);其中,第一透镜(L1)为负透镜,其具有第一表面和中央位置凹向像方的第二表面;第二透镜(L2)为正透镜,其具有第三表面和凸向像方的第四表面;孔径光阑(Stop)位于第一透镜L1和第二透镜L2之间,用于平衡两镜片的外径大小。采用两片镜片,能够在狭小空间拍摄,满足镜头外径小的尺寸要求和大视场角的功能,可以用在拍摄空间狭小或者镜头的安装空间狭小的领域。

Description

一种两镜片小直径大视场角的镜头 技术领域
本发明涉及镜头技术领域,更具体的说是涉及一种两镜片小直径大视场角的镜头。
背景技术
在一些应用领域(比如医学、工业、环保、科研、搜寻、探索,以及其他各种领域),拍摄空间狭小,或者镜头的安装空间狭小,则不仅需要镜头的外径小,同时还要满足大视场角的功能。
因此,如何提供一种可以满足上述要求的两镜片小直径大视场角的镜头是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种两镜片小直径大视场角的镜头,其不仅能够在狭小空间拍摄,而且还可以满足镜头外径小的尺寸要求和大视场角的功能。
为实现上述目的,本发明提供如下技术方案:
一种两镜片小直径大视场角的镜头,其特征在于,从物方开始,沿光轴到像方,依次设置有:第一透镜(L1)、孔径光阑(Stop)以及第二透镜(L2);其中,所述第一透镜(L1)为负透镜,其具有第一表面和中央位置凹向像方的第二表面;所述第二透镜(L2)为正透镜,其具有第三表面和凸向像方的第四表面;所述孔径光阑(Stop)位于第一透镜(L1)和第二透镜(L2)之间,用于平衡两镜片的外径大小。
优选的,在上述一种两镜片小直径大视场角的镜头中,所述第一透镜(L1)和第二透镜(L2)的表面为球面或非球面。
优选的,在上述一种两镜片小直径大视场角的镜头中,所述第二透镜(L2)的像方一侧设有滤光片(IR)。
优选的,在上述一种两镜片小直径大视场角的镜头中,该镜头满足下列条件:0.1<(Tfs/f)/tan(HFOV)<0.5;其中,Tfs为:第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离;f为镜头的有效焦距;HFOV为最大视场角的一半。
优选的,在上述一种两镜片小直径大视场角的镜头中,该镜头满足下列条件:1<f/f2<2;其中,f为镜头的有效焦距;f2为第二透镜的焦距。
优选的,在上述一种两镜片小直径大视场角的镜头中,该镜头满足下列条件:0.1<[Ho/tan(HFOV)]/f<0.5;其中,Ho为最大视场角时第一透镜物方表面边缘光线高度;HFOV为最大视场角的一半;f为镜头的有效焦距。
经由上述的技术方案可知,与现有技术相比,本发明具有以下特点:
第一透镜(L1),为负透镜,利于实现大视场角;
孔径光阑(Stop)处于两个透镜之间,平衡两镜片的外径大小,利于实现镜头的小外径的要求;
第二透镜(L2)为正透镜, 本镜头成像所需的光焦度,主要由第二透镜提供;
本发明采用两片镜片,能够在狭小空间拍摄,满足镜头外径小的尺寸要求和大视场角的功能,可以用在拍摄空间狭小或者镜头的安装空间狭小的领域。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不 付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明的结构示意图。
图2附图为本发明的实施例1结构示意图。
图3附图为本发明的实施例1的光线扇形图。
图4附图为本发明的实施例1的场曲和畸变曲线图。
图5附图为本发明的实施例1的MTF解像曲线图。
图6附图为本发明的实施例2结构示意图。
图7附图为本发明的实施例2的光线扇形图。
图8附图为本发明的实施例2的场曲和畸变曲线图。
图9附图为本发明的实施例2的MTF解像曲线图。
图10附图为本发明的实施例3结构示意图。
图11附图为本发明的实施例3的光线扇形图。
图12附图为本发明的实施例3的场曲和畸变曲线图。
图13附图为本发明的实施例3的MTF解像曲线图
图14附图为本发明的实施例4结构示意图。
图15附图为本发明的实施例4的光线扇形图。
图16附图为本发明的实施例4的场曲和畸变曲线图。
图17附图为本发明的实施例4的MTF解像曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:图2为本实用新型第一实施例的光学镜头的示意图。如图2-5所示,根据本实用新型第一实施例沿光轴从物侧至像侧依次设置有第一透镜 L1、孔径光阑Stop、第二透镜L2、滤光片(IR)以及成像面Image;第一透镜L1,具有第一表面S1和中央位置凹向像方的第二表面S2;孔径光阑Stop具有表面S3;第二透镜L2,具有第三表面S4和凸向像方的第四表面S5;滤波片IR具有向着物侧的第一表面S6和向着像侧的第二表面S7;成像面Image具有表面S8。
上述透镜的透镜数据由以下表1、表2所示。
【表1】
Figure PCTCN2021099857-appb-000001
【表2】
Figure PCTCN2021099857-appb-000002
Figure PCTCN2021099857-appb-000003
上述透镜满足的条件如表3所示。
【表3】
标记 表示的内容 数值
f 镜头的有效焦距 1.469
HFOV 最大视场角的一半 70
f1 第一透镜(L1)的焦距 -1.638
f2 第二透镜(L2)的焦距 1.17
Ho 最大视场角时第一透镜(L1)物方表面边缘光线高度。 0.782
Tfs 第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离 0.907
     
2、 0.1<(Tfs/f)/tan(HFOV)<0.5 0.225
3、 1<f/f2<2 1.256
4、 0.1<[Ho/tan(HFOV)]/f<0.5 0.194
在上述实施例中:
如图3所示(光线扇形图),可以看出,低阶的球差已经被矫正的很好,高阶球差也较小。
如图4所示(场曲和畸变图),由曲线可知,畸变曲线较为平滑,有效提高了展开图像的清晰度。
如图5所示(MTF解像曲线图),由曲线可知,各个视场的子午和弧矢的MTF曲线比较接近,表明该镜头的在子午(T)和弧矢(S)两个方向的成像一致性比较好,该镜头具有较好的成像效果与分辨率。
实施例2:
图5为本实用新型第二实施例的光学镜头的示意图。如图6-9所示,根据本实用新型第二实施例沿光轴从物侧至像侧依次设置有第一透镜L1、孔径光阑Stop、第二透镜L2、滤光片(IR)以及成像面Image;第一透镜L1,具有第一表面S1和中央位置凹向像方的第二表面S2;孔径光阑Stop具有表面S3;第二透镜L2,具有第三表面S4和凸向像方的第四表面S5;滤波片IR具有向着物侧的第一表面S6和向着像侧的第二表面S7;成像面Image具有表面S8。
上述透镜的透镜数据由以下表4所示。
【表4】
Figure PCTCN2021099857-appb-000004
上述透镜满足的条件如表5所示。
【表5】
标记 表示的内容 数值
f 镜头的有效焦距 1.008
HFOV 最大视场角的一半 60
f1 第一透镜(L1)的焦距 -2.27
f2 第二透镜(L2)的焦距 0.806
Ho 最大视场角时第一透镜(L1)物方表面边缘光线高度。 0.392
Tfs 第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离 0.365
     
2、 0.1<(Tfs/f)/tan(HFOV)<0.5 0.209
3、 1<f/f2<2 1.251
4、 0.1<[Ho/tan(HFOV)]/f<0.5 0.225
在上述实施例中:
如图7所示(光线扇形图),可以看出,低阶的球差已经被矫正的很好,高阶球差也较小。
如图8所示(场曲和畸变图),由曲线可知,畸变曲线较为平滑,有效提高了展开图像的清晰度。
如图9所示(MTF解像曲线图),由曲线可知,各个视场的子午和弧矢的MTF曲线比较接近,表明该镜头的在子午(T)和弧矢(S)两个方向的成像一致性比较好,该镜头具有较好的成像效果与分辨率。
实施例3:
图10为本实用新型第三实施例的光学镜头的示意图。如图10-13所示,根据本实用新型第三实施例沿光轴从物侧至像侧依次设置有第一透镜L1、孔径光阑Stop、第二透镜L2、滤光片IR以及成像面Image;第一透镜L1,具有第一表面S1和中央位置凹向像方的第二表面S2;孔径光阑Stop具有表面S3;第二透镜L2,具有第三表面S4和凸向像方的第四表面S5;滤波片IR具有向着物侧的第一表面S6和向着像侧的第二表面S7;成像面Image具有表面S8。
上述透镜的透镜数据由以下表6所示。
【表6】
Figure PCTCN2021099857-appb-000005
上述透镜满足的条件如表7所示。
【表7】
标记 表示的内容 数值
f 镜头的有效焦距 1.037
HFOV 最大视场角的一半 60
f1 第一透镜(L1)的焦距 -2.093
f2 第二透镜(L2)的焦距 0.825
Ho 最大视场角时第一透镜(L1)物方表面边缘光线高度。 0.365
Tfs 第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离 0.359
     
2、 0.1<(Tfs/f)/tan(HFOV)<0.5 0.200
3、 1<f/f2<2 1.257
4、 0.1<[Ho/tan(HFOV)]/f<0.5 0.203
在上述实施例中:
如图11所示(光线扇形图),可以看出,低阶的球差已经被矫正的很好,高阶球差也较小。
如图12所示(场曲和畸变图),由曲线可知,畸变曲线较为平滑,有效提高了展开图像的清晰度。
如图13所示(MTF解像曲线图),由曲线可知,各个视场的子午和弧矢的MTF曲线比较接近,表明该镜头的在子午(T)和弧矢(S)两个方向的成像一致性比较好,该镜头具有较好的成像效果与分辨率。
实施例4:
图14为本实用新型第四实施例的光学镜头的示意图。如图14-17所示,根据本实用新型第四实施例沿光轴从物侧至像侧依次设置有第一透镜L1、孔径光阑Stop、第二透镜L2、滤光片IR以及成像面Image;第一透镜L1,具有一表面S1和中央位置凹向像方的第二表面S2;孔径光阑Stop具有表面S3;第二透镜L2,具有第三表面S4和凸向像方的第四表面S5;滤波片IR具有向着物侧的第一表面S6和向着像侧的第二表面S7;成像面Image具有表面S8。
上述透镜的透镜数据由以下表8所示。
【表8】
Figure PCTCN2021099857-appb-000006
上述透镜满足的条件如表9所示。
【表9】
标记 表示的内容 数值
f 镜头的有效焦距 1.038
HFOV 最大视场角的一半 60
f1 第一透镜(L1)的焦距 -1.994
f2 第二透镜(L2)的焦距 0.813
Ho 最大视场角时第一透镜(L1)物方表面边缘光线高度。 0.365
Tfs 第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离 0.356
     
2、 0.1<(Tfs/f)/tan(HFOV)<0.5 0.198
3、 1<f/f2<2 1.277
4、 0.1<[Ho/tan(HFOV)]/f<0.5 0.203
在上述实施例中:
如图15所示(光线扇形图),可以看出,低阶的球差已经被矫正的很好,高阶球差也较小。
如图16所示(场曲和畸变图),由曲线可知,畸变曲线较为平滑,有效提高了展开图像的清晰度。
如图17所示(MTF解像曲线图),由曲线可知,各个视场的子午和弧矢的MTF曲线比较接近,表明该镜头的在子午(T)和弧矢(S)两个方向的成像一致性比较好,该镜头具有较好的成像效果与分辨率。
由上述可知,本实用新型的两镜片小直径大视场角的镜头,该镜头既满足镜头外径小的尺寸要求和大视场角的功能,同时结构简单,可以在狭小空间进行拍摄。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

  1. 一种两镜片小直径大视场角的镜头,其特征在于,从物方开始,沿光轴到像方,依次设置有:第一透镜(L1)、孔径光阑(Stop)以及第二透镜(L2);其中,所述第一透镜(L1)为负透镜,其具有第一表面和中央位置凹向像方的第二表面;所述第二透镜(L2)为正透镜,其具有第三表面和凸向像方的第四表面;所述孔径光阑(Stop)位于第一透镜(L1)和第二透镜(L2)之间,用于平衡两镜片的外径大小。
  2. 根据权利要求1所述的一种两镜片小直径大视场角的镜头,其特征在于,所述第一透镜(L1)和第二透镜(L2)的表面为球面或非球面。
  3. 根据权利要求1所述的一种两镜片小直径大视场角的镜头,其特征在于,所述第二透镜(L2)的像方一侧设有滤光片(IR)。
  4. 根据权利要求1所述的一种两镜片小直径大视场角的镜头,其特征在于,该镜头满足下列条件:0.1<(Tfs/f)/tan(HFOV)<0.5;其中,Tfs为:第一透镜(L1)物方表面中心到孔径光阑(Stop)的距离;f为镜头的有效焦距;HFOV为最大视场角的一半。
  5. 根据权利要求5所述的一种两镜片小直径大视场角的镜头,其特征在于,该镜头满足下列条件:1<f/f2<2;其中,f为镜头的有效焦距;f2为第二透镜(L2)的焦距。
  6. 根据权利要求6所述的一种两镜片小直径大视场角的镜头,其特征在于,该镜头满足下列条件:0.1<[Ho/tan(HFOV)]/f<0.5;其中,Ho为最大视场角时第一透镜(L1)物方表面边缘光线高度;HFOV为最大视场角的一半;f为镜头的有效焦距。
PCT/CN2021/099857 2020-07-29 2021-06-11 一种两镜片小直径大视场角的镜头 WO2022022116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010747002.2 2020-07-29
CN202010747002.2A CN112285881A (zh) 2020-07-29 2020-07-29 一种两镜片小直径大视场角的镜头

Publications (1)

Publication Number Publication Date
WO2022022116A1 true WO2022022116A1 (zh) 2022-02-03

Family

ID=74420658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099857 WO2022022116A1 (zh) 2020-07-29 2021-06-11 一种两镜片小直径大视场角的镜头

Country Status (2)

Country Link
CN (1) CN112285881A (zh)
WO (1) WO2022022116A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285881A (zh) * 2020-07-29 2021-01-29 湖北华鑫光电有限公司 一种两镜片小直径大视场角的镜头

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330575A (ja) * 2005-05-30 2006-12-07 Konica Minolta Opto Inc 撮像レンズ
CN102067005A (zh) * 2008-06-16 2011-05-18 松下电器产业株式会社 双片组摄像光学系统和具有它的摄像装置
JP2014002252A (ja) * 2012-06-18 2014-01-09 Kyocera Corp 撮像光学系および撮像装置
US20170068087A1 (en) * 2015-09-04 2017-03-09 Olympus Corporation Image forming optical system, image pickup apparatus, optical apparatus, and capsule endoscope
CN106842518A (zh) * 2017-03-03 2017-06-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN107065148A (zh) * 2017-03-31 2017-08-18 广东旭业光电科技股份有限公司 一种光学镜头及成像设备
CN109196519A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备
CN112285881A (zh) * 2020-07-29 2021-01-29 湖北华鑫光电有限公司 一种两镜片小直径大视场角的镜头
CN212623307U (zh) * 2020-07-29 2021-02-26 湖北华鑫光电有限公司 一种两镜片小直径大视场角的镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330575A (ja) * 2005-05-30 2006-12-07 Konica Minolta Opto Inc 撮像レンズ
CN102067005A (zh) * 2008-06-16 2011-05-18 松下电器产业株式会社 双片组摄像光学系统和具有它的摄像装置
JP2014002252A (ja) * 2012-06-18 2014-01-09 Kyocera Corp 撮像光学系および撮像装置
US20170068087A1 (en) * 2015-09-04 2017-03-09 Olympus Corporation Image forming optical system, image pickup apparatus, optical apparatus, and capsule endoscope
CN106842518A (zh) * 2017-03-03 2017-06-13 东莞市宇光光电科技有限公司 内窥用摄像物镜光学系统
CN107065148A (zh) * 2017-03-31 2017-08-18 广东旭业光电科技股份有限公司 一种光学镜头及成像设备
CN109196519A (zh) * 2018-08-21 2019-01-11 深圳市汇顶科技股份有限公司 镜头系统、指纹识别装置和终端设备
CN112285881A (zh) * 2020-07-29 2021-01-29 湖北华鑫光电有限公司 一种两镜片小直径大视场角的镜头
CN212623307U (zh) * 2020-07-29 2021-02-26 湖北华鑫光电有限公司 一种两镜片小直径大视场角的镜头

Also Published As

Publication number Publication date
CN112285881A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2020093725A1 (zh) 摄像光学系统
TWI720172B (zh) 光學鏡頭
TWI720901B (zh) 光學鏡頭
WO2021238648A1 (zh) 光学成像镜头及成像设备
WO2020073703A1 (zh) 光学透镜组
WO2021129577A1 (zh) 光学成像镜头及成像设备
WO2017148078A1 (zh) 超广角摄像镜头
WO2021000590A1 (zh) 一种成像镜头
WO2016161798A1 (zh) 交互式镜头
TWI648555B (zh) 光學鏡頭
WO2018218889A1 (zh) 光学成像系统
CN109212721A (zh) 摄像镜头组
CN109656000A (zh) 摄像镜头组
WO2019019626A1 (zh) 成像镜头
TWI823882B (zh) 鏡頭及其製造方法
CN209132499U (zh) 摄像镜头组
WO2017113557A9 (zh) 摄像镜头
WO2019085524A1 (zh) 光学成像系统
WO2022022116A1 (zh) 一种两镜片小直径大视场角的镜头
JP2016166968A (ja) 接眼光学系
WO2022266902A1 (zh) 光学镜头、摄像模组及电子设备
CN110320637B (zh) 镜头及其制造方法
CN114200648A (zh) 一种高清光学取像镜头及电子设备
TWM484108U (zh) 六片式廣角鏡頭
CN109471247A (zh) 摄像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849978

Country of ref document: EP

Kind code of ref document: A1