WO2022021910A1 - 一种车辆碰撞检测方法、装置及计算机可读存储介质 - Google Patents

一种车辆碰撞检测方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022021910A1
WO2022021910A1 PCT/CN2021/083545 CN2021083545W WO2022021910A1 WO 2022021910 A1 WO2022021910 A1 WO 2022021910A1 CN 2021083545 W CN2021083545 W CN 2021083545W WO 2022021910 A1 WO2022021910 A1 WO 2022021910A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
area
obstacle
driving
areas
Prior art date
Application number
PCT/CN2021/083545
Other languages
English (en)
French (fr)
Inventor
高志伟
张卫泽
王新宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022021910A1 publication Critical patent/WO2022021910A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/24Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present application relates to the field of smart cars, and in particular, to a vehicle collision detection method, device, and computer-readable storage medium.
  • Artificial Intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge and use knowledge to obtain the best results.
  • artificial intelligence is a branch of computer science that attempts to understand the essence of intelligence and produce a new kind of intelligent machine that responds in a similar way to human intelligence.
  • Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
  • Research in the field of artificial intelligence includes robotics, natural language processing, computer vision, decision-making and reasoning, human-computer interaction, recommendation and search, and basic AI theory.
  • Autopilot is a mainstream application in the field of artificial intelligence.
  • Autopilot technology relies on the cooperation of computer vision, radar, monitoring devices and global positioning systems to allow motor vehicles to achieve autonomous driving without the need for human active operation.
  • Self-driving vehicles use various computing systems to transport passengers from one location to another. Some autonomous vehicles may require some initial or continuous input from an operator (such as driver, passenger).
  • An autonomous vehicle permits the operator to switch from a manual driving mode to an autonomous driving mode or a mode in between. Since autonomous driving technology does not require human beings to drive motor vehicles, it can theoretically effectively avoid the driving errors of human drivers, reduce the occurrence of traffic accidents, and improve the efficiency of highway transportation. Therefore, autonomous driving technology is getting more and more attention.
  • trajectory planning is to provide a safe, comfortable and executable trajectory for the vehicle to its destination, taking into account factors such as vehicle dynamics, surrounding dynamic obstacles, traffic rules, and road restrictions.
  • the vehicle determines whether the vehicle collides with the obstacle by detecting whether the distance between itself and the obstacle meets the safety threshold. If the distance is less than the safety threshold, it is determined that the vehicle collides with the obstacle.
  • the safety and smoothness of automatic driving are greatly affected. Therefore, how to ensure the safety and smoothness of autonomous driving is a technical problem that needs to be solved urgently when faced with obstacles intruding into the planned path of the vehicle.
  • the present application provides a vehicle collision detection method, device and computer-readable storage medium, which can accurately detect whether a vehicle collides with a potential obstacle and ensure the safety and smoothness of the vehicle during driving.
  • a vehicle collision detection method may include:
  • an overlapping area occurs between at least two first driving areas and the occupation area of the obstacle, and in the at least two first driving areas, the difference between the latter first driving area and the occupation area of the obstacle.
  • the overlap depth is greater than the overlap depth between the previous first driving area and the occupied area of the obstacle, it is determined that the vehicle and the obstacle will collide; the overlap depth is used to characterize the overlap area The degree of intrusion into the first driving area.
  • the on-board terminal determines at least two first driving areas. Whether there is an overlapping area between the area and the occupied area of the obstacle, if there is an overlapping area between at least two first driving areas and the occupied area of the obstacle, it is judged that among the at least two first driving areas, the latter one Whether the overlapping depth between the first driving area and the occupied area of the obstacle is greater than the overlapping depth between the previous first driving area and the occupied area of the obstacle, and if so, it is determined that the vehicle and the obstacle will collide.
  • the overlap depth between the first driving area and the obstacle in the latter is greater than the difference between the occupation area of the first driving area and the obstacle in the previous one
  • the method further includes: if an overlapping area is generated between at least two first driving areas and the area occupied by the obstacle, and in the at least two first driving areas, The overlapping depth between the latter first driving area and the occupied area of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupied area of the obstacle, and it is determined that the vehicle and the obstacle do not overlap. Collision.
  • the on-board terminal determines at least two first driving areas.
  • the latter one Whether the overlap depth between the first driving area and the occupied area of the obstacle is greater than the overlap depth between the previous first driving area and the occupied area of the obstacle, if not, it is determined that the vehicle does not collide with the obstacle.
  • the collision trend between the vehicle and the obstacle is considered (the collision trend is reflected in: the overlap depth between the latter first driving area and the obstacle is greater than that between the former first driving area and the obstacle).
  • the overlap depth between the occupied areas of obstacles can accurately detect whether the vehicle collides with potential obstacles, avoid misjudgment, and ensure the safety and smoothness of the vehicle during driving.
  • the method further includes: respectively acquiring the overlapping lengths of the first driving area of the vehicle and the occupied area of the obstacle in N directions to obtain N overlapping lengths; wherein, N is a positive integer greater than 0; the N overlapping lengths are the projections on the normal lines corresponding to the N directions; the minimum value among the N overlapping lengths is determined as the first driving area and the The depth of overlap between the encroachment areas of the described obstacles.
  • the acquiring a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path includes: according to the attitude and heading angle of the current position of the vehicle, and combining all The envelope of the vehicle determines a plurality of second driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path; The relative movement trend between the target vehicle and the obstacle adjusts each second driving area to obtain the plurality of first driving areas; wherein, the area of the first driving area is larger than that of the first driving area. 2. The area of the driving area.
  • Implementing the embodiment of the present application can adjust the driving area occupied by the target vehicle when it travels according to the target planned driving path according to the relative motion trend between the target vehicle and the obstacle, which can ensure the safety of the side with collision risk.
  • the side of the collision risk can pass better.
  • the adjusting each second driving area according to the relative movement trend between the vehicle and the obstacle includes: on a side where the vehicle approaches the obstacle , the second driving area is adjusted with the first space expansion rate; on the side of the vehicle away from the obstacle, the second driving area is adjusted with the second space expansion rate; wherein, the The first spatial expansion rate is greater than the second spatial expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the acquiring a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path includes: according to the attitude and heading angle of the current position of the vehicle, and combining all The envelope of the vehicle determines a plurality of third driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path; Adjust each third driving area according to the relative movement trend between the vehicle and the obstacle to obtain the plurality of second driving areas; wherein, the area of the second driving area is larger than that of the third driving area Area area of the area; obtain the position, speed and heading angle when the vehicle actually travels to the second driving area, and obtain the first driving of the vehicle at the next moment according to the position, speed and heading angle area.
  • the method further includes: in the case where it is determined that the vehicle will collide with the obstacle, acquiring a collision point of the vehicle when the collision will collide with the obstacle. Position information; according to the position information of the collision point, and in combination with the obtained movement speed of the obstacle, the traveling speed of the vehicle and/or the target planned path are adjusted.
  • the on-board terminal on the vehicle can adjust the driving speed and/or the target planning path of the vehicle to avoid the obstacle, so as to ensure that the vehicle is in the Safety while driving.
  • the target planning path includes a plurality of position points, and the distance between adjacent position points is smaller than the size of the obstacle; Multiple first driving areas that the vehicle needs to occupy, including: determining the first driving area occupied by the vehicle at each position point according to the attitude and heading angle of the vehicle at each position point and in combination with the envelope of the vehicle a driving area, and obtaining the plurality of first driving areas.
  • the target planning path since the target planning path includes multiple location points, and the vehicle terminal generates a first driving area at each location point, the multiple first driving areas constitute the running track of the vehicle.
  • the influence of singular position points or excessive distance on the collision detection accuracy can be eliminated, and the detection accuracy of small-sized obstacles can be improved.
  • the method further includes:
  • the overlapping depth between the first driving area and the encroaching area is displayed on the central control screen of the vehicle.
  • an embodiment of the present application further provides a vehicle collision detection method, the method may include: acquiring a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to a target planned path, and acquiring potential obstacles Occupied area in the target planning path; obtain the relative movement trend between the vehicle and the obstacle, and assign each first driving area to the relative movement trend between the vehicle and the obstacle according to the relative movement trend between the vehicle and the obstacle Adjust to obtain the plurality of second driving areas; wherein, the area of the second driving area is larger than the area area of the first driving area; if at least two second driving areas and the obstacles occupy An overlapping area is generated between the areas, and it is determined that the vehicle and the obstacle will collide.
  • the vehicle-mounted terminal can determine the distance between the vehicle and the obstacle according to the relationship between the vehicle and the obstacle. Adjust the driving area occupied by the vehicle when it travels according to the target planned driving path, and determine whether there is an overlap area between the at least two second driving areas and the area occupied by the obstacle. In the case where there is an overlapping area between the driving area and the occupied area of the obstacle, it is determined that the vehicle and the obstacle will collide.
  • the driving area occupied by the vehicle when the vehicle travels according to the target planning driving path can be adjusted according to the relative movement trend between the vehicle and the obstacle, the safety of the side with a collision risk can be ensured. For the side with no collision risk, it can pass better, ensuring the safety and smoothness of the vehicle during driving.
  • the adjusting each first driving area according to the relative movement trend between the vehicle and the obstacle includes: on a side where the vehicle approaches the obstacle , the second driving area is adjusted with the first space expansion rate; on the side of the vehicle away from the obstacle, the second driving area is adjusted with the second space expansion rate; wherein, the The first spatial expansion rate is greater than the second spatial expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the method further includes: Obtain the position, speed and heading angle when the vehicle actually travels to the second driving area, and obtain the third driving area of the vehicle at the next moment according to the position, speed and heading angle; An overlapping area is generated between the second driving area and the occupied area of the obstacle, and it is determined that the vehicle and the obstacle will collide, including: if the adjusted second driving area, the third An overlapping area is generated between the driving area and the occupied area of the obstacle, and it is determined that the vehicle and the obstacle will collide.
  • the method further includes: in the case where it is determined that the vehicle will collide with the obstacle, acquiring a collision point of the vehicle when the collision will collide with the obstacle. Position information; according to the position information of the collision point, and in combination with the obtained movement speed of the obstacle, the traveling speed of the vehicle and/or the target planned path are adjusted.
  • the on-board terminal on the vehicle can adjust the driving speed and/or the target planned path of the target vehicle to avoid the obstacle, so as to ensure that the vehicle Safety while driving.
  • the target planning path includes a plurality of position points, and the distance between adjacent position points is smaller than the size of the obstacle; Multiple first driving areas that the vehicle needs to occupy, including: determining the first driving area occupied by the vehicle at each position point according to the attitude and heading angle of the vehicle at each position point and in combination with the envelope of the vehicle a driving area, and obtaining the plurality of first driving areas.
  • the target planning path since the target planning path includes multiple location points, and the vehicle-mounted terminal generates a driving area at each location point, the multiple driving areas constitute the running track of the vehicle, which is more efficient than the prior art. It can eliminate the influence of singular position points or too large spacing on the accuracy of collision detection.
  • the method further includes:
  • the overlapping depth between the first driving area and the encroaching area is displayed on the central control screen of the vehicle.
  • an embodiment of the present application provides a vehicle collision detection device, the device may include: a first acquisition unit, configured to acquire a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to a target planned path
  • the second acquisition unit is used to acquire the occupation area of the potential obstacle in the target planning path
  • the first processing unit is used to generate overlap between at least two first driving areas and the occupation area of the obstacle area, and in the at least two first driving areas, the overlap depth between the latter first driving area and the occupation area of the obstacle is greater than the overlap between the previous first driving area and the occupation area of the obstacle
  • the overlapping depth between the two is used to determine that the vehicle and the obstacle will collide; the overlapping depth is used to represent the degree to which the overlapping area intrudes into the first driving area.
  • the apparatus further includes: a second processing unit, configured to generate an overlapping area between the at least two first driving areas and the occupation area of the obstacle, and in the at least two In the first driving area, the overlapping depth between the following first driving area and the occupation area of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupation area of the obstacle, and determining the The vehicle does not collide with the obstacle.
  • a second processing unit configured to generate an overlapping area between the at least two first driving areas and the occupation area of the obstacle, and in the at least two In the first driving area, the overlapping depth between the following first driving area and the occupation area of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupation area of the obstacle, and determining the The vehicle does not collide with the obstacle.
  • the apparatus further includes: a collision depth determination unit, configured to obtain the overlapping lengths of the first driving area of the vehicle and the occupied area of the obstacle in N directions respectively, to obtain N overlapping lengths; wherein, N is a positive integer greater than 0; the N overlapping lengths are projections on the normals corresponding to the N directions; the minimum value among the N overlapping lengths is determined as the The overlap depth between the first driving area and the encroachment area of the obstacle.
  • a collision depth determination unit configured to obtain the overlapping lengths of the first driving area of the vehicle and the occupied area of the obstacle in N directions respectively, to obtain N overlapping lengths; wherein, N is a positive integer greater than 0; the N overlapping lengths are projections on the normals corresponding to the N directions; the minimum value among the N overlapping lengths is determined as the The overlap depth between the first driving area and the encroachment area of the obstacle.
  • the first obtaining unit includes a first determining unit and a first adjusting unit; wherein, the first determining unit is configured to, according to the attitude and heading angle of the current position of the vehicle, and Determining, in combination with the envelope of the vehicle, multiple second driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path; the first adjustment unit is configured to obtain the relationship between the vehicle and the obstacle The relative movement trend between the objects is determined, and each second driving area is adjusted according to the relative movement trend between the vehicle and the obstacle, so as to obtain the plurality of first driving areas; The area area of the driving area is larger than the area area of the second driving area.
  • the first adjustment unit is specifically configured to: adjust the second driving area with a first space expansion rate on the side of the vehicle close to the obstacle; On the side of the vehicle away from the obstacle, the second driving area is adjusted with a second space expansion rate; wherein the first space expansion rate is greater than the second space expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the first obtaining unit includes a second determining unit, a second adjusting unit, and a second determining unit; wherein, the second determining unit is configured to, and combined with the envelope of the vehicle to determine a plurality of third driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path; the second adjustment unit is used to obtain the relationship between the vehicle and the relative motion trends between obstacles, and adjust each third driving area according to the relative motion trends between the vehicle and the obstacles to obtain the plurality of second driving areas; The area of the second driving area is larger than the area of the third driving area; the third acquiring unit is configured to acquire the position, speed and heading angle of the vehicle when driving in the second driving area, , speed and heading angle to obtain the first driving area of the vehicle at the next moment.
  • the apparatus further includes: a fourth obtaining unit, configured to obtain the collision between the vehicle and the obstacle when it is determined that the vehicle and the obstacle will collide The position information of the collision point when a collision will occur; the third adjustment unit is used for adjusting the driving speed of the vehicle and/or the speed of the vehicle according to the position information of the collision point and combining the obtained movement speed of the obstacle.
  • the target planning path is adjusted.
  • the target planning path includes multiple position points, and the distance between adjacent position points is smaller than the size of the obstacle; the first obtaining unit is specifically configured to: according to the The attitude and heading angle of the vehicle at each location point are determined, and the first driving area occupied by the vehicle at each location point is determined in combination with the envelope of the vehicle to obtain the plurality of first driving areas.
  • the apparatus further includes: a display unit, configured to display the overlapping depth between the first driving area and the occupation area on a central control screen of the vehicle.
  • an embodiment of the present application further provides a vehicle collision detection device, the device may include: a first acquisition unit, configured to acquire a plurality of first drivers that the vehicle needs to occupy when the vehicle travels according to the target planned path area; the second acquisition unit is used to acquire the occupation area of the potential obstacle in the target planning path; the first adjustment unit is used to acquire the relative movement trend between the vehicle and the obstacle, and according to the Adjust each first driving area according to the relative movement trend between the vehicle and the obstacle to obtain the plurality of second driving areas; wherein, the area of the second driving area is larger than that of the first driving area The area area of the area; the processing unit is configured to generate an overlapping area between at least two second driving areas and the occupied area of the obstacle, and determine that the vehicle and the obstacle will collide.
  • a first acquisition unit configured to acquire a plurality of first drivers that the vehicle needs to occupy when the vehicle travels according to the target planned path area
  • the second acquisition unit is used to acquire the occupation area of the potential obstacle in the target planning path
  • the first adjustment unit is specifically configured to: adjust the second driving area with a first space expansion rate on the side of the vehicle close to the obstacle; On the side of the vehicle away from the obstacle, the second driving area is adjusted with a second space expansion rate; wherein the first space expansion rate is greater than the second space expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the apparatus further includes: a driving area prediction unit, which acquires the position, speed and heading angle when the vehicle actually travels to the second driving area, and uses the position, speed and The heading angle is used to obtain the third driving area of the vehicle at the next moment; the processing unit is specifically used for: if the adjusted second driving area and the third driving area are both the area occupied by the obstacle An overlapping area is generated therebetween, and it is determined that the vehicle and the obstacle will collide.
  • a driving area prediction unit which acquires the position, speed and heading angle when the vehicle actually travels to the second driving area, and uses the position, speed and The heading angle is used to obtain the third driving area of the vehicle at the next moment
  • the processing unit is specifically used for: if the adjusted second driving area and the third driving area are both the area occupied by the obstacle An overlapping area is generated therebetween, and it is determined that the vehicle and the obstacle will collide.
  • the apparatus further includes: a third acquiring unit, configured to acquire, when it is determined that the vehicle and the obstacle will collide The position information of the collision point when a collision will occur; the second adjustment unit is used for adjusting the driving speed of the vehicle and/or the speed of the vehicle according to the position information of the collision point and combining the obtained movement speed of the obstacle.
  • the target planning path is adjusted.
  • the target planning path includes multiple position points, and the distance between adjacent position points is smaller than the size of the obstacle; the first obtaining unit is specifically configured to: according to the The attitude and heading angle of the vehicle at each location point are determined, and the first driving area occupied by the vehicle at each location point is determined in combination with the envelope of the vehicle to obtain the plurality of first driving areas.
  • the apparatus further includes: a display unit, configured to display an overlapping area between the first driving area and the occupation area on a central control screen of the vehicle.
  • an embodiment of the present application provides an automatic driving device, and the automatic driving device includes the device described in any one of the third aspect or the fourth aspect.
  • an embodiment of the present application provides an autonomous driving vehicle, including a traveling system, a sensing system, a control system, and a computer system, wherein the computer system is configured to execute any one of the first aspect or the second aspect.
  • an embodiment of the present application provides an in-vehicle terminal, the in-vehicle terminal includes a processor and a memory, the memory is used to store a computer program that supports the in-vehicle terminal to execute the method of the first aspect or the second aspect, the computer The program includes program instructions, and the processor is configured to invoke the program instructions to perform the method of the first aspect or the second aspect above.
  • an embodiment of the present application provides a chip.
  • the chip may include a processor, a memory, and a communication interface.
  • the processor reads an instruction stored in the memory through the communication interface, and executes the first aspect above. or the method of any one of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program includes program instructions that, when executed by a processor, cause all The processor executes the method according to any one of the first aspect or the second aspect above
  • embodiments of the present application further provide a computer program, the computer program includes computer software instructions, and when executed by a computer, the computer software instructions cause the computer to perform any of the above-mentioned first or second aspects. one of the methods described.
  • FIG. 1a is a schematic structural diagram of an automatic driving device according to an embodiment of the application.
  • FIG. 1b is a schematic structural diagram of a computer system provided by an embodiment of the application.
  • FIG. 2a is a schematic diagram of an application scenario of a vehicle collision detection method provided by an embodiment of the application
  • 2b is a schematic diagram of an application scenario of a vehicle collision detection method provided by an embodiment of the application.
  • 2c is a schematic diagram of an application scenario of a vehicle collision detection method provided by an embodiment of the present application.
  • 3a is a schematic flowchart of a vehicle collision detection method provided by an embodiment of the application.
  • 3b is a schematic diagram of a target planning path provided by an embodiment of the present application.
  • 3c is a schematic diagram of generating a first driving area at each position point according to an embodiment of the present application
  • FIG. 3d is a schematic diagram of generating a first driving area at each position point according to an embodiment of the present application.
  • 3e is a schematic diagram of a drivable area and a first driving area provided by an embodiment of the application;
  • 3f is a schematic diagram of a collision scenario provided by an embodiment of the present application.
  • 3g is a schematic diagram of a collision scenario provided by an embodiment of the present application.
  • 3h is a schematic diagram of a collision scenario provided by an embodiment of the present application.
  • 3i is a schematic diagram of a collision scene provided by an embodiment of the present application.
  • FIG. 4a is a schematic diagram of the principle of a separation axis theorem detection provided by an embodiment of the present application.
  • 4b is a schematic diagram of an overlapping area provided by an embodiment of the present application.
  • FIG. 4c is a schematic diagram of determining the overlap depth according to an embodiment of the present application.
  • FIG. 4d is a schematic diagram of a collision detection provided by an embodiment of the present application.
  • FIG. 4e is a schematic diagram of a collision detection provided by an embodiment of the present application.
  • 4f is a schematic diagram of a collision detection provided by an embodiment of the present application.
  • 4g is a schematic diagram of a collision detection provided by an embodiment of the present application.
  • 5a is a schematic flowchart of another vehicle collision detection method provided by an embodiment of the application.
  • 5b is a schematic diagram of displaying collision depth through a central control screen of a vehicle according to an embodiment of the application
  • FIG. 6 is a schematic flowchart of another vehicle collision detection method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another vehicle collision detection method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a vehicle collision detection device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another vehicle collision detection device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a vehicle-mounted terminal according to an embodiment of the present application.
  • any embodiment or design approach described in the embodiments of the present application as “exemplarily” or “for example” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplarily” or “such as” is intended to present the related concepts in a specific manner.
  • "A and/or B” means A and B, and A or B has two meanings.
  • “A, and/or B, and/or C” means any one of A, B, and C, alternatively, means any two of A, B, and C, alternatively, means A and B and C.
  • an autonomous vehicle also known as an unmanned vehicle, a computer-driven vehicle, or a wheeled mobile robot
  • an intelligent vehicle that realizes unmanned driving through a computer system.
  • self-driving vehicles rely on artificial intelligence, visual computing, radar, surveillance devices, and global positioning systems to cooperate to allow computer equipment to operate motor vehicles automatically and safely without any human active operation.
  • a road refers to a passage for vehicles to travel and for connecting two places.
  • a lane is a passageway for a single column of vehicles traveling in the same direction.
  • Common lanes include different types of lanes such as straight lanes, left-turn lanes, and right-turn lanes.
  • a road consists of one or more lanes. For example, a road consists of four lanes: 1 left turn lane, 2 straight lanes and 1 right turn lane.
  • the planned path refers to a path used to make the vehicle drive on a designated road, and may also refer to a path that is accurate to the sub-meter level and used to make the vehicle drive on a designated lane.
  • the vehicle collision detection method provided in this application can be applied to the scenario where obstacles invade (or: small intrusions) the target planning path of the vehicle, and can also be applied to the entire automatic driving process of the vehicle to ensure The safety and smoothness of the vehicle during driving.
  • FIG. 1a is a functional block diagram of an automatic driving apparatus 100 provided by an embodiment of the present application.
  • the autonomous driving device 100 may be configured in a fully autonomous driving mode or a partially autonomous driving mode, or a manual driving mode.
  • the fully automatic driving mode can be L5, which means that all driving operations are completed by the vehicle, and the human driver does not need to maintain attention;
  • partially automatic driving The modes can be L1, L2, L3, L4, where L1 indicates that the vehicle provides driving for one of the steering wheel and acceleration and deceleration, and the human driver is responsible for the rest of the driving operations; L2 indicates that the vehicle is responsible for many of the steering wheel and acceleration and deceleration.
  • the operation provides driving, and the human driver is responsible for the rest of the driving actions;
  • L3 means that most of the driving operations are completed by the vehicle, and the human driver needs to keep their attention in case of emergency;
  • L4 means that the vehicle completes all driving operations, and the human driver No need to maintain attention, but define road and environmental conditions;
  • the human driving mode can be L0, which means the car is fully driven by the human driver.
  • the automatic driving device 100 can control itself while in the automatic driving mode, and can determine the current state of the vehicle and the surrounding environment through human operation, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine The automatic driving device 100 is controlled based on the determined information with a confidence level corresponding to the possibility that the other vehicle performs the possible behavior.
  • the autonomous driving device 100 may be set to operate without human interaction.
  • the autonomous driving device 100 may include various subsystems, such as a travel system 102 , a sensing system 104 , a control system 106 , one or more peripherals 108 and a power supply 110 , a computer system 112 and a user interface 116 .
  • autonomous driving device 110 may include more or fewer subsystems, and each subsystem may include multiple elements. Additionally, each of the subsystems and elements of the autonomous driving device 100 may be wired or wirelessly interconnected.
  • the travel system 102 may include components that provide powered motion for the autonomous driving device 100 .
  • travel system 102 may include engine 118 , energy source 119 , transmission 120 , and wheels/tires 121 .
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or other types of engine combinations, such as a gasoline engine and electric motor hybrid engine, an internal combustion engine and an air compression engine hybrid engine. In practice, the engine 118 converts the energy source 119 into mechanical energy.
  • the energy source 119 may include, but is not limited to, gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, or other power sources. Energy source 119 may also provide energy to other systems of autopilot 100 .
  • the transmission 120 may transmit the mechanical power from the engine 118 to the wheels 121 .
  • Transmission 120 may include a gearbox, a differential, and a driveshaft.
  • the transmission 120 may also include other devices, such as clutches.
  • the drive shaft includes one or more shafts that may be coupled to one or more wheels 121 .
  • the sensing system 104 may include several sensors that sense environmental information about the surroundings of the automatic driving device 100 .
  • the sensing system 104 may include a positioning system 122 (here, the positioning system may be a GPS system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, a radar 126, a laser measurement Distance meter 128 and camera 130 .
  • the sensing system 104 may also include sensors that are monitored for systems within the autonomous driving device 100 , eg, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, and the like. Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (eg, position, shape, orientation, velocity, etc.). These detections and identifications are critical functions for the safe operation of the autonomous autonomous driving device 100 .
  • the global positioning system 122 may be used to estimate the geographic location of the automatic driving device 100 .
  • the geographic location of the autonomous driving device 100 may be estimated by the IMU 124 .
  • the IMU 124 is used to sense changes in the position and orientation of the automated driving device 100 based on inertial acceleration.
  • IMU 124 may be a combination of an accelerometer and a gyroscope.
  • the radar 126 may use radio signals to sense objects in the surrounding environment of the automatic driving device 100 .
  • radar 126 may also be used to sense the speed and/or heading of objects.
  • the laser rangefinder 128 may use laser light to sense objects in the environment where the automatic driving device 100 is located.
  • the laser rangefinder 128 may include one or more laser sources, laser scanners, and one or more monitors, among other system components.
  • the camera 130 may be used to capture multiple images of the surrounding environment of the automatic driving device 100 .
  • the camera 130 may be a still camera or a video camera, which is not specifically limited in this embodiment of the present application.
  • control system 106 may control the operation of the automatic driving device 100 and the components.
  • Control system 106 may include various elements including steering system 132, throttle 134, braking unit 136, computer vision system 140, route control system 142, and obstacle avoidance system.
  • the steering system 132 is operable to adjust the forward direction of the automatic driving device 100 .
  • it may be a steering wheel system.
  • the accelerator 134 is used to control the operating speed of the engine 118 , and thus control the speed of the automatic driving device 100 .
  • the braking unit 136 is used to control the speed of the automatic driving device 100 .
  • the braking unit 136 may use friction to slow the wheels 121 .
  • the braking unit 136 may convert the kinetic energy of the wheels 121 into electrical current.
  • the braking unit 136 may also take other forms to slow down the wheels 121 to control the speed of the automatic driving device 100 .
  • computer vision system 140 may be operable to process and analyze images captured by camera 130 in order to identify objects and/or features in the environment surrounding autonomous driving device 100 .
  • objects and/or features referred to herein may include, but are not limited to, traffic signals, road boundaries, and obstacles.
  • Computer vision system 140 may use object recognition algorithms, Structure from Motion (SFM) algorithms, visual tracking, and other computer vision techniques.
  • SFM Structure from Motion
  • the computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the route control system 142 is used to determine the driving route of the automatic driving device 100 .
  • route control system 142 may combine data from sensors, positioning system 122 , and one or more predetermined maps to determine a driving route for autonomous driving device 100 .
  • the obstacle avoidance system 144 is used to identify, evaluate and avoid or otherwise overcome potential obstacles in the environment of the automated driving device 100 .
  • An obstacle as the name suggests, is something that gets in the way or hinders.
  • the potential obstacles may include obstacles other than vehicles, pedestrians, bicycles, static objects, etc. that have a potential or direct impact on the driving of the vehicle.
  • control system 106 may additionally or alternatively include components in addition to those shown and described in Figure 1a. Alternatively, some of the components shown above can be reduced,
  • the automatic driving apparatus 100 interacts with external sensors, other vehicles, other computer systems or users through the peripheral device 108 .
  • Peripherals 108 may include wireless communication system 146 , onboard computer 148 , microphone 150 and/or speaker 152 .
  • the peripherals 108 provide a means for a user of the autonomous driving apparatus 100 to interact with the user interface 116 .
  • the onboard computer 148 may provide information to the user of the autonomous driving device 100 .
  • User interface 116 may also operate on-board computer 148 to receive user input.
  • the onboard computer 148 can be operated via a touch screen.
  • peripherals 108 may provide a means for autonomous driving device 100 to communicate with other devices in the vehicle.
  • microphone 150 may receive audio, such as voice commands or other audio input, from a user of autonomous driving device 100 .
  • speaker 150 may output audio to a user of autonomous driving device 100 .
  • the wireless communication system 146 may wirelessly communicate with one or more devices, either directly or via a communication network.
  • wireless communication system 146 may use 3G cellular communications, eg, CDMA, EVDO, GSM/GPRS, or 4G cellular communications, eg, LTE. Or 5G cellular communications.
  • the wireless communication system 146 may utilize WIFI to communicate with a wireless local area network (WLAN).
  • the wireless communication system 146 may communicate directly with the device using an infrared link, Bluetooth, or ZigBee.
  • DSRC dedicated short-range communications
  • the power supply 110 may provide power to various components of the automatic driving device 100 .
  • the power source 110 may be a rechargeable lithium-ion or lead-acid battery.
  • One or more battery packs of such batteries may be configured as a power source to provide power to various components of the autonomous driving device 100 .
  • power source 110 and energy source 119 may be implemented together, eg, configured together as in some all-electric vehicles.
  • Computer system 112 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer-readable storage medium such as data storage device 114 .
  • Computer system 112 may also be a plurality of computing devices that employ distributed control of individual components or subsystems of autonomous driving apparatus 100 .
  • the processor 113 may be any conventional processor, such as a commercially available central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • FIG. 1b functionally shows a processor, memory, and other elements in the same physical enclosure, one of ordinary skill in the art would understand that the processor, computer system, or memory, or including the processor, may not be stored in the same physical enclosure. Multiple processors, computer systems or memories within a housing.
  • the memory may be a hard drive, or other storage medium located within a different physical enclosure.
  • a processor or computer system will be understood to include reference to a collection of processors or computer systems or memories that may operate in parallel, or a collection of processors or computer systems or memories that may not operate in parallel.
  • some components such as the steering and deceleration components, may each have its own processor that only performs computations related to the function of a particular component.
  • the processor 113 may be located remotely from the vehicle and in wireless communication with the vehicle. In other aspects, some of the processes described herein are performed on a processor arranged within the vehicle while others are performed by a remote processor, including taking the necessary steps to perform a single operation.
  • data storage 114 may include instructions 115 (eg, program logic) executable by processor 113 to perform various functions of autonomous driving device 100 , including those described above.
  • Data storage 114 may also contain additional instructions, including sending data to, receiving data from, interacting with, and/or to one or more of travel system 102 , sensing system 104 , control system 106 , and peripherals 108 command to control.
  • data storage 114 may store data such as road maps, route information, vehicle location, direction, speed, and other vehicle data, among other information. The above information may be used by the autonomous driving device 100 and the computer system 112 during operation of the autonomous driving device 100 in autonomous, semi-autonomous and/or manual modes.
  • the data storage device 114 obtains environmental information of the vehicle from the sensors 104 or other components of the autonomous driving device 100 .
  • the environmental information may be, for example, lane line information, number of lanes, road boundary information, road driving parameters, traffic signals, green belt information, and whether there are pedestrians or vehicles in the environment where the vehicle is currently located.
  • the data storage device 114 may also store status information for the vehicle itself, as well as status information for other vehicles with which the vehicle interacts.
  • the state information may include, but is not limited to, the speed, acceleration, heading angle, etc. of the vehicle.
  • the vehicle obtains the distance between other vehicles and itself, the speed of other vehicles, and the like based on the speed measurement and distance measurement functions of the radar 126 .
  • the processor 113 may acquire the above-mentioned vehicle data from the data storage device 114, and determine a driving strategy that meets the safety requirements based on the environmental information where the vehicle is located.
  • the data storage device 114 may obtain potential obstacle information (eg, the obstacle information may include obstacle dimensions) of the vehicle traveling in the target planned path from the sensors 104 or other components of the autonomous driving device 100 . Then, in this case, the processor 113 may obtain the above-mentioned potential obstacle information from the data storage device 114, and determine the encroachment area of the potential obstacle in the target planned path according to the potential obstacle information, and determine that the vehicle proceeds according to the target planned path. Whether there is an overlapping area between the first driving area that needs to be occupied while driving and the area occupied by potential obstacles, if the overlapping area between the first driving area and the area occupied by obstacles is satisfied, determine the vehicle based on the collision trend Whether it will collide with an obstacle. Specifically, the collision trend is reflected in: in at least two first driving areas, the overlap depth between the latter first driving area and the obstacle occupied area is greater than the overlap between the previous first driving area and the obstacle occupied area depth of overlap.
  • the collision trend is reflected in: in at
  • the user interface 116 is used to provide information to or receive information from the user of the automatic driving device 100 .
  • user interface 116 may include one or more input/output devices within the set of peripheral devices 108 , eg, one or more of wireless communication system 146 , onboard computer 148 , microphone 150 , and speaker 152 .
  • computer system 112 may control the functions of autonomous driving device 100 based on input received from various subsystems (eg, travel system 102 , sensing system 104 , and control system) and from user interface 116 .
  • computer system 112 may utilize input from air control system 106 to control steering system 132 to avoid obstacles detected by sensing system 104 and obstacle avoidance system 144 .
  • computer system 112 is operable to provide control of various aspects of autonomous driving device 100 and its subsystems.
  • one or more of the above-described components may be installed or associated with the autonomous driving device 100 separately.
  • data storage device 114 may exist partially or completely separate from autonomous driving device 100 .
  • the above-described components may be communicatively coupled together in a wired and/or wireless manner.
  • the above components are just one example. In practical applications, components in the above-mentioned modules may be added or deleted according to actual needs, and FIG. 1 a should not be construed as a limitation on the embodiments of the present application.
  • a self-driving vehicle traveling on a road may recognize objects in its surroundings to determine whether to adjust the speed at which the self-driving device 100 is currently traveling.
  • the objects may be other vehicles, traffic control devices, or other types of objects.
  • each identified object may be considered independently and the speed at which the autonomous vehicle is to be adjusted may be determined based on the object's respective characteristics, eg, its current travel data, acceleration, and vehicle distance.
  • the autonomous driving apparatus 100 or a computer device associated with the autonomous driving apparatus 100 may be based on the identified objects properties and the state of the surrounding environment (e.g., traffic, rain, ice on the road, etc.) to predict the behavior of the identified objects.
  • each recognized object is dependent on the behavior of the other, so the behavior of a single recognized object can also be predicted by considering all recognized objects together.
  • the autonomous driving device 100 can adjust its speed based on the predicted behavior of the identified object.
  • the autonomous driving device 100 can determine what steady state the vehicle will need to adjust to based on the predicted behavior of the object (eg, the adjustment operation may include accelerating, decelerating, or stopping). In this process, other factors may also be considered to determine the speed of the automatic driving device 100, such as the lateral position of the automatic driving device 100 in the road being driven, the curvature of the road, the proximity of static and dynamic objects, and the like.
  • the computer device may also provide instructions to modify the steering angle of the vehicle 100 so that the self-driving vehicle follows a given trajectory and/or maintains contact with objects in the vicinity of the self-driving vehicle (eg, safe lateral and longitudinal distances for cars in adjacent lanes on the road.
  • objects in the vicinity of the self-driving vehicle eg, safe lateral and longitudinal distances for cars in adjacent lanes on the road.
  • the above-mentioned automatic driving device 100 may be a car, a truck, a motorcycle, a bus, a boat, an airplane, a helicopter, a lawn mower, an amusement vehicle, an amusement park vehicle, construction equipment, a tram, or a golf ball.
  • Cars, trains, and trolleys, etc. are not particularly limited in the embodiments of the present application.
  • the automatic driving device 100 may further include a hardware structure and/or a software module, and the above-mentioned functions are implemented by driving of the hardware structure, the software module, or the hardware structure and the software module.
  • a certain function of the above functions is implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application of the technical solution and the constraints involved.
  • FIG. 1 a introduces a functional block diagram of the automatic driving device 100 , and the automatic driving system 101 in the automatic driving device 100 is described below.
  • FIG. 1 b is a schematic structural diagram of an automatic driving system provided by an embodiment of the present application. 1a and 1b illustrate the automatic driving device 100 from different perspectives.
  • the computer system 101 in FIG. 1a is the computer system 112 in FIG. 1b.
  • computer system 101 includes processor 103 coupled to system bus 105 .
  • the processor 103 may be one or more processors, each of which may include one or more processor cores.
  • a video adapter 107 which can drive a display 109, is coupled to the system bus 105.
  • System bus 105 is coupled to input-output (I/O) bus 113 through bus bridge 111 .
  • I/O interface 115 is coupled to the I/O bus.
  • I/O interface 115 communicates with various I/O devices, such as input device 117 (eg, keyboard, mouse, touch screen, etc.), media tray 121, (eg, CD-ROM, multimedia interface, etc.).
  • Transceiver 123 which can transmit and/or receive radio communication signals
  • camera 155 which can capture sceneries and dynamic digital video images
  • external USB interface 125 external USB interface 125 .
  • the interface connected to the I/O interface 115 may be a USB interface.
  • the processor 103 may be any conventional processor, including a reduced instruction set computing (“RISC”) processor, a complex instruction set computing (“CISC”) processor, or a combination thereof.
  • the processor may be a special purpose device such as an application specific integrated circuit (“ASIC").
  • the processor 103 may be a neural network processor or a combination of a neural network processor and the above-mentioned conventional processors.
  • computer system 101 may be located remotely from the autonomous vehicle and may communicate wirelessly with autonomous vehicle 100 .
  • some of the processes described herein are performed on a processor disposed within the autonomous vehicle, others are performed by a remote processor, including taking actions required to perform a single maneuver.
  • Network interface 129 is a hardware network interface, such as a network card.
  • the network 127 may be an external network, such as the Internet, or an internal network, such as an Ethernet network or a virtual private network (VPN).
  • the network 127 may also be a wireless network, such as a WiFi network, a cellular network, or the like.
  • the hard disk drive interface is coupled to the system bus 105 .
  • the hard drive interface is connected to the hard drive.
  • System memory 135 is coupled to system bus 105 . Data running in system memory 135 may include operating system 137 and application programs 143 of computer 101 .
  • the operating system includes a shell 139 and a kernel 141 .
  • Shell 139 is an interface between the user and the kernel of the operating system.
  • the shell is the outermost layer of the operating system. The shell manages the interaction between the user and the operating system: waiting for user input, interpreting the user's input to the operating system, and processing various operating system outputs.
  • Kernel 141 consists of those parts of the operating system that manage memory, files, peripherals, and system resources. Interacting directly with hardware, the operating system kernel usually runs processes and provides inter-process communication, providing CPU time slice management, interrupts, memory management, IO management, and more.
  • Application 141 includes programs related to controlling the autopilot of the car, for example, programs that manage the interaction of the autopilot car with obstacles on the road, programs that control the route or speed of the autopilot car, and programs that control the interaction between the autopilot car and other autopilot cars on the road .
  • the application 141 also exists on the system of the deployment server 149 .
  • the computer system 101 may download the application 141 from the deploying server 149 when the application 141 needs to be executed.
  • Sensor 153 is associated with computer system 101 .
  • the sensor 153 is used to detect the environment around the computer 101 .
  • the sensor 153 can detect animals, cars, obstacles and pedestrian crossings, etc. Further sensors can also detect the environment around the above-mentioned animals, cars, obstacles and pedestrian crossings, such as: the environment around animals, for example, animals appear around other animals, weather conditions, ambient light levels, etc.
  • the sensors may be cameras, infrared sensors, chemical detectors, microphones, inertial measurement units, laser rangefinders, positioning systems, and the like. When activated, the sensor 153 senses information at preset intervals and provides the sensed information to the computer system 101 in real time.
  • the positioning system in the sensor 153 obtains the driving position of the vehicle
  • the inertial measurement unit obtains the heading angle of the vehicle
  • the camera obtains the drivable area of the vehicle and the size of the obstacle
  • the laser range finder obtains the distance between the vehicle and the obstacle.
  • the vehicle may also be referred to as a self-vehicle.
  • the processor 103 obtains the relevant data collected by the sensor 153 and the camera 155 from the hard disk drive based on the system bus 105 and the hard disk drive interface 131, and calls the automatic driving related program 147 in the application program 143 to execute the following method:
  • the vehicle needs to occupy when the vehicle travels according to the target planned path, and obtain the occupation areas of potential obstacles in the target planned path, and then determine the occupation area of at least two first driving areas and obstacles Whether there is an overlapping area between them, and in the case of an overlapping area between the at least two first driving areas and the occupied area of the obstacle, it is further judged that in the at least two first driving areas, the latter first driving area is the same as the Whether the overlap depth between the occupied areas of the obstacle is greater than the overlap depth between the previous first driving area and the occupied area of the obstacle, it can be known from the judgment: in at least two first driving areas, the latter first driving area In a case where the overlap depth between the area and the occupied area of the obstacle is greater than the overlap depth between the previous first driving area and the occupied area of the obstacle, it is determined that the vehicle and the obstacle will collide.
  • the vehicle-mounted terminal may adjust the traveling speed and/or the target planned path of the vehicle to avoid the obstacle.
  • a virtual wall is generated in front of the obstacle, so that the vehicle stops or slows down before the obstacle to ensure the safety of the vehicle during driving sex.
  • the computer system 101 may be located remotely from the autonomous driving device 100 and may be in wireless communication with the autonomous driving device 100 .
  • the transceiver 123 can send the automatic driving task, sensor data collected by the sensor 153 and other data to the computer system 101 ; and can also receive control instructions sent by the computer system 101 .
  • the automatic driving device can execute the control instructions from the computer system 101 received by the transceiver 123 and perform corresponding driving operations.
  • some of the processes described herein are arranged to be performed on a processor within an autonomous vehicle, others are performed by a remote processor, including taking actions required to perform a single operation.
  • FIG. 2a it is a schematic diagram of a first application scenario provided by an embodiment of the present application.
  • potential obstacles are included in the target planning path of the vehicle.
  • the potential obstacles include a social vehicle 1 running normally, a social vehicle 2 in the target planning path merged into the vehicle, and a target parked in the vehicle. Illegal parked vehicles in the planned route. If the vehicle does not avoid the above obstacles when the vehicle is traveling according to the target planned path, a traffic accident will occur.
  • the on-board terminal on the vehicle obtains the first driving area that the vehicle needs to occupy when the vehicle travels according to the target planned path, and obtains the normal driving area.
  • an overlapping area generated by the occupied area of the first driving area it is further judged whether the overlapping depth between the latter first driving area and the occupied area of the obstacle is greater than that between the previous first driving area and the obstacle in the at least two first driving areas.
  • the overlap depth between the occupation areas is determined to be that in at least two first driving areas, the overlapping depth between the latter first driving area and the occupation area of the obstacle is greater than that between the previous first driving area and the obstacle
  • it is determined that the vehicle will collide with the obstacle when it is determined that the vehicle and the obstacle will collide, the vehicle-mounted terminal can adjust the driving speed and/or the target planned path of the vehicle to avoid the obstacle, so as to ensure the safety of the vehicle during driving. safety.
  • a virtual wall is generated in front of the obstacle, so that the vehicle stops or slows down before the obstacle to ensure the safety of the vehicle during driving .
  • FIG. 2b it is a schematic diagram of a second application scenario provided by an embodiment of the present application.
  • potential obstacles are included in the target planning path of the vehicle.
  • the potential obstacles include the social vehicle 1 that is running normally, the social vehicle 2 that merges into the target planning path of the vehicle, and the target parked in the vehicle. Illegal parked vehicles in the planned route. If the vehicle does not avoid the above obstacles when the vehicle is traveling according to the target planned path, a traffic accident will occur.
  • the on-board terminal on the vehicle obtains the first driving area that the vehicle needs to occupy when the vehicle travels according to the target planned path, and obtains the normal driving area.
  • an overlapping area generated by the occupied area of the first driving area it is further judged whether the overlapping depth between the latter first driving area and the occupied area of the obstacle is greater than that between the previous first driving area and the obstacle in the at least two first driving areas.
  • the overlap depth between the occupation areas is determined to be that in at least two first driving areas, the overlapping depth between the latter first driving area and the occupation area of the obstacle is greater than that between the previous first driving area and the obstacle
  • it is determined that the vehicle will collide with the obstacle when it is determined that the vehicle and the obstacle will collide, the vehicle-mounted terminal can adjust the driving speed and/or the target planned path of the vehicle to avoid the obstacle, so as to ensure the safety of the vehicle during driving. safety.
  • a virtual wall is generated in front of the obstacle, so that the vehicle stops or slows down before the obstacle to ensure the safety of the vehicle during driving .
  • FIG. 2c it is a schematic diagram of a third application scenario provided by an embodiment of the present application.
  • a potential obstacle is included in the target planning path of the vehicle.
  • the potential obstacle includes a normal driving social vehicle.
  • the traffic sign line in the middle of the two lanes is a solid line.
  • the vehicle cannot change lanes.
  • the on-board terminal on the vehicle needs to determine whether it collides with an obstacle in the target planned path, so as to bypass the obstacle and continue to pass.
  • FIG. 3a is a schematic flowchart of a vehicle collision detection method provided by an embodiment of the present application, and the method may include but is not limited to the following steps:
  • Step S300 acquiring a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path.
  • the vehicle may also be referred to as a self-vehicle.
  • a sequence of points or curves connecting the starting position and the ending position is called a path
  • a strategy for forming a path is called path planning.
  • the planned path can be a path that enables the vehicle to travel on a designated road, or can be a path that is accurate to a sub-meter level so that the vehicle travels on a designated lane.
  • the target planned path is a curve from the starting position A to the ending position B.
  • the vehicle-mounted terminal may send the starting position and destination position of the vehicle to the server through the wireless network.
  • the server receives the starting position and the destination position of the vehicle from the vehicle-mounted terminal.
  • the in-vehicle terminal actively requests the server for path planning.
  • the in-vehicle terminal sends a route planning request to the server, and the route planning request includes at least the starting position and the destination position of the vehicle.
  • the path planning request may further include identification information. Different identification information is used to distinguish different vehicles.
  • the identification information may be a device identification of the vehicle-mounted terminal, or a user account logging into the vehicle-mounted terminal, or a unique identification of the vehicle, or other preset identifiers.
  • the route planning request may further include heading information.
  • the heading information is used to indicate the current heading of the vehicle, that is, the facing direction of the front of the vehicle.
  • the heading information can be acquired through on-board sensors.
  • the path planning request may further include path constraint information.
  • the path constraint information refers to constraints provided for path planning. For example, a path constraint is newly used to instruct the server that when planning a travel path from a starting position to a destination position, the travel path must pass through a user-specified target position.
  • the path constraint information is used to instruct the server to plan a travel path with the shortest distance.
  • the service area determines the target planning path according to the starting position, destination position and high-precision map information.
  • the server stores high-precision map information, wherein the high-precision map information includes static information and dynamic information.
  • the static information includes information used to indicate the static distribution status of roads, lanes and road infrastructure in the road network environment.
  • static information may include, but is not limited to, road static information, lane static information, and road infrastructure information.
  • Road static information is used to indicate the static distribution of roads in a road network environment.
  • road static information may include information such as road geometry, road curvature, road heading, road speed limit, number of lanes, longitudinal gradient, and lateral gradient.
  • Lane static information is used to indicate the static distribution of lanes in the road network environment.
  • lane static information includes lane geometry, lane curvature, lane heading (go straight, left turn, right turn, etc.), lane center axis, lane width, lane markings Lines, lane speed limits, lane splitting, and lane merging information.
  • Road infrastructure information is used to indicate the condition of road infrastructure in a road network environment, for example, road infrastructure information includes curbs, guardrails, tunnels, traffic signs, toll booths, traffic lights, turn arrows, crossbar lights Road foundations Information about the facility. Road static information, lane static information and road infrastructure information can be pre-collected and recorded by technicians, and updated and maintained by technicians.
  • Dynamic information includes information indicating real-time road conditions of roads and lanes in a road network environment.
  • the dynamic information includes, but is not limited to, road dynamic information and lane dynamic information.
  • the road dynamic information is used to indicate the real-time road conditions of the roads in the road network environment, such as the road traffic conditions and the traffic signal indicator conditions of each road.
  • the lane dynamic information is used to indicate the real-time road conditions of the lanes in the road network environment, such as the traffic conditions of the lanes and the status of the traffic lights of each lane.
  • the road flow status and lane flow status can be statistically determined according to the high-precision position of the vehicle reported in real time by each vehicle-mounted terminal in the entire road network.
  • the status of the traffic signal indicator can be obtained from the traffic management department through a data interface provided by the traffic management department, and the status of the traffic signal indicator can be updated in time when there is a change.
  • the server controls the status of traffic lights. For example, the server controls the status of traffic lights at each intersection according to the real-time road conditions of each road and lane. After that, the server uses the data interface provided by the traffic control department to use The control information for indicating the status of the traffic signal lights is provided to the traffic control department, so that the traffic control department can control the traffic signal lights at each intersection according to the control information.
  • the dynamic information may also include availability information and/or weather information.
  • the availability information includes information used to indicate real-time availability conditions of roads and lanes in a road network environment.
  • the availability information may include traffic accident status, road construction status, road closure status, lane closure status, traffic control, and the like.
  • availability information can be obtained from the traffic control department through the data interface provided by the traffic control department, or obtained through real-time acquisition by cameras deployed in each road section, or by on-board sensors (such as cameras) of each vehicle.
  • Weather information includes information indicative of real-time weather conditions and/or future weather conditions throughout the road network environment. Weather information can be obtained from the meteorological department through the data interface provided by the meteorological department, and the weather information can be updated in time in case of changes.
  • the server adjusts other dynamic information according to the weather information, for example, adjusts the road speed limit, closed roads, etc. according to the weather information.
  • the target planning path includes multiple position points, as shown in FIG. 3c, the target planning path includes position point 1, position point 2, position point 3, and position point 4, wherein, between adjacent position points The spacing is greater than the size of the obstacle. Due to the large distance between the location points, it is easy to miss detection or inaccurate collision detection for small-sized obstacles.
  • the first driving area corresponding to each position point can be determined according to the attitude and heading angle of the vehicle and combined with the envelope of the vehicle, so that multiple first driving area.
  • the target planning path includes multiple position points.
  • the target planning path includes position point 1, position point 2, position point 3 , position point 4, position point 5, position point 6 and position point 7, wherein the distance between adjacent position points is smaller than the size of the obstacle.
  • the spacing between adjacent location points may be between 0.5 and 1 meter. Since the distance between the position points is small, this implementation, compared with the foregoing method, can improve the detection accuracy of small-sized obstacles and avoid the situation of missed detection.
  • the number of location points included in the target planning path may be set by the vehicle terminal according to the size of the obstacle.
  • the size of the obstacle may include the length, width, height, size and shape of the obstacle, and the distance between adjacent position points is smaller than the size of the obstacle may include: the distance between adjacent position points is smaller than the length of the obstacle , one of the width of the obstacle, and the height of the obstacle.
  • the first driving area corresponding to each position point can be determined according to the attitude and heading angle of the vehicle and combined with the envelope of the vehicle, so that multiple first driving area. It can be understood that, since the distance between adjacent points is smaller than the size of the obstacle, the multiple first driving areas can better outline the driving trajectory of the vehicle, which is conducive to the subsequent judgment of the relationship between the at least two first driving areas. Whether the encroachment area of the obstacle produces an overlapping area.
  • the envelope of a vehicle represents the overall shape of a vehicle that is gradually extended.
  • the length of the vehicle may be between 3m and 6m, and the width of the vehicle may be between 1.4m and 1.8m.
  • the vehicle When determining the first driving area in combination with the envelope of the vehicle, the vehicle may be used as the center to determine the size of the vehicle. In the process of driving the vehicle, the rectangular area of 6m*1.8m needs to occupy the driving area of the target planning path. It should be noted that the driving area does not refer to a "drivable area". In the prior art, a drivable area refers to an area where a vehicle can travel safely.
  • the drivable area is the area formed by all lanes of the vehicle when the vehicle is traveling in compliance with the traffic rules; for another example, the drivable area is the entire area when the vehicle is traveling in compliance with the traffic rules.
  • the drivable area includes the area within the lane range (excluding lanes with mismatched directions) or the coverage area of the virtual lane line in the intersection (the shaded area shown in Figure 3e).
  • the first driving area is a part of the area within the lane (the black frame shown in Figure 3e).
  • acquiring multiple first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path may include: determining the vehicle according to the target planned path according to the attitude and heading angle of the current position of the vehicle and in combination with the envelope of the vehicle Multiple second driving areas that the vehicle needs to occupy when driving; obtain the relative movement trend between the vehicle and the obstacle, and adjust each second driving area according to the relative movement trend between the vehicle and the obstacle to obtain more a first driving area; wherein, the area of the first driving area is larger than the area area of the second driving area. Since the shape of the ego vehicle is considered in the process of determining the second driving area, the phenomenon of missed detection in the scene of the curve can be avoided.
  • a second driving area can be generated at each position point.
  • the second driving area can be as shown in Figure 3d.
  • the vehicle and obstacles can be Each second driving area is adjusted according to the relative movement trend between the objects, so as to obtain the adjusted first driving area.
  • the second driving area may be expanded outward according to the relative movement trend between the vehicle and the obstacle to obtain the first driving area.
  • the so-called expansion means expanding the driving area.
  • the second driving area is adjusted at the first spatial expansion rate.
  • the second driving area is adjusted with the second space expansion rate.
  • the first spatial expansion rate is greater than the second spatial expansion rate.
  • expansion at a first length and expansion at a second length can be used to characterize a first rate of spatial expansion and a second rate of spatial expansion, respectively. The following situations are described in detail:
  • the obstacle is on the left side of the vehicle, and when the relative movement trend between the vehicle and the obstacle is a close trend, the first left boundary of the second driving area is defined as the first
  • the length is expanded to obtain the first driving area. It can be known from FIG. 3f that the area of the expanded first driving area is larger than that of the second driving area.
  • the obstacle is on the left side of the vehicle, and when the relative movement trend between the vehicle and the obstacle is a close trend, the first left boundary of the second driving area is defined as the first
  • the length is expanded, and at the same time, the first right border of the second driving area is expanded by the second length to obtain the first driving area. It can be known from FIG. 3g that the area of the expanded first driving area is larger than that of the second driving area.
  • the first length and the second length are different lengths.
  • the first length and the second length may be between e0 and e max , where e0 refers to the minimum moving length and e max refers to the maximum moving length.
  • the above-mentioned first length and second length may be determined according to the approach distance between the vehicle and the obstacle.
  • the expansion rate is close to a monotonic function of distance, but the expansion rate cannot be greater than the maximum degree of expansion e max .
  • the first length and the second length can be calculated according to a first formula, which can be described as:
  • e0 represents the minimum expansion length on both sides of the first driving area
  • e max represents the maximum expansion length on both sides of the first driving area
  • s represents the lateral shortest distance
  • the lateral closest distance refers to the component of the distance between the vehicle and the obstacle in the direction perpendicular to the lane.
  • the rate of expansion is close to a monotonic function of velocity, but the rate of expansion cannot be greater than the maximum degree of expansion e max .
  • the first length and the second length can be calculated by the second formula and the third formula, and the second formula can be described as:
  • the third formula can be described as:
  • s1 represents the shortest lateral distance between the obstacle and the first driving area a of the vehicle
  • s2 represents the shortest lateral distance between the obstacle and the first driving area b of the vehicle, wherein the positional relationship of the first driving area a Before the second driving area b
  • dt is the time interval between the first driving area a and the first driving area b
  • e0 represents the minimum expansion length on both sides of the first driving area
  • e max represents the two sides of the first driving area.
  • Maximum expansion length is the maximum expansion length.
  • the obstacle is on the right side of the vehicle, and when the relative movement trend between the vehicle and the obstacle is a close trend, the first right boundary of the second driving area is set as the first
  • the length is expanded to obtain the first driving area. It can be known from FIG. 3h that the area of the expanded first driving area is larger than the area of the second driving area.
  • the obstacle is on the right side of the vehicle, and when the relative movement trend between the vehicle and the obstacle is a close trend, the first right boundary of the second driving area is defined as the first
  • the length is expanded, and at the same time, the first left border of the second driving area is expanded by the second length to obtain the first driving area. It can be known from Fig. 3i that the area of the first driving area after expansion is larger than that of the second driving area.
  • acquiring multiple first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path may include: determining the vehicle according to the target planned path according to the attitude and heading angle of the current position of the vehicle and in combination with the envelope of the vehicle Multiple third driving areas that the vehicle needs to occupy when driving; obtain the relative motion trend between the vehicle and the obstacle, and adjust each third driving area according to the relative motion trend between the vehicle and the obstacle to obtain more a second driving area; wherein, the area of the second driving area is larger than the area area of the third driving area; obtaining the position, speed and heading angle of the vehicle when it actually travels to the second driving area, and obtain the first driving area of the vehicle at the next moment according to the position, speed and heading angle.
  • the in-vehicle terminal can obtain the position, speed and heading angle of the vehicle when the vehicle is actually driving in the second driving area through the sensing system.
  • the position of the area, the speed of the vehicle can be obtained through the speed sensor, and the heading angle of the vehicle can be obtained through the inertial measurement unit.
  • the obtained position, speed and heading angle can be input into the automatic driving controller, and the next step can be obtained according to the vehicle dynamics and kinematics model.
  • the position, speed and heading angle of the vehicle at the moment, and then the first driving area of the vehicle can be obtained by predicting the position, speed and heading angle of the vehicle. It can be understood that, since the future driving trend of the vehicle is considered in this implementation, the accuracy of collision detection can be improved.
  • Step S302 acquiring the occupation area of the potential obstacle in the target planning path.
  • the vehicle-mounted terminal may first obtain the size of the obstacle through the sensing system, and then obtain the occupation area of the obstacle in the target planning path according to the obtained size of the obstacle.
  • the size of the obstacle can include the length, width, height, size and shape of the obstacle.
  • the encroachment area of the obstacle can represent the degree of intrusion of the obstacle to the target planned path (eg, the lane), that is, how much space the obstacle occupies in the lane.
  • Step S304 judging whether there is an overlapping area between the at least two first driving areas and the area occupied by the obstacle, and if so, go to step S306 .
  • a collision detection algorithm (for example, the collision detection algorithm may be the separation axis theorem) may be used to detect whether there is an overlapping area between the first driving area and the occupied area of the obstacle.
  • the Separating Axis Theorem proposes that if an axis can be found such that the projections of two objects on this axis do not overlap each other, then the two objects do not intersect. For example, as shown in Figure 4a, make a projection along the AB side to determine whether the projection of the vehicle and the obstacle on the projection axis overlaps. Since there is a gap between a and ab, in this case, it is determined that the vehicle and the obstacle do not have an overlapping area. .
  • the black circle part in the figure is the overlapping area generated between the first driving area and the occupied area of the obstacle.
  • At least two first driving areas with a sequential position relationship can be two first driving areas obtained at an interval of one unit.
  • the driving area can also be two first driving areas obtained at an interval of two units.
  • Step S306 judging whether in at least two first driving areas, the overlapping depth between the next first driving area and the occupation area of the obstacle is greater than the overlapping depth between the previous first driving area and the occupation area of the obstacle , if yes, go to step S308; if no, go to step S3010.
  • the overlapping depth is used to represent the degree to which the overlapping area intrudes into the first driving area.
  • the vehicle-mounted terminal can obtain the overlapping lengths of the first driving area of the vehicle and the occupied area of the obstacle in N directions respectively, and obtain N overlapping lengths; wherein, N is a positive integer greater than 0; N
  • the overlapping lengths are projections on the normals corresponding to the N directions; then, the minimum value of the N overlapping lengths is determined as the overlapping depth between the first driving area and the occupied area of the obstacle.
  • the larger the value of N the better.
  • the value of N can be determined according to the maximum turning angle of the wheel, etc.
  • the vehicle terminal determines the first driving area
  • the overlap depth between a driving area a and the occupied area of the obstacle is s1
  • the vehicle terminal determines that the overlap depth between the first driving area b and the occupied area of the obstacle is s2, where s2 is greater than s1, then, in this
  • the in-vehicle terminal determines that in at least two first driving areas, the overlapping depth between the latter first driving area and the occupation area of the obstacle is greater than the overlap between the previous first driving area and the occupation area of the obstacle. Overlap depth.
  • the in-vehicle terminal determines the first driving area a
  • the overlap depth between the occupied area of the obstacle and the obstacle is s1
  • the vehicle terminal determines that the overlap depth between the first driving area b and the occupied area of the obstacle is s2, where s2 is less than s1, then, in this case,
  • the in-vehicle terminal determines that in at least two first driving areas, the overlapping depth between the latter first driving area and the occupation area of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupation area of the obstacle.
  • the process may include: judging whether the overlapping depth between the first driving area and the occupation area of the obstacle is greater than the overlapping depth between the second driving area and the occupation area of the obstacle.
  • the overlap depth between the first driving area (dotted border) and the occupied area of the obstacle is greater than that between the second driving area (solid border) and the occupied area of the obstacle, as shown in FIG. 4f .
  • the overlapping depth between the first driving area (dotted border) and the occupied area of the obstacle is smaller than that between the second driving area (solid border) and the occupied area of the obstacle, as shown in FIG. 4g.
  • Step S308 it is determined that the vehicle and the obstacle will collide.
  • the overlapping depth between the latter first driving area and the occupation area of the obstacle is greater than the overlapping depth between the previous first driving area and the occupation area of the obstacle, at this time, Determine that the vehicle will collide with the obstacle.
  • Step S3010 it is determined that the vehicle does not collide with the obstacle.
  • the overlapping depth between the latter first driving area and the occupation area of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupation area of the obstacle, at this time, Make sure the vehicle does not collide with the obstacle.
  • This implementation can avoid the situation of misjudgment, and ensure the safety and smoothness of the vehicle during the driving process.
  • the on-board terminal determines at least two first driving areas. Whether there is an overlapping area between the area and the occupied area of the obstacle, if there is an overlapping area between at least two first driving areas and the occupied area of the obstacle, it is judged that among the at least two first driving areas, the latter one Whether the overlapping depth between the first driving area and the occupied area of the obstacle is greater than the overlapping depth between the previous first driving area and the occupied area of the obstacle, and if so, it is determined that the vehicle and the obstacle will collide.
  • the overlap depth between the first driving area and the obstacle in the latter is greater than the difference between the occupation area of the first driving area and the obstacle in the previous one
  • FIG. 5a is a schematic flowchart of another vehicle collision detection method provided by an embodiment of the present application, and the method may include But not limited to the following steps:
  • Step S3012 in the case that it is determined that the vehicle and the obstacle will collide, obtain the position information of the collision point when the vehicle and the obstacle will collide.
  • the on-board terminal can obtain the position information of the collision point when the vehicle and the obstacle will collide by analyzing the above-mentioned overlapping area.
  • the collision point may be the aforementioned The black circled part shown in Fig. 4b.
  • the in-vehicle terminal may detect the movement speed of the obstacle through the sensing system (for example, the movement speed may be the projection of the speed of the obstacle along the forward direction of the vehicle at the collision point).
  • Step S3014 Adjust the traveling speed of the vehicle and/or the target planned path according to the position information of the collision point and in combination with the acquired motion speed of the obstacle.
  • the vehicle-mounted terminal on the vehicle can obtain the movement speed of the obstacle through the sensing system when driving according to the target planned path.
  • the vehicle-mounted terminal can input the obtained position information of the collision point and the motion speed of the obstacle into the automatic driving controller, and the automatic driving controller can obtain the vehicle bypass according to the vehicle dynamics model and the vehicle kinematics model.
  • the driving speed V1 of the obstacle and then, the vehicle drives according to the determined driving speed V1, which can ensure the safety of the vehicle during driving.
  • the vehicle-mounted terminal can input the obtained position information of the collision point and the motion speed of the obstacle into the automatic driving controller, and the automatic driving controller can re-plan the target planning path in combination with the high-precision map data, so that the vehicle can Driving on the re-planned target planning path can ensure the safety of the vehicle during driving.
  • the vehicle terminal can input the obtained position information of the collision point and the movement speed of the obstacle into the automatic driving controller, and the automatic driving controller can analyze the position information of the collision point and the movement speed of the obstacle , get the driving speed V1 for bypassing the obstacle and the re-planned target planning path, so that the vehicle can drive in the re-planned target planning path according to the determined driving speed V1, so as to ensure the safety of the vehicle during driving. .
  • the on-board terminal on the vehicle can adjust the driving speed and/or the target planning path of the vehicle to avoid the obstacle, so as to ensure that the vehicle is in the Safety while driving.
  • the overlapping depth between the first driving area and the occupation area may be displayed on the central control screen 501 of the vehicle.
  • the vehicle terminal may issue a warning message,
  • the warning prompt information can be: Please note, please note that after 5 seconds, the vehicle will collide with the obstacle.
  • the warning prompt information may also be: please drive carefully, the vehicle will collide with an obstacle.
  • the on-board terminal Obstacles can also be displayed on the vehicle's central control screen to alert the user.
  • FIG. 6 is a schematic flowchart of a vehicle collision detection method provided by an embodiment of the present application, and the method may include but is not limited to the following steps:
  • Step S600 Acquire multiple first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path.
  • Step S602 acquiring the occupation area of the potential obstacle in the target planning path.
  • Step S604 Acquire the relative movement trend between the vehicle and the obstacle, and adjust each first driving area according to the relative movement trend between the vehicle and the obstacle to obtain the multiple A second driving area; wherein, the area of the second driving area is larger than that of the first driving area.
  • the first driving area is a driving area generated at each position point in the target planned path
  • the second driving area is a driving area obtained by adjusting the first driving area
  • Step S606 judging whether there is an overlapping area between the at least two second driving areas and the area occupied by the obstacle, and if so, go to step S608 .
  • Step S608 it is determined that the vehicle and the obstacle will collide.
  • the vehicle-mounted terminal can determine the distance between the vehicle and the obstacle according to the relationship between the vehicle and the obstacle. Adjust the driving area occupied by the vehicle when it travels according to the target planned driving path, and determine whether there is an overlap area between the at least two second driving areas and the area occupied by the obstacle. In the case where there is an overlapping area between the driving area and the occupied area of the obstacle, it is determined that the vehicle and the obstacle will collide.
  • the driving area occupied by the vehicle when the vehicle travels according to the target planning driving path can be adjusted according to the relative movement trend between the vehicle and the obstacle, the safety of the side with a collision risk can be ensured. For the side with no collision risk, it can pass better, ensuring the safety and smoothness of the vehicle during driving.
  • the process may include: judging whether the overlap depth between the third driving area and the occupation area of the obstacle is greater than the overlapping depth between the second driving area and the occupation area of the obstacle.
  • FIG. 7 is a schematic flowchart of another vehicle collision detection method provided by an embodiment of the present application.
  • the method may include But not limited to the following steps:
  • Step S6010 In the case that it is determined that the vehicle and the obstacle will collide, obtain the position information of the collision point when the vehicle and the obstacle will collide.
  • Step S6012 adjusting the traveling speed of the vehicle and/or the target planned path according to the position information of the collision point and in combination with the obtained moving speed of the obstacle.
  • steps S6010-6012 for the specific implementation of steps S6010-6012, please refer to the foregoing steps S3012-S3014, and details are not repeated here.
  • the on-board terminal on the vehicle can adjust the driving speed and/or the target planning path of the vehicle to avoid the obstacle, so as to ensure that the vehicle is in the Safety while driving.
  • FIG. 8 provides a vehicle collision detection device according to an embodiment of the present application.
  • the vehicle collision detection device 80 may include:
  • a first obtaining unit 800 configured to obtain a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path;
  • the second obtaining unit 802 is configured to obtain the occupation area of the potential obstacle in the target planning path
  • the first processing unit 804 is configured to generate an overlapping area between at least two first driving areas and the occupied area of the obstacle, and in the at least two first driving areas, the latter first driving area is The overlapping depth between the occupation areas of the obstacle is greater than the overlapping depth between the previous first driving area and the occupation area of the obstacle, and it is determined that the vehicle and the obstacle will collide; the overlapping The depth is used to characterize the extent to which the overlapping area intrudes into the first driving area.
  • the apparatus 80 may further include:
  • the second processing unit 806 is configured to generate an overlapping area between the at least two first driving areas and the occupied area of the obstacle, and in the at least two first driving areas, the latter first driving area and the
  • the overlapping depth between the occupied areas of the obstacle is smaller than the overlapping depth between the previous first driving area and the occupied area of the obstacle, and it is determined that the vehicle does not collide with the obstacle.
  • the apparatus 80 may further include:
  • the collision depth determination unit 808 is configured to obtain the overlapping lengths of the first driving area of the vehicle and the occupied area of the obstacle in N directions respectively, and obtain N overlapping lengths; wherein, N is a positive integer greater than 0 ;
  • the N overlapping lengths are the projections on the respective normals corresponding to the N directions; the minimum value in the N overlapping lengths is determined as the difference between the first driving area and the encroachment area of the obstacle depth of overlap.
  • the first obtaining unit 800 may include a first determining unit and a first adjusting unit; wherein,
  • the first determination unit is configured to determine, according to the attitude and heading angle of the current position of the vehicle, and in combination with the envelope of the vehicle, a plurality of the vehicle needs to be occupied when the vehicle travels according to the target planned path.
  • second driving area
  • the first adjustment unit is configured to acquire the relative movement trend between the vehicle and the obstacle, and adjust each second driving area according to the relative movement trend between the vehicle and the obstacle , to obtain the plurality of first driving areas; wherein, the area of the first driving area is larger than the area area of the second driving area.
  • the first adjustment unit is specifically used for:
  • the second driving area is adjusted with the first space expansion rate; on the side of the vehicle away from the obstacle, the second space expansion rate is used to adjust all the The second driving area is adjusted; wherein, the first space expansion rate is greater than the second space expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the first obtaining unit 800 may include a second determining unit, a second adjusting unit and a third obtaining unit; wherein,
  • the second determination unit is configured to determine, according to the attitude and heading angle of the current position of the vehicle, and in combination with the envelope of the vehicle, a plurality of the vehicle needs to be occupied when the vehicle travels according to the target planned path.
  • third driving area
  • the second adjustment unit is configured to acquire the relative movement trend between the vehicle and the obstacle, and adjust each third driving area according to the relative movement trend between the vehicle and the obstacle , to obtain the plurality of second driving areas; wherein, the area of the second driving area is larger than the area area of the third driving area;
  • a third acquiring unit configured to acquire the position, speed and heading angle of the vehicle when the vehicle actually travels to the second driving area, and obtain the first position of the vehicle at the next moment according to the position, speed and heading angle a driving area.
  • the apparatus 80 may further include:
  • a fourth obtaining unit 8010 configured to obtain the position information of the collision point when the vehicle and the obstacle will collide when it is determined that the vehicle and the obstacle will collide;
  • the third adjustment unit 8012 is configured to adjust the traveling speed of the vehicle and/or the planned target path according to the position information of the collision point and in combination with the obtained movement speed of the obstacle.
  • the target planning path includes multiple position points, and the distance between adjacent position points is smaller than the size of the obstacle; the first obtaining unit 800 is specifically configured to:
  • the first driving area occupied by the vehicle at each location point is determined according to the attitude and heading angle of the vehicle traveling at each location point, and combined with the envelope of the vehicle, to obtain the plurality of first driving areas.
  • the apparatus 80 may further include:
  • the display unit 8014 is configured to display the overlapping depth between the first driving area and the occupation area on the central control screen of the vehicle.
  • the first obtaining unit 800 is configured to execute the relevant content of step S300
  • the second obtaining unit 802 is configured to execute the relevant content of step S302
  • the first processing unit 804 is configured to execute the relevant content of steps S304-S308.
  • FIG. 9 further provides a vehicle collision detection device according to an embodiment of the present application.
  • the vehicle collision detection device 90 may include:
  • a first obtaining unit 900 configured to obtain a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path;
  • the second obtaining unit 902 is configured to obtain the occupation area of the potential obstacle in the target planning path
  • a first adjustment unit 904 configured to acquire the relative movement trend between the vehicle and the obstacle, and adjust each first driving area according to the relative movement trend between the vehicle and the obstacle, obtaining the plurality of second driving areas; wherein, the area area of the second driving area is larger than the area area of the first driving area;
  • the processing unit 906 is configured to determine that the vehicle and the obstacle will collide under the condition that an overlapping area is generated between the at least two second driving areas and the area occupied by the obstacle.
  • the first adjustment unit 904 is specifically configured to:
  • the second driving area is adjusted with the first space expansion rate; on the side of the vehicle away from the obstacle, the second space expansion rate is used to adjust all the The second driving area is adjusted; wherein, the first space expansion rate is greater than the second space expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the expansion rate of the first space;
  • the greater the approach speed between the vehicle and the obstacle the greater the first space expansion rate.
  • the apparatus 90 may further include:
  • the driving area prediction unit 908 is configured to acquire the position, speed and heading angle of the vehicle when it actually travels to the second driving area, and obtain the third time of the vehicle according to the position, speed and heading angle. driving area;
  • the processing unit 906 is specifically used for:
  • the apparatus 90 may further include:
  • a third obtaining unit 9010 configured to obtain the position information of the collision point when the vehicle and the obstacle will collide when it is determined that the vehicle and the obstacle will collide;
  • the second adjustment unit 9012 is configured to adjust the traveling speed of the vehicle and/or the target planned path according to the position information of the collision point and in combination with the obtained movement speed of the obstacle.
  • the target planning path includes multiple position points, and the distance between adjacent position points is smaller than the size of the obstacle; the first obtaining unit 900 is specifically configured to:
  • the first driving area occupied by the vehicle at each position point is determined to obtain the plurality of first driving areas.
  • the apparatus 90 may further include:
  • the display unit 9014 is configured to display the overlapping area between the first driving area and the occupation area on the central control screen of the vehicle.
  • FIG. 10 provides a schematic structural diagram of an in-vehicle terminal according to an embodiment of the application.
  • the in-vehicle terminal 100 may include at least one processor 1001, at least one memory 1002, a communication bus 1003, and at least one communication interface 1004.
  • the processor 1001 connects the memory 1002 and the communication interface 1004 through a communication bus, and can also communicate with each other.
  • the processor 1001 may adopt a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a graphics processor (Graphics Processing Unit, GPU), a neural network processor (Network Processing Unit, NPU) or one or more integrated circuits for executing a related program to execute the vehicle collision detection method described in the method embodiment of the present application.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit
  • NPU neural network processor
  • the processor 1001 may also be an integrated circuit chip with signal processing capability. In the implementation process, each step of the data processing method of the present application can be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in the form of software.
  • the above-mentioned processor 1001 may also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and executes the data processing method of the method embodiment of the present application in combination with its hardware.
  • the memory 1002 may be a read-only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device, or a random access memory (Random Access Memory, RAM).
  • the memory 1002 may store programs and data, for example, programs of the data processing methods in the embodiments of the present application, and the like.
  • the processor 1001 and the communication interface 1004 are used to execute each step of the data processing method of the embodiment of the present application.
  • the program in the embodiment of the present application for implementing the vehicle collision detection method in the embodiment of the present application may be the method involved in the first aspect of the embodiment of the present application, or the method involved in the second aspect of the embodiment of the present application.
  • the communication interface 1004 enables communication between the data processing device 100 and other devices or a communication network using a transceiver device such as, but not limited to, a transceiver.
  • the data processing device may further include an artificial intelligence processor 1005, and the artificial intelligence processor 1005 may be a neural network processor (Network Processing Unit, NPU), a tensor processor (Tensor Processing Unit, TPU), or a graph Processor (Graphics Processing Unit, GPU) and other processors suitable for large-scale XOR processing.
  • the artificial intelligence processor 1005 can be mounted on the host CPU (Host CPU) as a coprocessor, and the host CPU assigns tasks to it.
  • the artificial intelligence processor 1005 may implement one or more operations involved in the above data processing method. For example, taking the NPU as an example, the core part of the NPU is an arithmetic circuit, and the controller controls the arithmetic circuit to extract the matrix data in the memory 1002 and perform multiplication and addition operations.
  • the processor 1001 is used to call data and program codes in the memory, and execute:
  • an overlapping area occurs between at least two first driving areas and the occupation area of the obstacle, and in the at least two first driving areas, the difference between the latter first driving area and the occupation area of the obstacle.
  • the overlap depth is greater than the overlap depth between the previous first driving area and the occupied area of the obstacle, it is determined that the vehicle and the obstacle will collide; the overlap depth is used to characterize the overlap area The degree of intrusion into the first driving area.
  • the processor 1001 can also be used for:
  • the processor 1001 can also be used for:
  • N is a positive integer greater than 0; the N overlapping lengths are the projection on the normal corresponding to each of the N directions;
  • a minimum of the N overlap lengths is determined as the overlap depth between the first driving area and the encroachment area of the obstacle.
  • the processor 1001 obtains a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path, which may include:
  • attitude and heading angle of the current position of the vehicle combined with the envelope of the vehicle, determine a plurality of second driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path;
  • the processor 1001 adjusts each second driving area according to the relative movement trend between the vehicle and the obstacle, which may include:
  • the second driving area is adjusted with the first space expansion rate; on the side of the vehicle away from the obstacle, the second space expansion rate is used to adjust all the The second driving area is adjusted; wherein, the first space expansion rate is greater than the second space expansion rate.
  • the smaller the approach distance between the vehicle and the obstacle the greater the first space expansion rate; or, when the vehicle approaches the obstacle On the side of , the greater the approach speed between the vehicle and the obstacle, the greater the first space expansion rate.
  • the processor 1001 obtains a plurality of first driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path, which may include:
  • attitude and heading angle of the current position of the vehicle combined with the envelope of the vehicle, determine a plurality of third driving areas that the vehicle needs to occupy when the vehicle travels according to the target planned path;
  • the processor 1001 can also be used for:
  • the traveling speed of the vehicle and/or the target planned path is adjusted according to the position information of the collision point and in combination with the obtained movement speed of the obstacle.
  • the target planning path includes a plurality of position points, and the distance between adjacent position points is smaller than the size of the obstacle; the processor 1001 obtains the number of points that the vehicle needs to occupy when the vehicle travels according to the target planning path.
  • a first driving zone which can include:
  • the first driving area occupied by the vehicle at each position point is determined to obtain the plurality of first driving areas.
  • the processor 1001 may also be used to:
  • the depth of overlap between the first driving area and the encroachment area is displayed.
  • the in-vehicle terminal shown in FIG. 10 can also execute the method described in any one of the second aspect of the present application through the processor 1001 .
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer or processor is run on a computer or a processor, the computer or the processor is made to execute any one of the foregoing embodiments. one or more steps in a method. If each component module of the above-mentioned device is realized in the form of software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or The part said to have contributed to the prior art or the whole or part of the technical solution can be embodied in the form of a software product, and the computer product is stored in a computer-readable storage medium.
  • the above-mentioned computer-readable storage medium may be an internal storage unit of the device described in the foregoing embodiments, such as a hard disk or a memory.
  • the above-mentioned computer-readable storage medium can also be an external storage device of the above-mentioned equipment, such as a plug-in hard disk equipped, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) )Wait.
  • the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned device and an external storage device.
  • the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program and other programs and data required by the above-mentioned device.
  • the above-mentioned computer-readable storage medium can also be used to temporarily store data that has been output or is to be output.
  • the aforementioned storage medium includes various media that can store program codes, such as ROM, RAM, magnetic disk, or optical disk.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol) .
  • a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium, such as a signal or carrier wave.
  • Data storage media can be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementing the techniques described in this application.
  • the computer program product may comprise a computer-readable medium.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆碰撞检测方法、装置及计算机可读存储介质,涉及人工智能领域,该方法包括:获取车辆按照目标规划路径进行行驶时车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在目标规划路径中的侵占区域;若至少两个第一驾驶区域与障碍物的侵占区域之间产生重叠区域,且在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,确定车辆与障碍物将会发生碰撞;重叠深度用于表征重叠区域侵入第一驾驶区域的程度。可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证车辆在行驶过程中的安全性和平顺性。

Description

一种车辆碰撞检测方法、装置及计算机可读存储介质
本申请要求于2020年7月25日提交中国专利局、申请号为202010728647.1、申请名称为“一种车辆碰撞检测方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能汽车领域,尤其涉及一种车辆碰撞检测方法、装置及计算机可读存储介质。
背景技术
人工智能(Artificial Intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。人工智能领域的研究包括机器人,自然语言处理,计算机视觉,决策与推理,人机交互,推荐与搜索,AI基础理论等。
自动驾驶是人工智能领域的一种主流应用,自动驾驶技术依靠计算机视觉、雷达、监控装置和全球定位系统等协同合作,让机动车辆可以在不需要人类主动操作下,实现自动驾驶。自动驾驶的车辆使用各种计算系统来实现将乘客从一个位置运输到另一个位置。一些自动驾驶车辆可能要来自操作者(诸如驾驶员、乘客)的一些初始输入或者连续输入。自动驾驶车辆准许操作者从手动驾驶模式切换到自动驾驶模式或者介于两者之间的模式。由于自动驾驶技术无需人类来驾驶机动车辆,所以理论上能够有效避免人类驾驶员的驾驶失误,减少交通事故的发生,且能够提高公路的运输效率。因此,自动驾驶技术越来越受到重视。
自动驾驶技术的关键技术之一是自主决策,包括路线导航、情景识别、行为决策和轨迹规划等四个部分。其中,轨迹规划的主要目的是:在考虑车辆动力学特性、周围动态障碍物、交通规则和道路限制等因素的情况下,为车辆提供一条通往目的地的安全、舒适、可执行的轨迹。
现有技术中,当车辆前方有障碍物入侵车辆的规划路径时,车辆通过检测自身与障碍物间的距离是否满足安全阈值来判断自车是否与障碍物发生碰撞,若自身与障碍物间的距离小于安全阈值,则确定车辆与障碍物发生碰撞。在这一实现方式中,由于无法保证车辆与障碍物发生碰撞的准确性,极大的影响了自动驾驶的安全性和平顺性。因此,面对有障碍物入侵车辆的规划路径时,如何保证自动驾驶的安全性及平顺性是亟需解决的技术问题。
发明内容
本申请提供了一种车辆碰撞检测方法、装置及计算机可读存储介质,可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证了车辆在行驶过程中的安全性和平顺性。
第一方面,提供了一种车辆碰撞检测方法,该方法可以包括:
获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在所述目标规划路径中的侵占区域;
若至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
实施本申请实施例,车载终端在获取到车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,以及潜在障碍物在目标规划路径中的侵占区域之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第一驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,判断至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,若是,则确定车辆与障碍物将会发生碰撞。相较于现有技术而言,由于考虑了车辆与障碍物之间的碰撞趋势(后一个第一驾驶区域与障碍物之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度),可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证了车辆在行驶过程中的安全性和平顺性。
在一种可能的实现方式中,所述方法还包括:若至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。实施本申请实施例,车载终端在获取到车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,以及潜在障碍物在目标规划路径中的侵占区域之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第一驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,判断至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,若否,则确定车辆与障碍物不发生碰撞。相较于现有技术而言,由于考虑了车辆与障碍物之间的碰撞趋势(该碰撞趋势体现在:后一个第一驾驶区域与障碍物之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度),可以准确地检测出车辆是否与潜在障碍物发生碰撞,避免误判的情形,保证了车辆在行驶过程中的安全性和平顺性。
在一种可能的实现方式中,所述方法还包括:分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
在一种可能的实现方式中,所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;获取所述目标车辆与所述障碍物之间的相对运动趋势,并根据所述目标车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域; 其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。实施本申请实施例,可以根据目标车辆与障碍物之间的相对运动趋势对目标车辆按照目标规划行驶路径进行行驶时占用的驾驶区域进行调整,可以保证有碰撞风险一侧的安全性,对于无碰撞风险的一侧,可以更好的通过。
在一种可能的实现方式中,所述根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,包括:在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。实施本申请实施例,在获取车辆按照目标规划路径进行行驶时占用的第一驾驶区域时,充分考虑了车辆与障碍物之间的相对运动趋势以及根据实际驾驶状态获取得到的下一个时刻的驾驶状态,可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证了车辆在行驶过程中的安全性和平顺性。
在一种可能的实现方式中,所述方法还包括:在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。实施本申请实施例,在确定车辆与障碍物将会发生碰撞的情况下,车辆上的车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物,从而可以保证车辆在驾驶过程中的安全性。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。实施本申请实施例,由于目标规划路径中包含多个位置点,且车载终端在每个位置点均生成了一个第一驾驶区域,多个第一驾驶区域构成了车辆的运行轨迹,相较于现有技术而言,可以消除奇异位置点或间距过大对碰撞检测准确性的影响,提高小尺寸障碍物检测的准确性。
在一种可能的实现方式中,所述方法还包括:
在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
第二方面,本申请实施例还提供了一种车辆碰撞检测方法,该方法可以包括:获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在所述目标规划路径中的侵占区域;获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积;若至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
实施本申请实施例,车载终端在获取到车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,以及潜在障碍物在目标规划路径中的侵占区域之后,可以根据车辆与障碍物之间的相对运动趋势对车辆按照目标规划行驶路径进行行驶时占用的驾驶区域进行调整,判断至少两个第二驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第二驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,确定车辆与障碍物将会发生碰撞。相较于现有技术而言,由于可以根据车辆与障碍物之间的相对运动趋势对车辆按照目标规划行驶路径进行行驶时占用的驾驶区域进行调整,可以保证有碰撞风险一侧的安全性,对于无碰撞风险的一侧,可以更好的通过,保证了车辆在行驶过程中的安全性和平顺性。
在一种可能的实现方式中,所述根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,包括:在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域之后,还包括:获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的第三驾驶区域;所述若至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞,包括:若所述调整后的第二驾驶区域、所述第三驾驶区域均与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。实施本申请实施例,在获取车辆按照目标规划路径进行行驶时占用的驾驶区域时,充分考虑了车辆与障碍物之间的相对运动趋势以及根据实际驾驶状态获取得到的下一个时刻的驾驶状态,可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证了车辆在行驶过程中的安全性和平顺性。
在一种可能的实现方式中,所述方法还包括:在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。实施本申请实施例,在确定车辆与障碍物将会发生碰撞的情况下,车辆上的车载终端可以对目标车辆的行驶速度和/或目标规划路径进行调整,以避让障 碍物,从而可以保证车辆在驾驶过程中的安全性。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。实施本申请实施例,由于目标规划路径中包含多个位置点,且车载终端在每个位置点均生成了一个驾驶区域,多个驾驶区域构成了车辆的运行轨迹,相较于现有技术而言,可以消除奇异位置点或间距过大对碰撞检测准确性的影响。
在一种可能的实现方式中,所述方法还包括:
在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
第三方面,本申请实施例提供了一种车辆碰撞检测装置,该装置可以包括:第一获取单元,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;第二获取单元,用于获取潜在障碍物在所述目标规划路径中的侵占区域;第一处理单元,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
在一种可能的实现方式中,所述装置还包括:第二处理单元,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。
在一种可能的实现方式中,所述装置还包括:碰撞深度确定单元,用于分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
在一种可能的实现方式中,所述第一获取单元包括第一确定单元和第一调整单元;其中,所述第一确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;所述第一调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域;其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。
在一种可能的实现方式中,所述第一调整单元,具体用于:在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之 间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述第一获取单元包括第二确定单元、第二调整单元和;其中,所述第二确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;所述第二调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;第三获取单元,用于获取所述车辆行驶在所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。
在一种可能的实现方式中,所述装置还包括:第四获取单元,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;第三调整单元,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元,具体用于:根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
在一种可能的实现方式中,所述装置还包括:显示单元,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
第四方面,本申请实施例还提供了一种车辆碰撞检测装置,该装置可以包括:第一获取单元,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;第二获取单元,用于获取潜在障碍物在所述目标规划路径中的侵占区域;第一调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积;处理单元,用于在至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
在一种可能的实现方式中,所述第一调整单元,具体用于:在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述装置还包括:驾驶区域预测单元,获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到 下一个时刻所述车辆的第三驾驶区域;所述处理单元,具体用于:若所述调整后的第二驾驶区域、所述第三驾驶区域均与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
在一种可能的实现方式中,所述装置还包括:第三获取单元,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;第二调整单元,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元,具体用于:根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
在一种可能的实现方式中,所述装置还包括:显示单元,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠区域。
第五方面,本申请实施例提供了一种自动驾驶装置,该自动驾驶装置包括上述第三方面或第四方面任一项所述的装置。
第六方面,本申请实施例提供了一种自动驾驶车辆,包括行进系统、传感系统、控制系统和计算机系统,其中,计算机系统用于执行上述第一方面或第二方面任一项所述的方法。
第七方面,本申请实施例提供了一种车载终端,该车载终端包括处理器和存储器,所述存储器用于存储支持车载终端执行上述第一方面或第二方面方法的计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述第一方面或第二方面的方法。
第八方面,本申请实施例提供了一种芯片,该芯片可以包括处理器、存储器和通信接口,所述处理器通过所述通信接口读取所述存储器上存储的指令,执行上述第一方面或第二方面任一项所述的方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如上述第一方面或第二方面任一项所述的方法
第十方面,本申请实施例还提供了一种计算机程序,所述计算机程序包括计算机软件指令,所述计算机软件指令当被计算机执行时使所述计算机执行如上述第一方面或第二方面任一项所述的方法。
附图说明
图1a为本申请实施例提供的一种自动驾驶装置的结构示意图;
图1b为本申请实施例提供的一种计算机系统的结构示意图;
图2a为本申请实施例提供的一种车辆碰撞检测方法的应用场景示意图;
图2b为本申请实施例提供的一种车辆碰撞检测方法的应用场景示意图;
图2c为本申请实施例提供的一种车辆碰撞检测方法的应用场景示意图;
图3a为本申请实施例提供的一种车辆碰撞检测方法的流程示意图;
图3b为本申请实施例提供的一种目标规划路径的示意图;
图3c为本申请实施例提供的一种在每个位置点生成第一驾驶区域的示意图;
图3d为本申请实施例提供的一种在每个位置点生成第一驾驶区域的示意图;
图3e为本申请实施例提供的一种可行驶区域与第一驾驶区域的示意图;
图3f为本申请实施例提供的一种碰撞场景的示意图;
图3g为本申请实施例提供的一种碰撞场景的示意图;
图3h为本申请实施例提供的一种碰撞场景的示意图;
图3i为本申请实施例提供的一种碰撞场景的示意图;
图4a为本申请实施例提供的一种分离轴定理检测的原理示意图;
图4b为本申请实施例提供的一种重叠区域的示意图;
图4c为本申请实施例提供的一种确定重叠深度的示意图;
图4d为本申请实施例提供的一种碰撞检测的示意图;
图4e为本申请实施例提供的一种碰撞检测的示意图;
图4f为本申请实施例提供的一种碰撞检测的示意图;
图4g为本申请实施例提供的一种碰撞检测的示意图;
图5a为本申请实施例提供的另一种车辆碰撞检测方法的流程示意图;
图5b为本申请实施例提供的一种通过车辆的中控屏显示碰撞深度的示意图;
图6为本申请实施例提供的另一种车辆碰撞检测方法的流程示意图;
图7为本申请实施例提供的另一种车辆碰撞检测方法的流程示意图;
图8为本申请实施例提供的一种车辆碰撞检测装置的结构示意图;
图9为本申请实施例提供的另一种车辆碰撞检测装置的结构示意图;
图10为本申请实施例提供的一种车载终端的结构示意图。
具体实施方式
下面结合附图对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区分不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一些列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。需要说明的是,本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性地” 或者“例如”的任何实施例或设计方法不应被解释为比其他实施例或设计方案更优地或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,“A和/或B”表示A和B,A或B两个含义。“A,和/或B,和/或C”表示A、B、C中的任一个,或者,表示A、B、C中的任两个,或者,表示A和B和C。
(1)自动驾驶车辆(Autonomous vehicles;Self-piloting automobile)
在本申请实施例中,自动驾驶车辆又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过计算机系统实现无人驾驶的智能汽车。在实际应用中,自动驾驶车辆依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让计算机设备可以在没有任何人类主动的操作下,自动安全地操作机动车辆。
(2)道路和车道
在本申请实施例中,道路是指供车辆行驶,用于连通两地的通道。车道是指供沿同一方向行驶的单一纵列车辆行驶的通道,常见的车道包括直行车道、左转弯车道以及右转弯车道等不同种类。一条道路中包括一条或者多条车道。例如,一条道路包括:1条左转弯车道、2条直行车道和1条右转弯车道共四条车道。
在本申请实施例中,规划路径是指,用于使得车辆即将行驶在指定道路上的路径,也可以是指,精确到亚米级,且用于使得车辆行驶在指定车道上的路径。
需要说明的是,本申请提供的车辆碰撞检测方法可以应用于障碍物入侵(亦或是:小幅入侵)车辆行驶的目标规划路径的场景,还可以应用于车辆的整个自动驾驶过程中,以保障车辆在驾驶过程中的安全性和平顺性。
图1a是本申请实施例提供的自动驾驶装置100的功能框图。在一些实施方式中,可以将自动驾驶装置100配置为完全自动驾驶模式或部分地自动驾驶模式,亦或是人工驾驶模式。以美国机动车工程师学会(Society of Automotive Engineer,SAE)提出的自动驾驶分级为例,完全自动驾驶模式可以为L5,表示由车辆完成所有驾驶操作,人类驾驶员无需保持注意力;部分地自动驾驶模式可以为L1、L2、L3、L4,其中,L1表示车辆对方向盘和加减速中的一项操作提供驾驶,人类驾驶员负责其余的驾驶操作;L2表示车辆对方向盘和加减速中的多项操作提供驾驶,人类驾驶员负责其余的驾驶动作;L3表示由车辆完成绝大部分驾驶操作,人类驾驶员需保持注意力集中以备不时之需;L4表示由车辆完成所有驾驶操作,人类驾驶员无需保持注意力,但限定道路和环境条件;人工驾驶模式可以为L0,表示由人类驾驶者全权驾驶汽车。
在实际应用中,自动驾驶装置100可以在处于自动驾驶模式的同时控制自身,并且可通过人为操作来确定车辆以及周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制自动驾驶装置100。在自动驾驶装置100处于完全自动驾驶模式中时,可以将自动驾驶装置100置为在没有人交互的情况下操作。
在本申请实施例中,自动驾驶装置100可以包括多种子系统,例如,行进系统102、传感系统104、控制系统106、一个或多个外围设备108以及电源110、计算机系统112和用户接口116。在一些实现方式中,自动驾驶装置110可以包括更多或更少的子系统,并且每 个子系统可以包括多个元件。另外,自动驾驶装置100的每个子系统和元件可以通过有线或无线互连。
在本申请实施例中,行进系统102可以包括为自动驾驶装置100提供动力运动的组件。在一些实现方式中,行进系统102可以包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如,汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。在实际应用中,引擎118将能量源119转换成机械能量。
在本申请实施例中,能量源119可以包括但不限于:汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池或其他电力来源。能量源119也可以为自动驾驶装置100的其他系统提供能量。
在本申请实施例中,传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可以包括变速箱、差速器和驱动轴。在一些实现方式中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴包括可耦合到一个或多个车轮121的一个或多个轴。
在本申请实施例中,传感系统104可以包括感测关于自动驾驶装置100周边的环境信息的若干个传感器。例如,传感系统104可以包括定位系统122(这里,定位系统可以是GPS系统,也可以是北斗系统或者是其他定位系统)、惯性测量单元(Inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感系统104还可以包括被监视自动驾驶装置100内部系统的传感器,例如,车内空气质量监测器、燃油量表、机油温度表等。来自这些传感器中的一个或多个传感器数据可以用于检测对象及其相应特性(例如,位置、形状、方向、速度等)。这些检测和识别是自主自动驾驶装置100的安全操作的关键功能。
在本申请实施例中,全球定位系统122可用于估计自动驾驶装置100的地理位置。示例性地,可以通过IMU124估计自动驾驶装置100的地理位。具体来说,IMU124用于基于惯性加速度来感测自动驾驶装置100的位置和朝向变化。在一些实现方式中,IMU124可以是加速度计和陀螺仪的组合。
在本申请实施例中,雷达126可利用无线电信号来感测自动驾驶装置100的周边环境内的物体。在一些实现方式中,除了感测物体之外,雷达126还可以用于感测物体的速度和/或前进方向。
在本申请实施例中,激光测距仪128可利用激光来感测自动驾驶装置100所处环境中的物体。在一些实现方式中,激光测距仪128可以包括一个或多个激光源、激光扫描器以及一个或多个监测器,以及其他系统组件。
在本申请实施例中,相机130可以用于捕捉自动驾驶装置100的周边环境的多个图像。在一些实现方式中,相机130可以是静态相机或视频相机,本申请实施例不作具体限定。
在本申请实施例中,控制系统106可控制自动驾驶装置100以及组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、计算机视觉系统140、路线控制系统142以及障碍规避系统。
在本申请实施例中,转向系统132可操作来调整自动驾驶装置100的前进方向。例如, 在一个实施例中可以为方向盘系统。
在本申请实施例中,油门134用于控制引擎118的操作速度,并进而控制自动驾驶装置100的速度。
在本申请实施例中,制动单元136用于控制自动驾驶装置100的速度。制动单元136可使用摩擦力来减慢车轮121。在一些实现方式中,制动单元136可将车轮121的动能转换为电流。制动单元136也可以采取其他形式来减慢车轮121转速,从而控制自动驾驶装置100的速度。
在本申请实施例中,计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别自动驾驶装置100周边环境中的物体和/或特征。在一些实现方式中,这里所提及的物体和/或特征可以包括但不限于:交通信号,道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(Structure from motion,SFM)算法、视觉跟踪和其他计算机视觉技术。在一些实现方式中,计算机视觉系统140可以用于为环境绘制地图、跟踪物体、估计物体的速度等。
在本申请实施例中,路线控制系统142用于确定自动驾驶装置100的行驶路线。在一些实现方式中,路线控制系统142可结合来自传感器、定位系统122和一个或多个预定地图的数据以为自动驾驶装置100确定行驶路线。
在本申请实施例中,障碍规避系统144用于识别、评估和规避或者以其他方式越过自动驾驶装置100环境中的潜在障碍物。障碍物,顾名思义,是指起妨碍或阻碍作用的东西。示例性地,潜在障碍物可以包括除了车辆之外的其他车辆、行人、自行车、静态物体等对车辆的驾驶存在潜在或直接影响的障碍物。
可以理解的是,在一些实现方式中,控制系统106可以增加或替换地包括除了图1a所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件,
在本申请实施例中,自动驾驶装置100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可以包括无线通信系统146、车载电脑148、麦克风150和/或扬声器152。
在一些实现方式中,外围设备108提供自动驾驶装置100的用户与用户接口116交互的手段。例如,车载电脑148可向自动驾驶装置100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于自动驾驶装置100与车内的其他设备通信的手段。例如,麦克风150可从自动驾驶装置100的用户接收音频,例如,语音命令或其他音频输入。类似地,扬声器150可向自动驾驶装置100的用户输出音频。
在本申请实施例中,无线通信系统146可以直接地或经由通信网络来与一个或多个设备无线通信。例如,无线通信系统146可使用3G蜂窝通信,例如,CDMA、EVDO、GSM/GPRS,或者4G蜂窝通信,例如,LTE。或者5G蜂窝通信。在一些实现方式中,无线通信系统146可利用WIFI与无线局域网(Wireless local area network,WLAN)通信。在一些实现方式中,无线通信系统146可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如,各种车辆通信系统,比如无线通信系统146可包括一个或多个专用短程通信(Dedicated short-range communications,DSRC)设备,这些设备可以包括车辆和 /或路边台站之间的公共和/或私有数据通信。
在本申请实施例中,电源110可向自动驾驶装置100的各种组件提供电力。在一些实现方式中,电源110可以为可充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源,从而为自动驾驶装置100的各种组件提供电力。在一些实现方式中,电源110和能量源119可一起实现,例如,如一些全电动车中那样将这二者一起配置。
在本申请实施例中,自动驾驶装置100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如数据存储装置114这样的非暂态计算机可读存储介质中的指令115。计算机系统112还可以是采用分布式控制自动驾驶装置100的个体组件或子系统中的多个计算设备。
在一些实现方式中,处理器113可以是任何常规的处理器,诸如商业可获得的中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。尽管图1b功能性地示出了处理器、存储器和在相同物理外壳中的其他元件,但是本领域的普通技术人员应该理解该处理器、计算机系统或存储器,或者包括可以不存储在相同的物理外壳内的多个处理器、计算机系统或存储器。例如,存储器可以是硬盘驱动器,或位于不同于物理外壳内的其他存储介质。因此,对处理器或计算机系统的引用将被理解为包括对可以并行操作的处理器或计算机系统或存储器的集合的引用,或者可以不并行操作的处理器或计算机系统或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,该处理器只执行与特定组件的功能相关的计算。
在此处所描述的各个方面中,处理器113可以位于远离该车辆并且与该车辆进行无线通信。在其他方面,此处所描述的过程中的一些布置于车辆内的处理器上执行而其他则由远程处理器执行,包括采取执行单一操作的必要步骤。
在一些实现方式中,数据存储装置114可以包括指令115(例如,程序逻辑),指令115可被处理器113执行来执行自动驾驶装置100的各种功能,包括以上描述的那些功能。数据存储装置114也可包含额外的指令,包括向行进系统102、传感系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,数据存储装置114还可存储数据,例如,道路地图、路线消息、车辆的位置、方向、速度以及其他车辆数据,以及其他信息。上述信息可在自动驾驶装置100在自主、半自主和/或手动模式操作期间被自动驾驶装置100和计算机系统112使用。
例如,数据存储装置114从传感器104或自动驾驶装置100的其他组件获取车辆的环境信息。环境信息例如可以为车辆当前所处环境中的车道线信息、车道数、道路边界信息、道路行驶参数、交通信号、绿化带信息和是否有行人、车辆等。数据存储装置114还可以存储该车辆自身的状态信息,以及与该车辆有交互的其他车辆的状态信息。状态信息可以包括但不限于:车辆的速度、加速度、航向角等。例如,车辆基于雷达126的测速、测距功能,得到其他车辆与自身之间的距离、其他车辆的速度等。那么,在这种情况下,处理 器113可从数据存储装置114获取上述车辆数据,并基于车辆所处的环境信息确定满足安全需求的驾驶策略。
例如,数据存储装置114可以从传感器104或自动驾驶装置100的其他组件获取车辆行驶在目标规划路径中的潜在障碍物信息(例如,障碍物信息可以包括障碍物尺寸)。那么,在这种情况下,处理器113可从数据存储装置114获取上述潜在障碍物信息,并根据潜在障碍物信息确定潜在障碍物在目标规划路径中的侵占区域,判断车辆按照目标规划路径进行行驶时需要占用的第一驾驶区域是否与潜在障碍物的侵占区域之间是否产生重叠区域,在满足第一驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,结合碰撞趋势确定车辆是否与障碍物将会发生碰撞。具体来说,碰撞趋势体现在:在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度。
在本申请实施例中,用户接口116,用于向自动驾驶装置100的用户提供信息或从其接收信息。在一些实现方式中,用户接口116可包括外围设备108的集合内的一个或多个输入/输出设备,例如,无线通信系统146、车载电脑148、麦克风150和扬声器152中的一个或多个。
在本申请实施例中,计算机系统112可基于从各种子系统(例如,行进系统102、传感系统104和控制系统)以及从用户接口116接收的输入来控制自动驾驶装置100的功能。例如,计算机系统112可利用来气控制系统106的输入,以便控制转向系统132,从而规避由传感系统104和障碍规避系统144检测到的障碍物。在一些实现方式中,计算机系统112可操作来对自动驾驶装置100及其子系统的许多方面提供控制。
在一些实现方式中,上述组件中的一个或多个可与自动驾驶装置100分开安装或关联。例如,数据存储装置114可以部分或完全地与自动驾驶装置100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
在一些实现方式中,上述组件只是一个示例。在实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1a不应理解为对本申请实施例的限制。
在道路行进的自动驾驶车辆,例如,自动驾驶装置100,可以识别其周围环境内的物体以确定是否对自动驾驶装置100当前行驶的速度进行调整。这里,物体可以是其他车辆、交通控制设备、或者其他类型的物体。在一些实现方式中,可以独立地考虑每个识别的物体,并且基于物体各自的特性,例如,它的当前行驶数据、加速度与车辆间距等,来确定自动驾驶车辆所要调整的速度。
在一些实现方式中,自动驾驶装置100或者与自动驾驶装置100相关联的计算机设备(例如,如图1a所示的计算机系统112、计算机视觉系统140、数据存储装置114)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰等)来预测识别的物体的行为。在一些实现方式中,每一个识别的物体都依赖于彼此的行为,因此,还可以将识别的所有物体全部一起考虑来预测单个识别的物体的行为。自动驾驶装置100能够基于预测的识别的物体的行为来调整它的速度。换句话说,自动驾驶装置100能够基于所预测的物体的行为来确定车辆将需要调整到什么样的稳定状态(例如,调整操作可以包括加速、减速或者停止)。在这个过程中,也可以考虑其他因素来确定自动驾驶装置100的速 度,例如自动驾驶装置100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等。
除了提供调整自动驾驶汽车的速度的指令之外,计算机设备还可以提供修改车辆100转向角的指令,以使得自动驾驶车辆遵循给定的轨迹和/或维持与自动驾驶车辆附近的物体(例如,道路上相邻的车道中的汽车)的安全横向和纵向距离。
在本申请实施例中,上述自动驾驶装置100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本申请实施例不做特别的限定。
在一些实现方式中,自动驾驶装置100还可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的行驶来实现上述功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和涉及约束条件。
图1a介绍了自动驾驶装置100的功能性框图,下面介绍自动驾驶装置100中的自动驾驶系统101。图1b是本申请实施例提供的一种自动驾驶系统的结构示意图。图1a和图1b是从不同的角度来描述自动驾驶装置100,例如,图1a中的计算机系统101为图1b中的计算机系统112。如图1b所示,计算机系统101包括处理器103,处理器103和系统总线105耦合。处理器103可以是一个或者多个处理器,其中每个处理器都可以包括一个或多个处理器核。显示适配器(video adapter)107,显示适配器可以驱动显示器109,显示器109和系统总线105耦合。系统总线105通过总线桥111和输入输出(I/O)总线113耦合。I/O接口115和I/O总线耦合。I/O接口115和多种I/O设备进行通信,比如输入设备117(如:键盘,鼠标,触摸屏等),多媒体盘(media tray)121,(例如,CD-ROM,多媒体接口等)。收发器123(可以发送和/或接受无线电通信信号),摄像头155(可以捕捉景田和动态数字视频图像)和外部USB接口125。其中,可选地,和I/O接口115相连接的接口可以是USB接口。
其中,处理器103可以是任何传统处理器,包括精简指令集计算(“RISC”)处理器、复杂指令集计算(“CISC”)处理器或上述的组合。可选地,处理器可以是诸如专用集成电路(“ASIC”)的专用装置。可选地,处理器103可以是神经网络处理器或者是神经网络处理器和上述传统处理器的组合。
可选地,在本文所述的各种实施例中,计算机系统101可位于远离自动驾驶车辆的地方,并且可与自动驾驶车辆100无线通信。在其它方面,本文所述的一些过程在设置在自动驾驶车辆内的处理器上执行,其它由远程处理器执行,包括采取执行单个操纵所需的动作。
计算机101可以通过网络接口129和软件部署服务器149通信。网络接口129是硬件网络接口,比如,网卡。网络127可以是外部网络,比如因特网,也可以是内部网络,比如以太网或者虚拟私人网络(VPN)。可选地,网络127还尅是无线网络,比如WiFi网络,蜂窝网络等。
硬盘驱动接口和系统总线105耦合。硬件驱动接口和硬盘驱动器相连接。系统内存135 和系统总线105耦合。运行在系统内存135的数据可以包括计算机101的操作系统137和应用程序143。
操作系统包括壳(Shell)139和内核(kernel)141。Shell 139是介于使用者和操作系统之内核(kernel)间的一个接口。shell是操作系统最外面的一层。shell管理使用者与操作系统之间的交互:等待使用者的输入,向操作系统解释使用者的输入,并且处理各种各样的操作系统的输出结果。
内核141由操作系统中用于管理存储器、文件、外设和系统资源的那些部分组成。直接与硬件交互,操作系统内核通常运行进程,并提供进程间的通信,提供CPU时间片管理、中断、内存管理、IO管理等等。
应用程序141包括控制汽车自动驾驶相关的程序,比如,管理自动驾驶的汽车和路上障碍物交互的程序,控制自动驾驶汽车路线或者速度的程序,控制自动驾驶汽车和路上其他自动驾驶汽车交互的程序。应用程序141也存在于权健部署服务器(deploying server)149的系统上。在一个实施例中,在需要执行应用程序141时,计算机系统101可以从deploying server149下载应用程序141。
传感器153和计算机系统101关联。传感器153用于探测计算机101周围的环境。举例来说,传感器153可以探测动物,汽车,障碍物和人行横道等,进一步传感器还可以探测上述动物,汽车,障碍物和人行横道等物体周围的环境,比如:动物周围的环境,例如,动物周围出现的其他动物,天气条件,周围环境的光亮度等。可选地,如果计算机101位于自动驾驶的汽车上,传感器可以是摄像头,红外线感应器,化学检测器,麦克风、惯性测量单元、激光测距仪、定位系统等。传感器153在激活时,按照预设间隔感测信息并实时地将所感测到的信息提供给计算机系统101。
例如,传感器153中的定位系统获取车辆的行驶位置,惯性测量单元获取车辆的航向角、摄像头获取车辆的可行驶区域以及障碍物的尺寸,激光测距仪获取车辆与障碍物之间的距离。
需要说明的是,在申请实施例中,车辆也可以称为自车。
处理器103通过基于系统总线105以及硬盘驱动接口131从硬盘驱动器中获取传感器153以及摄像头155采集的相关数据,调用应用程序143中的自动驾驶相关程序147执行以下方法:
获取车辆按照目标规划路径进行行驶时车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在目标规划路径中的侵占区域,之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第一驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,进一步判断在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,在判断得知:在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度的情况下,确定车辆与障碍物将会发生碰撞。在一个示例中,在车载终端确定车辆与障碍物将会发生碰撞的情况下,车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物。在一个示例,在车载终端确定车辆与障碍物将会发生碰撞的情况下,在障碍物 之前生成一道虚拟墙,使得车辆在障碍物前停止或降速前进,以保障车辆在驾驶过程中的安全性。
可选的,在本文所述的各种实施例中,计算机系统101可位于远离自动驾驶装置100的地方,并且可以与自动驾驶装置100进行无线通信。收发器123可将自动驾驶任务、传感器153采集的传感器数据和其他数据发送给计算机系统101;还可以接收计算机系统101发送的控制指令。自动驾驶装置可执行收发器123接收的来自计算机系统101的控制指令,并执行相应的驾驶操作。在其他方面,本文所述的一些过程设置在自动驾驶车辆内的处理器上执行,其他由远程处理器执行,包括采取执行单个操作所需的动作。
为了便于更好的理解本申请,下面介绍几个本申请所描述的方法可以应用的应用场景:
第一应用场景:
参见图2a,是本申请实施例提供的一种第一应用场景的示意图。如图2a所示,在车辆的目标规划路径中包含潜在障碍物,例如,该潜在障碍物包括正常行驶的社会车1、汇入车辆的目标规划路径中的社会车2、停放在车辆的目标规划路径中的违停车辆。如果车辆按照目标规划路径进行行驶的过程中,车辆不避让上述障碍物,将会引发交通事故。采用本申请所描述的方法,以潜在障碍物为正常行驶的社会车1为例,车辆上的车载终端通过获取车辆按照目标规划路径进行行驶时车辆需要占用的第一驾驶区域,并获取正常行驶的社会车1在目标规划路径中的侵占区域;之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在判断得知至少两个第一驾驶区域与障碍物的侵占区域产生重叠区域的情况下,进一步判断在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,在判断得知在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度的情况下,确定车辆与障碍物将会发生碰撞。在一个示例中,在确定车辆与障碍物将会发生碰撞的情况下,车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物,从而可以保证车辆在驾驶过程中的安全性。在一个示例中,在确定车辆与障碍物将会发生碰撞的情况下,在障碍物之前生成一道虚拟墙,使得车辆在障碍物前停止或降速前进,以保障车辆在驾驶过程中的安全性。
第二应用场景:
参见图2b,是本申请实施例提供的一种第二应用场景的示意图。如图2b所示,在车辆的目标规划路径中包含潜在障碍物,例如,该潜在障碍物包括正常行驶的社会车1、汇入车辆的目标规划路径中的社会车2、停放在车辆的目标规划路径中的违停车辆。如果车辆按照目标规划路径进行行驶的过程中,车辆不避让上述障碍物,将会引发交通事故。采用本申请所描述的方法,以潜在障碍物为正常行驶的社会车1为例,车辆上的车载终端通过获取车辆按照目标规划路径进行行驶时车辆需要占用的第一驾驶区域,并获取正常行驶的社会车1在目标规划路径中的侵占区域;之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在判断得知至少两个第一驾驶区域与障碍物的侵占区域 产生重叠区域的情况下,进一步判断在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,在判断得知在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度的情况下,确定车辆与障碍物将会发生碰撞。在一个示例中,在确定车辆与障碍物将会发生碰撞的情况下,车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物,从而可以保证车辆在驾驶过程中的安全性。在一个示例中,在确定车辆与障碍物将会发生碰撞的情况下,在障碍物之前生成一道虚拟墙,使得车辆在障碍物前停止或降速前进,以保障车辆在驾驶过程中的安全性。
第三应用场景:
参见图2c,是本申请实施例提供的一种第三应用场景的示意图。如图2c所示,在车辆的目标规划路径中包含潜在障碍物,例如,该潜在障碍物包括正常行驶的社会车辆,两车道中间交通标志线为实线,在交通规则不允许换道或相邻车道车流密集的情况下,车辆无法换道。在这种情况下,车辆上的车载终端需要判断自身是否与目标规划路径中的障碍物发生碰撞,以绕开障碍物,继续通行。
参见图3a,图3a为本申请实施例提供的一种车辆碰撞检测方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤S300、获取车辆按照目标规划路径进行行驶时车辆需要占用的多个第一驾驶区域。
在本申请实施例中,车辆,也可以称为自车。
在本申请实施例中,连接起点位置和终点位置的序列点或曲线称之为路径,构成路径的策略称之为路径规划。可以理解的是,规划路径可以为使得车辆行驶在指定道路上的路径,也可以为精确到亚米级,使得车辆行驶在制定车道上的路径。例如,如图3b所示,目标规划路径为从起点位置A到终点位置B之间的一条曲线。
在本申请实施例中,车载终端可以通过无线网络向服务器发送车辆的起始位置和目的位置。相应地,服务器从车载终端接收车辆的起始位置和目的位置。例如,车载终端主动向服务器请求路径规划。车载终端向服务器发送路径规划请求,路径规划请求中至少包括车辆的起始位置和目的位置。可选的,路径规划请求中还可以包括标识信息。不同的标识信息用于区分不同的车辆。例如,该标识信息可以是车载终端的设备标识,也可以是登录车载终端的用户账号,还可以是车辆的唯一标识,或者其他预设的标识符。可选的,路径规划请求中还可以包括航向信息。其中,航向信息用于指示车辆的当前航向,也即车头的正对方向。具体地,航向信息可以通过车载传感器获取。可选的,路径规划请求中还可以包括路径约束信息。路径约束信息是指用于对路径规划提供的约束条件。例如,路径约束新用于指示服务器在规划从起始位置至目的位置之间的行驶路径时,该行驶路径必须经过用户指定的目标位置。又例如,路径约束信息用于指示服务器规划距离最短的行驶路径。之后,服务区根据起始位置、目的位置和高精度地图信息,确定目标规划路径。具体地,服务器存储有高精度地图信息,其中,高精度地图信息包括静态信息和动态信息。
其中,静态信息包括用于指示路网环境中的道路、车道和道路基础设施的静态分布状况的信息。例如,静态信息可以包括但不限于道路静态信息、车道静态信息和道路基础设施信息。道路静态信息用于指示路网环境中的道路的静态分布状况,例如,道路静态信息可以包括道路几何、道路曲率、道路航向、道路限速、车道数、纵向坡度以及横向坡度等信息。车道静态信息用于指示路网环境中的车道的静态分布状况,例如车道静态信息包括车道几何、车道曲率、车道航向(直行、左转、右转等)、车道中轴线、车道宽度、车道标线、车道限速、车道分割以及车道合并等信息。道路基础设施信息用于指示路网环境中的道路基础设施状况,例如,道路基础设施信息包括路牙、护栏、隧道、交通标牌、收费站、交通信号指示灯、转向箭头、横杆灯道路基础设施的相关信息。道路静态信息、车道静态信息和道路基础设施信息可以由技术人员预先采集记录的,且由技术人员更新维护。
动态信息包括用于指示路网环境中的道路和车道的实时路况的信息。例如,动态信息包括但不限于道路动态信息和车道动态信息。道路动态信息用于指示路网环境中的道路的实时路况,例如道路流量状况和各个道路的交通信号指示灯状况等。车道动态信息用于指示路网环境中的车道的实时路况,例如,车道流量状况和各个车道的交通信号指示灯状况等。其中,道路流量状况和车道流量状况可根据全路网范围内各个车载终端实时上报的车辆的高精度位置进行统计确定。在一种可能的实施方式中,交通信号指示灯状况可通过交管部门提供的数据接口,从交管部门处获取,并且交通信号指示灯状况可在发生变化的情况下及时更新。在另一种可能的实施方式中,服务器控制交通信号指示灯状况,例如服务器根据各个道路和车道的实时路况控制各个路口的交通信号指示灯状况,之后服务器通过交管部门提供的数据接口,将用于指示交通信号指示灯状况的控制信息提供给交管部门,以便交管部门根据该控制信息控制各个路口的交通信号指示灯。
在一些可选的实现方式中,动态信息还可以包括可用性信息和/或天气信息。其中,可用性信息包括用于指示路网环境中的道路和车道的实时可用性状况的信息。例如,可用性信息可以包括交通事故状况、道路施工状况、道路封闭状况、车道封闭状况、交通管控等信息。在实际应用中,可用性信息可以通过交管部门提供的数据接口从交管部门处获取,也可通过部署于各路段的摄像头实时采集获取,还可通过各车辆的车载传感器(如摄像头))采集获取。天气信息包括用于指示路网环境中各地的实时天气状况和/或未来天气状况的信息。天气信息可通过气象部门提供的数据接口,从气象部门处获取,并且天气信息可在发生变化的情况下及时更新。在一种可能的实施方式中,服务器根据天气信息对其它动态信息进行调整,例如根据天气信息调整道路限速、封闭道路等。
在一个示例中,目标规划路径中包含多个位置点,如图3c所示,目标规划路径中包含位置点1、位置点2、位置点3以及位置点4,其中,相邻位置点之间的间距大于障碍物的尺寸。由于位置点之间的间距较大,对于尺寸较小的障碍物来说,很容易出现漏检或碰撞检测不准确。在如图3c所示的目标规划路径中,可以在每个位置点,根据车辆的姿态和航向角,并结合车辆的包络确定每个位置点对应的第一驾驶区域,从而可以得到多个第一驾驶区域。
在一个示例中,以图3c所示的目标规划路径为例,该目标规划路径中包含多个位置点,如图3d所示,目标规划路径中包含位置点1、位置点2、位置点3、位置点4、位置点5、 位置点6以及位置点7,其中,相邻位置点之间的间距小于障碍物的尺寸。例如,相邻位置点之间的间距可以介于0.5~1米之间。由于位置点之间的间距小,这一实现方式,相较于前述方法来说,可以提高小尺寸障碍物检测的准确性,避免漏检的情形。
在实际应用中,目标规划路径中包含的位置点的数量可以为车载终端根据障碍物的尺寸设置的。一般来说,障碍物的尺寸可以包括障碍物的长宽高、大小和形状,相邻位置点之间的间距小于障碍物的尺寸可以包括:相邻位置点之间的间距小于障碍物的长度、障碍物的宽度、障碍物的高度中的一种。
在如图3d所示的目标规划路径中,可以在每个位置点,根据车辆的姿态和航向角,并结合车辆的包络确定每个位置点对应的第一驾驶区域,从而可以得到多个第一驾驶区域。可以理解的是,由于相邻位置点之间的间距小于障碍物的尺寸,这多个第一驾驶区域可以更好的勾勒出车辆的行驶轨迹,有利于后续判断至少两个第一驾驶区域与障碍物的侵占区域是否产生重叠区域。具体来说,车辆的包络代表了一个车辆的形状逐步延伸所得到的整体形状。
在本申请实施例中,车辆的长度可以在3m-6m之间,车辆的宽度在1.4-1.8m之间,在结合车辆的包络确定第一驾驶区域时,可以以车辆为中心,将尺寸为6m*1.8m的矩形区域作为车辆行驶的过程中,需要占用目标规划路径的驾驶区域。需要说明的是,该驾驶区域并非是指“可行驶区域”。现有技术中,可行驶区域是指:车辆安全行驶的区域。例如,可行驶区域为车辆在满足交通规则行驶时的全部车道形成的区域;又例如,可行驶区域为在满足交通规则行驶时的全部区域。如图3e所示,该可行驶区域包括车道范围内的区域(不含方向不匹配的车道)或路口中虚拟车道线的覆盖区域(图3e所示的阴影部分)。而第一驾驶区域为车道范围里的部分区域(图3e所示的黑色边框部分)。
在一个示例中,获取车辆按照目标规划路径进行行驶时车辆需要占用的多个第一驾驶区域,可以包括:根据车辆当前位置的姿态和航向角,并结合车辆的包络确定车辆按照目标规划路径进行行驶时车辆需要占用的多个第二驾驶区域;获取车辆与障碍物之间的相对运动趋势,并根据车辆与障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到多个第一驾驶区域;其中,第一驾驶区域的区域面积大于第二驾驶区域的区域面积。由于在确定第二驾驶区域的过程中考虑了自车的形状,可以避免弯道的场景中出现的漏检现象。
如前所述,在目标规划路径中,可以在每个位置点生成第二驾驶区域,例如,该第二驾驶区域的可以如图3d所示,那么,在此基础上,可以根据车辆与障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,以得到经过调整后的第一驾驶区域。
具体来说,可以根据车辆与障碍物之间的相对运动趋势对第二驾驶区域进行向外膨胀,得到第一驾驶区域。所谓膨胀,即扩大驾驶区域面积。例如,在车辆接近障碍物的一侧,以第一空间膨胀率对第二驾驶区域进行调整。又例如,在车辆远离障碍物的一侧,以第二空间膨胀率对第二驾驶区域进行调整。具体地,第一空间膨胀率大于第二空间膨胀率。一般来说,可以以第一长度进行膨胀和以第二长度进行膨胀分别来表征第一空间膨胀率和第二空间膨胀率。下面对上述几种情形进行具体阐述:
在一个示例中,如图3f所示,障碍物在车辆的左侧,当车辆与障碍物之间的相对运动趋势为接近趋势的情况下,将第二驾驶区域的第一左边界以第一长度进行膨胀,得到第一 驾驶区域。从图3f可以知道的是,经过膨胀后的第一驾驶区域的区域面积大于第二驾驶区域的区域面积。
在一个示例中,如图3g所示,障碍物在车辆的左侧,当车辆与障碍物之间的相对运动趋势为接近趋势的情况下,将第二驾驶区域的第一左边界以第一长度进行膨胀,与此同时,将第二驾驶区域的第一右边界以第二长度进行膨胀,得到第一驾驶区域。从图3g可以知道的是,经过膨胀后的第一驾驶区域的区域面积大于第二驾驶区域的区域面积。
在本申请实施例中,第一长度和第二长度为不同的长度。一般来说,第一长度和第二长度可以介于e0和e max之间,其中,e0是指最小移动长度,e max是指最大移动长度。在实际应用中,可以根据车辆与障碍物之间的接近距离确定上述第一长度和第二长度。
在一些可能的示例中,膨胀率为接近距离的单调函数,但膨胀率不能大于最大膨胀程度e max。例如,可以根据第一公式计算第一长度和第二长度,第一公式可以描述为:
E=fmin(e0+k*s,e max)
其中,e0表示第一驾驶区域两侧的最小膨胀长度,e max表示第一驾驶区域两侧的最大膨胀长度,s表示横向最近距离。
具体来说,横向最近距离是指车辆与障碍物之间的距离在垂直于车道的方向的分量。
由第一公式可以知道的是,在车辆接近障碍物的一侧,车辆与障碍物之间的接近距离越小,第一空间膨胀率越大。在车辆远离障碍物的一侧,车辆与障碍物之间的接近距离越大,第二空间膨胀率越小。
在一些可能的示例中,膨胀率为接近速度的单调函数,但膨胀率不能大于最大膨胀程度e max。例如,可以通过第二公式和第三公式计算第一长度和第二长度,第二公式可以描述为:
v=fmax((s1-s2)/dt,0)
第三公式可以描述为:
E=fmin(e0+k*v,e max)
其中,s1表示障碍物与车辆的第一驾驶区域a之间的横向最近距离,s2表示障碍物与车辆的第一驾驶区域b之间的横向最近距离,其中,第一驾驶区域a的位置关系在第二驾驶区域b之前;dt为第一驾驶区域a与第一驾驶区域b之间的时间间隔;e0表示第一驾驶区域两侧的最小膨胀长度,e max表示第一驾驶区域两侧的最大膨胀长度。
由第二公式以及第三公式可以知道的是,在车辆接近障碍物的一侧,车辆与障碍物之间的接近速度越大,第一空间膨胀率越大。在车辆远离障碍物的一侧,车辆与障碍物之间的接近速度越小,第二空间膨胀率越小。
在一个示例中,如图3h所示,障碍物在车辆的右侧,当车辆与障碍物之间的相对运动趋势为接近趋势的情况下,将第二驾驶区域的第一右边界以第一长度进行膨胀,得到第一驾驶区域。从图3h可以知道的是,经过膨胀后的第一驾驶区域的区域面积大于第二驾驶区域的区域面积。
在一个示例中,如图3i所示,障碍物在车辆的右侧,当车辆与障碍物之间的相对运动趋势为接近趋势的情况下,将第二驾驶区域的第一右边界以第一长度进行膨胀,与此同时,将第二驾驶区域的第一左边界以第二长度进行膨胀,得到第一驾驶区域。从图3i可以知道 的是,经过膨胀后的第一驾驶区域的区域面积大于第二驾驶区域的区域面积。
在一个示例中,获取车辆按照目标规划路径进行行驶时车辆需要占用的多个第一驾驶区域,可以包括:根据车辆当前位置的姿态和航向角,并结合车辆的包络确定车辆按照目标规划路径进行行驶时车辆需要占用的多个第三驾驶区域;获取车辆与障碍物之间的相对运动趋势,并根据车辆与障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。在这种情况下,关于如何在目标规划路径中的每个位置点生成对应的第三驾驶区域的实现方式请参考前述在目标规划路径中的每个位置点生成对应的第二驾驶区域的描述,此处不多加赘述。关于如何对第三驾驶区域进行调整的实现方式请参考前述对第二驾驶区域进行调整的描述,此处不多加赘述。在得到多个第二驾驶区域之后,车载终端可以通过传感系统获取车辆实际行驶在第二驾驶区域时的位置、速度和航向角,例如,可以通过全球定位系统获取车辆实际行驶在第二驾驶区域时的位置,可以通过速度传感器获取车辆的速度,可以通过惯性测量单元获取车辆的航向角。在获取到车辆实际行驶在第二驾驶区域时的位置、速度和航向角之后,可以将获取到的位置、速度和航向角输入自动驾驶控制器中,根据车辆动力学、运动学模型得到下一时刻的车辆的位置、速度和航向角,继而可以通过预测得到车辆的位置、速度和航向角来获取车辆的第一驾驶区域。可以理解的是,由于这一实现方式中考虑了车辆的未来驾驶趋势,可以提高碰撞检测的正确性。
步骤S302、获取潜在障碍物在目标规划路径中的侵占区域。
在本申请实施例中,车载终端可以通过传感系统先获取障碍物尺寸,然后,根据获取到的障碍物的尺寸得到障碍物在目标规划路径中的侵占区域。一般来说,障碍物的尺寸可以包括障碍物的长宽高、大小和形状。障碍物的侵占区域可以表示障碍物对目标规划路径(例如,车道)的侵入程度,也即:障碍物占据车道的空间的多少。
步骤S304、判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,若是,则执行步骤S306。
在本申请实施例中,可以通过碰撞检测算法(例如,该碰撞检测算法可以为分离轴定理)检测第一驾驶区域与障碍物的侵占区域之间是否出现重叠区域。具体地,分离轴定理(Separating Axis Theorem,SAT)提出,如果能找到一条轴,使得两个物体在该轴上的投影互不重叠,那么,这两个物体不相交。例如,如图4a所示,沿AB边做投影,判断车辆与障碍物在投影轴的投影是否有重叠,由于ab之间存在间隙,在这种情况下,确定车辆与障碍物没有产生重叠区域。又例如,如图4b所示,图中黑色圆圈部分为第一驾驶区域与障碍物的侵占区域之间产生的重叠区域。
在本申请实施例中,可以在多个第一驾驶区域中,判断连续的至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,也可以在多个第一驾驶区域中,判断有先后位置关系的至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠,例如,有先后位置关系至少两个第一驾驶区域可以为间隔一个单位得到的两个第一驾驶区域,也可以为间隔两个单位得到的两个第一驾驶区域。
步骤S306、判断在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,若是,则执行步骤S308;若否,执行步骤S3010。
在本申请实施例中,重叠深度用于表征重叠区域侵入第一驾驶区域的程度。
在本申请实施例中,车载终端可以分别获取车辆的第一驾驶区域与障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;N个重叠长度为所述N个方向各自对应的法线上的投影;然后,将N个重叠长度中的最小值确定为第一驾驶区域与障碍物的侵占区域之间的重叠深度。一般来说,N的取值越大越好。在实际应用中,可以根据车轮的最大转角等来确定N的取值。
如图4c所示,以车辆为参考,分别沿前进方向、左45度方向、右45度方向做投影,分别得到重叠长度s1(图示中的线段ab)、s2(图示中的线段cd)以及s3(图示中的线段ef),之后,比较s1、s2以及s3的大小,将3个重叠长度中的最小值(也即:s1)确定为第一驾驶区域与障碍物的侵占区域之间的重叠深度。
例如,采用上述描述的方法,如图4d所示,以至少两个第一驾驶区域为第一驾驶区域a(实线边框)和第一驾驶区域b(虚线边框)为例,车载终端确定第一驾驶区域a和障碍物的侵占区域之间的重叠深度为s1,车载终端确定第一驾驶区域b和障碍物的侵占区域之间的重叠深度为s2,其中,s2大于s1,那么,在这种情况下,车载终端确定在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度。
例如,采用上述描述的方法,如图4e所示,以至少两个第一驾驶区域为第一驾驶区域a(实线边框)和第一驾驶区域b为例,车载终端确定第一驾驶区域a和障碍物的侵占区域之间的重叠深度为s1,车载终端确定第一驾驶区域b和障碍物的侵占区域之间的重叠深度为s2,其中,s2小于s1,那么,在这种情况下,车载终端确定在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度。
需要说明的是,当最终获取的第一驾驶区域考虑了相邻位置点之间的间距小于障碍物的尺寸、车辆与障碍物之间的相对运动趋势以及车辆在下一个时刻的驾驶状态,此时,判断在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度的实现过程可以包括:判断第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于第二驾驶区域与障碍物的侵占区域之间的重叠深度。具体地,第一驾驶区域(虚线边框)与障碍物的侵占区域之间的重叠深度大于第二驾驶区域(实线边框)与障碍物的侵占区域之间的重叠深度可以如图4f所示。第一驾驶区域(虚线边框)与障碍物的侵占区域之间的重叠深度小于第二驾驶区域(实线边框)与障碍物的侵占区域之间的重叠深度可以如图4g所示。
步骤S308、确定车辆与障碍物将会发生碰撞。
由于在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,此时,确定车辆与障碍物将会发生碰撞。
步骤S3010、确定所述车辆与所述障碍物不发生碰撞。
由于在至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,此时,确定车辆与障碍物不会发生碰撞。这一实现方式可以避免误判的情形,保证了车辆在行驶过程中的安全性和平顺性。
实施本申请实施例,车载终端在获取到车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,以及潜在障碍物在目标规划路径中的侵占区域之后,判断至少两个第一驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第一驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,判断至少两个第一驾驶区域中,后一个第一驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度,若是,则确定车辆与障碍物将会发生碰撞。相较于现有技术而言,由于考虑了车辆与障碍物之间的碰撞趋势(后一个第一驾驶区域与障碍物之间的重叠深度大于前一个第一驾驶区域与障碍物的侵占区域之间的重叠深度),可以准确地检测出车辆是否与潜在障碍物发生碰撞,保证了车辆在行驶过程中的安全性和平顺性。
在一种可选的实现方式中,在图3a所示方法的基础上,如图5a所示,图5a为本申请实施例提供的另一种车辆碰撞检测方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤S3012、在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息。
具体地,在确定车辆与障碍物将会发生碰撞的情况下,车载终端可以通过分析上述重叠区域,得到车辆与障碍物将会发生碰撞时碰撞点的位置信息,例如,该碰撞点可以为前述图4b所示的黑色圆圈部分。车载终端可以通过传感系统检测得到障碍物的运动速度(示例性地,该运动速度可以为障碍物在碰撞点沿车辆的前进方向的速度投影)。
步骤S3014、根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在本申请实施例中,以障碍物为动态障碍物为例,车辆上的车载终端可以在按照目标规划路径进行行驶时,通过传感系统获取障碍物的运动速度。
在一个示例中,车载终端可以将获取到的碰撞点的位置信息和障碍物的运动速度输入到自动驾驶控制器中,自动驾驶控制器可以根据车辆动力学模型、车辆运动学模型得到车辆绕过障碍物的行驶速度V1,然后,车辆根据确定好的行驶速度V1进行驾驶,可以保证车辆在驾驶过程中的安全性。
在一个示例中,车载终端可以将获取到的碰撞点的位置信息和障碍物的运动速度输入到自动驾驶控制器中,自动驾驶控制器可以结合高精度地图数据重新规划目标规划路径,以使车辆行驶在重新规划后的目标规划路径中,可以保证车辆在驾驶过程中的安全性。
在一个示例中,车载终端可以将获取到的碰撞点的位置信息和障碍物的运动速度输入到自动驾驶控制器中,自动驾驶控制器可以对碰撞点的位置信息和障碍物的运动速度进行分析,得到绕过障碍物的行驶速度V1和重新规划的目标规划路径,以使车辆按照确定好的行驶速度V1行驶在重新规划后的目标规划路径中,从而可以保证车辆在驾驶过程中的安全性。
实施本申请实施例,在确定车辆与障碍物将会发生碰撞的情况下,车辆上的车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物,从而可以保证车辆在驾驶过程中的安全性。
在前述所描述的方法实施例中,如图5b所示,可以在车辆的中控屏501上显示第一驾驶区域与侵占区域之间的重叠深度。在判断得知在至少两个第一驾驶区域中,后一个驾驶区域与侵占区域之间的重叠深度大于前一个第一驾驶区域与侵占区域之间的重叠深度,车载终端可以发出预警提示信息,例如,该预警提示信息可以为:请注意,请注意,在5秒过后,车辆将与障碍物发生碰撞。又例如,该预警提示信息还可以为:请谨慎驾驶,车辆将与障碍物发生碰撞。通过这一实现方式,可以提高驾驶者的行车注意力,在这种情况下,驾驶者可以将自动驾驶模式切换为人工驾驶模式,也可以降低自动驾驶车辆的驾驶等级,例如,将自动驾驶等级L5切换为自动驾驶等级L3,等等。
还需要说明的是,在判断得知在至少两个第一驾驶区域中,后一个驾驶区域与侵占区域之间的重叠深度大于前一个第一驾驶区域与侵占区域之间的重叠深度,车载终端也可以将障碍物显示在车辆的中控屏上,以提示用户。
参见图6,图6为本申请实施例提供的一种车辆碰撞检测方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤S600、获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域。
步骤S602、获取潜在障碍物在所述目标规划路径中的侵占区域。
步骤S604、获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积。
在本申请实施例中,关于如何根据车辆与障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到多个第二驾驶区域的实现过程可以参考前述实施例的相关描述,此处不多加赘述。这里,第一驾驶区域为在目标规划路径中的每个位置点生成的驾驶区域,而第二驾驶区域为对第一驾驶区域进行调整得到的驾驶区域。
步骤S606、判断至少两个第二驾驶区域与障碍物的侵占区域之间是否产生重叠区域,若是,则执行步骤S608。
步骤S608、确定所述车辆与所述障碍物将会发生碰撞。
实施本申请实施例,车载终端在获取到车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,以及潜在障碍物在目标规划路径中的侵占区域之后,可以根据车辆与障碍物之间的相对运动趋势对车辆按照目标规划行驶路径进行行驶时占用的驾驶区域进行调整,判断至少两个第二驾驶区域与障碍物的侵占区域之间是否产生重叠区域,在满足至少两个第二驾驶区域与障碍物的侵占区域之间产生重叠区域的情况下,确定车辆与障碍物将会发生碰撞。相较于现有技术而言,由于可以根据车辆与障碍物之间的相对运动趋势对车辆按照目标规划行驶路径进行行驶时占用的驾驶区域进行调整,可以保证有碰撞风险一侧的安全性,对于无碰撞风险的一侧,可以更好的通过,保证了车辆在行驶过程中的安全 性和平顺性。
需要说明的是,当最终获取的第三驾驶区域考虑了相邻位置点之间的间距小于障碍物的尺寸、车辆与障碍物之间的相对运动趋势以及车辆在下一个时刻的驾驶状态,此时,判断在至少两个第二驾驶区域中,后一个第二驾驶区域与障碍物的侵占区域之间的重叠深度是否大于前一个第二驾驶区域与障碍物的侵占区域之间的重叠深度的实现过程可以包括:判断第三驾驶区域与障碍物的侵占区域之间的重叠深度是否大于第二驾驶区域与障碍物的侵占区域之间的重叠深度。
在一种可选的实现方式中,在图6所示方法的基础上,如图7所示,图7为本申请实施例提供的另一种车辆碰撞检测方法的流程示意图,该方法可以包括但不限于如下步骤:
步骤S6010、在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息。
步骤S6012、根据所述碰撞点的位置信息,并结合获取到的障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在本申请实施例中,关于步骤S6010-6012的具体实现,请参考前述步骤S3012-步骤S3014,此处不多加赘述。
实施本申请实施例,在确定车辆与障碍物将会发生碰撞的情况下,车辆上的车载终端可以对车辆的行驶速度和/或目标规划路径进行调整,以避让障碍物,从而可以保证车辆在驾驶过程中的安全性。
前述实施例重点阐述了自动驾驶装置或车载终端可以如何准确地检测出车辆是否与障碍物发生碰撞,接下来具体阐述本申请涉及的装置。
参见图8,图8为本申请实施例提供的一种车辆碰撞检测装置。如图8所示,该车辆碰撞检测装置80可以包括:
第一获取单元800,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;
第二获取单元802,用于获取潜在障碍物在所述目标规划路径中的侵占区域;
第一处理单元804,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
在一种可能的实现方式中,该装置80还可以包括:
第二处理单元806,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。
在一种可能的实现方式中,该装置80还可以包括:
碰撞深度确定单元808,用于分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
在一种可能的实现方式中,所述第一获取单元800可以包括第一确定单元和第一调整单元;其中,
所述第一确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;
所述第一调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域;其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。
在一种可能的实现方式中,所述第一调整单元,具体用于:
在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述第一获取单元800可以包括第二确定单元、第二调整单元和第三获取单元;其中,
所述第二确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;
所述第二调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;
第三获取单元,用于获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。
在一种可能的实现方式中,该装置80还可以包括:
第四获取单元8010,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
第三调整单元8012,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元800,具体用于:
根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车 辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
在一种可能的实现方式中,所述装置80还可以包括:
显示单元8014,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
需要说明的是,上述各个功能器件的具体实现可以参见上述方法实施例中的相关描述,本申请实施例不再赘述。例如,第一获取单元800用于执行步骤S300的相关内容,第二获取单元802用于执行步骤S302的相关内容,第一处理单元804用于执行步骤S304-S308的相关内容。
参见图9,图9为本申请实施例还提供了一种车辆碰撞检测装置。如图9所示,该车辆碰撞检测装置90可以包括:
第一获取单元900,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;
第二获取单元902,用于获取潜在障碍物在所述目标规划路径中的侵占区域;
第一调整单元904,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积;
处理单元906,用于在至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域的情况下,确定所述车辆与所述障碍物将会发生碰撞。
在一种可能的实现方式中,所述第一调整单元904,具体用于:
在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
在一种可能的实现方式中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
在一种可能的实现方式中,所述装置90还可以包括:
驾驶区域预测单元908,用于获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的第三驾驶区域;
所述处理单元906,具体用于:
若所述调整后的第二驾驶区域、所述第三驾驶区域均与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
在一种可能的实现方式中,所述装置90还可以包括:
第三获取单元9010,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
第二调整单元9012,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
在一种可能的实现方式中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元900,具体用于:
根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
在一种可能的实现方式中,所述装置90还可以包括:
显示单元9014,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠区域。
需要说明的是,上述各个功能器件的具体实现可以参见上述方法实施例中的相关描述,本申请实施例不再赘述。
参见图10,图10为本申请实施例提供了一种车载终端的结构示意图,该车载终端100可以包括至少一个处理器1001,至少一个存储器1002、通信总线1003和至少一个通信接口1004,处理器1001通过通信总线连接存储器1002和通信接口1004,还可以完成相互间的通信。
处理器1001可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(Graphics Processing Unit,GPU)、神经网络处理器(Network Processing Unit,NPU)或者一个或多个集成电路,用于执行相关程序,以执行本申请方法实施例的所描述的车辆碰撞检测方法。
处理器1001还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的数据处理方法的各个步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行本申请方法实施例的数据处理方法。
存储器1002可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1002可以存储程序和数据,例如本申请实施例中数据处理方法的程序等。当存储器1002中存储的程序被处理器1001执行时,处理器1001和通信接口1004用于执行本申请实施例的数据处理方法的各个步骤。
例如,本申请实施例中用于实现本申请实施例中车辆碰撞检测方法的程序等。例如,该方法可以为本申请实施例第一方面涉及的方法,也可以为本申请实施例第二方面涉及的方法。
通信接口1004使用例如但不限于收发器一类的收发装置,来实现数据处理设备100与其他设备或通信网络之间的通信。
可选地,该数据处理设备还可以包括人工智能处理器1005,人工智能处理器1005可以是神经网络处理器(Network Processing Unit,NPU),张量处理器(Tensor Processing Unit,TPU),或者图形处理器(Graphics Processing Unit,GPU)等一切适合用于大规模异或运算处理的处理器。人工智能处理器1005可以作为协处理器挂载到主CPU(Host CPU)上,由主CPU为其分配任务。人工智能处理器1005可以实现上述数据处理方法中涉及的一种或多种运算。例如,以NPU为例,NPU的核心部分为运算电路,通过控制器控制运算电路提取存储器1002中的矩阵数据并进行乘加运算。
处理器1001用于调用存储器中的数据和程序代码,执行:
获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在所述目标规划路径中的侵占区域;
若至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
其中,处理器1001还可以用于:
若至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。
其中,处理器1001还可以用于:
分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;
将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
其中,处理器1001获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,可以包括:
根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;
获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域;其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。
其中,处理器1001根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,可以包括:
在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其 中,所述第一空间膨胀率大于所述第二空间膨胀率。
其中,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
其中,处理器1001获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,可以包括:
根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;
获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;
获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。
其中,处理器1001还可以用于:
在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
其中,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;处理器1001获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,可以包括:
根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
在一种可能的实现方式中,处理器1001还可以用于:
显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
可以理解的是,图10所示的车载终端还可以通过处理器1001执行本申请上述第二方面任一项所述的方法。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个实施例所述方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中,基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机产品存储在计算机可读存储介质中。
上述计算机可读存储介质可以是前述实施例所述的设备的内部存储单元,例如硬盘或内存。上述计算机可读存储介质也可以是上述设备的外部存储设备,例如配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,上述计算机可读存储介质还可以既包括上述设备的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述设备所需 的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可通过计算机程序来指令相关的硬件来完成,该计算机的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
可以理解,本领域普通技术人员可以意识到,结合本申请各个实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域技术人员能够领会,结合本申请各个实施例中公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种车辆碰撞检测方法,其特征在于,包括:
    获取车辆按照目标规划路径进行行驶时需要占用的多个第一驾驶区域,并获取潜在障碍物在所述目标规划路径中的侵占区域;
    若至少两个第一驾驶区域与所述侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述侵占区域之间的重叠深度大于前一个第一驾驶区域与所述侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    若至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;
    将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:
    根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;
    获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域;其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,包括:
    在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
  6. 如权利要求5所述的方法,其特征在于,在所述车辆接近所述障碍物的一侧,所述 车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
  7. 如权利要求1-3任一项所述的方法,其特征在于,所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:
    根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;
    获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;
    获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆所述第一驾驶区域。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
    根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
  9. 如权利要求1所述的方法,其特征在于,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:
    根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
  11. 一种车辆碰撞检测方法,其特征在于,包括:
    获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,并获取潜在障碍物在所述目标规划路径中的侵占区域;
    获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积;
    若至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述车辆与所述障碍物之间的相 对运动趋势对每个第一驾驶区域进行调整,包括:
    在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
  13. 如权利要求12所述的方法,其特征在于,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
  14. 如权利要求11所述的方法,其特征在于,所述根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域之后,还包括:
    获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的第三驾驶区域;
    所述若至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞,包括:
    若所述调整后的第二驾驶区域、所述第三驾驶区域均与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
  15. 如权利要求11-14任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
    根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
  16. 如权利要求11所述的方法,其特征在于,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域,包括:
    根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
  17. 如权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:
    在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠区域。
  18. 一种车辆碰撞检测装置,其特征在于,包括:
    第一获取单元,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;
    第二获取单元,用于获取潜在障碍物在所述目标规划路径中的侵占区域;
    第一处理单元,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠 区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度大于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物将会发生碰撞;所述重叠深度用于表征所述重叠区域侵入所述第一驾驶区域的程度。
  19. 如权利要求18所述的装置,其特征在于,所述装置还包括:
    第二处理单元,用于在至少两个第一驾驶区域与所述障碍物的侵占区域之间产生重叠区域,且在所述至少两个第一驾驶区域中,后一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度小于前一个第一驾驶区域与所述障碍物的侵占区域之间的重叠深度,确定所述车辆与所述障碍物不发生碰撞。
  20. 如权利要求18或19所述的装置,其特征在于,所述装置还包括:
    碰撞深度确定单元,用于分别获取所述车辆的第一驾驶区域与所述障碍物的侵占区域在N个方向上的重叠长度,得到N个重叠长度;其中,N为大于0的正整数;所述N个重叠长度为所述N个方向各自对应的法线上的投影;将所述N个重叠长度中的最小值确定为所述第一驾驶区域与所述障碍物的侵占区域之间的重叠深度。
  21. 如权利要求18-20任一项所述的装置,其特征在于,所述第一获取单元包括第一确定单元和第一调整单元;其中,
    所述第一确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第二驾驶区域;
    所述第一调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第二驾驶区域进行调整,得到所述多个第一驾驶区域;其中,所述第一驾驶区域的区域面积大于所述第二驾驶区域的区域面积。
  22. 如权利要求21所述的装置,其特征在于,所述第一调整单元,具体用于:
    在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
  23. 如权利要求22所述的装置,其特征在于,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
  24. 如权利要求18-20任一项所述的装置,其特征在于,所述第一获取单元包括第二确定单元、第二调整单元和第三获取单元;其中,
    所述第二确定单元,用于根据所述车辆当前位置的姿态和航向角,并结合所述车辆的 包络确定所述车辆按照所述目标规划路径进行行驶时所述车辆需要占用的多个第三驾驶区域;
    所述第二调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第三驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第三驾驶区域的区域面积;
    第三获取单元,用于获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的所述第一驾驶区域。
  25. 如权利要求18-24任一项所述的装置,其特征在于,所述装置还包括:
    第四获取单元,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息以及所述障碍物的运动速度;
    第三调整单元,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
  26. 如权利要求18所述的装置,其特征在于,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元,具体用于:
    根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
  27. 如权利要求18-26任一项所述的装置,其特征在于,所述装置还包括:
    显示单元,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠深度。
  28. 一种车辆碰撞检测装置,其特征在于,包括:
    第一获取单元,用于获取车辆按照目标规划路径进行行驶时所述车辆需要占用的多个第一驾驶区域;
    第二获取单元,用于获取潜在障碍物在所述目标规划路径中的侵占区域;
    第一调整单元,用于获取所述车辆与所述障碍物之间的相对运动趋势,并根据所述车辆与所述障碍物之间的相对运动趋势对每个第一驾驶区域进行调整,得到所述多个第二驾驶区域;其中,所述第二驾驶区域的区域面积大于所述第一驾驶区域的区域面积;
    处理单元,用于在至少两个第二驾驶区域与所述障碍物的侵占区域之间产生重叠区域的情况下,确定所述车辆与所述障碍物将会发生碰撞。
  29. 如权利要求28所述的装置,其特征在于,所述第一调整单元,具体用于:
    在所述车辆接近所述障碍物的一侧,以第一空间膨胀率对所述第二驾驶区域进行调整;在所述车辆远离所述障碍物的一侧,以第二空间膨胀率对所述第二驾驶区域进行调整;其中,所述第一空间膨胀率大于所述第二空间膨胀率。
  30. 如权利要求29所述的装置,其特征在于,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近距离越小,所述第一空间膨胀率越大;或者,在所述车辆接近所述障碍物的一侧,所述车辆与障碍物之间的接近速度越大,所述第一空间膨胀率越大。
  31. 如权利要求28所述的装置,其特征在于,所述装置还包括:
    驾驶区域预测单元,用于获取所述车辆实际行驶至所述第二驾驶区域时的位置、速度和航向角,并根据所述位置、速度和航向角得到下一个时刻所述车辆的第三驾驶区域;
    所述处理单元,具体用于:
    若所述调整后的第二驾驶区域、所述第三驾驶区域均与所述障碍物的侵占区域之间产生重叠区域,确定所述车辆与所述障碍物将会发生碰撞。
  32. 如权利要求28-31任一项所述的装置,其特征在于,所述装置还包括:
    第三获取单元,用于在确定所述车辆与所述障碍物将会发生碰撞的情况下,获取所述车辆与所述障碍物将会发生碰撞时碰撞点的位置信息;
    第二调整单元,用于根据所述碰撞点的位置信息,并结合获取到的所述障碍物的运动速度对所述车辆的行驶速度和/或所述目标规划路径进行调整。
  33. 如权利要求28所述的装置,其特征在于,在所述目标规划路径中包含多个位置点,相邻位置点之间的间距小于所述障碍物的尺寸;所述第一获取单元,具体用于:
    根据所述车辆行驶在每个位置点的姿态和航向角,并结合所述车辆的包络确定所述车辆在每个位置点占用的第一驾驶区域,得到所述多个第一驾驶区域。
  34. 如权利要求28-33任一项所述的装置,其特征在于,所述装置还包括:
    显示单元,用于在所述车辆的中控屏上显示所述第一驾驶区域与所述侵占区域之间的重叠区域。
  35. 一种自动驾驶装置,其特征在于,包括如权利要求18-34任一项所述的装置。
  36. 一种自动驾驶车辆,其特征在于,包括行进系统、传感系统、控制系统和计算机系统,其中,所述计算机系统用于执行如权利要求1-10或11-17任一项所述的方法。
  37. 一种车载终端,其特征在于,包括处理器和存储器,所述处理器和存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1-10或11-17任一项所述的方法。
  38. 一种芯片,所述芯片包括处理器、存储器和通信接口,其特征在于,所述处理器通过所述通信接口读取所述存储器上存储的指令,执行如权利要求1-10或11-17任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-10或11-17任一项所述的方法。
PCT/CN2021/083545 2020-07-25 2021-03-29 一种车辆碰撞检测方法、装置及计算机可读存储介质 WO2022021910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010728647.1 2020-07-25
CN202010728647.1A CN113968216B (zh) 2020-07-25 2020-07-25 一种车辆碰撞检测方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022021910A1 true WO2022021910A1 (zh) 2022-02-03

Family

ID=79586112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083545 WO2022021910A1 (zh) 2020-07-25 2021-03-29 一种车辆碰撞检测方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113968216B (zh)
WO (1) WO2022021910A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114648877A (zh) * 2022-05-13 2022-06-21 北京理工大学前沿技术研究院 一种无信号交叉口车辆通行方法、系统、设备和存储介质
CN115092136A (zh) * 2022-07-27 2022-09-23 广州小鹏自动驾驶科技有限公司 车速规划方法、装置、车辆及存储介质
CN115223147A (zh) * 2022-09-19 2022-10-21 天津所托瑞安汽车科技有限公司 商用车防碰撞系统的防误触方法、设备和存储介质
US20230126130A1 (en) * 2021-10-22 2023-04-27 Zoox, Inc. Drivable surface map for autonomous vehicle navigation
CN116442991A (zh) * 2023-04-25 2023-07-18 广州汽车集团股份有限公司 自动泊车规划方法、装置、车辆及存储介质
WO2024000616A1 (zh) * 2022-06-30 2024-01-04 魔门塔(苏州)科技有限公司 行驶路径边界确定方法及装置、车辆、存储介质、终端
WO2024055367A1 (zh) * 2022-09-14 2024-03-21 魔门塔(苏州)科技有限公司 车辆的路径规划方法及装置、存储介质、车辆、终端
CN118443049A (zh) * 2024-07-04 2024-08-06 新石器慧通(北京)科技有限公司 无人车的备用路径规划方法、存储介质及无人车

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454815B (zh) * 2022-03-10 2024-03-29 商丘师范学院 智能化的自动驾驶处理方法
CN114872656B (zh) * 2022-04-29 2023-09-05 东风汽车集团股份有限公司 车辆乘员安全保护系统及控制方法
CN115027483B (zh) * 2022-07-29 2023-04-07 北京四维图新科技股份有限公司 叠置道路识别、车辆行驶控制方法、装置及设备
CN115938106B (zh) * 2022-09-02 2024-07-09 吉林大学 基于交通参与者可达性分析的自动驾驶决策在线验证方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918656B2 (ja) * 2002-06-28 2007-05-23 日産自動車株式会社 車両用障害物検出装置
US10255811B2 (en) * 2014-09-29 2019-04-09 Hitachi Construction Machinery Co., Ltd. Obstacle avoidance system
CN110371112A (zh) * 2019-07-06 2019-10-25 深圳数翔科技有限公司 一种自动驾驶车辆的智能避障系统及方法
CN110531749A (zh) * 2018-05-24 2019-12-03 百度(美国)有限责任公司 确定避开移动障碍物的自动驾驶的驾驶路径

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174514B2 (ja) * 2014-04-14 2017-08-02 本田技研工業株式会社 衝突可能性判定装置、運転支援装置、衝突可能性判定方法、及び衝突可能性判定プログラム
KR101714273B1 (ko) * 2015-12-11 2017-03-08 현대자동차주식회사 자율 주행 시스템의 경로 제어 방법 및 그 장치
JP6651486B2 (ja) * 2017-09-01 2020-02-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN108470469A (zh) * 2018-03-12 2018-08-31 海信集团有限公司 道路障碍物预警方法、装置及终端
CN109455177B (zh) * 2018-10-25 2020-12-15 广州小鹏汽车科技有限公司 一种自动泊车的安全距离警示方法及车载终端
CN109624972B (zh) * 2018-12-06 2020-06-09 北京百度网讯科技有限公司 车辆防止碰撞的方法、装置、设备及可读存储介质
CN110262521A (zh) * 2019-07-24 2019-09-20 北京智行者科技有限公司 一种自动驾驶控制方法
CN110929702B (zh) * 2020-01-22 2020-05-08 华人运通(上海)新能源驱动技术有限公司 一种轨迹规划方法、装置、电子设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918656B2 (ja) * 2002-06-28 2007-05-23 日産自動車株式会社 車両用障害物検出装置
US10255811B2 (en) * 2014-09-29 2019-04-09 Hitachi Construction Machinery Co., Ltd. Obstacle avoidance system
CN110531749A (zh) * 2018-05-24 2019-12-03 百度(美国)有限责任公司 确定避开移动障碍物的自动驾驶的驾驶路径
CN110371112A (zh) * 2019-07-06 2019-10-25 深圳数翔科技有限公司 一种自动驾驶车辆的智能避障系统及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12025465B2 (en) * 2021-10-22 2024-07-02 Zoox, Inc. Drivable surface map for autonomous vehicle navigation
US20230126130A1 (en) * 2021-10-22 2023-04-27 Zoox, Inc. Drivable surface map for autonomous vehicle navigation
CN114648877A (zh) * 2022-05-13 2022-06-21 北京理工大学前沿技术研究院 一种无信号交叉口车辆通行方法、系统、设备和存储介质
WO2024000616A1 (zh) * 2022-06-30 2024-01-04 魔门塔(苏州)科技有限公司 行驶路径边界确定方法及装置、车辆、存储介质、终端
CN115092136A (zh) * 2022-07-27 2022-09-23 广州小鹏自动驾驶科技有限公司 车速规划方法、装置、车辆及存储介质
CN115092136B (zh) * 2022-07-27 2023-09-12 广州小鹏自动驾驶科技有限公司 车速规划方法、装置、车辆及存储介质
WO2024055367A1 (zh) * 2022-09-14 2024-03-21 魔门塔(苏州)科技有限公司 车辆的路径规划方法及装置、存储介质、车辆、终端
CN115223147B (zh) * 2022-09-19 2022-12-09 天津所托瑞安汽车科技有限公司 商用车防碰撞系统的防误触方法、设备和存储介质
CN115223147A (zh) * 2022-09-19 2022-10-21 天津所托瑞安汽车科技有限公司 商用车防碰撞系统的防误触方法、设备和存储介质
CN116442991A (zh) * 2023-04-25 2023-07-18 广州汽车集团股份有限公司 自动泊车规划方法、装置、车辆及存储介质
CN116442991B (zh) * 2023-04-25 2024-06-11 广州汽车集团股份有限公司 自动泊车规划方法、装置、车辆及存储介质
CN118443049A (zh) * 2024-07-04 2024-08-06 新石器慧通(北京)科技有限公司 无人车的备用路径规划方法、存储介质及无人车
CN118443049B (zh) * 2024-07-04 2024-09-17 新石器慧通(北京)科技有限公司 无人车的备用路径规划方法、存储介质及无人车

Also Published As

Publication number Publication date
CN113968216B (zh) 2023-11-17
CN113968216A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2022021910A1 (zh) 一种车辆碰撞检测方法、装置及计算机可读存储介质
US12061088B2 (en) Obstacle avoidance method and apparatus
WO2021135371A1 (zh) 一种自动驾驶方法、相关设备及计算机可读存储介质
CN110775063B (zh) 一种车载设备的信息显示方法、装置及车辆
WO2021000800A1 (zh) 道路可行驶区域推理方法及装置
WO2021102955A1 (zh) 车辆的路径规划方法以及车辆的路径规划装置
WO2021212379A1 (zh) 车道线检测方法及装置
CN113160547B (zh) 一种自动驾驶方法及相关设备
WO2021057344A1 (zh) 一种数据呈现的方法及终端设备
JPWO2018096644A1 (ja) 車両用表示制御装置、車両用表示制御方法、および車両用表示制御プログラム
CN112512887B (zh) 一种行驶决策选择方法以及装置
CN112672942B (zh) 一种车辆换道方法及相关设备
CN112429016B (zh) 一种自动驾驶控制方法及装置
CN110271542B (zh) 车辆控制装置、车辆控制方法及存储介质
JP6692935B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2022062825A1 (zh) 车辆的控制方法、装置及车辆
WO2021110166A1 (zh) 道路结构检测方法及装置
US20230211809A1 (en) Autonomous driving method and apparatus
WO2022051951A1 (zh) 车道线检测方法、相关设备及计算机可读存储介质
WO2022127502A1 (zh) 控制方法和装置
CN112829762A (zh) 一种车辆行驶速度生成方法以及相关设备
WO2021254000A1 (zh) 车辆纵向运动参数的规划方法和装置
WO2022061702A1 (zh) 驾驶提醒的方法、装置及系统
CN115398272A (zh) 检测车辆可通行区域的方法及装置
WO2023102827A1 (zh) 一种路径约束方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849079

Country of ref document: EP

Kind code of ref document: A1