WO2021254000A1 - 车辆纵向运动参数的规划方法和装置 - Google Patents
车辆纵向运动参数的规划方法和装置 Download PDFInfo
- Publication number
- WO2021254000A1 WO2021254000A1 PCT/CN2021/090824 CN2021090824W WO2021254000A1 WO 2021254000 A1 WO2021254000 A1 WO 2021254000A1 CN 2021090824 W CN2021090824 W CN 2021090824W WO 2021254000 A1 WO2021254000 A1 WO 2021254000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- space
- vehicle
- obstacle
- obstacles
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 233
- 238000000034 method Methods 0.000 title claims abstract description 78
- 230000007774 longterm Effects 0.000 claims description 83
- 230000015654 memory Effects 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 abstract description 15
- 230000009286 beneficial effect Effects 0.000 abstract description 10
- 238000004891 communication Methods 0.000 description 26
- 230000006870 function Effects 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 230000001133 acceleration Effects 0.000 description 15
- 230000006399 behavior Effects 0.000 description 10
- 230000002123 temporal effect Effects 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000000717 retained effect Effects 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000003542 behavioural effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/143—Speed control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00272—Planning or execution of driving tasks using trajectory prediction for other traffic participants relying on extrapolation of current movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00276—Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
- B60K31/0008—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
- B60K2031/0016—Identification of obstacles; Selection of a target vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
- B60K31/0008—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
- B60K2031/005—Selecting more than one target vehicle, e.g. using several preceding vehicles as target
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/50—Barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4042—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4045—Intention, e.g. lane change or imminent movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/801—Lateral distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
- B60W2554/802—Longitudinal distance
Definitions
- This application relates to the field of autonomous driving, and more specifically, to a method and device for planning vehicle longitudinal motion parameters.
- Artificial Intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge, and use knowledge to obtain the best results.
- artificial intelligence is a branch of computer science that attempts to understand the essence of intelligence and produce a new kind of intelligent machine that can react in a similar way to human intelligence.
- Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
- Research in the field of artificial intelligence includes robotics, natural language processing, computer vision, decision-making and reasoning, human-computer interaction, recommendation and search, and basic AI theories.
- Autonomous driving is a mainstream application in the field of artificial intelligence.
- Autonomous driving technology relies on the collaboration of computer vision, radar, monitoring devices, and global positioning systems to allow motor vehicles to achieve autonomous driving without the need for human active operations.
- Self-driving vehicles use various computing systems to help transport passengers from one location to another. Some autonomous vehicles may require some initial input or continuous input from an operator (such as a navigator, driver, or passenger). The self-driving vehicle allows the operator to switch from the manual mode to the self-driving mode or a mode in between. Since autonomous driving technology does not require humans to drive motor vehicles, it can theoretically effectively avoid human driving errors, reduce the occurrence of traffic accidents, and improve the efficiency of highway transportation. Therefore, more and more attention is paid to autonomous driving technology.
- the path planning and decision-making function is one of the most basic and critical functions.
- the path planning and decision-making function is designed to adjust the driving strategy of the vehicle in a timely and safe manner according to the dynamic trend of obstacles around the vehicle in a complex traffic environment. Among them, based on the results of predicting obstacles around the vehicle, making reasonable decisions and planning on longitudinal motion parameters is a key and difficult problem in the direction of automatic driving technology.
- the controller will first obtain the current state of the autonomous vehicle at the current moment and the temporal and spatial prediction data of all obstacles within the preset range; for each obstacle among all obstacles, the controller determines each obstacle Conflict time and space with the autonomous vehicle, and determine the planned driving trajectory of the autonomous vehicle according to the conflict time and space of each obstacle; then, the controller determines a target longitudinal motion parameter from the planned driving trajectory corresponding to each target, and according to The determined target longitudinal motion parameters send control instructions to the control device of the autonomous vehicle.
- the controller needs to determine the longitudinal motion parameters of the autonomous vehicle based on the temporal and spatial prediction data of all obstacles in the preset range, or in other words, the controller needs to traverse all the obstacles in the preset range
- the target longitudinal motion parameters of the self-driving vehicle are calculated for each obstacle, resulting in a very large amount of calculation required to calculate the longitudinal motion parameters.
- the present application provides a method and device for planning the longitudinal motion parameters of a vehicle, so as to reduce the amount of calculation required for calculating the longitudinal motion parameters of the vehicle.
- a method for planning longitudinal motion parameters of a vehicle including: detecting a plurality of obstacles located within a preset range of the vehicle; and obtaining the space-time domain of each obstacle in the plurality of obstacles , And the space-time domain of the vehicle, the space-time domain of each obstacle is used to indicate the change of the position space of each obstacle over time, and the time-space domain of the vehicle is used to indicate the position occupied by the vehicle Changes in space over time; based on the occupation time between the space-time space of each obstacle in the plurality of obstacles and the space-time space of the vehicle, determine the space-time space of each obstacle in the plurality of obstacles and The space-time occupation type between the space-time domains of the vehicle, and the occupation time is used to indicate the time period when the position space of each obstacle in the plurality of obstacles occupies at least part of the position of the vehicle; based on the The space-time occupation type selects a target obstacle from the plurality of obstacles; based on the space-time occupation type
- the space-time occupation type between the obstacle and the vehicle is determined, and based on the space-time occupation type from multiple
- the target obstacle is selected from among the obstacles, and the longitudinal motion parameters of the vehicle are planned based on the corresponding numerical control occupancy type of the target obstacle, which avoids planning the longitudinal motion parameters of the vehicle based on each obstacle among multiple obstacles in the prior art, which is beneficial to Reduce the amount of calculation required to plan the longitudinal parameters of the vehicle.
- the longitudinal direction in the embodiments of the present application can be understood as the same direction as the axial direction of the vehicle. Therefore, the longitudinal motion parameter can be understood as the motion parameter in the axial direction of the vehicle.
- the acquisition time is the acquisition time
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time space of the vehicle is the current long-term occupation type
- the occupation time corresponds to The time period of is shorter than the second time period threshold, then the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle is a temporary occupation type
- the occupation time is A period of time later than the acquisition time, and the time period corresponding to the occupation time is longer than the third time period threshold, then the space-time domain of each obstacle in the plurality of obstacles is between the space-time domain of the vehicle
- the space-time occupancy type of is a future long-term occupancy type; wherein the first time period threshold is greater than or equal to the second time period threshold, and
- the space-time occupation type is divided into the current long-term occupation type, the temporary occupation type, and the future long-term occupation type, so as to facilitate the occupation of each type.
- Planning the longitudinal motion parameters of the vehicle in the time and space domain of the corresponding obstacle is beneficial to improve the rationality of planning the longitudinal motion parameters of the vehicle.
- the space-time occupation type is a temporary occupation type
- the distance between the target obstacle and the vehicle is shorter than the distance between other obstacles and the vehicle
- the other The obstacle is an obstacle other than the target obstacle among the plurality of obstacles
- the collision time TTC between the target obstacle and the vehicle is shorter than the other obstacles and the vehicle TTC.
- the obstacle with the shortest distance from the vehicle or the obstacle with the shortest collision time is used as the target obstacle corresponding to the temporary occupation type to select the longitudinal movement of the vehicle in the temporary occupation type. Obstacles whose parameters have a greater impact are beneficial to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the longitudinal distance between the target obstacle and the vehicle is smaller than that between other obstacles in the plurality of obstacles and the The longitudinal distance between vehicles.
- the longitudinal direction in the embodiments of the present application can be understood as the same direction as the axial direction of the vehicle. Therefore, the longitudinal distance can be understood as the distance between the obstacle and the vehicle in the axial direction of the vehicle.
- the obstacle with the shortest longitudinal distance between the multiple obstacles and the vehicle is taken as the target obstacle corresponding to the current long-term occupancy type to select the longitudinal motion parameters of the vehicle in the current long-term occupancy type Obstacles with greater impact are helpful to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the space-time occupancy type is a future long-term occupancy type
- the time TTL between the target obstacle and the lane on which the vehicle is traveling is shorter than other obstacles and all the lanes.
- the other obstacles are obstacles other than the target obstacle among the plurality of obstacles.
- the obstacle with the shortest TTL between the multiple obstacles and the lane on which the vehicle is traveling is used as the target obstacle corresponding to the future long-term occupation type to select the longitudinal direction of the vehicle in the future long-term occupation type. Obstacles whose motion parameters have a greater impact are helpful to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the planning the longitudinal motion parameters of the vehicle based on the space-time occupation type corresponding to the target obstacle includes: determining the target obstacle based on the space-time occupation type corresponding to the target obstacle The first constraint condition corresponding to the space-time occupation type of the object, the first constraint condition is used to constrain the longitudinal motion parameters of the vehicle to avoid the collision of the target obstacle with the vehicle; to obtain other space-time occupation types corresponding to the A second constraint condition, where the other space-time occupation types are space-time occupation types other than the space-time occupation type among the plurality of space-time occupation types, and the second constraint condition is used to constrain the longitudinal motion parameters of the vehicle, To avoid obstacles corresponding to other time-space occupation types from colliding with the vehicle; based on the first constraint condition and the second constraint condition, the longitudinal motion parameters of the vehicle are planned.
- the first constraint condition corresponding to the space-time occupation type of the target obstacle is used as the constraint condition for calculating the longitudinal motion parameters of the vehicle together with the second constraint conditions corresponding to other space-time occupation types, which is beneficial to improve the planning of the vehicle.
- the safety of the longitudinal motion parameters is used as the constraint condition for calculating the longitudinal motion parameters of the vehicle together with the second constraint conditions corresponding to other space-time occupation types, which is beneficial to improve the planning of the vehicle.
- a device for planning longitudinal motion parameters of a vehicle including: a detection unit for detecting multiple obstacles within a preset range of the vehicle; and an acquisition unit for acquiring the multiple obstacles
- the space-time space of each obstacle in the vehicle, and the space-time space of each obstacle in the vehicle, the space-time space of each obstacle is used to indicate the change of the position space of each obstacle over time, the space-time space of the vehicle It is used to indicate the change of the position space occupied by the vehicle over time;
- the processing unit is used to determine the time and space between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle.
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time space of the vehicle, and the occupation time is used to indicate the position space occupied by each obstacle in the plurality of obstacles.
- the space-time occupation type corresponding to the obstacle, and the longitudinal motion parameters of the vehicle are planned.
- the space-time occupation type between the obstacle and the vehicle is determined, and based on the space-time occupation type from multiple
- the target obstacle is selected from among the obstacles, and the longitudinal motion parameters of the vehicle are planned based on the corresponding numerical control occupancy type of the target obstacle, which avoids planning the longitudinal motion parameters of the vehicle based on each obstacle among multiple obstacles in the prior art, which is beneficial to Reduce the amount of calculation required to plan the longitudinal parameters of the vehicle.
- the acquisition time is the acquisition time
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time space of the vehicle is the current long-term occupation type
- the occupation time corresponds to The time period of is shorter than the second time period threshold, then the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle is a temporary occupation type
- the occupation time is A period of time later than the acquisition time, and the time period corresponding to the occupation time is longer than the third time period threshold, then the space-time domain of each obstacle in the plurality of obstacles is between the space-time domain of the vehicle
- the space-time occupancy type of is a future long-term occupancy type; wherein the first time period threshold is greater than or equal to the second time period threshold, and
- the space-time occupation type is divided into the current long-term occupation type, the temporary occupation type, and the future long-term occupation type, so as to facilitate the occupation of each type.
- Planning the longitudinal motion parameters of the vehicle in the time and space domain of the corresponding obstacle is beneficial to improve the rationality of planning the longitudinal motion parameters of the vehicle.
- the space-time occupation type is a temporary occupation type
- the distance between the target obstacle and the vehicle is shorter than the distance between other obstacles and the vehicle
- the other The obstacle is an obstacle other than the target obstacle among the plurality of obstacles
- the collision time TTC between the target obstacle and the vehicle is shorter than the other obstacles and the vehicle TTC.
- the obstacle with the shortest distance from the vehicle or the obstacle with the shortest collision time is used as the target obstacle corresponding to the temporary occupation type to select the longitudinal movement of the vehicle in the temporary occupation type. Obstacles whose parameters have a greater impact are beneficial to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the longitudinal distance between the target obstacle and the vehicle is smaller than that between other obstacles in the plurality of obstacles and the The longitudinal distance between vehicles.
- the obstacle with the shortest longitudinal distance between the multiple obstacles and the vehicle is taken as the target obstacle corresponding to the current long-term occupancy type to select the longitudinal motion parameters of the vehicle in the current long-term occupancy type Obstacles with greater impact are helpful to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the space-time occupancy type is a future long-term occupancy type
- the time TTL between the target obstacle and the lane on which the vehicle is traveling is shorter than other obstacles and all the lanes.
- the other obstacles are obstacles other than the target obstacle among the plurality of obstacles.
- the obstacle with the shortest TTL between the multiple obstacles and the lane on which the vehicle is traveling is used as the target obstacle corresponding to the future long-term occupation type to select the longitudinal direction of the vehicle in the future long-term occupation type. Obstacles whose motion parameters have a greater impact are helpful to improve the safety of planning the longitudinal motion parameters of the vehicle.
- the processing unit is further configured to determine a first constraint condition corresponding to the space-time occupation type of the target obstacle based on the space-time occupation type corresponding to the target obstacle.
- Constraint conditions are used to constrain the longitudinal motion parameters of the vehicle to avoid collisions between the target obstacle and the vehicle; obtain second constraint conditions corresponding to other space-time occupancy types, where the other space-time occupancy types are the multiple A space-time occupation type other than the space-time occupation type in the space-time occupation type, and the second constraint condition is used to restrict the longitudinal motion parameters of the vehicle to avoid collisions with the vehicle with obstacles corresponding to other space-time occupation types ; Based on the first constraint and the second constraint, planning the longitudinal motion parameters of the vehicle.
- the first constraint condition corresponding to the space-time occupation type of the target obstacle is used as the constraint condition for calculating the longitudinal motion parameters of the vehicle together with the second constraint conditions corresponding to other space-time occupation types, which is beneficial to improve the planning of the vehicle.
- the safety of the longitudinal motion parameters is used as the constraint condition for calculating the longitudinal motion parameters of the vehicle together with the second constraint conditions corresponding to other space-time occupation types, which is beneficial to improve the planning of the vehicle.
- a controller may be various devices with control functions, or may be a chip with control functions.
- the controller may include a detection unit, a processing unit, and an acquisition unit, the processing unit may be a processor, the detection unit and the acquisition unit may be an input/output interface; the controller may also include a storage unit,
- the storage unit may be a memory; the storage unit is used for storing instructions, and the processing unit executes the instructions stored by the storage unit, so that the controller executes the method in the first aspect.
- the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the controller located outside the chip (for example, a read-only memory, a random access memory, etc.). Wait).
- a computing device may be various devices with computing functions, or a chip with computing functions.
- the computing device may include a detection unit, a processing unit, and an acquisition unit.
- the processing unit may be a processor, and the detection unit and the acquisition unit may be an input/output interface; the computing device may also include a storage unit,
- the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the computing device executes the method in the first aspect.
- the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, a random access memory, etc.) located outside the chip in the computing device. Wait).
- a storage unit for example, a register, a cache, etc.
- a storage unit for example, a read-only memory, a random access memory, etc.
- a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
- the above computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, which is not specifically limited in this application. .
- a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
- Fig. 1 shows a schematic diagram of a suitable communication system applicable to the embodiments of the present application.
- Fig. 2 is a schematic diagram of an applicable automatic driving system according to an embodiment of the present application.
- Fig. 3 is a flowchart of a method for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- FIG. 4 shows the space-time occupation type between the space-time domain of a vehicle and the space-time domain of multiple obstacles according to an embodiment of the present application.
- Fig. 5 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- Fig. 6 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to another embodiment of the present application.
- Fig. 7 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to another embodiment of the present application.
- Fig. 8 is a flowchart of a method for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- FIG. 9 is a projection in the space-time domain coordinate system of the obstacle of the future long-term occupation type in the embodiment of the present application.
- Fig. 10 is a projection of an obstacle of the temporary occupation type in the spatio-temporal coordinate system in the embodiment of the present application.
- FIG. 11 is a projection of an obstacle of the current long-term occupation type in the space-time domain coordinate system in the embodiment of the present application.
- Fig. 12 is a displacement-time diagram of a target obstacle and a vehicle in an embodiment of the present application.
- Fig. 13 is a schematic diagram of a device for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- FIG. 14 is a schematic block diagram of a controller according to another embodiment of the present application.
- FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
- the vehicle 100 is configured in a fully or partially autonomous driving mode.
- the vehicle 100 can control itself while in the automatic driving mode, and can determine the current state of the vehicle and its surrounding environment through human operations, determine the possible behavior of at least one other vehicle in the surrounding environment, and determine the other vehicle
- the confidence level corresponding to the possibility of performing possible actions is controlled based on the determined information.
- the vehicle 100 can be placed to operate without human interaction.
- the vehicle 100 may include various subsystems, such as a travel system 102, a sensor system 104, a control system 106, one or more peripheral devices 108 and a power supply 110, a computer system 112, and a user interface 116.
- the vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple elements.
- each of the subsystems and elements of the vehicle 100 may be wired or wirelessly interconnected.
- the travel system 102 may include components that provide power movement for the vehicle 100.
- the travel system 102 may include an engine 118, an energy source 119, a transmission 120, and wheels/tires 121.
- the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or a combination of other types of engines, such as a hybrid engine composed of a gasoline engine and an electric motor, or a hybrid engine composed of an internal combustion engine and an air compression engine.
- the engine 118 converts the energy source 119 into mechanical energy.
- Examples of energy sources 119 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity.
- the energy source 119 may also provide energy for other systems of the vehicle 100.
- the transmission device 120 can transmit mechanical power from the engine 118 to the wheels 121.
- the transmission device 120 may include a gearbox, a differential, and a drive shaft.
- the transmission device 120 may further include other devices, such as a clutch.
- the drive shaft may include one or more shafts that can be coupled to one or more wheels 121.
- the sensor system 104 may include several sensors that sense information about the environment around the vehicle 100.
- the sensor system 104 may include a positioning system 122 (the positioning system may be a global positioning system (GPS) system, a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, Radar 126, laser rangefinder 128, and camera 130.
- the sensor system 104 may also include sensors of the internal system of the monitored vehicle 100 (for example, an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors can be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). Such detection and identification are key functions for the safe operation of the autonomous vehicle 100.
- the positioning system 122 can be used to estimate the geographic location of the vehicle 100.
- the IMU 124 is used to sense changes in the position and orientation of the vehicle 100 based on inertial acceleration.
- the IMU 124 may be a combination of an accelerometer and a gyroscope.
- the radar 126 may use radio signals to sense objects in the surrounding environment of the vehicle 100. In some embodiments, in addition to sensing the object, the radar 126 may also be used to sense the speed and/or direction of the object.
- the laser rangefinder 128 can use laser light to sense objects in the environment where the vehicle 100 is located.
- the laser rangefinder 128 may include one or more laser sources, laser scanners, and one or more detectors, as well as other system components.
- the camera 130 may be used to capture multiple images of the surrounding environment of the vehicle 100.
- the camera 130 may be a still camera or a video camera.
- the control system 106 controls the operation of the vehicle 100 and its components.
- the control system 106 may include various components, including a steering system 132, a throttle 134, a braking unit 136, a computer vision system 140, a route control system 142, and an obstacle avoidance system 144.
- the steering system 132 is operable to adjust the forward direction of the vehicle 100.
- it may be a steering wheel system.
- the throttle 134 is used to control the operating speed of the engine 118 and thereby control the speed of the vehicle 100.
- the braking unit 136 is used to control the vehicle 100 to decelerate.
- the braking unit 136 may use friction to slow down the wheels 121.
- the braking unit 136 may convert the kinetic energy of the wheels 121 into electric current.
- the braking unit 136 may also take other forms to slow down the rotation speed of the wheels 121 to control the speed of the vehicle 100.
- the computer vision system 140 may be operable to process and analyze the images captured by the camera 130 in order to identify objects and/or features in the surrounding environment of the vehicle 100.
- the objects and/or features may include traffic signals, road boundaries, and obstacles.
- the computer vision system 140 may use object recognition algorithms, structure from motion (SFM) algorithms, video tracking, and other computer vision technologies.
- SFM structure from motion
- the computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and so on.
- the route control system 142 is used to determine the travel route of the vehicle 100.
- the route control system 142 may combine data from sensors, GPS 122, and one or more predetermined maps to determine a driving route for the vehicle 100.
- the obstacle avoidance system 144 is used to identify, evaluate and avoid or otherwise surpass potential obstacles in the environment of the vehicle 100.
- control system 106 may add or alternatively include components other than those shown and described. Alternatively, a part of the components shown above may be reduced.
- the vehicle 100 interacts with external sensors, other vehicles, other computer systems, or users through peripheral devices 108.
- the peripheral device 108 may include a wireless communication system 146, an onboard computer 148, a microphone 150, and/or a speaker 152.
- the peripheral device 108 provides a means for the user of the vehicle 100 to interact with the user interface 116.
- the onboard computer 148 may provide information to the user of the vehicle 100.
- the user interface 116 can also operate the onboard computer 148 to receive user input.
- the on-board computer 148 can be operated through a touch screen.
- the peripheral device 108 may provide a means for the vehicle 100 to communicate with other devices located in the vehicle.
- the microphone 150 may receive audio (eg, voice commands or other audio input) from a user of the vehicle 100.
- the speaker 152 may output audio to the user of the vehicle 100.
- the wireless communication system 146 may wirelessly communicate with one or more devices directly or via a communication network.
- the wireless communication system 146 may use 3G cellular communication, such as code division multiple access (CDMA), Global System for Mobile Communications (GSM)/GPRS, or fourth generation (CDMA) 4G) communication, such as LTE. Or fifth-generation (5th-Generation, 5G) communication.
- the wireless communication system 146 may use WiFi to communicate with a wireless local area network (WLAN).
- the wireless communication system 146 may directly communicate with the device using an infrared link, Bluetooth, or ZigBee.
- Other wireless protocols such as various vehicle communication systems.
- the wireless communication system 146 may include one or more dedicated short-range communications (DSRC) devices. These devices may include vehicles and/or roadside stations. Public and/or private data communications.
- DSRC dedicated short-range communications
- the power supply 110 may provide power to various components of the vehicle 100.
- the power source 110 may be a rechargeable lithium ion or lead-acid battery.
- One or more battery packs of such batteries may be configured as a power source to provide power to various components of the vehicle 100.
- the power source 110 and the energy source 119 may be implemented together, such as in some all-electric vehicles.
- the computer system 112 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer readable medium such as the data storage 114.
- the computer system 112 may also be multiple computing devices that control individual components or subsystems of the vehicle 100 in a distributed manner.
- the processor 113 may be any conventional processor, such as a commercially available central processing unit (CPU). Alternatively, the processor may be a dedicated device such as an application specific integrated circuit (ASIC) or other hardware-based processor.
- FIG. 1 functionally illustrates the processor, the memory, and other elements of the computer 110 in the same block, those of ordinary skill in the art should understand that the processor, the computer, or the memory may actually include may or may not Multiple processors, computers, or memories stored in the same physical enclosure.
- the memory may be a hard disk drive or other storage medium located in a housing other than the computer 110. Therefore, a reference to a processor or computer will be understood to include a reference to a collection of processors or computers or memories that may or may not operate in parallel. Rather than using a single processor to perform the steps described here, some components such as steering components and deceleration components may each have its own processor that only performs calculations related to component-specific functions .
- the processor may be located away from the vehicle and wirelessly communicate with the vehicle.
- some of the processes described herein are executed on a processor disposed in the vehicle and others are executed by a remote processor, including taking the necessary steps to perform a single manipulation.
- the memory 114 may include instructions 115 (eg, program logic), which may be executed by the processor 113 to perform various functions of the vehicle 100, including those functions described above.
- the memory 114 may also contain additional instructions, including those for sending data to, receiving data from, interacting with, and/or controlling one or more of the traveling system 102, the sensor system 104, the control system 106, and the peripheral device 108. instruction.
- the memory 114 may also store data, such as road maps, route information, the location, direction, and speed of the vehicle, and other such vehicle data, as well as other information. Such information may be used by the vehicle 100 and the computer system 112 during the operation of the vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
- the above-mentioned processor 113 may also execute the vehicle longitudinal motion parameter planning scheme of the embodiments of the present application to help the vehicle plan longitudinal motion parameters.
- vehicle longitudinal motion parameter planning method please refer to the introduction in FIG. 3 below.
- I won’t repeat it here.
- the user interface 116 is used to provide information to or receive information from a user of the vehicle 100.
- the user interface 116 may include one or more input/output devices in the set of peripheral devices 108, such as a wireless communication system 146, a car computer 148, a microphone 150, and a speaker 152.
- the computer system 112 may control the functions of the vehicle 100 based on inputs received from various subsystems (for example, the travel system 102, the sensor system 104, and the control system 106) and from the user interface 116. For example, the computer system 112 may utilize input from the control system 106 in order to control the steering unit 132 to avoid obstacles detected by the sensor system 104 and the obstacle avoidance system 144. In some embodiments, the computer system 112 is operable to provide control of many aspects of the vehicle 100 and its subsystems.
- one or more of these components described above may be installed or associated with the vehicle 100 separately.
- the storage 114 may exist partially or completely separately from the vehicle 100.
- the aforementioned components may be communicatively coupled together in a wired and/or wireless manner.
- FIG. 1 should not be construed as a limitation to the embodiment of the present invention.
- An autonomous vehicle traveling on a road can recognize objects in its surrounding environment to determine the adjustment to the current speed.
- the object may be other vehicles, traffic control equipment, or other types of objects.
- each recognized object can be considered independently, and based on the respective characteristics of the object, such as its current speed, acceleration, distance from the vehicle, etc., can be used to determine the speed to be adjusted by the self-driving car.
- the self-driving vehicle 100 or a computing device associated with the self-driving vehicle 100 may be based on the characteristics of the recognized object and the state of the surrounding environment (for example, traffic, rain, ice on the road, etc.) to predict the behavior of the identified object.
- each recognized object depends on each other's behavior, so all recognized objects can also be considered together to predict the behavior of a single recognized object.
- the vehicle 100 can adjust its speed based on the predicted behavior of the identified object.
- the self-driving car can determine based on the predicted behavior of the object that the vehicle will need to be adjusted to a stable state (for example, accelerating, decelerating, or stopping). In this process, other factors may also be considered to determine the speed of the vehicle 100, such as the lateral position of the vehicle 100 on the road on which it is traveling, the curvature of the road, the proximity of static and dynamic objects, and so on.
- the computing device can also provide instructions to modify the steering angle of the vehicle 100 so that the self-driving car follows a given trajectory and/or maintains an object near the self-driving car (such as , The safe horizontal and vertical distances of cars in adjacent lanes on the road.
- the above-mentioned vehicle 100 may be a car, truck, motorcycle, bus, boat, airplane, helicopter, lawn mower, recreational vehicle, playground vehicle, construction equipment, tram, golf cart, train, and trolley, etc.
- the embodiments of the invention are not particularly limited.
- the computer system 101 includes a processor 103, and the processor 103 is coupled with a system bus 105.
- the processor 103 may be one or more processors, where each processor may include one or more processor cores.
- the system bus 105 is coupled with an input/output (I/O) bus 113 through a bus bridge 111.
- the I/O interface 115 is coupled to the I/O bus.
- the I/O interface 115 communicates with various I/O devices, such as an input device 117 (such as a keyboard, a mouse, a touch screen, etc.), a media tray 121 (such as a CD-ROM, a multimedia interface, etc.).
- Transceiver 123 can send and/or receive radio communication signals
- camera 155 can capture scene and dynamic digital video images
- external USB interface 125 external USB interface 125.
- the interface connected to the I/O interface 115 may be a USB interface.
- the processor 103 may be any traditional processor, including a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (Complex Instruction Set Computer, CISC) processor, or a combination of the foregoing.
- the processor may be a dedicated device such as an application specific integrated circuit ASIC.
- the processor 103 may be a neural network processor or a combination of a neural network processor and the foregoing traditional processors.
- the computer system 101 may be located far away from the autonomous driving vehicle, and may wirelessly communicate with the autonomous driving vehicle O.
- some of the processes described herein are executed on a processor provided in an autonomous vehicle, and others are executed by a remote processor, including taking actions required to perform a single manipulation.
- the computer 101 can communicate with the software deployment server 149 through the network interface 129.
- the network interface 129 is a hardware network interface, such as a network card.
- the network 127 may be an external network, such as the Internet, or an internal network, such as an Ethernet or a virtual private network (Virtual Private Network, VPN).
- the network 127 may also be a wireless network, such as a Wi-Fi network, a cellular network, and so on.
- the hard disk drive interface is coupled to the system bus 105.
- the hardware drive interface is connected with the hard drive.
- the system memory 135 is coupled to the system bus 105.
- the data running in the system memory 135 may include the operating system 137 and application programs 143 of the computer 101.
- the operating system includes a shell 139 and a kernel 141.
- the shell 139 is an interface between the user and the kernel of the operating system.
- the shell 139 is the outermost layer of the operating system.
- the shell 139 manages the interaction between the user and the operating system: waiting for the user's input, interpreting the user's input to the operating system, and processing the output results of various operating systems.
- the kernel 141 is composed of those parts of the operating system that are used to manage memory, files, peripherals, and system resources. Directly interact with the hardware, the operating system kernel usually runs processes and provides inter-process communication, providing CPU time slice management, interrupts, memory management, IO management, and so on.
- Application programs 143 include programs related to controlling auto-driving cars, such as programs that manage the interaction between autonomous vehicles and road obstacles, programs that control the route or speed of autonomous vehicles, and programs that control interaction between autonomous vehicles and other autonomous vehicles on the road. .
- the application program 143 also exists on the system of a software deployment server (deploying server) 149.
- the computer system 101 may download the application program 143 from a software deployment server (deploying server) 149.
- the above-mentioned application program may also include an application program corresponding to the solution of the longitudinal motion parameter planning of the vehicle provided in the embodiment of this application.
- the planning solution of the longitudinal motion parameter of the vehicle of the embodiment of this application will be described below. The specific introduction will not be repeated here for the sake of brevity.
- the sensor 153 is associated with the computer system 101.
- the sensor 153 is used to detect the environment around the computer 101.
- the sensor 153 can detect animals, cars, obstacles, and crosswalks.
- the sensor can also detect the surrounding environment of the above-mentioned animals, cars, obstacles, and crosswalks, such as the environment around the animals, for example, when the animals appear around them. Other animals, weather conditions, the brightness of the surrounding environment, etc.
- the sensor may be a camera, an infrared sensor, a chemical detector, a microphone, etc.
- the controller (for example, the control system 106 shown in FIG. 1) will first obtain the current state of the autonomous vehicle at the current moment, and all the parameters within the preset range. Time and space prediction data of obstacles; for each obstacle among all obstacles, the controller determines the conflict time and space between each obstacle and the autonomous vehicle, and determines the planned driving trajectory of the autonomous vehicle according to the conflict time and space of each obstacle ; Then, the controller determines a target longitudinal motion parameter from the planned driving trajectory corresponding to each target object, and sends a control instruction to the control device of the autonomous vehicle according to the determined target longitudinal motion parameter.
- the controller needs to determine the longitudinal motion parameters of the autonomous vehicle based on the temporal and spatial prediction data of all obstacles in the preset range, or in other words, the controller needs to traverse all the obstacles in the preset range
- the target longitudinal motion parameters of the self-driving vehicle are calculated for each obstacle, resulting in a very large amount of calculation required to calculate the longitudinal motion parameters.
- the embodiments of the present application provide a new scheme for planning the longitudinal speed of a vehicle, that is, based on the occupation relationship between the space-time domain of multiple obstacles within a preset range around the vehicle and the space-time domain of the vehicle. , Determine the space-time occupation type corresponding to each obstacle in the multiple obstacles, and select the target obstacle from the multiple obstacles based on the space-time occupation type, and then based on the space-time occupation type corresponding to the selected target obstacle and the target obstacle The motion state of the object, and the longitudinal motion parameters of the vehicle are planned. In this way, the controller no longer needs to traverse the time and space domain of each obstacle among multiple obstacles to plan the longitudinal speed of the vehicle, which is beneficial to reduce the amount of calculation required for the speed longitudinal planning curve.
- Fig. 3 is a flowchart of a method for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- the method shown in FIG. 3 may be executed by a controller (for example, the control system 106 shown in FIG. 1).
- the method shown in FIG. 3 includes step 310 to step 350.
- the aforementioned obstacle can be understood as an object that will hinder the driving process of the vehicle.
- it can be a passerby or other vehicle crossing the lane where the vehicle is located, or for example, other vehicles located in front of the vehicle.
- the embodiment of the application does not specifically limit this.
- multiple obstacles may be sensed by a vehicle-mounted sensor, where the sensor may be the camera 130 shown in FIG. 1.
- the cloud can notify the vehicle of multiple obstacles within a preset range.
- the foregoing preset range may be specified by the manufacturer or set by the user, which is not specifically limited in this application.
- the motion states of multiple obstacles may also be determined at the same time, so as to subsequently determine the time and space domain of each obstacle in the multiple obstacles.
- the space-time domain of each obstacle is used to indicate the change of the position space of each obstacle over time, and the time-space domain of the vehicle is used to indicate The position space occupied by the vehicle changes over time.
- the temporal and spatial domain of each obstacle among the plurality of obstacles may be predicted based on the motion state of each obstacle among the plurality of obstacles.
- the motion state of each obstacle described above may include the current position, current speed, current acceleration, direction, behavior intention, and motion trajectory within a preset time of each obstacle.
- the behavioral intention may include the intention of lane crossing, the intention of lane merging, the intention of driving along the lane, the intention of borrowing and detouring, and so on.
- the space-time domain of each obstacle mentioned above can be represented by a pre-established coordinate system. Specifically, the space-time domain of each obstacle can be represented by the coordinate position of each obstacle in the coordinate at different times.
- the aforementioned coordinate system may be a world coordinate system or a road coordinate system, which is not limited in the embodiment of the present application.
- the world coordinate system refers to a coordinate system that is fixed relative to the ground.
- the origin of the world coordinate system can be defined at the initial position of the target object.
- the positive direction of the x-axis of the world coordinate system is along the movement direction of the target object.
- the position and the positive direction of the x-axis are fixed on the ground and do not move with the target.
- the origin of the world coordinate system can also be defined at a certain position on the earth, and the x-axis of the world coordinate system points to north.
- the road coordinate system can take the starting point of the road path as the origin, the direction along the road is the positive direction of the S-axis, and the direction perpendicular to the positive direction of the S-axis is the positive direction of the L-axis of the road coordinate system.
- the time and space domain of the vehicle can be predicted based on the motion state of the vehicle.
- the above-mentioned movement state of the vehicle may include the current position, current speed, current acceleration, direction, behavior intention, and movement trajectory within a preset time of the vehicle.
- the space-time domain of the vehicle described above may be represented by a pre-established coordinate system. Specifically, the time-space domain of the vehicle may be represented by the coordinate position of the vehicle under the coordinates at different times. It should be understood that the foregoing coordinates representing the space-time domain of the vehicle may be the same as the foregoing coordinates representing the obstacle.
- the establishment method can be referred to the above introduction, for the sake of brevity, it will not be repeated here.
- the occupation time is used to indicate the time period when the position space of each obstacle in the plurality of obstacles occupies at least part of the position of the vehicle.
- Occupation time is used to indicate the time period when the position space of each obstacle among multiple obstacles occupies at least part of the position of the vehicle. It can be understood as the occupation time includes the space-time domain of each obstacle among the multiple obstacles and the space-time of the vehicle. The length of time and/or overlap between domains.
- the foregoing space-time occupation type is one of a plurality of preset space-time occupation types, and the multiple space-time occupation types include some or all of the following space-time occupation types: current longterm occupation (CO), Temporary occupation type (temporary occupation, TO) or future longterm occupation type (future longterm occupation, FO).
- CO current longterm occupation
- TO Temporary occupation
- FO future longterm occupation
- the occupancy time is a period of time with the acquisition time as the starting time, and the time period corresponding to the occupancy time is longer than the first time period threshold, and the acquisition time is the time when the motion states of the multiple obstacles are collected, then the multiple obstacles
- the space-time occupation type between the space-time domain of each obstacle and the space-time domain of the vehicle is the current long-term occupation type.
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle is a temporary occupation type.
- the above-mentioned occupation time may be a period of time starting from the collection time, or a period of time later than the collection time, which is not specifically limited in the embodiment of the present application.
- the occupation time is a period of time later than the acquisition time, and the time period corresponding to the occupation time is longer than the third time period threshold, the space-time occupation type between the space-time domain of each obstacle in the multiple obstacles and the space-time domain of the vehicle Long-term occupation type for the future.
- the foregoing first time period threshold is longer than or equal to the second time period threshold
- the third time period threshold is longer than or equal to the second time period threshold. That is, the occupation time corresponding to the current long-term occupation type is longer than the occupation time corresponding to the temporary occupation type, and the occupation time corresponding to the future long-term occupation type is longer than the occupation time corresponding to the temporary occupation type.
- the first time period threshold and the second time period threshold may be understood as the same time period threshold.
- the third time period threshold and the second time period threshold can be understood as the same time period threshold.
- the foregoing first time period threshold and the third time period threshold may be the same time period threshold, or may be different time period thresholds, which are not limited in the embodiment of the present application.
- first time period threshold, second time period threshold, and third time period threshold may be set by the manufacturer.
- the following takes the six obstacles (ie 420 to 470) shown in FIG. 4 as an example for description.
- the obstacle 1 420 is a vehicle traveling in the lane 2, and the obstacle 1 is going to merge from the lane 2 into the lane 1 where the vehicle 410 is located, and the behavior of the obstacle 1 420 is intended to be lane merging.
- Obstacle 2 430 is a pedestrian preparing to cross lane 1, and the behavioral intention of obstacle 2 430 is lane crossing.
- Obstacle 3440 is a pedestrian preparing to cross lane 1, and the behavioral intention of obstacle 3440 is lane crossing.
- Obstacles 4 to 6 450, 460, and 470 are vehicles driving along lane 1, and the behavior of obstacles 4 to 6 450, 460, and 470 is intended to drive the lane forward.
- obstacle 1 420 when the movement state of obstacle 1 420 is collected, obstacle 1 420 has not been merged into lane 1. Based on the movement state of obstacle 1 420, the temporal and spatial domain of obstacle 1 420 can be obtained. Object 1 420 starts to merge into lane 1 to obstacle 1 420 completely merges into lane 1 and travels along lane 1 during this period, the corresponding position space will occupy the position space of own vehicle 410 traveling along lane 1. Therefore, obstacles The time period corresponding to the positional change of the object 1 420 from the beginning of merging into Lane 1 to the complete merging into Lane 1 is the occupation time mentioned above.
- the time period corresponding to the occupancy time is longer than the third time period threshold, and the occupancy time is a period of time later than the collection time.
- the occupation relationship between the space-time domain of the obstacle 420 and the space-time domain of the own vehicle 410 belongs to the type of long-term occupation in the future.
- the temporal and spatial domain of obstacle 2 430 can be predicted based on the motion state of obstacle 2 430.
- obstacle 2 430 moves from the nearest boundary of lane 1 (that is, the left boundary in Fig. 4) to When the farthest boundary of lane 1 (that is, the right boundary in Fig. 4), obstacle 2 430 will occupy the position space of the vehicle 410, then obstacle 2 430 is from the nearest boundary of lane 1 (that is, the left boundary in Fig. 4)
- the time period corresponding to the position space of moving to the farthest boundary of lane 1 is the occupation time mentioned above. In this case, the length of the time period corresponding to the occupied time is shorter than the second time period threshold.
- the occupation relationship between the space-time domain of the obstacle 2430 and the space-time domain of the own vehicle 410 belongs to the temporary occupation type.
- the temporal and spatial domain of obstacle 3 440 can be predicted based on the movement state of obstacle 3 440.
- obstacle 3 440 moves from the nearest boundary of lane 1 (that is, the left boundary in Fig. 4) to When the farthest boundary of lane 1 (that is, the right boundary in Fig. 4), obstacle 3 440 will occupy the position space of the vehicle 410, then obstacle 3 440 is from the nearest boundary of lane 1 (that is, the left boundary in Fig. 4)
- the time period corresponding to the position space of moving to the farthest boundary of lane 1 is the occupation time mentioned above. In this case, the length of the time period corresponding to the occupied time is shorter than the second time period threshold.
- the occupation relationship between the space-time domain of the obstacle 3440 and the space-time domain of the own vehicle 410 belongs to the above-mentioned temporary occupation type.
- the time period corresponding to the change of the position space of the obstacle 4 450 driving along lane 1 is that Is the occupation time in the above.
- the length of the time period corresponding to the occupancy time is longer than the third time period threshold, and the occupancy time is a period of time starting from the collection time.
- the time period corresponding to the change of the position space of obstacle 5 460 driving along lane 1 is that Is the occupation time in the above.
- the length of the time period corresponding to the occupancy time is longer than the third time period threshold, and the occupancy time is a period of time starting from the collection time.
- the occupation type of the space-time domain of the obstacle 5460 and the space-time domain of the own vehicle 410 is the current long-term occupation type.
- the time period corresponding to the change of the position space of the obstacle 6 470 driving along Lane 1 is that Is the occupation time in the above.
- the length of the time period corresponding to the occupancy time is longer than the third time period threshold, and the occupancy time is a period of time starting from the collection time.
- the occupation type of the time-space domain of the obstacle 6470 and the time-space domain of the own vehicle 410 is the current long-term occupation type.
- the longitudinal distance between the obstacle and the vehicle and/or the time to collision (TTC) between the obstacle and the vehicle has a greater impact on the longitudinal speed of the vehicle. Therefore, it can be based on the obstacle and the vehicle.
- the longitudinal distance and/or the TTC between the obstacle and the vehicle to select the target obstacle.
- the space-time occupation type is the temporary occupation type
- the distance between the target obstacle and the vehicle is shorter than the distance between other obstacles and the vehicle
- the other obstacles are obstacles other than the target obstacle among multiple obstacles.
- the TTC between the target obstacle and the vehicle is shorter than the TTC between other obstacles and the vehicle.
- the foregoing target obstacle may be one or more of multiple obstacles, which is not limited in the embodiment of the present application.
- you want to further filter the number of target obstacles to reduce the amount of calculation required for path planning you can select the obstacle with the shortest distance to the vehicle from multiple obstacles as the target obstacle, and/or, The obstacle with the shortest TTC between the vehicle and the multiple obstacles is selected as the target obstacle.
- the target obstacle can be selected based on the longitudinal distance between the obstacle belonging to the current long-term occupation type and the vehicle.
- the longitudinal distance between the target obstacle and the vehicle is smaller than the longitudinal distance between the other obstacles in the plurality of obstacles and the vehicle, wherein the other obstacles are obstacles other than the target obstacle in the plurality of obstacles.
- the aforementioned longitudinal direction may be understood as the same direction as the axial direction of the vehicle, or the driving direction of the vehicle, or the heading of the vehicle.
- the foregoing target obstacle may be understood as one or more obstacles among multiple obstacles, which is not limited in the embodiment of the present application.
- the obstacle with the shortest longitudinal distance from the vehicle can be selected from a plurality of obstacles as the target obstacle.
- the longitudinal distance between obstacle 4 450 and vehicle 410 is less than the longitudinal distance between obstacle 5 440 and vehicle 410, and the longitudinal distance between obstacle 4 450 and vehicle 410 is less than The longitudinal distance between the obstacle 6 450 and the vehicle 410. Therefore, the obstacle 4 450 can be used as the target obstacle corresponding to the current long-term occupation type. For the long-term occupation type in the future, the time to line (TTL) between the obstacle and the vehicle has a greater impact on the longitudinal speed of the vehicle. Therefore, it can be based on the TTL between the obstacle and the vehicle. Select the target obstacle.
- TTL time to line
- the space-time occupancy type is the future long-term occupancy type
- the TTL between the target obstacle and the vehicle is shorter than the TTL between other obstacles and the vehicle, and other obstacles are obstacles other than the target obstacle among multiple obstacles Things.
- the foregoing target obstacle may be understood as one or more obstacles among multiple obstacles, which is not limited in the embodiment of the present application.
- you want to further filter the number of target obstacles to reduce the amount of calculation required for path planning you can select the obstacle with the shortest TTL between the vehicle and the multiple obstacles as the target obstacle.
- the longitudinal motion parameters of the vehicle may include the position where the vehicle needs to travel to the coordinate system at a certain moment, and the acceleration and speed that the vehicle needs to reach at a certain moment.
- v speed goal (s, t, v, a)
- v speed goal represents the longitudinal displacement that the vehicle needs to move in the coordinate system at time t is s
- the speed that the vehicle needs to reach at time t is v
- the acceleration is a.
- the longitudinal motion parameters of the vehicle are calculated based on the constraint conditions corresponding to different time-space occupation types.
- the following first introduces the constraints corresponding to different types of space-time occupation.
- the longitudinal position of the target obstacle in the coordinate system is greater than the longitudinal position of the vehicle in the coordinate system within the planned time period.
- the target obstacle corresponding to the current long-term occupancy type is obstacle i, which is the obstacle with the closest longitudinal distance between multiple obstacles and the vehicle
- the current long-term occupancy type obstacle i has the longitudinal motion parameter of the vehicle
- the speed of the object i, s i0 represents the longitudinal position of the obstacle i in the coordinate system at the initial time (also called the acquisition time), and T represents the planned time period.
- the longitudinal position of the target obstacle in the coordinate system in the planning time period can be greater than the longitudinal position of the vehicle in the coordinate system as the constraint condition, where the planning time is based on the target obstacle
- the time when the vehicle starts occupying the space-time space of the second time period is the starting time.
- the obstacle j of the future long-term occupation type is against the vehicle
- T represents the planned time period
- t j represents the merging time of the obstacle j into the lane where the vehicle is traveling
- s 0 represents the longitudinal position of the obstacle j in the coordinate system at the merging time.
- the above-mentioned obstacle j is the obstacle with the shortest TTL between the multiple obstacles and the lane in which the vehicle is traveling, or in other words, the obstacle j is the longitudinal direction between the multiple obstacles and the vehicle in the coordinate system. The nearest obstacle.
- Constraint 1 The longitudinal position of the vehicle in the coordinate system during the planning period is smaller than the obstacle k at this coordinate The vertical position in the department.
- Constraint 2 The longitudinal position of the vehicle in the coordinate system during the planning period is greater than the longitudinal position of the obstacle k in the coordinate system, and the longitudinal position of the vehicle in the vehicle coordinate system is smaller than the longitudinal position of the obstacle l in the coordinate system Location.
- Constraint 3 The longitudinal position of the vehicle in the coordinate system during the planning period is greater than the longitudinal position of the obstacle l in the coordinate system.
- the obstacle k is the obstacle with the smallest longitudinal distance between the multiple obstacles and the vehicle in the coordinate system.
- Obstacle 1 is the obstacle with the shortest TTC between multiple obstacles and the vehicle.
- obstacle q is the obstacle with the shortest longitudinal distance between multiple obstacles and the vehicle in the coordinate system
- obstacle p is multiple obstacles
- the obstacle with the shortest TTC between the middle and the vehicle, the temporary occupation type of obstacle q and the constraint condition of the obstacle p on the longitudinal motion parameter planning of the vehicle are:
- s q v q t + s q0, (t ⁇ [t q_in, t q_out])
- s p v p t + s p0, (t ⁇ [t p_in, t p_out])
- v q represents Obstacle q is the longitudinal motion parameter of obstacle q along the travel route
- v p represents the longitudinal motion parameter of obstacle p along the travel route of obstacle p
- s q0 represents the initial time (also known as the acquisition time)
- the obstacle q is in the coordinate system
- S p0 represents the longitudinal position of the obstacle
- the above introduces the setting method of constraint conditions based on the different space-time occupation types in 3, and the following describes the method of planning the longitudinal motion parameters of the vehicle in combination with the constraint conditions introduced above.
- the constraint conditions corresponding to the other two types of space-time occupancy types can be integrated to plan The longitudinal motion parameters of the vehicle.
- the above method also includes: planning the longitudinal motion parameters of the vehicle based on the space-time occupation type corresponding to the target obstacle and the motion state of the target obstacle, including: determining the target obstacle based on the space-time occupation type corresponding to the target obstacle and the motion state of the target obstacle.
- the first constraint condition corresponding to the space-time occupation type of the object.
- the first constraint condition is used to constrain the longitudinal motion parameters of the vehicle to avoid the collision between the target obstacle and the vehicle; to obtain the second constraint condition corresponding to other space-time occupation types, and other space-time occupations
- the type is a space-time occupation type other than the space-time occupation type among multiple space-time occupation types.
- the second constraint condition is used to constrain the longitudinal motion parameters of the vehicle to avoid collisions between obstacles corresponding to other space-time occupation types and the vehicle; based on the first The constraint condition and the second constraint condition calculate the longitudinal motion parameters of the vehicle.
- the space-time occupation type corresponding to the above-mentioned target obstacle can be one of the above three space-time occupation types.
- the other space-time occupation type can be one of the above-mentioned three space-time occupation types except for the space-time occupation type corresponding to the target obstacle.
- Space-time occupation type outside.
- the space-time occupation type corresponding to the target obstacle is the future long-term occupation type
- the other space-time occupation types mentioned above may include the temporary occupation type and the current long-term occupation type.
- the space-time occupation type corresponding to the target obstacle is the current long-term occupation type
- the aforementioned other space-time occupation types may include the temporary occupation type.
- the following takes the space-time occupation type corresponding to the target obstacle as the current long-term occupation type, and other space-time occupation types including future long-term occupation types and temporary occupation types as examples to introduce the method of calculating the longitudinal motion parameters of the vehicle. It should be noted that the following mainly introduces the method of calculating the longitudinal motion parameters of the vehicle, and the constraint conditions of the various types of disease control occupations involved in the city can be referred to the above introduction. For the sake of brevity, it will not be repeated here.
- Fig. 5 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- the method shown in FIG. 5 includes step 510 to step 550.
- Fig. 6 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to another embodiment of the present application.
- the method shown in FIG. 6 includes step 610 to step 650.
- Fig. 7 is a schematic diagram of a method for calculating longitudinal motion parameters of a vehicle according to another embodiment of the present application.
- the method shown in FIG. 7 includes step 710 to step 750.
- the longitudinal motion parameters of the vehicle can also be planned based on the constraint conditions corresponding to the above-mentioned three space-time occupation types.
- the embodiment of the application does not limit this.
- the longitudinal motion parameters of the vehicle can also be verified. Specifically, the vehicle's longitudinal motion parameters calculated for the above three types of space-time occupations are subjected to collision risk verification to ensure the safety of the final output vehicle's longitudinal motion parameters.
- This collision risk verification can be calculated based on the displacement-time diagram (ST diagram), that is, all target obstacles are projected into the ST diagram. If the vehicle’s current position reaches the position corresponding to the above-mentioned longitudinal motion parameters, , Will not collide with all target obstacles, then it can be considered that the position corresponding to the longitudinal motion parameter is safe.
- ST diagram displacement-time diagram
- Fig. 8 is a flowchart of a method for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- the method shown in FIG. 8 includes step 810 to step 850.
- the current position of the object (vehicle or obstacle) in the coordinate system corresponding to the motion state is represented by "Position”.
- the X axis in the coordinate system corresponds to the driving direction of the vehicle, and the Y axis in the coordinate system corresponds to the driving direction of the vehicle. vertical.
- the current velocity of the object can be represented by "Velocity”
- the current acceleration of the object can be represented by “Acceleration”
- the heading of the object can be represented by "Heading”.
- O object1 (Position: (x object1 , y object1 ), Velocity: V object1 , Acceleration: a object1 , Heading: ⁇ object1 , Intent: I object1 , PredictTrajectory :Tr object1 ⁇ .
- Predict Trajectory represents the predicted trajectory of obstacle 1 420
- Intent represents the movement intention of obstacle 1 420.
- Predict Trajectory represents the predicted trajectory of the obstacle 2 430
- Intent represents the movement intention of the obstacle 2 430.
- Predict Trajectory represents the predicted trajectory of the obstacle 3 440
- Intent represents the movement intention of the obstacle 3 440.
- O object4 (Position: (x object4 , y object4 ), Velocity: V object4 , Acceleration: a object4 , Heading: ⁇ object4 , Intent: I object4 , Predict Trajectory:Tr object4 ⁇ .
- Predict Trajectory represents the predicted trajectory of the obstacle 4 450
- Intent represents the movement intention of the obstacle 4 450.
- Predict Trajectory represents the predicted trajectory of the obstacle 5 460
- Intent represents the movement intention of the obstacle 5 460.
- O object6 (Position: (x object6 , y object6 ), Velocity: V object6 , Acceleration: a object6 , Heading: ⁇ object6 , Intent: I object6 , Predict Trajectory:Tr object6 ⁇ .
- Predict Trajectory represents the predicted trajectory of the obstacle 6 470
- Intent represents the movement intention of the obstacle 6 470.
- the above-mentioned obstacle intention can be defined as: ⁇ lane crossing intention, lane merging intention, lane forward intention, lane detour intention ⁇ .
- the lane crossing intention and the detour intention can correspond to the temporary space-time occupation type;
- the lane merging intention can correspond to the future long-term space-time occupation type;
- the lane forward intention can correspond to the current long-term space-time occupation type.
- I object1 lane merging intention
- obstacle 1 420 belongs to the future long-term space-time occupation type
- I object2 lane crossing intention
- obstacle 2 430 belongs to temporary occupation type
- I object3 lane crossing intention
- obstacle 3 440 belongs to the temporary occupation type
- I object4 lane forward intention
- obstacle 4 450 belongs to the current long-term occupation type
- I object5 lane forward intention
- obstacle 5 460 belongs to the current long-term occupation type
- I object6 With the intention of driving the lane forward, the obstacle 6 470 is classified as the current long-term occupation type.
- Case 2 If the motion state of the obstacle contains trajectory prediction information, but does not contain behavioral intention information, at this time, the space projection calculation can be used to determine the space-time occupation type corresponding to each obstacle.
- the positive direction of the S axis indicates the direction in which the vehicle travels along the road
- the positive direction of the L axis indicates the direction perpendicular to the S axis
- the t axis indicates time.
- S 0 , L 0, and t 0 are the coordinate origins of the S axis, the L axis, and the t axis, respectively.
- the road coordinate system is constructed with the vehicle 410 travel route as the reference line, and the coordinates of obstacle 4 450 in this coordinate system are (s object4_0 ,l object4_0 ), and the coordinates of obstacle 5 450 in this coordinate system are (s object5_0 ,l object5_0 ), and the coordinates of the obstacle 6 470 in this coordinate system are (s object6_0 ,l object6_0 ).
- the setting of the constraint conditions corresponding to the CO type only needs to consider the obstacle 4 and the obstacle 5, that is, the target obstacle corresponding to the CO type includes the obstacle 4 and the obstacle 5.
- s object4_0 represents the obstacle 4 in the road coordinates at the time of collection
- v object4 represents the speed of obstacle 4 at the time of acquisition
- T represents the planning time.
- s object5_0 represents the obstacle 5 in the road coordinates at the time of collection
- v object5 represents the speed of obstacle 5 at the time of acquisition
- T represents the planning time.
- the motion states of the two target obstacles are considered, it is helpful to improve the safety of planning longitudinal motion parameters for the vehicle. For example, in a car-following scenario, only the preceding vehicle is considered, and the vehicle in front of the preceding vehicle is not considered. There may be a problem that the vehicle in front of the preceding vehicle cannot deal with the speed of the vehicle in time when an emergency occurs.
- Obstacles belonging to the future long-term occupation type FO list ⁇ object1 ⁇
- obstacle 1 is the obstacle with the shortest TTL time in the lane where the vehicle is located among multiple obstacles, so obstacle 1 can be used as the target corresponding to the future long-term occupation type obstacle.
- the road coordinate system is constructed by taking the driving route of the vehicle 410 as the reference line to obtain the coordinates of the obstacle 1 in the coordinate system as (s object1_0 , l object1_0 ).
- l object1_0 represents the longitudinal position of obstacle 1 in the coordinate system at the time of acquisition
- W represents the road width of lane 1.
- s object1 s object1_0 + v object1 *ttl object1
- ttl object1 represents the time when obstacle 1 crosses the sideline of lane 1.
- T represents the planning time of the longitudinal motion parameters of the vehicle.
- Obstacles belonging to the temporary occupation type TO list ⁇ object2, object3 ⁇ , where obstacle 2 is the obstacle with the shortest longitudinal distance between the vehicle and the vehicle in the road coordinate system, and obstacle 3 is the obstacle between multiple obstacles and the vehicle
- the obstacle with the shortest TTC therefore, obstacle 2 and obstacle 3 can be used as target obstacles corresponding to the temporary occupation type. Constructing a road coordinate system with the driving route of the vehicle 410 as a reference line obtains that the coordinates of the obstacle 2 are (s object2_0 , l object2_0 ), and the coordinates of the obstacle 3 are (s object3_0 , l object3_0 ).
- the longitudinal speed of the route s object2_0 represents the longitudinal position of obstacle 2 in the road coordinate system at the acquisition time, t object2_in represents the time when obstacle 2 enters lane 1, and t object2_out represents the time when obstacle 2 exits lane 1.
- the TTC between obstacle 2 and the vehicle can be expressed as: s ego represents the longitudinal displacement of the vehicle in the road coordinate system at the time of collection, and v ego represents the longitudinal speed of the vehicle in the road coordinate system at the time of collection.
- the TTC between obstacle 3 and the vehicle can be expressed as: s ego represents the longitudinal displacement of the vehicle in the road coordinate system at the time of collection, and v ego represents the longitudinal speed of the vehicle in the road coordinate system at the time of collection.
- the target obstacles corresponding to the CO type are obstacle 4 and obstacle 5.
- speedgoal object4 ⁇ s object4 -t HWT *v object4 ,t object4 ,v object4 ,a object4 ⁇ , and
- t HWT represents the follow-up time parameter set by the system.
- the longitudinal velocity target point corresponding to object5 is calculated as:
- speedgoal object5 ⁇ s object5 -t HWT *v object5 ,t object5 ,v object5 ,a object5 ⁇ , and
- t HWT represents the follow-up time parameter set by the system.
- the judgment condition is s object4 -t HWT *v object4 ⁇ s object5 -t HWT *v object5 and t object4 ⁇ t object5 . If the judgment condition is not If the conditions are met, the longitudinal motion parameter with the smallest s among the two longitudinal motion parameters; if the conditions are met, the two longitudinal motion parameters are retained.
- the retained longitudinal motion parameters meet the constraint conditions corresponding to the FO type and the constraint conditions corresponding to the TO type. If the constraint conditions corresponding to the FO type and the constraint conditions corresponding to the TO type are satisfied, the retained longitudinal motion parameters are used as the longitudinal motion parameters speedgoal co based on the CO-type obstacle planning. If the constraint condition corresponding to the FO type and/or the constraint condition corresponding to the TO type is not satisfied, the retained longitudinal motion parameters, the longitudinal motion parameters calculated based on the FO type obstacles, and the longitudinal motion calculated based on the TO type obstacles are taken Among the three parameters, the smallest s is used as the output.
- the target obstacle corresponding to the FO type is obstacle 1.
- speedgoal object1_r ⁇ s object1 + C, ttl object1, v ego, a ego ⁇ , (C> Length ego), where Length ego represents 410 the length of the vehicle, C is a constant, a ego positive number.
- the radical longitudinal motion parameter is taken as the FO type longitudinal motion parameter; if only one type is satisfied, the longitudinal motion parameter that meets the above constraint conditions is taken as the FO type longitudinal motion parameter parameter. If the constraint conditions corresponding to the CO type and/or the constraint conditions corresponding to the FO type are not satisfied, the longitudinal motion parameter corresponding to the smallest point of s among the conservative longitudinal motion parameters, the longitudinal motion parameters of the CO type, and the longitudinal motion parameters of the TO type is taken The motion parameters are used as output.
- the target obstacles corresponding to the TO type are obstacle 2 and obstacle 3.
- the judgment condition is s object2 -C ⁇ s object3 -C and t object2_in ⁇ t object3_in . If the judgment conditions are not met, s is the smallest among the two longitudinal motion parameters. If the judgment conditions are met, the two longitudinal motion parameters are retained.
- the retained longitudinal motion parameters meet the constraint conditions of the FO type and the corresponding constraint conditions of the CO type. If all are satisfied, it will be regarded as the longitudinal motion parameter of the TO type. Otherwise, take the longitudinal motion parameter corresponding to the smallest s among the retained longitudinal motion parameters, the longitudinal motion parameters corresponding to the FO type, and the longitudinal motion parameters of the CO type as the output.
- This collision risk verification can be calculated and solved based on the ST map (displacement-time map), and all target obstacles are projected into the ST map to determine whether the planned longitudinal motion parameter positions can be reached from the vehicle 410 position, and at the same time Do not collide with all target obstacles. As shown in Figure 12, as long as the longitudinal motion parameters fall within the interval enclosed by the dotted line, it is considered safe and passes the verification.
- a third-order polynomial is used to construct the objective optimization function, but it is not limited to a third-order polynomial.
- Fig. 13 is a schematic diagram of a device for planning longitudinal motion parameters of a vehicle according to an embodiment of the present application.
- the apparatus 1300 shown in FIG. 13 includes: a detection unit 1310, an acquisition unit 1320, and a processing unit 1320.
- the detection unit 1310 is configured to detect multiple obstacles located within a preset range of the vehicle;
- the acquiring unit 1320 is configured to acquire the time-space domain of each obstacle in the plurality of obstacles, and the time-space domain of the vehicle, where the time-space domain of each obstacle is used to indicate the position of each obstacle Changes in space over time, the space-time domain of the vehicle is used to indicate changes in the space occupied by the vehicle over time;
- the processing unit 1330 is configured to determine the difference between the space-time space of each obstacle in the plurality of obstacles and the space-time space of each obstacle in the plurality of obstacles based on the occupation time between the space-time space of each obstacle in the plurality of obstacles and the space-time space of the vehicle.
- the processing unit 1330 is further configured to select a target obstacle from the multiple obstacles based on the space-time occupation type
- the processing unit 1330 is further configured to plan the longitudinal motion parameters of the vehicle based on the space-time occupation type corresponding to the target obstacle.
- the collection time is the collection time
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle is the current long-term occupation type
- the space-time occupation type between the space-time domain of each obstacle in the plurality of obstacles and the space-time domain of the vehicle is a temporary occupation type
- the space-time domain of each obstacle in the plurality of obstacles is The space-time occupation type between the space-time domains of the vehicle is the future long-term occupation type;
- the first time period threshold is greater than or equal to the second time period threshold
- the third time period threshold is greater than or equal to the second time period threshold
- the space-time occupation type is a temporary occupation type
- the distance between the target obstacle and the vehicle is shorter than the distance between other obstacles and the vehicle
- the other The obstacle is an obstacle other than the target obstacle among the plurality of obstacles
- the collision time TTC between the target obstacle and the vehicle is shorter than the other obstacles and the vehicle TTC.
- the longitudinal distance between the target obstacle and the vehicle is smaller than that between other obstacles in the plurality of obstacles and the The longitudinal distance between vehicles.
- the space-time occupancy type is a future long-term occupancy type
- the time TTL between the target obstacle and the lane on which the vehicle is traveling is shorter than other obstacles and all the lanes.
- the other obstacles are obstacles other than the target obstacle among the plurality of obstacles.
- the processing unit 1330 is further configured to: determine a first constraint condition corresponding to the time-space occupancy type of the target obstacle based on the time-space occupancy type of the target obstacle.
- a constraint condition is used to constrain the longitudinal motion parameters of the vehicle to avoid the target obstacle from colliding with the vehicle; to obtain a second constraint condition corresponding to another space-time occupancy type, and the other space-time occupancy type is the multiple The space-time occupation types other than the space-time occupation type among the space-time occupation types, and the second constraint condition is used to constrain the longitudinal motion parameters of the vehicle to prevent obstacles corresponding to other space-time occupation types from interacting with the vehicle. Collision; based on the first constraint and the second constraint, planning the longitudinal motion parameters of the vehicle.
- the detection unit 1310 and the acquisition unit 1320 may be a communication interface 1430
- the processing unit 1330 may be a processor 1420
- the controller may further include a memory 1410, as shown in FIG. 14 Shown.
- FIG. 14 is a schematic block diagram of a controller according to another embodiment of the present application.
- the controller 1400 shown in FIG. 14 may include a memory 1410, a processor 1420, and a communication interface 1430.
- the memory 1410, the processor 1420, and the communication interface 1430 are connected by an internal connection path.
- the memory 1410 is used to store instructions
- the processor 1420 is used to execute the instructions stored in the memory 1420 to control the input/output interface 1430 to receive/send At least part of the parameters of the second channel model.
- the memory 1410 may be coupled with the processor 1420 through an interface, or may be integrated with the processor 1420.
- the above-mentioned communication interface 1430 uses a transceiving device such as but not limited to a transceiver to implement communication between the communication device 1400 and other devices or communication networks.
- the aforementioned communication interface 1430 may also include an input/output interface.
- each step of the above method can be completed by an integrated logic circuit of hardware in the processor 1420 or instructions in the form of software.
- the method disclosed in combination with the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory 1410, and the processor 1420 reads the information in the memory 1410, and completes the steps of the foregoing method in combination with its hardware. In order to avoid repetition, it will not be described in detail here.
- the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
- Part of the processor may also include non-volatile random access memory.
- the processor may also store device type information.
- the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
- the implementation process constitutes any limitation.
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
一种车辆纵向运动参数的规划方法及规划装置,该规划方法包括基于多个障碍物中每个障碍物的时空域和车辆的时空域之间的占据时间确定障碍物和车辆之间的时空占据类型,并基于时空占据类型从多个障碍物中选择目标障碍物,基于目标障碍物对应的时空占据类型规划车辆的纵向运动参数,避免了基于多个障碍物中每个障碍物规划车辆的纵向运动参数,有利于降低计算量。
Description
本申请要求于2020年6月16日提交中国专利局、申请号为202010545611.X、申请名称为“车辆纵向运动参数的规划方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及自动驾驶领域,并且更具体地,涉及车辆纵向运动参数的规划方法和装置。
人工智能(Artificial Intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。人工智能领域的研究包括机器人,自然语言处理,计算机视觉,决策与推理,人机交互,推荐与搜索,AI基础理论等。
自动驾驶是人工智能领域的一种主流应用,自动驾驶技术依靠计算机视觉、雷达、监控装置和全球定位系统等协同合作,让机动车辆可以在不需要人类主动操作下,实现自动驾驶。自动驾驶的车辆使用各种计算系统来帮助将乘客从一个位置运输到另一位置。一些自动驾驶车辆可能要求来自操作者(诸如,领航员、驾驶员、或者乘客)的一些初始输入或者连续输入。自动驾驶车辆准许操作者从手动模操作式切换到自东驾驶模式或者介于两者之间的模式。由于自动驾驶技术无需人类来驾驶机动车辆,所以理论上能够有效避免人类的驾驶失误,减少交通事故的发生,且能够提高公路的运输效率。因此,自动驾驶技术越来越受到重视。对于自动驾驶的汽车而言,路径规划决策功能是最基础以及最关键的功能之一。路径规划决策功能旨在复杂的交通环境下,依据车辆周围障碍物的动态变化趋势及时地、安全地调整车辆的行驶策略。其中,基于对车辆周围的障碍物预测的结果,在纵向运动参数上做合理的决策规划是自动驾驶技术上方向的重难点问题。
传统的方案中,控制器会先获取当前时刻自动驾驶车辆的当前状态,以及预设范围内全部障碍物的时空预测数据;对于全部障碍物中的每个障碍物,控制器确定每个障碍物与自动驾驶车辆的冲突时空,并根据每个障碍物的冲突时空确定自动驾驶车辆的计划行驶轨迹;然后,控制器从每个目标物对应的计划行驶轨迹中确定一个目标纵向运动参数,并根据确定的目标纵向运动参数向自动驾驶车辆的控制设备发送控制指令。
然而,上述确定目标速度曲线的过程中,控制器需要基于预设范围内全部障碍物的时空预测数据,确定自动驾驶车辆标纵向运动参数,或者说,控制器需要遍历预设范围内全部障碍物的时空预测数据,并针对每个障碍物计算自动驾驶车辆的目标纵向运动参数,导 致计算纵向运动参数所需的计算量非常大。
发明内容
本申请提供一种车辆纵向运动参数的规划方法和装置,以降低计算车辆的纵向运动参数所需的计算量。
第一方面,提供了一种车辆的纵向运动参数的规划方法,包括:检测位于所述车辆的预设范围内的多个障碍物;获取所述多个障碍物中每个障碍物的时空域,以及所述车辆的时空域,所述每个障碍物的时空域用于指示所述每个障碍物的位置空间随时间的变化,所述车辆的时空域用于指示所述车辆占据的位置空间随时间的变化;基于所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的占据时间,确定所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型,所述占据时间用于指示所述多个障碍物中每个障碍物的位置空间占据所述车辆的至少部分位置时的时间段;基于所述时空占据类型从所述多个障碍物中选择目标障碍物;基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数。
在本申请实施例中,基于多个障碍物中每个障碍物的时空域和车辆的时空域之间的占据时间,确定障碍物和车辆之间的时空占据类型,并基于时空占据类型从多个障碍物中选择目标障碍物,基于目标障碍物对应的数控占据类型规划车辆的纵向运动参数,避免了现有技术中基于多个障碍物中每个障碍物规划车辆的纵向运动参数,有利于降低规划车辆的纵向参数所需的计算量。
需要说明的是,本申请实施例中纵向可以理解为与车辆的轴向相同的方向,因此,纵向运动参数可以理解为在车辆的轴向的方向上的运动参数。
在一种可能的实现方式中,若所述占据时间为以采集时刻为起始时刻的一段时间,且所述占据时间对应的时间段长于第一时间段阈值,所述采集时刻为采集所述多个障碍物的运动状态的时刻,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为当前长期占据类型;若所述占据时间对应的时间段短于第二时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为暂时占据类型;若所述占据时间为晚于所述采集时刻的一段时间,且所述占据时间对应的时间段长于第三时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为未来长期占据类型;其中,所述第一时间段阈值大于或等于所述第二时间段阈值,所述第三时间段阈值大于或等于所述第二时间段阈值。
在本申请实施例中,基于障碍物的时空域和车辆的时空域之间的占据时间,将时空占据类型划分为当前长期占据类型、暂时占据类型以及未来长期占据类型,以便于针对每类占据类型对应的障碍物的时空域规划车辆的纵向运动参数,有利于提高规划车辆的纵向运动参数的合理性。
在一种可能的实现方式中,若所述时空占据类型为暂时占据类型,所述目标障碍物与所述车辆之间的距离短于其他障碍物与所述车辆之间的距离,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物,或者,所述目标障碍物与所述车辆之间的碰撞时间TTC短于所述其他障碍物与所述车辆的TTC。
在本申请实施例中,将多个障碍物中与车辆距离最短的障碍物,或者碰撞时间最短的 障碍物作为暂时占据类型对应的目标障碍物,以选出暂时占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,若所述时空占据类型为当前长期占据类型,所述目标障碍物与所述车辆的之间的纵向距离小于所述多个障碍物中其他障碍物与所述车辆之间的纵向距离。
需要说明的是,本申请实施例中纵向可以理解为与车辆的轴向相同的方向,因此,纵向距离可以理解为在车辆的轴向的方向上障碍物和车辆之间的距离。
在本申请实施例中,将多个障碍物中与车辆的之间的纵向距离最短的障碍物作为当前长期占据类型对应的目标障碍物,以选出当前长期占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,若所述时空占据类型为未来长期占据类型,所述目标障碍物与所述车辆所行驶的车道之间的跨越车道边线的时间TTL短于其他障碍物与所述车道之间的TTL,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物。
在本申请实施例中,将多个障碍物中与车辆所行驶的车道之间的TTL最短的障碍物作为未来长期占据类型对应的目标障碍物,以选出未来长期占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,所述基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数,包括:基于所述目标障碍物对应时空占据类型,确定所述目标障碍物的时空占据类型对应的第一约束条件,所述第一约束条件用于约束所述车辆的纵向运动参数,以避免所述目标障碍物与所述车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,所述其他时空占据类型为所述多个时空占据类型中除所述时空占据类型之外的时空占据类型,所述第二约束条件用于约束所述车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与所述车辆发生碰撞;基于所述第一约束条件以及所述第二约束条件,规划所述车辆的纵向运动参数。
在本申请实施例中,将目标障碍物的时空占据类型对应的第一约束条件,与其他时空占据类型对应的第二约束条件一起作为计算车辆的纵向运动参数的约束条件,有利于提高规划车辆的纵向运动参数的安全性。
第二方面,提供一种车辆的纵向运动参数的规划装置,包括:检测单元,用于检测位于所述车辆的预设范围内的多个障碍物;获取单元,用于获取所述多个障碍物中每个障碍物的时空域,以及所述车辆的时空域,所述每个障碍物的时空域用于指示所述每个障碍物的位置空间随时间的变化,所述车辆的时空域用于指示所述车辆占据的位置空间随时间的变化;处理单元,用于基于所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的占据时间,确定所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型,所述占据时间用于指示所述多个障碍物中每个障碍物的位置空间占据所述车辆的至少部分位置时的时间段;所述处理单元,还用于基于所述时空占据类型从所述多个障碍物中选择目标障碍物;所述处理单元,还用于基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数。
在本申请实施例中,基于多个障碍物中每个障碍物的时空域和车辆的时空域之间的占据时间,确定障碍物和车辆之间的时空占据类型,并基于时空占据类型从多个障碍物中选 择目标障碍物,基于目标障碍物对应的数控占据类型规划车辆的纵向运动参数,避免了现有技术中基于多个障碍物中每个障碍物规划车辆的纵向运动参数,有利于降低规划车辆的纵向参数所需的计算量。
在一种可能的实现方式中,若所述占据时间为以采集时刻为起始时刻的一段时间,且所述占据时间对应的时间段长于第一时间段阈值,所述采集时刻为采集所述多个障碍物的运动状态的时刻,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为当前长期占据类型;若所述占据时间对应的时间段短于第二时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为暂时占据类型;若所述占据时间为晚于所述采集时刻的一段时间,且所述占据时间对应的时间段长于第三时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为未来长期占据类型;其中,所述第一时间段阈值大于或等于所述第二时间段阈值,所述第三时间段阈值大于或等于所述第二时间段阈值。
在本申请实施例中,基于障碍物的时空域和车辆的时空域之间的占据时间,将时空占据类型划分为当前长期占据类型、暂时占据类型以及未来长期占据类型,以便于针对每类占据类型对应的障碍物的时空域规划车辆的纵向运动参数,有利于提高规划车辆的纵向运动参数的合理性。
在一种可能的实现方式中,若所述时空占据类型为暂时占据类型,所述目标障碍物与所述车辆之间的距离短于其他障碍物与所述车辆之间的距离,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物,或者,所述目标障碍物与所述车辆之间的碰撞时间TTC短于所述其他障碍物与所述车辆的TTC。
在本申请实施例中,将多个障碍物中与车辆距离最短的障碍物,或者碰撞时间最短的障碍物作为暂时占据类型对应的目标障碍物,以选出暂时占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,若所述时空占据类型为当前长期占据类型,所述目标障碍物与所述车辆的之间的纵向距离小于所述多个障碍物中其他障碍物与所述车辆之间的纵向距离。
在本申请实施例中,将多个障碍物中与车辆的之间的纵向距离最短的障碍物作为当前长期占据类型对应的目标障碍物,以选出当前长期占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,若所述时空占据类型为未来长期占据类型,所述目标障碍物与所述车辆所行驶的车道之间的跨越车道边线的时间TTL短于其他障碍物与所述车道之间的TTL,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物。
在本申请实施例中,将多个障碍物中与车辆所行驶的车道之间的TTL最短的障碍物作为未来长期占据类型对应的目标障碍物,以选出未来长期占据类型中对车辆的纵向运动参数影响较大的障碍物,有利于提高规划车辆的纵向运动参数的安全性。
在一种可能的实现方式中,所述处理单元,还用于:基于所述目标障碍物对应时空占据类型,确定所述目标障碍物的时空占据类型对应的第一约束条件,所述第一约束条件用于约束所述车辆的纵向运动参数,以避免所述目标障碍物与所述车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,所述其他时空占据类型为所述多个时空占据类型中除 所述时空占据类型之外的时空占据类型,所述第二约束条件用于约束所述车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与所述车辆发生碰撞;基于所述第一约束条件以及所述第二约束条件,规划所述车辆的纵向运动参数。
在本申请实施例中,将目标障碍物的时空占据类型对应的第一约束条件,与其他时空占据类型对应的第二约束条件一起作为计算车辆的纵向运动参数的约束条件,有利于提高规划车辆的纵向运动参数的安全性。
第三方面,提供一种控制器,所述控制器可以是具有控制功能的各种设备,也可以是具有控制功能的芯片。所述控制器可以包括检测单元、处理单元和获取单元,所述处理单元可以是处理器,所述检测单元、所述获取单元可以是输入/输出接口;所述控制器还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述控制器执行第一方面中的方法。所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述控制器内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供一种计算设备,所述计算设备可以是具有计算功能的各种设备,也可以是具有计算功能的芯片。所述计算设备可以包括检测单元、处理单元和获取单元,所述处理单元可以是处理器,所述检测单元、所述获取单元可以是输入/输出接口;所述计算设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述计算设备执行第一方面中的方法。所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述计算设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请对此不作具体限定。
第六方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
图1示出了适用于本申请实施例的适用的通信系统的示意图。
图2是本申请实施例的适用的自动驾驶系统的示意图。
图3是本申请实施例的车辆的纵向运动参数的规划方法的流程图。
图4是本申请实施例的车辆的时空域与多个障碍物的时空域之间的时空占据类型。
图5是本申请实施例的计算车辆的纵向运动参数的方法的示意图。
图6是本申请另一实施例的计算车辆的纵向运动参数的方法的示意图。
图7是本申请另一实施例的计算车辆的纵向运动参数的方法的示意图。
图8是本申请实施例的车辆的纵向运动参数的规划方法的流程图。
图9是本申请实施例中未来长期占据类型的障碍物的在时空域坐标系中的投影。
图10是本申请实施例中暂时占据类型的障碍物的在时空域坐标系中的投影。
图11是本申请实施例中当前长期占据类型的障碍物的在时空域坐标系中的投影。
图12是本申请实施例中的目标障碍物和车辆的位移-时间图。
图13是本申请实施例的车辆的纵向运动参数的规划装置的示意图。
图14是本申请另一实施例的控制器的示意性框图。
下面将结合附图,对本申请中的技术方案进行描述。为了便于理解,下文先结合图1介绍本申请实施例适用的场景。
图1是本申请实施例提供的车辆100的功能框图。在一个实施例中,将车辆100配置为完全或部分地自动驾驶模式。例如,车辆100可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于自动驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100可包括各种子系统,例如行进系统102、传感器系统104、控制系统106、一个或多个外围设备108以及电源110、计算机系统112和用户接口116。可选地,车辆100可包括更多或更少的子系统,并且每个子系统可包括多个元件。另外,车辆100的每个子系统和元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,行进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
能量源119的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源119也可以为车辆100的其他系统提供能量。
传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮121的一个或多个轴。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是全球定位系统(global positioning system,GPS)系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位系统122可用于估计车辆100的地理位置。IMU 124用于基于惯性加速度来感测车辆100的位置和朝向变化。在一个实施例中,IMU 124可以是加速度计和陀螺仪的组合。
雷达126可利用无线电信号来感测车辆100的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达126还可用于感测物体的速度和/或前进方向。
激光测距仪128可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪128可包括一个或多个激光源、激光扫描器以及一个或多个检测器,以及其他系统组件。
相机130可用于捕捉车辆100的周边环境的多个图像。相机130可以是静态相机或视频相机。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、计算机视觉系统140、路线控制系统142以及障碍规避系统144。
转向系统132可操作来调整车辆100的前进方向。例如在一个实施例中可以为方向盘系统。
油门134用于控制引擎118的操作速度并进而控制车辆100的速度。
制动单元136用于控制车辆100减速。制动单元136可使用摩擦力来减慢车轮121。在其他实施例中,制动单元136可将车轮121的动能转换为电流。制动单元136也可采取其他形式来减慢车轮121转速从而控制车辆100的速度。
计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别车辆100周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(structure from motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统140可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统142用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自传感器、GPS 122和一个或多个预定地图的数据以为车辆100确定行驶路线。
障碍规避系统144用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。
当然,在一个实例中,控制系统106可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可包括无线通信系统146、车载电脑148、麦克风150和/或扬声器152。
在一些实施例中,外围设备108提供车辆100的用户与用户接口116交互手段。例如,车载电脑148可向车辆100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统146可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统146可使用3G蜂窝通信,例如码分多址(code division multiple access, CDMA)、全球移动通信系统(Global System for Mobile Communications,GSM)/GPRS,或者第四代(fourth generation,4G)通信,例如LTE。或者第五代(5th-Generation,5G)通信。无线通信系统146可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统146可利用红外链路、蓝牙或紫蜂(ZigBee)与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统146可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源110可向车辆100的各种组件提供电力。在一个实施例中,电源110可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。在一些实施例中,电源110和能量源119可一起实现,例如一些全电动车中那样。
车辆100的部分或所有功能受计算机系统112控制。计算机系统112可包括至少一个处理器113,处理器113执行存储在例如数据存储器114这样的非暂态计算机可读介质中的指令115。计算机系统112还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
处理器113可以是任何常规的处理器,诸如商业可获得的中央处理器(central processing unit,CPU)。替选地,该处理器可以是诸如专用集成电路(application specific integrated circuit,ASIC)或其它基于硬件的处理器的专用设备。尽管图1功能性地图示了处理器、存储器、和在相同块中的计算机110的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。例如,存储器可以是硬盘驱动器或位于不同于计算机110的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器114可包含指令115(例如,程序逻辑),指令115可被处理器113执行来执行车辆100的各种功能,包括以上描述的那些功能。存储器114也可包含额外的指令,包括向行进系统102、传感器系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,存储器114还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统112使用。
在一些实施例中,上述处理器113还可以执行本申请实施例的车辆纵向运动参数的规划方案,以帮助车辆规划纵向运动参数,其中具体的纵向运动参数规划方法可以参照下文中图3的介绍,为了简洁,在此不再赘述。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。可选地,用户接口 116可包括在外围设备108的集合内的一个或多个输入/输出设备,例如无线通信系统146、车载电脑148、麦克风150和扬声器152。
计算机系统112可基于从各种子系统(例如,行进系统102、传感器系统104和控制系统106)以及从用户接口116接收的输入来控制车辆100的功能。例如,计算机系统112可利用来自控制系统106的输入以便控制转向单元132来避免由传感器系统104和障碍规避系统144检测到的障碍物。在一些实施例中,计算机系统112可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器114可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图1不应理解为对本发明实施例的限制。
在道路行进的自动驾驶汽车,如上面的车辆100,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶车辆100或者与自动驾驶车辆100相关联的计算设备(如图1的计算机系统112、计算机视觉系统140、存储器114)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到稳定状态(例如,加速、减速、或者停止)。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、船、飞机、直升飞机、割草机、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车、火车、和手推车等,本发明实施例不做特别的限定。
上文结合图1介绍了本申请实施例适用的场景,下文结合图2介绍执行本申请实施例的适用的自动驾驶系统。
图2是本申请实施例的适用的自动驾驶系统的示意图,计算机系统101包括处理器103,处理器103和系统总线105耦合。处理器103可以是一个或者多个处理器,其中每个处理器都可以包括一个或多个处理器核。显示适配器(video adapter)107,显示适配器可以驱动显示器109,显示器109和系统总线105耦合。系统总线105通过总线桥111和输入/输出(input/output,I/O)总线113耦合。I/O接口115和I/O总线耦合。I/O接口115和多种I/O设备进行通信,比如输入设备117(如:键盘,鼠标,触摸屏等),多媒体盘 (media tray)121,(例如,CD-ROM,多媒体接口等)。收发器123(可以发送和/或接受无线电通信信号),摄像头155(可以捕捉景田和动态数字视频图像)和外部USB接口125。其中,可选地,和I/O接口115相连接的接口可以是USB接口。
其中,处理器103可以是任何传统处理器,包括精简指令集计算(Reduced Instruction Set Computing,RISC)处理器、复杂指令集计算(Complex Instruction Set Computer,CISC)处理器或上述的组合。可选地,处理器可以是诸如专用集成电路ASIC的专用装置。可选地,处理器103可以是神经网络处理器或者是神经网络处理器和上述传统处理器的组合。
可选地,在本文所述的各种实施例中,计算机系统101可位于远离自动驾驶车辆的地方,并且可与自动驾驶车辆0无线通信。在其它方面,本文所述的一些过程在设置在自动驾驶车辆内的处理器上执行,其它由远程处理器执行,包括采取执行单个操纵所需的动作。
计算机101可以通过网络接口129和软件部署服务器149通信。网络接口129是硬件网络接口,比如,网卡。网络127可以是外部网络,比如因特网,也可以是内部网络,比如以太网或者虚拟私人网络(Virtual Private Network,VPN)。可选地,网络127还可以是无线网络,比如Wi-Fi网络,蜂窝网络等。
硬盘驱动接口和系统总线105耦合。硬件驱动接口和硬盘驱动器相连接。系统内存135和系统总线105耦合。运行在系统内存135的数据可以包括计算机101的操作系统137和应用程序143。
操作系统包括外壳(shell)139和内核(kernel)141。外壳139是介于使用者和操作系统之内核间的一个接口。外壳139是操作系统最外面的一层。外壳139管理使用者与操作系统之间的交互:等待使用者的输入,向操作系统解释使用者的输入,并且处理各种各样的操作系统的输出结果。
内核141由操作系统中用于管理存储器、文件、外设和系统资源的那些部分组成。直接与硬件交互,操作系统内核通常运行进程,并提供进程间的通信,提供CPU时间片管理、中断、内存管理、IO管理等等。
应用程序143包括控制汽车自动驾驶相关的程序,比如,管理自动驾驶的汽车和路上障碍物交互的程序,控制自动驾驶汽车路线或者速度的程序,控制自动驾驶汽车和路上其他自动驾驶汽车交互的程序。应用程序143也存在于软件部署服务器(deploying server)149的系统上。在一个实施例中,在需要执行应用程序147时,计算机系统101可以从软件部署服务器(deploying server)149下载应用程序143。
在一些实施例中,上述应用程序还可以包括用于本申请实施例提供的车辆的纵向运动参数规划的方案对应的应用程序,其中本申请实施例的车辆的纵向运动参数的规划方案将在下文中具体介绍,为了简洁在此不再赘述。
传感器153和计算机系统101关联。传感器153用于探测计算机101周围的环境。举例来说,传感器153可以探测动物,汽车,障碍物和人行横道等,进一步传感器还可以探测上述动物,汽车,障碍物和人行横道等物体周围的环境,比如:动物周围的环境,例如,动物周围出现的其他动物,天气条件,周围环境的光亮度等。可选地,如果计算机101位于自动驾驶的汽车上,传感器可以是摄像头,红外线感应器,化学检测器,麦克风等。
目前,传统的方案在对车辆的纵向运动参数进行规划的过程中,控制器(例如,图1所示的控制系统106)会先获取当前时刻自动驾驶车辆的当前状态,以及预设范围内全部 障碍物的时空预测数据;对于全部障碍物中的每个障碍物,控制器确定每个障碍物与自动驾驶车辆的冲突时空,并根据每个障碍物的冲突时空确定自动驾驶车辆的计划行驶轨迹;然后,控制器从每个目标物对应的计划行驶轨迹中确定一个目标纵向运动参数,并根据确定的目标纵向运动参数向自动驾驶车辆的控制设备发送控制指令。然而,上述确定目标速度曲线的过程中,控制器需要基于预设范围内全部障碍物的时空预测数据,确定自动驾驶车辆标纵向运动参数,或者说,控制器需要遍历预设范围内全部障碍物的时空预测数据,并针对每个障碍物计算自动驾驶车辆的目标纵向运动参数,导致计算纵向运动参数所需的计算量非常大。
因此,为了避免上述问题,本申请实施例提供了一种新的规划车辆的纵向速度的方案,即基于车辆周围预设范围内的多个障碍物的时空域与车辆时空域之间的占据关系,确定多个障碍物中每个障碍物对应的时空占据类型,并基于时空占据类型从多个障碍物中选择目标障碍物,然后基于选择的目标障碍物对应的时空占据类型以及所述目标障碍物的运动状态,规划所述车辆的纵向运动参数。如此,控制器不再需要遍历多个障碍物中每个障碍物的时空域以对车辆的纵向速度进行规划,有利于减少速度纵向规划曲线所需的计算量。
需要说明的是,本申请中涉及的车辆的“纵向运动参数”中的“纵向”可以理解为与车辆的行驶方向相同的方向。
下文结合图3介绍本申请实施例的车辆的纵向运动参数的规划方法。图3是本申请实施例的车辆的纵向运动参数的规划方法的流程图。图3所示的方法可以由控制器(例如图1所示的控制系统106)执行。图3所示的方法包括步骤310至步骤350。
310,检测位于车辆所在的预设范围内的多个障碍物。
上述障碍物可以理解为会对车辆的行驶过程造成一定阻碍的物体,例如,可以是横穿上述车辆所在的车道的路人或其他车辆,又例如,还可以是位于上述车辆前方的其他车辆等,本申请实施例对此不作具体限定。
确定障碍物的方式有很多种,本申请实施例对此不作限定。例如,可以通过车载传感器感知多个障碍物,其中传感器可以是图1所示的相机130。又例如,可以由云端告知车辆预设范围内的多个障碍物。
上述预设范围可以由厂商指定的,或者由用户设置,本申请对此不作具体限定。
需要说明的是,上述确定多个障碍物的过程中,还可以同时确定多个障碍物的运动状态,以便后续确定多个障碍物中每个障碍物的时空域。当然,也可以在确定多个障碍物后的一段时间后再采集多个障碍物的运动状态,本申请实施例对此不作限定。
320,获取多个障碍物中每个障碍物的时空域以及车辆的时空域,每个障碍物的时空域用于指示每个障碍物的位置空间随时间的变化,车辆的时空域用于指示车辆占据的位置空间随时间的变化。
可选地,可以基于多个障碍物中每个障碍物的运动状态,预测多个障碍物中每个障碍物的时空域。
上述每个障碍物的运动状态可以包括每个障碍物的当前位置、当前速度、当前加速度、方向、行为意图以及预设时间内的运动轨迹等。其中,行为意图可以包括车道横穿意图、车道并线意图、车道顺行意图、借道绕行意图等。
上述每个障碍物的时空域可以通过预先建立的坐标系表示,具体而言,每个障碍物的 时空域可以通过不同时刻每个障碍物在该坐标下的坐标位置表示。
需要说明的是,上述坐标系可以世界坐标系或者道路坐标系,本申请实施例对此不作限定。其中,世界坐标系是指相对于地面固定的坐标系。世界坐标系的定义方式有多种,例如可以将世界坐标系的原点定义在目标物体的初始位置,世界坐标系的x轴的正方向沿目标物体的运动方向,当目标物体运动后,原点的位置和x轴正方向固定在地面不随目标运动。又例如,还可以将世界坐标系的原点定义在大地的某一位置,世界坐标系的x轴指向北。道路坐标系可以以道路路径的起点为原点,沿着道路的方向为S轴正方向,与S轴正方向垂直向左的为道路坐标系L轴正方向。
可选地,可以基于车辆的运动状态,预测车辆的时空域。
上述车辆的运动状态可以包括车辆的当前位置、当前速度、当前加速度、方向、行为意图以及预设时间内的运动轨迹等。
上述车辆的时空域可以通过预先建立的坐标系表示,具体而言,车辆的时空域可以通过不同时刻车辆在该坐标下的坐标位置表示。应理解,上述表示车辆的时空域的坐标可以与上述表示障碍物的坐标相同。其建立方式可以参见上文的介绍,为了简洁,在此不再赘述。
330,基于多个障碍物中每个障碍物的时空域与车辆的时空域之间的占据时间,确定多个障碍物中每个障碍物的时空域与车辆的时空域之间的时空占据类型,占据时间用于指示多个障碍物中每个障碍物的位置空间占据车辆的至少部分位置时的时间段。
占据时间用于指示多个障碍物中每个障碍物的位置空间占据车辆的至少部分位置时的时间段,可以理解为占据时间包括多个障碍物中每个障碍物的时空域与车辆的时空域之间重叠的时间和/或重叠的时间的长短。
可选地,上述时空占据类型为预设的多种时空占据类型中的一种,多个时空占据类型包括以下时空占据类型中的部分或全部:当前长期占据类型(current longterm occupy,CO)、暂时占据类型(temporary occupy,TO)或未来长期占据类型(future longterm occupy,FO)。
若占据时间为以采集时刻为起始时刻的一段时间,且占据时间对应的时间段长于第一时间段阈值,采集时刻为采集所述多个障碍物的运动状态的时刻,则多个障碍物中每个障碍物的时空域与车辆的时空域之间的时空占据类型为当前长期占据类型。
若占据时间对应的时间段短于第二时间段阈值,则多个障碍物中每个障碍物的时空域与车辆的时空域之间的时空占据类型为暂时占据类型。
需要说明的是,对于暂时占据类型而言,上述占据时间可以是以采集时刻为起点的一段时间,也可以是晚于采集时刻的一段时间,本申请实施例对此不作具体限定。
若占据时间为晚于采集时刻的一段时间,且占据时间对应的时间段长于第三时间段阈值,则多个障碍物中每个障碍物的时空域与车辆的时空域之间的时空占据类型为未来长期占据类型。
需要说明的是,上述第一时间段阈值长于或等于第二时间段阈值,且第三时间段阈值长于或等于第二时间段阈值。也就是说,当前长期占据类型对应的占据时间长于暂时占据类型对应的占据时间,未来长期占据类型对应的占据时间长于暂时占据类型对应的占据时间。
上述第一时间段阈值等于第二时间段阈值时,第一时间段阈值和第二时间段阈值可以 理解为同一个时间段阈值。相应地,上述第三时间段阈值等于第二时间段阈值时,第三时间段阈值和第二时间段阈值可以理解为同一个时间段阈值。
上述第一时间段阈值和第三时间段阈值可以是同一个时间段阈值,也可以是不同的时间段阈值,本申请实施例对此不作限定。
需要说明的是,上述第一时间段阈值、第二时间段阈值、第三时间段阈值可以由厂商设置。
为了便于理解,下文结合图4所示的驾驶场景,介绍不同占据时间与时空占据类型之间的映射关系。下文以图4所示的6个障碍物(即420至470)为例进行说明。
假设本车410沿着车道1行驶,且当前位置如图4所示。其中,障碍物1 420为在车道2中行驶的车辆,且障碍物1准备从车道2并入本车410所在的车道1,障碍物1 420的行为意图为车道并线。障碍物2 430为准备横穿车道1的行人,障碍物2 430的行为意图为车道横穿。障碍物3 440为准备横穿车道1的行人,障碍物3 440的行为意图为车道横穿。障碍物4至6 450、460、470为沿着车道1行驶的车辆,障碍物4至6 450、460、470的行为意图为车道顺行。
因此,对于障碍物1 420而言,采集障碍物1 420的运动状态时,障碍物1 420还未并入车道1,基于障碍物1 420的运动状态预测障碍物1 420的时空域可以得到障碍物1 420开始并入车道1至障碍物1 420完全并入车道1并沿着车道1行驶的这段过程中对应的位置空间会占据本车410沿着车道1行驶的位置空间,因此,障碍物1 420从开始并入车道1至完全并入车道1这段位置空间变化对应的时间段即为上文中的占据时间。这种情况下,该占据时间对应的时间段的长于第三时间段阈值,且该占据时间为晚于采集时刻的一段时间。综上,基于上述占据时间可以确定障碍物1 420的时空域与本车410的时空域之间的占据关系属于未来长期占据类型。
对于障碍物2 430而言,基于障碍物2 430的运动状态预测障碍物2 430的时空域可以得到,当障碍物2 430从车道1的最近的边界(即图4中的左边界)运动至车道1最远的边界(即图4中的右边界)时,障碍物2 430会占据本车410位置空间,则障碍物2 430从车道1的最近的边界(即图4中的左边界)运动至车道1最远的边界(即图4中的右边界)这段位置空间对应的时间段即为上文中的占据时间。这种情况下,占据时间对应的时间段的长度短于第二时间段阈值。综上,基于上述占据时间可以确定障碍物2 430的时空域与本车410的时空域之间的占据关系属于暂时占据类型。
对于障碍物3 440而言,基于障碍物3 440的运动状态预测障碍物3 440的时空域可以得到,当障碍物3 440从车道1的最近的边界(即图4中的左边界)运动至车道1最远的边界(即图4中的右边界)时,障碍物3 440会占据本车410位置空间,则障碍物3 440从车道1的最近的边界(即图4中的左边界)运动至车道1最远的边界(即图4中的右边界)这段位置空间对应的时间段即为上文中的占据时间。这种情况下,占据时间对应的时间段的长度短于第二时间段阈值。综上,基于上述占据时间可以确定上述障碍物3 440的时空域与本车410的时空域之间的占据关系属于上述暂时占据类型。
对于障碍物4 450而言,采集障碍物4 450的运动状态时,障碍物4 450已经在车道1中行驶,基于障碍物4 450的运动状态预测障碍物4 450的时空域可以得到,障碍物4 450沿着车道1行驶的这段过程对应位置空间会占据本车410沿着车道1行驶的位置空间,因 此,障碍物4 450沿着车道1行驶的这段位置空间变化对应的时间段即为上文中的占据时间。这种情况下,占据时间对应的时间段的长度长于第三时间段阈值,且占据时间是以采集时刻为起点的一段时间。综上,基于上述占据时间可以确定障碍物4 450的时空域与本车410的时空域的占据类型为当前长期占据类型。
对于障碍物5 460而言,采集障碍物5 460的运动状态时,障碍物5 460已经在车道1中行驶,基于障碍物5 460的运动状态预测障碍物5 460的时空域可以得到,障碍物5 460沿着车道1行驶的这段过程对应位置空间会占据本车410沿着车道1行驶的位置空间,因此,障碍物5 460沿着车道1行驶的这段位置空间变化对应的时间段即为上文中的占据时间。这种情况下,占据时间对应的时间段的长度长于第三时间段阈值,且占据时间是以采集时刻为起点的一段时间。综上,基于上述占据时间可以确定障碍物5 460的时空域与本车410的时空域的占据类型为当前长期占据类型。
对于障碍物6 470而言,采集障碍物6 470的运动状态时,障碍物6 470已经在车道1中行驶,基于障碍物6 470的运动状态预测障碍物6 470的时空域可以得到,障碍物6 470沿着车道1行驶的这段过程对应位置空间会占据本车410沿着车道1行驶的位置空间,因此,障碍物6 470沿着车道1行驶的这段位置空间变化对应的时间段即为上文中的占据时间。这种情况下,占据时间对应的时间段的长度长于第三时间段阈值,且占据时间是以采集时刻为起点的一段时间。综上,基于上述占据时间可以确定障碍物6 470的时空域与本车410的时空域的占据类型为当前长期占据类型。
340,基于时空占据类型从多个障碍物中选择目标障碍物。下文针对上述3种时空占据类型对应的障碍物选择条件分别介绍。
对于暂时占据类型而言,障碍物与车辆的纵向距离和/或障碍物与车辆之间的碰撞时间(time to collision,TTC)对车辆的纵向速度影响较大,因此,可以基于障碍物与车辆的纵向距离和/或障碍物与车辆之间的TTC来选择目标障碍物。
即,若时空占据类型为暂时占据类型,目标障碍物与车辆之间的距离短于其他障碍物与车辆之间的距离,其他障碍物为多个障碍物中除目标障碍物之外的障碍物,和/或,目标障碍物与车辆之间的TTC短于其他障碍物与车辆的TTC。
上述目标障碍物可以是多个障碍物中的一个或多个,本申请实施例对此不作限定。当然,如果希望进一步筛选目标障碍物的数量,以减少路径规划所需的计算量,则可以从多个障碍物中选择与车辆之间的距离最短的障碍物作为目标障碍物,和/或,从多个障碍物中选择与车辆之间的TTC最短的障碍物作为目标障碍物。
对于当前长期占据类型而言,障碍物与车辆之间的纵向距离为影响车辆的纵向速度规划的重要因素。因此,可以基于属于当前长期占据类型的障碍物与车辆之间的纵向距离,选取目标障碍物。
即,目标障碍物与车辆的之间的纵向距离小于多个障碍物中其他障碍物与车辆之间的纵向距离,其中其他障碍物为上述多个障碍物中除目标障碍物之外的障碍物。
上述纵向可以理解为与车辆的轴向相同的方向,或者车辆的行驶方向,或者车辆的航向。
上述目标障碍物可以理解为多个障碍物中的一个或多个障碍物,本申请实施例对此不作限定。当然,如果希望进一步筛选目标障碍物的数量,以减少路径规划所需的计算量, 则可以从多个障碍物中选择与车辆之间的纵向距离最短的障碍物作为目标障碍物。
例如,图4所示的场景中,障碍物4 450与车辆410之间的纵向距离小于障碍物5 440与车辆410之间的纵向距离,且障碍物4 450与车辆410之间的纵向距离小于障碍物6 450与车辆410之间的纵向距离。因此,可以将障碍物4 450作为当前长期占据类型对应的目标障碍物。对于未来长期占据类型而言,障碍物与车辆之间的跨越车道边线的时间(time to line,TTL)对车辆的纵向速度影响较大,因此,可以基于障碍物与车辆的之间的TTL来选择目标障碍物。
即,若时空占据类型为未来长期占据类型,目标障碍物与车辆之间的TTL短于其他障碍物与车辆之间的TTL,其他障碍物为多个障碍物中除目标障碍物之外的障碍物。
上述目标障碍物可以理解为多个障碍物中的一个或多个障碍物,本申请实施例对此不作限定。当然,如果希望进一步筛选目标障碍物的数量,以减少路径规划所需的计算量,则可以从多个障碍物中选择与车辆之间的TTL最短的障碍物作为目标障碍物。
350,基于目标障碍物对应的时空占据类型,规划车辆的纵向运动参数。其中,车辆的纵向运动参数可以包括在某一时刻车辆需要行驶到坐标系中的位置,以及车辆在某一时刻需要达到的加速度、和速度。
上述车辆的纵向运动参数的格式可以定义为v
speed goal=(s,t,v,a),车辆的纵向运动参数v
speed goal表示车辆在时刻t需要在坐标系中移动的纵向位移为s,且车辆的在时刻t需要达到的速度为v,加速度为a。
需要说明的是,对车辆纵向运动参数进行规划的方式有很多种,下文以基于不同时空占据类型对应的约束条件求解车辆的纵向运动参数。下文先介绍不同时空占据类型对应的约束条件。
对于当前长期占据类型的目标障碍物而言,可以设定规划时间段内目标障碍物在坐标系中的纵向位置大于车辆在该坐标系中的纵向位置为约束条件。
假设当前长期占据类型对应的目标障碍物为障碍物i,障碍物i为多个障碍物中与车辆之间的纵向距离最近障碍物,则当前长期占据类型的障碍物i对车辆的纵向运动参数的规划形成的约束条件为:s(t)<s
i,t∈[0,T],且s
i=v
it+s
i0,(t∈[0,T]),其中v
i表示障碍物i的速度,s
i0表示初始时刻(又称采集时刻)障碍物i的在坐标系中的纵向位置,T表示规划时间段。
对于未来长期占据类型的目标障碍物而言,可以以规划时间段内目标障碍物在坐标系中的纵向位置大于车辆在该坐标系中的纵向位置为约束条件,其中,规划时间以目标障碍物开始占据第二时间段车辆的时空域的时刻为起始时刻,对于车道并线的场景而言,上述目标障碍物开始占据第二时间段车辆的时空域,可以理解为目标障碍物并入车辆所行驶的车道的并入时刻。
假设未来长期占据类型对应的目标障碍物为障碍物j,障碍物j为多个障碍物中与车辆所行驶的车道之间的TTL最短的障碍物,则未来长期占据类型的障碍物j对车辆的纵向运动参数的规划形成的约束条件为:
且s
j=v
j(t-t
j)+s
0,(t∈[t
j,T]),其中,v
j表示障碍物j的速度,s
j0表示初始时刻(又称采集时刻)障碍物j在坐标系中的 纵向位置,T表示规划时间段,t
j表示障碍物j并入车辆所行驶的车道的并入时刻,s
0表示并入时刻障碍物j在坐标系中的纵向位置。
需要说明的是,上述障碍物j为多个障碍物中与车辆所行驶的车道之间的TTL最短的障碍物,或者说,障碍物j为多个障碍物在坐标系中与车辆之间纵向距离最近的障碍物。
对于暂时占据类型的目标障碍物而言,可以设定三种约束条件用于规划车辆的纵向运动参数,约束条件一:规划时间段内车辆在坐标系中的纵向位置小于障碍物k在该坐标系中的纵向位置。约束条件二:规划时间段内车辆在坐标系中的纵向位置大于障碍物k在该坐标系中的纵向位置,且车辆在车辆在坐标系中的纵向位置小于障碍物l在坐标系中的纵向位置。约束条件三:规划时间段内车辆在坐标系中的纵向位置大于障碍物l在坐标系中的纵向位置。其中,障碍物k为坐标系中多个障碍物与车辆的纵向距离最小的障碍物。障碍物l为多个障碍物与车辆的TTC最短的障碍物。
假设暂时占据类型对应的目标障碍物为障碍物q以及障碍物p,障碍物q为多个障碍物在坐标系中与车辆之间的纵向距离最近的障碍物,障碍物p为多个障碍物中与车辆之间的TTC最短的障碍物,则暂时占据类型的障碍物q以及障碍物p对车辆的纵向运动参数的规划形成的约束条件为:
且s
q=v
qt+s
q0,(t∈[t
q_in,t
q_out]),s
p=v
pt+s
p0,(t∈[t
p_in,t
p_out]),其中,v
q表示障碍物q沿障碍物q的行驶路线的纵向运动参数,v
p表示障碍物p沿障碍物p的行驶路线的纵向运动参数,s
q0表示初始时刻(又称采集时刻)障碍物q在坐标系中的纵向位置,s
p0表示初始时刻(又称采集时刻)障碍物p在坐标系中的纵向位置,t
q_in表示障碍物q进入车辆所行驶的车道的时刻,t
q_out表示障碍物q退出车辆所行驶的车道的时刻,t
p_in表示障碍物p进入车辆所行驶的车道的时刻,t
p_out表示障碍物p退出车辆所行驶的车道的时刻。
上文介绍了基于3中不同的时空占据类型的约束条件的设置方法,下文结合上文介绍的约束条件描述对车辆的纵向运动参数进行规划的方法。在对车辆的纵向运动参数进行规划的过程中,为了提高规划结果的准确性,可以在计算其中一类时空占据类型的规划结果时,综合其他两类的时空占据类型对应的约束条件,以规划车辆的纵向运动参数。
上述方法还包括:基于目标障碍物对应的时空占据类型以及目标障碍物的运动状态,规划车辆的纵向运动参数,包括:基于目标障碍物对应时空占据类型以及目标障碍物的运动状态,确定目标障碍物的时空占据类型对应的第一约束条件,第一约束条件用于约束车辆的纵向运动参数,以避免目标障碍物与车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,其他时空占据类型为多个时空占据类型中除时空占据类型之外的时空占据类型,第二约束条件用于约束车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与车辆发生碰撞;基于第一约束条件以及第二约束条件,计算车辆的纵向运动参数。
上述目标障碍物对应的时空占据类型可以是上文中的3种时空占据类型中的一种,此时,其他时空占据类型可以是上述3种时空占据类型中除目标障碍物对应的时空占据类型 之外的时空占据类型。例如,目标障碍物对应的时空占据类型为未来长期占据类型时,上述其他时空占据类型可以包括暂时占据类型以及当前长期占据类型。又例如,目标障碍物对应的时空占据类型为当前长期占据类型时,上述其他时空占据类型可以包括暂时占据类型。
下文以目标障碍物对应的时空占据类型为当前长期占据类型,其他时空占据类型包括未来长期占据类型以及暂时占据类型为例,介绍计算车辆的纵向运动参数的方法。需要说明的是,下文主要介绍计算车辆的纵向运动参数的方法,其中涉及的各种市疾控占据类型的约束条件可以参见上文介绍,为了简洁,在此不再赘述。
图5是本申请实施例的计算车辆的纵向运动参数的方法的示意图。图5所示的方法包括步骤510至步骤550。
510,确定目标障碍物对应的时空占据类型为未来长期占据类型。
530,确定当前长期占据类型对应的约束条件:s(t)<s
i,t∈[0,T],且s
i=v
it+s
i0,(t∈[0,T])。
550,基于上述3种占据类型对应的约束条件,计算车辆的最小纵向运动参数v
speed goal。
图6是本申请另一实施例的计算车辆的纵向运动参数的方法的示意图。图6所示的方法包括步骤610至步骤650。
610,确定目标障碍物对应的时空占据类型为当前长期占据类型。
620,确定当前长期占据类型对应的约束条件:s(t)<s
i,t∈[0,T],且s
i=v
it+s
i0,(t∈[0,T])。
650,基于上述3种占据类型对应的约束条件,计算车辆的最小纵向运动参数v
speed goal。
图7是本申请另一实施例的计算车辆的纵向运动参数的方法的示意图。图7所示的方法包括步骤710至步骤750。
710,确定目标障碍物对应的时空占据类型为暂时占据类型。
740,确定当前长期占据类型对应的约束条件:s(t)<s
i,t∈[0,T],且s
i=v
it+s
i0,(t∈[0,T])。
750,基于上述3种占据类型对应的约束条件,计算车辆的最小纵向运动参数v
speed goal。
当然,在本申请实施例中还可以分别基于上述3种时空占据类型对应的约束条件,规划车辆的纵向运动参数。本申请实施例对此不作限定。
为了提高车辆行驶的安全性,还可以对车辆的纵向运动参数进行验证。具体地,将针对上述3种时空占据类型计算的车辆的纵向运动参数进行碰撞风险校验,保证最终输出车辆的纵向运动参数的安全性。这个碰撞风险的校验可以是基于位移-时间图(ST图)中计算求解的,即将所有目标障碍物投影到ST图中,若从车辆的当前位置到达上述纵向运动参数对应的位置的过程中,不会与所有目标障碍物发生碰撞,则可以认为纵向运动参数对应的位置是安全的。
下文结合图4所示的场景,介绍本申请实施例的车辆的纵向运动参数的规划方法。图8是本申请实施例的车辆的纵向运动参数的规划方法的流程图。图8所示的方法包括步骤810至步骤850。
810,获取车辆410的运动状态以及多个障碍物的运动状态。
需要说明的是,运动状态对应物体(车辆或障碍物)的在坐标系中的当前位置用“Position”表示,坐标系中X轴对应车辆的行驶方向,坐标系中Y轴与车辆的行驶方向垂直。物体的当前速度可以用“Velocity”表示,物体的当前加速度可以用“Acceleration”表示,物体的航向可以用“Heading”表示。
因此,车辆410的运动状态O
ego可以表示为O
ego={Position:(x
ego,y
ego),Velocity:V
ego,Acceleration:a
ego,Heading:θ
ego}。可选地,上述车辆410的运动状态还可以包括车辆410横向行为状态(lateral action):车道保持/变道,和/或,车辆410目的车道所对应的行驶路线Path,其中行驶路线可以表示为Path={(x
1,y
1),(x
2,y
2),…,(x
n-1,y
n-1),(x
n,y
n)}。
障碍物1(object1)420的运动状态O
object1可以表示为O
object1={Position:(x
object1,y
object1),Velocity:V
object1,Acceleration:a
object1,Heading:θ
object1,Intent:I
object1,PredictTrajectory:Tr
object1}。其中,“Predict Trajectory”表示障碍物1 420的预测轨迹,“Intent”表示障碍物1 420的运动意图。
障碍物2(object2)430的运动状态O
object2可以表示为O
object2={Position:(x
object2,y
object2),Velocity:V
object2,Acceleration:a
object2,Heading:θ
object2,Intent:I
object2,Predict Trajectory:Tr
object2}。其中,“Predict Trajectory”表示障碍物2 430的预测轨迹,“Intent”表示障碍物2 430的运动意图。
障碍物3(object3)440的运动状态O
object3可以表示为O
object3={Position:(x
object3,y
object3),Velocity:V
object3,Acceleration:a
object3,Heading:θ
object3,Intent:I
object3,Predict Trajectory:Tr
object3}。其中,“Predict Trajectory”表示障碍物3 440的预测轨迹,“Intent”表示障碍物3 440的运动意图。
障碍物4(object4)450的运动状态O
object4可以表示为O
object4={Position:(x
object4,y
object4),Velocity:V
object4,Acceleration:a
object4,Heading:θ
object4,Intent:I
object4,Predict Trajectory:Tr
object4}。其中,“Predict Trajectory”表示障碍物4 450的预测轨迹,“Intent”表示障碍物4 450的运动意图。
障碍物5(object5)460的运动状态O
object5可以表示为O
object5={Position:(x
object5,y
object5),Velocity:V
object5,Acceleration:a
object5,Heading:θ
object5,Intent:I
object5,Predict Trajectory:Tr
object5}。其中,“Predict Trajectory”表示障碍物5 460的预测轨迹,“Intent”表示障碍物5 460的运动意图。
障碍物6(object6)470的运动状态O
object6可以表示为O
object6={Position:(x
object6,y
object6),Velocity:V
object6,Acceleration:a
object6,Heading:θ
object6,Intent:I
object6,Predict Trajectory:Tr
object6}。其中,“Predict Trajectory”表示障碍物6 470的预测轨迹,“Intent”表示障碍物6 470的运动意图。
820,基于多个障碍物的运动状态确定多个障碍物中每个障碍物对应的时空占据类型。具体地,确定每个障碍物对应的时空占据类型的过程中,可以细化为以下两种情况。
情况1:如果障碍物的运动状态中包含障碍物的意图信息,则可以直接基于障碍物的意图信息确定障碍物对应的时空占据类型。
可选地,上述障碍物意图可以定义为:{车道横穿意图、车道并线意图、车道顺行意图、借道绕行意图}。其中车道横穿意图、借道绕行意图可以对应为暂时时空占据类型;车道并线意图可以对应为未来长期时空占据类型;车道顺行意图可以对应为当前长期时空占据类型。
因此,I
object1=车道并线意图,障碍物1 420归属为未来长期时空占据类型;I
object2=车道横穿意图,障碍物2 430归属为暂时占据类型;I
object3=车道横穿意图,障碍物3 440归属为暂时占据类型;I
object4=车道顺行意图,障碍物4 450归属为当前长期占据类型;I
object5=车道顺行意图,则障碍物5 460归属为当前长期占据类型;I
object6=车道顺行意图,障碍物6 470归属为当前长期占据类型。
情况2:如果障碍物的运动状态中包含轨迹预测信息,而不包含行为意图信息,此时,可以依靠空间投影计算来确定每个障碍物对应的时空占据类型,具体投影计算可以参照图 9至图11所示。需要说明的是,图9至图11所示的坐标系中,S轴的正方向表示车辆沿着道路行驶的方向,L轴的正方向表示与S轴垂直的方向,t轴表示时间。S
0、L
0以及t
0分别为S轴、L轴以及t轴的坐标原点。
(Tr
object1,Path)→object1归属为FO类型;
(Tr
object2,Path)→object2归属为TO类型;
(Tr
object3,Path)→object3归属为TO类型;
(Tr
object4,Path)→object4归属为CO类型;
(Tr
object5,Path)→object5归属为CO类型;
(Tr
object6,Path)→object6归属为CO类型;
基于上述情况1或情况2,可以得到属于未来长期占据类型的障碍物列表为FO
list={object1},属于暂时占据类型的障碍物列表为TO
list={object2,object3},属于当前长期占据类型的障碍物列表为CO
list={object4,object5,object6}。
830,基于每种时空占据类型中障碍物的运动状态,确定每种时空占据类型对应的约束条件。
1)基于属于当前长期占据类型的障碍物的运动状态,确定当前长期占据类型对应的约束条件。
属于当前长期占据类型的障碍物为CO
list={object4,object5,object6}。以车辆410行驶路线为参考线构建道路坐标系得到障碍物4 450在该坐标系下的坐标为(s
object4_0,l
object4_0),障碍物5 450在该坐标系下的坐标为(s
object5_0,l
object5_0),障碍物6 470在该坐标系下的坐标为(s
object6_0,l
object6_0)。由于s
object4_0>s
object5_0>s
object6_0,因此,CO类型对应的约束条件的设定只需考虑障碍物4和障碍物5,即CO类型对应的目标障碍物包括障碍物4和障碍物5。
规划时间段内障碍物4在道路坐标系中的位置可以表示s
object4=v
object4*t+s
object4_0,(t∈[0,T]),其中,s
object4_0表示采集时刻障碍物4在道路坐标系中的初始位置,v
object4表示采集时刻障碍物4的速度,T表示规划时间。规划时间段内障碍物5在道路坐标系中的位置可以表示s
object5=v
object5*t+s
object5_0,(t∈[0,T]),其中,s
object5_0表示采集时刻障碍物5在道路坐标系中的初始位置,v
object5表示采集时刻障碍物5的速度,T表示规划时间。
需要说明的是,上述CO类型对应的目标障碍物可以是一个也可以是两个,本申请实施例对此不作具体限定。当然,如果考虑两个目标障碍物的运动状态有利于提高为车辆规划纵向运动参数的安全性。例如,跟车场景中仅仅考虑前车,而不考虑位于前车前的车辆,则可能存在位于前车前的车辆出现紧急情况时,无法及时处理本车行驶速度的问题。
2)基于属于未来长期占据类型的障碍物的运动状态,确定未来长期占据类型对应的约束条件。
属于未来长期占据类型的障碍物FO
list={object1},且障碍物1为多个障碍物中与车辆所在车道的TTL时间最短的障碍物,因此障碍物1可以作为未来长期占据类型对应的目标障 碍物。以车辆410行驶路线为参考线构建道路坐标系得到障碍物1在该坐标系下的坐标为(s
object1_0,l
object1_0)。根据障碍物1的速度,在道路坐标系下进行分解得到障碍物1的横向速度分量v
object1_lateral,以及障碍物1距离车道1右边线的横向距离为
其中,l
object1_0表示坐标系中障碍物1在采集时刻的纵向位置,W表示车道1的路宽。则坐标系中障碍物1的并线切入点的纵向位置为s
object1=s
object1_0+v
object1*ttl
object1,且
其中ttl
object1表示障碍物1跨越车道1的边线的时间。
3)基于属于暂时占据类型的障碍物的运动状态,确定暂时占据类型对应的约束条件。
属于暂时占据类型的障碍物TO
list={object2,object3},其中,障碍物2为道路坐标系中与车辆之间的纵向距离最近的障碍物,障碍物3为多个障碍物中与车辆的TTC最短的障碍物,因此,障碍物2和障碍物3可以作为暂时占据类型对应的目标障碍物。以车辆410行驶路线为参考线构建道路坐标系得到障碍物2的坐标为(s
object2_0,l
object2_0),障碍物3的坐标为(s
object3_0,l
object3_0)。其中,道路坐标系中障碍物2的纵向位移为s
object2=v
object2_long*t+s
object2_0,(t∈[t
object2_in,t
object2_out]),其中,v
object2_long表示障碍物2沿障碍物2的行驶路线的纵向速度,s
object2_0表示采集时刻障碍物2在道路坐标系中的纵向位置,t
object2_in表示障碍物2进入车道1的时刻,t
object2_out表示障碍物2退出车道1的时刻。道路坐标系中障碍物3的纵向位移为s
object3=v
object3_long*t+s
object3_0,(t∈[t
object3_in,t
object3_out]),其中,v
object3_long表示障碍物3沿障碍物3的行驶路线的纵向速度,s
object3_0表示采集时刻障碍物3在道路坐标系中的纵向位置,t
object3_in表示障碍物3进入车道1的时刻,t
object3_out表示障碍物3退出车道1的时刻。
结合上述两个障碍物的运动状态,可以得到TO类型的约束条件为:
840,基于上述约束条件,计算车辆的纵向运动参数。
1)基于CO类型对应的目标障碍物的运动状态,计算车辆的纵向运动参数。其中,CO类型对应的目标障碍物为障碍物4和障碍物5。
计算针对object4车辆的纵向运动参数为:
speedgoal
object4={s
object4-t
HWT*v
object4,t
object4,v
object4,a
object4},且
计算出object5对应的纵向速度目标点为:
speedgoal
object5={s
object5-t
HWT*v
object5,t
object5,v
object5,a
object5},且
然后,判断上述两个车辆的纵向运动参数在时空上是否矛盾,其判断条件为s
object4-t
HWT*v
object4<s
object5-t
HWT*v
object5且t
object4<t
object5,若该判断条件不满足,则两个纵向运动参数中s最小的纵向运动参数;若条件满足,则保留两个纵向运动参数。
最后,在ST(位移-时间)空间中计算保留下的纵向运动参数是否满足FO类型对应的约束条件以及TO类型对应的约束条件。若满足FO类型对应的约束条件以及TO类型对应的约束条件,则将保留下的纵向运动参数作为基于CO类型的障碍物规划的纵向运动参数speedgoal
co。若不满足FO类型对应的约束条件和/或TO类型对应的约束条件,则取保留下的纵向运动参数、基于FO类型的障碍物计算的纵向运动参数、基于TO类型的障碍物计算的纵向运动参数三者中s最小的作为输出。
2)基于FO类型对应的目标障碍物的运动状态,计算车辆的纵向运动参数。其中,FO类型对应的目标障碍物为障碍物1。
对于障碍物1存在两种模式的纵向运动参数:一种激进型纵向运动参数,一种保守型纵向运动参数。
其中,激进型纵向运动参数:speedgoal
object1_r={s
object1+C,ttl
object1,v
ego,a
ego},(C>Length
ego),其中Length
ego表示车辆410长度,C为常数,a
ego为正数。
保守型纵向运动参数:speedgoal
object1_r={s
object1-C,ttl
object1,v
object1,0},(C>Length
ego),其中Length
ego表示车辆410长度,C为常数。
最后,在ST(位移-时间)空间中计算上述的两种类型的纵向运动参数是否满足CO类型对应的约束条件以及TO类型对应的约束条件。若两种类型纵向运动参数均满足上述约束条件,则将激进型纵向运动参数作为FO类型的纵向运动参数;若只有一个类型满足,则将满足上述约束条件的纵向运动参数作为FO类型的纵向运动参数。若不满足CO类型对 应的约束条件和/或FO类型对应的约束条件,则取保守型纵向运动参数、CO类型的纵向运动参数、TO类型的纵向运动参数三者中s最小点对应的纵向运动参数作为输出。
3)基于TO类型对应的目标障碍物的运动状态,计算车辆的纵向运动参数。其中,TO类型对应的目标障碍物为障碍物2和障碍物3。
针对障碍物2规划的纵向运动参数为:speedgoal
object2={s
object2-C,t
object2_in,v
object2_long,0},(C>Length
ego),C为常数,Length
ego表示车辆410的长度。
针对障碍物3规划的纵向运动参数为:speedgoal
object3={s
object3-C,t
object3_in,v
object3_long,0},(C>Length
ego),C为常数,Length
ego表示车辆410的长度。
然后判断这两个纵向运动参数在时空上是否矛盾,判断条件为s
object2-C<s
object3-C且t
object2_in<t
object3_in,若不满足判断条件,则在两个纵向运动参数中取s最小的那个纵向运动参数;若满足判断条件,则保留两个纵向运动参数。
最后,在ST(位移-时间)空间中计算保留下的纵向运动参数是否满足FO类型的约束条件和CO类型对应的约束条件。若都满足则作为TO类型的纵向运动参数。否则,取保留下的纵向运动参数、FO类型对应的纵向运动参数、CO类型的纵向运动参数三者中最小的s对应的纵向运动参数作为输出。
850,对上述输出的纵向运动参数进行安全校验计算。
对上述模块的计算结果进行碰撞风险校验,保证最终输出结果的安全性。这个碰撞风险的校验可以基于ST图(位移-时间图)中计算求解的,将所有目标障碍物投影到ST图中,判断是否可以从车辆410位置到达这些规划的纵向运动参数位置,而且同时不与所有目标障碍物发生碰撞。如图12所示,只要纵向运动参数落在虚线围成的区间内,则认为是安全的,通过校验。
将通过校验的纵向运动参数作为状态约束,构建目标函数s(t)=at
3+bt
2+ct+d,maxS(t),S(t)的边界条件满足如下条件约束:s.t.S”(t)∈[a
min,a
max],进而求解出满足各个边界条件的最优目标函数的相关系数,从而得到最终的纵向运动参数:v(t)=s′(t)=3at
2+2bt+c。
需要说明的是,本实施例中是以三次多项式构建目标优化函数,但不仅限于三阶多项式。
上文结合图1至图12介绍了本申请实施例的车辆的纵向运动参数的规划方法,下文结合图13至图14介绍本申请实施例的装置。应理解,需要说明的是,图13至图14所示的装置可以实现上述方法中各个步骤,为了简洁,在此不再赘述。
图13是本申请实施例的车辆的纵向运动参数的规划装置的示意图。图13所示的装置1300包括:检测单元1310、获取单元1320和处理单元1320。
检测单元1310,用于检测位于所述车辆的预设范围内的多个障碍物;
获取单元1320,用于获取所述多个障碍物中每个障碍物的时空域,以及所述车辆的时空域,所述每个障碍物的时空域用于指示所述每个障碍物的位置空间随时间的变化,所述车辆的时空域用于指示所述车辆占据的位置空间随时间的变化;
处理单元1330,用于基于所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的占据时间,确定所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间 的时空占据类型,所述占据时间用于指示所述多个障碍物中每个障碍物的位置空间占据所述车辆的至少部分位置时的时间段;
所述处理单元1330,还用于基于所述时空占据类型从所述多个障碍物中选择目标障碍物;
所述处理单元1330,还用于基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数。
可选地,作为一个实施例,若所述占据时间为以采集时刻为起始时刻的一段时间,且所述占据时间对应的时间段长于第一时间段阈值,所述采集时刻为采集所述多个障碍物的运动状态的时刻,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为当前长期占据类型;
若所述占据时间对应的时间段短于第二时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为暂时占据类型;
若所述占据时间为晚于所述采集时刻的一段时间,且所述占据时间对应的时间段长于第三时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为未来长期占据类型;
其中,所述第一时间段阈值大于或等于所述第二时间段阈值,所述第三时间段阈值大于或等于所述第二时间段阈值。
可选地,作为一个实施例,若所述时空占据类型为暂时占据类型,所述目标障碍物与所述车辆之间的距离短于其他障碍物与所述车辆之间的距离,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物,或者,所述目标障碍物与所述车辆之间的碰撞时间TTC短于所述其他障碍物与所述车辆的TTC。
可选地,作为一个实施例,若所述时空占据类型为当前长期占据类型,所述目标障碍物与所述车辆的之间的纵向距离小于所述多个障碍物中其他障碍物与所述车辆之间的纵向距离。
可选地,作为一个实施例,若所述时空占据类型为未来长期占据类型,所述目标障碍物与所述车辆所行驶的车道之间的跨越车道边线的时间TTL短于其他障碍物与所述车道之间的TTL,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物。
可选地,作为一个实施例,所述处理单元1330,还用于:基于所述目标障碍物对应时空占据类型,确定所述目标障碍物的时空占据类型对应的第一约束条件,所述第一约束条件用于约束所述车辆的纵向运动参数,以避免所述目标障碍物与所述车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,所述其他时空占据类型为所述多个时空占据类型中除所述时空占据类型之外的时空占据类型,所述第二约束条件用于约束所述车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与所述车辆发生碰撞;基于所述第一约束条件以及所述第二约束条件,规划所述车辆的纵向运动参数。
在可选的实施例中,所述检测单元1310、所述获取单元1320可以为通信接口1430,所述处理单元1330可以为处理器1420,所述控制器还可以包括存储器1410,具体如图14所示。
图14是本申请另一实施例的控制器的示意性框图。图14所示的控制器1400可以包括:存储器1410、处理器1420、以及通信接口1430。其中,存储器1410、处理器1420, 通信接口1430通过内部连接通路相连,该存储器1410用于存储指令,该处理器1420用于执行该存储器1420存储的指令,以控制输入/输出接口1430接收/发送第二信道模型的至少部分参数。可选地,存储器1410既可以和处理器1420通过接口耦合,也可以和处理器1420集成在一起。
需要说明的是,上述通信接口1430使用例如但不限于收发器一类的收发装置,来实现通信设备1400与其他设备或通信网络之间的通信。上述通信接口1430还可以包括输入/输出接口(input/output interface)。
在实现过程中,上述方法的各步骤可以通过处理器1420中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1410,处理器1420读取存储器1410中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (14)
- 一种车辆的纵向运动参数的规划方法,其特征在于,包括:检测位于所述车辆的预设范围内的多个障碍物;获取所述多个障碍物中每个障碍物的时空域,以及所述车辆的时空域,所述每个障碍物的时空域用于指示所述每个障碍物的位置空间随时间的变化,所述车辆的时空域用于指示所述车辆的位置空间随时间的变化;基于所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的占据时间,确定所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型,所述占据时间用于指示所述多个障碍物中每个障碍物的位置空间占据所述车辆的至少部分位置空间时的时间段;基于所述时空占据类型从所述多个障碍物中选择目标障碍物;基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数。
- 如权利要求1所述的方法,其特征在于,若所述占据时间为以采集时刻为起始时刻的一段时间,且所述占据时间对应的时间段长于第一时间段阈值,所述采集时刻为采集所述多个障碍物的运动状态的时刻,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为当前长期占据类型;若所述占据时间对应的时间段短于第二时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为暂时占据类型;若所述占据时间为晚于所述采集时刻的一段时间,且所述占据时间对应的时间段长于第三时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为未来长期占据类型;其中,所述第一时间段阈值大于或等于所述第二时间段阈值,所述第三时间段阈值大于或等于所述第二时间段阈值。
- 如权利要求2所述的方法,其特征在于,若所述时空占据类型为暂时占据类型,所述目标障碍物与所述车辆之间的距离短于其他障碍物与所述车辆之间的距离,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物,或者,所述目标障碍物与所述车辆之间的碰撞时间TTC短于所述其他障碍物与所述车辆的TTC。
- 如权利要求2所述的方法,其特征在于,若所述时空占据类型为当前长期占据类型,所述目标障碍物与所述车辆的之间的纵向距离小于所述多个障碍物中其他障碍物与所述车辆之间的纵向距离。
- 如权利要求2所述的方法,其特征在于,若所述时空占据类型为未来长期占据类型,所述目标障碍物与所述车辆所行驶的车道之间的跨越车道边线的时间TTL短于其他障碍物与所述车道之间的TTL,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物。
- 如权利要求2-5中任一项所述的方法,其特征在于,所述基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数,包括:基于所述目标障碍物对应时空占据类型,确定所述目标障碍物的时空占据类型对应的 第一约束条件,所述第一约束条件用于约束所述车辆的纵向运动参数,以避免所述目标障碍物与所述车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,所述其他时空占据类型为所述多个时空占据类型中除所述时空占据类型之外的时空占据类型,所述第二约束条件用于约束所述车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与所述车辆发生碰撞;基于所述第一约束条件以及所述第二约束条件,规划所述车辆的纵向运动参数。
- 一种车辆的纵向运动参数的规划装置,其特征在于,包括:检测单元,用于检测位于所述车辆的预设范围内的多个障碍物;获取单元,用于获取所述多个障碍物中每个障碍物的时空域,以及所述车辆的时空域,所述每个障碍物的时空域用于指示所述每个障碍物的位置空间随时间的变化,所述车辆的时空域用于指示所述车辆的位置空间随时间的变化;处理单元,用于基于所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的占据时间,确定所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型,所述占据时间用于指示所述多个障碍物中每个障碍物的位置空间占据所述车辆的至少部分位置空间时的时间段;所述处理单元,还用于基于所述时空占据类型从所述多个障碍物中选择目标障碍物;所述处理单元,还用于基于所述目标障碍物对应的时空占据类型,规划所述车辆的纵向运动参数。
- 如权利要求7所述的装置,其特征在于,若所述占据时间为以采集时刻为起始时刻的一段时间,且所述占据时间对应的时间段长于第一时间段阈值,所述采集时刻为采集所述多个障碍物的运动状态的时刻,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为当前长期占据类型;若所述占据时间对应的时间段短于第二时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为暂时占据类型;若所述占据时间为晚于所述采集时刻的一段时间,且所述占据时间对应的时间段长于第三时间段阈值,则所述多个障碍物中每个障碍物的时空域与所述车辆的时空域之间的时空占据类型为未来长期占据类型;其中,所述第一时间段阈值大于或等于所述第二时间段阈值,所述第三时间段阈值大于或等于所述第二时间段阈值。
- 如权利要求8所述的装置,其特征在于,若所述时空占据类型为暂时占据类型,所述目标障碍物与所述车辆之间的距离短于其他障碍物与所述车辆之间的距离,所述其他障碍物为所述多个障碍物中除所述目标障碍物之外的障碍物,或者,所述目标障碍物与所述车辆之间的碰撞时间TTC短于所述其他障碍物与所述车辆的TTC。
- 如权利要求8所述的装置,其特征在于,若所述时空占据类型为当前长期占据类型,所述目标障碍物与所述车辆的之间的纵向距离小于所述多个障碍物中其他障碍物与所述车辆之间的纵向距离。
- 如权利要求8所述的装置,其特征在于,若所述时空占据类型为未来长期占据类型,所述目标障碍物与所述车辆所行驶的车道之间的跨越车道边线的时间TTL短于其他障碍物与所述车道之间的TTL,所述其他障碍物为所述多个障碍物中除所述目标障碍物之 外的障碍物。
- 如权利要求8-11中任一项所述的装置,其特征在于,所述处理单元,还用于:基于所述目标障碍物对应时空占据类型,确定所述目标障碍物的时空占据类型对应的第一约束条件,所述第一约束条件用于约束所述车辆的纵向运动参数,以避免所述目标障碍物与所述车辆发生碰撞;获取其他时空占据类型对应的第二约束条件,所述其他时空占据类型为所述多个时空占据类型中除所述时空占据类型之外的时空占据类型,所述第二约束条件用于约束所述车辆的纵向运动参数,以避免其他时空占据类型对应的障碍物与所述车辆发生碰撞;基于所述第一约束条件以及所述第二约束条件,规划所述车辆的纵向运动参数。
- 一种控制器,其特征在于,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行如权利要求1-6中任一项所述的方法。
- 一种计算机可读介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要1-6中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21824973.8A EP4159564A4 (en) | 2020-06-16 | 2021-04-29 | METHOD AND DEVICE FOR PLANNING VEHICLE LONGITUDINAL MOVEMENT PARAMETERS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010545611.XA CN113799794B (zh) | 2020-06-16 | 2020-06-16 | 车辆纵向运动参数的规划方法和装置 |
CN202010545611.X | 2020-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021254000A1 true WO2021254000A1 (zh) | 2021-12-23 |
Family
ID=78944266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/090824 WO2021254000A1 (zh) | 2020-06-16 | 2021-04-29 | 车辆纵向运动参数的规划方法和装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4159564A4 (zh) |
CN (1) | CN113799794B (zh) |
WO (1) | WO2021254000A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115384552A (zh) * | 2022-09-29 | 2022-11-25 | 阿波罗智能技术(北京)有限公司 | 自动驾驶车辆的控制方法、装置和自动驾驶车辆 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114475587B (zh) * | 2022-01-30 | 2024-04-30 | 重庆长安汽车股份有限公司 | 引入目标行为及碰撞概率的风险评估算法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101395647A (zh) * | 2006-02-28 | 2009-03-25 | 丰田自动车株式会社 | 物体路线预测方法、装置和程序以及自动操作系统 |
CN108693878A (zh) * | 2017-04-06 | 2018-10-23 | 丰田自动车株式会社 | 前进路线设定装置以及前进路线设定方法 |
KR101982298B1 (ko) * | 2016-11-24 | 2019-05-24 | 고려대학교 산학협력단 | 차량에서의 돌발적으로 출현한 이동 객체를 탐지하는 방법 및 장치 |
CN110356394A (zh) * | 2019-07-31 | 2019-10-22 | 重庆长安汽车股份有限公司 | 一种车辆主动避让障碍物的方法、装置及汽车 |
US20200156631A1 (en) * | 2018-11-15 | 2020-05-21 | Automotive Research & Testing Center | Method for planning a trajectory for a self-driving vehicle |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2950114B1 (en) * | 2014-05-30 | 2020-03-04 | Honda Research Institute Europe GmbH | Method for assisting a driver in driving a vehicle, a driver assistance system, a computer software program product and vehicle |
US10286913B2 (en) * | 2016-06-23 | 2019-05-14 | Honda Motor Co., Ltd. | System and method for merge assist using vehicular communication |
WO2018191117A1 (en) * | 2017-04-12 | 2018-10-18 | Hrl Laboratories, Llc | Cognitive behavior prediction system for autonomous systems |
US10710579B2 (en) * | 2017-06-01 | 2020-07-14 | Waymo Llc | Collision prediction system |
JP6524144B2 (ja) * | 2017-06-02 | 2019-06-05 | 本田技研工業株式会社 | 車両制御システム及び方法、並びに走行支援サーバ |
US10579063B2 (en) * | 2017-07-21 | 2020-03-03 | Uatc, Llc | Machine learning for predicting locations of objects perceived by autonomous vehicles |
JP2019038314A (ja) * | 2017-08-23 | 2019-03-14 | トヨタ自動車株式会社 | 車両運転支援装置 |
WO2019152888A1 (en) * | 2018-02-02 | 2019-08-08 | Nvidia Corporation | Safety procedure analysis for obstacle avoidance in autonomous vehicle |
CN108875998A (zh) * | 2018-04-20 | 2018-11-23 | 北京智行者科技有限公司 | 一种自动驾驶车辆规划方法和系统 |
KR20200075915A (ko) * | 2018-12-07 | 2020-06-29 | 현대자동차주식회사 | 차량의 주행 제어 장치 및 그 방법 |
-
2020
- 2020-06-16 CN CN202010545611.XA patent/CN113799794B/zh active Active
-
2021
- 2021-04-29 EP EP21824973.8A patent/EP4159564A4/en active Pending
- 2021-04-29 WO PCT/CN2021/090824 patent/WO2021254000A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101395647A (zh) * | 2006-02-28 | 2009-03-25 | 丰田自动车株式会社 | 物体路线预测方法、装置和程序以及自动操作系统 |
KR101982298B1 (ko) * | 2016-11-24 | 2019-05-24 | 고려대학교 산학협력단 | 차량에서의 돌발적으로 출현한 이동 객체를 탐지하는 방법 및 장치 |
CN108693878A (zh) * | 2017-04-06 | 2018-10-23 | 丰田自动车株式会社 | 前进路线设定装置以及前进路线设定方法 |
US20200156631A1 (en) * | 2018-11-15 | 2020-05-21 | Automotive Research & Testing Center | Method for planning a trajectory for a self-driving vehicle |
CN110356394A (zh) * | 2019-07-31 | 2019-10-22 | 重庆长安汽车股份有限公司 | 一种车辆主动避让障碍物的方法、装置及汽车 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4159564A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115384552A (zh) * | 2022-09-29 | 2022-11-25 | 阿波罗智能技术(北京)有限公司 | 自动驾驶车辆的控制方法、装置和自动驾驶车辆 |
Also Published As
Publication number | Publication date |
---|---|
EP4159564A1 (en) | 2023-04-05 |
EP4159564A4 (en) | 2023-12-06 |
CN113799794B (zh) | 2023-05-09 |
CN113799794A (zh) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12061088B2 (en) | Obstacle avoidance method and apparatus | |
US20220379920A1 (en) | Trajectory planning method and apparatus | |
CN110379193B (zh) | 自动驾驶车辆的行为规划方法及行为规划装置 | |
WO2021135371A1 (zh) | 一种自动驾驶方法、相关设备及计算机可读存储介质 | |
WO2021102955A1 (zh) | 车辆的路径规划方法以及车辆的路径规划装置 | |
WO2021196879A1 (zh) | 车辆驾驶行为的识别方法以及识别装置 | |
WO2021000800A1 (zh) | 道路可行驶区域推理方法及装置 | |
CN113968216B (zh) | 一种车辆碰撞检测方法、装置及计算机可读存储介质 | |
WO2021212379A1 (zh) | 车道线检测方法及装置 | |
EP3965004B1 (en) | Automatic lane changing method and device, and storage medium | |
WO2021147748A1 (zh) | 一种自动驾驶方法及相关设备 | |
WO2021244207A1 (zh) | 训练驾驶行为决策模型的方法及装置 | |
WO2021189210A1 (zh) | 一种车辆换道方法及相关设备 | |
CN113156927A (zh) | 自动驾驶车辆的安全控制方法及安全控制装置 | |
EP4207134A1 (en) | Parking control method and related device | |
WO2022016901A1 (zh) | 一种规划车辆行驶路线的方法以及智能汽车 | |
WO2022062825A1 (zh) | 车辆的控制方法、装置及车辆 | |
WO2021217447A1 (zh) | 一种车辆通过道闸横杆的方法及装置 | |
WO2021254000A1 (zh) | 车辆纵向运动参数的规划方法和装置 | |
US20230211809A1 (en) | Autonomous driving method and apparatus | |
WO2022127502A1 (zh) | 控制方法和装置 | |
CN112829762A (zh) | 一种车辆行驶速度生成方法以及相关设备 | |
WO2022061702A1 (zh) | 驾驶提醒的方法、装置及系统 | |
US20230256970A1 (en) | Lane Change Track Planning Method and Apparatus | |
WO2023102827A1 (zh) | 一种路径约束方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21824973 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021824973 Country of ref document: EP Effective date: 20221227 |