WO2022021795A1 - 一种电动汽车低温充电控制系统及其控制方法 - Google Patents
一种电动汽车低温充电控制系统及其控制方法 Download PDFInfo
- Publication number
- WO2022021795A1 WO2022021795A1 PCT/CN2020/141461 CN2020141461W WO2022021795A1 WO 2022021795 A1 WO2022021795 A1 WO 2022021795A1 CN 2020141461 W CN2020141461 W CN 2020141461W WO 2022021795 A1 WO2022021795 A1 WO 2022021795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- charging
- temperature
- current
- controller
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the invention belongs to the technical field of battery thermal management of pure electric vehicles, and relates to a low-temperature charging control system for electric vehicles and a control method thereof.
- pure electric vehicles mainly use lithium-ion batteries.
- the optimal operating temperature range for lithium-ion batteries is 25-45°C.
- the charging and discharging performance of lithium batteries is extremely poor.
- the battery can only be charged with a very small current in low temperature conditions, and the charging speed is increased by more than 3-4 times compared with the normal temperature condition. How to quickly charge the battery is a technical problem to be solved urgently by those skilled in the art.
- a PTC heater is usually used to heat the cooling water of the battery thermal management circuit, and the heated coolant reheats the battery to increase the battery temperature, so as to improve the battery performance and shorten the charging time.
- the battery temperature is generally used for pure heating when the battery temperature is lower than the threshold value 1.
- the battery temperature is between the threshold value 1 and the threshold value 2
- the battery is heated while charging, and when the battery temperature is greater than the threshold value 2, the battery is purely charged.
- the BMS sends a charging current request to the off-board charger according to its own demand value, but when the battery is heated, the PTC operation will consume a part of the electric energy, so that the battery cannot be charged according to its own maximum capacity, and due to the above
- the above-mentioned temperature threshold 1 is generally relatively high, and the pure heating time of the battery is longer.
- the PTC consumption current exceeds the battery charging request value due to the low charging request value sent by the battery management system to the off-board charger. , it will cause the battery to be in a discharged state. The combination of the two results in slower battery charging and heating.
- a control method, device and electric vehicle for charging an electric vehicle battery (CN106129507), when the battery of an electric vehicle establishes a charging connection with a charging pile at a first temperature, it is determined whether the battery needs to be heated; if the battery needs to be heated Heating to obtain the first power of the current battery; if the minimum output power of the charging pile is greater than the first power, one or more electric vehicle power-consuming accessories whose total working power is the second power will be started in sequence until the minimum output power of the charging pile not greater than the sum of the first power and the second power; start to heat the battery, or charge and heat the battery; when the battery is heated beyond the second temperature, turn off the heating of the battery and perform pure charging of the battery.
- This method may have the problem that the electric vehicle cannot be charged/heated, and the control is too complicated, and when the electrical accessories are turned off, the charging current of the battery will exceed its maximum allowable charging current, and the battery life and safety will be adversely affected.
- the technical problem to be solved by the present invention is to provide a low-temperature charging control system for electric vehicles that can shorten the low-temperature charging time and is safe and reliable.
- the electric vehicle low-temperature charging control system of the present invention includes: an off-board charger, a power battery, a battery management system, a controller and a PTC heater;
- the off-board charger receives the charging current request from the battery management system, charges the power battery and/or provides power for the PTC heater and the DC-DC converter;
- the battery management system judges whether the battery needs to be charged or heated according to the temperature of the power battery, sends a charging current request to the off-board charger, judges the actual input current value of the power battery, judges the output current value of the off-board charger, and sends a prohibition of PTC heating to the controller. output command;
- the controller is responsible for judging the on-off condition of the PTC heater, and responsible for controlling the on-off of the PTC heater.
- the DC-DC converter is responsible for providing low-voltage power to the controller in the system.
- the control method of the above-mentioned electric vehicle low-temperature charging control system is as follows:
- Step 201 The battery management system judges whether the battery temperature is lower than the set lower limit of the temperature threshold, and if so, sends a heating request to the controller, the controller controls the PTC heater to turn on, and enters the normal heating process of the power battery; otherwise, step 202 is executed, where the temperature The lower limit of the threshold is -20°C ⁇ -15°C;
- Step 202 the battery management system sends a charging request to the controller
- Step 203 The controller determines whether the battery temperature is higher than the upper limit of the temperature threshold. If yes, the battery management system sends a charging request current to the off-board charger and enters the normal charging process of the power battery. Otherwise, step 204 is executed; wherein the upper limit of the temperature threshold is 20-25 °C;
- Step 204 The controller judges whether the heating-while-charging condition is satisfied, that is, when the temperature of the power battery is between the lower temperature threshold and the upper temperature threshold, and the PTC heater is turned on, the controller controls the PTC heater to turn on, and the battery manages
- the system sends the charging request current to the off-board charger, and enters the heating while charging step 205, if it is not satisfied to enter the normal charging process of the power battery;
- the PTC heater's turn-on conditions are: at the same time satisfy the current demand current value of the battery ⁇ the maximum output current value of the off-board charger, the battery water temperature ⁇ X°C and the temperature difference of the battery cell ⁇ Y°C; the water temperature X°C is between 40-55°C. During the time, the temperature difference of the battery cell is 8-15°C;
- step 205 the off-board charger and the PTC heater respectively charge and heat the power battery.
- the controller determines that the PTC heater shutdown condition is met, it sends a request to turn off the PTC heater to the battery management system; the battery management system receives the PTC heater shutdown After requesting or judging that the actual input current value of the battery > its own current demand current value I 1 , the charging request current I is reduced to its own demand current value I 1 ; after the battery management system judges that the output current of the off-board charger ⁇ the current demand current value of the battery, Send the PTC heater shutdown permission command to the controller, the controller controls the PTC to turn off the PTC heater, and the heating ends.
- the PTC shutdown condition is that the battery water temperature is greater than or equal to X°C, and X°C is between 40 and 55°C.
- the PTC shutdown condition is that the temperature difference of the battery cells is greater than or equal to Y°C, and Y°C is between 8 and 15°C.
- the PTC shutdown condition is that the current demanded current value of the battery ⁇ the maximum output current value of the off-board charger.
- the controller may be a vehicle controller (VCU).
- VCU vehicle controller
- the controller may be a BMS controller.
- the controller may be an air conditioner controller.
- the invention can solve the problem that the input current of the power battery is lower than the required value due to the consumption of the power battery charging power by the PTC in the process of heating while charging, so as to achieve the purpose of shortening the low-temperature charging time, and at the same time, it can avoid the heating exit stage and turn off the PTC heating
- the risk of overcharging of the power battery caused by the device ensures the safety of the power battery.
- the invention can ensure that the power battery is charged at a lower temperature, and can be charged according to the maximum capacity of the power battery during the heating process while charging, and can avoid overcharging of the power battery to ensure the safety of the power battery.
- FIG. 1 is a block diagram of the battery charging and heating system.
- Figure 2 is the main flow chart of battery charging.
- Fig. 3 is the control flow chart of heating the battery while charging.
- the electric vehicle low-temperature charging control system of the present invention includes an off-board charger 101 , a battery management system 102 , a power battery 103 , a controller 104 , and a PTC heater 105 ;
- the off-board charger 101 receives the charging current request from the battery management system, and charges the power battery 103 and/or provides power for the PTC heater 105 and the DC-DC converter 106;
- the battery management system 102 judges whether the power battery needs to be charged or heated according to the power battery temperature, sends a charging current request to the off-board charger, judges the actual input current value of the power battery, and sends an instruction to prohibit the output of the PTC heater to the controller;
- the controller 104 is responsible for judging the ON and OFF conditions of the PTC heater, and for controlling the ON and OFF of the PTC heater.
- the DC-DC converter 106 is responsible for providing low-voltage power to the controller in the system.
- the controller may be a vehicle controller (VCU), a BMS controller, or an air conditioner controller.
- VCU vehicle controller
- BMS controller BMS controller
- air conditioner controller an air conditioner controller
- control method of the described electric vehicle low-temperature charging control system is as follows:
- Step 201 The battery management system determines whether the battery temperature is lower than the set lower limit of the temperature threshold. If yes, the controller controls the PTC heater to turn on, and enters the normal heating process of the power battery. Otherwise, step 202 is executed, where the lower limit of the temperature threshold is -20 ⁇ -15°C;
- Step 202 the battery management system determines whether the battery temperature is higher than the upper limit of the temperature threshold, and if so, sends a charging request current to the off-board charger, and enters the normal charging process of the power battery, otherwise, step 203 is performed; wherein the upper limit of the temperature threshold is 20-25°C;
- Step 203 The battery management system judges whether the heating-while-charging condition is satisfied, that is, when the power battery temperature is between the lower temperature threshold and the upper temperature threshold, and the PTC heater on-condition is satisfied, the heating-while-charging condition is satisfied, and the controller is passed the controller. Control the PTC heater to be turned on, and at the same time, the battery management system sends a charging request current to the off-board charger, and enters the heating while charging step 204, which does not satisfy the process of entering the normal charging of the power battery;
- the turning-on conditions of the PTC heater are: at the same time satisfy the current demand current value of the battery ⁇ the maximum output current value of the off-board charger, the battery water temperature ⁇ X°C and the temperature difference of the battery cell ⁇ Y°C; the water temperature X°C is between 40-55°C Between °C, the temperature difference Y °C of the battery cell is 8-15 °C;
- step 204 the off-board charger and the PTC heater respectively charge and heat the power battery.
- the controller determines that the PTC heater shutdown condition is met, that is, when the power battery water temperature is ⁇ X°C, it sends a request to turn off the PTC heater to the battery management system; the battery management system (BMS) receives the PTC heater shutdown request or determines the actual battery input.
- the PTC heater shutdown condition that is, when the power battery water temperature is ⁇ X°C
- control method of the described electric vehicle low-temperature charging control system is as follows:
- Step 201 The battery management system judges whether the battery temperature is lower than the set lower limit of the temperature threshold. If yes, the controller controls the PTC heater to turn on, and enters the normal heating process of the power battery. Otherwise, step 202 is executed, wherein the lower limit of the temperature threshold is -20°C ⁇ -15°C;
- Step 202 the battery management system determines whether the battery temperature is higher than the upper limit of the temperature threshold, and if so, sends a charging request current to the off-board charger, and enters the normal charging process of the power battery, otherwise, step 203 is performed; wherein the upper limit of the temperature threshold is 20-25°C;
- Step 203 The battery management system judges whether the heating-while-charging condition is satisfied, that is, when the power battery temperature is between the lower temperature threshold and the upper temperature threshold, and the PTC heater on-condition is satisfied, the heating-while-charging condition is satisfied, and the controller is passed the controller. Control the PTC heater to be turned on, and at the same time, the battery management system sends a charging request current to the off-board charger, and enters the heating while charging step 204, which does not satisfy the process of entering the normal charging of the power battery;
- step 204 the off-board charger and the PTC heater respectively charge and heat the power battery.
- the charging request current I the current demand current value of the battery I 1 +
- the PTC heater consumes the current I 2 (the current demand current I 1 of the battery will change with the battery temperature and SOC during the battery charging or heating process), the charging request current I no longer increases.
- the controller judges that the PTC heater shutdown condition is met, that is, when the temperature difference of the power battery unit is ⁇ X°C, it sends a request to turn off the PTC heater to the battery management system;
- the battery management system receives the PTC heater shutdown request or judges the battery Actual input current value > own current demand current value I 1 , reduce the charging request current I to its own demand current value I 1 , to prevent the PTC from malfunctioning and stop working unexpectedly, resulting in instantaneous overcharge of the battery;
- BMS judges the output of the off-board charger After the current is less than or equal to the current demand current value of the battery, the PTC heater is sent to the controller to allow the command to turn off the PTC heater, and the controller controls the PTC to turn off the PTC heater, and the heating ends.
- control method of the described electric vehicle low-temperature charging control system is as follows:
- Step 201 The battery management system judges whether the battery temperature is lower than the set lower limit of the temperature threshold, then sends a charging and heating request to the controller, the controller controls the PTC heater to turn on, and enters the normal heating process of the power battery; otherwise, step 202 is performed, where the temperature The lower limit of the threshold is -20°C ⁇ -15°C;
- Step 202 the battery management system sends a charging request to the controller
- Step 203 the controller determines whether the battery temperature is higher than the upper limit of the temperature threshold, and if yes, it enters the normal charging process of the power battery, otherwise, step 204 is performed; wherein the upper limit of the temperature threshold is 20-25°C;
- Step 204 the controller judges whether the condition of heating while charging is satisfied, that is, when the temperature of the power battery is between the lower temperature threshold and the upper temperature threshold, and the current demand current value of the battery is less than the maximum output current value of the off-board charger, the controller Control the PTC heater to turn on, and at the same time, the battery management system sends the charging request current to the off-board charger, and enters the heating while charging step 205, and if not satisfied, it enters the normal charging process of the power battery;
- Step 205 the off-board charger and the PTC heater respectively charge and heat the power battery.
- the controller judges that the PTC heater shutdown condition is met, that is, the current demand current value of the power battery ⁇ the maximum output current value of the off-board charger, it sends a request to turn off the PTC heater to the battery management system; the battery management system (BMS) receives the PTC heater.
- the charging request current I is reduced to its own demand current value I 1 , so as to prevent the PTC from malfunctioning and stopping work unexpectedly, resulting in instantaneous overcharge of the battery;
- the BMS judges that the output current of the off-board charger ⁇ the current demand current value of the battery, it sends the PTC heater shutdown permission command to the controller, and the controller controls the PTC to turn off the PTC heater, and the heating ends.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种电动汽车低温充电控制系统,该系统包括:非车载充电机(101)、动力电池(103)、电池管理系统(102)、控制器(104)和PTC加热器(105);当电池管理系统(102)判断电池(103)温度低于设定的温度阈值下限时进入动力电池(103)正常加热流程,控制器(104)判断电池(103)温度高于温度阈值上限时,电池管理系统(102)向非车载充电机(101)发送充电请求电流,进入动力电池(103)正常充电流程;控制器(104)判断动力电池(103)温度在温度阈值下限和温度阈值上限之间且满足PTC加热器(105)开启条件时,进入边充电边加热流程;该系统能够解决边充电边加热过程中因PTC(105)消耗动力电池(103)充电电能,导致动力电池(103)输入电流低于其需求值的问题,从而达到缩短低温充电时间的目的,同时能够避免动力电池(103)出现过充电,保证动力电池(103)的安全。
Description
本发明属于纯电动汽车电池热管理技术领域,涉及一种电动汽车低温充电控制系统及其控制方法。
随着政府的大力倡导和能源的日趋减少,纯电动汽车发展是大势所趋。目前纯电动汽车主要应用锂离子电池。锂离子电池的最佳工作温度区间为25-45℃。低温情况下,锂电池的充放电性能极差,为保证电池的寿命和安全,低温情况,电池只能以极小的电流进行充电,充电速度较常温情况增加3-4倍以上,因此低温情况如何使电池快速充电是本领域技术人员亟待解决的技术问题。
目前低温情况下,通常采用使用PTC加热器对电池热管理回路冷却水进行加热,加热后的冷却液再加热电池的方式提升电池温度,达到提升电池性能,缩短充电时间的目的。
目前的现有技术一般采用电池温度在低于阈值1的时候进行纯加热,电池在阈值1与阈值2之间时,采用边充电边加热,大于阈值2的时候纯充电。该方法边充电边加热过程中,BMS按照自身需求值向非车载充电机发送充电电流请求,但是电池加热的时候PTC工作会消耗其中一部分电能,导致电池不能按照自身最大能力进行充电,且由于上述原因,上述温度阈值1一般也比较高,电池的纯加热时间较长,若降低温度阈值1,由于电池管理系统向非车载充电机发送的充电请求值较低,PTC消耗电流超过电池充电请求值时,会导致电池处于放电状态。二者共同导致电池充电加热速度较慢。
目前公开的“一种电动汽车电池充电的控制方法、装置和电动汽车”(CN106129507),电动汽车的电池在第一温度下与充电桩建立充电连接时,判断电池是否需要进行加热;若电池需要加热,获取当前电池的第一功率;若充电桩的最小输出功率大于第一功率,则依次启动总工作功率为第二功率的一个或者多个电动汽车耗电附件,直至充电桩的最小输出功率不大于第一功率和第二功率之和;开始对电池进行加热,或者对电池进行充电和加热;电池被加热超过第二温度时,关闭对电池的加热,对电池进行纯充电。该方法可能存在不能对电动汽车进行充电/加热的问题,并且控制过于复杂,且在关闭电附件的时候,会导致电池充电电流超过其最大允许充电电流,对电池寿命和安全产生不良影响。
发明内容
本发明要解决的技术问题是提供一种可缩短低温充电时间并且安全可靠的电动汽车低温充电控制系统。
为了解决上述技术问题,本发明的电动汽车低温充电控制系统包括:非车载充电机、动力电池、电池管理系统、控制器和PTC加热器;
所述非车载充电机接收电池管理系统的充电电流请求,为动力电池充电和/或为PTC加热器、直流-直流转换器提供电能;
所述电池管理系统根据动力电池温度判断电池需要充电还是加热、向非车载充电机发送充电电流请求、判断动力电池实际输入电流值、判断非车载充电机输出电流值、向控制器发送禁止PTC加热器输出指令;
所述控制器负责判断PTC加热器开启关闭条件,负责控制PTC加热器开启关闭。
所述直流-直流转换器负责为系统中控制器提供低压电源。
上述电动汽车低温充电控制系统的控制方法如下:
步骤201、电池管理系统判断电池温度是否低于设定的温度阈值下限,是则向控制器发送加热请求,控制器控制PTC加热器开启,进入动力电池正常加热流程,否则执行步骤202,其中温度阈值下限为-20℃~-15℃;
步骤202、电池管理系统向控制器发送充电请求;
步骤203、控制器判断电池温度是否高于温度阈值上限,是则电池管理系统向非车载充电机发送充电请求电流,进入动力电池正常充电流程,否则执行步骤204;其中温度阈值上限为20~25℃;
步骤204、控制器判断是否满足边充电边加热条件,即当动力电池温度在温度阈值下限和温度阈值上限之间,并且满足PTC加热器开启条件时,控制器控制PTC加热器开启,同时电池管理系统向非车载充电机发送充电请求电流,进入边充电边加热步骤205,不满足进入动力电池正常充电流程;
所述的PTC加热器开启条件为:同时满足电池当前需求电流值<非车载充电机最大输出电流值、电池水温<X℃和电池单体温差<Y℃;水温X℃在40-55℃之间,电池单体温差Y℃在8-15℃;
步骤205、非车载充电机和PTC加热器分别对动力电池进行充电和加热。
进一步的,所述步骤205边充电边加热过程中,电池管理系统首先向非车载充电机发送等于当前自身需求电流值的充电请求电流进行电池充电;充电启动后,控制器控制PTC加热器开始工作,控制器控制PTC加热器输出功率=非车载充电机最大输出功率-电池当前需求功率-DCDC消耗功率-X,且不超过PTC加热器最大输出能力,X为PTC加热器输出功率最大误差,此时若电池管理系统判断动力电池实际输入电流低于其当前自身需求电流值,电池管理系统开始提升其对非车载充电机发送的充电请求电流,当充电请求电流I=电池当前需求电流值I
1+PTC加热器消耗电流I
2时,充电请求电流I不再增加;当控制器判断满足PTC加热器关闭条件时,向电池管理系统发送关闭PTC加热器请求;电池管理系统收到PTC加热器关闭请求后或者判断电池实际输入电流值>自身当前 需求电流值I
1,将充电请求电流I降至自身需求电流值I
1;电池管理系统判断非车载充电机输出电流≤电池当前需求电流值后,向控制器发送PTC加热器关闭允许指令,控制器控制PTC关闭PTC加热器,加热结束。
所述的PTC关闭条件为电池水温≥X℃,X℃在40-55℃之间。
所述的PTC关闭条件为电池单体温差≥Y℃,Y℃在8-15℃之间。
所述的PTC关闭条件为电池当前需求电流值≥非车载充电机最大输出电流值。
所述的控制器可以是整车控制器(VCU)。
所述的控制器可以是BMS控制器。
所述的控制器可以是空调控制器。
本发明能够解决边充电边加热过程中因PTC消耗动力电池充电电能,导致动力电池输入电流低于其需求值的问题,从而达到缩短低温充电时间的目的,同时能够避免加热退出阶段,关闭PTC加热器导致动力电池出现过充的风险,保证动力电池的安全。
本发明能够在保证动力电池在较低温度情况下进行充电,并且边充电边加热过程中,能够按照动力电池最大能力进行充电,同时能够避免动力电池出现过充电,保证动力电池的安全。
图1为电池充电加热系统框图。
图2为电池充电主流程图。
图3为电池边充电边加热控制流程图。
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面结合附图 及具体实施例进行详细描述。
实施例1
如图1所示,本发明的电动汽车低温充电控制系统包括非车载充电机101、电池管理系统102、动力电池103、控制器104、PTC加热器105;
所述非车载充电机101接收电池管理系统的充电电流请求,为动力电池103充电和/或为PTC加热器105提供电能、直流-直流转换器106提供电能;
所述电池管理系统102根据动力电池温度判断动力电池需要充电还是加热、向非车载充电机发送充电电流请求、判断动力电池实际输入电流值、向控制器发送禁止PTC加热器输出指令;
所述控制器104负责判断PTC加热器开启关闭条件,负责控制PTC加热器开启关闭。
所述直流-直流转换器106负责为系统中控制器提供低压电源。
其中,所述的控制器可以是整车控制器(VCU)、BMS控制器或者空调控制器等。
实施例2
如图2所示,所述的电动汽车低温充电控制系统的控制方法如下:
步骤201、电池管理系统判断电池温度是否低于设定的温度阈值下限,是则通过控制器控制PTC加热器开启,进入动力电池正常加热流程,否则执行步骤202,其中温度阈值下限为-20~-15℃;
步骤202、电池管理系统判断电池温度是否高于温度阈值上限,是则向非车载充电机发送充电请求电流,进入动力电池正常充电流程,否则执行步骤203;其中温度阈值上限为20-25℃;
步骤203、电池管理系统判断是否满足边充电边加热条件,即当动力电池温度在温度阈值下限和温度阈值上限之间,并且满足PTC加热器开启条件时,满足边充电边加热条件,通过控制器控制PTC加热器开启,同时电池管理系统 向非车载充电机发送充电请求电流,进入边充电边加热步骤204,不满足进入动力电池正常充电流程;
其中,所述的PTC加热器开启条件为:同时满足电池当前需求电流值<非车载充电机最大输出电流值、电池水温<X℃和电池单体温差<Y℃;水温X℃在40-55℃之间,电池单体温差Y℃在8-15℃;
步骤204、非车载充电机和PTC加热器分别对动力电池进行充电和加热。
如图3所示,边充电边加热过程中,电池管理系统首先向非车载充电机发送等于当前自身需求电流值的充电请求电流进行电池充电;充电启动后,控制器控制PTC加热器开始工作,控制器控制PTC加热器输出功率=非车载充电机最大输出功率-电池当前需求功率-DCDC消耗功率-X,且不超过PTC加热器最大输出能力,X为PTC加热器输出功率最大误差;此时若电池管理系统判断动力电池实际输入电流低于其当前自身需求电流值,电池管理系统开始提升其对非车载充电机发送的充电请求电流,当充电请求电流I=电池当前需求电流值I
1+PTC加热器消耗电流I
2时(电池当前需求电流I
1会随着电池充电或者加热过程中,电池温度和SOC的变化而变化),充电请求电流I不再增加。当控制器判断满足PTC加热器关闭条件,即动力电池水温≥X℃时,向电池管理系统发送关闭PTC加热器请求;电池管理系统(BMS)收到PTC加热器关闭请求后或者判断电池实际输入电流值>自身当前需求电流值I
1,将充电请求电流I降至自身需求电流值I
1,以防止PTC出现故障意外停止工作,导致电池出现瞬时过充电;BMS判断非车载充电机输出电流≤电池当前需求电流值后,向控制器发送PTC加热器关闭允许指令,控制器控制PTC关闭PTC加热器,加热结束。
实施例3
如图2所示,所述的电动汽车低温充电控制系统的控制方法如下:
步骤201、电池管理系统判断电池温度是否低于设定的温度阈值下限,是则通过控制器控制PTC加热器开启,进入动力电池正常加热流程,否则执行步 骤202,其中温度阈值下限为-20℃~-15℃;
步骤202、电池管理系统判断电池温度是否高于温度阈值上限,是则向非车载充电机发送充电请求电流,进入动力电池正常充电流程,否则执行步骤203;其中温度阈值上限为20-25℃;
步骤203、电池管理系统判断是否满足边充电边加热条件,即当动力电池温度在温度阈值下限和温度阈值上限之间,并且满足PTC加热器开启条件时,满足边充电边加热条件,通过控制器控制PTC加热器开启,同时电池管理系统向非车载充电机发送充电请求电流,进入边充电边加热步骤204,不满足进入动力电池正常充电流程;
步骤204、非车载充电机和PTC加热器分别对动力电池进行充电和加热。
如图3所示,边充电边加热过程中,电池管理系统首先向非车载充电机发送等于当前自身需求电流值的充电请求电流进行电池充电;充电启动后,控制器控制PTC加热器开始工作,控制器控制PTC加热器输出功率=非车载充电机最大输出功率-电池当前需求功率-DCDC消耗功率-X,且不超过PTC加热器最大输出能力,X为PTC加热器输出功率最大误差,此时若电池管理系统判断动力电池实际输入电流低于其当前自身需求电流值,电池管理系统开始提升其对非车载充电机发送的充电请求电流,当充电请求电流I=电池当前需求电流值I
1+PTC加热器消耗电流I
2时(电池当前需求电流I
1会随着电池充电或者加热过程中,电池温度和SOC的变化而变化),充电请求电流I不再增加。当控制器判断满足PTC加热器关闭条件,即动力电池单体温差≥X℃时,向电池管理系统发送关闭PTC加热器请求;电池管理系统(BMS)收到PTC加热器关闭请求后或者判断电池实际输入电流值>自身当前需求电流值I
1,将充电请求电流I降至自身需求电流值I
1,以防止PTC出现故障意外停止工作,导致电池出现瞬时过充电;BMS判断非车载充电机输出电流≤电池当前需求电流值后,向控制器发送PTC加热器关闭允许指令,控制器控制PTC关闭PTC加热器,加热结束。
实施例4
如图2所示,所述的电动汽车低温充电控制系统的控制方法如下:
步骤201、电池管理系统判断电池温度是否低于设定的温度阈值下限,则向控制器发送充电加热请求,控制器控制PTC加热器开启,进入动力电池正常加热流程,否则执行步骤202,其中温度阈值下限为-20℃~-15℃;
步骤202、电池管理系统向控制器发送充电请求;
步骤203、控制器判断电池温度是否高于温度阈值上限,是则进入动力电池正常充电流程,否则执行步骤204;其中温度阈值上限为20~25℃;
步骤204、控制器判断是否满足边充电边加热条件,即当动力电池温度在温度阈值下限和温度阈值上限之间,且满足电池当前需求电流值<非车载充电机最大输出电流值时,控制器控制PTC加热器开启,同时电池管理系统向非车载充电机发送充电请求电流,进入边充电边加热步骤205,不满足则进入动力电池正常充电流程;
步骤205、非车载充电机和PTC加热器分别对动力电池进行充电和加热。如图3所示,边充电边加热过程中,电池管理系统首先向非车载充电机发送等于当前自身需求电流值的充电请求电流进行电池充电;充电启动后,控制器控制PTC加热器开始工作,控制器控制PTC加热器输出功率=非车载充电机最大输出功率-电池当前需求功率-DCDC消耗功率-X,且不超过PTC加热器最大输出能力,X为PTC加热器输出功率最大误差,此时若电池管理系统判断动力电池实际输入电流低于其当前自身需求电流值,电池管理系统开始提升其对非车载充电机发送的充电请求电流,当充电请求电流I=电池当前需求电流值I
1+PTC加热器消耗电流I
2时(电池当前需求电流I
1会随着电池充电或者加热过程中,电池温度和SOC的变化而变化),充电请求电流I不再增加。当控制器判断满足PTC加热器关闭条件,即动力电池当前需求电流值≥非车载充电机最大输出电流值时,向电池管理系统发送关闭PTC加热器请求;电池管理系统(BMS)收到PTC 加热器关闭请求后或者判断电池实际输入电流值>自身当前需求电流值I
1,将充电请求电流I降至自身需求电流值I
1,以防止PTC出现故障意外停止工作,导致电池出现瞬时过充电;BMS判断非车载充电机输出电流≤电池当前需求电流值后,向控制器发送PTC加热器关闭允许指令,控制器控制PTC关闭PTC加热器,加热结束。
Claims (9)
- 一种电动汽车低温充电控制系统,其特征在于包括:非车载充电机、动力电池、电池管理系统、控制器和PTC加热器;所述非车载充电机(101)接收电池管理系统的充电电流请求,为动力电池(103)充电和/或为PTC加热器(105)、直流-直流转换器(106)提供电能;所述电池管理系统(102)根据动力电池温度判断电池需要充电还是加热、向非车载充电机发送充电电流请求、判断动力电池实际输入电流值、判断非车载充电机输出电流值、向控制器发送禁止PTC加热器输出指令;所述控制器(104)负责判断PTC加热器开启关闭条件,负责控制PTC加热器开启关闭。所述直流-直流转换器(106)负责为系统中控制器提供低压电源。
- 根据权利要求1所述的电动汽车低温充电控制系统,其特征在于所述的控制器是整车控制器。
- 根据权利要求1所述的电动汽车低温充电控制系统,其特征在于所述的控制器是BMS控制器。
- 根据权利要求1所述的电动汽车低温充电控制系统,其特征在于所述的控制器是空调控制器。
- 一种如权利要求1所述的电动汽车低温充电控制系统的控制方法,包括下述步骤:步骤201、电池管理系统判断电池温度是否低于设定的温度阈值下限,是则向控制器发送加热请求,控制器控制PTC加热器开启,进入动力电池正常加热流程,否则执行步骤202,其中温度阈值下限为-20℃~-15℃;步骤202、电池管理系统向控制器发送充电请求;步骤203、控制器判断电池温度是否高于温度阈值上限,是则电池管理系统向非车载充电机发送充电请求电流,进入动力电池正常充电流程,否则执行 步骤204;其中温度阈值上限为20~25℃;步骤204、控制器判断是否满足边充电边加热条件,即当动力电池温度在温度阈值下限和温度阈值上限之间,并且满足PTC加热器开启条件时,控制器控制PTC加热器开启,同时电池管理系统向非车载充电机发送充电请求电流,进入边充电边加热步骤205,不满足进入动力电池正常充电流程;所述的PTC加热器开启条件为:同时满足电池当前需求电流值<非车载充电机最大输出电流值、电池水温<X℃和电池单体温差<Y℃;水温X℃在40-55℃之间,电池单体温差Y℃在8-15℃;步骤205、非车载充电机和PTC加热器分别对动力电池进行充电和加热。
- 根据权利要求5所述的电动汽车低温充电控制系统的控制方法,其特征在于所述步骤205边充电边加热过程中,电池管理系统首先向非车载充电机发送等于当前自身需求电流值的充电请求电流进行电池充电;充电启动后,控制器控制PTC加热器开始工作,控制器控制PTC加热器输出功率=非车载充电机最大输出功率-电池当前需求功率-DCDC消耗功率-X,且不超过PTC加热器最大输出能力,X为PTC加热器输出功率最大误差,此时若电池管理系统判断动力电池实际输入电流低于其当前自身需求电流值,电池管理系统开始提升其对非车载充电机发送的充电请求电流,当充电请求电流I=电池当前需求电流值I 1+PTC加热器消耗电流I 2时,充电请求电流I不再增加;当控制器判断满足PTC加热器关闭条件时,向电池管理系统发送关闭PTC加热器请求;电池管理系统收到PTC加热器关闭请求后或者判断电池实际输入电流值>自身当前需求电流值I 1,将充电请求电流I降至自身需求电流值I 1;电池管理系统判断非车载充电机输出电流≤电池当前需求电流值后,向控制器发送PTC加热器关闭允许指令,控制器控制PTC关闭PTC加热器,加热结束。
- 根据权利要求6所述的电动汽车低温充电控制系统的控制方法,其特征在于所述的PTC关闭条件为电池水温≥X℃,X℃在40-55℃之间。
- 根据权利要求6所述的电动汽车低温充电控制系统的控制方法,其特征在于所述的PTC关闭条件为电池单体温差≥Y℃,Y℃在8-15℃之间。
- 根据权利要求6所述的电动汽车低温充电控制系统的控制方法,其特征在于所述的PTC关闭条件为电池当前需求电流值≥非车载充电机最大输出电流值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010735782.9 | 2020-07-28 | ||
CN202010735782.9A CN111942228A (zh) | 2020-07-28 | 2020-07-28 | 一种电动汽车低温充电控制系统及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022021795A1 true WO2022021795A1 (zh) | 2022-02-03 |
Family
ID=73339638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/141461 WO2022021795A1 (zh) | 2020-07-28 | 2020-12-30 | 一种电动汽车低温充电控制系统及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111942228A (zh) |
WO (1) | WO2022021795A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114552062A (zh) * | 2022-02-24 | 2022-05-27 | 深圳威迈斯新能源股份有限公司 | 一种换电站余热利用系统及其控制方法 |
CN114683967A (zh) * | 2022-03-30 | 2022-07-01 | 东风汽车集团股份有限公司 | 一种电动车ptc加热电池包的自适应控制方法及系统 |
CN114715128A (zh) * | 2022-03-16 | 2022-07-08 | 东风汽车集团股份有限公司 | 混合动力汽车阶梯式过充抑制控制方法及混合动力汽车 |
CN114734875A (zh) * | 2022-05-09 | 2022-07-12 | 潍柴动力股份有限公司 | 一种充电系统的控制方法、装置及系统 |
CN115347652A (zh) * | 2022-10-18 | 2022-11-15 | 江西江铃集团新能源汽车有限公司 | 一种锂电池低温充电优化方法、系统及存储介质 |
CN115503555A (zh) * | 2022-09-01 | 2022-12-23 | 一汽奔腾轿车有限公司 | 一种新能源汽车动力电池加热系统及加热方法 |
CN116505139A (zh) * | 2023-06-30 | 2023-07-28 | 宁德时代新能源科技股份有限公司 | 电池加热控制方法、装置、电子设备及电池加热电路 |
WO2024104019A1 (zh) * | 2022-11-18 | 2024-05-23 | 华为数字能源技术有限公司 | 电动车辆动力电池的加热装置以及相关设备 |
CN118528875A (zh) * | 2024-07-26 | 2024-08-23 | 潍柴动力股份有限公司 | 一种动力电池充电加热控制方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111942228A (zh) * | 2020-07-28 | 2020-11-17 | 中国第一汽车股份有限公司 | 一种电动汽车低温充电控制系统及其控制方法 |
CN112659978B (zh) * | 2020-12-07 | 2022-12-16 | 北京车和家信息技术有限公司 | 动力电池的充电加热控制方法和装置、介质、设备、车辆 |
CN112721680B (zh) * | 2020-12-25 | 2023-04-18 | 中国第一汽车股份有限公司 | 一种电流控制方法、装置、车辆及存储介质 |
CN112693364B (zh) * | 2020-12-28 | 2022-05-24 | 宜宾凯翼汽车有限公司 | 一种动力电池预热及充电保温控制方法 |
CN112865216B (zh) * | 2020-12-31 | 2023-04-28 | 合众新能源汽车股份有限公司 | 一种纯电动汽车慢充能量管理系统及其方法 |
CN113043915A (zh) * | 2021-05-11 | 2021-06-29 | 南京市欣旺达新能源有限公司 | 电池的加热方法、加热系统及含有该加热系统的电动汽车 |
CN113103917B (zh) * | 2021-05-14 | 2022-05-06 | 东风汽车股份有限公司 | 一种电动汽车低温直流充电时的加热控制方法 |
CN113696789A (zh) * | 2021-08-31 | 2021-11-26 | 东风小康汽车有限公司重庆分公司 | 一种用于电池的低温直流加热控制方法 |
CN113782871B (zh) * | 2021-09-13 | 2023-04-11 | 安徽江淮汽车集团股份有限公司 | 混动车型电池加热控制方法及系统 |
CN114043902B (zh) * | 2021-11-17 | 2024-02-27 | 华人运通(江苏)技术有限公司 | 一种充电过流的保护方法、整车控制器及车辆 |
CN114148215A (zh) * | 2021-11-29 | 2022-03-08 | 杭州鹏成新能源科技有限公司 | 一种新型锂电车辆不间断工作的运行方法 |
CN114103732B (zh) * | 2021-12-16 | 2023-10-24 | 上汽大众汽车有限公司 | 一种电动车动力电池充电加热方法及其系统 |
CN114261314B (zh) * | 2021-12-27 | 2023-05-23 | 重庆长安新能源汽车科技有限公司 | 基于电动汽车的电池脉冲加热控制方法、系统及电动汽车 |
CN115139829B (zh) * | 2022-07-29 | 2024-06-18 | 潍柴动力股份有限公司 | 一种充电加热控制方法、装置、电子设备及存储介质 |
CN115593277B (zh) * | 2022-10-19 | 2024-10-01 | 重庆长安新能源汽车科技有限公司 | 磷酸铁锂动力电池低温充电参数获取方法及充电控制方法 |
CN116417711B (zh) * | 2023-06-09 | 2024-03-29 | 如果新能源科技(江苏)股份有限公司 | 电池包、电池储能系统、充电控制方法和电池管理系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103457318A (zh) * | 2013-08-20 | 2013-12-18 | 重庆长安汽车股份有限公司 | 纯电动汽车的动力电池充电加热系统及加热方法 |
CN106394264A (zh) * | 2016-05-27 | 2017-02-15 | 奇瑞汽车股份有限公司 | 对电动汽车进行快速充电的方法和装置 |
US20180001774A1 (en) * | 2016-07-04 | 2018-01-04 | Toyota Jidosha Kabushiki Kaisha | Battery charging system and battery charging method for electrically driven vehicle |
CN109703414A (zh) * | 2018-12-28 | 2019-05-03 | 潍柴动力股份有限公司 | 一种电池模块控制方法及电动汽车电池控制系统 |
CN109808549A (zh) * | 2019-01-28 | 2019-05-28 | 东风柳州汽车有限公司 | 电池包低温情况下充电的智能加热控制方法 |
CN111942228A (zh) * | 2020-07-28 | 2020-11-17 | 中国第一汽车股份有限公司 | 一种电动汽车低温充电控制系统及其控制方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3484251B2 (ja) * | 1995-02-06 | 2004-01-06 | 本田技研工業株式会社 | 電気自動車用蓄電池充電制御装置 |
JP2006320048A (ja) * | 2005-05-10 | 2006-11-24 | Matsushita Electric Ind Co Ltd | 保護回路 |
CN102139646B (zh) * | 2011-02-18 | 2012-11-28 | 奇瑞汽车股份有限公司 | 一种动力电池热管理系统及其控制方法 |
CN103427137B (zh) * | 2013-08-20 | 2015-10-07 | 重庆长安汽车股份有限公司 | 纯电动汽车动力电池的低温充电加热系统及加热方法 |
CN103612570B (zh) * | 2013-09-04 | 2016-03-23 | 奇瑞新能源汽车技术有限公司 | 一种纯电动汽车整车热管理控制系统及其控制方法 |
US10336158B2 (en) * | 2013-12-30 | 2019-07-02 | Ford Global Technologies, Llc | Method and system for heating a vehicle |
CN104393357A (zh) * | 2014-11-03 | 2015-03-04 | 惠州市亿能电子有限公司 | 电动汽车动力电池的充电方法 |
CN104578295B (zh) * | 2014-12-31 | 2017-06-27 | 普天新能源车辆技术有限公司 | 一种车用动力电池低温充电加热系统及方法 |
CN106080237B (zh) * | 2016-06-23 | 2019-08-09 | 广州汽车集团股份有限公司 | 车载充电机、电池液冷系统及电动汽车 |
CN106505690B (zh) * | 2016-12-26 | 2023-06-02 | 苏州绿恺动力电子科技有限公司 | 一种汽车应急启动电源安全管理系统 |
CN206471860U (zh) * | 2016-12-26 | 2017-09-05 | 苏州绿恺动力电子科技有限公司 | 一种汽车应急启动电源安全管理系统 |
CN106696744B (zh) * | 2017-01-18 | 2023-09-19 | 苏州安普特汽车科技有限公司 | 一种电动汽车动力电池充电加热系统及加热方法 |
CN107097664B (zh) * | 2017-04-25 | 2024-03-19 | 上海思致汽车工程技术有限公司 | 一种智能化多回路电动汽车热管理系统 |
JP7108869B2 (ja) * | 2018-02-08 | 2022-07-29 | パナソニックIpマネジメント株式会社 | 車載充電装置、及び車載充電装置の制御方法 |
CN108482067B (zh) * | 2018-05-21 | 2019-11-29 | 上海思致汽车工程技术有限公司 | 一种节能型多回路电动汽车热管理系统 |
CN109987001B (zh) * | 2019-02-28 | 2023-12-08 | 上海思致汽车工程技术有限公司 | 低温环境下直流快充时加热控制方法及系统 |
CN109910684A (zh) * | 2019-03-12 | 2019-06-21 | 中国第一汽车股份有限公司 | 一种电动汽车动力电池加热系统及控制方法 |
CN110077281B (zh) * | 2019-04-30 | 2020-12-15 | 浙江吉利控股集团有限公司 | 一种插电式混合动力车动力电池的充电加热方法及系统 |
CN211054968U (zh) * | 2019-07-03 | 2020-07-21 | 华人运通(江苏)技术有限公司 | 电池充电控制电路和电动汽车 |
CN110341543B (zh) * | 2019-07-08 | 2020-11-10 | 中国第一汽车股份有限公司 | 高压下电控制方法、交流充电系统及电动汽车 |
CN110435478A (zh) * | 2019-07-11 | 2019-11-12 | 桑顿新能源科技(长沙)有限公司 | 一种动力电池充电系统、充电方法及电动汽车 |
CN111114386B (zh) * | 2019-09-29 | 2021-02-05 | 北京嘀嘀无限科技发展有限公司 | 电动汽车安全充电方法、电子设备及存储介质 |
CN111016737B (zh) * | 2019-12-31 | 2021-10-29 | 东风汽车集团有限公司 | 一种电动汽车热管理系统、控制方法和电动汽车 |
-
2020
- 2020-07-28 CN CN202010735782.9A patent/CN111942228A/zh active Pending
- 2020-12-30 WO PCT/CN2020/141461 patent/WO2022021795A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103457318A (zh) * | 2013-08-20 | 2013-12-18 | 重庆长安汽车股份有限公司 | 纯电动汽车的动力电池充电加热系统及加热方法 |
CN106394264A (zh) * | 2016-05-27 | 2017-02-15 | 奇瑞汽车股份有限公司 | 对电动汽车进行快速充电的方法和装置 |
US20180001774A1 (en) * | 2016-07-04 | 2018-01-04 | Toyota Jidosha Kabushiki Kaisha | Battery charging system and battery charging method for electrically driven vehicle |
CN109703414A (zh) * | 2018-12-28 | 2019-05-03 | 潍柴动力股份有限公司 | 一种电池模块控制方法及电动汽车电池控制系统 |
CN109808549A (zh) * | 2019-01-28 | 2019-05-28 | 东风柳州汽车有限公司 | 电池包低温情况下充电的智能加热控制方法 |
CN111942228A (zh) * | 2020-07-28 | 2020-11-17 | 中国第一汽车股份有限公司 | 一种电动汽车低温充电控制系统及其控制方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114552062A (zh) * | 2022-02-24 | 2022-05-27 | 深圳威迈斯新能源股份有限公司 | 一种换电站余热利用系统及其控制方法 |
CN114715128A (zh) * | 2022-03-16 | 2022-07-08 | 东风汽车集团股份有限公司 | 混合动力汽车阶梯式过充抑制控制方法及混合动力汽车 |
CN114683967A (zh) * | 2022-03-30 | 2022-07-01 | 东风汽车集团股份有限公司 | 一种电动车ptc加热电池包的自适应控制方法及系统 |
CN114683967B (zh) * | 2022-03-30 | 2023-05-05 | 东风汽车集团股份有限公司 | 一种电动车ptc加热电池包的自适应控制方法及系统 |
CN114734875A (zh) * | 2022-05-09 | 2022-07-12 | 潍柴动力股份有限公司 | 一种充电系统的控制方法、装置及系统 |
CN115503555A (zh) * | 2022-09-01 | 2022-12-23 | 一汽奔腾轿车有限公司 | 一种新能源汽车动力电池加热系统及加热方法 |
CN115347652A (zh) * | 2022-10-18 | 2022-11-15 | 江西江铃集团新能源汽车有限公司 | 一种锂电池低温充电优化方法、系统及存储介质 |
CN115347652B (zh) * | 2022-10-18 | 2023-01-31 | 江西江铃集团新能源汽车有限公司 | 一种锂电池低温充电优化方法、系统及存储介质 |
WO2024104019A1 (zh) * | 2022-11-18 | 2024-05-23 | 华为数字能源技术有限公司 | 电动车辆动力电池的加热装置以及相关设备 |
CN116505139A (zh) * | 2023-06-30 | 2023-07-28 | 宁德时代新能源科技股份有限公司 | 电池加热控制方法、装置、电子设备及电池加热电路 |
CN116505139B (zh) * | 2023-06-30 | 2024-03-29 | 宁德时代新能源科技股份有限公司 | 电池加热控制方法、装置、电子设备及电池加热电路 |
CN118528875A (zh) * | 2024-07-26 | 2024-08-23 | 潍柴动力股份有限公司 | 一种动力电池充电加热控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111942228A (zh) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022021795A1 (zh) | 一种电动汽车低温充电控制系统及其控制方法 | |
KR101846632B1 (ko) | 연료전지차량의 스탑모드시 전압 제어방법 | |
KR101230900B1 (ko) | 연료전지 하이브리드 시스템의 운전 제어 방법 | |
JP5434195B2 (ja) | 燃料電池システム及びこれを備えた車両 | |
CN112848972B (zh) | 一种低温情况下燃料电池控制方法及系统 | |
CN111409502B (zh) | 氢燃料电池汽车及其在低温环境下的电机能量管理方法 | |
CN110880628A (zh) | 基于温度变化率的电池温度预处理及电池热管理方法 | |
CN108016311A (zh) | 一种新能源汽车的高压系统及其控制方法 | |
CN111600049B (zh) | 一种氢发动机的新型能量输出管理方法 | |
CN110943509B (zh) | 一种电动汽车充电过充保护方法及系统 | |
CN108016313A (zh) | 一种新能源汽车的高压系统及控制方法 | |
WO2024109883A1 (zh) | 氢能混动汽车的动力电池加热方法、装置、介质和设备 | |
WO2022166491A1 (zh) | 高压充电系统和高压充电系统的充电方法 | |
KR20170000781A (ko) | 연료 전지 시스템 | |
CN114274823A (zh) | 一种电动汽车的充电能量管理系统、方法和电动汽车 | |
CN118156686A (zh) | 一种移动电源调节控制系统及其方法 | |
WO2024104088A1 (zh) | 混合动力机车多组动力电池充电控制方法及其应用 | |
CN114172221A (zh) | 一种多支路电池系统的防过充控制系统 | |
JP2021090266A (ja) | ソーラー充電システム | |
CN114030389B (zh) | 一种电动汽车电池热管理控制方法及装置 | |
CN115411411A (zh) | 一种电池热管理控制方法以及一种电池 | |
KR20200009256A (ko) | 차량용 통합 열관리 시스템 및 그 제어방법 | |
KR102633952B1 (ko) | 연료전지 차량의 비상운전 시 연료전지 시스템의 제어 방법 | |
CN113224413A (zh) | 一种电池系统的充电热管理控制方法 | |
CN114013342B (zh) | 一种燃料电池发动机控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20946774 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20946774 Country of ref document: EP Kind code of ref document: A1 |