WO2022021790A1 - 基于自旋轨道矩的存储单元 - Google Patents

基于自旋轨道矩的存储单元 Download PDF

Info

Publication number
WO2022021790A1
WO2022021790A1 PCT/CN2020/140878 CN2020140878W WO2022021790A1 WO 2022021790 A1 WO2022021790 A1 WO 2022021790A1 CN 2020140878 W CN2020140878 W CN 2020140878W WO 2022021790 A1 WO2022021790 A1 WO 2022021790A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
layer
effect layer
orbit moment
moment effect
Prior art date
Application number
PCT/CN2020/140878
Other languages
English (en)
French (fr)
Inventor
李州
孟皓
Original Assignee
浙江驰拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江驰拓科技有限公司 filed Critical 浙江驰拓科技有限公司
Publication of WO2022021790A1 publication Critical patent/WO2022021790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices

Definitions

  • the present invention relates to the technical field of magnetic memory, and in particular, to a storage unit based on spin-orbit moment.
  • SOT-MRAM Spin-Orbit Torque-Magnetic Random Access Memory, spin-orbit-torque magnetic memory
  • SOT-MRAM Spin-Orbit Torque-Magnetic Random Access Memory, spin-orbit-torque magnetic memory
  • Figure 1 shows a typical structure of a SOT-MRAM cell.
  • the core of the SOT-MRAM cell is a magnetic tunnel junction (MTJ) and a spin-orbit moment effect layer.
  • the MTJ includes a free layer, a barrier layer and a reference layer.
  • the magnetization direction of the reference layer is fixed, and the magnetization direction of the free layer is variable.
  • the magnetic tunnel junction is in a low resistance state (0); when the free layer and the reference layer are antiparallel, the magnetic tunnel junction is in a high resistance state (1).
  • the present invention provides a storage unit based on the spin-orbit moment, which can realize differential storage, improve the reliability of data and improve the reading speed of data.
  • the present invention provides a spin-orbit moment-based storage unit, comprising:
  • the synthesized spin-orbit moment effect layer includes a first spin-orbit moment effect layer and a second spin-orbit moment effect layer, the second spin-orbit moment effect layer is located above the first spin-orbit moment effect layer , and the second spin-orbit moment effect layer includes two regions with different thicknesses, the spin Hall angle of the second spin-orbit moment effect layer and the spin of the first spin-orbit moment effect layer are The positive and negative Hall angles are opposite, and when a current is passed through the synthesized spin-orbit moment effect layer, the overall spin Hall angles generated in the two regions are in opposite directions;
  • each of the magnetic tunnel junctions includes a free layer, a barrier layer and a reference layer stacked from bottom to top, and the respective free layers of the two magnetic tunnel junctions are respectively connected with the two magnetic tunnel junctions in the two regions.
  • the second spin-orbit moment effect layer uses a material with a negative spin Hall angle
  • the second spin-orbit moment effect layer uses a material with a positive spin Hall angle.
  • the first spin-orbit moment effect layer is made of Pt, with a thickness of 1-10 nm
  • the second spin-orbit moment effect layer is made of W, wherein the thickness of the thicker region is 1-3 nm, and the thickness of the thinner region is 1-3 nm.
  • the thickness is 0-0.9nm.
  • the first spin-orbit moment effect layer adopts Ta with a thickness of 1-10 nm
  • the second spin-orbit moment effect layer adopts Ir, wherein the thickness of the thicker region is 0.8-2nm, and the thickness of the thinner region is 0.8-2nm.
  • the thickness is 0-0.7nm.
  • the magnetization directions of the free layer and the reference layer of the magnetic tunnel junction are perpendicular to the surface of the thin film.
  • the storage unit further includes:
  • an extra-junction magnetic bias layer located below the first spin-orbit moment effect layer, and the magnetization direction of the extra-junction magnetic bias layer is parallel to the film surface;
  • An insulating layer is located between the outer junction magnetic bias layer and the first spin-orbit moment effect layer.
  • the magnetic tunnel junction further includes:
  • the magnetic bias layer in the junction is located above the reference layer, and the magnetization direction of the magnetic bias layer in the junction is parallel to the surface of the thin film.
  • the magnetization directions of the free layer and the reference layer of the magnetic tunnel junction are parallel to the surface of the film, and the magnetization directions form an included angle ⁇ with the current direction in the synthesized spin-orbit moment effect layer, 0 ⁇ 90°.
  • the magnetic tunnel junction further includes:
  • a pinning layer for pinning the magnetization direction of the reference layer
  • a coupling layer is located between the reference layer and the pinning layer.
  • the present invention provides a memory, including the above-mentioned spin-orbit moment-based storage unit.
  • the storage unit based on the spin-orbit moment provided by the present invention proposes a synthetic spin-orbit moment effect layer, including a first spin-orbit moment effect layer and a second spin-orbit moment effect layer, wherein the second spin-orbit moment effect layer
  • the moment effect layer is located above the first spin-orbit moment effect layer, and the second spin-orbit moment effect layer includes two regions with different thicknesses, and the spin Hall angle of the second spin-orbit moment effect layer is the same as the first spin
  • the positive and negative spin Hall angles of the orbital moment effect layer are opposite.
  • 1 is a schematic structural diagram of a conventional spin-orbit moment magnetic memory cell
  • FIG. 2 is a schematic structural diagram of a spin-orbit moment-based storage unit provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a memory cell based on a spin-orbit moment provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a spin-orbit moment-based storage unit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a memory cell based on a spin-orbit moment provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a read and write circuit of a memory cell based on a spin-orbit moment provided by an embodiment of the present invention.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element when a layer/element is “on” another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under” the other layer/element.
  • An embodiment of the present invention provides a spin-orbit moment-based storage unit, comprising: a synthesized spin-orbit moment effect layer and two magnetic tunnel junctions, wherein,
  • the synthesized spin-orbit moment effect layer includes a first spin-orbit moment effect layer and a second spin-orbit moment effect layer, the second spin-orbit moment effect layer is located above the first spin-orbit moment effect layer, and the second spin-orbit moment effect layer is located above the first spin-orbit moment effect layer.
  • the spin-orbit moment effect layer includes two regions with different thicknesses.
  • the spin Hall angle of the second spin-orbit moment effect layer is opposite to that of the first spin-orbit moment effect layer.
  • Each of the two magnetic tunnel junctions includes a free layer, a barrier layer and a reference layer stacked from bottom to top, and the respective free layers of the two magnetic tunnel junctions are respectively in contact with a surface of one of the two regions.
  • FIG. 2 is a schematic structural diagram of a spin-orbit moment-based storage unit provided by an embodiment of the present invention.
  • the storage unit 20 includes a first spin-orbit moment effect layer 201 and a second spin-orbit moment effect layer.
  • the layer 202, the first magnetic tunnel junction 203 and the second magnetic tunnel junction 204, the second spin-orbit moment effect layer 202 includes two regions with different thicknesses, the first magnetic tunnel junction 203 is located on the surface of the thinner region, the second magnetic The tunnel junction 204 is located on the surface of the thicker region.
  • Each layer of the two-layer spin Hall effect layer composite structure includes but is not limited to multi-layer structures such as heavy metals, topological insulating materials, alloys, etc., and only needs to satisfy the overall spin Hall angle of the two spin Hall effect layers. Positive and negative are opposite. If the first spin-orbit moment effect layer 201 uses a material with a positive spin Hall angle, the second spin-orbit moment effect layer 202 uses a material with a negative spin Hall angle; The moment effect layer 201 is made of a material with a negative spin Hall angle, and the second spin-orbit moment effect layer 202 is made of a material with a positive spin Hall angle.
  • Commonly used materials with positive spin Hall angles include but are not limited to Pt, Pd, Ir, Au, Bi 2 Se 3 and alloys of these materials.
  • Commonly used materials with negative spin Hall angles include but are not limited to Ta, W, Mo and alloys of these materials.
  • the thicknesses of the two regions of the second spin-orbit moment effect layer 202 need to be set according to the specific material properties, as long as it is ensured that when a current is passed through the synthesized spin-orbit moment effect layer, the thickness of the two regions of the second spin-orbit moment effect layer is guaranteed.
  • the overall spin Hall angles generated by the two regions may be in opposite directions, so as to drive the free layers of the two magnetic tunnel junctions to flip in opposite directions, thereby realizing differential storage.
  • the first spin-orbit moment effect layer 201 is made of Pt (the spin Hall angle is a positive value), and the thickness is 1-10 nm, and the second spin-orbit moment effect layer 202 is made of W (spin Hall angle). angle is negative), where thicker regions have a thickness of 1-3 nm and thinner regions have a thickness of 0-0.9 nm.
  • the first spin-orbit moment effect layer 201 is made of Ta (the spin Hall angle is negative), and the thickness is 1-10 nm
  • the second spin-orbit moment effect layer 202 is made of Ir (spin Hall angle). angle is positive), where thicker regions have a thickness of 0.8-2 nm and thinner regions have a thickness of 0-0.7 nm.
  • the shapes of the two magnetic tunnel junctions are not particularly limited, and may be one of a circle, an ellipse, a square, a diamond, and a rectangle, and the dimensions may be the same or different.
  • the stacked structure of the two magnetic tunnel junctions is also not particularly limited, and generally the two magnetic tunnel junctions have the same stacked structure.
  • a magnetic tunnel junction includes a free layer, a barrier layer, and a reference layer that are sequentially stacked from bottom to top. The free layer is in contact with the second spin-orbit moment effect layer.
  • the materials of the free layer and the reference layer include, but are not limited to, magnetic materials such as Co, CoFe, and CoFeB, or synthetic magnetic materials such as Co/Mo/CoFeB, CoFe/Mo/CoFeB, etc., formed by ferromagnetic or antiferromagnetic coupling.
  • Materials of the barrier layer include, but are not limited to, MgO, MgAl 2 O 4 and other materials.
  • a coupling layer and a pinning layer can be arranged on the reference layer to stabilize the magnetization direction of the reference layer.
  • the material of the coupling layer includes but is not limited to Ru, Mo and other materials.
  • Materials of the pinning layer include, but are not limited to, [Co/Pt]n, [Co/Pd]n, [CoFe/Pt]n and other materials.
  • the free layer, the barrier layer and the reference layer of the magnetic tunnel junction are described.
  • the free and reference layers can have different magnetization directions. As shown in Figure 2, the magnetization directions of the free layer and the reference layer of the magnetic tunnel junction are perpendicular to the film surface.
  • a horizontal current needs to be passed into the synthesized spin-orbit-torque effect layer, And an external magnetic field is also applied to flip the magnetic moment of the free layer.
  • an improvement is made on the basis of FIG. 2 to form the memory cell shown in FIG. 3 . As shown in FIG.
  • an extra-junction magnetic bias layer 205 is disposed under the first spin-orbit-torque effect layer 201 , and the magnetization direction of the extra-junction magnetic bias layer 205 is parallel to the film surface (ie, in-plane magnetization), which is used to generate Bias magnetic field, when a horizontal current is passed into the synthesized spin-orbit moment effect layer, the magnetic moment of the free layer can be reversed without an external magnetic field.
  • An insulating layer 206 is arranged between the magnetic bias layer 205 outside the junction and the first spin-orbit moment effect layer 201 to perform isolation.
  • the material of the outer junction magnetic bias layer 205 is NiFe or CoFe, and the material of the insulating layer 206 is SiO 2 . As shown in FIG.
  • the insulating layer 206 surrounds the outer junction magnetic bias layer 205 , and the outer junction magnetic bias layer 205 produces The stray field is equivalent to an external magnetic field.
  • an intra-junction magnetic bias layer is respectively arranged above the reference layer of each magnetic tunnel junction, and the magnetization directions of the magnetic bias layers in the junction are parallel to each other. On the surface of the thin film, this structure can also realize the magnetic moment inversion of the free layer without external magnetic field.
  • the magnetization directions of the free layer and the reference layer of the magnetic tunnel junction are parallel to the surface of the film, and the magnetization direction forms an included angle with the current direction in the synthesized spin-orbit moment effect layer ⁇ , 0 ⁇ 90°.
  • the overall spin Hall generated when the two regions with different thicknesses of the second spin-orbit-torque effect layer pass current into the synthesized spin-orbit-torque effect layer The angular directions are opposite, so no matter whether the current is passed in the forward direction or the reverse direction, the resistance values of the two magnetic tunnel junctions are always opposite, thus realizing differential storage.
  • Figure 6 shows a read and write circuit of a memory cell.
  • WL is powered on and the gate transistor is powered on, BLW is powered on, and SL is grounded; during read operation: WL is powered on and the gate transistor is powered on, SL is powered on, and SA reads data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

一种基于自旋轨道矩的存储单元(20),包括:合成的自旋轨道矩效应层和两个磁性隧道结(203,204),其中,合成的自旋轨道矩效应层包括第一自旋轨道矩效应层(201)和第二自旋轨道矩效应层(202),第二自旋轨道矩效应层(202)位于第一自旋轨道矩效应层(201)上方,且第二自旋轨道矩效应层(202)包括不同厚度的两个区域,第二自旋轨道矩效应层(202)的自旋霍尔角与第一自旋轨道矩效应层(201)的自旋霍尔角正负相反,当合成的自旋轨道矩效应层中通入电流时,在第二自旋轨道矩效应层(202)的两个区域所产生的总体自旋霍尔角方向相反;两个磁性隧道结(203,204)各自包括从下至上层叠设置的自由层、势垒层和参考层,两个磁性隧道结(203,204)各自的自由层分别与两个区域中的一个区域的表面接触;应用该存储单元能够实现差分存储。

Description

基于自旋轨道矩的存储单元 技术领域
本发明涉及磁性存储器技术领域,尤其涉及一种基于自旋轨道矩的存储单元。
背景技术
SOT-MRAM(Spin-Orbit Torque-Magnetic Random Access Memory,自旋轨道矩磁性存储器)是一种新型存储器,兼具纳秒级的读写速率、低功耗、近乎无限的使用寿命、非易失性等优点,具有很大的应用潜力。
图1为SOT-MRAM单元的典型结构,如图1所示,SOT-MRAM单元的核心是磁性隧道结(MTJ)和自旋轨道矩效应层。MTJ包括自由层、势垒层和参考层。参考层磁化方向固定,自由层磁化方向可变。当自由层和参考层平行,磁性隧道结为低阻态(0);当自由层和参考层反平行,磁性隧道结为高阻态(1)。
但是,实际使用时,发明人发现:单个SOT-MRAM单元的读错率较高,因此,如何提高数据的可靠性和提升数据的读取速度成为必须解决的技术问题。
发明内容
为解决上述问题,本发明提供一种基于自旋轨道矩的存储单元,能够实现差分存储,提高数据的可靠性和提升数据的读取速度。
第一方面,本发明提供一种基于自旋轨道矩的存储单元,包括:
合成的自旋轨道矩效应层,包括第一自旋轨道矩效应层和第二自旋轨道矩效应层,所述第二自旋轨道矩效应层位于所述第一自旋轨道矩效应层上方,且所述第二自旋轨道矩效应层包括不同厚度的两个区域,所述第二自旋轨道矩效应层的自旋霍尔角与所述第一自旋轨道矩效应层的自旋霍尔角正负相反,当所述合成的自旋轨道矩效应层中通入电流时,在所述两个区域所产生的总体自旋霍尔角方向相反;
两个磁性隧道结,每个所述磁性隧道结包括从下至上层叠设置的自由层、势垒层和参考层,两个所述磁性隧道结各自的自由层分别与所述两个区域中的一个区域的表面接触。
可选地,若所述第一自旋轨道矩效应层采用自旋霍尔角为正值的材料,则所述第二自旋轨道矩效应层采用自旋霍尔角为负值的材料;
若所述第一自旋轨道矩效应层采用自旋霍尔角为负值的材料,则所述第二 自旋轨道矩效应层采用自旋霍尔角为正值的材料。
可选地,所述第一自旋轨道矩效应层采用Pt,厚度为1-10nm,所述第二自旋轨道矩效应层采用W,其中较厚区域的厚度为1-3nm,较薄区域的厚度为0-0.9nm。
可选地,所述第一自旋轨道矩效应层采用Ta,厚度为1-10nm,所述第二自旋轨道矩效应层采用Ir,其中较厚区域的厚度为0.8-2nm,较薄区域的厚度为0-0.7nm。
可选地,所述磁性隧道结的自由层和参考层的磁化方向垂直于薄膜表面。
可选地,所述存储单元还包括:
结外磁性偏置层,位于所述第一自旋轨道矩效应层下方,所述结外磁性偏置层的磁化方向平行于薄膜表面;
绝缘层,位于所述结外磁性偏置层和所述第一自旋轨道矩效应层之间。
可选地,所述磁性隧道结还包括:
结内磁性偏置层,位于所述参考层上方,所述结内磁性偏置层的磁化方向平行于薄膜表面。
可选地,所述磁性隧道结的自由层和参考层的磁化方向平行于薄膜表面,且磁化方向与所述合成的自旋轨道矩效应层中的电流方向成夹角θ,0<θ≤90°。
可选地,所述磁性隧道结还包括:
钉扎层,用于实现对所述参考层磁化方向的钉扎;
耦合层,位于所述参考层和所述钉扎层之间。
第二方面,本发明提供一种存储器,包括上述基于自旋轨道矩的存储单元。
本发明提供的基于自旋轨道矩的存储单元,提出一种合成的自旋轨道矩效应层,包括第一自旋轨道矩效应层和第二自旋轨道矩效应层,其中第二自旋轨道矩效应层位于第一自旋轨道矩效应层上方,且第二自旋轨道矩效应层包括不同厚度的两个区域,第二自旋轨道矩效应层的自旋霍尔角与第一自旋轨道矩效应层的自旋霍尔角正负相反,当合成的自旋轨道矩效应层中通入电流时,在第二自旋轨道矩效应层的两个区域所产生的总体自旋霍尔角方向相反。在两个区域的表面各有一个磁性隧道结,两个磁性隧道结的自由层在方向相反的自旋轨道矩作用下向相反方向翻转,从而实现差分存储。
附图说明
图1为现有的自旋轨道矩磁性存储器单元的结构示意图;
图2为本发明一个实施例提供的基于自旋轨道矩的存储单元的结构示意图;
图3为本发明一个实施例提供的基于自旋轨道矩的存储单元的结构示意图;
图4为本发明一个实施例提供的基于自旋轨道矩的存储单元的结构示意图;
图5为本发明一个实施例提供的基于自旋轨道矩的存储单元的结构示意图;
图6为本发明一个实施例提供的基于自旋轨道矩的存储单元的读写电路示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
本发明实施例提供一种基于自旋轨道矩的存储单元,包括:合成的自旋轨道矩效应层和两个磁性隧道结,其中,
合成的自旋轨道矩效应层包括第一自旋轨道矩效应层和第二自旋轨道矩效应层,第二自旋轨道矩效应层位于第一自旋轨道矩效应层上方,且第二自旋轨道矩效应层包括不同厚度的两个区域,第二自旋轨道矩效应层的自旋霍尔角与第一自旋轨道矩效应层的自旋霍尔角正负相反,当合成的自旋轨道矩效应层中 通入电流时,在第二自旋轨道矩效应层的两个区域所产生的总体自旋霍尔角方向相反;
两个磁性隧道结各自包括从下至上层叠设置的自由层、势垒层和参考层,两个磁性隧道结各自的自由层分别与两个区域中的一个区域的表面接触。
图2为本发明实施例提供的一种基于自旋轨道矩的存储单元的结构示意图,如图2所示,存储单元20包括第一自旋轨道矩效应层201、第二自旋轨道矩效应层202、第一磁性隧道结203和第二磁性隧道结204,第二自旋轨道矩效应层202包括不同厚度的两个区域,第一磁性隧道结203位于较薄的区域表面,第二磁性隧道结204位于较厚的区域表面。
两层自旋霍尔效应层合成结构的每一层都包括但不限于重金属、拓扑绝缘材料、合金等多层结构,只需满足两层自旋霍尔效应层各自总体的自旋霍尔角正负相反。若第一自旋轨道矩效应层201采用自旋霍尔角为正值的材料,则第二自旋轨道矩效应层202采用自旋霍尔角为负值的材料;若第一自旋轨道矩效应层201采用自旋霍尔角为负值的材料,则第二自旋轨道矩效应层202采用自旋霍尔角为正值的材料。比较常用的自旋霍尔角为正值的材料包括但不限于Pt、Pd、Ir、Au、Bi 2Se 3以及这些材料的合金。比较常用的自旋霍尔角为负值的材料包括但不限于Ta、W、Mo以及这些材料的合金。其中第二自旋轨道矩效应层202两个区域的厚度需要根据具体材料特性设置,只要保证当合成的自旋轨道矩效应层中通入电流时,在第二自旋轨道矩效应层的两个区域所产生的总体自旋霍尔角方向相反即可,以便驱动两个磁性隧道结的自由层向相反的方向翻转,从而实现差分存储。
作为一种实施方式,第一自旋轨道矩效应层201采用Pt(自旋霍尔角为正值),厚度为1-10nm,第二自旋轨道矩效应层202采用W(自旋霍尔角为负值),其中较厚的区域的厚度为1-3nm,较薄的区域的厚度为0-0.9nm。
作为一种实施方式,第一自旋轨道矩效应层201采用Ta(自旋霍尔角为负值),厚度为1-10nm,第二自旋轨道矩效应层202采用Ir(自旋霍尔角为正值),其中较厚的区域的厚度为0.8-2nm,较薄的区域的厚度为0-0.7nm。
本发明实施例中,两个磁性隧道结的形状没有特别限制,可以为圆形、椭圆形、正方形、菱形、长方形中的一种,且尺寸可以相同或不同。两个磁性隧道结的层叠结构也不作特别限制,一般保持两个磁性隧道结具有相同的层叠结构。例如,磁性隧道结包括从下至上依次层叠设置的自由层、势垒层以及参考 层。自由层与第二自旋轨道矩效应层接触。自由层、参考层的材料包括但不限于Co、CoFe、CoFeB等磁性材料,或者Co/Mo/CoFeB、CoFe/Mo/CoFeB等通过铁磁或反铁磁耦合形成的合成磁性材料。势垒层的材料包括但不限于MgO、MgAl 2O 4等材料。参考层上可以设置耦合层与钉扎层,用来稳定参考层磁化方向。耦合层的材料包括但不限于Ru、Mo等材料。钉扎层的材料包括但不限于[Co/Pt]n、[Co/Pd]n、[CoFe/Pt]n等材料。以下描述及相关附图中,仅描述磁性隧道结的自由层、势垒层和参考层。
对于磁性隧道结,自由层和参考层可以有不同的磁化方向。如图2所示,磁性隧道结的自由层和参考层的磁化方向垂直于薄膜表面,当对存储单元20写入时,需要在合成的自旋轨道矩效应层中通入水平方向的电流,并且还要施加外部磁场,以使自由层磁矩翻转。为了实现无需外部磁场的磁矩翻转,作为一种实施方式,在图2的基础上作改进,形成图3所示的存储单元。如图3所示,在第一自旋轨道矩效应层201下方设置结外磁性偏置层205,结外磁性偏置层205的磁化方向平行于薄膜表面(即面内磁化),用于产生偏置磁场,当合成的自旋轨道矩效应层中通入水平方向的电流时,能够实现自由层无需外部磁场的磁矩翻转。在结外磁性偏置层205和第一自旋轨道矩效应层201之间设置绝缘层206,起到隔离作用。结外磁性偏置层205的材料为NiFe或者CoFe,绝缘层206的材料为SiO 2,如图3所示,绝缘层206包围住结外磁性偏置层205,结外磁性偏置层205产生的杂散场相当于外部磁场。作为另一种实施方式,如图4所示,在图2的基础上作改进,每个磁性隧道结的参考层上方分别设置结内磁性偏置层,结内磁性偏置层的磁化方向平行于薄膜表面,这种结构同样能够实现自由层无需外部磁场的磁矩翻转。
作为另一种实施方式,本发明的存储单元中,磁性隧道结的自由层和参考层的磁化方向平行于薄膜表面,且磁化方向与合成的自旋轨道矩效应层中的电流方向成夹角θ,0<θ≤90°。当θ=90°,存储单元的结构如图5所示,
Figure PCTCN2020140878-appb-000001
表示磁化方向垂直于纸面向里,⊙表示磁化方向垂直于纸面向外。当对存储单元写入时,只需要在合成的自旋轨道矩效应层中通入水平方向的电流,无需施加外部磁场,便可实现自由层磁矩翻转。因此,也就无需考虑磁性偏置层的问题。
对于上述实施例中的任意一种存储单元,由于第二自旋轨道矩效应层的厚度不同的两个区域在合成的自旋轨道矩效应层中通入电流时所产生的总体自旋霍尔角方向相反,因此无论通入正方向还是反方向电流,两个磁性隧道结的阻 值高低总是相反,从而实现差分存储。
图6示出了一种存储单元的读写电路,写操作时:WL通电选通晶体管,BLW通电,SL接地;读操作时:WL通电选通晶体管,SL通电,SA读取数据。
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种基于自旋轨道矩的存储单元,其特征在于,包括:
    合成的自旋轨道矩效应层,包括第一自旋轨道矩效应层和第二自旋轨道矩效应层,所述第二自旋轨道矩效应层位于所述第一自旋轨道矩效应层上方,且所述第二自旋轨道矩效应层包括不同厚度的两个区域,所述第二自旋轨道矩效应层的自旋霍尔角与所述第一自旋轨道矩效应层的自旋霍尔角正负相反,当所述合成的自旋轨道矩效应层中通入电流时,在所述两个区域所产生的总体自旋霍尔角方向相反;
    两个磁性隧道结,每个所述磁性隧道结包括从下至上层叠设置的自由层、势垒层和参考层,两个所述磁性隧道结各自的自由层分别与所述两个区域中的一个区域的表面接触。
  2. 根据权利要求1所述的存储单元,其特征在于,
    若所述第一自旋轨道矩效应层采用自旋霍尔角为正值的材料,则所述第二自旋轨道矩效应层采用自旋霍尔角为负值的材料;
    若所述第一自旋轨道矩效应层采用自旋霍尔角为负值的材料,则所述第二自旋轨道矩效应层采用自旋霍尔角为正值的材料。
  3. 根据权利要求1所述的存储单元,其特征在于,所述第一自旋轨道矩效应层采用Pt,厚度为1-10nm,所述第二自旋轨道矩效应层采用W,其中较厚区域的厚度为1-3nm,较薄区域的厚度为0-0.9nm。
  4. 根据权利要求1所述的存储单元,其特征在于,所述第一自旋轨道矩效应层采用Ta,厚度为1-10nm,所述第二自旋轨道矩效应层采用Ir,其中较厚区域的厚度为0.8-2nm,较薄区域的厚度为0-0.7nm。
  5. 根据权利要求1所述的存储单元,其特征在于,
    所述磁性隧道结的自由层和参考层的磁化方向垂直于薄膜表面。
  6. 根据权利要求5所述的存储单元,其特征在于,所述存储单元还包括:
    结外磁性偏置层,位于所述第一自旋轨道矩效应层下方,所述结外磁性偏置层的磁化方向平行于薄膜表面;
    绝缘层,位于所述结外磁性偏置层和所述第一自旋轨道矩效应层之间。
  7. 根据权利要求5所述的存储单元,其特征在于,所述磁性隧道结还包括:
    结内磁性偏置层,位于所述参考层上方,所述结内磁性偏置层的磁化方向 平行于薄膜表面。
  8. 根据权利要求1所述的存储单元,其特征在于,
    所述磁性隧道结的自由层和参考层的磁化方向平行于薄膜表面,且磁化方向与所述合成的自旋轨道矩效应层中的电流方向成夹角θ,0<θ≤90°。
  9. 根据权利要求5或8所述的存储单元,其特征在于,所述磁性隧道结还包括:
    钉扎层,用于实现对所述参考层磁化方向的钉扎;
    耦合层,位于所述参考层和所述钉扎层之间。
  10. 一种存储器,其特征在于,包括如权利要求1至9任一项所述的基于自旋轨道矩的存储单元。
PCT/CN2020/140878 2020-07-30 2020-12-29 基于自旋轨道矩的存储单元 WO2022021790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010749395.0A CN111864060B (zh) 2020-07-30 2020-07-30 基于自旋轨道矩的存储单元
CN202010749395.0 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022021790A1 true WO2022021790A1 (zh) 2022-02-03

Family

ID=72945688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140878 WO2022021790A1 (zh) 2020-07-30 2020-12-29 基于自旋轨道矩的存储单元

Country Status (2)

Country Link
CN (1) CN111864060B (zh)
WO (1) WO2022021790A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864060B (zh) * 2020-07-30 2023-02-28 浙江驰拓科技有限公司 基于自旋轨道矩的存储单元
CN113555498B (zh) * 2021-07-23 2023-10-03 致真存储(北京)科技有限公司 一种磁性随机存储器及其制备方法和控制方法
CN115691596A (zh) * 2021-07-27 2023-02-03 浙江驰拓科技有限公司 磁性存储单元及磁性存储器
CN113690366A (zh) * 2021-08-17 2021-11-23 中国科学院微电子研究所 Sot-mram存储单元及其制备方法
CN113690367A (zh) * 2021-08-17 2021-11-23 中国科学院微电子研究所 Sot-mram存储单元及其制备方法
CN113707804B (zh) * 2021-08-27 2023-12-15 致真存储(北京)科技有限公司 一种自旋轨道矩磁存储器及其制备方法
US20240112712A1 (en) * 2022-09-30 2024-04-04 International Business Machines Corporation Spin-orbit-torque (sot) mram with doubled layer of sot metal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170330070A1 (en) * 2016-02-28 2017-11-16 Purdue Research Foundation Spin orbit torque based electronic neuron
CN108376736A (zh) * 2017-02-01 2018-08-07 三星电子株式会社 磁装置和用于设置磁装置的方法
CN110197682A (zh) * 2018-02-27 2019-09-03 中电海康集团有限公司 存储单元、存储器以及数据写入方法
CN110660420A (zh) * 2018-06-28 2020-01-07 中电海康集团有限公司 Mram存储单元
CN111370573A (zh) * 2018-12-26 2020-07-03 中电海康集团有限公司 磁存储单元及sot-mram存储器
CN111864060A (zh) * 2020-07-30 2020-10-30 浙江驰拓科技有限公司 基于自旋轨道矩的存储单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778866B2 (ja) * 2015-03-31 2020-11-04 国立大学法人東北大学 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路
CN109891613B (zh) * 2016-10-21 2023-09-19 韩国科学技术院 半导体器件和半导体逻辑器件
CN106876582B (zh) * 2017-02-21 2019-11-29 中国科学院物理研究所 磁性隧道结及包括其的磁器件和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170330070A1 (en) * 2016-02-28 2017-11-16 Purdue Research Foundation Spin orbit torque based electronic neuron
CN108376736A (zh) * 2017-02-01 2018-08-07 三星电子株式会社 磁装置和用于设置磁装置的方法
CN110197682A (zh) * 2018-02-27 2019-09-03 中电海康集团有限公司 存储单元、存储器以及数据写入方法
CN110660420A (zh) * 2018-06-28 2020-01-07 中电海康集团有限公司 Mram存储单元
CN111370573A (zh) * 2018-12-26 2020-07-03 中电海康集团有限公司 磁存储单元及sot-mram存储器
CN111864060A (zh) * 2020-07-30 2020-10-30 浙江驰拓科技有限公司 基于自旋轨道矩的存储单元

Also Published As

Publication number Publication date
CN111864060B (zh) 2023-02-28
CN111864060A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2022021790A1 (zh) 基于自旋轨道矩的存储单元
JP5623507B2 (ja) スピントルクの切換を補助する層を有する、スピントルクの切換を持つ磁気積層体
US8173447B2 (en) Magnetoresistive element and magnetic memory
JP5143444B2 (ja) 磁気抵抗効果素子、それを用いた磁気メモリセル及び磁気ランダムアクセスメモリ
US7652913B2 (en) Magnetoresistance effect element and magnetic memory
JP6182993B2 (ja) 記憶素子、記憶装置、記憶素子の製造方法、磁気ヘッド
JP6540786B1 (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
KR20070097471A (ko) 하이 텍스쳐링된 자기저항 엘리먼트 및 자기 메모리를제공하기 위한 방법 및 시스템
JP5796349B2 (ja) 記憶素子の製造方法
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JP2009252878A (ja) 磁気記憶装置
WO2014050380A1 (ja) 記憶素子、記憶装置、磁気ヘッド
KR20190104865A (ko) 자기접합 및 하이브리드 캡핑층을 갖는 자기장치, 이를 이용하는 자기메모리 및 자기장치의 제공방법
JP2013115400A (ja) 記憶素子、記憶装置
JP2013115399A (ja) 記憶素子、記憶装置
WO2010087389A1 (ja) 磁気メモリ素子、磁気メモリ
US11038100B1 (en) Magnetoresistive element having a perpendicular AFM structure
JP6127511B2 (ja) 磁気抵抗素子、これを用いた磁気記憶装置、及びその製造方法
WO2010053039A1 (ja) 磁性記憶素子の初期化方法
JP5633729B2 (ja) 磁壁移動素子及びその製造方法
WO2021103852A1 (zh) 基于自旋轨道矩的差分存储单元及其制备方法
WO2017169291A1 (ja) 磁気抵抗素子、メモリ素子及び電子機器
JP2011253884A (ja) 磁気記憶装置
CN114447215A (zh) 磁性隧道结
WO2023060627A1 (zh) 一种sot-mram及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947717

Country of ref document: EP

Kind code of ref document: A1