WO2022021655A1 - 量子点及其制造方法 - Google Patents

量子点及其制造方法 Download PDF

Info

Publication number
WO2022021655A1
WO2022021655A1 PCT/CN2020/126910 CN2020126910W WO2022021655A1 WO 2022021655 A1 WO2022021655 A1 WO 2022021655A1 CN 2020126910 W CN2020126910 W CN 2020126910W WO 2022021655 A1 WO2022021655 A1 WO 2022021655A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
iib
zinc
acid
Prior art date
Application number
PCT/CN2020/126910
Other languages
English (en)
French (fr)
Inventor
徐昌焕
尹成模
Original Assignee
拓米(成都)应用技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓米(成都)应用技术研究院有限公司 filed Critical 拓米(成都)应用技术研究院有限公司
Publication of WO2022021655A1 publication Critical patent/WO2022021655A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present application relates to the field of luminescent materials, and particularly to luminescent quantum dots.
  • Quantum dots are nanometer-sized semiconductor substances. Due to the quantum confinement effect of the smaller the size of the quantum dot and the larger the band gap, it exhibits the characteristic of increasing energy density.
  • quantum dots have several advantages when compared with organic pigments in terms of their fluorescent properties: their spectrum is narrow and tunable, not only can they produce a symmetrical spectrum, but they are also externally photochemically stable. Therefore, quantum dots having a band gap equivalent to visible light and a direct band gap have the advantage of further improving the luminous efficiency.
  • a representative application example thereof is a light emitting diode (LED). In addition to general lighting, quantum dots can also be used as backlights for display devices.
  • LED light emitting diode
  • quantum dots have not been widely used in their application industries, and their application fields are also very limited, because conventional quantum dots usually contain Cd element and thus have high toxicity and are potentially dangerous to the environment. Therefore, as an alternative to the most common CdSe quantum dots (QDs), InP quantum dots have been developed, which produce the same broad spectrum as CdSe and are so far known for being environmentally friendly.
  • QDs CdSe quantum dots
  • the inventors have repeatedly researched and found that by providing new core and shell components and using a novel multilayer shell structure, It can improve the quantum efficiency of quantum dots and ensure the stability of its photochemical properties, and can make its fluorescent properties more excellent.
  • the present invention is developed and completed by improving quantum dots in both composition and structure.
  • an object of the present invention to provide multilayer shell quantum dots with novel compositions and structures. Furthermore, an object of the present invention is to provide quantum dots having high quantum efficiency and photochemical stability, and having excellent fluorescence properties.
  • the present invention provides a multi-layer shell quantum dot comprising:
  • first shell layer disposed over the core, the first shell layer comprising a IIIA-VA compound
  • the second shell layer disposed over the first shell layer, the second shell layer comprising a first IIB-VIA compound
  • the third shell layer disposed over the second shell layer, the third shell layer comprising a second IIB-VIA compound.
  • the IIIA-IIB-VA compound is InZnP.
  • the IIIA-VA compound is AlP.
  • the first IIB-VIA compound is ZnSe and the second IIB-VIA compound is ZnS.
  • the first IIB-VIA compound is ZnS and the second IIB-VIA compound is ZnSe.
  • the second shell layer comprises two or more sublayers, each sublayer comprising the first IIB-VIA compound.
  • the third shell layer comprises two or more sublayers, each sublayer comprising a second IIB-VIA compound.
  • the present invention provides a method for preparing the multilayer shell quantum dot of the first aspect, the method comprising the steps of:
  • precursor compound of group IIIA element, the precursor compound of group IIB element, organic solvent and optional dispersant are added into the reactor, and mixed to obtain a first mixed solution; then the precursor compound of group VA element is added and optional surfactants are added to the first mixed solution to react to form nanoparticles of compound IIIA-IIB-VA;
  • the surfactant can be selected from: trioctylphoshine oxide (TOPO), trioctylphosphine (TOP), octylamine, dioctylamine, trioctylamine Trioctyl amine, Hexadecylamine, Octadec ylamine, Dodecylamine, or any combination thereof.
  • TOPO trioctylphoshine oxide
  • TOP trioctylphosphine
  • octylamine dioctylamine
  • trioctylamine Trioctyl amine Hexadecylamine
  • Octadec ylamine Octadec ylamine
  • Dodecylamine or any combination thereof.
  • the dispersant may be selected from: lauric acid, palmitic acid, oleic acid, stearic acid, tetradecane myristic acid, eladic acid, eicosanoic acid, heneicosanoic acid, tricosanoic acid, docosanoic acid acid), tetracosanoic acid, hexacosanoic acid, heptacosanoic acid, octacosanoic acid, cis 13-docosanoic acid cis-13-docosenoic acid, or any combination thereof.
  • the precursor compound of the IIB group element can be selected from: zinc iodide (zinc iodide), zinc bromide (Zinc bromide), zinc chloride (Zinc Chloride), zinc fluoride (Zinc fluoride), zinc acetate (Zinc Acetate) ), Zinc acetylacetonate, Zinc carbonate, Zinc cyanide, Zinc nitrate, Zinc Oxide, Zinc peroxide, Perchloric acid Zinc perchlorate, Zinc Sulfate, or any combination thereof.
  • the precursor compound of the group IIIA element used to form the core may be selected from: Indium bromide, indium chloride, indium fluoride, indium nitrate, acetic acid Indium Acetate, Indium Acetylacetonate, Indium iodide, Indium oxide, Indium phosphide, Indium phosphide, Indium sulfate, or any combination thereof .
  • the precursor compound of the VA group element can be selected from: tris(dimethylamino)phosphine (DMA3P:Tris(dimethylamino)phosphine), tris(diethylamino)phosphine (DEA3P:Tris(diethylamino)phosphine), and their The combination.
  • DMA3P Tris(dimethylamino)phosphine
  • DE3P Tris(diethylamino)phosphine
  • DE3P Tris(diethylamino)phosphine
  • the precursor compound of the group IIIA element used to form the first shell layer can be selected from: aluminum chloride (aluminium c hloride), aluminum oleate (aluminium Oleate), aluminum octoate (aluminium Octanoate), aluminum monostearate (Aluminum Monostearate), Aluminum hydride, Aluminum stearate, Aluminum Palmitate, Aluminum organoborane, Aluminum isopropoxide, or any of them combination.
  • the above group VIA element may be sulfur (S), selenium (Se) or tellurium (Te).
  • the precursor compound of the above VIA group element can be selected from: Hexanethiol (Hexanethiol), Octanethiol (Octanethiol), Decanethiol (decanethiol), dodecanethiol (dodecanethiol), hexadecanethiol (Hexadecanethiol) , S-trioctylphosphine (S-trioctylphosphine), S-tributylphosphine (S-tributylphosphine), S-triphenylphosphine (S-triphenylphosphine), S-trioctylamine (S-triocthylamine), three Trimethylsilyl sulfur, Ammonium sulfide, Sodium sulfide, Se-Trioctylpho
  • the organic solvent may be selected from: 1-octadecene, 1-nonadecen, cis-2-methyl-7-octadecene (Cis-2-methyl-7 -octadecene), 1-heptadecene (1-Heptadecene), 1-hexadecene (1-Hexadecene), 1-pentadecene (1-Pentadecene), 1-tetradecene (1-Tetradecene), 1- 1-Tridecene, 1-Undecene, 1-Dodecene, 1-decene, or any combination thereof.
  • the first mixed solution is heated to 200°C to 350°C and then the precursor compound of the Group VA element is added, and then left for 5 to 30 minutes so that the reaction can proceed sufficiently.
  • the process of adding the precursor compound of the Group VA element to the heated first mixed solution is preferably completed within 0.1 to 5 seconds.
  • step (3) the addition of the second mixed solution is preferably completed within 10 minutes to 60 minutes.
  • step (4) the addition of the third mixed solution is preferably completed within 10 minutes to 60 minutes.
  • the average particle size of the multilayer shell quantum dots provided by the present invention may be in the range of 5 nm to 10 nm.
  • the multi-layer shell quantum dots provided by the present invention can generate visible light with a peak wavelength in the range of 440 nm to 640 nm.
  • the light generated by the multilayer shell quantum dots may have a peak with a width at half maximum (FWHM) below 45 nm.
  • the present invention provides a backlight device comprising the above-mentioned multilayer shell quantum dots.
  • the multi-layer shell quantum dots produced by the invention have new components and new structures, they can also show excellent fluorescence properties while ensuring high quantum efficiency and photochemical stability.
  • Al aluminum
  • forms the first shell which can minimize the lattice mismatch between the core of the IIIA-IIB-VA compound and the IIB-VIA shell, thereby improving the quantum efficiency.
  • the width at half maximum (FWHM) of the luminescence peak can also be reduced.
  • the multilayer shell quantum dot structure formed by the present invention also has excellent stability.
  • the multilayer shell quantum dots of the present invention have very excellent fluorescence properties. Compared with the InP quantum dots of the prior art, the multi-layer shell quantum dots of the present invention can show narrower FWHM at various wavelengths, better color reproduction rate, and higher quantum dot efficiency. In addition, the multi-layer shell quantum dots of the present invention can be used in the fields of backlight devices of light-emitting diodes, liquid crystal display devices, lighting equipment, solar cells, biosensors and the like. When using the multi-layer shell of the present invention to manufacture a white LED, the thermal stability is good, the power generation efficiency is very high, the lifespan is long, and the energy is saved.
  • Figure 1 schematically shows the structure of a multilayer shell quantum dot according to an embodiment of the present invention
  • FIG. 2 shows the photoluminescence spectra of the quantum dots fabricated in Example 1 and Comparative Example 1.
  • FIG. 3 shows photoluminescence spectra of quantum dots fabricated in Comparative Examples 2 and 3.
  • FIG. 3 shows photoluminescence spectra of quantum dots fabricated in Comparative Examples 2 and 3.
  • a second layer that is "above” a first layer means that the second layer is located further from the substrate than the first layer.
  • the second layer can be in direct contact with the first layer, or one or more other layers can be located between the second layer and the first layer.
  • compound precursors of group IIIA elements and group IIB elements, organic solvents and optional dispersants are added into the reactor and mixed to obtain a first mixed solution, and after obtaining the first mixed solution After mixing the solution, heating is performed; the precursor compound of group VA element is added to the heated first mixed solution to react to form nanoparticles of IIIA-IIB-VA compound. Additional precursor compounds of group IIIA elements are then added to the reactor, which reacts to form a first shell layer comprising the IIIA-VA compound over the surface of the nanoparticles. A second shell layer comprising the first IIB-VIA compound and a third shell layer comprising the second IIB-VIA compound are then formed by adding a precursor compound of a group IIB element and a precursor compound of a different group VIA element, respectively.
  • the molar ratio of the precursor compound of the group IIIA element to the precursor compound of the group VA element may be 1:0.5 to 1:5. It is preferable to add an excess amount of the group VA element precursor compound in order to allow the reaction to proceed sufficiently.
  • the advantage of adding an excess amount of the group VA element precursor compound is that the remaining group VA element precursor compound after the reaction can react with the additional group IIIA element precursor compound added in step (2) to react in the nanometer A first shell layer comprising the IIIA-VA compound is formed over the surface of the particle.
  • the molar ratio of the precursor compound of the IIB group element to the precursor compound of the first group VA element is not less than 1:1, more preferably 1:1 to 2 :1.
  • the molar ratio of the precursor compound of the IIB group element to the precursor compound of the second group VA element is not less than 1:1, more preferably 1:1 to 2 :1.
  • the manufacturing method it is possible to manufacture by a one-pot method, which is simple and can manufacture a stable quantum dot with excellent quantum efficiency.
  • the one-pot synthesis of quantum dots can omit the purification process, reduce the amount of solvent used, and shorten the overall volume of quantum dots compared with the two-pot method. The synthesis time is more economical.
  • the surfactants can be combined with coordination bonds, for example, the surfactants include: tri-n-octylphoshine oxide (trioctylphoshine oxide), trioctylphoshine (trioctylphoshine), decylamine (decylamine), didecylamine ( didecylamine), tridecylamine (tridecylamine), tetradecylamine (tetradecylamine), pentadecylamine (pentadecylamine), hexadecylamine (hexadecylamine), octadecylamine (octadecylamine), n-undecylamine (undecylamine), bis Octadecylamine (dioctadecylamine), N,N-dimethyldecylamine (N,N-dimethyldecylamine), N,
  • the above-mentioned surfactants include: trioctylphoshineoxide, trioctylphoshine, octylamine, dioctylamine, trioctylamine, ten Hexadecylamine, Octa hexadecylamine, dodecylamine, or any combination thereof. More preferably, the surfactant is trioctyl phosphine oxide.
  • the quantum efficiency is not lowered when the alloy quantum dots are surface-treated.
  • the above-mentioned dispersing agent can uniformly disperse the precursor compound of the group IIB element in the organic solvent.
  • the above-mentioned dispersant may be an unsaturated fatty acid, for example, the unsaturated fatty acid may be selected from: lauric acid, palmitic acid, oleic acid, octadecanoic acid stearic acid, myristic acid, eladic acid, eicosanoic acid, heneicosanoic acid, behenicosanoic acid (tricosanoic acid), docosanoic acid, tetracosanoic acid, hexacosanoic acid, heptacosanoic acid, octacosanoic acid (octacosanoic acid) and cis-13-docosenoic acid, or any combination thereof, without limitation.
  • the unsaturated fatty acid may be selected from: lauric acid, palmitic acid, oleic acid, octadecanoic acid stearic acid, myristic acid, ela
  • the precursor compound of the group IIB element can be a compound containing zinc, such as zinc iodide (zinc iodide), zinc bromide (zinc bromide), zinc chloride (zinc chloride), zinc fluoride (zinc Fluoride), acetic acid Zinc Acetate, Zinc acetylacetonate, Zinc Carbonate, Zinc cyanide, Zinc Nitrate, Zinc Oxide, Zinc Peroxide , Zinc perchlorate, Zinc Sulfate, or any combination thereof.
  • zinc iodide zinc iodide
  • zinc bromide zinc chloride
  • zinc fluoride zinc fluoride
  • acetic acid Zinc Acetate Zinc acetylacetonate
  • Zinc Carbonate Zinc cyanide
  • Zinc Nitrate Zinc Oxide
  • Zinc Peroxide Zinc perchlorate
  • Zinc Sulfate Zinc Sulfate
  • the precursor compound of the group IIIA element used to form the core may be an indium-containing compound such as indium bromide, indium chloride, indium fluoride, indium nitrate Nitrate), Indium Acetate, Indium Acetylacetonate, Indium iodide, Indium oxide, Indium phosphide, Indium sulfate, or them Any combination of , but not limited to this.
  • the precursor compound of the above-mentioned group IIB element is preferably Zinc Oxide, Zinc Acetate, or a combination thereof.
  • the precursor compound of the above group IIIA element is preferably indium bromide, indium chloride, indium iodide, indium acetate, or a combination thereof.
  • the precursor compound of the above-mentioned IIB group element may also contain mercury fluoride (mercury fluoride), mercury cyanide (mercury cyanide), mercury nitrate (mercury nitrate), mercury acetate (mercury Acetate), mercury iodide (mercury iodide) , mercury bromide, mercury chloride, mercury Oxide, mercury perchlorate, mercury sulfate, or any combination thereof, but not limited to this .
  • a lead-containing precursor compound can also be used, and the above-mentioned lead-containing compound precursor contains lead acetate (Lead Acetate), Lead bromide, lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulfate ( Lead Sulfate), lead carbonate (Lead carbonate), etc., but not limited thereto.
  • Compound precursors of group IIIA elements used to form the first shell layer are compounds containing aluminum, such as aluminum chloride, aluminum oleate, aluminum Octanoate, aluminum monostearate (Aluminum Monostearate), Aluminum hydride (Aluminum hydride), Aluminum stearate (aluminum stearate), Aluminum Palmitate (Aluminum Palmitate), Aluminum organoborane (Aluminum organoborane), Aluminum isopropoxide (aluminum isopropoxide) or any of them combination, but not limited to these.
  • aluminum such as aluminum chloride, aluminum oleate, aluminum Octanoate, aluminum monostearate (Aluminum Monostearate), Aluminum hydride (Aluminum hydride), Aluminum stearate (aluminum stearate), Aluminum Palmitate (Aluminum Palmitate), Aluminum organoborane (Aluminum organoborane), Aluminum isopropoxide (aluminum isopropoxide) or any of them combination
  • the compound precursor of the above-mentioned group IIIA element used to form the first shell layer is selected from: aluminum chloride (aluminium chloride), aluminum oleate (aluminium Oleate), aluminum monostearate (Aluminum Monosteate), aluminum octoate ( aluminium Octanoate), aluminium isopropoxide or any combination thereof.
  • the VIA group element may be sulfur, selenium or tellurium, and is not limited thereto.
  • the Group VIA element may be in powder form.
  • the precursor compound of the VIA group element is preferably a sulfur-containing compound or a selenium-containing compound, for example, hexane thiol (hexane thiol), octane thiol (octane thiol), decane thiol (Decane thiol), Dodecane thiol (dodecane thiol), hexadecane thiol (hexadecane thiol), S-tri-n-octylphosphine (Sulfur-trioctylphoshine), S-tributylphosphine (Sulfur-tributylphosphine), S-triphenyl Sulfur-triphenylphosphine, S-trioctyl amine, Tri
  • the precursor compound precursor of the above-mentioned Group VIA element may be a powder or a liquid state.
  • the precursor compounds of the above-mentioned VIA elements include tellurium in addition to sulfur and selenium.
  • the above-mentioned precursor compound of the group VIA element containing tellurium is selected from: Te-tri-n-octylphosphine (Tellur-trioctylphoshine), Te-tributylphosphine (Tellur-tributylphosphine) or Te-triphenylphosphine (Tellur-triphenylphosphine) triphenylphosphine) and the like, without being limited to these.
  • powdered sulfur or selenium dispersed in a surfactant can be used as a precursor for the group VIA element.
  • the organic solvent includes: 1-octadecene, 1-nonadecen, cis-2-methyl-7-octadecene ), 1-heptadecene (1-Heptadecene), 1-hexadecene (1-Hexadecene), 1-pentadecene (1-Pentadecene), 1-tetradecene (1-Tetradecene), 1-tridecene 1-Tridecene, 1-Undecene, 1-Dodecene, 1-decene, Oleylamine, or any combination thereof , and not limited to these.
  • the organic solvent is 1-octadecene or oleylamine.
  • Heating is performed after obtaining the above-mentioned first mixed solution, and again after adding the above-mentioned precursor compound of the group VA element and after adding the precursor of the group VIA element.
  • the above-mentioned heating temperature is preferably in the range of 100-350°C, for example, 100°C-200°C, 200°C-350°C, and heating can also be performed at 250°C-350°C.
  • the heating temperature is lower than 100° C. or over 350° C., when a shell layer is formed on the surface of the core, lattice mismatch between the core and the shell may occur, resulting in low quantum efficiency.
  • the precursor compound of the group IIB element, the precursor compound of the group IIIA element, the organic solvent and the dispersant are added to the reactor, and the first mixed solution is obtained by mixing uniformly;
  • the temperature of the vessel is maintained at 100°C-170°C, such as at 120°C-160°C, and the vacuum state is maintained for 1-3 hours, such as 2 hours.
  • the first mixed solution is heated to a temperature range of 100-350°C, such as 100°C-200°C, 200°C-350°C, 250°C-350°C.
  • the precursor compound of the group VA element and the optional liquid surfactant are added to the mixed liquid in the reactor, and the reaction is heated to form nanoparticles of the IIIA-IIB-VA compound.
  • a solution containing a precursor compound of a group IIB element and a precursor compound of a different group VIA element are added to the solution in the reactor together, and after the reaction, a second shell layer and a third shell are sequentially formed over the surface of the nanoparticles Floor.
  • the group VA element precursor compound When adding the group VA element precursor compound to the above heated first mixed solution, the group VA element precursor is preferably added within a relatively short period of time, such as 0.1 seconds to 5 seconds, more preferably 0.5 seconds to 2 seconds. The compound is added to the first mixed solution.
  • the group IIIA element precursor compound, the group IIB element precursor compound and the group VA element precursor compound be uniformly mixed. After rapidly injecting the group VA element precursor compound solution into the first mixed solution, it needs to be left for 5 minutes to 30 minutes, for example, it can be left for 5 minutes to 20 minutes, and it can be left for 5 minutes to 10 minutes.
  • the precursor compound, the group IIB element precursor compound and the group VA element precursor compound are fully reacted.
  • the precursor compound of the Group VIA element described above is then added and heated. Different from the rapid addition of the compound solution of the group VA element in the first mixed solution, the precursor compound of the group VIA element should be added slowly, for example, within 10 minutes to 60 minutes, preferably within 10 minutes to 30 minutes. Therefore, the solution containing the precursor compound of the Group VIA element described above can be added dropwise to the reactor.
  • the shell structure on the surface of the quantum dot core can be made stronger and more stable and more uniformly coated without being affected by temperature, thereby improving the quantum efficiency .
  • the compound precursor of the above-mentioned group VIA element can be left for 20 minutes to 60 minutes to fully react in the mixed solution to which the above-mentioned group VA element compound solution is added.
  • After adding the above-mentioned precursor compound of group VIA element it can be heated at 100°C-200°C, 200°C-350°C, for example, heating at 250°C-330°C according to the aforementioned conditions.
  • the reactor is placed for 20 minutes to 60 minutes, and the temperature is lowered to below 50° C., and then the synthesized quantum dots are purified.
  • the purification described here can be carried out more than three times using organic solvents such as acetone.
  • the alloy-shell structure quantum dots obtained after the solvent is completely dried can be redispersed and stored in solvents such as toluene, chloroform and n-hexane.
  • the multi-layer shell quantum dots of the present invention have significantly better color reproducibility, stability and quantum efficiency.
  • the quantum dots of the multi-layer shell structure of the present invention can generate visible light with a peak wavelength in the range of 440nm-640nm, preferably 470nm-600nm.
  • the average particle diameter of the multilayer shell quantum dots of the present invention is 3 nm-10 nm, preferably 5 nm-10 nm. Increasing quantum dot dispersion stability prevents quantum dot inefficiencies.
  • the multilayer shell structure quantum dots of the present invention have a full width at half maximum (FWHM; ) of 40 nm or less.
  • the multilayer shell quantum dots according to the present invention can be used in backlight devices, which can be light emitting diode (LED) backlight devices.
  • backlight devices for light emitting diodes (LEDs)
  • the backlight devices can also be applied to liquid crystal displays (LCDs), lighting equipment, solar cells, biosensors, and the like, and are not limited to these fields.
  • LCDs liquid crystal displays
  • the quantum efficiency (QY) and full width at half maximum (FWHM) of the quantum dots were measured using the C11347-01 quantum efficiency measurement system of Hamamatsu Corporation.
  • the particle size of quantum dots was measured by TEM (Transmission Electron Microscopy).
  • Example 1 Preparation of InZnP/AlP/ZnSe/ZnS multilayer shell quantum dots
  • the first UV absorption maximum wavelength range is 440nm-480nm.
  • Aluminium oleate was added to the reactor as a precursor for aluminium, which was reacted with the excess tris(dimethylamino)phosphine present in solution.
  • Aluminum oleate was used in an amount of 0.1-0.2 mmol, and the reaction was continued for 5 minutes to 1 hour at a temperature of 180-300 °C to form a first shell of AlP on the surface of the InZnP core.
  • a zinc solution was obtained by dissolving 0.6 mmol of zinc acetate and 1.2 mmol of oleic acid in a 1-octadecene solvent, and performing vacuum treatment at 120° C. for 1 hour.
  • the zinc solution and Se-tri-n-octylphosphine (Se/TOP) were added to the above reactor together, and the atmosphere in the reactor was replaced with nitrogen (N 2 ), and then the temperature was 200°C, 220°C, and 240°C, respectively. Heating for 30 minutes allowed the reaction to form a second shell of ZnSe on the quantum dots.
  • a zinc solution was obtained by dissolving 0.6 mmol of zinc acetate and 1.2 mmol of oleic acid in a 1-octadecene solvent, and performing vacuum treatment at 120° C. for 1 hour.
  • the zinc solution and S-tri-n-octylphosphine (S/TOP) were added to the solution in the reactor together, and the atmosphere in the reactor was replaced with nitrogen (N 2 ), and then the temperature in the reactor was 280°C and 300°C.
  • the reaction was carried out by heating for 2 hours separately to form a third shell of ZnS on the quantum dots.
  • the thickness of each layer shell and the final size of the quantum dots are adjusted, so that the core-shell quantum dots shown in FIG. 1 can be fabricated.
  • an excess Zn solution can also be added first, and then only Se/TOP is injected in the first stage, and only S/TOP is injected in the last stage, thereby forming ZnSe shells on the AlP shells in turn. and ZnS shell.
  • the obtained reaction product was cooled to normal temperature. Ethanol was added to the cooled reaction mixture to precipitate it. The formed precipitate is centrifuged, and the obtained quantum dots are dispersed in cyclohexane or toluene.
  • the reactants not containing aluminum oleate and those containing aluminum oleate were sampled for PL (Photoluminescence) analysis.
  • the produced quantum dots were analyzed for photoluminescence using excitation light of 365 nm or 458 nm.
  • the results are shown in Figure 2.
  • the fluorescence intensity of the reactant using aluminum (solid line, Example 1) was significantly higher than that of the reactant not using aluminum (dashed line, Comparative Example 1), and its half-peak width was 38nm-45nm, the peak emission wavelength is 530nm-540nm.
  • the quantum efficiency can reach more than 83%.
  • Quantum dots were produced in the same manner as in Example 1. The produced quantum dots were subjected to photoluminescence analysis using excitation light of 365 nm or 458 nm. The results are shown in Table 1 below.
  • Example 2 Aluminum Oleate Content (mmol) QY(%) FWHM Example 2 0.01 83 45 Example 3 0.02 85 40 Example 4 0.05 87 41 Example 5 0.1 90 39 Example 6 0.2 86 38
  • quantum dots were produced in the same manner as in Example 1, except that aluminum monostearate was used instead of aluminum oleate at the content shown in Table 2.
  • the produced quantum dots were analyzed for photoluminescence using excitation light of 365 nm or 458 nm. The results are shown in Table 2.
  • Example 10 Aluminum monostearate content (mmol) QY(%) FWHM Example 7 0.01 80 44
  • Example 8 0.02 83 45
  • Example 9 0.05 89 40
  • Example 10 0.1 86 39
  • Quantum dots were fabricated in the same manner as in Example 1, except that the first shell layer of AlP was not formed, thereby obtaining quantum dots comprising an InZnP core and two shell layers (ZnSe and ZnS).
  • Example 1 A method similar to Example 1 was used, except that no sulfur precursor was used, to fabricate InZnP/AlP/ZnSe quantum dots synthesized with an aluminum intermediate shell.
  • the InZnP/AlP/ZnS quantum dots synthesized with the aluminum intermediate shell were fabricated by the method similar to Example 1 except that the selenium precursor was not used.
  • the multilayer shell quantum dots of the present invention can yield significantly higher quantum efficiencies and significantly narrower width at half maximum (FWHM). It can also be seen from the results in Table 3 that after the formation of the Al-containing intermediate shell on the InZnP core, its optical properties are improved. After the formation of the aluminum intermediate shell, the synthesis of shell ZnSe or shell ZnS has a good effect. In this way, the phenomenon of lattice mismatch between the InZnP core and the ZnSe or ZnS shell can be reduced, and its optical properties can be improved. The results are shown in FIG. 3 , wherein the solid line is the photoluminescence spectrum of Comparative Example 2, and the dotted line is the photoluminescence spectrum of Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

涉及量子点及其制备方法。所述量子点是多层壳量子点,该多层壳量子点包括:包含IIIA-IIB-VA化合物的核;设置在所述核上方的第一壳层,该第一壳层包含IIIA-VA化合物;设置在所述第一壳层上方的第二壳层,该第二壳层包含第一IIB-VIA化合物;和设置在所述第二壳层上方的第三壳层,该第三壳层包含第二IIB-VIA化合物。

Description

量子点及其制造方法 技术领域
本申请涉及发光材料领域,且特别涉及发光量子点。
背景技术
量子点(QD)是纳米大小的半导体物质。由于量子点的尺寸越小带隙(band gap)越大的量子局限效应,其呈现出能量密度增加的特性。特别是量子点在荧光特性上与有机色素相比较时具有若干优点:其光谱窄并且可调节,不仅可产生对称的光谱,而且具有外部的光化学稳定性。所以,拥有相当于可见光的带隙以及直接带隙的量子点具有进一步提高发光效率的优点。对于具有在可见光区域内可自由调节的波长并且光稳定性卓越的量子点,其代表性的应用例子是发光二极管(LED)。除普通照明外,量子点还可以作为显示装置的背光。
然而,量子点在其应用产业中并没有得到广泛使用,适用领域也非常有限,其原因是常规量子点通常包含Cd元素因而具有较高的毒性,对环境具有潜在的危险。因此,作为最常见的CdSe量子点(QD)的替代品,研发出了InP量子点,它可产生与CdSe一样的广范围的光谱,到目前为止更是以环保著称。
发明内容
1.技术内容:
为了解决上述一直存在的问题,并且为了赋予量子点壳体结构更有价值的特性,发明人经过反复研究发现:通过提供新的核体成分和壳体成分并且利用新型的多层壳体结构,可提高量子点的量子效率以及保障其光化学性的稳定性,并且可使其荧光特性更卓越。本发明正是通过在组成和结构两方面对量子点进行改善而研发完成的。
因此,本发明的目的是提供具有新成分和新结构的多层壳量子点。此外,本发明的目的是提供具有高的量子效率和光化学稳定性,并且具有优秀的荧光特性的量子点。
在第一方面,本发明提供了一种多层壳量子点,该多层壳量子点包括:
包含IIIA-IIB-VA化合物的核,
设置在所述核上方的第一壳层,该第一壳层包含IIIA-VA化合物;
设置在所述第一壳层上方的第二壳层,该第二壳层包含第一IIB-VIA化合物;和
设置在所述第二壳层上方的第三壳层,该第三壳层包含第二IIB-VIA化合物。
在一个实施方案中,所述IIIA-IIB-VA化合物是InZnP。
在一个实施方案中,所述IIIA-VA化合物是AlP。
在一个实施方案中,所述第一IIB-VIA化合物是ZnSe,所述第二IIB-VIA化合物是ZnS。
在一个实施方案中,所述第一IIB-VIA化合物是ZnS,所述第二IIB-VIA化合物是ZnSe。
在一个实施方案中,所述第二壳层包含两个或更多个亚层,每个亚层包含第一IIB-VIA化合物。
在一个实施方案中,所述第三壳层包含两个或更多个亚层,每个亚层包含第二IIB-VIA化合物。
在第二方面,本发明提供了制备第一方面的多层壳量子点的方法,该方法包括步骤:
(1)在反应器中加入IIIA族元素的前体化合物、IIB族元素的前体化合物、有机溶剂和任选的分散剂,并混合得到第一混合溶液;然后将VA族元素的前体化合物和任选的表面活性剂加入所述第一混合溶液中,反应形成IIIA-IIB-VA化合物的纳米颗粒;
(2)向所述反应器中加入另外的IIIA族元素的前体化合物,反应后在所述纳米颗粒的表面上方形成包含IIIA-VA化合物的第一壳层;
(3)将IIB族元素的前体化合物、有机溶剂、任选的表面活性剂和任选的分散剂混合从而得到第二混合溶液,并将所述第二混合溶液和第一种VIA族元素的前体化合物一起加入所述反应器中的溶液中,反应后在所述纳米颗粒的表面上方形成第二壳层,所述第二壳层包含第一IIB-VIA化合物;
(4)将IIB族元素的前体化合物、有机溶剂、任选的表面活性剂和任选的分散剂混合从而得到第三混合溶液,并将所述第三混合溶液和第二种VIA族元素的前体化合物一起加入所述反应器中,反应后在所述纳米颗粒的表面上方形成第三壳层,所述第三壳层包含第二IIB-VIA化合物;和
(5)进行固液分离从而得到多层壳量子点。
所述表面活性剂可以选自:三正辛基氧化膦(trioctylphoshine oxide,TOPO),三辛基膦(trioctyl phosphine,TOP),辛胺(octylamine),二正辛胺(dioctylami ne),三正辛胺(trioctyl amine),十六胺(Hexadecylamine),十八胺(Octadec ylamine),十二胺(Dodecylamine),或它们的任意组合。
所述分散剂可以选自:十二烷酸(lauric acid),十六烷酸(palmitic acid),油酸(oleic acid),十八烷酸(硬脂酸)(stearic acid),十四烷酸(myristic acid),反油酸(elaidic acid),二十烷酸(eicosanoic acid),二十一烷酸(heneicosanoic acid),二十三烷酸(tricosanoic acid),二十二烷酸(docosanoic acid),二十四烷酸(tetracosanoic acid),二十六烷酸(hexacosanoic acid),二十七烷酸(heptacosanoic acid),二十八烷酸(octacosanoic acid),顺式13-二十二碳烯酸(cis-13-docosenoic acid),或它们的任意组合。
所述IIB族元素的前体化合物可以选自:碘化锌(zinc iodide),溴化锌(Zinc bromide),氯化锌(Zinc Chloride),氟化锌(Zinc fluoride),乙酸锌(Zinc Acetate),乙酰丙酮锌(zinc acetylacetonate),碳酸锌(Zinc carbonate),氰化锌(Zinc cyanide),硝酸锌(Zinc nitrate),氧化锌(Zinc Oxide),过氧化锌(Zinc peroxide),高氯酸锌(Zinc perchlorate),硫酸锌(Zinc Sulfate),或它们的任意组合。
用于形成所述核的IIIA族元素的前体化合物可以选自:溴化铟(Indium bromide),氯化铟(indium chloride),氟化铟(indium fluoride),硝酸铟(Indium Nitrate),醋酸铟(Indium Acetate),乙酰丙酮铟(Indium Acetylacetonate),碘化铟(Indium iodide),氧化铟(Indium oxide),磷化铟,(Indium phosphide),硫酸铟(Indium sulfate),或它们的任意组合。
所述V A族元素的前体化合物可选自:三(二甲氨基)膦(DMA3P:Tris(dimethylamino)phosphine),三(二乙氨基)膦(DEA3P:Tris(diethylamino)phosphine),和它们的组合。
用于形成第一壳层的IIIA族元素的前体化合物可以选自:氯化铝(aluminium c hloride),油酸铝(aluminium Oleate),辛酸铝(aluminium Octanoate),单硬脂酸铝(Aluminum Monostearate),氢化铝(Aluminum hydride),硬脂酸铝(al uminum stearate),棕榈酸铝(Aluminum Palmitate),有机硼烷铝(Aluminum  organoborane),异丙醇铝(aluminum isopropoxide),或它们的任意组合。
上述VIA族元素可能是硫(S),硒(Se)或者碲(Te)。上述VIA族元素的前体化合物可以选自:己硫醇(Hexanethiol),辛硫醇(Octanethiol),癸硫醇(decanethiol),十二烷硫醇(dodecanethiol),十六烷硫醇(Hexadecanethiol),S-三正辛基膦(S-trioctylphosphine),S-三丁基膦(S-tributylphosphine),S-三苯基膦(S-triphenylphosphine),S-三辛胺(S-triocthylamine),三甲基硅烷基硫(trimethylsilyl sulfur),硫化铵(Ammonium sulfide),硫化钠(sodium sulfide),Se-三正辛基膦(Se-Trioctylphosphine),Se-三丁基膦(Se-tributylphosphine),Se-三苯基膦(Se-triphenylphosphine),或它们的任意组合。
所述有机溶剂可以选自:1-十八烯(1-Octadecene),1-十九烯(1-Nonadecen),顺-2-甲基-7-十八烯(Cis-2-methyl-7-octadecene),1-十七烯(1-Heptadecene),1-十六烯(1-Hexadecene),1-十五烯(1-Pentadecene),1-十四烯(1-Tetradecene),1-十三烯(1-Tridecene),1-十一烯(1-Undecene),1-十二烯(1-Dodecene),1-癸烯(1-decene),或它们的任意组合。
在所述步骤(1)中,将所述第一混合溶液加热至200℃至350℃之后添加所述VA族元素的前体化合物,然后放置5分钟到30分钟,以便使反应充分进行。向加热的第一混合溶液中添加VA族元素的前体化合物的过程优选在0.1秒至5秒内完成。
在步骤(3)中,所述第二混合溶液的添加优选在10分钟至60分钟内完成。在步骤(4)中,所述第三混合溶液的添加优选在10分钟至60分钟内完成。
通过本发明提供的多层壳量子点的平均粒径可以在5nm到10nm的范围内。
通过本发明提供的多层壳量子点能够产生峰值波长在440nm到640nm范围内的可见光。所述多层壳量子点产生的光可具有半峰宽(FWHM)在45nm以下的峰。
在第三方面,本发明提供了包含上述多层壳量子点的背光装置。
2.技术效果:
由于本发明产生的多层壳量子点具有新的成分和新的结构,因此在保证较高的量子效率和光化学稳定性的同时,也可显示出很优秀的荧光特性。增加Al(铝)后形成了第一壳层,可将IIIA-IIB-VA化合物的核与IIB-VIA壳层的晶格失配最小化,从而提高量子效率。此外,通过将晶格失配最小化,还可减小发光峰的半峰宽(FWHM)。此外,通过本发明形成的多层壳量子点结构还具有优秀的稳定性。
此外,本发明的多层壳量子点具有非常优秀的荧光特性。与现有技术的InP量子点相比,本发明的多层壳量子点在多种波长下可以显示出较窄的FWHM,颜色再现率更优秀,量子点效率更高。此外,本发明的多层壳量子点可用于发光二极管的背光装置,液晶显示装置,照明设备,太阳能电池,生物传感器等领域。当利用本发明的多层壳制造白色LED时,热稳定性较好,发效率也非常高,具有寿命长,并且节能。
附图说明
为了更好地理解本发明并显示如何实现本发明,现在将参照附图仅通过举例的方式来描述本发明的实施方案,其中:
图1示意性地显示了根据本发明一个实施方案的多层壳量子点的结构;
图2示出了实施例1和比较例1中制造的量子点的光致发光光谱。
图3示出了比较例2和3中制造的量子点的光致发光光谱。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。本发明可以以各种不同形式来体现,并且不限于这里所说明的实施例。
下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
在说明书和权利要求书中使用的表示尺寸、物理特性、加工参数、成分量、反应条件等的所有数字在任何情况下应被理解为由术语“约”修饰。
应理解本文公开的所有范围涵盖范围起始值和范围结束值以及其中包含的任何和所有子范围。例如,“1到10”的所述范围应被认为包括最小值1和最大值10之间(包括所述最小值和最大值)的任何和所有子范围;也就是说,以最小值1或更大值开始并且以最大值10或更小值结束的所有子范围,例如1到2、3到5、8到10等。
术语“上方”是指“更远离基底”。例如,位于第一层“上方”的第二层意味着第二层的位置比第一层更远离基底。第二层可以与第一层直接接触,或者一个或多个其它层 可以位于第二层和第一层之间。
本文中对本发明的讨论可能将某些特征描述为“特别地”或“优选地”在某些限度内(例如,“优选地”、“更优选地”或“甚至更优选地”在某些限度内)。应当理解,本发明不限于这些特别或优选的限度而是涵盖本公开的整个范围。
在本发明的量子点制造方法中;将IIIA族元素和IIB族元素的化合物前驱体、有机溶剂和任选的分散剂添加到反应器内并混合从而获得第一混合溶液,并在获得第一混合溶液后进行加热;在加热的第一混合溶液中添加VA族元素的前体化合物,反应形成IIIA-IIB-VA化合物的纳米颗粒。随后向反应器中加入另外的IIIA族元素的前体化合物,反应后在所述纳米颗粒的表面上方形成包含IIIA-VA化合物的第一壳层。然后通过添加IIB族元素的前体化合物和不同VIA族元素的前体化合物,分别形成包含第一IIB-VIA化合物的第二壳层以及包含第二IIB-VIA化合物的第三壳层。
在本发明的量子点制造方法的步骤(1)中,IIIA族元素的前体化合物与VA族元素前体化合物的摩尔比可以为1:0.5至1:5。优选加入过量的VA族元素前体化合物,以便使反应充分进行。此外,加入过量的VA族元素前体化合物的优点还在于,反应后剩余的VA族元素前体化合物可在步骤(2)中加入的另外的IIIA族元素的前体化合物反应从而在所述纳米颗粒的表面上方形成包含IIIA-VA化合物的第一壳层。
在本发明的量子点制造方法的步骤(3)中,IIB族元素的前体化合物与第一种VA族元素的前体化合物的摩尔比不小于1:1,更优选为1:1至2:1。
在本发明的量子点制造方法的步骤(4)中,IIB族元素的前体化合物与第二种VA族元素的前体化合物的摩尔比不小于1:1,更优选为1:1至2:1。
根据上述制造方法,可以利用一锅法(one-pot)进行制造,这个方法简单且可以制造出稳定的量子效率优秀的量子点。特别是,一锅法(one-pot)合成量子点在与两锅法(two-pot)制造量子点的情况相比时,可以省略提纯的过程,也可以减少溶剂的使用量,可以缩短整体的合成时间,更具有经济性。
上述的表面活性剂可以进行配位键结合,例如,所述表面活性剂包括:三正辛基氧化膦(trioctylphoshine oxide),三辛基膦(trioctylphoshine),癸胺(decylamine),二癸胺(didecylamine),十三烷基胺(tridecylamine),十四胺(tetradecylamine),正十五胺(pentadecylamine),十六胺(hexadecylamine),十八胺(octadecylamine),正十一胺(undecylamine),双十八烷基胺(dioctadecylamine),N,N-二甲基癸胺(N,N-dimethyldecylamine),N,N-二甲基月桂胺(N,N-dimethyldodecylamine),N,N-二 甲基十六胺(N,N-dimethylhexadecylamine),N,N-二甲基十四胺(N,N-dimethyltetradecylamine),N,N-二甲基十三胺(N,N-dimethyltridecylamine),N,N-二甲基十一胺(N,N-dimethylundecylamine),八面体十六烷基胺(Octa hexadecylamine),N-甲基十八胺(N-methyloctadecylamine),十二胺(dodecylamine),双十二烷基胺(didodecylamine),三月桂胺(tridodecylamine),环十二胺(cyclododecylamine),N-甲基十二烷基胺(N-methyldodecylamine),辛胺(octylamine),二正辛胺(dioctylamine),三辛胺(trioctylamine),或它们的任意组合。
优选地,上述的表面活性剂包括:三正辛基氧化膦(trioctylphoshineoxide),三辛基膦(trioctylphoshine),辛胺(octylamine),二正辛胺(dioctylamine),三辛胺(trioctylamine),十六胺(Hexadecylamine),八面体十六烷基胺(Octa hexadecyl amine),十二胺(dodecylamine),或它们的任意组合。更优选地,所述表面活性剂是三辛基氧化膦(trioctyl phosphine oxide)。
通过使用上述的表面活性剂,在对合金量子点进行表面处理时不会降低量子效率。
此外,上述分散剂可使IIB族元素的前体化合物均匀地分散在有机溶剂内。
上述分散剂可以是不饱和脂肪酸,所述不饱和脂肪酸例如可以选自:十二(烷)酸(lauric acid),十六(烷)酸(palmitic acid),油酸(oleic acid),十八烷酸(stearic acid),十四(烷)酸(myristic acid),反油酸(elaidic acid),二十烷酸(eicosanoic acid),二十一烷酸(heneicosanoic acid),二十三烷酸(tricosanoic acid),二十二烷酸(docosanoic acid),二十四烷酸(tetracosanoic acid),二十六烷酸(hexacosanoic acid),二十七烷酸(heptacosanoic acid),二十八烷酸(octacosanoic acid)和顺式13-二十二碳烯酸(cis-13-docosenoic acid),或它们的任意组合,并且不限于此。
所述IIB族元素的前体化合物可以是含锌的化合物,例如碘化锌(zinc iodide),溴化锌(zinc bromide),氯化锌(zinc chloride),氟化锌(zinc Fluoride),乙酸锌(Zinc Acetate),乙酰丙酮锌(zinc acetylacetonate),碳酸锌(zinc carbonate),氰化锌(zinc cyanide),硝酸锌(zinc nitrate),氧化锌(Zinc Oxide),过氧化锌(zinc peroxide),高氯酸锌(Zinc perchlorate),硫酸锌(Zinc Sulfate),或它们的任意组合。
用于形成所述核的IIIA族元素的前体化合物可以是含铟的化合物,例如溴化铟(Indium bromide),氯化铟(indium chloride),氟化铟(indium fluoride),硝酸铟(Indium Nitrate),醋酸铟(Indium Acetate),乙酰丙酮铟 (Indium Acetylacetonate),碘化铟(Indium iodide),氧化铟(Indium oxide),磷化铟(Indium phosphide),硫酸铟(Indium sulfate),或它们的任意组合,然而也不限于此。
上面所述的IIB族元素的前体化合物优选是氧化锌(Zinc Oxide),乙酸锌(Zinc Acetate),或它们的组合。上述的IIIA族元素的前体化合物优选是溴化铟(Indium bromide),氯化铟(indium chloride),碘化铟(Indium iodide),醋酸铟(Indium Acetate),或它们的组合。此外,上述IIB族元素的前体化合物也可以包含氟化汞(mercury fluoride),氰化汞(mercury cyanide),硝酸汞(mercury nitrate),乙酸汞(mercury Acetate),碘化汞(mercury iodide),溴化汞(mercury bromide),氯化汞(mercury chloride),氧化汞(mercury Oxide),高氯酸汞(mercury perchlorate),硫酸汞(mercury Sulfate),或它们的任意组合,但不限于此。
此外,作为上述IIB族元素的前体化合物或VIA族元素的前体化合物的替代或补充,也可使用包含铅的前体化合物,上述包含铅的化合物前驱体包含有乙酸铅(Lead Acetate),溴化铅(Lead bromide),氯化铅(Lead chloride),氟化铅(Lead fluoride),氧化铅(Lead Oxide),高氯酸铅(Lead perchlorate),硝酸铅(Lead nitrate),硫酸铅(Lead Sulfate),碳酸铅(Lead carbonate)等,但不限于此。
用于形成第一壳层的IIIA族元素的化合物前驱体是包含铝的化合物,例如氯化铝(aluminium chloride),油酸铝(aluminium Oleate),辛酸铝(aluminium Octanoate),单硬脂酸铝(Aluminum Monostearate),氢化铝(Aluminum hydride),硬脂酸铝(aluminum stearate),棕榈酸铝(Aluminum Palmitate),有机硼烷铝(Aluminum organoborane),异丙醇铝(aluminum isopropoxide)或它们的任意组合,且不限于这些。例如,用于形成第一壳层的上述IIIA族元素的化合物前驱体选自:氯化铝(aluminium chloride),油酸铝(aluminium Oleate),单硬脂酸铝(Aluminum Monostearate),辛酸铝(aluminium Octanoate),异丙醇铝(aluminum isopropoxide)或它们的任意组合。
所述VIA族元素可以是硫、硒或者碲,且不限于此。所述VIA族元素可以是粉末状的。所述VIA族元素的前体化合物优选为含硫的化合物或含硒的化合物,例如,己烷硫醇(hexane thiol),辛烷硫醇(octane thiol),癸烷硫醇(Decane thiol),十二烷硫醇(dodecane thiol),十六烷硫醇(hexadecane thiol),S-三正辛基膦 (Sulfur-trioctylphoshine),S-三丁基膦(Sulfur-tributylphosphine),S-三苯基膦(Sulfur-triphenylphosphine),S-三辛胺(Sulfur-trioctyl amine),三甲基甲硅烷基硫(Trimethylsilyl Sulfur),硫化铵(ammonium sulfide),硫化钠(Sodium Sulfide),Se-三正辛基膦(Se-trioctylphoshine),Se-三丁基磷(Se-tributylphosphine),Se-三苯基膦(Se-triphenylphosphine),或它们的任意组合,且不限于此。例如,上述VIA族元素的前体化合物前驱体可以是粉末或者液态。例如:上述VIA族元素的前体化合物除了硫,硒以外还包含碲。上述的包含了碲的VIA族元素的前体化合物选自:Te-三正辛基膦(Tellur-trioctylphoshine),Te-三丁基膦(Tellur-tributylphosphine)或者Te-三苯基膦(Tellur-triphenylphosphine)等等,且不限于这些。作为替代,可以使用分散在表面活性剂中的硫粉或硒粉作为VIA族元素的前驱体。
所述有机溶剂包括:1-十八烯(1-Octadecene),1-十九烯(1-Nonadecen),顺-2-甲基-7-十八烯(Cis-2-methyl-7-octadecene),1-十七烯(1-Heptadecene),1-十六烯(1-Hexadecene),1-十五烯(1-Pentadecene),1-十四烯(1-Tetradecene),1-十三烯(1-Tridecene),1-十一烯(1-Undecene),1-十二烯(1-Dodecene),1-癸烯(1-decene),油胺(Oleylamine),或它们的任意组合,且不限于这些。优选地,所述有机溶剂是1-十八烯(1-octadecene)或油胺。
在获得上述第一混合溶液之后加热,并且在添加上述VA族元素的前体化合物后以及在添加VIA族元素的前体后再次进行加热。上述加热温度优选在100-350℃的范围内,例如100℃-200℃,200℃-350℃,也可在250℃-350℃进行加热。当所述加热温度低于100℃或超过350℃时,在核表面上形成壳层时,会导致核与壳之间发生晶格失配,从而造成量子效率低下。
在本发明的量子点制造方法中,首先将IIB族元素的前体化合物、IIIA族元素的前体化合物、有机溶剂及分散剂添加到反应器中,混合均匀从而获得第一混合溶液;将反应器的温度保持在100℃-170℃,比如在120℃-160℃,并且维持真空状态持续1-3小时,例如2小时。
之后向反应器中注入氮气,从反应器中去除氧气并置换成氮气气氛。将第一混合溶液加热到100-350℃的温度范围内,例如100℃-200℃,200℃-350℃,250℃-350℃。
然后,将VA族元素的前体化合物和任选的液态表面活性剂一起加入所述反应器中的混合液体中,加热反应形成IIIA-IIB-VA化合物的纳米颗粒。
随后,向反应器中加入另外的IIIA族元素(例如Al)的前体化合物,反应后在 所述纳米颗粒的表面上方形成包含IIIA-VA化合物的第一壳层。
接下来,将包含IIB族元素的前体化合物的溶液和不同VIA族元素的前体化合物一起加入反应器中的溶液中,反应后依次在纳米颗粒的表面上方形成第二壳层和第三壳层。
在上述加热的第一混合溶液中添加VA族元素前体化合物时,优选在较短的时间内,例如0.1秒-5秒,更优选0.5秒-2秒之内将所述VA族元素前体化合物添加到第一混合溶液中。
在较短的短时间内在第一混合溶液内添加VA族元素前体化合物,才能使IIIA族元素的前体化合物、ⅡB族元素的前体化合物和VA族元素前体化合物均匀混合。在上述第一混合溶液中快速注入VA族元素前体化合物溶液后,需要放置5分钟-30分钟,例如可放置5分钟-20分钟,又例如可放置5分钟-10分钟,可使上述IIIA元素前体化合物、ⅡB族元素前体化合物和VA族元素前体化合物进行充分反应。
随后添加上述VIA族元素的前体化合物并加热。与在第一混合溶液里快速添加VA族元素化合物溶液不同,应慢慢的进行添加所述VIA族元素的前体化合物,比如在10分钟-60分钟内,优选在10分钟-30分钟内。因此,可以将包含上述VIA族元素的前体化合物的溶液以一滴一滴的方式(dropwise)添加到反应器中。
通过慢慢的添加上述VIA族元素的前体化合物,在不受温度影响的情况下,可使位于量子点核表面上的壳体结构更坚固稳定,并且更均匀的包覆,从而提高量子效率。然后,上述VIA族元素的化合物前驱体可放置20分钟-60分钟,以便在添加了上述VA族元素化合物溶液的混合溶液内充分反应。在添加了上述VIA族元素的前体化合物之后,按照前面所述条件可在100℃-200℃,200℃-350℃加热,例如在250℃-330℃进行加热。
在反应完成之后将反应器放置20分钟-60分钟,降温至50℃以下,再对合成的量子点进行提纯。这里所述的提纯可利用丙酮等有机溶剂进行3次以上的提纯。上述提纯后,可将溶剂完全干燥后获得的合金-壳结构量子点在甲苯,氯仿,正己烷等溶剂中进行再分散保存。
与现有技术的合金量子点相比,本发明的多层壳量子点具有显著更好的颜色再现性,稳定性及量子效率。本发明的多层壳结构的量子点可产生峰值波长在440nm-640nm,优选470nm-600nm,范围内的可见光。
此外,本发明的多层壳量子点的平均粒径为3nm-10nm,优选为5nm-10nm。增 加量子点分散稳定性可防止量子点效率低下。本发明的多层壳结构量子点具有40nm以下的半峰宽(FWHM;)。
根据本发明的多层壳量子点可用于背光装置,上述背光装置可以是发光二极管(LED)背光装置。可以适用于发光二极管(LED)用背光装置以外,所述背光装置也可以适用于液晶显示器(LCD),照明设备,太阳能电池,生物传感器等,并且也不限于这些领域。
分析方法:
[1]量子点的吸收光谱分析
利用岛津公司的UV-2600紫外分光光度计测量量子点的吸收光谱;
[2]量子点的光致发光光谱分析
利用PerkinElmer的FL8500荧光光谱仪来测量量子点的光致发光的光谱(激发波长:365nm);
[3]量子点的效率分析
利用滨松公司的C11347-01量子效率测量系统来测量量子点的量子效率(QY)和半峰宽(FWHM)。
[4]量子点的粒径测量
利用TEM(Transmission Electron Microscopy)进行量子点粒径的测量。
实施例1:制备InZnP/AlP/ZnSe/ZnS多层壳量子点
制造InZnP核:
把碘化铟(Indium Iodide)0.45mmol,氯化锌(zinc chloride)2.2mmol,油胺(oleylamine)15mmol放在100mL的反应器里,在真空下加热到120℃1个小时后,将反应器内转换为氮气气氛。加热至180℃左右后,迅速注入三(二甲氨基)膦(tris(dimethylamino)phosphine:DMA3P)1.6mmol溶液,并使其反应5分钟,在常温下迅速冷却的反应溶液中加入丙酮,将离心分离后获得的沉淀物在环己烷或甲苯里进行分散。用UV分光分析获得的InZnP半导体纳米晶体的结果来看,UV第一吸收最大波长范围为440nm-480nm。
制造AlP的第一壳层:
向反应器中加入油酸铝作为铝的前体,该油酸铝与溶液中存在的过量三(二甲氨 基)膦反应。油酸铝的使用量为0.1-0.2mmol,反应在180-300℃的温度下持续为5分钟至1小时,从而在InZnP核表面上形成AlP的第一壳层。
制造ZnSe的第二壳层:
把乙酸锌(zinc acetate)0.6mmoL和油酸(oleic acid)1.2mmol放入1-十八烯(1-octadecene)溶剂里面进行溶解,并在120℃进行真空处理1小时,从而得到锌溶液。
将所述锌溶液以及Se-三正辛基膦(Se/TOP)一起加入上述反应器中,并用氮气(N 2)置换反应器内的气氛,然后在200℃、220℃、240℃下分别加热30分钟以进行反应,以便在量子点上形成ZnSe的第二壳层。
制造ZnS的第三壳层:
把乙酸锌(zinc acetate)0.6mmoL和油酸(oleic acid)1.2mmol放入1-十八烯(1-octadecene)溶剂里面进行溶解,并在120℃进行真空处理1小时,从而得到锌溶液。
将所述锌溶液和S-三正辛基膦(S/TOP)一起加入反应器中的溶液中,,并用氮气(N 2)置换反应器内的气氛,然后在280℃和300℃温度下分别加热2小时以进行反应,以便在量子点上形成ZnS的第三壳层。
在制造的量子点核-多层壳中调节各层壳的厚度及量子点的最终大小,这样就可以制造出图1显示的核壳量子点。
在制备Zn/Se和ZnS壳层过程中,也可以先加入过量的Zn溶液,然后第一阶段只注入Se/TOP,最后阶段只注入S/TOP,从而在AlP壳层上依次形成ZnSe壳层以及ZnS壳层。最终反应结束后,将获得的反应生成物冷却到常温。在冷却的反应混合物里加入乙醇使其沉淀。将形成的沉淀物进行离心分离,将获得的量子点在环己烷或甲苯里进行分散。对反应物中未包含油酸铝和包含了油酸铝的反应物分别取样进行PL(Photoluminescence)分析。
对制造出的量子点,使用365nm或458nm的激发光进行光致发光的分析。其结果见图2。从图2的结果中可以看出,使用了铝的反应物(实线,实施例1)比没有使用铝的反应物(虚线,比较例1)的荧光强度显著更高,其半峰宽为38nm-45nm,峰值发光波长为530nm-540nm。并且量子效率可达到83%以上。
实施例2-6
根据油酸铝的含量不同进行了试验。合成方法用与实施例1相同的方式制造量子点。对制造出的量子点,使用365nm或458nm的激发光进行光致发光的分析。结果 见下表1。
表1.
  油酸铝含量(mmol) QY(%) FWHM
实施例2 0.01 83 45
实施例3 0.02 85 40
实施例4 0.05 87 41
实施例5 0.1 90 39
实施例6 0.2 86 38
从表1的结果可以看出,通过铝中间壳的合成,可以确认能提高量子点光特性。
实施例7-11
作为铝前体,除了用单硬脂酸铝(Aluminum Monostearate)代替油酸铝,如表2所示的含量外,并用与实施例1相同的方式制造量子点。对制造出的量子点,使用365nm或458nm的激发光进行光致发光的分析。结果如表2。
表2.
  单硬脂酸铝含量(mmol) QY(%) FWHM
实施例7 0.01 80 44
实施例8 0.02 83 45
实施例9 0.05 89 40
实施例10 0.1 86 39
实施例11 0.2 81 42
比较例1(InZnP/ZnSe/ZnS)
按照实施例1的方式制造量子点,区别在于不形成AlP的第一壳层,从而得到包含InZnP核以及两个壳层(ZnSe和ZnS)的量子点。
比较例2
除不使用硫前体外,采用类似于实施例1的方法,制造有铝中间壳合成的InZnP/AlP/ZnSe量子点。
比较例3
除不使用铝前体外,采用与比较例1相同的方法,制造不添加中间壳的InZnP/ZnSe量子点。对制造的量子点使用365nm或458nm的激发光进行光致发光的分析。结果如表3。
比较例4
除不使用硒前体外,采用类似实施例1的方法,制造有铝中间壳合成的InZnP/AlP/ZnS量子点
比较例5
除不使用铝前驱体外,采用与比较例3相同的方法制造未添加中间壳的InZnP/ZnS量子点。对制造的量子点使用365nm或458nm的激发光进行光致发光的分析。结果整理如表3。
表3.
  QD 峰(nm) FWHM(nm) QY(%)
比较例1 InZnP/ZnSe/ZnS 535 43 80
比较例2 InZnP/AlP/ZnSe 539 52 35
比较例3 InZnP/ZnSe 525 57 25
比较例4 InZnP/AlP/ZnS 535 49 28
比较例5 InZnP/ZnS 540 50 20
通过比较表1-3的数据可以看出,本发明的多层壳量子点可以产生显著更高的量子效率以及显著更窄的半峰宽(FWHM)。从表3的结果还可以看出,在InZnP核上形成含铝的中间壳后,其光特性得到提高。在形成铝中间壳后,对壳ZnSe或壳ZnS的合成有很好的效果。这样就可以减少InZnP核和ZnSe或ZnS壳的晶格失配(lattice mismatch)的现象,提高其光特性。其结果如图3,其中实线是比较例2的光致发光光谱,虚线是比较例3的光致发光光谱。
虽然已经关于具体的示例性实施方案描述了本发明,然而将理解的是,在不偏离以下权利要求书所述的本发明范围的情况下,本文所公开特征的各种修改、改变和/或组合对本领域技术人员而言将是明显的。

Claims (20)

  1. 一种多层壳量子点,该多层壳量子点包括:
    包含IIIA-IIB-VA化合物的核;
    设置在所述核上方的第一壳层,该第一壳层包含IIIA-VA化合物;
    设置在所述第一壳层上方的第二壳层,该第二壳层包含第一IIB-VIA化合物;和
    设置在所述第二壳层上方的第三壳层,该第三壳层包含第二IIB-VIA化合物。
  2. 根据权利要求1所述的多层壳量子点,其特征在于所述IIIA-IIB-VA化合物是InZnP。
  3. 根据权利要求1所述的多层壳量子点,其特征在于所述IIIA-VA化合物是AlP。
  4. 根据权利要求1所述的多层壳量子点,其特征在于所述第一IIB-VIA化合物是ZnSe,所述第二IIB-VIA化合物是ZnS。
  5. 根据权利要求1所述的多层壳量子点,其特征在于所述第二壳层包含两个或更多个亚层,每个亚层包含第一IIB-VIA化合物。
  6. 根据权利要求1所述的多层壳量子点,其特征在于所述第三壳层包含两个或更多个亚层,每个亚层包含第二IIB-VIA化合物。
  7. 根据权利要求1所述的多层壳量子点,其特征在于多层壳量子点的平均粒径在5nm到10nm的范围内。
  8. 一种制备如权利要求1所述的多层壳量子点的方法,该方法包括步骤:
    (1)在反应器中加入IIIA族元素的前体化合物、IIB族元素的前体化合物、有机溶剂和任选的分散剂,并混合得到第一混合溶液;然后将VA族元素的前体化合物和任选的表面活性剂加入所述反应器中,反应形成IIIA-IIB-VA化合物的纳米颗粒;
    (2)向所述反应器中加入另外的IIIA族元素的前体化合物,反应后在所述纳米 颗粒的表面上方形成包含IIIA-VA化合物的第一壳层;
    (3)将IIB族元素的前体化合物、有机溶剂、任选的表面活性剂和任选的分散剂混合从而得到第二混合溶液,并将所述第二混合溶液和第一种VIA族元素的前体化合物一起加入所述反应器中的溶液中,反应后在所述纳米颗粒的表面上方形成第二壳层,所述第二壳层包含第一IIB-VIA化合物;
    (4)将IIB族元素的前体化合物、有机溶剂、任选的表面活性剂和任选的分散剂混合从而得到第三混合溶液,并将所述第三混合溶液和第二种VIA族元素的前体化合物一起加入所述反应器中,反应后在所述纳米颗粒的表面上方形成第三壳层,所述第三壳层包含第二IIB-VIA化合物;和
    (5)进行固液分离从而得到多层壳量子点。
  9. 根据权利要求8所述的方法,其特征在于步骤(1)中的IIIA族元素的前体化合物选自溴化铟,氯化铟,氟化铟,硝酸铟,醋酸铟,乙酰丙酮铟,碘化铟,氧化铟,磷化铟,硫酸铟,或它们的任意组合。
  10. 根据权利要求8所述的方法,其特征在于所述表面活性剂选自:三正辛基氧化膦,三辛基膦,辛胺,二正辛胺,三正辛胺,十六胺,十八胺,十二胺,或它们的任意组合。
  11. 根据权利要求8所述的方法,其特征在于所述分散剂选自:十二烷酸,十六烷酸,油酸,十八烷酸,十四烷酸,反油酸,二十烷酸,二十一烷酸,二十三烷酸,二十二烷酸,二十四烷酸,二十六烷酸,二十七烷酸,二十八烷酸,顺式13-二十二碳烯酸,或它们的任意组合。
  12. 根据权利要求8所述的方法,其特征在于所述IIB族元素的前体化合物选自:碘化锌,溴化锌,氯化锌,氟化锌,乙酸锌,乙酰丙酮锌,碳酸锌,氰化锌,硝酸锌,氧化锌,过氧化锌,高氯酸锌,硫酸锌,或它们的任意组合。
  13. 根据权利要求8所述的方法,其特征在于所述第一VIA族元素的前体化合物和第二VIA族元素的前体化合物选自:己硫醇,辛硫醇,癸硫醇,十二烷硫醇,十六 烷硫醇,S-三正辛基膦,S-三丁基膦,S-三苯基膦,S-三辛胺,三甲基硅烷基硫,硫化铵,硫化钠,Se-三正辛基膦,Se-三丁基膦,Se-三苯基膦,或它们的任意组合。
  14. 根据权利要求8所述的方法,其特征在于所述VA族元素的前体化合物选自:三(二甲氨基)膦(DMA3P)、三(二乙氨基)膦(DEA3P)或它们的组合。
  15. 根据权利要求8所述的方法,其特征在于所述有机溶剂选自:1-十八烯,1-十九烯,顺-2-甲基-7-十八烯,1-十七烯,1-十六烯,1-十五烯,1-十四烯,1-十三烯,1-十一烯,1-十二烯,1-癸烯,或它们的任意组合。
  16. 根据权利要求8所述的方法,其特征在于所述另外的IIIA族元素的前体化合物是含铝化合物,该含铝化合物选自氯化铝,油酸铝,辛酸铝,单硬脂酸铝,氢化铝,硬脂酸铝,棕榈酸铝,有机硼烷铝,异丙醇铝,或它们的任意组合。
  17. 根据权利要求8所述的方法,其特征在于在所述步骤(2)中,将所述第一混合溶液加热至200℃至350℃之后添加所述第二混合溶液,然后放置5分钟到30分钟,以便使反应充分进行。
  18. 根据权利要求8所述的方法,其特征在于在步骤(4)中,所述第三混合溶液的添加在10分钟至60分钟内完成。
  19. 根据权利要求8所述的方法,其特征在于在步骤(5)中,所述第四混合溶液的添加在10分钟至60分钟内完成。
  20. 一种背光装置,其包含权利要求1-7任一项所述的多层壳量子点。
PCT/CN2020/126910 2020-07-29 2020-11-06 量子点及其制造方法 WO2022021655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010745798.8A CN111748349A (zh) 2020-07-29 2020-07-29 量子点及其制造方法
CN202010745798.8 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022021655A1 true WO2022021655A1 (zh) 2022-02-03

Family

ID=72712511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126910 WO2022021655A1 (zh) 2020-07-29 2020-11-06 量子点及其制造方法

Country Status (2)

Country Link
CN (1) CN111748349A (zh)
WO (1) WO2022021655A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748349A (zh) * 2020-07-29 2020-10-09 拓米(成都)应用技术研究院有限公司 量子点及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384531A (zh) * 2018-03-12 2018-08-10 纳晶科技股份有限公司 Iii-v族核壳量子点的制备方法及含其的器件、组合物
CN108699434A (zh) * 2016-01-19 2018-10-23 纳米系统公司 具有GaP和AlP壳的INP量子点及其制造方法
CN111234821A (zh) * 2018-11-29 2020-06-05 三星显示有限公司 量子点、包括其的组合物或复合物以及包括其的显示装置
CN111410961A (zh) * 2020-03-19 2020-07-14 纳晶科技股份有限公司 纳米晶及纳米晶的制备方法
CN111748349A (zh) * 2020-07-29 2020-10-09 拓米(成都)应用技术研究院有限公司 量子点及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699434A (zh) * 2016-01-19 2018-10-23 纳米系统公司 具有GaP和AlP壳的INP量子点及其制造方法
CN108384531A (zh) * 2018-03-12 2018-08-10 纳晶科技股份有限公司 Iii-v族核壳量子点的制备方法及含其的器件、组合物
CN111234821A (zh) * 2018-11-29 2020-06-05 三星显示有限公司 量子点、包括其的组合物或复合物以及包括其的显示装置
CN111410961A (zh) * 2020-03-19 2020-07-14 纳晶科技股份有限公司 纳米晶及纳米晶的制备方法
CN111748349A (zh) * 2020-07-29 2020-10-09 拓米(成都)应用技术研究院有限公司 量子点及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUNGWOO KIM, TAEHOON KIM, MEEJAE KANG, SEONG KWON KWAK, TAE WOOK YOO, LEE SOON PARK, ILSEUNG YANG, SUNJIN HWANG, JUNG EUN LEE, SEO: "Highly Luminescent InP/GaP/ZnS Nanocrystals and Their Application to White Light-Emitting Diodes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 134, no. 8, 29 February 2012 (2012-02-29), pages 3804 - 3809, XP055332559, ISSN: 0002-7863, DOI: 10.1021/ja210211z *

Also Published As

Publication number Publication date
CN111748349A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
EP3448957B1 (en) Stable inp quantum dots with thick shell coating and method of producing the same
US10910525B2 (en) Cadmium-free quantum dot nanoparticles
JP7308433B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
JP7070826B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
US10854798B2 (en) Quantum dot encapsulation techniques
KR101774775B1 (ko) 합금-다중 쉘 양자점, 그 제조 방법, 합금-다중 쉘 양자점 및 이를 포함하는 백라이트 유닛
Singh et al. Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential
US7850777B2 (en) Method of preparing semiconductor nanocrystal compositions
Cho et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability
US10711190B2 (en) Core-shell particles, method for producing core-shell particles, and film
JP2019519455A (ja) 高温でコアシェルナノ結晶を合成する方法
KR20180060923A (ko) 발광 조성물, 양자점 및 이의 제조방법
WO2019160094A1 (ja) 半導体ナノ粒子、その製造方法および発光デバイス
US20100252778A1 (en) Novel nanoparticle phosphor
JP2019504811A (ja) GaPおよびAlPシェルを有するInP量子ドット、ならびにその製造方法
WO2016185933A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
JP6433586B2 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
WO2022021655A1 (zh) 量子点及其制造方法
Yang et al. Near-infrared emitting CdTe 0.5 Se 0.5/Cd 0.5 Zn 0.5 S quantum dots: synthesis and bright luminescence
KR20210026614A (ko) 양자점, 양자점의 제조 방법, 및 양자점을 포함하는 소자
KR102236316B1 (ko) 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자
KR102236315B1 (ko) 양자점 나노입자의 제조방법, 상기 방법으로 제조된 양자점 나노입자, 코어-쉘 구조의 양자점 나노입자, 및 발광소자
EP4073202B1 (en) Rohs compliant quantum dot films
Su et al. Cd-Free Quantum Dot Dispersion in Polymer and their Film Molds
KR20240072852A (ko) 나노입자 표면개질용 조성물, 나노입자 표면개질용 조성물 제조방법, 나노입자 표면개질 방법, 표면개질된 나노입자 제조방법 및 표면개질된 나노입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947355

Country of ref document: EP

Kind code of ref document: A1