WO2022019569A1 - 열전 소자 - Google Patents

열전 소자 Download PDF

Info

Publication number
WO2022019569A1
WO2022019569A1 PCT/KR2021/009109 KR2021009109W WO2022019569A1 WO 2022019569 A1 WO2022019569 A1 WO 2022019569A1 KR 2021009109 W KR2021009109 W KR 2021009109W WO 2022019569 A1 WO2022019569 A1 WO 2022019569A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
disposed
substrate
recess
bonding member
Prior art date
Application number
PCT/KR2021/009109
Other languages
English (en)
French (fr)
Inventor
이종민
이세운
최만휴
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to JP2023504368A priority Critical patent/JP2023536411A/ja
Priority to EP21846804.9A priority patent/EP4187625A4/en
Priority to CN202180052643.9A priority patent/CN115997490A/zh
Priority to US18/017,431 priority patent/US20230309406A1/en
Publication of WO2022019569A1 publication Critical patent/WO2022019569A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention relates to a thermoelectric device, and more particularly, to a structure of an electrode disposed on a substrate.
  • thermoelectric phenomenon is a phenomenon that occurs by the movement of electrons and holes inside a material, and refers to direct energy conversion between heat and electricity.
  • thermoelectric element is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric devices can be divided into devices using a temperature change in electrical resistance, devices using the Seebeck effect, which is a phenomenon in which electromotive force is generated by a temperature difference, and devices using the Peltier effect, which is a phenomenon in which heat absorption or heat is generated by current. .
  • thermoelectric elements are widely applied to home appliances, electronic parts, communication parts, and the like.
  • the thermoelectric element may be applied to an apparatus for cooling, an apparatus for heating, an apparatus for power generation, and the like. Accordingly, the demand for the thermoelectric performance of the thermoelectric element is increasing.
  • thermoelectric element has a problem in that electrical reliability is lowered between the electrode and the thermoelectric leg and power generation performance is reduced.
  • An object of the present invention is to provide a structure of an electrode of a thermoelectric element for improving electrical reliability.
  • thermoelectric element includes a first electrode; a first conductive bonding member disposed on the first electrode; and a plurality of semiconductor structures disposed on the first conductive bonding member, wherein the first conductive bonding member is disposed between a first arrangement portion in which the plurality of semiconductor structures are respectively disposed, and the first arrangement portion and a first partition wall portion, wherein a thickness of the first partition wall portion is 2.5 times or less of a thickness of the first arrangement portion.
  • first insulating part disposed on a bottom surface of the first electrode; and a first substrate disposed on a bottom surface of the first insulating part.
  • the first insulating portion includes a plurality of recesses that are concave toward the first substrate from a top surface, wherein the plurality of recesses include a first recess in which the first electrode is disposed, and a first recess disposed around the first recess. and a second recess.
  • a first distance between the bottom surface of the first recess and the first substrate may be smaller than a second distance between the bottom surface of the second recess and the first substrate.
  • the first barrier rib portion of the first conductive bonding member includes a first support portion having the same thickness as the first placement portion, and a first support portion disposed on the first support portion and convex in a direction from the first substrate toward the first insulating portion It may include a convex part, and the second recess and the first convex part may not vertically overlap.
  • a thickness of the first convex portion may be smaller than a depth of the second recess, and a thickness of the first partition wall portion may be greater than or equal to a thickness of the first arrangement portion.
  • a plurality of second electrodes respectively disposed on the plurality of semiconductor structures; It may further include a second insulating portion disposed on the plurality of second electrodes, and a second substrate disposed on the second insulating portion.
  • the second insulating portion includes a third recess in which the plurality of second electrodes are respectively disposed, and a fourth recess disposed around the third recess, the third recess and the fourth recess may be concave toward the second substrate from a lower surface of the second insulating part, and the first partition wall part may vertically overlap the fourth recess.
  • a depth of the fourth recess may be greater than a thickness of the first partition wall portion.
  • a depth of the second recess may be different from a depth of the fourth recess.
  • It may further include a first barrier layer disposed on both ends of the plurality of semiconductor structures.
  • the second conductive bonding member includes a second arrangement portion in which the plurality of semiconductor structures are respectively disposed, and a second arrangement portion disposed between the second arrangement portion 2 It may include a bulkhead part.
  • the first partition wall portion and the second partition wall portion may not vertically overlap.
  • thermoelectric device having improved power generation performance and high electrical reliability and a thermoelectric device including the same.
  • thermoelectric element having a barrier rib formed toward the thermoelectric leg so that the electrode surrounds the adjacent thermoelectric leg.
  • thermoelectric element according to an embodiment of the present invention can be applied not only to applications implemented in a small size, but also applications implemented in a large size such as vehicles, ships, steel mills, and incinerators.
  • thermoelectric element 1 is a cross-sectional view of a thermoelectric element
  • thermoelectric element 2 is a perspective view of a thermoelectric element
  • thermoelectric element including a sealing member
  • thermoelectric element including a sealing member
  • thermoelectric element 5 is a cross-sectional view of a thermoelectric element according to an embodiment
  • FIG. 6 is a view illustrating an electrical connection between a first electrode and a second electrode and a semiconductor structure according to an embodiment
  • FIG. 7 is a plan view of a first electrode, a first conductive bonding member, and a semiconductor structure according to an embodiment
  • thermoelectric element 10 is a cross-sectional view of a thermoelectric element according to another embodiment
  • FIG. 11 is an enlarged view of part K in FIG. 10 .
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or more than one) of A and (and) B, C", it is combined as A, B, C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • top (above) or under (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upper direction but also a lower direction based on one component may be included.
  • FIG. 1 is a cross-sectional view of a thermoelectric element
  • FIG. 2 is a perspective view of the thermoelectric element
  • FIG. 3 is a perspective view of the thermoelectric element including a sealing member
  • FIG. 4 is an exploded perspective view of the thermoelectric element including a sealing member.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate. (160).
  • the lower electrode 120 is disposed between the lower substrate 110 and the lower bottom surfaces of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140
  • the upper electrode 150 is formed between the upper substrate 160 and the P-type thermoelectric leg 140 . It is disposed between the thermoelectric leg 130 and the upper bottom surface of the N-type thermoelectric leg 140 . Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the lower electrode 120 and the upper electrode 150 .
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the lower electrode 120 and the upper electrode 150 and electrically connected may form a unit cell.
  • the P-type thermoelectric leg 130 may be a second conductive semiconductor structure or a second semiconductor structure
  • the N-type thermoelectric leg 140 may be a first conductive semiconductor structure or a first semiconductor structure.
  • the plurality of semiconductor structures may include the above-described first conductive semiconductor structure and second conductive semiconductor structure.
  • the lower electrode 120 is used interchangeably with the first electrode.
  • the upper electrode 150 which will be described later, is used interchangeably with the second electrode.
  • thermoelectric leg 130 when a voltage is applied to the lower electrode 120 and the upper electrode 150 through the lead wires 181 and 182 , a current flows from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect.
  • the substrate through which flows absorbs heat and acts as a cooling unit, and the substrate through which current flows from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated and act as a heating unit.
  • a temperature difference between the lower electrode 120 and the upper electrode 150 is applied, the charges in the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 move due to the Seebeck effect, and electricity may be generated. .
  • lead wires 181 and 182 are illustrated as being disposed on the lower substrate 110 in FIGS. 1 to 4 , the present invention is not limited thereto, and the lead wires 181 and 182 are connected to the upper substrate 160 or the lower substrate 110 .
  • one of the lead wires 181 and 182 may be disposed on the lower substrate 110 , and the other may be disposed on the upper substrate 160 .
  • the lead wire may be connected to the low-temperature side of the thermoelectric element 100 .
  • equipment for an application to which the thermoelectric element 100 is applied may be mounted on the high temperature portion of the thermoelectric element 100 .
  • ship equipment may be mounted on the high temperature part of the thermoelectric element 100 .
  • both the low-temperature side and the high-temperature side of the thermoelectric element 100 may require withstand voltage performance.
  • the high temperature portion may have a relatively higher temperature than the low temperature portion.
  • the high-temperature side of the thermoelectric element 100 may require higher thermal conductivity than the low-temperature side of the thermoelectric element 100 .
  • Copper substrates have higher thermal and electrical conductivity than aluminum substrates.
  • the substrate disposed on the low-temperature side of the thermoelectric element 100 among the first and second substrates 110 and 160 is an aluminum substrate, and the high-temperature side of the thermoelectric element 100 .
  • the substrate disposed on the may be a copper substrate.
  • the copper substrate has higher electrical conductivity than the aluminum substrate, a separate configuration may be required to maintain the high-temperature side withstand voltage performance of the thermoelectric element 100 .
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth telluride (Bi-Te)-based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main raw materials.
  • P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the P-type thermoelectric leg 130 contains 99 to 99.999 wt% of Bi-Sb-Te, which is a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the N-type thermoelectric leg 140 contains 99 to 99.999 wt% of Bi-Se-Te, a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • thermoelectric leg may be referred to as a semiconductor structure, a semiconductor device, a semiconductor material layer, a semiconductor material layer, a semiconductor material layer, a conductive semiconductor structure, a thermoelectric structure, a thermoelectric material layer, a thermoelectric material layer, a thermoelectric material layer, etc. have.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stack type.
  • the bulk-type P-type thermoelectric leg 130 or the bulk-type N-type thermoelectric leg 140 heat-treats a thermoelectric material to manufacture an ingot, grinds the ingot and sieves to obtain a powder for the thermoelectric leg, and then It can be obtained through the process of sintering and cutting the sintered body.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be polycrystalline thermoelectric legs.
  • the laminated P-type thermoelectric leg 130 or the laminated N-type thermoelectric leg 140 is formed by coating a paste containing a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking the unit member and cutting the unit through the process. can be obtained
  • the pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or cross-sectional area of the N-type thermoelectric leg 140 is calculated as the height or cross-sectional area of the P-type thermoelectric leg 130 . may be formed differently.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a stacked structure.
  • the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by laminating a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. Accordingly, it is possible to prevent material loss and improve electrical conductivity properties.
  • Each structure may further include a conductive layer having an opening pattern, thereby increasing adhesion between the structures, decreasing thermal conductivity, and increasing electrical conductivity.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be formed to have different cross-sectional areas within one thermoelectric leg.
  • the cross-sectional area of both ends arranged to face the electrode in one thermoelectric leg may be formed to be larger than the cross-sectional area between the two ends. Accordingly, since a large temperature difference between the ends can be formed, thermoelectric efficiency can be increased.
  • thermoelectric figure of merit ZT
  • Equation (1) The performance of the thermoelectric element according to an embodiment of the present invention may be expressed as a figure of merit (ZT).
  • ZT The thermoelectric figure of merit (ZT) can be expressed as in Equation (1).
  • is the Seebeck coefficient [V/K]
  • is the electrical conductivity [S/m]
  • ⁇ 2 ⁇ is the power factor (Power Factor, [W/mK 2 ]).
  • T is the temperature
  • k is the thermal conductivity [W/mK].
  • k can be expressed as a ⁇ cp ⁇ , a is the thermal diffusivity [cm 2 /S], cp is the specific heat [J/gK], ⁇ is the density [g/cm 3 ].
  • thermoelectric figure of merit of the thermoelectric element In order to obtain the thermoelectric figure of merit of the thermoelectric element, a Z value (V/K) is measured using a Z meter, and a thermoelectric figure of merit (ZT) can be calculated using the measured Z value.
  • the lower electrode 120 is disposed between the lower substrate 110 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 , and the upper substrate 160 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 130 .
  • the upper electrode 150 disposed between the thermoelectric legs 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.3 mm. can When the thickness of the lower electrode 120 or the upper electrode 150 is less than 0.01 mm, the function as an electrode may deteriorate and the electrical conductivity performance may be lowered, and if it exceeds 0.3 mm, the conduction efficiency may be lowered due to an increase in resistance. .
  • the lower substrate 110 and the upper substrate 160 facing each other may be a metal substrate, and the thickness thereof may be 0.1 mm to 1.5 mm.
  • the thickness of the metal substrate is less than 0.1 mm or exceeds 1.5 mm, heat dissipation characteristics or thermal conductivity may be excessively high, and thus the reliability of the thermoelectric element may be deteriorated.
  • a first insulating part is disposed between the lower substrate 110 and the lower electrode 120 and between the upper substrate 160 and the upper electrode 150 , respectively.
  • a 170a and a second insulating part 170b may be further formed.
  • the first insulating part 170a and the second insulating part 170b may include a material having a thermal conductivity of 1 to 20 W/mK.
  • the sizes of the lower substrate 110 and the upper substrate 160 may be different.
  • the volume, thickness, or area of one of the lower substrate 110 and the upper substrate 160 may be larger than the volume, thickness, or area of the other. Accordingly, heat absorbing performance or heat dissipation performance of the thermoelectric element may be improved.
  • at least one of the volume, thickness, or area of a substrate on which a sealing member for protection from the external environment of the thermoelectric module is disposed is different from that of a substrate disposed in a high temperature region for the Seebeck effect, applied as a heating region for the Peltier effect, or It may be greater than at least one of the volume, thickness or area of the substrate.
  • a heat dissipation pattern for example, a concave-convex pattern
  • a concave-convex pattern may be formed on the surface of at least one of the lower substrate 110 and the upper substrate 160 . Accordingly, the heat dissipation performance of the thermoelectric element may be improved.
  • the concave-convex pattern is formed on a surface in contact with the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 , bonding characteristics between the thermoelectric leg and the substrate may also be improved.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate 160 .
  • a sealing member 190 may be further disposed between the lower substrate 110 and the upper substrate 160 .
  • the sealing member 190 is disposed between the lower substrate 110 and the upper substrate 160 on the side surfaces of the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 .
  • the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 may be sealed from external moisture, heat, contamination, and the like.
  • the sealing member 190 includes the outermost portions of the plurality of lower electrodes 120 , the outermost portions of the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 , and the plurality of upper electrodes 150 .
  • the sealing case 192, the sealing case 192 and the lower substrate 110, the sealing material 194, and the sealing case 192 and the upper substrate 160 are disposed spaced apart from the outermost side of the predetermined distance. It may include a sealing material 196 disposed on the. As such, the sealing case 192 may contact the lower substrate 110 and the upper substrate 160 via the sealing materials 194 and 196 .
  • the sealing materials 194 and 196 may include at least one of an epoxy resin and a silicone resin, or a tape in which at least one of an epoxy resin and a silicone resin is applied to both surfaces.
  • the sealing materials 194 and 194 serve to seal between the sealing case 192 and the lower substrate 110 and between the sealing case 192 and the upper substrate 160, and the lower electrode 120, the P-type thermoelectric leg ( 130), the sealing effect of the N-type thermoelectric leg 140 and the upper electrode 150 may be increased, and may be mixed with a finishing material, a finishing layer, a waterproofing material, a waterproofing layer, and the like.
  • a sealing material 194 for sealing between the sealing case 192 and the lower substrate 110 is disposed on the upper surface of the lower substrate 110, and a sealing material for sealing between the sealing case 192 and the upper substrate 160 ( 196 may be disposed on a side surface of the upper substrate 160 .
  • a guide groove G for drawing out the lead wires 180 and 182 connected to the electrode may be formed in the sealing case 192 .
  • the sealing case 192 may be an injection-molded product made of plastic or the like, and may be mixed with a sealing cover.
  • the above description of the sealing member is only an example, and the sealing member may be modified in various forms.
  • an insulating material may be further included to surround the sealing member.
  • the sealing member may include a heat insulating component.
  • the terms lower substrate 110 , lower electrode 120 , upper electrode 150 , and upper substrate 160 are used, but for ease of understanding and convenience of explanation, they will be arbitrarily referred to as upper and lower portions. However, the positions may be reversed so that the lower substrate 110 and the lower electrode 120 are disposed thereon, and the upper electrode 150 and the upper substrate 160 are disposed thereunder.
  • the upper electrode 150 is hereinafter used interchangeably with the second electrode.
  • a lower substrate may be used interchangeably with a 'first substrate' and an upper substrate may be used interchangeably with a 'second substrate'.
  • the first direction (X-axis direction) may include a direction (X1) from the first substrate toward the second substrate and a direction (X2) opposite thereto, and the first direction (X-axis direction) is 'vertical'. direction can be used. Also, the number of the first electrode and the second electrode may be plural.
  • thermoelectric element in order to improve the thermal conductivity of the thermoelectric element, attempts to use a metal substrate are increasing.
  • the thermoelectric element includes a metal substrate, an advantageous effect can be obtained in terms of heat conduction, but there is a problem in that the withstand voltage is lowered.
  • a withstand voltage performance of 2.5 kV or more is required.
  • a plurality of first insulating parts/second insulating parts having different compositions may be disposed between the metal substrate and the electrode.
  • thermoelectric element having improved both thermal conduction performance and withstand voltage performance by improving the bonding force at the interface between the plurality of first insulating parts/second insulating parts.
  • an object of the present invention is to obtain a thermoelectric device having improved electrical reliability.
  • FIG. 5 is a cross-sectional view of a thermoelectric element according to an embodiment
  • FIG. 6 is a diagram illustrating an electrical connection between a first electrode and a second electrode and a semiconductor structure according to an embodiment
  • FIG. 7 is a first electrode according to an embodiment It is a plan view of a first electrode, a first conductive bonding member, and a semiconductor structure
  • FIG. 8 is an enlarged view of P in FIG. 5
  • FIG. 9 is a cross-sectional view taken along line II′ in FIG. 7 .
  • the thermoelectric element 100 includes a first substrate 110 , a first insulating part 170a disposed on the first substrate 110 , and a first insulating part 170a , '
  • the first electrode 120 disposed on the lower insulating part 'or the 'first insulating part'), the plurality of semiconductor structures 130 and 140 disposed on the first electrode 120, the plurality of semiconductor structures 130,
  • the second electrode 150 disposed on the 140 , the second insulating part 170b ('upper insulating part' or 'second insulating part') disposed on the second electrode 150, and the second insulating part 170b ) may include a second substrate 160 disposed on the.
  • the plurality of semiconductor structures 130 and 140 may include a first conductive semiconductor structure (N-type thermoelectric legs) and a plurality of second conductive semiconductor structures (P-type thermoelectric legs).
  • the first conductive semiconductor structure 130 may be any one of an N-type thermoelectric leg and a P-type thermoelectric leg
  • the second conductive semiconductor structure 140 may be the other one of an N-type thermoelectric leg and a P-type thermoelectric leg.
  • the first conductive semiconductor structure will be described as a P-type thermoelectric leg
  • the second conductive semiconductor structure will be described as an N-type thermoelectric leg.
  • first substrate 110 , the plurality of semiconductor structures 130 and 140 , the second electrode 150 , and the second substrate 160 are the first substrate 110 and the first electrode 120 of FIGS. 1 to 4 .
  • first conductive semiconductor structure or P-type thermoelectric leg 130 , the second conductive semiconductor structure or N-type thermoelectric leg 140 , the second electrode 150 , and the second substrate 160 will be equally applied.
  • a heat sink may be further disposed on the first substrate 110 or the second substrate 160
  • a sealing member may be further disposed between the first substrate 110 and the second substrate 160 .
  • the thermoelectric element 100 may include a first insulating part 170a disposed on the first substrate 110 and a second insulating part 170b disposed under the second substrate 160 . have.
  • the first insulating part 170a may be disposed on the bottom surface of the first electrode 120
  • the second insulating part 170b may be disposed on the top surface of the second electrode 150 .
  • the first substrate 110 may be disposed on the bottom surface of the first insulating part 170a
  • the second substrate 160 may be disposed on the upper surface of the second insulating part 170b .
  • the first insulating part 170a and the second insulating part 170b may be formed of at least one layer.
  • the first insulating part 170a and the second insulating part 170b may include a first layer and a second layer. That is, the first insulating part and the second insulating part may each include a first layer and a second layer.
  • the first layer may be in contact with the first or second substrate, and the second layer may be in contact with the first electrode or the second electrode.
  • the first layer may include a composite including silicon and aluminum.
  • the composite may be an organic-inorganic composite composed of an alkyl chain and an inorganic material containing an Si element and an Al element, and may be at least one of an oxide, a carbide, and a nitride containing silicon and aluminum.
  • the composite may include at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond.
  • the composite including at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond has excellent insulation performance, and thus high withstand voltage performance can be obtained
  • the composite may be an oxide, carbide, or nitride further containing titanium, zirconium, boron, zinc, or the like along with silicon and aluminum.
  • the composite may be obtained through a heat treatment process after mixing aluminum with at least one of an inorganic binder and an organic/inorganic mixed binder.
  • the inorganic binder may include, for example, at least one of silica (SiO 2 ), metal alkoxide, boron oxide (B 2 O 3 ), and zinc oxide (ZnO 2 ).
  • Inorganic binders are inorganic particles, but when they come in contact with water, they become sol or gel, which can serve as a binding agent.
  • at least one of silica (SiO 2 ), metal alkoxide, and boron oxide (B 2 O 3 ) serves to increase the adhesion between aluminum or the first substrate (or the second substrate), and zinc oxide (ZnO 2 ) ) may serve to increase the strength of the first layer and increase thermal conductivity.
  • the second layer may be formed of a resin layer including at least one of an epoxy resin composition including an epoxy resin and an inorganic filler and a silicone resin composition including polydimethylsiloxane (PDMS). Accordingly, the second layer may improve insulation between the first layer and the first electrode (or between the first layer and the second electrode), adhesion, and heat conduction performance.
  • a resin layer including at least one of an epoxy resin composition including an epoxy resin and an inorganic filler and a silicone resin composition including polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the inorganic filler may be included in an amount of 60 wt% to 80 wt% of the resin layer.
  • the thermal conductivity effect may be low, and when the inorganic filler is included in more than 80wt%, it is difficult for the inorganic filler to be evenly dispersed in the resin, and the resin layer may be easily broken.
  • the epoxy resin may include an epoxy compound and a curing agent.
  • the curing agent may be included in a volume ratio of 1 to 10 with respect to 10 volume ratio of the epoxy compound.
  • the epoxy compound may include at least one of a crystalline epoxy compound, an amorphous epoxy compound, and a silicone epoxy compound.
  • the inorganic filler may include at least one of aluminum oxide and nitride.
  • the nitride may include at least one of boron nitride and aluminum nitride.
  • the particle size D50 of the boron nitride agglomerates may be 250 ⁇ m to 350 ⁇ m, and the particle size D50 of the aluminum oxide may be 10 ⁇ m to 30 ⁇ m.
  • the particle size D50 of the boron nitride agglomerate and the particle size D50 of the aluminum oxide satisfy these numerical ranges, the boron nitride agglomerate and the aluminum oxide can be evenly dispersed in the resin layer, thereby providing an even heat conduction effect and adhesion performance throughout the resin layer. can have
  • the second layer is a resin composition including a polydimethylsiloxane (PDMS) resin and aluminum oxide
  • the content (eg, weight ratio) of silicon in the first layer is higher than the content of silicon in the second layer
  • the second layer The content of aluminum in the first layer may be higher than the content of aluminum in the first layer.
  • the silicon in the first layer may mainly contribute to the improvement of the withstand voltage performance
  • the aluminum oxide in the second layer may mainly contribute to the improvement of the heat conduction performance.
  • both the first layer and the second layer have insulating performance and heat conduction performance, wherein the withstand voltage performance of the first layer is higher than the withstand voltage performance of the second layer, and the heat conduction performance of the second layer is the heat conduction performance of the first layer can be higher.
  • the composition of the first layer and the second layer are different from each other, and accordingly, at least one of hardness, elastic modulus, tensile strength, elongation, and Young's modulus of the first layer and the second layer may vary. Accordingly, it is possible to control the withstand voltage performance, heat conduction performance, bonding performance, thermal shock mitigation performance, and the like.
  • thermoelectric element 100 is disposed on the first prevention layer LP, the first electrode 120 , or the second electrode 150 disposed on both ends of the plurality of semiconductor structures 130 and 140 .
  • the second blocking layer EP and the first conductive bonding member IE1 and the second conductive bonding member IE2 disposed between the first blocking layer LP and the second blocking layer EP may be further included.
  • the first conductive bonding member is disposed between the plurality of semiconductor structures 130 and 140 and the first electrode 120
  • the second conductive bonding member IE2 is formed between the plurality of semiconductor structures 130 and 140 and the second electrode ( IE2 ).
  • 150 can be disposed between.
  • the first conductive bonding member IE1 may be disposed on the first electrode 120
  • the second conductive bonding member IE2 may be disposed under the second electrode 150 .
  • the first prevention layer LP may be disposed on both ends of the plurality of semiconductor structures 130 and 140 .
  • the first barrier layer LP may be positioned at both ends of the first conductive semiconductor structure 130 and at both ends of the second conductive semiconductor structure 140 . Accordingly, the first barrier layer LP may be in contact with the plurality of semiconductor structures 130 and 140 .
  • the first prevention layer LP is positioned between the first electrode 120 and the plurality of semiconductor structures 130 and 140 and between the second electrode 150 and the plurality of semiconductor structures 130 and 140 , It may also contact the electrode 120 or the second electrode 150 .
  • the first blocking layer LP may be made of metal.
  • the first barrier layer LP may include nickel (Ni).
  • tin (Sn) for example, of the first conductive bonding member IE1 moves to the semiconductor structures 130 and 140 , and a void is formed in a region where the first conductive bonding member IE1 and the first electrode 120 contact each other.
  • the first prevention layer LP may prevent a component of the first electrode 120 or a component of the first conductive bonding member IE1 from moving, thereby stably maintaining an electrical connection between the semiconductor structure and the first electrode. . Accordingly, electrical reliability of the thermoelectric element may be improved.
  • the second prevention layer EP may be positioned on the first electrode 120 or the second electrode 150 . In an embodiment, one surface of the second prevention layer EP may be in contact with the first electrode 120 . In addition, the second prevention layer EP may be positioned between the first electrode 120 and the semiconductor structures 130 and 140 or between the first electrode 120 and the first conductive bonding member IE1 . In an embodiment, the other surface of the second barrier layer EP may be in contact with the first conductive bonding member IE1 .
  • the second prevention layer EP may be made of metal, like the first prevention layer LP.
  • the second barrier layer EP may include nickel (Ni).
  • the second prevention layer EP may prevent a component of the first electrode 120 from moving to the semiconductor structures 130 and 140 . Accordingly, at a predetermined temperature (eg, high temperature), a component (eg, BiTe) of the semiconductor structures 130 and 140 and a component (eg, Sn) of the first conductive bonding member are combined with each other to form SnTe. With this configuration, the component of the first electrode 120 moves to the semiconductor structures 130 and 140 , and the junction area between the first electrode 120 and the second prevention layer EP is reduced, so that the electrical connection is cut off. can be prevented. That is, the second prevention layer EP may prevent movement of the first electrode 120 to stably maintain an electrical connection between the semiconductor structure and the first electrode. Accordingly, electrical reliability of the thermoelectric element may be improved.
  • the first conductive bonding member IE1 may be disposed between the first barrier layer LP and the second barrier layer EP to couple the first barrier layer LP and the second barrier layer EP to each other.
  • the first conductive bonding member IE1 is disposed between the semiconductor structures 130 and 140 and the first electrode 120
  • the second conductive bonding member IE is disposed between the semiconductor structures 130 and 140 and the second electrode 150 .
  • the first conductive bonding member IE1 couples the semiconductor structures 130 and 140 and the first electrode 120 to each other
  • the second conductive bonding member IE2 connects the semiconductor structures 130 and 140 and the second electrode. (150) can be combined with each other.
  • first conductive bonding member IE1 and the second conductive bonding member IE2 may include a metal component.
  • the first conductive bonding member IE1 may include tin (Sn).
  • the first conductive bonding member IE1 may be conductive, like the first blocking layer LP and the second blocking layer EP.
  • the height of the first conductive bonding member IE1 may be different from a height in a region outside the edge of the semiconductor structure and a height in a region below the semiconductor structures 130 and 140 (region overlapping in a vertical direction).
  • the height of the first electrode 120 in the region outside the edge of the semiconductor structure may be greater than the height in the region below the semiconductor structures 130 and 140 (the region overlapping in the vertical direction).
  • the first conductive bonding member IE2 may include a first arrangement portion DP1 in which the plurality of semiconductor structures 130 and 140 are respectively disposed, between the first arrangement portions DP1 or between semiconductor structures.
  • One partition wall part BR1 may be included.
  • the first partition wall part BR1 includes a first support part SP1 having the same thickness as the first arrangement part DP1 , and is disposed on the first support part SP1 and includes a first insulating part on the first substrate 110 .
  • a first convex portion CV1 convex in a direction toward 170a may be included.
  • the height of the second conductive bonding member IE2 may be different from a height in a region outside the edge of the semiconductor structure and a height in an upper region (region overlapping in the vertical direction) of the semiconductor structures 130 and 140 .
  • a height of the second conductive bonding member IE2 in a region outside the edge of the semiconductor structure may be greater than a height in an upper region (a region overlapping in the vertical direction) of the semiconductor structures 130 and 140 .
  • the second conductive bonding member IE2 may be formed between the second arrangement part DP2 in which the plurality of semiconductor structures 130 and 140 are disposed, respectively, and between the second arrangement parts DP2 or the semiconductor structures 130 and 140 . It may include a second partition wall portion BR2 disposed therebetween.
  • the second barrier rib part BR2 includes a second support part SP2 having the same thickness as the second arrangement part DP2 , and is disposed under the second support part SP2 and includes a second insulating part on the second substrate 160 .
  • a second convex portion CV2 convex in a direction toward 170b may be included. Description of the above-described thickness will be described as a length in a vertical direction. A detailed description thereof will be given later.
  • the first electrode 120 and the second electrode 150 may be electrically connected to each other through the semiconductor structures 130 and 140 . Accordingly, the current may flow in the order of the second electrode 150 , the first conductive semiconductor structure 130 , the first electrode 120 , and the second conductive semiconductor structure 140 ( CP ).
  • first conductive semiconductor structure 130 and the second semiconductor structure 140 may be positioned on the first electrode 120 and the second electrode 150 .
  • the first conductive semiconductor structure 130 and the second semiconductor structure 140 may be spaced apart from each other in the second direction (Y-axis direction).
  • the second direction (Y-axis direction) may be perpendicular to the aforementioned vertical direction or the first direction (X-axis direction).
  • the third direction (Z-axis direction) may be a direction perpendicular to the second direction (Y-axis direction) and the first direction (X-axis direction). It will be described below based on this.
  • the length l1 of the first electrode 120 in the second direction may be greater than the length l2 in the third direction (Z-axis direction).
  • the first electrode 120 may have a rectangular shape on the plane YZ.
  • the first electrode 120 may include a first edge surface E1 , a second edge surface E2 , a third edge surface E3 , and a fourth edge surface E4 .
  • the first edge surface E1 , the second edge surface E2 , the third edge surface E3 , and the fourth edge surface E4 may be outer surfaces of the first electrode 120 . That is, the first edge surface E1 , the second edge surface E2 , the third edge surface E3 , and the fourth edge surface E4 may be located at the edge of the first electrode 120 .
  • first edge surface E1 and the second edge surface E2 may be spaced apart from each other in the third direction (Z-axis direction) and may face each other.
  • third edge surface E3 and the fourth edge surface E4 may be positioned between the first edge surface E1 and the second edge surface E2 and spaced apart in the second direction (Y-axis direction).
  • the third edge surface E3 and the fourth edge surface E4 may face each other.
  • first conductive semiconductor structure 130 and the second conductive semiconductor structure 140 may be disposed on the first electrode 120 to be spaced apart from each other.
  • first conductive bonding member is applied on the first electrode 120 as described above, between the first conductive semiconductor structure 130 and the first electrode 120 or between the second conductive semiconductor structure 140 and the first electrode A first conductive bonding member may be positioned between 120 .
  • the first conductive bonding member IE1 includes a first arrangement portion DP1 overlapping the plurality of semiconductor structures 130 and 140 in a vertical direction or a first direction (X-axis direction) and the plurality of semiconductor structures 130 and 140 . It may include a first partition wall part BR1 disposed between or between the first arrangements S1 . That is, each of the plurality of semiconductor structures 130 and 140 may be disposed in the first arrangement unit DP1 . Furthermore, the first conductive bonding member IE1 may further include a first edge portion ER1 positioned outside the plurality of semiconductor structures.
  • the plurality of semiconductor structures 130 and 140 may include outer surfaces SF1 and SF2 .
  • the semiconductor structures 130 and 140 may include an outer surface SF1 facing each other and an outer surface SF2 not facing each other on the first electrode 120 .
  • the first conductive bonding member IE1 has a first edge positioned between the edges of the plurality of semiconductor structures 130 and 140 and the edges of the first electrode 120 except for the first arrangement DP1 .
  • the first partition wall part BR1 may be positioned between the part ER1 and the outer surfaces SF1 facing each other between the plurality of semiconductor structures 130 and 140 .
  • first partition wall part BR1 and the first edge part ER1 are the outer surfaces SF1 and SF2 of the plurality of semiconductor structures 130 and 140 and the first edge surface E1 of the first electrode 120 . to the fourth edge surface E4 may be located.
  • the first edge portion ER1 includes the outer surface SF2 of the semiconductor structures 130 and 140 that do not face each other on the first electrode 120 and the first to fourth edge surfaces SF2 of the first electrode 120 . It may be located between E1 to E4).
  • the first partition wall part BR1 may be positioned between the outer surfaces SF1 of the semiconductor structures 130 and 140 facing each other on the first electrode 120 .
  • the first partition wall part BR1 may be positioned between the facing outer surfaces SF1 spaced apart in the second direction (Y-axis direction).
  • the distance l3 between the opposing outer surfaces SF1 of the plurality of semiconductor structures 130 and 140 is the non-facing outer surface SF2 of the plurality of semiconductor structures 130 and 140 and the outer surfaces of the plurality of semiconductor structures 130 and 140 . It may be greater than the distance 14 between the first edge surface E1 to the fourth edge surface E4 of the first electrode 120 adjacent to the SF2 .
  • the above-described description of the first conductive bonding member IE1 may be applied to the second conductive bonding member IE2 as well. That is, in the second barrier rib portion BR2 , the second arrangement portion DP2 , and the second edge portion ER2 of the second conductive bonding member IE2 , the first barrier wall portion BR1 and the first arrangement portion ( ) DP1) and the description of the first edge part ER1 may be applied.
  • the first conductive bonding member IE1 has a thickness h1 and a maximum thickness between the semiconductor structures 130 and 140 and the first electrode 120 .
  • the ratio between (h2) may be 1:2.5 or less. That is, the thickness h2 of the first partition wall part BR1 may be 2.5 times or less of the thickness h1 of the first arrangement part DP1.
  • the thickness h2 of the first partition wall portion BR1 is greater than 2.5 times the thickness h1 of the first arrangement portion DP1, power generation performance is deteriorated and reliability is deteriorated.
  • the power generation performance was measured when the high temperature part was 150 °C and the low temperature part was 35 °C.
  • reliability represents the measured time (hr) when the resistance change rate of the thermoelectric element is 10% or more when the high temperature part is 200°C and the low temperature part is 35°C. ) may be different from the thickness h1 of the first arrangement DP1.
  • a thickness h1 in the first arrangement portion DP1 may be smaller than a thickness h2 in the first partition wall portion BR1 .
  • the thickness h2 of the first partition wall portion BR1 may be the maximum thickness.
  • the first conductive bonding member IE1 may be convex toward the second electrode 150 facing the first electrode 120 in the second region S2 .
  • the first barrier rib part BR1 of the first conductive bonding member IE1 has a first convex part CV1 on the first support part SP1 , and the first convex part CV1 is a first insulating part from the first substrate It may be protruding or convex in the direction toward the negative.
  • the first conductive bonding member IE1 may have a maximum thickness in the first partition wall portion BR1 . That is, the first conductive bonding member IE1 may be more convex toward the second electrode 150 in the first barrier rib portion BR1 than in the first edge portion ER1 .
  • the maximum thickness of the first conductive bonding member IE1 at the first edge portion ER1 may be smaller than the maximum thickness of the first partition wall portion BR1 . Accordingly, the portion where the first conductive bonding member IE1 is bonded to the first blocking layer LP in the first barrier rib portion BR1 is connected to the first conductive bonding member IE1 and the first blocking layer at the first edge portion ER1 . It may be located above the portion joined to (LP).
  • the uppermost surface of the first conductive bonding member IE1 in the first barrier rib part BR1 may be positioned on the first barrier layer LP.
  • the first conductive bonding member IE1 may be in contact with a portion of a bottom surface and a side surface of the first prevention layer LP. With this configuration, the first conductive bonding member IE1 may be blocked from passing through the side surface of the first prevention layer LP and in contact with the side surface of the semiconductor structures 130 and 140 .
  • the first conductive bonding member IE1 (eg, tin (Sn)) passes through the first barrier layer LP and moves to the above-described semiconductor structures 130 and 140 to form the first barrier layer LP and A problem in which a junction area between the semiconductor structures 130 and 140 decreases may be prevented. That is, at a high temperature, the first conductive bonding member IE1 comes in contact with a portion of the semiconductor structures 130 and 140 along the side surface of the first prevention layer LP, so that a component of the semiconductor structure (eg, BiTe) and the first conductive bonding member It can be prevented that the components of (eg, Sn) are combined with each other.
  • a component of the semiconductor structure eg, BiTe
  • thermoelectric element does not move or migrate to the side of the semiconductor structure, and thus a reduction in the bonding area between the first prevention layer and the first conductive bonding member may be prevented. Accordingly, electrical reliability of the thermoelectric element according to the embodiment may be improved.
  • an uppermost surface of the first conductive bonding member IE1 may be positioned under the first blocking layer LP in the first edge portion ER1 . Furthermore, the first conductive bonding member IE1 may contact only a portion of the side surface of the first barrier layer LP in the first edge portion ER1 .
  • the first insulating part 170a may include a plurality of recesses RS1 and RS2 convex or concave downward toward the first substrate 110 .
  • the first insulating part 170a may include a first recess RS1 and a second recess R2 .
  • the first electrode 120 may be disposed in the first recess RS1 . That is, the first recess RS1 may vertically overlap the first electrode 120 .
  • the second recess RS2 may be disposed around the first recess RS1 . That is, the second recess RS2 may not vertically overlap the first electrode 120 . Furthermore, the second recess RS2 may not vertically overlap the first convex portion CV1 .
  • the first distance L1 between the bottom surface RS1f of the first recess RS1 and the first substrate 110 is the second distance L1 between the second recess RS2 and the first substrate 110 . 2 may be less than the distance L2.
  • the thickness of the first convex portion CV1 may be smaller than the depth of the second recess RS2 .
  • the depth of the recess may correspond to the length in a direction perpendicular to the side of the recess.
  • the depth of the recess may be a length in a vertical direction of the recess.
  • the depth of the first recess is a vertical distance from the top surface of the first insulating part 170a to the bottom surface RS1f of the first recess RS1
  • the depth of the second recess is the second 1 It may be a distance in a vertical direction from the top surface of the insulating part 170a to the bottom surface RS2f of the second recess RS2 .
  • the depth of the third recess RS3 is a vertical distance from the lower surface of the second insulating part 170b to the upper surface of the third recess RS3, and the depth of the fourth recess RS4 is the second 2 It may be a distance from the lower surface of the insulating part 170b to the upper surface of the fourth recess RS4.
  • the thickness of the first partition wall part BR1 may be greater than or equal to the thickness of the first arrangement part DP1.
  • the second insulating part 170b may include a plurality of recesses RS3 and RS4 convex or concave upward toward the second substrate 160 .
  • the second insulating part 170b may include a third recess RS3 and a second recess R4 .
  • the second electrode 150 may be disposed in the third recess RS3 . That is, the third recess RS3 may vertically overlap the second electrode 150 . Furthermore, the fourth recess RS4 may not vertically overlap the second convex portion CV2 .
  • the fourth recess RS4 may be disposed around the third recess RS4 . That is, the third recess RS3 may not vertically overlap the second electrode 150 .
  • the third distance between the upper surface of the third recess RS3 and the second substrate 160 may be smaller than the fourth distance between the fourth recess RS4 and the second substrate 160 .
  • first recesses RS1 to fourth recesses RS4 may have various shapes.
  • the first recess RS1 to the fourth recess RS4 may have a side surface and a bottom surface (or an upper surface) surrounded by the side surface to have curvature.
  • the thickness of the second convex portion CV2 may be smaller than the depth of the third recess RS3 .
  • the depth of the recess may correspond to the length in a direction perpendicular to the side of the recess.
  • the depth of the recess may be a length in a vertical direction of the recess.
  • the thickness of the second partition wall part BR2 may be greater than or equal to the thickness of the second arrangement part DP2.
  • first partition wall part BR1 may vertically overlap the fourth recess RS4 .
  • a depth of the fourth recess RS4 may be greater or smaller than a thickness of the first partition wall portion BR1 .
  • the depth of the fourth recess RS4 may be greater than the thickness of the first partition wall part BR1 .
  • a depth of the second recess RS2 may be different from a depth of the fourth recess RS4 .
  • first partition wall part BR1 and the second partition wall part BR2 may be displaced.
  • first partition wall part BR1 and the second partition wall part BR2 may not vertically overlap.
  • the first insulating part 170a may be disposed on the first substrate 110 to be spaced apart from the edge of the first substrate 110 by a predetermined distance.
  • the first insulating portion 170a may be located on the entire upper surface of the first substrate 110 .
  • the first conductive bonding member IE1 may be positioned on the second prevention layer EP, and an upper surface thereof may have a curvature.
  • the maximum height of the first conductive bonding member IE1 in the first partition wall portion BR1 may be greater than the maximum height of the first conductive bonding member IE1 in the first edge portion ER1 .
  • FIG. 10 is a cross-sectional view of a thermoelectric element according to another embodiment, and FIG. 11 is an enlarged view of a portion K of FIG. 10 .
  • thermoelectric element 100a includes a first substrate 110 , a first insulating part 170a disposed on the first substrate 110 , and a first insulating part ( 170a, the first electrode 120 disposed on the 'lower insulating part' or the 'first insulating part'), the plurality of semiconductor structures 130 and 140 disposed on the first electrode 120, the plurality of semiconductor structures
  • the second electrode 150 disposed on 130 and 140, the second insulating part 170b ('upper insulating part' or 'second insulating part') disposed on the second electrode 150, and the second insulating part
  • the second substrate 160 may be disposed on the portion 170b.
  • the plurality of semiconductor structures 130 and 140 may include a first conductive semiconductor structure (N-type thermoelectric legs) and a plurality of second conductive semiconductor structures (P-type thermoelectric legs).
  • the first conductive semiconductor structure 130 may be any one of an N-type thermoelectric leg and a P-type thermoelectric leg
  • the second conductive semiconductor structure 140 may be the other one of an N-type thermoelectric leg and a P-type thermoelectric leg.
  • the first conductive semiconductor structure will be described as a P-type thermoelectric leg
  • the second conductive semiconductor structure will be described as an N-type thermoelectric leg.
  • first substrate 110 , the plurality of semiconductor structures 130 and 140 , the second electrode 150 , and the second substrate 160 are the first substrate 110 and the first electrode 120 of FIGS. 1 to 4 .
  • first conductive semiconductor structure or P-type thermoelectric leg 130 , the second conductive semiconductor structure or N-type thermoelectric leg 140 , the second electrode 150 , and the second substrate 160 will be equally applied.
  • a heat sink may be further disposed on the first substrate 110 or the second substrate 160
  • a sealing member may be further disposed between the first substrate 110 and the second substrate 160 .
  • the thermoelectric element 100a may include a first insulating part 170a disposed on the first substrate 110 and a second insulating part 170b disposed under the second substrate 160 .
  • the first insulating part 170a may be disposed on the bottom surface of the first electrode 120
  • the second insulating part 170b may be disposed on the top surface of the second electrode 150
  • the first substrate 110 may be disposed on the lower surface of the first insulating part 170a and the second substrate 160 may be disposed on the upper surface of the second insulating part 170b.
  • thermoelectric element 100a is disposed on the first prevention layer LP, the first electrode 120 or the second electrode 150 disposed on both ends of the plurality of semiconductor structures 130 and 140 .
  • the second blocking layer EP and the first conductive bonding member IE1 and the second conductive bonding member IE2 disposed between the first blocking layer LP and the second blocking layer EP may be further included.
  • the first conductive bonding member is disposed between the plurality of semiconductor structures 130 and 140 and the first electrode 120
  • the second conductive bonding member IE2 is formed between the plurality of semiconductor structures 130 and 140 and the second electrode ( IE2 ).
  • 150 can be disposed between.
  • the first conductive bonding member IE1 may be disposed on the first electrode 120
  • the second conductive bonding member IE2 may be disposed under the second electrode 150 .
  • the first prevention layer LP may be disposed on both ends of the plurality of semiconductor structures 130 and 140 .
  • the first barrier layer LP may be positioned at both ends of the first conductive semiconductor structure 130 and at both ends of the second conductive semiconductor structure 140 . Accordingly, the first barrier layer LP may be in contact with the plurality of semiconductor structures 130 and 140 .
  • the first prevention layer LP is positioned between the first electrode 120 and the plurality of semiconductor structures 130 and 140 and between the second electrode 150 and the plurality of semiconductor structures 130 and 140 , It may also contact the electrode 120 or the second electrode 150 .
  • the second prevention layer EP may be positioned on the first electrode 120 or the second electrode 150 . In an embodiment, one surface of the second prevention layer EP may be in contact with the first electrode 120 . In addition, the second prevention layer EP may be positioned between the first electrode 120 and the semiconductor structures 130 and 140 or between the first electrode 120 and the first conductive bonding member IE1 . In an embodiment, the other surface of the second barrier layer EP may be in contact with the first conductive bonding member IE1 .
  • the first conductive bonding member IE1 may be disposed between the first barrier layer LP and the second barrier layer EP to couple the first barrier layer LP and the second barrier layer EP to each other.
  • the first conductive bonding member IE1 is disposed between the semiconductor structures 130 and 140 and the first electrode 120
  • the second conductive bonding member IE is disposed between the semiconductor structures 130 and 140 and the second electrode 150 .
  • the first conductive bonding member IE1 couples the semiconductor structures 130 and 140 and the first electrode 120 to each other
  • the second conductive bonding member IE2 connects the semiconductor structures 130 and 140 and the second electrode. (150) can be combined with each other.
  • first conductive bonding member IE1 and the second conductive bonding member IE2 may include a metal component.
  • the first conductive bonding member IE1 may include tin (Sn).
  • the first conductive bonding member IE1 may be conductive, like the first blocking layer LP and the second blocking layer EP.
  • the height of the first conductive bonding member IE1 may be different from a height in a region outside the edge of the semiconductor structure and a height in a region below the semiconductor structures 130 and 140 (region overlapping in the vertical direction).
  • the height of the first electrode 120 in the region outside the edge of the semiconductor structure may be greater than the height in the region below the semiconductor structures 130 and 140 (the region overlapping in the vertical direction).
  • the first conductive bonding member IE2 may include a first arrangement portion DP1 in which the plurality of semiconductor structures 130 and 140 are respectively disposed, between the first arrangement portions DP1 or between semiconductor structures.
  • One partition wall part BR1 may be included.
  • the first partition wall part BR1 includes a first support part SP1 having the same thickness h1 as the first arrangement part DP1 , and is disposed on the first support part SP1 and is disposed on the first substrate 110 .
  • a first convex portion CV1 convex in a direction toward the first insulating portion 170a may be included.
  • the second conductive bonding member IE2 has a thickness in a region outside the edge of the semiconductor structure (thickness of the second edge portion ER2 ) and a thickness in an upper region (region overlapping in the vertical direction) of the semiconductor structures 130 and 140 . (thickness of the second support part SP2) may be different from each other. For example, in the second conductive bonding member IE2 , the thickness of the second edge part ER2 may be greater than the thickness of the second support part SP2 .
  • the second conductive bonding member IE2 may be formed between the second arrangement part DP2 in which the plurality of semiconductor structures 130 and 140 are disposed, respectively, and between the second arrangement parts DP2 or the semiconductor structures 130 and 140 . It may include a second partition wall portion BR2 disposed therebetween.
  • the second barrier rib part BR2 includes the second support part SP2 having the same thickness h1 as the second arrangement part DP2 , and is disposed under the second support part SP2 and is disposed on the second substrate 160 .
  • a second convex portion CV2 convex in a direction toward the second insulating portion 170b may be included.
  • the first insulating portion 170a, the first barrier layer LP, the second barrier layer EP, and the first conductive bonding member IE1 may be the same as described above except for differences. have.
  • the uppermost surface of the first conductive bonding member IE1 may be the same as or below the upper surface of the first barrier layer LP in the first barrier rib part BR1 . Accordingly, even when the first conductive bonding member IE1 in the first partition wall part BR1 moves toward the adjacent semiconductor structures 130 and 140 during driving or in a predetermined environment, the first conductive bonding member IE1 and the semiconductor structure ( 130 and 140) can be prevented from contacting each other. Accordingly, the first conductive bonding member IE1 is in contact with a portion of the semiconductor structures 130 and 140 along the side surface of the first prevention layer LP to form a component (eg, BiTe) of the semiconductor structure and a component of the first conductive bonding member.
  • a component eg, BiTe
  • thermoelectric element (For example, Sn) can be prevented from bonding to each other.
  • the movement or migration of the first conductive bonding member to the side of the semiconductor structure is prevented, thereby preventing a decrease in the bonding area between the first prevention layer and the first conductive bonding member. Accordingly, the electrical reliability of the thermoelectric element according to the embodiment may be improved.
  • the second conductive bonding member IE2 has a first barrier layer ( ) located at the uppermost portion of the second barrier rib portion BR2 or between the second conductive bonding member IE2 and the plurality of semiconductor structures 130 and 140 .
  • LP may be the same as or located below the lower surface.
  • thermoelectric element described above in the present specification may be applied to a thermoelectric device.
  • the thermoelectric device may include a thermoelectric element and a heat sink coupled to the thermoelectric element.
  • thermoelectric device may be used in a power generation device or a power generation system including a power generation device.
  • the power generation system includes a power generation device and a fluid pipe
  • the fluid flowing into the fluid pipe may be an engine of an automobile or a ship, or a heat source generated in a power plant or a steel mill.
  • the present invention is not limited thereto.
  • the temperature of the fluid discharged from the fluid pipe is lower than the temperature of the fluid flowing into the fluid pipe.
  • the temperature of the fluid flowing into the fluid pipe may be 100° C. or more, preferably 200° C.
  • thermoelectric element may be applied to a device for power generation, a device for cooling, a device for heating, and the like.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

실시예에 따르면 제1 전극; 상기 제1 전극 상에 배치된 제1 도전성 접합 부재; 및 상기 제1 도전성 접합 부재 상에 배치된 복수의 반도체 구조물;을 포함하고, 상기 제1 도전성 접합 부재는 상기 복수의 반도체 구조물이 각각 배치된 제1 배치부, 및 상기 제1 배치부 사이에 위치한 제1 격벽부;를 포함하고, 상기 제1 격벽부의 두께는 상기 제1 배치부의 두께의 2.5배 이하이다.

Description

열전 소자
본 발명은 열전 소자에 관한 것으로, 보다 상세하게는 기판 상에 배치되는 전극의 구조에 관한 것이다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전 소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전 소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.
열전 소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전 소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전 소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.
이때, 열전 소자는 전극과 열전 레그 사이에서 전기적 신뢰성이 저하되고 발전 성능이 감소하는 문제가 존재한다.
본 발명이 이루고자 하는 기술적 과제는 전기적 신뢰성 개선을 위한 열전 소자의 전극의 구조를 제공하는 것이다.
본 발명의 실시예에 따른 열전 소자는 제1 전극; 상기 제1 전극 상에 배치된 제1 도전성 접합 부재; 및 상기 제1 도전성 접합 부재 상에 배치된 복수의 반도체 구조물;을 포함하고, 상기 제1 도전성 접합 부재는 상기 복수의 반도체 구조물이 각각 배치된 제1 배치부, 및 상기 제1 배치부 사이에 위치한 제1 격벽부;를 포함하고, 상기 제1 격벽부의 두께는 상기 제1 배치부의 두께의 2.5배 이하이다.
상기 제1 전극 저면에 배치된 제1 절연부; 및 상기 제1 절연부의 저면에 배치된 제1 기판;을 더 포함할 수 있다.
상기 제1 절연부는 상면에서 상기 제1 기판을 향하여 오목한 복수의 리세스를 포함하고, 상기 복수의 리세스는 상기 제1 전극이 배치된 제1 리세스, 및 상기 제1 리세스 주위에 배치된 제2 리세스를 포함할 수 있다.
상기 제1 리세스의 바닥면과 상기 제1 기판 사이의 제1 거리는 상기 제2 리세스의 바닥면과 상기 제1 기판 사이의 제2 거리보다 작을 수 있다.
상기 제1 도전성 첩합 부재의 제1 격벽부는 상기 제1 배치부와 같은 두께를 갖는 제1 지지부, 및 상기 제1 지지부 상에 배치되고 상기 제1 기판에서 상기 제1 절연부을 향하는 방향으로 볼록한 제1 볼록부를 포함하고, 상기 제2 리세스와 상기 제1 볼록부는 수직으로 중첩되지 않을 수 있다.
상기 제1 볼록부의 두께는 상기 제2 리세스의 깊이보다 작고, 상기 제1 격벽부의 두께는 상기 제1 배치부의 두께 이상일 수 있다.
상기 복수의 반도체 구조물 상에 각각 배치된 복수의 제2 전극; 상기 복수의 제2 전극 상에 배치된 제2 절연부, 및 상기 제2 절연부 상에 배치된 제2 기판을 더 포함할 수 있다.
상기 제2 절연부는 상기 복수의 제2 전극이 각각 배치된 제3 리세스, 및 상기 제3 리세스 주위에 배치된 제4 리세스를 포함하고, 상기 제3 리세스, 및 상기 제4 리세스는 상기 제2 절연부의 하면에서 상기 제2 기판을 향하여 오목하고, 상기 제1 격벽부는 상기 제4 리세스와 수직으로 중첩될 수 있다.
상기 제4 리세스의 깊이는 상기 제1 격벽부의 두께보다 클 수 있다.
상기 제2 리세스의 깊이와 상기 제4 리세스의 깊이는 상이할 수 있다.
상기 복수의 반도체 구조물 양단에 배치되는 제1 방지층;을 더 포함할 수 있다.
상기 제2 전극 하부에 배치되는 제2 도전성 접합 부재;를 더 포함하고, 상기 제2 도전성 접합 부재는 상기 복수의 반도체 구조물이 각각 배치된 제2 배치부, 및 상기 제2 배치부 사이에 위치한 제2 격벽부를 포함할 수 있다.
상기 제1 격벽부와 상기 제2 격벽부는 수직으로 중첩되지 않을 수 있다.
본 발명의 실시예에 따르면, 발전 성능이 개선되고 전기적 신뢰성이 높은 열전 소자 및 이를 포함하는 열전 장치를 얻을 수 있다.
구체적으로, 본 발명의 실시예에 따르면, 전극이 인접한 열전 레그를 감싸도록 열전 레그를 향해 형성된 격벽부를 갖는 열전 소자를 제공할 수 있다.
또한, 본 발명의 실시예에 따른 열전 소자는 소형으로 구현되는 애플리케이션뿐만 아니라 차량, 선박, 제철소, 소각로 등과 같이 대형으로 구현되는 애플리케이션에서도 적용될 수 있다.
도 1은 열전 소자의 단면도이고,
도 2는 열전 소자의 사시도이고,
도 3은 실링부재를 포함하는 열전 소자의 사시도이고,
도 4는 실링부재를 포함하는 열전 소자의 분해사시도이고,
도 5는 일 실시예에 따른 열전 소자의 단면도이고,
도 6은 일 실시예에 따른 제1 전극과 제2 전극 및 반도체 구조물 간의 전기적 연결을 도시한 도면이고,
도 7은 일 실시예에 따른 제1 전극, 제1 도전성 접합 부재 및 반도체 구조물의 평면도이고,
도 8은 도 5에서 P의 확대도이고,
도 9는 도 7에서 II'로 절단된 단면도이고,
도 10은 다른 실시예에 따른 열전 소자의 단면도이고,
도 11은 도 10에서 K부분의 확대도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 열전 소자의 단면도이고, 도 2는 열전 소자의 사시도이고, 도 3은 실링부재를 포함하는 열전 소자의 사시도이고, 도 4는 실링부재를 포함하는 열전 소자의 분해사시도이다.
도 1 내지 2를 참조하면, 열전 소자(100)는 하부 기판(110), 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부 전극(150) 및 상부 기판(160)을 포함한다.
하부 전극(120)은 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 하부 바닥면 사이에 배치되고, 상부 전극(150)은 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 하부 전극(120) 및 상부 전극(150)에 의하여 전기적으로 연결된다. 하부 전극(120)과 상부 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다. 이러한 P형 열전 레그(130)는 제2 도전성 반도체 구조물 또는 제2 반도체 구조물, N형 열전 레그(140)는 제1 도전성 반도체 구조물 또는 제1 반도체 구조물일 수 있다. 또는 상술한 단어로 혼용될 수 있다. 그리고 복수의 반도체 구조물은 상술한 제1 도전성 반도체 구조물 및 제2 도전성 반도체 구조물을 포함할 수 있다. 또한, 이하 하부 전극(120)은 제1 전극과 혼용한다. 그리고 후술하는 상부 전극(150)은 제2 전극과 혼용한다.
예를 들어, 리드선(181, 182)을 통하여 하부 전극(120) 및 상부 전극(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(130)로부터 N형 열전 레그(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(140)로부터 P형 열전 레그(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다. 또는, 하부 전극(120) 및 상부 전극(150) 간 온도 차를 가해주면, 제벡 효과로 인하여 P형 열전 레그(130) 및 N형 열전 레그(140) 내 전하가 이동하며, 전기가 발생할 수도 있다.
도 1 내지 도 4에서 리드선(181, 182)이 하부 기판(110)에 배치되는 것으로 도시되어 있으나, 이로 제한되는 것은 아니며, 리드선(181, 182)이 상부 기판(160) 또는 하부 기판(110)에 배치되거나, 리드선(181, 182) 중 하나가 하부 기판(110)에 배치되고, 나머지 하나가 상부 기판(160)에 배치될 수도 있다.
또한, 리드선은 열전 소자(100)의 저온부 측에 연결될 수 있다. 또한, 열전 소자(100)의 고온부 측에는 열전 소자(100)가 적용되는 애플리케이션의 기자재가 탑재될 수 있다. 예를 들어, 열전 소자(100)가 적용되는 경우, 열전 소자(100)의 고온부 측에는 선박용 기자재가 탑재될 수 있다. 이에 따라, 열전 소자(100)의 저온부 측 및 고온부 측 모두 내전압 성능이 요구될 수 있다. 예를 들어, 열전 소자(100)가 구동시 고온부는 저온부보다 온도가 상대적으로 높을 수 있다.
한편, 열전 소자(100)의 고온부 측은 열전 소자(100)의 저온부 측에 비하여 더욱 높은 열전도 성능이 요구될 수 있다. 구리 기판은 알루미늄 기판에 비하여 열전도도 및 전기전도도가 높다. 열전도 성능 및 내전압 성능을 모두 만족시키기 위하여, 제1 기판(110) 및 제2 기판(160) 중 열전 소자(100)의 저온부 측에 배치되는 기판은 알루미늄 기판이고, 열전 소자(100)의 고온부 측에 배치되는 기판은 구리 기판일 수 있다. 다만, 구리 기판이 알루미늄 기판에 비하여 전기전도도가 높으므로, 열전 소자(100)의 고온부 측 내전압 성능을 유지하기 위하여 별도의 구성이 필요할 수 있다.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)을 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, P형 열전 레그(130)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Sb-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. N형 열전 레그(140)는 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, N형 열전 레그(140)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Se-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. 이에 따라, 본 명세서에서 열전 레그는 반도체 구조물, 반도체 소자, 반도체 재료층, 반도체 물질층, 반도체 소재층, 도전성 반도체 구조물, 열전 구조물, 열전 재료층, 열전 물질층, 열전 소재층 등으로 지칭될 수도 있다.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 이때, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그일 수 있다. 이와 같이, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그인 경우, P형 열전 레그(130) 및 N형 열전 레그(140)의 강도가 높아질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다.
이때, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다. 각 구조물은 개구 패턴을 가지는 전도성층을 더 포함할 수 있으며, 이에 따라 구조물 간의 접착력을 높이고, 열전도도를 낮추며, 전기전도도를 높일 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 하나의 열전 레그 내에서 단면적이 상이하도록 형성될 수도 있다. 예를 들어, 하나의 열전 레그 내에서 전극을 향하도록 배치되는 양 단부의 단면적이 양 단부 사이의 단면적보다 크게 형성될 수도 있다. 이에 따르면, 양 단부 간의 온도차를 크게 형성할 수 있으므로, 열전효율이 높아질 수 있다.
본 발명의 한 실시예에 따른 열전 소자의 성능은 열전성능 지수(figure of merit, ZT)로 나타낼 수 있다. 열전성능 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2021009109-appb-img-000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.
열전 소자의 열전성능 지수를 얻기 위하여, Z미터를 이용하여 Z값(V/K)을 측정하며, 측정한 Z값을 이용하여 열전성능 지수(ZT)를 계산할 수 있다.
여기서, 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 하부 전극(120), 그리고 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 상부 전극(150)은 구리(Cu), 은(Ag), 알루미늄(Al) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 하부 전극(120) 또는 상부 전극(150)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.
그리고, 상호 대향하는 하부 기판(110)과 상부 기판(160)은 금속 기판일 수 있으며, 그 두께는 0.1mm~1.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 1.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 하부 기판(110)과 상부 기판(160)이 금속 기판인 경우, 하부 기판(110)과 하부 전극(120) 사이 및 상부 기판(160)과 상부 전극(150) 사이에는 각각 제1 절연부(170a)와 제2 절연부(170b)가 더 형성될 수 있다. 제1 절연부(170a)와 제2 절연부(170b)는 1~20W/mK의 열전도도를 가지는 소재를 포함할 수 있다.
이때, 하부 기판(110)과 상부 기판(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 하부 기판(110)과 상부 기판(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전 소자의 흡열 성능 또는 방열 성능을 높일 수 있다. 예를 들어, 제벡 효과를 위해 고온영역에 배치되거나, 펠티에 효과를 위해 발열영역으로 적용되거나 또는 열전모듈의 외부환경으로부터 보호를 위한 실링부재가 배치되는 기판의 체적, 두께 또는 면적 중 적어도 하나가 다른 기판의 체적, 두께 또는 면적 중 적어도 하나보다 더 클 수 있다.
또한, 하부 기판(110)과 상부 기판(160) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전 소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 열전 레그(130) 또는 N형 열전 레그(140)와 접촉하는 면에 형성되는 경우, 열전 레그와 기판 간의 접합 특성도 향상될 수 있다. 열전 소자(100)는 하부 기판(110), 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부 전극(150) 및 상부 기판(160)을 포함한다.
도 3 내지 도 4에 도시된 바와 같이, 하부 기판(110)과 상부 기판(160) 사이에는 실링부재(190)가 더 배치될 수도 있다. 실링부재(190)는 하부 기판(110)과 상부 기판(160) 사이에서 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부 전극(150)의 측면에 배치될 수 있다. 이에 따라, 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부 전극(150)은 외부의 습기, 열, 오염 등으로부터 실링될 수 있다. 여기서, 실링부재(190)는, 복수의 하부 전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽 및 복수의 상부 전극(150)의 최외곽의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스(192), 실링 케이스(192)와 하부 기판(110) 사이에 배치되는 실링재(194) 및 실링 케이스(192)와 상부 기판(160) 사이에 배치되는 실링재(196)를 포함할 수 있다. 이와 같이, 실링 케이스(192)는 실링재(194, 196)를 매개로 하여 하부 기판(110) 및 상부 기판(160)과 접촉할 수 있다. 이에 따라, 실링 케이스(192)가 하부 기판(110) 및 상부 기판(160)과 직접 접촉할 경우 실링 케이스(192)를 통해 열전도가 일어나게 되고, 결과적으로 하부 기판(110)과 상부 기판(160) 간의 온도 차가 낮아지는 문제를 방지할 수 있다. 여기서, 실링재(194, 196)는 에폭시 수지 및 실리콘 수지 중 적어도 하나를 포함하거나, 에폭시 수지 및 실리콘 수지 중 적어도 하나가 양면에 도포된 테이프를 포함할 수 있다. 실링재(194, 194)는 실링 케이스(192)와 하부 기판(110) 사이 및 실링 케이스(192)와 상부 기판(160) 사이를 기밀하는 역할을 하며, 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부 전극(150)의 실링 효과를 높일 수 있고, 마감재, 마감층, 방수재, 방수층 등과 혼용될 수 있다. 여기서, 실링 케이스(192)와 하부 기판(110) 사이를 실링하는 실링재(194)는 하부 기판(110)의 상면에 배치되고, 실링 케이스(192)와 상부 기판(160) 사이를 실링하는 실링재(196)는 상부 기판(160)의 측면에 배치될 수 있다. 한편, 실링 케이스(192)에는 전극에 연결된 리드선(180, 182)를 인출하기 위한 가이드 홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 커버와 혼용될 수 있다. 다만, 실링부재에 관한 이상의 설명은 예시에 지나지 않으며, 실링부재는 다양한 형태로 변형될 수 있다. 도시되지 않았으나, 실링부재를 둘러싸도록 단열재가 더 포함될 수도 있다. 또는 실링부재는 단열 성분을 포함할 수도 있다.
이상에서, 하부 기판(110), 하부 전극(120), 상부 전극(150) 및 상부 기판(160)이라는 용어를 사용하고 있으나, 이는 이해의 용이 및 설명의 편의를 위하여 임의로 상부 및 하부로 지칭한 것일 뿐이며, 하부 기판(110) 및 하부 전극(120)이 상부에 배치되고, 상부 전극(150) 및 상부 기판(160)이 하부에 배치되도록 위치가 역전될 수도 있다. 또한, 상부 전극(150)은 이하 제2 전극과 혼용한다. 또한, 하부 기판은 '제1 기판', 상부 기판은 '제2 기판'과 혼용될 수 있다. 그리고 본 명세서에서 제1 방향(X축 방향)은 제1 기판에서 제2 기판을 향한 방향(X1)과 이의 반대 방향(X2)을 포함할 수 있으며, 제1 방향(X축 방향)은 '수직 방향'으로 사용될 수 있다. 또한, 제1 전극과 제2 전극은 복수 개일 수 있다.
한편, 전술한 바와 같이, 열전 소자의 열전도 성능을 향상시키기 위하여, 금속 기판을 사용하고자 하는 시도가 늘고 있다. 다만, 열전 소자가 금속 기판을 포함하는 경우, 열전도 측면에서는 유리한 효과를 얻을 수 있으나, 내전압이 낮아지는 문제가 있다. 특히, 열전 소자가 고전압 환경 하에 적용되는 경우, 2.5kV 이상의 내전압 성능이 요구되고 있다. 열전 소자의 내전압 성능을 개선하기 위하여 금속 기판과 전극 사이에 조성이 서로 상이한 복수의 제1 절연부/제2 절연부를 배치할 수 있다. 다만, 복수의 제1 절연부/제2 절연부 간 낮은 계면 접착력으로 인하여 리플로우 환경과 같은 고온 노출 시 복수의 제1 절연부/제2 절연부 간 열팽창 계수 차에 의한 전단응력이 발생할 수 있으며, 이에 따라 복수의 제1 절연부/제2 절연부 간 계면의 접합이 파괴되어 에어캡(air cap)이 발생할 수 있다. 복수의 제1 절연부/제2 절연부 간 계면의 에어캡은 기판의 열저항을 상승시킬 수 있으며, 이에 따라 열전 소자 양단의 온도 차를 감소시키고, 열전 소자가 발전장치에 적용되는 경우 발전장치의 발전 성능을 감소시킬 수 있다.
본 발명의 실시예에 따르면, 복수의 제1 절연부/제2 절연부 간 계면의 접합력을 향상시켜 열전도 성능 및 내전압 성능이 모두 개선된 열전 소자를 얻고자 한다. 또한, 전기적 신뢰성이 개선된 열전 소자를 얻고자 한다.
도 5는 일 실시예에 따른 열전 소자의 단면도이고, 도 6은 일 실시예에 따른 제1 전극과 제2 전극 및 반도체 구조물 간의 전기적 연결을 도시한 도면이고, 도 7은 일 실시예에 따른 제1 전극, 제1 도전성 접합 부재 및 반도체 구조물의 평면도이고, 도 8은 도 5에서 P의 확대도이고, 도 9는 도 7에서 II'로 절단된 단면도이다.
도 5를 참조하면, 일 실시예에 따른 열전 소자(100)는 제1 기판(110), 제1 기판(110) 상에 배치되는 제1 절연부(170a), 제1 절연부(170a, '하부 절연부' 또는 '제1 절연부') 상에 배치되는 제1 전극(120), 제1 전극(120) 상에 배치되는 복수의 반도체 구조물(130, 140), 복수의 반도체 구조물(130, 140) 상에 배치되는 제2 전극(150), 제2 전극(150) 상에 배치되는 제2 절연부(170b, '상부 절연부' 또는 '제2 절연부') 및 제2 절연부(170b) 상에 배치되는 제2 기판(160)을 포함할 수 있다.
실시예로, 복수의 반도체 구조물(130, 140)은 제1 도전성 반도체 구조물(N형 열전 레그)과 복수의 제2 도전성 반도체 구조물(P형 열전 레그)을 포함할 수 있다. 그리고 제1 도전성 반도체 구조물(130)은 N형 열전 레그 및 P형 열전 레그 중 어느 하나이고, 제2 도전성 반도체 구조물(140)은 N형 열전 레그 및 P형 열전 레그 중 다른 하나일 수 있다. 이하 제1 도전성 반도체 구조물은 P형 열전 레그로, 제2 도전성 반도체 구조물은 N형 열전 레그인 기준으로 설명한다.
그리고 제1 기판(110), 복수의 반도체 구조물(130, 140), 제2 전극(150), 제2 기판(160)은 도 1 내지 도 4의 제1 기판(110), 제1 전극(120), 제1 도전성 반도체 구조물 또는 P형 열전 레그(130), 제2 도전성 반도체 구조물 또는 N형 열전 레그(140), 제2 전극(150) 및 제2 기판(160)에 대한 설명이 동일하게 적용될 수 있다.
나아가, 도시하지 않았지만, 제1 기판(110) 또는 제2 기판(160)에는 히트싱크가 더 배치될 수 있고, 제1 기판(110)과 제2 기판(160) 사이에는 실링부재가 더 배치될 수 있다.
일 실시예에 따른 열전 소자(100)는 제1 기판(110) 상에 배치되는 제1 절연부(170a)와 제2 기판(160) 하부에 배치되는 제2 절연부(170b)를 포함할 수 있다. 그리고 제1 절연부(170a)는 제1 전극(120) 저면에 배치되고, 제2 절연부(170b)는 제2 전극(150)의 상면에 배치될 수 있다. 나아가, 제1 절연부(170a)의 저면에 제1 기판(110)이 배치되고, 제2 절연부(170b)의 상면에 제2 기판(160)이 배치될 수 있다.
이러한 제1 절연부(170a)와 제2 절연부(170b)는 적어도 하나의 층으로 이루어질 수 있다. 실시예로, 제1 절연부(170a) 와 제2 절연부(170b)는 제1 층 및 제2 층을 포함할 수 있다. 즉, 제1 절연부와 제2 절연부는 각각이 제1 층 및 제2 층을 포함할 수 있다. 그리고 제1 층은 제1 기판 또는 제2 기판과 접하고, 제2 층은 제1 전극 또는 제2 전극과 접할 수 있다.
이때, 제1 층은 실리콘과 알루미늄을 포함하는 복합체(composite)를 포함할 수도 있다. 여기서, 복합체는 Si 원소와 Al 원소를 포함하는 무기물과 알킬 체인으로 구성된 유무기 복합체일 수 있으며, 실리콘과 알루미늄을 포함하는 산화물, 탄화물 및 질화물 중 적어도 하나일 수 있다. 예를 들어, 복합체는 Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함할 수 있다. 이와 같이, Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함하는 복합체는 절연 성능이 우수하며, 이에 따라 높은 내전압 성능을 얻을 수 있다. 또는, 복합체는 실리콘 및 알루미늄과 함께 티타늄, 지르코늄, 붕소, 아연 등을 더 포함하는 산화물, 탄화물, 질화물일 수도 있다. 이를 위하여, 복합체는 무기바인더 및 유무기 혼합 바인더 중 적어도 하나와 알루미늄을 혼합한 후 열처리하는 과정을 통하여 얻어질 수 있다. 무기바인더는, 예를 들어 실리카(SiO2), 금속알콕사이드, 산화붕소(B2O3) 및 산화아연(ZnO2) 중 적어도 하나를 포함할 수 있다. 무기바인더는 무기입자이되, 물에 닿으면 졸 또는 겔화되어 바인딩의 역할을 할 수 있다. 이때, 실리카(SiO2), 금속알콕사이드 및 산화붕소(B2O3) 중 적어도 하나는 알루미늄 간 밀착력 또는 제1 기판(또는 제2 기판)과의 밀착력을 높이는 역할을 하며, 산화아연(ZnO2)은 제1 층의 강도를 높이고, 열전도율을 높이는 역할을 할 수 있다.
한편, 제2 층은 에폭시 수지 및 무기충전재를 포함하는 에폭시 수지 조성물 및 PDMS(polydimethylsiloxane)를 포함하는 실리콘 수지 조성물 중 적어도 하나를 포함하는 수지층으로 이루어질 수 있다. 이에 따라, 제2 층은 제1 층과 제1 전극 간의(또는 제1 층과 제2 전극 간의) 절연성, 접합력 및 열전도 성능을 향상시킬 수 있다.
여기서, 무기충전재는 수지층의 60wt% 내지 80wt%로 포함될 수 있다. 무기충전재가 60wt%미만으로 포함되면, 열전도 효과가 낮을 수 있으며, 무기충전재가 80wt%를 초과하여 포함되면 무기충전재가 수지 내에 고르게 분산되기 어려우며, 수지층은 쉽게 깨질 수 있다.
그리고, 에폭시 수지는 에폭시 화합물 및 경화제를 포함할 수 있다. 이때, 에폭시 화합물 10 부피비에 대하여 경화제 1 내지 10 부피비로 포함될 수 있다. 여기서, 에폭시 화합물은 결정성 에폭시 화합물, 비결정성 에폭시 화합물 및 실리콘 에폭시 화합물 중 적어도 하나를 포함할 수 있다. 무기충전재는 산화알루미늄 및 질화물 중 적어도 하나를 포함할 수 있다. 여기서, 질화물은, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다.
이때, 질화붕소 응집체의 입자크기 D50은 250㎛ 내지 350㎛이고, 산화알루미늄의 입자크기 D50은 10㎛ 내지 30㎛일 수 있다. 질화붕소 응집체의 입자크기 D50과 산화알루미늄의 입자크기 D50이 이러한 수치 범위를 만족할 경우, 질화붕소 응집체와 산화알루미늄이 수지층 내에 고르게 분산될 수 있으며, 이에 따라 수지층 전체적으로 고른 열전도 효과 및 접착 성능을 가질 수 있다.
제2 층이 PDMS(polydimethylsiloxane) 수지 및 산화알루미늄을 포함하는 수지 조성물인 경우, 제1 층 내 실리콘의 함량(예를 들어, 중량비)은 제2 층 내 실리콘의 함량보다 높게 포함되고, 제2 층 내 알루미늄의 함량은 제1 층 내 알루미늄의 함량보다 높게 포함될 수 있다. 이에 따르면, 제1 층 내 실리콘이 내전압 성능 향상에 주로 기여하며, 제2 층 내 산화알루미늄이 열전도 성능 향상에 주로 기여할 수 있다. 이에 따라, 제1 층 및 제2 층이 모두 절연 성능 및 열전도 성능을 가지되, 제1 층의 내전압 성능은 제2 층의 내전압 성능보다 높고, 제2 층의 열전도 성능은 제1 층의 열전도 성능보다 높을 수 있다.
한편, 제1 층 및 제2 층의 조성은 서로 상이하며, 이에 따라 제1 층 및 제2 층의 경도, 탄성 계수, 인장강도, 연신율(elongation) 및 영률(Young's modulus) 중 적어도 하나가 달라질 수 있으며, 이에 따라 내전압 성능, 열전도 성능, 접합 성능 및 열충격 완화 성능 등을 제어하는 것이 가능하다.
또한, 일 실시예에 따른 열전 소자(100)는 복수의 반도체 구조물(130, 140) 양단에 배치되는 제1 방지층(LP), 제1 전극(120) 또는 제2 전극(150) 상에 배치되는 제2 방지층(EP) 및 제1 방지층(LP)과 제2 방지층(EP) 사이에 배치되는 제1 도전성 접합 부재(IE1)와 제2 도전성 접합 부재(IE2)를 더 포함할 수 있다. 제1 도전성 접합 부재는 복수의 반도체 구조물(130, 140)과 제1 전극(120) 사이에 배치되고, 제2 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)과 제2 전극(150) 사이에 배치될 수 있다. 또는 제1 도전성 접합 부재(IE1)는 제1 전극(120) 상에 배치되고, 제2 도전성 접합 부재(IE2)는 제2 전극(150) 하부에 배치될 수 있다.
또한, 제1 방지층(LP)은 복수의 반도체 구조물(130, 140) 양단에 배치될 수 있다. 실시예로, 제1 방지층(LP)은 제1 도전성 반도체 구조물(130)의 양단에 그리고 제2 도전성 반도체 구조물(140)의 양단에 위치할 수 있다. 이에, 제1 방지층(LP)은 복수의 반도체 구조물(130, 140)과 접할 수 있다.
또한, 제1 방지층(LP)은 제1 전극(120)과 복수의 반도체 구조물(130, 140) 사이 및 제2 전극(150)과 복수의 반도체 구조물(130, 140) 사이에 위치하여, 제1 전극(120) 또는 제2 전극(150)과도 접할 수 있다.
이러한 제1 방지층(LP)은 금속으로 이루어질 수 있다. 예컨대, 제1 방지층(LP)은 니켈(Ni)을 포함할 수 있다. 제1 방지층(LP)은 제1 전극의 성분(예로, Cu)과 후술하는 제1 도전성 접합 부재(IE1)의 성분(예로, Sn)이 반도체 구조물(130, 140)로 이동 또는 마이그레이션(migration)하는 것을 방지할 수 있다. 이러한 구성에 의하여, 제1 도전성 접합 부재(IE1)의 예컨대 주석(Sn)이 반도체 구조물(130, 140)로 이동하여 제1 도전성 접합 부재(IE1)와 제1 전극(120)이 접하는 영역에 공극이 형성됨에 따라, 반도체 구조물과 제1 전극(120) 간의 전기적 연결이 끊어지는 또는 개방(open)되는 문제가 방지될 수 있다. 다시 말해, 제1 방지층(LP)은 제1 전극(120)의 성분 또는 제1 도전성 접합 부재(IE1)의 성분이 이동하는 것을 방지하여 반도체 구조물과 제1 전극 간의 전기적 연결을 안정적으로 유지할 수 있다. 이로써, 열전 소자의 전기적 신뢰성이 개선될 수 있다.
제2 방지층(EP)은 제1 전극(120) 또는 제2 전극(150) 상에 위치할 수 있다. 실시예로, 제2 방지층(EP)은 일면이 제1 전극(120)과 접할 수 있다. 그리고 제2 방지층(EP)은 제1 전극(120)과 반도체 구조물(130, 140) 사이 또는 제1 전극(120)과 제1 도전성 접합 부재(IE1) 사이에 위치할 수 있다. 실시예로, 제2 방지층(EP)은 다른 면이 제1 도전성 접합 부재(IE1)와 접할 수 있다.
이러한 제2 방지층(EP)은 제1 방지층(LP)과 마찬가지로 금속으로 이루어질 수 있다. 예컨대, 제2 방지층(EP)은 니켈(Ni)을 포함할 수 있다. 이러한 제2 방지층(EP)은 제1 전극(120)의 성분이 반도체 구조물(130, 140)로 이동하는 것을 방지할 수 있다. 이에, 소정의 온도(예로, 고온)에서 반도체 구조물(130, 140)의 성분(예로, BiTe)와 제1 도전성 접합 부재의 성분(예로, Sn)이 서로 결합하여 SnTe이 형성될 수 있다. 이러한 구성에 의하여, 제1 전극(120)의 성분이 반도체 구조물(130, 140)로 이동하여 제1 전극(120)과 제2 방지층(EP) 간의 접합 면적이 감소하여 전기적 연결이 끊어지는 문제가 방지될 수 있다. 즉, 제2 방지층(EP)은 제1 전극(120)의 이동을 방지하여 반도체 구조물과 제1 전극 간의 전기적 연결을 안정적으로 유지할 수 있다. 이로써, 열전 소자의 전기적 신뢰성이 향상될 수 있다.
제1 도전성 접합 부재(IE1)는 제1 방지층(LP)과 제2 방지층(EP) 사이에 배치되어 제1 방지층(LP) 및 제2 방지층(EP)을 서로 결합시킬 수 있다. 또한, 제1 도전성 접합 부재(IE1)는 반도체 구조물(130, 140)과 제1 전극(120) 사이에 그리고 제2 도전성 접합 부재(IE)는 반도체 구조물(130, 140)과 제2 전극(150) 사이에 위치할 수 있다. 이에, 제1 도전성 접합 부재(IE1)는 반도체 구조물(130, 140)과 제1 전극(120)을 서로 결합시키고, 제2 도전성 접합 부재(IE2)는 반도체 구조물(130, 140)과 제2 전극(150)을 서로 결합시킬 수 있다.
그리고 제1 도전성 접합 부재(IE1)와 제2 도전성 접합 부재(IE2)는 금속 성분을 포함할 수 있다. 예컨대, 제1 도전성 접합 부재(IE1)는 주석(Sn)을 포함할 수 있다. 그리고 제1 도전성 접합 부재(IE1)는 제1 방지층(LP) 및 제2 방지층(EP)과 마찬가지로 전도성일 수 있다.
실시예로, 제1 도전성 접합 부재(IE1)는 반도체 구조물의 가장자리 외측 영역에서 높이와 반도체 구조물(130, 140) 하부 영역(수직 방향으로 중첩되는 영역)에서 높이가 서로 상이할 수 있다. 예컨대, 제1 도전성 접합 부재(IE1)는 제1 전극(120)은 반도체 구조물의 가장자리 외측 영역에서 높이가 반도체 구조물(130, 140) 하부 영역(수직 방향으로 중첩되는 영역)에서 높이보다 클 수 있다.
실시예로, 제1 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)이 각각 배치되는 제1 배치부(DP1), 제1 배치부(DP1) 사이 또는 반도체 구조물 사이에 배치되는 제1 격벽부(BR1)를 포함할 수 있다.
그리고 제1 격벽부(BR1)는 제1 배치부(DP1)와 같은 두께를 갖는 제1 지지부(SP1)와, 제1 지지부(SP1) 상에 배치되고 제1 기판(110)에서 제1 절연부(170a)를 향한 방향으로 볼록한 제1 볼록부(CV1)를 포함할 수 있다.
또한, 제2 도전성 접합 부재(IE2)는 반도체 구조물의 가장자리 외측 영역에서 높이와 반도체 구조물(130, 140) 상부 영역(수직 방향으로 중첩되는 영역)에서 높이가 서로 상이할 수 있다. 예컨대, 제2 도전성 접합 부재(IE2)는 반도체 구조물의 가장자리 외측 영역에서 높이가 반도체 구조물(130, 140) 상부 영역(수직 방향으로 중첩되는 영역)에서 높이보다 클 수 있다.
실시예로, 제2 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)이 각각 배치되는 제2 배치부(DP2), 제2 배치부(DP2) 사이 또는 반도체 구조물(130, 140) 사이에 배치되는 제2 격벽부(BR2)를 포함할 수 있다.
그리고 제2 격벽부(BR2)는 제2 배치부(DP2)와 같은 두께를 갖는 제2 지지부(SP2)와, 제2 지지부(SP2) 하부에 배치되고 제2 기판(160)에서 제2 절연부(170b)를 향한 방향으로 볼록한 제2 볼록부(CV2)를 포함할 수 있다. 상술한 두께에 대한 설명은 수직한 방향으로의 길이로 설명한다. 이에 대한 구체적인 설명은 후술한다.
도 6 및 도 7을 참조하면, 제1 전극(120) 및 제2 전극(150)은 반도체 구조물(130, 140)을 통해 서로 전기적으로 연결될 수 있다. 이에, 전류는 제2 전극(150), 제1 도전성 반도체 구조물(130), 제1 전극(120) 및 제2 도전성 반도체 구조물(140) 순으로 흐를 수 있다(CP).
그리고 제1 전극(120) 및 제2 전극(150) 상에는 상술한 바와 같이 제1 도전성 반도체 구조물(130) 및 제2 반도체 구조물(140)이 위치할 수 있다. 이에 대해, 제1 전극(120)을 기준으로 설명하나, 제2 전극(150)에도 동일하게 적용될 수 있다. 그리고 제1 도전성 반도체 구조물(130)과 제2 반도체 구조물(140)은 제2 방향(Y축 방향)으로 서로 이격 배치될 수 있다. 이러한 제2 방향(Y축 방향)은 상술한 수직 방향 또는 제1 방향(X축 방향)과 수직할 수 있다. 그리고 제3 방향(Z축 방향)은 제2 방향(Y축 방향) 및 제1 방향(X축 방향)에 수직한 방향일 수 있다. 이를 기준으로 이하 설명한다.
제1 전극(120)은 제2 방향(Y축 방향)으로 길이(l1)가 제3 방향(Z축 방향)으로 길이(l2)보다 클 수 있다. 예컨대, 제1 전극(120)은 평면(YZ) 상으로 직사각형 형상을 가질 수 있다.
실시예로, 제1 전극(120)은 제1 에지면(E1), 제2 에지면(E2), 제3 에지면(E3) 및 제4 에지면(E4)을 포함할 수 있다. 제1 에지면(E1), 제2 에지면(E2), 제3 에지면(E3) 및 제4 에지면(E4)은 제1 전극(120)의 외측면일 수 있다. 즉, 제1 에지면(E1), 제2 에지면(E2), 제3 에지면(E3) 및 제4 에지면(E4)은 제1 전극(120)의 가장자리에 위치할 수 있다.
그리고 제1 에지면(E1)과 제2 에지면(E2)은 제3 방향(Z축 방향)으로 이격 배치되며 서로 대향할 수 있다. 그리고 제3 에지면(E3) 및 제4 에지면(E4)은 제1 에지면(E1)과 제2 에지면(E2) 사이에 위치하며 제2 방향(Y축 방향)으로 이격 배치될 수 있다. 또한, 제3 에지면(E3) 및 제4 에지면(E4)은 서로 대향할 수 있다.
그리고 제1 도전성 반도체 구조물(130)과 제2 도전성 반도체 구조물(140)은 제1 전극(120) 상에 서로 이격 배치될 수 있다.
그리고 상술한 바와 같이 제1 전극(120) 상에는 제1 도전성 접합 부재가 도포되므로, 제1 도전성 반도체 구조물(130)과 제1 전극(120) 사이 또는 제2 도전성 반도체 구조물(140)과 제1 전극(120) 사이에는 제1 도전성 접합 부재가 위치할 수 있다.
제1 도전성 접합 부재(IE1)는 복수의 반도체 구조물(130, 140)과 수직 방향 또는 제1 방향(X축 방향)으로 중첩되는 제1 배치부(DP1) 및 복수의 반도체 구조물(130, 140) 사이 또는 제1 배치(S1) 사이에 배치되는 제1 격벽부(BR1)를 포함할 수 있다. 즉, 제1 배치부(DP1)는 복수의 반도체 구조물(130, 140) 각각이 배치될 수 있다. 나아가, 제1 도전성 접합 부재(IE1)는 복수의 반도체 구조물 외측에 위치하는 제1 에지부(ER1)를 더 포함할 수 있다.
또한, 복수의 반도체 구조물(130, 140)은 외측면(SF1, SF2)을 포함할 수 있다. 또한, 반도체 구조물(130, 140)은 제1 전극(120) 상에서 서로 마주하는 외측면(SF1)과 마주하지 않는 외측면(SF2)을 포함할 수 있다.
실시예로, 제1 도전성 접합 부재(IE1)는 제1 배치부(DP1)를 제외하고 복수의 반도체 구조물(130, 140)의 가장자리와 제1 전극(120)의 가장자리 사이에 위치하는 제1 에지부(ER1) 및 복수의 반도체 구조물(130, 140) 간의 마주보는 외측면(SF1) 사이에 위치하는 제1 격벽부(BR1)를 포함할 수 있다.
즉, 제1 격벽부(BR1) 및 제1 에지부(ER1)는 복수의 반도체 구조물(130, 140)의 외측면(SF1, SF2)과 제1 전극(120)의 제1 에지면(E1) 내지 제4 에지면(E4) 사이에 위치할 수 있다.
또한, 제1 에지부(ER1)는 제1 전극(120) 상에서 반도체 구조물(130, 140)의 서로 마주하지 않는 외측면(SF2)과 제1 전극(120)의 제1 내지 제4 에지면(E1 내지 E4) 사이에 위치할 수 잇다. 그리고 제1 격벽부(BR1)는 제1 전극(120) 상에서 반도체 구조물(130, 140)의 서로 마주하는 외측면(SF1) 사이에 위치할 수 있다. 예컨대, 제1 격벽부(BR1)는 제2 방향(Y축 방향)으로 이격된 서로 마주하는 외측면(SF1) 사이에 위치할 수 있다.
실시예로, 복수의 반도체 구조물(130, 140)의 서로 마주하는 외측면(SF1) 간의 거리(l3)는 복수의 반도체 구조물(130, 140)의 마주하지 않는 외측면(SF2)과 상기 외측면(SF2)에 인접한 제1 전극(120)의 제1 에지면(E1) 내지 제4 에지면(E4) 간의 거리(l4)보다 클 수 있다.
상술한 제1 도전성 접합 부재(IE1)에 대한 설명은 제2 도전성 접합 부재(IE2)에도 대응하게 적용될 수 있다. 즉, 제2 도전성 접합 부재(IE2)의 제2 격벽부(BR2), 제2 배치부(DP2), 제2 에지부(ER2)에는 상술한 제1 격벽부(BR1), 제1 배치부(DP1), 제1 에지부(ER1)에 대한 설명이 적용될 수 있다.
도 8 및 아래 표 1을 참조하면, 실시예에 따른 열전 소자에서 제1 도전성 접합 부재(IE1)는 반도체 구조물(130, 140)과 제1 전극(120) 사이에서의 두께(h1)와 최대 두께(h2) 간의 비가 1:2.5이하일 수 있다. 즉, 제1 격벽부(BR1)의 두께(h2)는 제1 배치부(DP1)의 두께(h1)의 2.5배 이하일 수 있다. 제1 격벽부(BR1)의 두께(h2)는 제1 배치부(DP1)의 두께(h1)의 2.5배보다 큰 경우에 발전 성능이 저하되고, 신뢰성이 저하되는 문제가 발생한다.
h1:h2 1:2 1:2.5 1:3 1:3.5
발전 성능 [W] 25.1 24.8 23.6 22.8
신뢰성 [hr] 1,000 이상 1,000 이상 887 278
여기서, 발전 성능은 고온부가 150℃이고, 저온부가 35℃인 경우에 측정되었다. 그리고 신뢰성은 고온부 200℃이고, 저온부가 35℃인 경우 열전 소자의 저항 변화율이 10% 이상이 되는 경우 측정된 시간(hr)을 나타낸다.또한, 실시예에 따른 열전 소자에서 제1 격벽부(BR1)의 두께(h2)는 제1 배치부(DP1)의 두께(h1)와 상이할 수 있다. 예로, 제1 도전성 접합 부재(IE1)는 제1 배치부(DP1)에서의 두께(h1)가 제1 격벽부(BR1)에서의 두께(h2)보다 작을 수 있다. 특히, 제1 격벽부(BR1)에서의 두께(h2)는 최대 두께일 수 있다. 이에, 제1 도전성 접합 부재(IE1)는 제2 영역(S2)에서 제1 전극(120)에 마주하는 제2 전극(150)을 향해 볼록할 수 있다. 또는 제1 도전성 접합 부재(IE1)의 제1 격벽부(BR1)는 제1 지지부(SP1) 상의 제1 볼록부(CV1)를 갖고, 제1 볼록부(CV1)는 제1 기판에서 제1 절연부를 향한 방향으로 돌출 또는 볼록할 수 있다. 특히, 제1 도전성 접합 부재(IE1)는 제1 격벽부(BR1)에서 최대 두께를 가질 수 있다. 즉, 제1 도전성 접합 부재(IE1)는 제1 에지부(ER1)에서보다 제1 격벽부(BR1)에서 제2 전극(150)을 향해 더 볼록할 수 있다. 이에, 제1 도전성 접합 부재(IE1)는 제1 에지부(ER1)에서의 최대 두께가 제1 격벽부(BR1)에서의 최대 두께보다 작을 수 있다. 이로써, 제1 도전성 접합 부재(IE1)가 제1 격벽부(BR1)에서 제1 방지층(LP)과 접합된 부분이 제1 도전성 접합 부재(IE1)가 제1 에지부(ER1)에서 제1 방지층(LP)과 접합된 부분보다 상부에 위치할 수 있다.
또한, 제1 도전성 접합 부재(IE1)는 제1 격벽부(BR1)에서 최상면이 제1 방지층(LP) 상부에 위치할 수 있다. 다만, 제1 도전성 접합 부재(IE1)는 제1 방지층(LP)의 저면 및 측면의 일부와 접할 수 있다. 이러한 구성에 의하여, 제1 도전성 접합 부재(IE1)가 제1 방지층(LP)의 측면을 지나 반도체 구조물(130, 140)의 측면과 접하는 것이 차단될 수 있다. 이에 따라, 제1 도전성 접합 부재(IE1)의 일부 성분(예로, 주석(Sn))이 제1 방지층(LP)을 지나 상술한 반도체 구조물(130, 140)로 이동하여 제1 방지층(LP)과 반도체 구조물(130, 140) 간의 접합 면적이 감소하는 문제가 차단될 수 있다. 즉, 고온 시에 제1 도전성 접합 부재(IE1)가 제1 방지층(LP)의 측면을 따라 반도체 구조물(130, 140)의 일부와 접하여 반도체 구조물의 성분(예로, BiTe)과 제1 도전성 접합 부재의 성분(예로, Sn)이 서로 결합됨이 방지될 수 있다. 이로써, 제1 도전성 접합 부재가 반도체 구조물의 측면으로 이동 또는 마이그레이션(migration)하지 않게되어 제1 방지층과 제1 도전성 접합 부재의 접합 면적이 감소하는 문제가 차단될 수 있다. 이에 따라, 실시예에 따른 열전 소자의 전기적 신뢰성이 개선될 수 있다.
그리고 제1 도전성 접합 부재(IE1)는 제1 에지부(ER1)에서 최상면이 제1 방지층(LP) 하부에 위치할 수 있다. 나아가, 제1 도전성 접합 부재(IE1)는 제1 에지부(ER1)에서 제1 방지층(LP)의 측면의 일부와만 접할 수 있다.
또한, 실시예에 따른 제1 절연부(170a)는 제1 기판(110)을 향해 볼록한 또는 하부로 오목한 복수의 리세스(RS1, RS2)를 포함할 수 있다. 예컨대, 제1 절연부(170a)는 제1 리세스(RS1) 및 제2 리세스(R2)를 포함할 수 있다.
제1 리세스(RS1)는 제1 전극(120)이 배치될 수 있다. 즉, 제1 리세스(RS1)는 제1 전극(120)과 수직 방향으로 중첩될 수 있다.
제2 리세스(RS2)는 제1 리세스(RS1)에 주위에 배치될 수 있다. 즉, 제2 리세스(RS2)는 제1 전극(120)과 수직으로 중첩되지 않을 수 있다. 나아가, 제2 리세스(RS2)는 제1 볼록부(CV1)와 수직으로 중첩되지 않을 수 있다.
실시예로, 제1 리세스(RS1)의 바닥면(RS1f)과 제1 기판(110) 사이의 제1 거리(L1)는 제2 리세스(RS2)에서 제1 기판(110) 사이의 제2 거리(L2)보다 작을 수 있다. 이러한 구성에 의하여, 제1 전극(120)과 제1 절연층(170a) 간의 결합력 및 절연성이 향상될 수 있다. 다시 말해, 열전 소자의 신뢰성이 개선될 수 있다.
나아가, 제1 볼록부(CV1)의 두께는 제2 리세스(RS2)의 깊이보다 작을 수 있다. 실시예에서, 리세스의 깊이는 리세스 측면의 수직 방향으로 길이에 대응할 수 있다. 또는 리세스의 깊이는 리세스의 수직 방향으로 길이일 수 있다. 실시예로, 제1 리세스의 깊이는 제1 절연부(170a)의 상면에서 제1 리세스(RS1)의 바닥면(RS1f)까지의 수직 방향으로 거리이고, 제2 리세스의 깊이는 제1 절연부(170a)의 상면에서 제2 리세스(RS2)의 바닥면(RS2f)까지의 수직 방향으로 거리일 수 있다. 그리고 제3 리세스(RS3)의 깊이는 제2 절연부(170b)의 하면에서 제3 리세스(RS3)의 상부면까지의 수직 방향으로 거리이고, 제4 리세스(RS4)의 깊이는 제2 절연부(170b)의 하면에서 제4 리세스(RS4)의 상부면까지의 거리일 수 있다. 그리고 제1 격벽부(BR1)의 두께는 제1 배치부(DP1)의 두께 이상일 수 있다.
또한, 실시예로, 도 5와 같이 제2 절연부(170b)는 제2 기판(160)을 향해 볼록한 또는 상부로 오목한 복수의 리세스(RS3, RS4)를 포함할 수 있다. 예컨대, 제2 절연부(170b)는 제3 리세스(RS3) 및 제2 리세스(R4)를 포함할 수 있다.
제3 리세스(RS3)는 제2 전극(150)이 배치될 수 있다. 즉, 제3 리세스(RS3)는 제2 전극(150)과 수직 방향으로 중첩될 수 있다. 나아가, 제4 리세스(RS4)는 제2 볼록부(CV2)와 수직으로 중첩되지 않을 수 있다.
제4 리세스(RS4)는 제3 리세스(RS4)에 주위에 배치될 수 있다. 즉, 제3 리세스(RS3)는 제2 전극(150)과 수직으로 중첩되지 않을 수 있다.
실시예로, 제3 리세스(RS3)의 상부면과 제2 기판(160) 사이의 제3 거리는 제4 리세스(RS4)에서 제2 기판(160) 사이의 제4 거리보다 작을 수 있다. 이러한 구성에 의하여, 제2 전극(150)과 제2 절연층(170b) 간의 결합력 및 절연성이 향상될 수 있다. 다시 말해, 열전 소자의 신뢰성이 개선될 수 있다.
상술한 제1 리세스(RS1) 내지 제4 리세스(RS4)는 다양한 형상을 가질 수 있다. 예컨대, 제1 리세스(RS1) 내지 제4 리세스(RS4)는 측면과 측면에 의해 둘러싸인 바닥면(또는 상부면)이 모두 곡률을 가질 수 있다.
나아가, 제2 볼록부(CV2)의 두께는 제3 리세스(RS3)의 깊이보다 작을 수 있다. 실시예에서, 리세스의 깊이는 리세스 측면의 수직 방향으로 길이에 대응할 수 있다. 또는 리세스의 깊이는 리세스의 수직 방향으로 길이일 수 있다. 그리고 제2 격벽부(BR2)의 두께는 제2 배치부(DP2)의 두께 이상일 수 있다.
또한, 제1 격벽부(BR1)는 제4 리세스(RS4)와 수직으로 중첩될 수 있다. 실시예로, 제4 리세스(RS4)의 깊이는 제1 격벽부(BR1)의 두께보다 크거나 작을 수 있다. 예컨대, 제4 리세스(RS4)의 깊이는 제1 격벽부(BR1)의 두께보다 클 수 있다.
또한, 제2 리세스(RS2)의 깊이와 제4 리세스(RS4)의 깊이는 상이할 수 있다.
또한, 제1 격벽부(BR1)와 제2 격벽부(BR2)는 어긋나게 배치될 수 있다. 실시예로, 제1 격벽부(BR1)와 제2 격벽부(BR2)는 수직으로 중첩되지 않을 수 있다.
도 9를 참조하면, 제1 기판(110) 상에서 제1 절연부(170a)는 제1 기판(110)의 가장자리로부터 소정 거리 이격 배치될 수 있다. 또는 제1 절연부(170a)는 제1 기판(110)의 상면 전체에 위치할 수도 있다.
그리고 복수의 반도체 구조물 사이에서 제1 도전성 접합 부재(IE1)는 제2 방지층(EP) 상에 위치하며, 상면이 곡률을 가질 수 있다.
상술한 바와 마찬가지로, 제1 격벽부(BR1)에서 제1 도전성 접합 부재(IE1)의 최대 높이가 제1 에지부(ER1)에서 제1 도전성 접합 부재(IE1)의 최대 높이보다 클 수 있다.
도 10은 다른 실시예에 따른 열전 소자의 단면도이고, 도 11은 도 10에서 K부분의 확대도이다.
도 10 및 도 11을 참조하면, 다른 실시예에 따른 열전 소자(100a)는 제1 기판(110), 제1 기판(110) 상에 배치되는 제1 절연부(170a), 제1 절연부(170a, '하부 절연부' 또는 '제1 절연부') 상에 배치되는 제1 전극(120), 제1 전극(120) 상에 배치되는 복수의 반도체 구조물(130, 140), 복수의 반도체 구조물(130, 140) 상에 배치되는 제2 전극(150), 제2 전극(150) 상에 배치되는 제2 절연부(170b, '상부 절연부' 또는 '제2 절연부') 및 제2 절연부(170b) 상에 배치되는 제2 기판(160)을 포함할 수 있다.
실시예로, 복수의 반도체 구조물(130, 140)은 제1 도전성 반도체 구조물(N형 열전 레그)과 복수의 제2 도전성 반도체 구조물(P형 열전 레그)을 포함할 수 있다. 그리고 제1 도전성 반도체 구조물(130)은 N형 열전 레그 및 P형 열전 레그 중 어느 하나이고, 제2 도전성 반도체 구조물(140)은 N형 열전 레그 및 P형 열전 레그 중 다른 하나일 수 있다. 이하 제1 도전성 반도체 구조물은 P형 열전 레그로, 제2 도전성 반도체 구조물은 N형 열전 레그인 기준으로 설명한다.
그리고 제1 기판(110), 복수의 반도체 구조물(130, 140), 제2 전극(150), 제2 기판(160)은 도 1 내지 도 4의 제1 기판(110), 제1 전극(120), 제1 도전성 반도체 구조물 또는 P형 열전 레그(130), 제2 도전성 반도체 구조물 또는 N형 열전 레그(140), 제2 전극(150) 및 제2 기판(160)에 대한 설명이 동일하게 적용될 수 있다.
나아가, 도시하지 않았지만, 제1 기판(110) 또는 제2 기판(160)에는 히트싱크가 더 배치될 수 있고, 제1 기판(110)과 제2 기판(160) 사이에는 실링부재가 더 배치될 수 있다.
다른 실시예에 따른 열전 소자(100a)는 제1 기판(110) 상에 배치되는 제1 절연부(170a)와 제2 기판(160) 하부에 배치되는 제2 절연부(170b)를 포함할 수 있다. 그리고 제1 절연부(170a)는 제1 전극(120) 저면에 배치되고, 제2 절연부(170b)는 제2 전극(150)의 상면에 배치될 수 있다. 나아가, 제1 절연부(170a)의 저면에 제1 기판(110)이 배치되고, 제2 절연부(170b)의 상면에 제2 기판(160)이 배치될 수 있다.
또한, 다른 실시예에 따른 열전 소자(100a)는 복수의 반도체 구조물(130, 140) 양단에 배치되는 제1 방지층(LP), 제1 전극(120) 또는 제2 전극(150) 상에 배치되는 제2 방지층(EP) 및 제1 방지층(LP)과 제2 방지층(EP) 사이에 배치되는 제1 도전성 접합 부재(IE1)와 제2 도전성 접합 부재(IE2)를 더 포함할 수 있다. 제1 도전성 접합 부재는 복수의 반도체 구조물(130, 140)과 제1 전극(120) 사이에 배치되고, 제2 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)과 제2 전극(150) 사이에 배치될 수 있다. 또는 제1 도전성 접합 부재(IE1)는 제1 전극(120) 상에 배치되고, 제2 도전성 접합 부재(IE2)는 제2 전극(150) 하부에 배치될 수 있다.
또한, 제1 방지층(LP)은 복수의 반도체 구조물(130, 140) 양단에 배치될 수 있다. 실시예로, 제1 방지층(LP)은 제1 도전성 반도체 구조물(130)의 양단에 그리고 제2 도전성 반도체 구조물(140)의 양단에 위치할 수 있다. 이에, 제1 방지층(LP)은 복수의 반도체 구조물(130, 140)과 접할 수 있다.
또한, 제1 방지층(LP)은 제1 전극(120)과 복수의 반도체 구조물(130, 140) 사이 및 제2 전극(150)과 복수의 반도체 구조물(130, 140) 사이에 위치하여, 제1 전극(120) 또는 제2 전극(150)과도 접할 수 있다.
제2 방지층(EP)은 제1 전극(120) 또는 제2 전극(150) 상에 위치할 수 있다. 실시예로, 제2 방지층(EP)은 일면이 제1 전극(120)과 접할 수 있다. 그리고 제2 방지층(EP)은 제1 전극(120)과 반도체 구조물(130, 140) 사이 또는 제1 전극(120)과 제1 도전성 접합 부재(IE1) 사이에 위치할 수 있다. 실시예로, 제2 방지층(EP)은 다른 면이 제1 도전성 접합 부재(IE1)와 접할 수 있다.
제1 도전성 접합 부재(IE1)는 제1 방지층(LP)과 제2 방지층(EP) 사이에 배치되어 제1 방지층(LP) 및 제2 방지층(EP)을 서로 결합시킬 수 있다. 또한, 제1 도전성 접합 부재(IE1)는 반도체 구조물(130, 140)과 제1 전극(120) 사이에 그리고 제2 도전성 접합 부재(IE)는 반도체 구조물(130, 140)과 제2 전극(150) 사이에 위치할 수 있다. 이에, 제1 도전성 접합 부재(IE1)는 반도체 구조물(130, 140)과 제1 전극(120)을 서로 결합시키고, 제2 도전성 접합 부재(IE2)는 반도체 구조물(130, 140)과 제2 전극(150)을 서로 결합시킬 수 있다.
그리고 제1 도전성 접합 부재(IE1)와 제2 도전성 접합 부재(IE2)는 금속 성분을 포함할 수 있다. 예컨대, 제1 도전성 접합 부재(IE1)는 주석(Sn)을 포함할 수 있다. 그리고 제1 도전성 접합 부재(IE1)는 제1 방지층(LP) 및 제2 방지층(EP)과 마찬가지로 전도성일 수 있다.
실시예로, 제1 도전성 접합 부재(IE1)는 반도체 구조물의 가장자리 외측 영역에서 높이와 반도체 구조물(130, 140) 하부 영역(수직 방향으로 중첩되는 영역)에서 높이가 서로 상이할 수 있다. 예컨대, 제1 도전성 접합 부재(IE1)는 제1 전극(120)은 반도체 구조물의 가장자리 외측 영역에서 높이가 반도체 구조물(130, 140) 하부 영역(수직 방향으로 중첩되는 영역)에서 높이보다 클 수 있다.
실시예로, 제1 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)이 각각 배치되는 제1 배치부(DP1), 제1 배치부(DP1) 사이 또는 반도체 구조물 사이에 배치되는 제1 격벽부(BR1)를 포함할 수 있다.
그리고 제1 격벽부(BR1)는 제1 배치부(DP1)와 같은 두께(h1)를 갖는 제1 지지부(SP1)와, 제1 지지부(SP1) 상에 배치되고 제1 기판(110)에서 제1 절연부(170a)를 향한 방향으로 볼록한 제1 볼록부(CV1)를 포함할 수 있다.
또한, 제2 도전성 접합 부재(IE2)는 반도체 구조물의 가장자리 외측 영역에서 두께(제2 에지부(ER2)의 두께)와 반도체 구조물(130, 140) 상부 영역(수직 방향으로 중첩되는 영역)에서 두께(제2 지지부(SP2)의 두께)가 서로 상이할 수 있다. 예컨대, 제2 도전성 접합 부재(IE2)는 제2 에지부(ER2)의 두께가 제2 지지부(SP2)의 두께보다 클 수 있다.
실시예로, 제2 도전성 접합 부재(IE2)는 복수의 반도체 구조물(130, 140)이 각각 배치되는 제2 배치부(DP2), 제2 배치부(DP2) 사이 또는 반도체 구조물(130, 140) 사이에 배치되는 제2 격벽부(BR2)를 포함할 수 있다.
그리고 제2 격벽부(BR2)는 제2 배치부(DP2)와 같은 두께(h1)를 갖는 제2 지지부(SP2)와, 제2 지지부(SP2) 하부에 배치되고 제2 기판(160)에서 제2 절연부(170b)를 향한 방향으로 볼록한 제2 볼록부(CV2)를 포함할 수 있다.
본 실시예에서는 상술한 일 실시예에 따른 여렂 ㄴ소자에서 제1 기판(110), 제1 전극(120), 반도체 구조물(130, 140), 제2 전극(150), 제2 기판(160), 제1 절연부(170a), 제1 방지층(LP), 제2 방지층(EP) 및 제1 도전성 접합 부재(IE1)에 대한 설명은 차이가 있는 부분을 제외하고 상술한 내용이 동일하게 적용될 수 있다.
나아가, 제1 도전성 접합 부재(IE1)는 제1 격벽부(BR1)에서 최상면이 제1 방지층(LP)의 상면과 같거나 하부에 위치할 수 있다. 이에 따라, 구동 시 또는 소정의 환경에서 제1 격벽부(BR1) 내의 제1 도전성 접합 부재(IE1)가 인접한 반도체 구조물(130, 140) 측으로 이동하더라도 제1 도전성 접합 부재(IE1)와 반도체 구조물(130, 140)가 서로 접하는 것을 방지할 수 있다. 이에 따라, 제1 도전성 접합 부재(IE1)가 제1 방지층(LP)의 측면을 따라 반도체 구조물(130, 140)의 일부와 접하여 반도체 구조물의 성분(예로, BiTe)과 제1 도전성 접합 부재의 성분(예로, Sn)이 서로 결합됨이 방지될 수 있다. 이로써, 제1 도전성 접합 부재가 반도체 구조물의 측면으로 이동 또는 마이그레이션(migration)하는 것이 방지되어 제1 방지층과 제1 도전성 접합 부재의 접합 면적이 감소하는 문제가 차단될 수 있다. 이에 따라, 실시예에 따른 열전 소자의 전기적 신뢰성이 개선될 수 있다.
또한, 제2 도전성 접합 부재(IE2)는 제2 격벽부(BR2)에서 최하면이 상부에 위치한 또는 제2 도전성 접합 부재(IE2)와 복수의 반도체 구조물(130, 140) 사이의 제1 방지층(LP)의 하면과 같거나 하부에 위치할 수 있다.
본 명세서에서 상술한 열전 소자는 열전 장치에 적용될 수 있다. 열전 장치는 열전 소자 및 열전 소자와 결합된 히트 싱크를 포함할 수 있다.
또한, 상기 열전 장치는 발전장치 또는 발전장치로 이루어진 발전 시스템 등에 이용될 수 있다. 예컨대, 발전시스템은 발전장치 및 유체관을 포함하며, 유체관으로 유입되는 유체는 자동차, 선박 등의 엔진이나 또는 발전소, 제철소 등에서 발생되는 열원일 수 있다. 다만, 이러한 내용에 제한되는 것은 아니다. 그리고 유체관으로부터 배출되는 유체의 온도는 유체관으로 유입되는 유체의 온도보다 낮다. 예를 들어, 유체관으로 유입되는 유체의 온도는 100℃이상, 바람직하게는 200℃ 이상, 더욱 바람직하게는 220℃ 내지 250℃일 수 있으나, 이로 제한되는 것은 아니고, 열전 소자의 저온부 및 고온부 간 온도 차에 따라 다양하게 적용될 수 있다. 이에 따라, 본 발명의 실시예에 따른 열전 소자는 발전용 장치, 냉각용 장치, 온열용 장치 등에 작용될 수 있다.
상기에서는 본 발명의 바람직한 일 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 제1 전극;
    상기 제1 전극 상에 배치된 제1 도전성 접합 부재; 및
    상기 제1 도전성 접합 부재 상에 배치된 복수의 반도체 구조물;을 포함하고,
    상기 제1 도전성 접합 부재는 상기 복수의 반도체 구조물이 각각 배치된 제1 배치부, 및 상기 제1 배치부 사이에 위치한 제1 격벽부;를 포함하고,
    상기 제1 격벽부의 두께는 상기 제1 배치부의 두께의 2.5배 이하인 열전 소자.
  2. 제1항에 있어서,
    상기 제1 전극 저면에 배치된 제1 절연부; 및
    상기 제1 절연부의 저면에 배치된 제1 기판;을 더 포함하는 열전 소자.
  3. 제2항에 있어서,
    상기 제1 절연부는 상면에서 상기 제1 기판을 향하여 오목한 복수의 리세스를 포함하고,
    상기 복수의 리세스는 상기 제1 전극이 배치된 제1 리세스, 및 상기 제1 리세스 주위에 배치된 제2 리세스를 포함하는 열전 소자.
  4. 제3항에 있어서,
    상기 제1 리세스의 바닥면과 상기 제1 기판 사이의 제1 거리는 상기 제2 리세스의 바닥면과 상기 제1 기판 사이의 제2 거리보다 작은 열전 소자.
  5. 제4항에 있어서,
    상기 제1 도전성 접합 부재의 제1 격벽부는 상기 제1 배치부와 같은 두께를 갖는 제1 지지부, 및 상기 제1 지지부 상에 배치되고 상기 제1 기판에서 상기 제1 절연부을 향하는 방향으로 볼록한 제1 볼록부를 포함하고,
    상기 제2 리세스와 상기 제1 볼록부는 수직으로 중첩되지 않는 열전 소자.
  6. 제5항에 있어서,
    상기 제1 볼록부의 두께는 상기 제2 리세스의 깊이보다 작고,
    상기 제1 격벽부의 두께는 상기 제1 배치부의 두께 이상인 열전 소자.
  7. 제5항에 있어서,
    상기 복수의 반도체 구조물 상에 각각 배치된 복수의 제2 전극;
    상기 복수의 제2 전극 상에 배치된 제2 절연부, 및
    상기 제2 절연부 상에 배치된 제2 기판을 더 포함하는 열전 소자.
  8. 제7항에 있어서,
    상기 제2 절연부는 상기 복수의 제2 전극이 각각 배치된 제3 리세스, 및 상기 제3 리세스 주위에 배치된 제4 리세스를 포함하고,
    상기 제3 리세스, 및 상기 제4 리세스는 상기 제2 절연부의 하면에서 상기 제2 기판을 향하여 오목하고,
    상기 제1 격벽부는 상기 제4 리세스와 수직으로 중첩된 열전 소자.
  9. 제8항에 있어서,
    상기 제4 리세스의 깊이는 상기 제1 격벽부의 두께보다 큰 열전 소자.
  10. 제8항에 있어서,
    상기 제2 리세스의 깊이와 상기 제4 리세스의 깊이는 상이한 열전 소자.
PCT/KR2021/009109 2020-07-24 2021-07-15 열전 소자 WO2022019569A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023504368A JP2023536411A (ja) 2020-07-24 2021-07-15 熱電素子
EP21846804.9A EP4187625A4 (en) 2020-07-24 2021-07-15 THERMOELECTRIC ELEMENT
CN202180052643.9A CN115997490A (zh) 2020-07-24 2021-07-15 热电元件
US18/017,431 US20230309406A1 (en) 2020-07-24 2021-07-15 Thermoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200092525A KR20220013223A (ko) 2020-07-24 2020-07-24 열전 소자
KR10-2020-0092525 2020-07-24

Publications (1)

Publication Number Publication Date
WO2022019569A1 true WO2022019569A1 (ko) 2022-01-27

Family

ID=79728839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009109 WO2022019569A1 (ko) 2020-07-24 2021-07-15 열전 소자

Country Status (6)

Country Link
US (1) US20230309406A1 (ko)
EP (1) EP4187625A4 (ko)
JP (1) JP2023536411A (ko)
KR (1) KR20220013223A (ko)
CN (1) CN115997490A (ko)
WO (1) WO2022019569A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200447A (ja) * 2002-12-19 2004-07-15 Hitachi Metals Ltd 熱電変換モジュール
JP2004303872A (ja) * 2003-03-31 2004-10-28 Hitachi Metals Ltd 熱電変換モジュール
JP2006303017A (ja) * 2005-04-18 2006-11-02 Aisin Seiki Co Ltd 熱電変換装置
JP2008277394A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 熱電モジュール及びその製造方法
KR20190116066A (ko) * 2018-04-04 2019-10-14 엘지이노텍 주식회사 열전소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049534A (ja) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd 熱電モジュール及びその製造方法
TW201624779A (zh) * 2014-12-23 2016-07-01 財團法人工業技術研究院 熱電轉換裝置及其應用系統
KR20190035310A (ko) * 2017-09-26 2019-04-03 엘지이노텍 주식회사 열전 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200447A (ja) * 2002-12-19 2004-07-15 Hitachi Metals Ltd 熱電変換モジュール
JP2004303872A (ja) * 2003-03-31 2004-10-28 Hitachi Metals Ltd 熱電変換モジュール
JP2006303017A (ja) * 2005-04-18 2006-11-02 Aisin Seiki Co Ltd 熱電変換装置
JP2008277394A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 熱電モジュール及びその製造方法
KR20190116066A (ko) * 2018-04-04 2019-10-14 엘지이노텍 주식회사 열전소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187625A4 *

Also Published As

Publication number Publication date
KR20220013223A (ko) 2022-02-04
US20230309406A1 (en) 2023-09-28
JP2023536411A (ja) 2023-08-25
EP4187625A1 (en) 2023-05-31
CN115997490A (zh) 2023-04-21
EP4187625A4 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
WO2020218753A1 (ko) 열변환장치
WO2022060026A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2020159177A1 (ko) 열전소자
WO2021145621A1 (ko) 발전장치
WO2022019569A1 (ko) 열전 소자
WO2021101267A1 (ko) 열전소자
WO2022050820A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2020246749A1 (ko) 열전소자
WO2022065651A1 (ko) 열전소자
WO2021201494A1 (ko) 열전소자
WO2021256852A1 (ko) 열전모듈 및 이를 포함하는 발전장치
WO2021145677A1 (ko) 발전장치
WO2019143140A1 (ko) 열전 소자
WO2022092737A1 (ko) 열전소자
WO2022124674A1 (ko) 열전 소자
WO2022065824A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2020153799A1 (ko) 열전 소자
WO2022035215A1 (ko) 열전 모듈
WO2022060112A1 (ko) 열전소자
WO2021132974A1 (ko) 열전소자
WO2021029590A1 (ko) 열전장치
WO2023287167A1 (ko) 열전소자
WO2021141302A1 (ko) 열전소자
WO2021194158A1 (ko) 열전소자
WO2024117759A1 (ko) 열전장치 및 이를 포함하는 열전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504368

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021846804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846804

Country of ref document: EP

Effective date: 20230224