WO2022065651A1 - 열전소자 - Google Patents

열전소자 Download PDF

Info

Publication number
WO2022065651A1
WO2022065651A1 PCT/KR2021/009353 KR2021009353W WO2022065651A1 WO 2022065651 A1 WO2022065651 A1 WO 2022065651A1 KR 2021009353 W KR2021009353 W KR 2021009353W WO 2022065651 A1 WO2022065651 A1 WO 2022065651A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
disposed
substrate
electrode group
insulating layer
Prior art date
Application number
PCT/KR2021/009353
Other languages
English (en)
French (fr)
Inventor
최만휴
이종민
이세운
조용상
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP21872684.2A priority Critical patent/EP4220744A4/en
Priority to JP2023519048A priority patent/JP2023542708A/ja
Priority to CN202180065767.0A priority patent/CN116250387A/zh
Priority to US18/028,016 priority patent/US20240040929A1/en
Priority claimed from KR1020210095001A external-priority patent/KR20220040980A/ko
Publication of WO2022065651A1 publication Critical patent/WO2022065651A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals

Definitions

  • the present invention relates to a thermoelectric element, and more particularly, to a structure of an electrode part of the thermoelectric element.
  • thermoelectric phenomenon is a phenomenon that occurs by the movement of electrons and holes inside a material, and refers to direct energy conversion between heat and electricity.
  • thermoelectric element is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric devices can be divided into devices using a temperature change in electrical resistance, devices using the Seebeck effect, which is a phenomenon in which electromotive force is generated by a temperature difference, and devices using the Peltier effect, which is a phenomenon in which heat absorption or heat is generated by current. .
  • thermoelectric devices are widely applied to home appliances, electronic parts, and communication parts.
  • the thermoelectric element may be applied to an apparatus for cooling, an apparatus for heating, an apparatus for power generation, and the like. Accordingly, the demand for the thermoelectric performance of the thermoelectric element is increasing.
  • the thermoelectric element includes a substrate, an electrode, and a thermoelectric leg, a plurality of thermoelectric legs are disposed between the upper substrate and the lower substrate in an array form, a plurality of upper electrodes are disposed between the plurality of thermoelectric legs and the upper substrate, and a plurality of A plurality of lower electrodes are disposed between the thermoelectric leg and the lower substrate.
  • thermoelectric element In the manufacturing process of the thermoelectric element, it may be processed in a high-temperature environment for bonding between the substrate, the electrode, and the thermoelectric leg. Accordingly, warpage may occur in the substrate, and long-term reliability, durability, and power generation performance of the thermoelectric element may be deteriorated due to the warpage of the substrate.
  • An object of the present invention is to provide a structure of an electrode part of a thermoelectric module.
  • thermoelectric element is disposed on one first substrate, an insulating layer disposed on the one first substrate, a first electrode unit disposed on the insulating layer, and the insulating layer, A first terminal electrode and a second terminal electrode protruding from the first electrode portion toward the first outside of the first substrate, a semiconductor structure disposed on the first electrode portion, and a second electrode disposed on the semiconductor structure an electrode part and a second substrate part disposed on the second electrode part, wherein the second substrate part includes a plurality of second substrates spaced apart from each other, and the first electrode part includes the plurality of second A plurality of electrode groups vertically overlapping each of the substrates, and a first connection electrode for connecting two different electrode groups among the plurality of electrode groups, wherein a long side of the first connection electrode is in the plurality of electrode groups. It is longer than a long side of the included first electrode, and at least a portion of the first connection electrode is disposed so as not to vertically overlap the plurality of second substrates.
  • the first terminal electrode and the second terminal electrode are respectively disposed in different electrode groups, and the first connection electrode connects the different electrode groups to the first terminal electrode and the second terminal electrode in the plurality of electrode groups. It may be arranged in the row closest to the two-terminal electrode.
  • the plurality of electrode groups include different electrode groups divided between the first outer side and a second outer side facing the first outer side, and the first electrode unit includes two connecting electrodes to connect the different electrode groups.
  • the two connection electrodes may be the first connection electrode and a second connection electrode disposed side by side adjacent to the first connection electrode.
  • the two connection electrodes may be disposed in two columns closest to the outermost column in the plurality of electrode groups.
  • the plurality of electrode groups includes a first electrode group, a second electrode group, and a third electrode group sequentially divided between the first outer side and a second outer side facing the first outer side, and the first electrode part and two connection electrodes disposed adjacent to each other to connect the first electrode group and the second electrode group, and another two connection electrodes disposed adjacent to each other to connect the second electrode group and the third electrode group.
  • connection electrodes include the first connection electrode and a second connection electrode disposed side by side adjacent to the first connection electrode, and a third outer side perpendicular to the first outer side and a third outer side facing the third outer side is disposed on one side of the fourth outer side
  • the other two connecting electrodes include a third connecting electrode and a fourth connecting electrode arranged side by side adjacent to the third connecting electrode, the third outer side and the fourth It may be disposed on the other side of the outside.
  • connection electrodes may be disposed in two rows closest to the third outermost row, and the other two connection electrodes may be disposed in two rows closest to the fourth outermost row.
  • the plurality of electrode groups includes different electrode groups divided between a third outer side perpendicular to the first outer side and a fourth outer side facing the third outer side, and the first connection electrode includes the different electrode groups It can be placed in my outermost row.
  • the first electrode part includes two connection electrodes arranged to connect the different electrode groups, wherein the two connection electrodes are adjacent to the first connection electrode and the first connection electrode and a second connection electrode arranged side by side
  • the electrode may be disposed in an outermost row and a row closest to the outermost row in the different electrode groups.
  • the insulating layer includes a first insulating layer disposed on the first substrate, and a second insulating layer disposed on the first insulating layer and having an area smaller than an area of the first insulating layer;
  • the insulating layer may include an overlapping area vertically overlapping with the second substrate part and a protrusion pattern protruding from the overlapping area toward the first outside of the first substrate.
  • the protrusion pattern includes a first protrusion pattern and a second protrusion pattern spaced apart from each other, the first terminal electrode is disposed on the first protrusion pattern, and the second terminal electrode is disposed on the second protrusion pattern This can be arranged.
  • the plurality of electrode groups may be disposed to be spaced apart from each other on the insulating layer, and may further include a dummy portion disposed between the plurality of electrode groups on the insulating layer.
  • the dummy part may include a plurality of dummy structures having the same shape and size as each electrode included in each of the plurality of electrode groups, and disposed to be spaced apart from each other.
  • Each dummy structure may be a metal layer or a resin layer.
  • the plurality of electrode groups includes a first electrode group and a second electrode group divided between the first outer side and a second outer side facing the first outer side, and the first electrode group is perpendicular to the first outer side a first 1-1 electrode group and a 1-2 th electrode group divided between a third outer side and a fourth outer side facing the third outer side, wherein the second electrode group includes the third outer side and the fourth outer side and a 2-1 th electrode group and a 2-2 electrode group divided between the outside, wherein the dummy part includes a first dummy part disposed between the 1-1 electrode group and the 1-2 electrode group;
  • the second dummy part may include a second dummy part disposed between the 2-1 th electrode group and the 2-2 th electrode group, and a third dummy part disposed between the first electrode group and the second electrode group.
  • the first dummy part and the second dummy part may be disposed to be spaced apart from each other.
  • thermoelectric element includes a first substrate; a first electrode part disposed on the first substrate and including a first electrode group and a second electrode group disposed to be spaced apart from each other; a second electrode part disposed on the first electrode part and including a third electrode group and a fourth electrode group spaced apart from each other; and a semiconductor structure disposed between the first electrode part and the second electrode part, wherein the first electrode group and the third electrode group are perpendicular to the first substrate to form a first region to overlap each other, the second electrode group and the fourth electrode group overlap each other in a direction perpendicular to the first substrate to form a second region, and a spaced region between the first region and the second region is formed and includes a dummy portion disposed in at least a portion of the separation region.
  • Each electrode group may include a plurality of electrodes disposed to be spaced apart from each other, and a distance between the first electrode group and the second electrode group may be greater than a distance between the plurality of electrodes in each electrode group.
  • the first electrode group and the second electrode group are spaced apart from each other in a first direction, and the first electrode group has a 1-1 electrode group and a 1-2 electrode spaced apart in a second direction perpendicular to the first direction.
  • group, and the second electrode group may include a 2-1 th electrode group and a 2-2 th electrode group spaced apart in a second direction perpendicular to the first direction.
  • the dummy part includes a first dummy part disposed between the 1-1 electrode group and the 2-1 electrode group and a second dummy part disposed between the 1-2 electrode group and the 2-2 electrode group.
  • the first dummy part and the second dummy part may be spaced apart from each other.
  • the dummy part may further include a third dummy part disposed between the 1-1 electrode group and the 1-2 electrode group and between the 2-1 th electrode group and the 2-2 electrode group.
  • the first electrode unit may further include a first terminal electrode connected to the 1-1 electrode group and a second terminal electrode connected to the 2-1 electrode group.
  • the first electrode unit may further include a connection electrode unit connecting at least a portion of the 1-1 electrode group, the 1-2 electrode group, the 2-1 electrode group, and the 2-2 electrode group. .
  • the connection electrode part includes a first connection electrode disposed between the 1-1 electrode group and the 2-1 electrode group, and a second connection electrode disposed between the 1-1 electrode group and the 1-2 electrode group. electrode, a third connection electrode disposed between the 1-2 electrode group and the 2-2 electrode group, and a fourth connection electrode disposed between the 2-1 electrode group and the 2-2 electrode group It may include at least one.
  • the first dummy part and the second dummy part may be spaced apart from each other by the first connection electrode, the third dummy part, and the second connection electrode.
  • At least one of the first dummy part, the second dummy part, and the third dummy part has the same shape and size as each electrode included in each electrode group, and may include a plurality of dummy structures arranged to be spaced apart from each other. there is.
  • Each dummy structure may be a metal layer or a resin layer.
  • the second substrate may further include a second substrate disposed on the second electrode, and the second substrate may include a plurality of second substrates disposed to be spaced apart from each other, and each second substrate may be disposed to correspond to each electrode group. there is.
  • It may further include an insulator disposed in the spaced region between the plurality of second substrates.
  • the insulator may be disposed to extend from the spaced apart region between the plurality of second substrates to the dummy portion.
  • a plurality of coupling members passing through a plurality of through-holes extending from each of the second substrates to the first substrate through the respective electrode groups may be further included.
  • a plurality of heat sinks disposed on each of the second substrates may be further included.
  • a plurality of coupling members passing through a plurality of through-holes extending from each heat sink to the first substrate through each electrode group may be further included.
  • An insulating layer disposed between the first substrate and the first electrode unit may be further included.
  • the insulating layer may include a plurality of insulating layers different from each other in at least one of composition and elasticity.
  • thermoelectric device having high long-term reliability, durability and power generation performance by improving the warpage of the substrate.
  • thermoelectric element the reliability, durability, and power generation performance of the thermoelectric element can be optimized by designing the structures of the high temperature portion substrate and the low temperature portion substrate differently.
  • thermoelectric element 1 is a cross-sectional view of a thermoelectric element.
  • thermoelectric element 2 is a perspective view of a thermoelectric element.
  • thermoelectric element 3 is a perspective view of a thermoelectric element including a sealing member.
  • thermoelectric element 4 is an exploded perspective view of a thermoelectric element including a sealing member.
  • thermoelectric element 5 is a cross-sectional view of a substrate, an insulating layer, and an electrode in the thermoelectric element.
  • thermoelectric module 6 is a perspective view of a thermoelectric module according to an embodiment of the present invention.
  • thermoelectric module of FIG. 6 is an exploded perspective view of the thermoelectric module of FIG. 6 .
  • thermoelectric module 8 is a cross-sectional view of the thermoelectric module of FIG. 6 .
  • thermoelectric module 9 is an example of a top view of a first substrate included in the thermoelectric module of FIG. 6 .
  • FIG. 10 is another example of a top view of the first substrate included in the thermoelectric module of FIG. 6 .
  • thermoelectric module 11 is a perspective view of a thermoelectric module according to another embodiment of the present invention.
  • thermoelectric module 12 is a cross-sectional view of the thermoelectric module of FIG. 11 .
  • thermoelectric module 13 illustrates a bonding structure between a heat sink and a second substrate in the thermoelectric module according to an embodiment of the present invention.
  • FIG. 14 (a) is a top view of a substrate and an electrode part of a thermoelectric element according to a comparative example
  • FIG. 14 (b) is a top view of a substrate and an electrode part of the thermoelectric element according to Example 1
  • FIG. 14 (c) is an embodiment It is a top view of the substrate and the electrode part of the thermoelectric element according to Example 2
  • FIG. 14(d) is a top view of the substrate and the electrode part of the thermoelectric element according to Example 3.
  • thermoelectric element 15 is a perspective view of a thermoelectric element according to an embodiment of the present invention.
  • FIG. 16 is a top view of a first substrate, an insulating layer, and a plurality of first electrodes in the embodiment of FIG. 15 .
  • thermoelectric element 17 is a perspective view of a thermoelectric element according to another embodiment of the present invention.
  • FIG. 18 is a top view of a first substrate, an insulating layer, and a plurality of first electrodes in the embodiment of FIG. 17 .
  • thermoelectric element 19 is a perspective view of a thermoelectric element according to another embodiment of the present invention.
  • FIG. 20 is a top view of a first substrate, an insulating layer, and a plurality of first electrodes in the embodiment of FIG. 19 .
  • thermoelectric element 21 to 24 are schematic diagrams of electrode arrangements included in the thermoelectric element according to an embodiment of the present invention.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or more than one) of A and (and) B, C", it is combined as A, B, C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • top (above) or under (below) is one as well as when two components are in direct contact with each other. Also includes a case in which the above another component is formed or disposed between two components.
  • upper (upper) or lower (lower) when expressed as "upper (upper) or lower (lower)", the meaning of not only an upper direction but also a lower direction based on one component may be included.
  • thermoelectric element 1 is a cross-sectional view of a thermoelectric element
  • FIG. 2 is a perspective view of the thermoelectric element
  • 3 is a perspective view of a thermoelectric element including a sealing member
  • FIG. 4 is an exploded perspective view of the thermoelectric element including a sealing member
  • 5 is a cross-sectional view of a substrate, an insulating layer, and an electrode in the thermoelectric element.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate. (160).
  • the lower electrode 120 is disposed between the lower substrate 110 and the lower bottom surfaces of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140
  • the upper electrode 150 is formed between the upper substrate 160 and the P-type thermoelectric leg 140 . It is disposed between the thermoelectric leg 130 and the upper bottom surface of the N-type thermoelectric leg 140 . Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the lower electrode 120 and the upper electrode 150 .
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the lower electrode 120 and the upper electrode 150 and electrically connected may form a unit cell.
  • thermoelectric leg 130 when a voltage is applied to the lower electrode 120 and the upper electrode 150 through the lead wires 181 and 182 , a current flows from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect.
  • the substrate through which flows absorbs heat and acts as a cooling unit, and the substrate through which current flows from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated and act as a heating unit.
  • a temperature difference between the lower electrode 120 and the upper electrode 150 when a temperature difference between the lower electrode 120 and the upper electrode 150 is applied, electric charges in the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 move due to the Seebeck effect, and electricity may be generated. .
  • lead wires 181 and 182 are illustrated as being disposed on the lower substrate 110 in FIGS. 1 to 4 , the present invention is not limited thereto, and the lead wires 181 and 182 are disposed on the upper substrate 160 or lead wires ( One of 181 and 182 may be disposed on the lower substrate 110 , and the other may be disposed on the upper substrate 160 .
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth telluride (Bi-Te)-based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main raw materials.
  • P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the P-type thermoelectric leg 130 contains 99 to 99.999 wt% of Bi-Sb-Te, which is a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the N-type thermoelectric leg 140 contains 99 to 99.999 wt% of Bi-Se-Te, a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • thermoelectric leg may be referred to as a semiconductor structure, a semiconductor device, a semiconductor material layer, a semiconductor material layer, a semiconductor material layer, a conductive semiconductor structure, a thermoelectric structure, a thermoelectric material layer, a thermoelectric material layer, a thermoelectric material layer, etc. there is.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stack type.
  • the bulk-type P-type thermoelectric leg 130 or the bulk-type N-type thermoelectric leg 140 heat-treats a thermoelectric material to manufacture an ingot, grinds the ingot and sieves to obtain a powder for the thermoelectric leg, and then It can be obtained through the process of sintering and cutting the sintered body.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be polycrystalline thermoelectric legs.
  • the laminated P-type thermoelectric leg 130 or the laminated N-type thermoelectric leg 140 is formed by coating a paste containing a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking the unit member and cutting the unit through the process. can be obtained
  • the pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or cross-sectional area of the N-type thermoelectric leg 140 is calculated as the height or cross-sectional area of the P-type thermoelectric leg 130 . may be formed differently.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a stacked structure.
  • the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by laminating a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. Accordingly, it is possible to prevent material loss and improve electrical conductivity properties.
  • Each structure may further include a conductive layer having an opening pattern, thereby increasing adhesion between the structures, decreasing thermal conductivity, and increasing electrical conductivity.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be formed to have different cross-sectional areas within one thermoelectric leg.
  • the cross-sectional area of both ends arranged to face the electrode in one thermoelectric leg may be formed to be larger than the cross-sectional area between the two ends. Accordingly, since a large temperature difference between the ends can be formed, thermoelectric efficiency can be increased.
  • thermoelectric figure of merit ZT
  • Equation (1) The performance of the thermoelectric element according to an embodiment of the present invention may be expressed as a figure of merit (ZT).
  • ZT The thermoelectric figure of merit (ZT) can be expressed as in Equation (1).
  • is the Seebeck coefficient [V/K]
  • is the electrical conductivity [S/m]
  • ⁇ 2 ⁇ is the power factor (Power Factor, [W/mK 2 ]).
  • T is the temperature
  • k is the thermal conductivity [W/mK].
  • k can be expressed as a ⁇ cp ⁇ , a is the thermal diffusivity [cm 2 /S], cp is the specific heat [J/gK], ⁇ is the density [g/cm 3 ].
  • thermoelectric figure of merit of the thermoelectric element In order to obtain the thermoelectric figure of merit of the thermoelectric element, a Z value (V/K) is measured using a Z meter, and a thermoelectric figure of merit (ZT) can be calculated using the measured Z value.
  • the lower electrode 120 is disposed between the lower substrate 110 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 , and the upper substrate 160 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 130 .
  • the upper electrode 150 disposed between the thermoelectric legs 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.3 mm. can When the thickness of the lower electrode 120 or the upper electrode 150 is less than 0.01 mm, the function as an electrode may deteriorate and the electrical conductivity performance may be lowered, and if it exceeds 0.3 mm, the conduction efficiency may be lowered due to an increase in resistance. .
  • the lower substrate 110 and the upper substrate 160 facing each other may be a metal substrate, and the thickness thereof may be 0.1 mm to 1.5 mm.
  • the thickness of the metal substrate is less than 0.1 mm or exceeds 1.5 mm, heat dissipation characteristics or thermal conductivity may be excessively high, and thus the reliability of the thermoelectric element may be deteriorated.
  • the insulating layer 170 is respectively between the lower substrate 110 and the lower electrode 120 and between the upper substrate 160 and the upper electrode 150 . ) may be further formed.
  • the insulating layer 170 may include a material having a thermal conductivity of 1 to 20 W/mK.
  • the sizes of the lower substrate 110 and the upper substrate 160 may be different.
  • the volume, thickness, or area of one of the lower substrate 110 and the upper substrate 160 may be larger than the volume, thickness, or area of the other. Accordingly, heat absorbing performance or heat dissipation performance of the thermoelectric element may be improved.
  • at least one of the volume, thickness, or area of a substrate on which a sealing member for protection from the external environment of the thermoelectric module is disposed is different from that of a substrate disposed in a high temperature region for the Seebeck effect, applied as a heating region for the Peltier effect, or It may be greater than at least one of the volume, thickness or area of the substrate.
  • a heat dissipation pattern for example, a concave-convex pattern
  • a concave-convex pattern may be formed on the surface of at least one of the lower substrate 110 and the upper substrate 160 . Accordingly, the heat dissipation performance of the thermoelectric element may be improved.
  • the concave-convex pattern is formed on a surface in contact with the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 , bonding characteristics between the thermoelectric leg and the substrate may also be improved.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate 160 .
  • a sealing member 190 may be further disposed between the lower substrate 110 and the upper substrate 160 .
  • the sealing member 190 is disposed between the lower substrate 110 and the upper substrate 160 on the side surfaces of the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 .
  • the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 may be sealed from external moisture, heat, contamination, and the like.
  • the sealing member 190 includes the outermost portions of the plurality of lower electrodes 120 , the outermost portions of the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 , and the plurality of upper electrodes 150 .
  • the sealing case 192, the sealing case 192 and the lower substrate 110, the sealing material 194, and the sealing case 192 and the upper substrate 160 are disposed spaced apart from the outermost side of the predetermined distance. It may include a sealing material 196 disposed on the. As such, the sealing case 192 may contact the lower substrate 110 and the upper substrate 160 via the sealing materials 194 and 196 .
  • the sealing materials 194 and 196 may include at least one of an epoxy resin and a silicone resin, or a tape in which at least one of an epoxy resin and a silicone resin is applied to both surfaces.
  • the sealing materials 194 and 194 serve to seal between the sealing case 192 and the lower substrate 110 and between the sealing case 192 and the upper substrate 160, and the lower electrode 120, the P-type thermoelectric leg ( 130), the sealing effect of the N-type thermoelectric leg 140 and the upper electrode 150 may be increased, and may be mixed with a finishing material, a finishing layer, a waterproofing material, a waterproofing layer, and the like.
  • a sealing material 194 for sealing between the sealing case 192 and the lower substrate 110 is disposed on the upper surface of the lower substrate 110, and a sealing material for sealing between the sealing case 192 and the upper substrate 160 ( 196 may be disposed on the side of the upper substrate 160 .
  • a guide groove G for drawing out the lead wires 181 and 182 connected to the electrode may be formed in the sealing case 192 .
  • the sealing case 192 may be an injection-molded product made of plastic or the like, and may be mixed with a sealing cover.
  • the above description of the sealing member is only an example, and the sealing member may be modified in various forms.
  • an insulating material may be further included to surround the sealing member.
  • the sealing member may include a heat insulating component.
  • lower substrate 110 lower electrode 120 , upper electrode 150 , and upper substrate 160 are used, but for ease of understanding and convenience of explanation, they will be arbitrarily referred to as upper and lower portions. However, the positions may be reversed so that the lower substrate 110 and the lower electrode 120 are disposed thereon, and the upper electrode 150 and the upper substrate 160 are disposed thereunder.
  • the lower substrate 110 is mixed with the first substrate 110 or the first substrate unit 110
  • the upper substrate 160 is mixed with the second substrate 160 or the second substrate unit 160
  • the lower electrode 120 may be mixed with the first electrode 120 or the first electrode unit 120
  • the upper electrode 150 may be mixed with the second electrode 150 or the second electrode unit 150 .
  • thermoelectric element in order to improve the heat conduction performance of the thermoelectric element, attempts to use a metal substrate are increasing.
  • the thermoelectric element includes a metal substrate, an advantageous effect can be obtained in terms of heat conduction, but there is a problem in that the withstand voltage is lowered.
  • a withstand voltage performance of 2.5 kV or more is required.
  • a plurality of insulating layers having different compositions may be disposed between the metal substrate and the electrode.
  • the insulating layer 170 includes a first insulating layer 172 disposed on the first substrate 110 and a second insulating layer 174 disposed on the first insulating layer 172 . and the first electrode 120 may be disposed on the second insulating layer 174 .
  • the description is focused on the insulating layer on the side of the first substrate 110 , but the same content may be applied to the insulating layer on the side of the second substrate 160 .
  • the first insulating layer 172 may include, for example, a resin material, a composite including silicon and aluminum, and an inorganic filler.
  • the composite may be an organic-inorganic composite composed of an alkyl chain and an inorganic material containing an Si element and an Al element, and may be at least one of an oxide, a carbide, and a nitride containing silicon and aluminum.
  • the composite may include at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond.
  • the composite including at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond has excellent insulation performance, and thus high withstand voltage performance can be obtained
  • the composite may be an oxide, carbide, or nitride further containing titanium, zirconium, boron, zinc, or the like along with silicon and aluminum.
  • the composite may be obtained through a heat treatment process after mixing aluminum with at least one of an inorganic binder and an organic/inorganic mixed binder.
  • the inorganic binder may include, for example, at least one of silica (SiO 2 ), metal alkoxide, boron oxide (B 2 O 3 ), and zinc oxide (ZnO 2 ).
  • Inorganic binders are inorganic particles, but when they come in contact with water, they become sol or gel, which can serve as a binding agent.
  • at least one of silica (SiO 2 ), metal alkoxide, and boron oxide (B 2 O 3 ) serves to increase the adhesion between aluminum or the adhesion to the first substrate 110
  • zinc oxide (ZnO 2 ) is the second 1 It may serve to increase the strength of the insulating layer 172 and increase the thermal conductivity.
  • the inorganic filler may be dispersed in the composite and may include at least one of aluminum oxide and nitride.
  • the nitride may include at least one of boron nitride and aluminum nitride.
  • the second insulating layer 174 may be formed of a resin layer including at least one of an epoxy resin composition including an epoxy resin and an inorganic filler, and a silicone resin composition including polydimethylsiloxane (PDMS). Accordingly, the second insulating layer 174 may improve insulation, bonding strength, and heat conduction performance between the first insulating layer 172 and the first electrode 120 .
  • PDMS polydimethylsiloxane
  • the inorganic filler may be included in 60 to 80 wt% of the resin layer.
  • the thermal conductivity effect may be low, and when the inorganic filler is included in more than 80wt%, it is difficult for the inorganic filler to be evenly dispersed in the resin, and the resin layer may be easily broken.
  • the epoxy resin may include an epoxy compound and a curing agent.
  • the curing agent may be included in a volume ratio of 1 to 10 with respect to 10 volume ratio of the epoxy compound.
  • the epoxy compound may include at least one of a crystalline epoxy compound, an amorphous epoxy compound, and a silicone epoxy compound.
  • the inorganic filler may include at least one of aluminum oxide and nitride.
  • the nitride may include at least one of boron nitride and aluminum nitride.
  • the second insulating layer 174 is coated with a resin composition in an uncured state or semi-cured state on the first insulating layer 172 , a plurality of pre-arranged first electrodes 120 are arranged and pressed. It can be constructed through a curing process. Accordingly, a portion of the side surfaces of the plurality of first electrodes 120 may be buried in the second insulating layer 172 .
  • the height H1 of the side surfaces of the plurality of first electrodes 120 buried in the second insulating layer 174 is 0.1 to 1 times the thickness H of the plurality of first electrodes 330 , preferably 0.2 to 0.9 times, more preferably 0.3 to 0.8 times.
  • the contact area between the plurality of first electrodes 120 and the second insulating layer 174 is widened. , thus, heat transfer performance and bonding strength between the plurality of first electrodes 120 and the second insulating layer 174 may be further increased.
  • the plurality of first electrodes 120 buried in the second insulating layer 174 When the height H1 of the side surfaces of the plurality of first electrodes 120 buried in the second insulating layer 174 is less than 0.1 times the thickness H of the plurality of first electrodes 120 , the plurality of first electrodes It may be difficult to sufficiently obtain heat transfer performance and bonding strength between 120 and the second insulating layer 174 , and the height H1 of the side surfaces of the plurality of first electrodes 120 buried in the second insulating layer 174 is When the thickness H of the plurality of first electrodes 120 exceeds one time, the second insulating layer 174 may come up on the plurality of first electrodes 120 , and thus there is a possibility of an electrical short circuit. there is.
  • the upper surface of the second insulating layer 174 may include a first concave surface R1 and a second concave surface R2 disposed around the first concave surface R1.
  • the plurality of first electrodes 120 are respectively disposed on the first concave surface R1 , and the first vertical distance between the first concave surface R1 and the first substrate 110 is the second concave surface R2 and It may be smaller than the second vertical distance between the first substrates 110 . More specifically, the thickness of the second insulating layer 174 between the plurality of first electrodes 120 decreases from the side of each electrode toward the central region, so that the vertex may have a gentle 'V' shape.
  • the insulating layer 170 between the plurality of first electrodes 120 has a thickness deviation, and the height D2 is the highest in the region in direct contact with the side surfaces of the plurality of first electrodes 120 , and the center The height D3 in the region may be lower than the height D2 in the region in direct contact with the side surfaces of the plurality of first electrodes 120 . That is, the height D3 of the central region of the insulating layer 170 between the plurality of first electrodes 120 may be the lowest in the insulating layer 170 between the plurality of first electrodes 120 .
  • the height D1 of the insulating layer 170 under the plurality of first electrodes 120 may be lower than the height D3 of the central region of the insulating layer 170 between the plurality of first electrodes 120 .
  • the second insulating layer 174 includes the second concave surface R2 , stress applied to the insulating layer can be relieved, and problems such as cracks or peeling of the insulating layer can be improved.
  • the composition of the first insulating layer 172 and the second insulating layer 174 is different from each other, and accordingly, the hardness, the elastic modulus, the tensile strength of the first insulating layer 172 and the second insulating layer 174, At least one of elongation and Young's modulus may be changed, and accordingly, it is possible to control withstand voltage performance, heat conduction performance, bonding performance, thermal shock mitigation performance, and the like.
  • the weight ratio of the composite and the inorganic filler to the entire first insulating layer 172 may be higher than the weight ratio of the inorganic filler to the entire second insulating layer 174 .
  • the composite may be a composite including silicon and aluminum, more specifically, a composite including at least one of oxide, carbide, and nitride including silicon and aluminum.
  • the weight ratio of the ceramic to the entire first insulating layer 172, that is, the composite, and the inorganic filler exceeds 80 wt%
  • the weight ratio of the ceramic to the entire second insulating layer 174, that is, the inorganic filler is 60 to It may be 80 wt%.
  • the hardness of the first insulating layer 172 is the second It may be higher than the hardness of the insulating layer 174 .
  • the first insulating layer 172 may have high withstand voltage performance and high thermal conductivity at the same time, and the second insulating layer 174 may have higher elasticity than the first insulating layer 172 , and the second insulating layer 172 may have higher elasticity than the first insulating layer 172 .
  • the layer 174 may increase adhesion performance between the first insulating layer 172 and the first electrode 120 .
  • elasticity may be expressed as tensile strength.
  • the tensile strength of the second insulating layer 174 may be 2 to 5 MPa, preferably 2.5 to 4.5 MPa, more preferably 3 to 4 MPa, and the tensile strength of the first insulating layer 172 is 10 MPa to 100 Mpa, preferably 15 MPa to 90 MPa, more preferably 20 MPa to 80 MPa.
  • the thickness of the second insulating layer 174 is more than 1 time and not more than 3.5 times the thickness of the first insulating layer 172, preferably not less than 1.05 times and not more than 2 times, more preferably not less than 1.1 times to not more than 1.5 times.
  • the thickness of the first insulating layer 172 is 35 ⁇ m or less
  • the thickness of the second insulating layer 174 is more than 35 ⁇ m and less than 80 ⁇ m, preferably more than 35 ⁇ m and less than 70 ⁇ m, more preferably It may be greater than 35 ⁇ m and less than or equal to 50 ⁇ m.
  • the thickness of the first insulating layer 172 and the thickness of the second insulating layer 174 each satisfy these numerical ranges, it is possible to simultaneously obtain withstand voltage performance, heat conduction performance, bonding performance, and thermal shock mitigation performance.
  • the width of the first concave surface R1 may be greater than the width of the second concave surface R2 . Accordingly, a structure in which electrodes are densely disposed on a substrate may be possible, and thus power generation performance or temperature control performance of the thermoelectric element may be improved.
  • the coefficient of thermal expansion of the second insulating layer 174 may be higher than that of the first insulating layer 172 . Accordingly, it is possible to improve the warpage of the substrate.
  • thermoelectric module 6 is a perspective view of a thermoelectric module according to an embodiment of the present invention
  • FIG. 7 is an exploded perspective view of the thermoelectric module of FIG. 6
  • FIG. 8 is a cross-sectional view of the thermoelectric module of FIG. 6
  • FIG. 9 is the thermoelectric module of FIG. 6 It is an example of a top view of the side of the first substrate included in FIG. 10
  • FIG. 10 is another example of a top view of the side of the first substrate included in the thermoelectric module of FIG. 6 .
  • the thermoelectric element 300 includes a first substrate 310 , a first insulating layer 320 disposed on the first substrate 310 , and a first The first electrode part 330 disposed on the insulating layer 320 , the plurality of P-type thermoelectric legs 340 and the plurality of N-type thermoelectric legs 350 disposed on the plurality of first electrodes 330 , a plurality of The second electrode part 360 disposed on the P-type thermoelectric leg 340 and the plurality of N-type thermoelectric legs 350, the second insulating layer 370 disposed on the second electrode part 360, the second It includes a second substrate part 380 disposed on the second insulating layer 370 and a heat sink 390 disposed on the second substrate part 380 .
  • each of the first substrate 310 , the first electrode part 330 , the P-type thermoelectric leg 340 , the N-type thermoelectric leg 350 , the second electrode part 360 , and the second substrate part 380 is shown in FIG. 1 to 4 for the first substrate 110 , the first electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , the second electrode 150 , and the second substrate 160 .
  • a duplicate description will be omitted.
  • redundant descriptions of the same contents as those of the insulating layer 170 of FIGS. 1 to 5 with respect to the first insulating layer 320 and the second insulating layer 370 will be omitted.
  • a sealing member may be further disposed between the first substrate 310 and the second substrate unit 380 .
  • the second substrate unit 380 may include a plurality of second substrates 381 , 382 , 383 , and 384 spaced apart from each other, the first substrate 310 and the second A through hole through which the coupling member 400 passes may be formed in each of the second substrates 381 , 382 , 383 , and 384 included in the substrate unit 380 .
  • the first substrate 310 may be formed in a plate shape, and although not shown, the first substrate may be disposed on the cooling unit or the heating unit.
  • a groove or hole into which the coupling member 400 can be inserted may be formed in the cooling unit C or the heating unit. there is.
  • the plurality of second substrates 381 , 382 , 383 , and 384 included in the first substrate 310 and the second substrate unit 380 may include at least one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the first substrate 310 absorbs heat according to the Peltier effect and acts as a low-temperature part
  • the second substrate 380 emits heat to act as a high-temperature part. there is.
  • different temperatures are applied to the first substrate 310 and the second substrate unit 380 , electrons in the high temperature region move to the low temperature region due to the temperature difference, thereby generating thermoelectromotive force. This is called the Seebeck effect, and electricity may be generated in the circuit of the thermoelectric element by the thermoelectromotive force caused thereby.
  • a plurality of first through holes 311 may be formed in the first substrate 310 .
  • second through holes 3811 , 3821 , 3831 , 3841 may be formed in each of the plurality of second substrates 381 , 382 , 383 , and 384 , and the plurality of first through holes 311 may have second through holes It may be disposed at positions corresponding to the holes 3811 , 3821 , 3831 , and 3841 .
  • the plurality of coupling members 400 may pass through the plurality of first through holes 311 and the second through holes 3811 , 3821 , 3831 , 3841 , and are formed by the plurality of coupling members 400 .
  • the first substrate 310 and the second substrate unit 380 may be fixed.
  • each of the heat sinks 391 , 392 , 393 , 394 has a third penetration Holes 3911 , 3921 , 3931 , and 3941 may be formed, and the plurality of first through-holes 311 includes second through-holes 3811 , 3821 , 3831 , 3841 and third through-holes 3911 , 3921 , 3931 . , 3941) may be disposed in a position corresponding to the.
  • the plurality of coupling members 400 pass through the plurality of first through-holes 311 , second through-holes 3811 , 3821 , 3831 , 3841 , and third through-holes 3911 , 3921 , 3931 , 3941 .
  • the first substrate 310 , the second substrate unit 380 , and the heat sink 390 may be fixed by the plurality of coupling members 400 .
  • the second substrate unit 380 when the second substrate unit 380 is divided into a plurality of second substrates 381 , 382 , 383 , and 384 , the second substrate unit 380 frequently experiences high temperatures. It is possible to prevent a problem of thermal deformation due to thermal expansion of the second substrate part 380 even when exposed to , and it is easy to apply to a large area application.
  • the ratio of the area of each of the second substrates 381, 382, 383, and 384 to the area of the first substrate 310 may be 0.10 to 0.50, preferably 0.15 to 0.45, more preferably 0.2 to 0.40. .
  • the first electrode unit 330 arranged on the first substrate 310 is The plurality of second substrates 381 , 382 , 383 , and 384 may be disposed to correspond to each other.
  • the first electrode part 330 includes a plurality of electrode groups spaced apart from each other
  • the second electrode part 360 includes a plurality of electrode groups spaced apart from each other. and each electrode group of the first electrode part 330 forms a first area A1 with each electrode group of the second electrode part 360 from the first substrate 310 to the second substrate part 380 . are overlapped with each other in a direction toward , and each electrode group of the first electrode part 330 is separated from the first substrate 310 to form a second area A2 with each electrode group of the second electrode part 360 .
  • the two may overlap each other in a direction toward the substrate 380 , and a spaced area may be formed between the first area A1 and the second area A2 .
  • the first electrode part 330 may include a plurality of electrode groups 331 , 332 , 333 , 334 arranged to be spaced apart from each other, and each electrode group 331 , 332 , 333 and 334 may include a plurality of electrodes 330E disposed to be spaced apart from each other.
  • the second electrode part 360 is formed in a direction perpendicular to the plurality of electrode groups 331 , 332 , 333 , 334 of the first electrode part 330 and the first substrate 310 , respectively.
  • a plurality of overlapping electrode groups may be included.
  • the first electrode part 330 includes a first terminal electrode 330T1 connected to one of the plurality of electrode groups 331 , 332 , 333 , and 334 and the other one of the plurality of electrode groups 331 , 332 , 333 and 334 .
  • a second terminal electrode 330T2 connected to may be included.
  • a connector (not shown) may be disposed on each of the first terminal electrode 330T1 and the second terminal electrode 330T2 , and may be connected to an external power source through this.
  • the first electrode part 330 may further include a connection electrode part 330C connecting at least some of the plurality of electrode groups 331 , 332 , 333 , and 334 .
  • the connection electrode unit 330C includes, for example, a first connection electrode 330C1 and a 1-1 electrode group 331 disposed between the 1-1 electrode group 331 and the 1-2 electrode group 332 . ) and a second connection electrode 330C2 disposed between the 2-1 electrode group 333 , and a third connection electrode disposed between the 2-1 electrode group 333 and the 2-2 electrode group 334 . At least one of 330C3 and a fourth connection electrode connecting the 1-2 th electrode group 332 and the 2-2 th electrode group 334 may be included.
  • the plurality of electrode groups 331 , 332 , 333 , and 334 may be directly or indirectly connected to other electrode groups through the connection electrode part 330C, and the first terminal electrode 330T1 and the second terminal electrode 330T2 are connected to each other. An electrical path can be formed through it.
  • Each of the electrode groups 331 , 332 , 333 , and 334 may be disposed with the hole arrangement area 310H empty.
  • the second electrode part 360 may also be disposed with the hole arrangement area corresponding to the hole arrangement area 310H empty.
  • the hole arrangement area 310H may refer to an area formed of a virtual line connecting edges of the electrodes 330E disposed closest to the hole 311 that are disposed closest to the hole 311 .
  • the area of the hole arrangement region may be 4 times or more, preferably 6 times or more, more preferably 8 times or more, the area of the electrode 330E. Accordingly, the withstand voltage performance of the thermoelectric module 300 may be maintained at AC 1 kV or more.
  • the spaced region between the plurality of electrode groups 331 , 332 , 333 and 334 may correspond to the spaced region between the plurality of second substrates 381 , 382 , 383 , 384 , and the plurality of electrode groups 331 , 332 .
  • the distance between the electrodes 333 and 334 may be greater than the distance between the plurality of electrodes 330E in each of the electrode groups 331 , 332 , 333 and 334 .
  • the first electrode group 330 is disposed to be spaced apart from the 1-1 electrode group 331 and the 1-1 electrode group 331 in the first direction;
  • the 2-1 th electrode group 333 and the 2-1 th electrode group 333 are spaced apart from the 1-1 electrode group 331 in a second direction perpendicular to the first direction in the first direction, , when a 2-2 electrode group 334 disposed to be spaced apart from the 1-2 electrode group 332 in the second direction is included, the 1-1 electrode group 331 and the 2-1 electrode group ( 333 is spaced apart from the 1-2 th electrode group 332 and the 2-2 th electrode group 334 in the first direction, and the 1-1 th electrode group 331 and the 1-2 th electrode group 332 are
  • the 2-1 th electrode group 333 and the 2-2 th electrode group 334 may be spaced apart from each other in the second direction.
  • the first substrate 310 on which the first electrode part 330 is mounted when exposed to a high temperature during the manufacturing process, the first substrate 310 not only moves in the first direction with respect to the spaced region of each electrode group but also in the first direction. It can be bent in a W shape in the second direction. This W-shaped bending phenomenon may lower the bonding force between the thermoelectric module 300 and the cooling unit C, and may lower long-term reliability, durability, and power generation performance of the thermoelectric module 300 .
  • a dummy part is further disposed in a spaced region between the electrode groups.
  • the dummy part 900 may be further disposed on the first substrate 310 in at least a portion of the spaced area between the first area A1 and the second area A2 .
  • the dummy part 900 may be disposed on the side of the plurality of electrode groups 331 , 332 , 333 , 334 in at least a part of the spaced apart region between the plurality of electrode groups 331 , 332 , 333 , 334 . In this way, when the dummy part 900 is disposed, stress can be uniformly applied to the entire first substrate 310 , so that the W-shaped bending phenomenon can be prevented.
  • the first dummy part 910 may be disposed between the first-first electrode group 331 and the first-second electrode group 332 .
  • the second dummy part 920 may be disposed between the 2-1 th electrode group 333 and the 2-2 th electrode group 334 .
  • the third dummy part 930 is disposed between the 1-1 electrode group 331 and the 1-2 electrode group 332 and the 2-1 th electrode group 333 and the 2-2 electrode group 334 . can be placed in In this case, the first dummy part 910 and the second dummy part 920 may be spaced apart from each other by the third dummy part 930 .
  • the first connection electrode 330C1 disposed between the 1-1 electrode group 331 and the 1-2 th electrode group 332 is provided between the first dummy part 910 and the third dummy part 930 .
  • the overall stress is uniformly applied to the first substrate 310 , so that the W-shaped warpage of the first substrate 310 can be minimized.
  • At this time, at least one of the first dummy part 910 , the second dummy part 920 , and the third dummy part 930 has the same shape and size as each electrode 330E included in each electrode group, and is spaced apart from each other. It may include a plurality of dummy structures arranged so as to be.
  • the overall stress is uniformly applied to the first substrate 310 , so that the W-shaped warpage of the first substrate 310 can be minimized, and in the manufacturing process,
  • the design and arrangement of the dummy part 900 are easy.
  • each dummy structure may be a metal layer.
  • the metal layer may have the same material, shape, and size as the electrode 330E, but a thermoelectric leg may not be disposed on the metal layer, and the metal layer may not be electrically connected to the other electrode 330E. Accordingly, it is easy to design and arrange the dummy part 900 in the manufacturing process.
  • each dummy structure may be a resin layer.
  • the resin layer may include at least one of an epoxy resin and a polyimide resin. Since the resin layer has heat resistance performance, heat conduction between each electrode group may be prevented, and heat conduction efficiency between the electrode and the first substrate in each electrode group may be increased. In addition, since the resin layer has insulating performance, the withstand voltage performance of the first substrate 310 side may be improved.
  • the first electrode part 330 disposed on the first substrate 310 includes the first terminal electrode 330T1 and the second terminal electrode 330T2, the first A separate configuration may be required for the withstand voltage performance of the substrate 310 side.
  • the first insulating layer 320 disposed on the first substrate 310 may be a plurality of insulating layers.
  • the 1-1 insulating layer 321 is disposed on the first substrate 310
  • the 1-2 insulating layer 322 is disposed on the 1-1 insulating layer 321
  • the first insulating layer 321 is disposed on the first substrate 310 .
  • the first electrode part 330 and the dummy part 900 may be disposed on the 1-2 insulating layer 322 .
  • the 1-1 insulating layer 321 is disposed on the front surface of the first substrate 310
  • the 1-2 insulating layer 322 is formed only in the region where the first electrode part 330 is disposed.
  • each of the 1-1 insulating layer 321 and the 1-2 insulating layer 322 is related to each of the first insulating layer 172 and the second insulating layer 174 described with reference to FIG. 5 and The same can be applied.
  • thermoelectric module 11 is a perspective view of a thermoelectric module according to another embodiment of the present invention
  • FIG. 12 is a cross-sectional view of the thermoelectric module of FIG. 11 .
  • Duplicate descriptions of the same content as those described with reference to FIGS. 1 to 10 will be omitted.
  • the insulator 1000 may be further disposed in a spaced region between the plurality of second substrates 381 , 382 , 383 , and 384 . Accordingly, the insulator 1000 may bond between the plurality of second substrates 381 , 382 , 383 , and 384 , and thus the spaced region between the plurality of second substrates 381 , 382 , 383 , and 384 is sealed. can be
  • the insulator 1000 may be disposed to extend from the spaced area between the plurality of second substrates 381 , 382 , 383 , and 384 to the upper surface of the dummy part 900 .
  • the insulator 1000 and the dummy part 900 may be integrally formed. According to this, it is possible to prevent the problem of infiltration of foreign substances or moisture into the P-type thermoelectric leg 340 and the N-type thermoelectric leg 350 between the first electrode part 330 and the second electrode part 360, Insulation, sealing, and heat insulation may be maintained between the first substrate 310 and the second substrate unit 380 .
  • thermoelectric module 13 illustrates a bonding structure between a heat sink and a second substrate in the thermoelectric module according to an embodiment of the present invention.
  • the thermoelectric element 300 may be fastened by a plurality of coupling members 400 .
  • the plurality of coupling members 400 fasten the heat sink 390 and the second substrate 380 or the heat sink 390 .
  • the second substrate 380 and the first substrate (not shown), or the heat sink 390, the second substrate 380, the first substrate (not shown) and the cooling unit (not shown) may be coupled to the cooling unit (not shown), or the second substrate 380 may be coupled to the first substrate (not shown).
  • the first substrate (not shown) and the cooling unit (not shown) may be connected through another fastening member outside the effective area on the first substrate (not shown).
  • a through hole S through which the coupling member 400 passes may be formed in the heat sink 390 , the second substrate 380 , the first substrate (not shown), and the cooling unit (not shown).
  • a separate insulating insertion member 410 may be further disposed between the through hole S and the coupling member 400 .
  • the separate insulating inserting member 410 may be an insulating inserting member surrounding the outer circumferential surface of the coupling member 400 or an insulating inserting member surrounding the wall surface of the through hole S. According to this, it is possible to increase the insulation distance of the thermoelectric element.
  • the shape of the insulating insertion member 410 may be as illustrated in FIGS. 13(a) and 13(b).
  • the diameter d2' of the through hole S of the first surface in contact with the second electrode of the second substrate 280 is that of the first surface in contact with the first electrode of the first substrate. It may be the same as the diameter of the through hole.
  • the diameter d2 ′ of the through hole S formed on the first surface of the second substrate 380 is the through hole formed on the second surface opposite to the first surface. It may be different from the diameter d2 of the hole S.
  • the insulating insertion member 410 is disposed only on a portion of the upper surface of the second substrate 380 without forming a step in the through-hole S region, or the through-hole S from the upper surface of the second substrate 380 ), when the insulating insertion member 410 is disposed to extend to a part or all of the wall surface, the diameter d2' of the through hole S formed in the first surface of the second substrate 380 is opposite to the first surface It may be the same as the diameter d2 of the through hole S formed in the second surface, which is the surface.
  • the diameter d2 ′ of the through hole S of the first surface in contact with the second electrode of the second substrate 380 is the first It may be larger than the diameter of the through hole of the first surface in contact with the first electrode of the substrate.
  • the diameter d2' of the through hole S of the first surface of the second substrate 380 may be 1.1 to 2.0 times the diameter of the through hole of the first surface of the first substrate.
  • thermoelectric element Since it is insignificant, insulation breakdown of the thermoelectric element may be caused, and the diameter d2' of the through hole S of the first surface of the second substrate 380 is 2.0 times the diameter of the through hole of the first surface of the first substrate. When it exceeds, the size of the area occupied by the through hole S is relatively increased, so that the effective area of the second substrate 380 is reduced, and the efficiency of the thermoelectric element may be reduced.
  • the diameter d2' of the through hole S formed in the first surface of the second substrate 380 is the through hole formed in the second surface opposite to the first surface. It may be different from the diameter d2 of the hole S.
  • the diameter d2 ′ of the through hole S formed in the first surface of the second substrate 380 is It may be the same as the diameter d2 of the through hole S formed in the second surface opposite to the first surface.
  • FIG. 14 (a) is a top view of a substrate and an electrode part of a thermoelectric element according to a comparative example
  • FIG. 14 (b) is a top view of a substrate and an electrode part of the thermoelectric element according to Example 1
  • FIG. 14 (c) is an embodiment It is a top view of the substrate and the electrode part of the thermoelectric element according to Example 2
  • FIG. 14(d) is a top view of the substrate and the electrode part of the thermoelectric element according to Example 3.
  • the bending width means a height difference between the lowest point and the highest point in a direction perpendicular to the plane direction of the first substrate.
  • the first dummy part 910 is formed in an area spaced apart between the first-first electrode group 331 and the first-second electrode group 332 among the plurality of electrode groups. and, when the second dummy part 920 is disposed in a spaced region between the 2-1 electrode group 333 and the 2-2 electrode group 334, a U-shaped bending in the horizontal direction of the first substrate This occurred, and the width of bending in the transverse direction was also reduced to 100 ⁇ m. In addition, although the W-shaped warpage occurred in the longitudinal direction of the first substrate, the vertical direction bending width was 138 ⁇ m, which was significantly improved compared to the comparative example.
  • FIG. 14(c) a 1-1 electrode group 331 and a 1-2 electrode group 332, a 2-1 electrode group 333, and a second electrode group among the plurality of electrode groups are shown in FIG. -
  • the third dummy part 930 is disposed between the electrode groups 334, a U-shaped warpage occurs in the horizontal direction of the first substrate, and the width of the horizontal bending is also significantly reduced to 83 ⁇ m.
  • the W-shaped warpage occurred in the longitudinal direction of the first substrate, the vertical direction bending width was 182 ⁇ m, which was improved compared to the comparative example.
  • thermoelectric element having excellent long-term reliability, durability, and power generation performance may be obtained.
  • the present invention is not limited thereto, and may be divided into two or more.
  • FIG. 15 is a perspective view of a thermoelectric element according to an embodiment of the present invention
  • FIG. 16 is a top view of a first substrate, an insulating layer, and a plurality of first electrodes in the embodiment of FIG. 15
  • FIG. 17 is another embodiment of the present invention.
  • a perspective view of a thermoelectric element according to an embodiment FIG. 18 is a top view of a first substrate, an insulating layer, and a plurality of first electrodes in the embodiment of FIG. 17
  • FIG. 19 is a thermoelectric element according to another embodiment of the present invention is a perspective view of
  • FIG. 20 is a top view of the first substrate, the insulating layer, and the plurality of first electrodes in the embodiment of FIG. 19 .
  • duplicate descriptions of the same content as those described with reference to FIGS. 1 to 14 will be omitted.
  • the thermoelectric element includes a first substrate 310 , an insulating layer 320 , a first electrode part 330 , semiconductor structures 340 and 350 , and a second It includes an electrode part 360 , an insulating layer 370 , and a second substrate part 380 , wherein the second substrate part 380 is divided into a plurality of second substrates, and a heat sink 390 is disposed on each second substrate. can be placed.
  • the first substrate 310 absorbs heat according to the Peltier effect and acts as a low-temperature part
  • the second substrate part 380 emits heat to act as a high-temperature part.
  • thermoelectromotive force when different temperatures are applied to the first substrate 310 and the second substrate unit 3800 , electrons in the high temperature region move to the low temperature region due to the temperature difference, thereby generating thermoelectromotive force. This is called the Seebeck effect, and electricity may be generated in the circuit of the thermoelectric element by the thermoelectromotive force caused thereby.
  • a plurality of first through holes 311 may be formed in the first substrate 310 .
  • a plurality of second through-holes 3901 may be formed in the second substrate unit 380 and the heat sink 390 , and the plurality of first through-holes 311 may include a plurality of second through-holes 3901 .
  • the plurality of coupling members may pass through the plurality of first through-holes 311 and the plurality of second through-holes 3901, and the plurality of coupling members (not shown) allow the first substrate to pass through.
  • the 310 and the second substrate 3901 may be fixed.
  • FIGS. 15 , 17 and 19 For convenience, detailed configurations of the insulating layer 320 , the first electrode part 330 , the semiconductor structures 340 and 350 , and the second electrode part 380 are omitted in FIGS. 15 , 17 and 19 . do.
  • the coefficient of thermal expansion (CTE) of the copper substrate is about 18*10 -6 /mK
  • the coefficient of thermal expansion (CTE) of the thermoelectric leg which is a semiconductor structure, is about 17.5*10 -6 /mK
  • the first insulating layer 321 ) and the coefficient of thermal expansion of the second insulating layer 322 may be greater than those of the copper substrate and the thermoelectric leg, and the coefficient of thermal expansion of the second insulating layer 322 may be greater than that of the first insulating layer 321 .
  • the coefficient of thermal expansion of the second insulating layer 322 is the same as that of the first insulating layer 321 . It may be more than twice the coefficient of thermal expansion.
  • the area of the second insulating layer 322 may be smaller than the area of the first insulating layer 321 . That is, the second insulating layer 322 may be disposed on a portion of the first insulating layer 321 instead of the entire surface. Accordingly, it is possible to improve the warpage of the first substrate 310 due to the difference in the coefficient of thermal expansion between the first insulating layer 321 and the second insulating layer 322 and relieve the thermal stress. Accordingly, it is possible to prevent the first electrode 330 or the semiconductor structures 340 and 350 from being dropped or electrically opened, and the heat transfer effect can be improved, and finally, the amount of power generation or cooling characteristics of the thermoelectric element. can be improved
  • the second insulating layer 322 may include a region P1 in which the first electrode part 330 , the plurality of semiconductor structures 340 and 350 , and the second electrode part 380 vertically overlap.
  • the vertical direction may refer to a direction (third direction) from the first substrate 310 toward the second substrate unit 380 .
  • the second insulating layer 322 is formed on the first substrate 310 in a region P1 in which the first electrode part 330 , the plurality of semiconductor structures 340 and 350 , and the second electrode part 380 vertically overlap. ) may further include protrusion patterns P2 and P3 protruding toward the first outside S1.
  • the first outside S1 is one of the first to fourth outside S1 to S4 constituting the first substrate 310 , and may be in a direction in which the terminal electrodes 330T1 and 330T2 protrude.
  • the terminal electrodes 330T1 and 330T2 are electrodes for connecting wires, and may be disposed on the same plane as the first electrode part 321 on the second insulating layer 322 .
  • each of the terminal electrodes 330T1 and 330T2 may be larger than the area of each electrode included in the first electrode part 330 , and accordingly, a connector for wire connection is disposed on each of the terminal electrodes 330T1 and 330T2.
  • a connector for wire connection is disposed on each of the terminal electrodes 330T1 and 330T2.
  • the protrusion patterns P2 and P3 include a first protrusion pattern P2 and a second protrusion pattern P3 disposed to be spaced apart from each other, and the first protrusion pattern P2 is disposed on the first protrusion pattern P2.
  • a first terminal electrode 330T1 may be disposed, and a second terminal electrode 330T2 may be disposed on the second protrusion pattern P3 . Accordingly, since the second insulating layer 322 may not be disposed on a portion of the first substrate 310 , the problem of bending of the first substrate 310 due to the second insulating layer 322 having a large coefficient of thermal expansion is minimized. can do.
  • the widths L1+L2 of the protrusion patterns P2 and P3 are the plurality of first electrodes 330 , the plurality of semiconductor structures 340 and 350 , and the plurality of second electrodes.
  • the electrode 360 may be smaller than the width L of the vertically overlapping region P1 , and the protrusion patterns P2 and P3 and the first outside S1 of the first substrate 310 may be spaced apart from each other.
  • the width may be defined as a distance in the first direction, and the length may be defined as a distance in the second direction.
  • the separation distance d1 between the first protrusion pattern P2 and the second protrusion pattern P3 is the distance d2 between the third outer side S3 of the first substrate 310 and the first protrusion pattern P2 . and 0.9 to 2 times, preferably 0.95 to 1.5 times, more preferably 0.97 to 1.2 times the distance d3 between the fourth outer side S4 and the second protrusion pattern P3 of the first substrate 310, respectively.
  • the second insulating layer 322 is not disposed between the third outer side S3 and the fourth outer side S4 of the first substrate 310 and the first protruding pattern P2 and the second protruding pattern Since the region between P3 in which the second insulating layer 322 is not disposed acts as a buffer against the thermal expansion of the protruding patterns P2 and P3 of the second insulating layer 322 , the second insulating layer 322 is The warpage in one direction may be reduced, and the warpage of the first substrate 310 in the first direction may be symmetrical with respect to the center of the first substrate 310 in the first direction.
  • the protrusion patterns P2 and P3 and the first outside S1 of the first substrate 310 may be spaced apart from each other. According to this, the region where the second insulating layer 322 is not disposed between the protruding patterns P2 and P3 and the first outside S1 of the first substrate 310 is the protruding pattern of the second insulating layer 322 ( Since it acts as a buffer for the thermal expansion of P2 and P3 , it is possible to reduce warpage of the first substrate 310 in the second direction.
  • the sealing member (not shown) may be disposed to contact the first insulating layer 321 from the first outside S1 and may be disposed to contact the second insulating layer 322 from the second outside S2 . . That is, since the second insulating layer 322 is not disposed on the first outer side S1 of the first substrate 310 , the length of the first substrate 310 in the second direction is long due to the terminal electrodes T1 and T2 . Even if it loses, it is possible to reduce the warpage of the first substrate 310 in the second direction. In this case, the protrusion length of the protrusion patterns P2 and P3 may be greater than the length from the protrusion patterns P2 and P3 to the first outer side S1 of the first substrate 310 . Accordingly, since the Y-direction length of the first substrate 310 is not longer than necessary, the warpage of the first substrate 310 in the second direction may be reduced.
  • the first insulating layer 321 is formed from at least a portion of the edge of the first substrate 310 , that is, the first to fourth outer sides S1 to S4 of the first substrate 310 . It may be arranged to be spaced apart.
  • the edge of the first substrate 310 may serve as a buffer according to the thermal expansion of the first insulating layer 321 . Therefore, it is possible to reduce the warpage of the first substrate 310 .
  • the coefficient of thermal expansion of the first insulating layer 321 may be different from the coefficient of thermal expansion of the first substrate 310 , and may be greater than the coefficient of thermal expansion of the first substrate 310 .
  • the second insulating layer 322 may be disposed to be spaced apart from at least a portion of an edge of the first insulating layer 321 .
  • the edge of the first insulating layer 321 serves as a buffer according to the thermal expansion of the second insulating layer 322 .
  • the warpage of the first substrate 310 may be reduced.
  • the coefficient of thermal expansion of the second insulating layer 322 may be greater than that of the first insulating layer 321 .
  • the second substrate part 380 may not vertically overlap the protrusion patterns P2 and P3 of the second insulating layer 322 .
  • Terminal electrodes 330T1 and 330T2 are disposed on the protruding patterns P2 and P3 of the second insulating layer 322 , and connectors for connecting wires are disposed on the terminal electrodes 330T1 and 330T2 , so the second substrate part 380 ) does not vertically overlap with the protruding patterns P2 and P3 of the second insulating layer 322 , it is easy to connect the wires through the connector.
  • the second concave surface R2 of the second insulating layer 322 may be disposed around each electrode included in the first electrode part 330 .
  • Each electrode may have a shape in which a length in the first direction and a length in the second direction are different from each other.
  • the second concave surface R2 of the second insulating layer 322 may also have a plurality of shapes having different lengths in the second direction or different lengths in the first direction.
  • the second concave surface R2 of the second insulating layer 324 has a structure positioned between the electrode and the electrode.
  • a flat portion may be located in the protrusion patterns P2 and P3 of the second insulating layer 324 . Accordingly, it is possible to prevent warpage of the substrate by relaxing the stress applied from the first substrate 310 to the second insulating layer 322 in the first direction and the second direction, and the first insulating layer 321 and the second insulating layer 322 2 It is possible to prevent cracking or peeling of the insulating layer 322 .
  • the present invention is not limited thereto, and since the distance between the terminal electrode 330T1 and the first electrode 330 is greater than the distance between neighboring electrodes in the first electrode part 330 , the protrusion pattern of the second insulating layer 322 is not limited thereto.
  • the second concave surface R2 of the second insulating layer 322 may appear as a flat part, and the second insulating layer 322 disposed between neighboring electrodes in the first electrode part 330 . ), a concave surface having a width in the first direction and a length in the second direction greater than that of the second concave surface R2 may be disposed.
  • the second concave surface R2 of the second insulating layer 322 has different widths in the region P1 where the first electrode part 330 and the second electrode part 360 vertically overlap, and the protrusion pattern ( Since the widths P2 and P3 may have different structures from each other, it may have an effect of suppressing warpage of the substrate and may be effective in preventing cracks or peeling of the second insulating layer 322 .
  • the present invention is not limited thereto, and the first insulating layer 321 and the second insulating layer 322 are It may be arranged in a single layer. Even when disposed as a single layer, a resin material including an inorganic filler may be applied to secure the above-described heat conduction characteristics and withstand voltage characteristics, but is not limited thereto. In addition, even when disposed as a single layer, the pattern of the second insulating layer 322 may have the same shape.
  • the second substrate unit 380 may be composed of a plurality of divided substrates with respect to one first substrate 310 .
  • the second substrate part 380 is divided along the second direction as shown in FIG. 15 , divided along the first direction as shown in FIG. 17 , or divided along the first direction and the second direction as shown in FIG. 19 . It can be divided along two directions.
  • the division along the second direction is a direction parallel to the third outer side S3 and the fourth outer side S4 between the third outer side S3 and the fourth outer side S4 of the first substrate 310 .
  • the first electrode unit 330 may be disposed on one first substrate 310 according to the division direction or division position of the second substrate unit 380 . According to this, even if the second substrate unit 380 includes a plurality of second substrates disposed to be spaced apart from each other, the first electrode unit 330, the semiconductor structures 340 and 350, and the second electrode unit 360 are one
  • the pair of terminal electrodes 330T1 and 330T2 may be electrically connected to each other, and the maximum number of semiconductor structures 340 and 350 per unit area may be accommodated, and thus high thermoelectric performance may be obtained.
  • the first electrode part 330 is disposed on the insulating layer 320 , and the first electrode part 330 includes a plurality of electrode groups, and each electrode group includes It may include a plurality of first electrodes.
  • the second substrate unit 380 is disposed to be spaced apart from each other in the second direction, the second substrate 380-1 and the second substrate 2-2 ( 380 - 2 , the first electrode group G1 is disposed to vertically overlap the 2-1 th substrate 380-1 , and the second electrode group G2 is disposed on the 2-2 th substrate 380 . -2) and may be disposed to overlap vertically. Accordingly, the first electrode group G1 and the second electrode group G2 may be divided between the third outer side S3 and the fourth outer side S4 of the first substrate 310 .
  • the first terminal electrode 330T1 is disposed on the side of the first electrode group G1
  • the second terminal electrode 330T2 is disposed on the side of the second electrode group G2
  • the first electrode group G1 and the second The electrode group G2 may be connected by the connection electrode CE1 .
  • the first electrode group G1 and the second electrode group G2 may include a plurality of first electrodes E1 and E2, respectively, and the connection electrode CE1 includes the first electrode group G1 and the second electrode.
  • the plurality of first electrodes E1 and E2 in the group G2 may be disposed in a row closest to the first terminal electrode 330T1 and the second terminal electrode 330T2.
  • connection electrode CE1 is longer than a long side of each of the first electrodes E1 and E2 , and at least a portion of the connection electrode CE1 has a 2-1 th substrate 380-1 and a 2-2 substrate 380- 2) and may not overlap vertically. That is, at least a portion of the connection electrode CE1 is disposed in a spaced area between the 2-1 th substrate 380-1 and the 2-2 th substrate 380-2, and the first electrode group G1 and the second electrode group G1 The electrode group G2 may be connected.
  • the second substrate part 380 is disposed to be spaced apart from each other in the first direction, the 2-3th substrate 380-3 and the 2-4th substrate 380-4.
  • the third electrode group G3 is disposed to vertically overlap the 2-3th substrate 380-3
  • the fourth electrode group G4 is formed to overlap the 2-4th substrate 380-4 and the second electrode group G4. It may be arranged to overlap vertically. Accordingly, the third electrode group G3 and the fourth electrode group G4 may be divided between the first outer side S1 and the second outer side S2 of the first substrate 310 .
  • both the first terminal electrode 330T1 and the second terminal electrode 330T2 may be disposed on the third electrode group G3 side, and the two connection electrodes CE2 and CE3 disposed adjacent to each other are the third The electrode group G3 and the fourth electrode group G4 may be connected.
  • the two connection electrodes CE2 and CE3 may be the connection electrode CE2 and the connection electrode CE3 adjacent to the connection electrode CE2 and disposed in parallel with each other.
  • the two connection electrodes when the two connection electrodes are adjacent to each other and disposed side by side, it may mean that one long side and the other long side of the two connection electrodes are adjacent to each other and disposed to face each other. That is, it may mean that the two connection electrodes are disposed parallel to each other in the long side direction.
  • connection electrodes CE2 and CE3 do not vertically overlap the 2-3 th substrate 380 - 3 and the 2 -4 th substrate 380 - 4 , and the 2-3 th substrate It may be disposed in a spaced region between the 380 - 3 and the 2-4 th substrate 380 - 4 .
  • connection electrodes CE2 and CE3 may be disposed in the two columns closest to the outermost row among the plurality of first electrodes E3 and E4 in the third electrode group G3 and the fourth electrode group G4. there is.
  • connection electrodes CE2 and CE3 are the two most adjacent to the outermost row from the left of the plurality of first electrodes E3 and E4 in the third electrode group G3 and the fourth electrode group G4 . Although shown to be arranged in a row, it is not limited thereto.
  • the two connection electrodes connecting the two electrode groups divided between the first outside (S1) and the second outside (S2) of the first substrate 310 are at the rightmost side of the plurality of first electrodes in the two electrode groups. It may be arranged side by side adjacent to the two rows closest to the outer row.
  • the second substrate unit 380 is disposed to be spaced apart from each other in the first direction and the second direction, and the second substrate 380-11 and the second substrate 380- 380- 12), when the 2-21 th substrate 380 - 21 , and the 2-22 th substrate 380 - 22 are included, the eleventh electrode group G11 is perpendicular to the 2-11 th substrate 380 - 11 .
  • the twelfth electrode group G12 is disposed to vertically overlap the 2-12th substrate 380-12
  • the 21st electrode group G21 is disposed to overlap the 2-21st substrate 380-21 and It may be disposed to vertically overlap
  • the 22nd electrode group G22 may be disposed to vertically overlap with the 2-22nd substrate 380 - 22
  • the eleventh electrode group G11 and the twelfth electrode group G12 are the 21st electrode group G21 and the 22nd electrode group G22 and the first outer side S1 and the second electrode group G22 of the first substrate 310 .
  • the eleventh electrode group G11 and the twenty-first electrode group G21 are the twelfth electrode group G12 and the twenty-second electrode group G22 of the first substrate 310 . It may be divided between the third outer side (S3) and the fourth outer side (S4).
  • the first terminal electrode 330T1 is disposed on the side of the eleventh electrode group G11
  • the second terminal electrode 330T2 is disposed on the side of the twelfth electrode group G12
  • the eleventh electrode group G11 and The twelfth electrode group G12 may be connected by the connection electrode CE1 .
  • the eleventh electrode group G11 and the twelfth electrode group G12 may include a plurality of first electrodes E11 and E12, respectively
  • the connection electrode CE1 includes the eleventh electrode group G11 and the twelfth electrode. It may be disposed in a row closest to the first terminal electrode 330T1 and the second terminal electrode 330T2 among the plurality of first electrodes E11 and E12 in the group G12 .
  • at least a portion of the connection electrode CE1 may be disposed to vertically overlap with a spaced region between the 2-11th substrate 380-11 and the 2-12th substrate 380-12.
  • connection electrodes CE2 and CE3 disposed adjacent to each other may connect the eleventh electrode group G11 and the twenty-first electrode group G21 to each other.
  • at least a portion of the two connection electrodes CE2 and CE3 do not vertically overlap the 2-11th substrate 380-11 and the 2-21st substrate 380-21, and the 2-11th substrate It may be disposed to vertically overlap with a spaced region between the 380-11 and the 2-21st substrate 380-21.
  • connection electrodes CE2 and CE3 are arranged side by side in two columns closest to the outermost row among the plurality of first electrodes E11 and E21 in the eleventh electrode group G11 and the twenty-first electrode group G21.
  • connection electrodes CE2 and CE3 are the two most adjacent to the outermost row from the left of the plurality of first electrodes E11 and E21 in the eleventh electrode group G11 and the twenty-first electrode group G21. Although shown to be arranged in a row, it is not limited thereto.
  • the two connection electrodes connecting the two electrode groups divided between the first outside (S1) and the second outside (S2) of the first substrate 310 are at the rightmost side of the plurality of first electrodes in the two electrode groups. They may be arranged side by side in the two rows closest to the outer row.
  • connection electrode CE5 and CE6 disposed adjacent to each other may connect the eleventh electrode group G11 and the twelfth electrode group G12 to each other.
  • the connection electrode CE1 includes the first terminal electrode 330T1 and the second terminal electrode among the plurality of first electrodes E11 and E12 in the eleventh electrode group G11 and the twelfth electrode group G12. Since it is disposed in the row closest to 330T2, the two connection electrodes CE5 and CE6 are the first of the plurality of first electrodes E11 and E12 in the eleventh electrode group G11 and the twelfth electrode group G12.
  • the terminal electrode 330T1 and the second terminal electrode 330T2 may be disposed in parallel with each other in the outermost row and the most adjacent row.
  • connection electrodes CE7 and CE8 disposed side by side adjacent to each other can connect the 21st electrode group G21 and the 22nd electrode group G22, and the two connection electrodes CE7 and CE8 are Among the plurality of first electrodes E21 and E22 in the twenty-first electrode group G21 and the twenty-second electrode group G22, they may be arranged side by side in an outermost row and a row most adjacent thereto.
  • the dummy part described with reference to FIGS. 10 to 12 may be further disposed in the spaced region between the plurality of electrode groups.
  • the dummy part may include a plurality of dummy structures having the same shape and size as the electrodes included in each electrode group and disposed to be spaced apart from each other. Accordingly, when the first substrate 310 is exposed to a high temperature, the overall stress is uniformly applied to the first substrate 310 , so that the warpage of the first substrate 310 can be minimized.
  • the second substrate unit 380 is divided into two along the first direction or divided into two along the second direction has been described above, this means that the second substrate unit 380 is divided into two along the first direction. It may also be applied to an embodiment in which it is divided into more than one or divided into two or more along the second direction.
  • the first row electrode group and the second row electrode group are adjacent to each other and disposed side by side. They are connected by two connection electrodes, and the second row electrode group and the third row electrode group may be connected by two other connection electrodes that are adjacent to each other and arranged side by side.
  • the two connecting electrodes and the other two connecting electrodes may be disposed in the two most adjacent columns in the outermost column of the first electrode part.
  • the second row electrode group and the third row electrode group may be disposed in two columns closest to the right outermost column of the first electrode part.
  • the electrode group in the second row and the electrode group in the third row may be disposed in the two most adjacent columns in the left outermost column of the first electrode part.
  • the first column electrode group, the second column electrode group, and the third column electrode group when sequentially arranged, the first column electrode group, the second column electrode group, and the third column electrode group are It may be connected by at least one connection electrode.
  • the at least one connection electrode may be disposed in an outermost row in the first column electrode group, the second column electrode group, and the third column electrode group.
  • thermoelectric element 21 to 24 are schematic diagrams of electrode arrangements included in the thermoelectric element according to an embodiment of the present invention. For convenience of description, detailed electrode arrangement is not illustrated, and only the electrode connection direction is schematically illustrated.
  • the eleventh electrode group G11 and the twelfth electrode group G12 are the 21st electrode group G21 and the 22nd electrode group G22 and the first outside S1 of the first substrate 310 .
  • the second outer side S2 and the 21st electrode group G21 and the 22nd electrode group G22 are divided between the 31st electrode group G31 and the 32nd electrode group G32 and the first substrate 110 .
  • the 11th electrode group G11, the 21st electrode group G21, and the 31st electrode group G31 are formed with the 12th electrode group G12, the 22nd electrode group G22, and the 32nd electrode group G32. It may be divided between the third outer side S3 and the fourth outer side S4 of the first substrate 110 .
  • the eleventh electrode group G11 and the twelfth electrode group G12 are the 21st electrode group G21 and the 22nd electrode group G22 and the first outside S1 of the first substrate 310 .
  • the second outer side S2 and the 21st electrode group G21 and the 22nd electrode group G22 are divided between the 31st electrode group G31 and the 32nd electrode group G32 and the first substrate 310 .
  • the 31st electrode group G31 and the 32nd electrode group G32 are the 41st electrode group G41 and the 42nd electrode group G42 ) and the first outer side S1 and the second outer side S2 of the first substrate 310 may be divided.
  • the 11th electrode group G11, the 21st electrode group G21, the 31st electrode group G31, and the 41st electrode group G41 are the 12th electrode group G12, the 22nd electrode group G22, It may be divided between the 32nd electrode group G32 and the 42nd electrode group G42 and the third outer side S3 and the fourth outer side S4 of the first substrate 310 .
  • the first terminal electrode 330T1 and the second terminal electrode 330T2 are disposed on different electrode groups, for example, on the side of the 11th electrode group G11 and the side of the 12th electrode group G12, respectively, and The electrode group G11 and the twelfth electrode group G12 may be connected to each other by the connection electrode CE1 .
  • the connection electrode EC1 may be disposed in a row closest to the first terminal electrode 330T1 and the second terminal electrode 330T2 .
  • the eleventh electrode group G11 , the twelfth electrode group G12 , and the thirteenth electrode group G13 are the twenty-first electrode group G21 , the twenty-second electrode group G22 and the twenty-third electrode group. It may be divided between ( G23 ) and the first outside ( S1 ) and the second outside ( S2 ) of the first substrate 310 .
  • the eleventh electrode group G11 and the twenty-first electrode group G21 are the twelfth electrode group G12 and the twenty-second electrode group G22 and the third outer side S3 and the fourth electrode group G22 of the first substrate 310 . It is divided between the outer side S4 , and the twelfth electrode group G12 and the twenty-second electrode group G22 are the thirteenth electrode group G13 and the twenty-third electrode group G23 and the third electrode group of the first substrate 110 . It may be divided between the outer side (S3) and the fourth outer side (S4).
  • the first terminal electrode 330T1 and the second terminal electrode 330T2 are disposed on different electrode groups, for example, on the side of the eleventh electrode group G11 and the side of the thirteenth electrode group G13, respectively, and
  • the electrode group G11 and the twelfth electrode group G12 may be connected by the connection electrode CE11
  • the twelfth electrode group G12 and the thirteenth electrode group G13 may be connected by the connection electrode CE12 . .
  • connection electrodes CE11 and CE12 may be disposed in a row closest to the first terminal electrode 330T1 and the second terminal electrode 330T2 .
  • the eleventh electrode group G11, the twelfth electrode group G12, the thirteenth electrode group G13, and the fourteenth electrode group G14 include a 21st electrode group G21, It may be divided between the 22nd electrode group G22 , the 23rd electrode group G23 , and the 24th electrode group G24 and the first outer side S1 and the second outer side S2 of the first substrate 310 . .
  • the eleventh electrode group G11 and the twenty-first electrode group G21 are the twelfth electrode group G12 and the twenty-second electrode group G22 and the third outer side S3 and the fourth electrode group G22 of the first substrate 110 . It is divided between the outer side S4 , and the twelfth electrode group G12 and the twenty-second electrode group G22 are the thirteenth electrode group G13 and the twenty-third electrode group G23 and the third electrode group of the first substrate 110 . It is divided between the outer side S3 and the fourth outer side S4, and the thirteenth electrode group G13 and the twenty-third electrode group G23 are the fourteenth electrode group G14 and the twenty-fourth electrode group G24 and the first electrode group G13. It may be divided between the third outer side S3 and the fourth outer side S4 of the substrate 310 .
  • the first terminal electrode 330T1 and the second terminal electrode 330T2 are disposed on different electrode groups, for example, on the side of the 11th electrode group G11 and the side of the 14th electrode group G14, respectively, and
  • the electrode group G11 and the twelfth electrode group G12 are connected by a connection electrode CE11, and the twelfth electrode group G12 and the thirteenth electrode group G13 are connected by a connection electrode CE12,
  • the thirteenth electrode group G13 and the fourteenth electrode group G14 may be connected to each other by the connection electrode CE13 .
  • connection electrodes CE11 , CE12 , and CE13 may be disposed in a row closest to the first terminal electrode 330T1 and the second terminal electrode 330T2 .
  • one of the first row electrode groups G11 and G12 is adjacent to one of the second row electrode groups G21 and G22 and two connection electrodes CE21 and CE22 arranged side by side. and one of the second row electrode groups G21 and G22 is connected to one of the third row electrode groups G31 and G32 by the other two connection electrodes CE31 and CE32 arranged side by side adjacent to each other.
  • the other two The connecting electrodes CE31 and CE32 may connect the 22nd electrode group G22 and the 32nd electrode group G32 disposed on the fourth outer side S4 side of the first substrate 310 .
  • the two connecting electrodes CE21 and CE22 are arranged side by side in two columns closest to the left outermost column of the eleventh electrode group G11 and the twenty-first electrode group G21, and the other two connecting electrodes CE31 and CE32 ) may be arranged side by side in two columns most adjacent to the right outermost column of the 22nd electrode group G22 and the 32nd electrode group G32.
  • connection electrodes CE21 and CE22 when two connection electrodes CE21 and CE22 connect the twelfth electrode group G12 and the 22nd electrode group G22 disposed on the fourth outer side S4 of the first substrate 310, the other two The connection electrodes CE31 and CE32 may connect the 21st electrode group G21 and the 31st electrode group G31 disposed on the third outer side S3 of the first substrate 310 .
  • the two connection electrodes CE21 and CE22 are disposed in the two rows closest to the right outermost row of the twelfth electrode group G12 and the 22nd electrode group G22, and the other two connection electrodes CE31 and CE32 may be disposed in two columns closest to the left outermost column of the twenty-first electrode group G21 and the thirty-first electrode group G31 .
  • the first column electrode group G11, G21, G31, G41 is adjacent to the second column electrode group G12, G22, G32, G42 and two connection electrodes ( CE41, CE42) can be connected.
  • the second column electrode groups G12 and G13 may be connected to the third column electrode groups G13 and G23 by two other connection electrodes CE51 and CE52 arranged adjacent to each other and side by side.
  • connection electrodes CE41 and CE42 are disposed in the outermost row of the electrode groups G11, G21, G31, and G41 in the first column, and the other two connection electrodes CE51 and CE52 are the electrode groups in the second column. It may be disposed in the outermost row of (G12, G13).
  • the second substrate part 380 is divided into a plurality of parts, the maximum number of thermoelectric legs per unit area can be accommodated, so that high thermoelectric efficiency can be achieved, and a pair of terminal electrodes is used to
  • the first electrode part, the semiconductor structure, and the second electrode part may be electrically connected to each other.
  • thermoelectric element when the thermoelectric element according to an embodiment of the present invention is applied to a power generation device using the Seebeck effect, the thermoelectric element may be coupled to the first fluid flow part and the second fluid flow part.
  • the first fluid flow part may be disposed on one of the first and second substrates of the thermoelectric element, and the second fluid flow part may be disposed on the other of the first and second substrates of the thermoelectric element.
  • a flow path may be formed in at least one of the first fluid flow part and the second fluid flow part so that at least one of the first fluid and the second fluid flows, and in some cases, one of the first fluid flow part and the second fluid flow part. At least one may be omitted, and at least one of the first fluid and the second fluid may flow directly to the substrate of the thermoelectric element.
  • the first fluid may flow adjacent to one of the first substrate and the second substrate, and the second fluid may flow adjacent to the other one.
  • the temperature of the second fluid may be higher than the temperature of the first fluid.
  • the first fluid flow unit may be referred to as a cooling unit.
  • the temperature of the first fluid may be higher than the temperature of the second fluid.
  • the second fluid flow unit may be referred to as a cooling unit.
  • the heat sink 390 may be connected to a substrate on which a fluid having a higher temperature flows among the first fluid flow part and the second fluid flow part.
  • the absolute value of the temperature difference between the first fluid and the second fluid may be 40°C or higher, preferably 70°C or higher, and more preferably 95°C to 185°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 한 실시예에 따른 열전소자는 하나의 제1 기판, 상기 하나의 제1 기판 상에 배치된 절연층, 상기 절연층 상에 배치된 제1 전극부, 상기 절연층 상에 배치되며, 상기 제1 전극부로부터 상기 제1 기판의 제1 외측을 향하도록 돌출된 제1 터미널 전극 및 제2 터미널 전극, 상기 제1 전극부 상에 배치된 반도체 구조물, 상기 반도체 구조물 상에 배치된 제2 전극부, 그리고 상기 제2 전극부 상에 배치된 제2 기판부를 포함하고, 상기 제2 기판부는 서로 이격되도록 배치된 복수의 제2 기판을 포함하며, 상기 제1 전극부는, 상기 복수의 제2 기판 각각과 수직으로 중첩된 복수의 전극 그룹, 그리고 상기 복수의 전극 그룹 중 서로 다른 두 개의 전극 그룹을 연결하는 제1 연결 전극을 포함하며, 상기 제1 연결 전극의 장변은 상기 복수의 전극 그룹에 포함된 제1 전극의 장변보다 길고, 상기 제1 연결 전극의 적어도 일부는 상기 복수의 제2 기판과 수직으로 중첩되지 않도록 배치된다.

Description

열전소자
본 발명은 열전소자에 관한 것으로, 보다 상세하게는 열전소자의 전극부 구조에 관한 것이다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.
열전소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.
열전소자는 기판, 전극 및 열전 레그를 포함하며, 상부기판과 하부기판 사이에 복수의 열전 레그가 어레이 형태로 배치되며, 복수의 열전 레그와 상부기판 사이에 복수의 상부 전극이 배치되고, 복수의 열전 레그와 및 하부기판 사이에 복수의 하부전극이 배치된다.
열전소자의 제조 공정 상 기판, 전극 및 열전 레그 간 접합을 위하여 고온의 환경에서 처리될 수 있다. 이에 따라, 기판에 휨 현상이 발생할 수 있으며, 기판의 휨 현상으로 인하여 열전소자의 장기적인 신뢰성, 내구성 및 발전성능이 저하될 수 있다.
본 발명이 이루고자 하는 기술적 과제는 열전모듈의 전극부 구조를 제공하는 것이다.
본 발명의 한 실시예에 따른 열전소자는 하나의 제1 기판, 상기 하나의 제1 기판 상에 배치된 절연층, 상기 절연층 상에 배치된 제1 전극부, 상기 절연층 상에 배치되며, 상기 제1 전극부로부터 상기 제1 기판의 제1 외측을 향하도록 돌출된 제1 터미널 전극 및 제2 터미널 전극, 상기 제1 전극부 상에 배치된 반도체 구조물, 상기 반도체 구조물 상에 배치된 제2 전극부, 그리고 상기 제2 전극부 상에 배치된 제2 기판부를 포함하고, 상기 제2 기판부는 서로 이격되도록 배치된 복수의 제2 기판을 포함하며, 상기 제1 전극부는, 상기 복수의 제2 기판 각각과 수직으로 중첩된 복수의 전극 그룹, 그리고 상기 복수의 전극 그룹 중 서로 다른 두 개의 전극 그룹을 연결하는 제1 연결 전극을 포함하며, 상기 제1 연결 전극의 장변은 상기 복수의 전극 그룹에 포함된 제1 전극의 장변보다 길고, 상기 제1 연결 전극의 적어도 일부는 상기 복수의 제2 기판과 수직으로 중첩되지 않도록 배치된다.
상기 제1 터미널 전극 및 상기 제2 터미널 전극은 각각 서로 다른 전극 그룹에 배치되고, 상기 제1 연결 전극은 상기 서로 다른 전극 그룹을 연결하도록 상기 복수의 전극 그룹 내에서 상기 제1 터미널 전극 및 상기 제2 터미널 전극에 가장 가까운 행에 배치될 수 있다.
상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 분할된 서로 다른 전극 그룹을 포함하고, 상기 제1 전극부는 상기 서로 다른 전극 그룹을 연결하도록 두 개의 연결 전극을 포함하며, 상기 두 개의 연결 전극은, 상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극일 수 있다.
상기 두 개의 연결 전극은 상기 복수의 전극 그룹 내에서 최외측열에 가장 인접한 두 개의 열에 배치될 수 있다.
상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 순차적으로 분할된 제1 전극 그룹, 제2 전극 그룹 및 제3 전극 그룹을 포함하고, 상기 제1 전극부는 상기 제1 전극 그룹 및 상기 제2 전극 그룹을 연결하도록 서로 인접하여 배치되는 두 개의 연결 전극 및 상기 제2 전극 그룹 및 상기 제3 전극 그룹을 연결하도록 서로 인접하여 배치되는 다른 두 개의 연결 전극을 포함하며, 상기 두 개의 연결 전극은 상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극을 포함하며 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 중 한 측에 배치되고, 상기 다른 두 개의 연결 전극은 제3 연결 전극 및 상기 제3 연결 전극과 인접하여 서로 나란히 배치된 제4 연결 전극을 포함하며 상기 제3 외측 및 상기 제4 외측 중 다른 한 측에 배치될 수 있다.
상기 두 개의 연결 전극은 상기 제3 외측의 최외측열에 가장 인접한 두 개의 열에 배치되고, 상기 다른 두 개의 연결 전극은 상기 제4 외측의 최외측열에 가장 인접한 두 개의 열에 배치될 수 있다.
상기 복수의 전극 그룹은 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 사이에서 분할된 서로 다른 전극 그룹을 포함하고, 상기 제1 연결 전극은 상기 서로 다른 전극 그룹 내 최외측행에 배치될 수 있다.
상기 제1 전극부는 상기 서로 다른 전극 그룹을 연결하도록 배치되는 두 개의 연결 전극을 포함하며, 상기 두 개의 연결 전극은 상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극을 포함하며 상기 서로 다른 전극 그룹 내 최외측행 및 상기 최외측행에 가장 인접한 행에 배치될 수 있다.
상기 절연층은 상기 제1 기판 상에 배치된 제1 절연층, 그리고 상기 제1 절연층 상에 배치되고 상기 제1 절연층의 면적보다 작은 면적을 갖는 제2 절연층을 포함하고, 상기 제2 절연층은 상기 제2 기판부와 수직으로 중첩되는 중첩 영역 및 상기 중첩 영역에서 상기 제1 기판의 제1 외측을 향하여 돌출된 돌출 패턴을 포함할 수 있다.
상기 돌출 패턴은 서로 이격되도록 배치된 제1 돌출 패턴 및 제2 돌출 패턴을 포함하고, 상기 제1 돌출 패턴 상에 상기 제1 터미널 전극이 배치되고, 상기 제2 돌출 패턴 상에 상기 제2 터미널 전극이 배치될 수 있다.
상기 복수의 전극 그룹은 상기 절연층 상에서 서로 이격되도록 배치되며, 상기 절연층 상에서 상기 복수의 전극 그룹 사이에 배치된 더미부를 더 포함할 수 있다.
상기 더미부는 상기 복수의 전극 그룹 각각에 포함된 각 전극과 동일한 형상 및 크기를 가지고, 서로 이격되도록 배치된 복수의 더미 구조물을 포함할 수 있다.
각 더미 구조물은 금속층 또는 수지층일 수 있다.
상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 분할된 제1 전극 그룹 및 제2 전극 그룹을 포함하고, 상기 제1 전극 그룹은 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 사이에서 분할된 제1-1 전극 그룹 및 제1-2 전극 그룹을 포함하고, 상기 제2 전극 그룹은 상기 제3 외측 및 상기 제4 외측 사이에서 분할된 제2-1 전극 그룹 및 제2-2 전극 그룹을 포함하며, 상기 더미부는 상기 제1-1 전극 그룹과 상기 제1-2 전극 그룹 사이에 배치된 제1 더미부, 상기 제2-1 전극 그룹과 제2-2 전극 그룹 사이에 배치된 제2 더미부 및 상기 제1 전극 그룹과 상기 제2 전극 그룹 사이에 배치된 제3 더미부를 포함할 수 있다.
상기 제1 더미부 및 상기 제2 더미부는 서로 이격되도록 배치될 수 있다.
본 발명의 다른 실시예에 따른 열전소자는 제1 기판; 상기 제1 기판 상에 배치되며, 서로 이격되도록 배치된 제1 전극 그룹 및 제2 전극 그룹을 포함하는 제1 전극부; 상기 제1 전극부 상에 배치되며, 서로 이격되도록 배치된 제3 전극 그룹 및 제4 전극 그룹을 포함하는 제2 전극부; 그리고 상기 제1 전극부와 상기 제2 전극부 사이에 배치된 반도체 구조물;을 포함하고, 상기 제1 전극 그룹과 상기 제3 전극 그룹은 제1 영역을 형성하도록 상기 제1 기판에 대하여 수직하는 방향으로 서로 중첩되고, 상기 제2 전극 그룹과 상기 제4 전극 그룹은 제2 영역을 형성하도록 상기 제1 기판에 대하여 수직하는 방향으로 서로 중첩되고, 상기 제1 영역과 상기 제2 영역 사이에 이격 영역이 형성되고, 상기 이격 영역의 적어도 일부에 배치된 더미부를 포함한다.
각 전극 그룹은 서로 이격되도록 배치된 복수의 전극을 포함하고, 상기 제1 전극 그룹과 상기 제2 전극 그룹 간 이격 거리는 상기 각 전극 그룹 내 복수의 전극 간 이격 거리보다 클 수 있다.
상기 제1 전극 그룹과 상기 제2 전극 그룹은 제1 방향으로 이격되고, 상기 제1 전극 그룹은 상기 제1 방향에 수직하는 제2 방향으로 이격된 제1-1 전극 그룹 및 제1-2 전극 그룹을 포함하고, 상기 제2 전극 그룹은 상기 제1 방향에 수직하는 제2 방향으로 이격된 제2-1 전극 그룹 및 제2-2 전극 그룹을 포함할 수 있다.
상기 더미부는 상기 제1-1 전극 그룹과 상기 제2-1 전극 그룹 사이에 배치된 제1 더미부 및 상기 제1-2 전극 그룹과 상기 제2-2 전극 그룹 사이에 배치된 제2 더미부를 포함할 수 있다.
상기 제1 더미부 및 상기 제2 더미부는 서로 이격될 수 있다.
상기 더미부는 상기 제1-1 전극 그룹과 상기 제1-2 전극 그룹 사이 및 상기 제2-1 전극 그룹과 상기 제2-2 전극 그룹 사이에 배치되는 제3 더미부를 더 포함할 수 있다.
상기 제1 전극부는 상기 제1-1 전극 그룹에 연결되는 제1 터미널 전극 및 상기 제2-1 전극 그룹에 연결되는 제2 터미널 전극을 더 포함할 수 있다.
상기 제1 전극부는 상기 제1-1 전극 그룹, 상기 제1-2 전극 그룹, 상기 제2-1 전극 그룹 및 상기 제2-2 전극 그룹 중 적어도 일부를 연결하는 연결 전극부를 더 포함할 수 있다.
상기 연결 전극부는 상기 제1-1 전극 그룹 및 상기 제2-1 전극 그룹 사이에 배치된 제1 연결전극, 상기 제1-1 전극 그룹 및 상기 제1-2 전극 그룹 사이에 배치된 제2 연결전극, 상기 제1-2 전극 그룹 및 상기 제2-2 전극 그룹 사이에 배치된 제3 연결전극 및 상기 제2-1 전극 그룹 및 상기 제2-2 전극 그룹 사이에 배치된 제4 연결전극 중 적어도 하나를 포함할 수 있다.
상기 제1 더미부 및 상기 제2 더미부는 상기 제1 연결전극, 상기 제3 더미부 및 상기 제2 연결전극에 의하여 서로 이격될 수 있다.
상기 제1 더미부, 상기 제2 더미부 및 상기 제3 더미부 중 적어도 하나는 각 전극 그룹에 포함된 각 전극과 동일한 형상 및 크기를 가지고, 서로 이격되도록 배치된 복수의 더미 구조물을 포함할 수 있다.
각 더미 구조물은 금속층 또는 수지층일 수 있다.
상기 제2 전극부 상에 배치된 제2 기판부를 더 포함하고, 상기 제2 기판부는 서로 이격되도록 배치된 복수의 제2 기판을 포함하며, 각 제2 기판은 각 전극 그룹에 대응하도록 배치될 수 있다.
상기 복수의 제2 기판 간 이격 영역에 배치된 절연체를 더 포함할 수 있다.
상기 절연체는 상기 복수의 제2 기판 간 이격 영역으로부터 상기 더미부까지 연장되도록 배치될 수 있다.
상기 각 제2 기판으로부터 상기 각 전극 그룹을 통하여 상기 제1 기판까지 연장된 복수의 관통홀을 통과하는 복수의 결합부재를 더 포함할 수 있다.
상기 각 제2 기판 상에 배치된 복수의 히트싱크를 더 포함할 수 있다.
각 히트싱크로부터 상기 각 전극 그룹을 통하여 상기 제1 기판까지 연장된 복수의 관통홀을 통과하는 복수의 결합부재를 더 포함할 수 있다.
상기 제1 기판과 상기 제1 전극부 사이에 배치된 절연층을 더 포함할 수 있다.
상기 절연층은 조성 및 탄성 중 적어도 하나가 서로 상이한 복수의 절연층을 포함할 수 있다.
본 발명의 실시예에 따르면, 기판의 휨 현상을 개선하여 장기적인 신뢰성, 내구성 및 발전성능이 높은 열전소자를 얻을 수 있다.
또한, 본 발명의 실시예에 따르면, 고온부 기판 및 저온부 기판의 구조를 상이하게 설계하여 열전소자의 신뢰성, 내구성 및 발전성능을 최적화할 수 있다.
특히, 본 발명의 실시예에 따르면, 기판 상에 전극이 배치되는 형상에 따라 기판이 휘는 문제를 방지할 수 있다.
도 1은 열전소자의 단면도이다.
도 2는 열전소자의 사시도이다.
도 3은 실링부재를 포함하는 열전소자의 사시도이다.
도 4는 실링부재를 포함하는 열전소자의 분해사시도이다.
도 5는 열전소자 내 기판, 절연층 및 전극의 단면도이다.
도 6은 본 발명의 한 실시예에 따른 열전모듈의 사시도이다.
도 7은 도 6의 열전모듈의 분해사시도이다.
도 8은 도 6의 열전모듈의 단면도이다.
도 9는 도 6의 열전모듈에 포함된 제1 기판 측의 상면도의 한 예이다.
도 10은 도 6의 열전모듈에 포함된 제1 기판 측의 상면도의 다른 예이다.
도 11은 본 발명의 다른 실시예에 따른 열전모듈의 사시도이다.
도 12는 도 11의 열전모듈의 단면도이다.
도 13은 본 발명의 한 실시예에 따른 열전모듈에서 히트싱크와 제2 기판 간 접합 구조를 나타낸다.
도 14(a)는 비교예에 따른 열전소자의 기판 및 전극부의 상면도이고, 도 14(b)는 실시예 1에 따른 열전소자의 기판 및 전극부의 상면도이며, 도 14(c)는 실시예 2에 따른 열전소자의 기판 및 전극부의 상면도이고, 도 14(d)는 실시예 3에 따른 열전소자의 기판 및 전극부의 상면도이다.
도 15는 본 발명의 한 실시예에 따른 열전소자의 사시도이다.
도 16은 도 15의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이다.
도 17은 본 발명의 다른 실시예에 따른 열전소자의 사시도이다.
도 18은 도 17의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이다.
도 19는 본 발명의 또 다른 실시예에 따른 열전소자의 사시도이다.
도 20은 도 19의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이다.
도 21 내지 도 24는 본 발명의 실시예에 따른 열전소자에 포함되는 전극 배치의 개략도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 2개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 2개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 열전소자의 단면도이고, 도 2는 열전소자의 사시도이다. 도 3은 실링부재를 포함하는 열전소자의 사시도이고, 도 4는 실링부재를 포함하는 열전소자의 분해사시도이다. 도 5는 열전소자 내 기판, 절연층 및 전극의 단면도이다.
도 1 내지 2를 참조하면, 열전소자(100)는 하부 기판(110), 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부 전극(150) 및 상부 기판(160)을 포함한다.
하부 전극(120)은 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 하부 바닥면 사이에 배치되고, 상부 전극(150)은 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 하부 전극(120) 및 상부 전극(150)에 의하여 전기적으로 연결된다. 하부 전극(120)과 상부 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다.
예를 들어, 리드선(181, 182)을 통하여 하부 전극(120) 및 상부 전극(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(130)로부터 N형 열전 레그(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(140)로부터 P형 열전 레그(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다. 또는, 하부전극(120) 및 상부전극(150) 간 온도 차를 가해주면, 제벡 효과로 인하여 P형 열전 레그(130) 및 N형 열전 레그(140) 내 전하가 이동하며, 전기가 발생할 수도 있다.
도 1 내지 도 4에서 리드선(181, 182)이 하부 기판(110)에 배치되는 것으로 도시되어 있으나, 이로 제한되는 것은 아니며, 리드선(181, 182)이 상부 기판(160)에 배치되거나, 리드선(181, 182) 중 하나가 하부 기판(110)에 배치되고, 나머지 하나가 상부 기판(160)에 배치될 수도 있다.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, P형 열전 레그(130)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Sb-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. N형 열전 레그(140)는 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, N형 열전 레그(140)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Se-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. 이에 따라, 본 명세서에서 열전 레그는 반도체 구조물, 반도체 소자, 반도체 재료층, 반도체 물질층, 반도체 소재층, 도전성 반도체 구조물, 열전 구조물, 열전 재료층, 열전 물질층, 열전 소재층 등으로 지칭될 수도 있다.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 이때, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그일 수 있다. 이와 같이, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그인 경우, P형 열전 레그(130) 및 N형 열전 레그(140)의 강도가 높아질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다.
이때, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다. 각 구조물은 개구 패턴을 가지는 전도성층을 더 포함할 수 있으며, 이에 따라 구조물 간의 접착력을 높이고, 열전도도를 낮추며, 전기전도도를 높일 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 하나의 열전 레그 내에서 단면적이 상이하도록 형성될 수도 있다. 예를 들어, 하나의 열전 레그 내에서 전극을 향하도록 배치되는 양 단부의 단면적이 양 단부 사이의 단면적보다 크게 형성될 수도 있다. 이에 따르면, 양 단부 간의 온도차를 크게 형성할 수 있으므로, 열전효율이 높아질 수 있다.
본 발명의 한 실시예에 따른 열전 소자의 성능은 열전성능 지수(figure of merit, ZT)로 나타낼 수 있다. 열전성능 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2021009353-appb-img-000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.
열전 소자의 열전성능 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 열전성능 지수(ZT)를 계산할 수 있다.
여기서, 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 하부 전극(120), 그리고 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 상부 전극(150)은 구리(Cu), 은(Ag), 알루미늄(Al) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 하부 전극(120) 또는 상부 전극(150)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.
그리고, 상호 대향하는 하부 기판(110)과 상부 기판(160)은 금속 기판일 수 있으며, 그 두께는 0.1mm~1.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 1.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 하부 기판(110)과 상부 기판(160)이 금속 기판인 경우, 하부 기판(110)과 하부 전극(120) 사이 및 상부 기판(160)과 상부 전극(150) 사이에는 각각 절연층(170)이 더 형성될 수 있다. 절연층(170)은 1~20W/mK의 열전도도를 가지는 소재를 포함할 수 있다.
이때, 하부 기판(110)과 상부 기판(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 하부 기판(110)과 상부 기판(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전 소자의 흡열 성능 또는 방열 성능을 높일 수 있다. 예를 들어, 제벡 효과를 위해 고온영역에 배치되거나, 펠티에 효과를 위해 발열영역으로 적용되거나 또는 열전모듈의 외부환경으로부터 보호를 위한 실링부재가 배치되는 기판의 체적, 두께 또는 면적 중 적어도 하나가 다른 기판의 체적, 두께 또는 면적 중 적어도 하나보다 더 클 수 있다.
또한, 하부 기판(110)과 상부 기판(160) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전 소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 열전 레그(130) 또는 N형 열전 레그(140)와 접촉하는 면에 형성되는 경우, 열전 레그와 기판 간의 접합 특성도 향상될 수 있다. 열전소자(100)는 하부기판(110), 하부전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부전극(150) 및 상부기판(160)을 포함한다.
도 3 내지 도 4에 도시된 바와 같이, 하부기판(110)과 상부기판(160) 사이에는 실링부재(190)가 더 배치될 수도 있다. 실링부재(190)는 하부기판(110)과 상부기판(160) 사이에서 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)의 측면에 배치될 수 있다. 이에 따라, 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)은 외부의 습기, 열, 오염 등으로부터 실링될 수 있다. 여기서, 실링부재(190)는, 복수의 하부전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽 및 복수의 상부전극(150)의 최외곽의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스(192), 실링 케이스(192)와 하부 기판(110) 사이에 배치되는 실링재(194) 및 실링 케이스(192)와 상부 기판(160) 사이에 배치되는 실링재(196)를 포함할 수 있다. 이와 같이, 실링 케이스(192)는 실링재(194, 196)를 매개로 하여 하부 기판(110) 및 상부 기판(160)과 접촉할 수 있다. 이에 따라, 실링 케이스(192)가 하부 기판(110) 및 상부 기판(160)과 직접 접촉할 경우 실링 케이스(192)를 통해 열전도가 일어나게 되고, 결과적으로 하부 기판(110)과 상부 기판(160) 간의 온도 차가 낮아지는 문제를 방지할 수 있다. 여기서, 실링재(194, 196)는 에폭시 수지 및 실리콘 수지 중 적어도 하나를 포함하거나, 에폭시 수지 및 실리콘 수지 중 적어도 하나가 양면에 도포된 테이프를 포함할 수 있다. 실링재(194, 194)는 실링 케이스(192)와 하부 기판(110) 사이 및 실링 케이스(192)와 상부 기판(160) 사이를 기밀하는 역할을 하며, 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)의 실링 효과를 높일 수 있고, 마감재, 마감층, 방수재, 방수층 등과 혼용될 수 있다. 여기서, 실링 케이스(192)와 하부 기판(110) 사이를 실링하는 실링재(194)는 하부 기판(110)의 상면에 배치되고, 실링케이스(192)와 상부 기판(160) 사이를 실링하는 실링재(196)는 상부기판(160)의 측면에 배치될 수 있다. 한편, 실링 케이스(192)에는 전극에 연결된 리드선(181, 182)를 인출하기 위한 가이드 홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 커버와 혼용될 수 있다. 다만, 실링부재에 관한 이상의 설명은 예시에 지나지 않으며, 실링부재는 다양한 형태로 변형될 수 있다. 도시되지 않았으나, 실링부재를 둘러싸도록 단열재가 더 포함될 수도 있다. 또는 실링부재는 단열 성분을 포함할 수도 있다.
이상에서, 하부 기판(110), 하부 전극(120), 상부 전극(150) 및 상부 기판(160)이라는 용어를 사용하고 있으나, 이는 이해의 용이 및 설명의 편의를 위하여 임의로 상부 및 하부로 지칭한 것일 뿐이며, 하부 기판(110) 및 하부 전극(120)이 상부에 배치되고, 상부 전극(150) 및 상부 기판(160)이 하부에 배치되도록 위치가 역전될 수도 있다.
본 명세서에서, 하부 기판(110)은 제1 기판(110) 또는 제1 기판부(110)와 혼용되고, 상부 기판(160)은 제2 기판(160) 또는 제2 기판부(160)와 혼용될 수 있다. 이와 마찬가지로, 하부 전극(120)은 제1 전극(120) 또는 제1 전극부(120)와 혼용되고, 상부 전극(150)은 제2 전극(150) 또는 제2 전극부(150)와 혼용될 수 있다.
한편, 전술한 바와 같이, 열전소자의 열전도 성능을 향상시키기 위하여, 금속 기판을 사용하고자 하는 시도가 늘고 있다. 다만, 열전소자가 금속 기판을 포함하는 경우, 열전도 측면에서는 유리한 효과를 얻을 수 있으나, 내전압이 낮아지는 문제가 있다. 특히, 열전소자가 고전압 환경 하에 적용되는 경우, 2.5kV 이상의 내전압 성능이 요구되고 있다. 열전소자의 내전압 성능을 개선하기 위하여 금속 기판과 전극 사이에 조성이 서로 상이한 복수의 절연층을 배치할 수 있다.
도 5를 참조하면, 절연층(170)은 제1 기판(110) 상에 배치된 제1 절연층(172) 및 제1 절연층(172) 상에 배치된 제2 절연층(174)을 포함하고, 제2 절연층(174) 상에는 제1 전극(120)이 배치될 수 있다. 설명의 편의를 위하여, 제1 기판(110) 측의 절연층을 중심으로 설명하지만, 동일한 내용이 제2 기판(160) 측의 절연층에도 적용될 수 있다.
이때, 제1 절연층(172)은 예시적으로 수지 물질을 포함할 수 있고, 실리콘과 알루미늄을 포함하는 복합체(composite) 및 무기충전재를 포함할 수 있다. 여기서, 복합체는 Si 원소와 Al 원소를 포함하는 무기물과 알킬 체인으로 구성된 유무기 복합체일 수 있으며, 실리콘과 알루미늄을 포함하는 산화물, 탄화물 및 질화물 중 적어도 하나일 수 있다. 예를 들어, 복합체는 Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함할 수 있다. 이와 같이, Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함하는 복합체는 절연 성능이 우수하며, 이에 따라 높은 내전압 성능을 얻을 수 있다. 또는, 복합체는 실리콘 및 알루미늄과 함께 티타늄, 지르코늄, 붕소, 아연 등을 더 포함하는 산화물, 탄화물, 질화물일 수도 있다. 이를 위하여, 복합체는 무기바인더 및 유무기 혼합 바인더 중 적어도 하나와 알루미늄을 혼합한 후 열처리하는 과정을 통하여 얻어질 수 있다. 무기바인더는, 예를 들어 실리카(SiO2), 금속알콕사이드, 산화붕소(B2O3) 및 산화아연(ZnO2) 중 적어도 하나를 포함할 수 있다. 무기바인더는 무기입자이되, 물에 닿으면 졸 또는 겔화되어 바인딩의 역할을 할 수 있다. 이때, 실리카(SiO2), 금속알콕사이드 및 산화붕소(B2O3) 중 적어도 하나는 알루미늄 간 밀착력 또는 제1 기판(110)과의 밀착력을 높이는 역할을 하며, 산화아연(ZnO2)은 제1 절연층(172)의 강도를 높이고, 열전도율을 높이는 역할을 할 수 있다. 무기충전재는 복합체 내에 분산될 수 있으며, 산화알루미늄 및 질화물 중 적어도 하나를 포함할 수 있다. 여기서, 질화물은, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다.
한편, 제2 절연층(174)은 에폭시 수지 및 무기충전재를 포함하는 에폭시 수지 조성물 및 PDMS(polydimethylsiloxane)를 포함하는 실리콘 수지 조성물 중 적어도 하나를 포함하는 수지층으로 이루어질 수 있다. 이에 따라, 제2 절연층(174)은 제1 절연층(172)과 제1 전극(120) 간의 절연성, 접합력 및 열전도 성능을 향상시킬 수 있다.
여기서, 무기충전재는 수지층의 60 내지 80wt%로 포함될 수 있다. 무기충전재가 60wt%미만으로 포함되면, 열전도 효과가 낮을 수 있으며, 무기충전재가 80wt%를 초과하여 포함되면 무기충전재가 수지 내에 고르게 분산되기 어려우며, 수지층은 쉽게 깨질 수 있다.
그리고, 에폭시 수지는 에폭시 화합물 및 경화제를 포함할 수 있다. 이때, 에폭시 화합물 10 부피비에 대하여 경화제 1 내지 10 부피비로 포함될 수 있다. 여기서, 에폭시 화합물은 결정성 에폭시 화합물, 비결정성 에폭시 화합물 및 실리콘 에폭시 화합물 중 적어도 하나를 포함할 수 있다. 무기충전재는 산화알루미늄 및 질화물 중 적어도 하나를 포함할 수 있다. 여기서, 질화물은, 질화붕소 및 질화알루미늄 중 적어도 하나를 포함할 수 있다.
한편, 제2 절연층(174)은 미경화 상태 또는 반경화 상태의 수지 조성물을 제1 절연층(172) 상에 도포한 후, 미리 정렬된 복수의 제1 전극(120)을 배치하고 가압 후 경화 공정을 통해 구성할 수 있다. 이에 따라, 복수의 제1 전극(120)의 측면의 일부는 제2 절연층(172) 내에 매립될 수 있다. 이때, 제2 절연층(174) 내에 매립된 복수의 제1 전극(120)의 측면의 높이(H1)는 복수의 제1 전극(330)의 두께(H)의 0.1 내지 1배, 바람직하게는 0.2 내지 0.9배, 더 바람직하게는 0.3 내지 0.8배일 수 있다. 이와 같이, 복수의 제1 전극(120)의 측면의 일부가 제2 절연층(174) 내에 매립되면, 복수의 제1 전극(120)과 제2 절연층(174) 간의 접촉 면적이 넓어지게 되며, 이에 따라 복수의 제1 전극(120)과 제2 절연층(174) 간의 열전달 성능 및 접합 강도가 더욱 높아질 수 있다. 제2 절연층(174) 내에 매립된 복수의 제1 전극(120)의 측면의 높이(H1)가 복수의 제1 전극(120)의 두께(H)의 0.1배 미만일 경우, 복수의 제1 전극(120)과 제2 절연층(174) 간의 열전달 성능 및 접합 강도를 충분히 얻기 어려울 수 있고, 제2 절연층(174) 내에 매립된 복수의 제1 전극(120)의 측면의 높이(H1)가 복수의 제1 전극(120)의 두께(H)의 1배를 초과할 경우 제2 절연층(174)이 복수의 제1 전극(120) 상으로 올라올 수 있으며, 이에 따라 전기적으로 단락될 가능성이 있다.
이와 같이, 제2 절연층(174)의 상면은 제1 오목면(R1) 및 제1 오목면(R1)의 주위에 배치되는 제2 오목면(R2)을 포함할 수 있다. 복수의 제1 전극(120)은 각각 제1 오목면(R1) 상에 배치되고, 제1 오목면(R1)과 제1 기판(110) 사이의 제1 수직 거리는 제2 오목면(R2)과 제1 기판(110) 사이의 제2 수직 거리보다 작을 수 있다. 더 자세하게는, 복수의 제1 전극(120) 사이에서 제2 절연층(174)의 두께는 각각의 전극 측면에서 중심영역으로 갈수록 감소하여, 꼭지점이 완만한 'V'형상을 가질 수 있다. 따라서, 복수의 제1 전극(120) 사이의 절연층(170)은 두께의 편차를 가지며, 복수의 제1 전극(120)의 측면과 직접 접촉하는 영역에서의 높이(D2)가 가장 높고, 중심영역에서의 높이(D3)는 복수의 제1 전극(120)의 측면과 직접 접촉하는 영역에서의 높이(D2)보다 낮을 수 있다. 즉, 복수의 제1 전극(120) 사이의 절연층(170)의 중심영역 높이(D3)는 복수의 제1 전극(120) 사이의 절연층(170) 내에서 가장 낮을 수 있다. 또한, 복수의 제1 전극(120) 아래의 절연층(170)의 높이(D1)는 복수의 제1 전극(120) 사이의 절연층(170)의 중심영역 높이(D3)보다 더 낮을 수 있다. 제2 절연층(174)이 제2 오목면(R2)을 포함함으로써, 절연층에 인가되는 응력을 완화할 수 있어, 절연층의 크랙이나 박리 등의 문제를 개선할 수 있다.
한편, 제1 절연층(172) 및 제2 절연층(174)의 조성은 서로 상이하며, 이에 따라 제1 절연층(172) 및 제2 절연층(174)의 경도, 탄성 계수, 인장강도, 연신율(elongation) 및 영률(Young's modulus) 중 적어도 하나가 달라질 수 있으며, 이에 따라 내전압 성능, 열전도 성능, 접합 성능 및 열충격 완화 성능 등을 제어하는 것이 가능하다. 예를 들어, 제1 절연층(172) 전체에 대한 복합체 및 무기충전재의 중량비는 제2 절연층(174) 전체에 대한 무기충전재의 중량비보다 높을 수 있다. 전술한 바와 같이, 복합체는 실리콘과 알루미늄을 포함하는 복합체(composite), 더욱 구체적으로는 실리콘과 알루미늄을 포함하는 산화물, 탄화물 및 질화물 중 적어도 하나를 포함하는 복합체일 수 있다. 예를 들어, 제1 절연층(172) 전체에 대한 세라믹, 즉 복합체 및 무기충전재의 중량비는 80wt%를 초과하고, 제2 절연층(174) 전체에 대한 세라믹, 즉 무기충전재의 중량비는 60 내지 80wt%일 수 있다. 이와 같이, 제1 절연층(172)에 포함되는 복합체 및 무기충전재의 함량이 제2 절연층(174)에 포함되는 무기충전재의 함량보다 높은 경우, 제1 절연층(172)의 경도가 제2 절연층(174)의 경도보다 높을 수 있다. 이에 따라, 제1 절연층(172)은 높은 내전압 성능 및 높은 열전도 성능을 동시에 가질 수 있고, 제2 절연층(174)은 제1 절연층(172)보다 높은 탄성을 가질 수 있으며, 제2 절연층(174)은 제1 절연층(172)과 제1 전극(120) 사이의 접착 성능을 높일 수 있다. 이때, 탄성은 인장강도(tensile strength)로 나타낼 수 있다. 예를 들어, 제2 절연층(174)의 인장강도는 2 내지 5MPa, 바람직하게는 2.5 내지 4.5MPa, 더욱 바람직하게는 3 내지 4MPa일 수 있고, 제1 절연층(172)의 인장강도는 10MPa 내지 100Mpa, 바람직하게는 15MPa 내지 90MPa, 더욱 바람직하게는 20MPa 내지 80MPa일 수 있다.
이때, 제2 절연층(174)의 두께는 제1 절연층(172)의 두께의 1배 초과 3.5배 이하, 바람직하게는 1.05배 이상 2배 이하, 더욱 바람직하게는 1.1배 이상 내지 1.5배 이하일 수 있다. 예를 들어, 제1 절연층(172)의 두께는 35㎛ 이하이고, 제2 절연층(174)의 두께는 35㎛초과 80㎛ 이하, 바람직하게는 35㎛초과 70㎛ 이하, 더욱 바람직하게는 35㎛초과 50㎛ 이하일 수 있다.
제1 절연층(172)의 두께 및 제2 절연층(174)의 두께가 각각 이러한 수치 범위를 만족시키는 경우, 내전압 성능, 열전도 성능, 접합 성능 및 열충격 완화 성능을 동시에 얻는 것이 가능하다.
또한, 제1 오목면(R1)의 폭은 제2 오목면(R2)의 폭보다 크게 배치될 수 있다. 따라서, 전극을 기판 상에 조밀하게 배치하는 구조가 가능해질 수 있어, 열전 소자의 발전 성능 또는 온도 조절 성능을 개선할 수 있다.
또한, 제2 절연층(174)의 열팽창 계수는 제1 절연층(172)의 열팽창 계수에 비하여 높을 수 있다. 이에 따르면, 기판의 휨 현상을 개선할 수 있다.
도 6은 본 발명의 한 실시예에 따른 열전모듈의 사시도이고, 도 7은 도 6의 열전모듈의 분해사시도이며, 도 8은 도 6의 열전모듈의 단면도이며, 도 9는 도 6의 열전모듈에 포함된 제1 기판 측의 상면도의 한 예이고, 도 10은 도 6의 열전모듈에 포함된 제1 기판 측의 상면도의 다른 예이다.
도 6 내지 도 9를 참조하면, 본 발명의 한 실시예에 따른 열전소자(300)는 제1 기판(310), 제1 기판(310) 상에 배치된 제1 절연층(320), 제1 절연층(320) 상에 배치된 제1 전극부(330), 복수의 제1 전극(330) 상에 배치된 복수의 P형 열전레그(340) 및 복수의 N형 열전레그(350), 복수의 P형 열전레그(340) 및 복수의 N형 열전레그(350) 상에 배치된 제2 전극부(360), 제2 전극부(360) 상에 배치된 제2 절연층(370), 제2 절연층(370) 상에 배치된 제2 기판부(380) 및 제2 기판부(380) 상에 배치된 히트싱크(390)를 포함한다. 제1 기판(310), 제1 전극부(330), P형 열전레그(340), N형 열전레그(350), 제2 전극부(360) 및 제2 기판부(380) 각각에 대하여 도 1 내지 도 4의 제1 기판(110), 제1 전극(120), P형 열전레그(130), N형 열전레그(140), 제2 전극(150) 및 제2 기판(160)에 대한 설명과 동일한 내용에 대해서는 중복된 설명을 생략한다. 또한, 제1 절연층(320) 및 제2 절연층(370)에 대하여 도 1 내지 도 5의 절연층(170)에 대한 설명과 동일한 내용에 대해서는 중복된 설명을 생략한다. 도 6 내지 도 8에 도시되지 않았으나, 제1 기판(310)과 제2 기판부(380) 사이에는 실링부재가 더 배치될 수도 있다.
본 발명의 실시예에 따르면, 제2 기판부(380)는 서로 이격되도록 배치된 복수의 제2 기판(381, 382, 383, 384)을 포함할 수 있으며, 제1 기판(310) 및 제2 기판부(380)에 포함되는 각 제2 기판(381, 382, 383, 384)에는 결합부재(400)가 통과하기 위한 관통홀이 형성될 수 있다.
제1 기판(310)은 판형으로 형성될 수 있으며, 도시되지 않았으나 제1 기판은 냉각부 또는 발열부 상에 배치될 수 있다. 냉각부 또는 발열부 상에 본 발명의 실시예에 따른 열전모듈(300)을 고정하기 위하여, 냉각부(C) 또는 발열부에는 결합부재(400)가 삽입될 수 있는 홈 또는 홀이 형성될 수 있다.
제1 기판(310) 및 제2 기판부(380)에 포함되는 복수의 제2 기판(381, 382, 383, 384)은 알루미늄, 알루미늄 합금, 구리 및 구리 합금 중 적어도 하나를 포함할 수 있다. 이때, 열전모듈에 전압을 인가하면, 제1 기판(310)은 펠티에 효과(Peltier effect)에 따라 열을 흡수하여 저온부로 작용하고, 제 2 기판부(380)는 열을 방출하여 고온부로 작용할 수 있다. 한편, 제1 기판(310) 및 제2 기판부(380)에 서로 다른 온도를 가하면, 온도 차에 의해 고온 영역의 전자가 저온 영역으로 이동하면서 열기전력이 발생한다. 이를 제벡 효과(Seebeck effect)라고 하며, 이로 인한 열기전력에 의하여 열전소자의 회로 내에 전기가 발생할 수 있다.
제1 기판(310)에는 복수의 제1 관통홀(311)이 형성될 수 있다. 그리고, 복수의 제2 기판(381, 382, 383, 384) 각각에는 제2 관통홀(3811, 3821, 3831, 3841)이 형성될 수 있으며, 복수의 제1 관통홀(311)은 제2 관통홀(3811, 3821, 3831, 3841)에 대응하는 위치에 배치될 수 있다. 이에 따라, 복수의 결합부재(400)는 복수의 제1 관통홀(311)과 제2 관통홀(3811, 3821, 3831, 3841)을 통과할 수 있으며, 복수의 결합부재(400)에 의하여 제1 기판(310)과 제2 기판부(380)가 고정될 수 있다.
한편, 각 제2 기판(381, 382, 383, 384) 상에 각 히트싱크(391, 392, 393, 394)가 배치될 경우, 각 히트싱크(391, 392, 393, 394)에는 제3 관통홀(3911, 3921, 3931, 3941)이 형성될 수 있으며, 복수의 제1 관통홀(311)은 제2 관통홀(3811, 3821, 3831, 3841) 및 제3 관통홀(3911, 3921, 3931, 3941)에 대응하는 위치에 배치될 수 있다. 이에 따라, 복수의 결합부재(400)는 복수의 제1 관통홀(311), 제2 관통홀(3811, 3821, 3831, 3841) 및 제3 관통홀(3911, 3921, 3931, 3941)을 통과할 수 있으며, 복수의 결합부재(400)에 의하여 제1 기판(310), 제2 기판부(380) 및 히트싱크(390)가 고정될 수 있다.
도 6 내지 도 8에서 도시된 바와 같이, 제2 기판부(380)가 복수의 제2 기판(381, 382, 383, 384)로 분할된 경우, 제2 기판부(380)가 고온에 잦은 빈도로 노출되더라도 제2 기판부(380)의 열팽창에 의한 열변형이 발생하는 문제를 방지할 수 있으며, 대면적 애플리케이션에 적용하기 용이하다.
이때, 제1 기판(310)의 면적에 대한 각 제2 기판(381, 382, 383, 384)의 면적 비는 0.10 내지 0.50, 바람직하게는 0.15 내지 0.45, 더욱 바람직하게는 0.2 내지 0.40일 수 있다.
제2 기판부(380)가 서로 이격되도록 배치된 복수의 제2 기판(381, 382, 383, 384)을 포함하는 경우, 제1 기판(310) 상에 배치되는 제1 전극부(330)는 복수의 제2 기판(381, 382, 383, 384)에 대하여 대응하도록 배치될 수 있다.
즉, 도 8에 도시된 바와 같이, 제1 전극부(330)는 서로 이격되도록 배치된 복수의 전극 그룹을 포함하고, 제2 전극부(360)는 서로 이격되도록 배치된 복수의 전극 그룹을 포함하며, 제1 전극부(330)의 각 전극 그룹은 제2 전극부(360)의 각 전극 그룹과 제1 영역(A1)을 형성하도록 제1 기판(310)으로부터 상기 제2 기판부(380)를 향하는 방향으로 서로 중첩되고, 제1 전극부(330)의 각 전극 그룹은 제2 전극부(360)의 각 전극 그룹과 제2 영역(A2)을 형성하도록 제1 기판(310)으로부터 상기 제2 기판부(380)를 향하는 방향으로 서로 중첩될 수 있으며, 제1 영역(A1)과 제2 영역(A2) 사이에는 이격 영역이 형성될 수 있다.
더욱 구체적으로, 도 9를 참조하면, 제1 전극부(330)는 서로 이격되도록 배치된 복수의 전극 그룹(331, 332, 333, 334)을 포함할 수 있고, 각 전극 그룹(331, 332, 333, 334)은 서로 이격되도록 배치된 복수의 전극(330E)을 포함할 수 있다. 도 8에서 도시되지 않았으나, 제2 전극부(360)는 제1 전극부(330)의 복수의 전극 그룹(331, 332, 333, 334)과 각각 제1 기판(310)에 대하여 수직하는 방향으로 중첩되는 복수의 전극 그룹을 포함할 수 있다.
제1 전극부(330)는 복수의 전극 그룹(331, 332, 333, 334) 중 하나에 연결되는 제1 터미널 전극(330T1) 및 복수의 전극 그룹(331, 332, 333, 334) 중 다른 하나에 연결되는 제2 터미널 전극(330T2)을 포함할 수 있다. 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2) 각각에는 커넥터(미도시)가 배치될 수 있으며, 이를 통하여 외부 전원과 연결될 수 있다. 한편, 제1 전극부(330)는 복수의 전극 그룹(331, 332, 333, 334) 중 적어도 일부를 연결하는 연결 전극부(330C)를 더 포함할 수 있다. 연결전극부(330C)는 예를 들어, 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332) 사이에 배치된 제1 연결전극(330C1), 제1-1 전극 그룹(331) 및 제2-1 전극 그룹(333) 사이에 배치된 제2 연결전극(330C2), 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334) 사이에 배치된 제3 연결전극(330C3) 및 제1-2 전극 그룹(332) 및 제2-2 전극 그룹(334)을 연결하는 제4 연결전극 중 적어도 하나를 포함할 수 있다. 복수의 전극 그룹(331, 332, 333, 334)은 연결 전극부(330C)를 통하여 직접 또는 간접으로 다른 전극 그룹과 연결될 수 있으며, 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)을 통하여 전기적 경로를 형성할 수 있다.
각 전극 그룹(331, 332, 333, 334)은 홀 배치 영역(310H)을 비워두고 배치될 수 있다. 도시되지 않았으나, 제2 전극부(360)도 홀 배치 영역(310H)에 대응하는 홀 배치 영역을 비워두고 배치될 수 있다. 여기서, 홀 배치 영역(310H)은 홀(311)에 가장 인접하도록 배치된 전극들(330E)의 홀(311)에 가장 인접하도록 배치된 가장자리를 연결한 가상의 선으로 이루어진 영역을 의미할 수 있다. 홀 배치 영역의 면적은 전극(330E)의 면적의 4배 이상, 바람직하게는 6배 이상, 더욱 바람직하게는 8배 이상일 수 있다. 이에 따르면, 열전모듈(300)의 내전압 성능이 AC 1kV 이상으로 유지될 수 있다.
이때, 복수의 전극 그룹(331, 332, 333, 334) 간 이격 영역은 복수의 제2 기판(381, 382, 383, 384) 간 이격 영역에 대응할 수 있으며, 복수의 전극 그룹(331, 332, 333, 334) 간 이격 거리는 각 전극 그룹(331, 332, 333, 334) 내 복수의 전극(330E) 간 이격 거리보다 클 수 있다.
예를 들어, 제1 전극부(330)가 제1-1 전극 그룹(331), 제1-1 전극 그룹(331)으로부터 제1 방향으로 이격되도록 배치된 제1-2 전극 그룹(332), 제1-1 전극 그룹(331)으로부터 제1 방향에 수직하는 제2 방향으로 이격되도록 배치된 제2-1 전극 그룹(333) 및 제2-1 전극 그룹(333)으로부터 제1 방향으로 이격되고, 제1-2 전극 그룹(332)으로부터 제2 방향으로 이격되도록 배치된 제2-2 전극 그룹(334)을 포함하는 경우, 제1-1 전극 그룹(331) 및 제2-1 전극 그룹(333)은 제1-2 전극 그룹(332) 및 제2-2 전극 그룹(334)과 제1 방향으로 이격되고, 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332)은 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334)과 제2 방향으로 이격될 수 있다.
이에 따르면, 제조 공정 상 제1 전극부(330)가 탑재된 제1 기판(310)이 고온에 노출될 경우, 제1 기판(310)은 각 전극 그룹의 이격 영역을 중심으로 제1 방향뿐만 아니라 제2 방향에서 W자로 휠 수 있다. 이러한 W자 휨 현상은 열전모듈(300)과 냉각부(C) 간 접합력을 낮추며, 열전모듈(300)의 장기적인 신뢰성, 내구성 및 발전성능을 낮출 수 있다.
본 발명의 실시예에 따르면, 제1 기판(310)의 휨 현상을 개선하기 위하여, 전극 그룹 간 이격 영역에 더미부를 더 배치하고자 한다.
도 10을 참조하면, 더미부(900)가 제1 영역(A1) 및 제2 영역(A2) 사이의 이격 영역의 적어도 일부에서 제1 기판(310) 상에 더 배치될 수 있다. 예를 들어, 더미부(900)는 복수의 전극 그룹((331, 332, 333, 334) 간 이격 영역의 적어도 일부에서 복수의 전극 그룹(331, 332, 333, 334)의 측면에 배치될 수 있다. 이와 같이, 더미부(900)가 배치되면, 제1 기판(310) 전체에 대하여 균일하게 응력이 가해질 수 있으므로, W자 휨 현상을 방지할 수 있다.
예를 들어, 제1 더미부(910)는 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332) 사이에 배치될 수 있다. 그리고, 제2 더미부(920)는 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334) 사이에 배치될 수 있다. 그리고, 제3 더미부(930)는 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332)과 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334) 사이에 배치될 수 있다. 이때, 제1 더미부(910) 및 제2 더미부(920)는 제3 더미부(930)에 의하여 서로 이격될 수 있다. 또는, 제1 더미부(910)와 제3 더미부(930) 사이에는 제1-1 전극 그룹(331)과 제1-2 전극 그룹(332) 사이에 배치된 제1 연결전극(330C1)이 배치되고, 제2 더미부(920)와 제3 더미부(930) 사이에는 제2-1 전극 그룹(333)과 제2-2 전극 그룹(334) 사이에 배치된 제3 연결전극(330C3)이 배치될 수 있다.
이에 따르면, 제1 기판(310)이 고온에 노출될 경우 제1 기판(310)에 전체적으로 균일하게 응력이 가해지므로, 제1 기판(310)의 W자 휨 현상을 최소화할 수 있다.
이때, 제1 더미부(910), 제2 더미부(920) 및 제3 더미부(930) 중 적어도 하나는 각 전극 그룹에 포함된 각 전극(330E)과 동일한 형상 및 크기를 가지고, 서로 이격되도록 배치된 복수의 더미 구조물을 포함할 수 있다.
이에 따르면, 제1 기판(310)이 고온에 노출될 경우 제1 기판(310)에 전체적으로 균일하게 응력이 가해지므로, 제1 기판(310)의 W자 휨 현상을 최소화할 수 있으며, 제조 공정 상 더미부(900)의 설계 및 배치가 용이하다.
이때, 각 더미 구조물은 금속층일 수 있다. 예를 들어, 금속층은 전극(330E)과 동일한 재료, 형상 및 크기를 가지되, 금속층 상에 열전 레그가 배치되지 않으며, 금속층이 다른 전극(330E)과 전기적으로 연결되지 않을 수 있다. 이에 따르면, 제조 공정 상 더미부(900)의 설계 및 배치가 용이하다.
또는, 각 더미 구조물은 수지층일 수도 있다. 예를 들어, 수지층은 에폭시 수지 및 폴리이미드 수지 중 적어도 하나를 포함할 수 있다. 이러한 수지층은 내열 성능을 가지므로, 각 전극 그룹 간 열전도를 방지할 수 있으며, 각 전극 그룹 내 전극과 제1 기판 간 열전도 효율을 높일 수 있다. 또한, 이러한 수지층은 절연 성능을 가지므로, 제1 기판(310) 측의 내전압 성능을 높일 수 있다.
한편, 본 발명의 실시예에 따르면, 제1 기판(310) 상에 배치된 제1 전극부(330)가 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)을 포함하는 경우, 제1 기판(310) 측의 내전압 성능을 위하여 별도의 구성이 필요할 수 있다.
이에 따라, 본 발명의 실시예에 따르면, 제1 기판(310) 상에 배치된 제1 절연층(320)은 복수의 절연층일 수 있다. 예를 들어, 제1-1 절연층(321)은 제1 기판(310) 상에 배치되고, 제1-2 절연층(322)은 제1-1 절연층(321) 상에 배치되며, 제1-2 절연층(322) 상에 제1 전극부(330) 및 더미부(900)가 배치될 수 있다. 도시된 바와 같이, 제1-1 절연층(321)은 제1 기판(310)의 전면 상에 배치되고, 제1-2 절연층(322)은 제1 전극부(330)가 배치된 영역에만 배치될 수도 있다. 제1-1 절연층(321) 및 제1-2 절연층(322) 각각에 관한 내용은 도 5를 참조하여 설명한 제1 절연층(172) 및 제2 절연층(174) 각각에 관한 내용과 동일하게 적용될 수 있다.
도 11은 본 발명의 다른 실시예에 따른 열전모듈의 사시도이고, 도 12는 도 11의 열전모듈의 단면도이다. 도 1 내지 도 10을 참조하여 설명한 내용과 동일한 내용에 대해서는 중복된 설명을 생략한다.
도 11 내지 도 12를 참조하면, 복수의 제2 기판(381, 382, 383, 384) 간 이격 영역에 절연체(1000)가 더 배치될 수 있다. 이에 따르면, 절연체(1000)는 복수의 제2 기판(381, 382, 383, 384) 사이를 접합할 수 있으며, 이에 따라 복수의 제2 기판(381, 382, 383, 384) 간 이격 영역은 실링될 수 있다.
이때, 절연체(1000)는 복수의 제2 기판(381, 382, 383, 384) 간 이격 영역으로부터 더미부(900)의 상면까지 연장되도록 배치될 수 있다. 또는, 절연체(1000)와 더미부(900)는 일체로 형성될 수도 있다. 이에 따르면, 제1 전극부(330)와 제2 전극부(360) 사이의 P형 열전레그(340) 및 N형 열전레그(350)에 외부 이물질 또는 습기가 침투하는 문제를 방지할 수 있으며, 제1 기판(310) 및 제2 기판부(380) 간 절연, 실링 및 단열이 유지될 수 있다.
도 13은 본 발명의 한 실시예에 따른 열전모듈에서 히트싱크와 제2 기판 간 접합 구조를 나타낸다.
도 13을 참조하면, 열전소자(300)는 복수의 결합부재(400)에 의하여 체결될 수 있다. 예를 들어, 제2 기판(380)에 히트싱크(390)가 배치된 경우, 복수의 결합부재(400)는 히트싱크(390)와 제2 기판(380)을 체결하거나, 히트싱크(390), 제2 기판(380)과 제1 기판(미도시)을 체결하거나, 히트싱크(390), 제2 기판(380), 제1 기판(미도시)과 냉각부(미도시)를 체결하거나, 제2 기판(380), 제1 기판(미도시)과 냉각부(미도시)를 체결하거나, 제2 기판(380)과 제1 기판(미도시)을 체결할 수 있다. 또는, 제1 기판(미도시)과 냉각부(미도시)는 제1 기판(미도시) 상의 유효영역의 외측에서 다른 체결부재를 통하여 연결될 수도 있다.
이를 위하여, 히트싱크(390), 제2 기판(380), 제1 기판(미도시), 냉각부(미도시)에는 결합부재(400)가 관통하는 관통홀(S)이 형성될 수 있다. 여기서, 관통홀(S)과 결합부재(400) 사이에는 별도의 절연삽입부재(410)가 더 배치될 수 있다. 별도의 절연삽입부재(410)는 결합부재(400)의 외주면을 둘러싸는 절연삽입부재 또는 관통홀(S)의 벽면을 둘러싸는 절연삽입부재일 수 있다. 이에 따르면, 열전소자의 절연거리를 넓히는 것이 가능하다.
한편, 절연삽입부재(410)의 형상은 도 13(a) 및 도 13(b)에 예시된 바와 같을 수 있다.
도 13(a)를 참조하면, 제2 기판(280)의 제2 전극과 접하는 제1 면의 관통홀(S)의 직경(d2')은 제1 기판의 제1 전극과 접하는 제1면의 관통홀의 직경과 동일할 수 있다. 이때, 절연삽입부재(410)의 형상에 따라, 제2 기판(380)의 제1면에 형성된 관통홀(S)의 직경(d2')은 제1면의 반대면인 제2면에 형성된 관통홀(S)의 직경(d2)과 상이할 수 있다. 도시되지 않았으나, 관통홀(S) 영역에 단차를 형성하지 않고 제2 기판(380)의 상면의 일부에만 절연삽입부재(410)가 배치되거나, 제2 기판(380)의 상면으로부터 관통홀(S)의 벽면의 일부 또는 전부까지 절연삽입부재(410)가 연장되도록 배치되는 경우, 제2 기판(380)의 제1면에 형성된 관통홀(S)의 직경(d2')은 제1면의 반대면인 제2면에 형성된 관통홀(S)의 직경(d2)과 동일할 수도 있다.
도 13(b)를 참조하면, 절연삽입부재(410)의 형상에 의하여, 제2 기판(380)의 제2 전극과 접하는 제1 면의 관통홀(S)의 직경(d2')은 제1 기판의 제1 전극과 접하는 제1면의 관통홀의 직경보다 클 수 있다. 이때, 제2 기판(380)의 제1 면의 관통홀(S)의 직경(d2')은 제1 기판의 제1면의 관통홀의 직경의 1.1 내지 2.0배일 수 있다. 제2 기판(380)의 제1 면의 관통홀(S)의 직경(d2')이 제1 기판의 제1면의 관통홀의 직경의 1.1배 미만이면, 절연삽입부재(410)의 절연효과가 미미하여 열전소자의 절연파괴가 야기될 수 있고, 제2 기판(380)의 제1 면의 관통홀(S)의 직경(d2')이 제1 기판의 제1면의 관통홀의 직경의 2.0배를 초과하면 관통홀(S)이 차지하는 영역의 크기가 상대적으로 증가하게 되어 제2 기판(380)의 유효면적이 줄어들게 되고, 열전소자의 효율이 저하될 수 있다.
그리고, 절연삽입부재(410)의 형상에 의하여, 제2 기판(380)의 제1면에 형성된 관통홀(S)의 직경(d2')은 제1면의 반대면인 제2면에 형성된 관통홀(S)의 직경(d2)과 상이할 수 있다. 전술한 바와 같이, 제2 기판(380)의 관통홀(S) 영역에 단차가 형성되지 않는 경우, 제2 기판(380)의 제1면에 형성된 관통홀(S)의 직경(d2')은 제1면의 반대면인 제2면에 형성된 관통홀(S)의 직경(d2)과 동일할 수 있다.
이하, 본 발명의 실시예에 따른 열전소자 내 제1 기판의 휨 개선 효과를 실험한 결과를 설명한다.
도 14(a)는 비교예에 따른 열전소자의 기판 및 전극부의 상면도이고, 도 14(b)는 실시예 1에 따른 열전소자의 기판 및 전극부의 상면도이며, 도 14(c)는 실시예 2에 따른 열전소자의 기판 및 전극부의 상면도이고, 도 14(d)는 실시예 3에 따른 열전소자의 기판 및 전극부의 상면도이다.
도 14(a)에 도시된 바와 같이, 복수의 전극 그룹 간 이격 영역에 더미부를 배치하지 않은 경우, 제1 기판의 가로 방향 및 세로 방향 모두 W자 형상의 휨이 발생하고, 특히, 가로 방향의 휨 폭은 135㎛이고, 세로 방향의 휨 폭은 207㎛임을 알 수 있었다. 여기서, 휨 폭은 제1 기판의 평면 방향에 대하여 수직하는 방향에서 최저점 및 최고점 간 높이 차를 의미한다.
이에 반해, 도 14(b)에 도시된 바와 같이, 복수의 전극 그룹 중 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332) 간 이격 영역에 제1 더미부(910)를 배치하고, 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334) 간 이격 영역에 제2 더미부(920)을 배치한 경우, 제1 기판의 가로 방향으로 U자 형상의 휨이 발생하였으며, 가로 방향의 휨 폭도 100㎛로 줄어들었다. 그리고, 제1 기판의 세로 방향으로 W자 형상의 휨이 발생하였으나, 세로 방향의 휨 폭이 138㎛로 비교예에 비하여 현저히 개선되었음을 알 수 있다.
또한, 도 14(c)에 도시된 바와 같이, 복수의 전극 그룹 중 제1-1 전극 그룹(331) 및 제1-2 전극 그룹(332)과 제2-1 전극 그룹(333) 및 제2-2 전극 그룹(334) 사이에 제3 더미부(930)를 배치한 경우, 제1 기판의 가로 방향으로 U자 형상의 휨이 발생하였으며, 가로 방향의 휨 폭도 83㎛로 현저히 줄어들었다. 그리고, 제1 기판의 세로 방향으로 W자 형상의 휨이 발생하였으나, 세로 방향의 휨 폭이 182㎛로 비교예에 비하여 개선되었음을 알 수 있다.
또한, 도 14(d)에 도시된 바와 같이, 복수의 전극 그룹 간 이격 영역에 제1 더미부(910), 제2 더미부(920) 및 제3 더미부(930)를 모두 배치한 경우, 제1 기판의 가로 방향 및 세로 방향 모두 U자 형상의 휨이 발생하였음을 알 수 있다. 또한, 제1 기판의 가로 방향의 폭이 73㎛이고, 세로 방향의 폭이 100㎛로 가로 방향 및 세로 방향 모두 비교예에 비하여 휨 폭이 크게 개선되었음을 알 수 있다.
이와 같이, 제1 기판의 휨 형상 및 휨 폭이 개선될 경우, 열전소자와 냉각부 간 접합력이 높아질 수 있으며, 이에 따라 장기적인 신뢰성, 내구성 및 발전성능이 우수한 열전소자를 얻을 수 있다.
이상에서, 제2 기판부가 4개로 분할된 예를 중심으로 설명하고 있으나, 이로 제한되는 것은 아니며, 2개 이상으로 분할될 수 있다.
이하, 제2 기판부의 다양한 분할 방식 및 그에 따른 전극 배치구조를 설명하고자 한다.
도 15는 본 발명의 한 실시예에 따른 열전소자의 사시도이고, 도 16은 도 15의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이며, 도 17은 본 발명의 다른 실시예에 따른 열전소자의 사시도이고, 도 18은 도 17의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이며, 도 19는 본 발명의 또 다른 실시예에 따른 열전소자의 사시도이며, 도 20은 도 19의 실시예에서 제1 기판, 절연층 및 복수의 제1 전극의 상면도이다. 설명의 편의를 위하여, 도 1 내지 도 14를 참조하여 설명한 내용과 동일한 내용에 대해서는 중복된 설명을 생략한다.
도 15 내지 도 20을 참조하면, 본 발명의 실시예에 따른 열전소자는 제1 기판(310), 절연층(320), 제1 전극부(330), 반도체 구조물(340, 350), 제2 전극부(360), 절연층(370) 및 제2 기판부(380)를 포함하며, 제2 기판부(380)는 복수의 제2 기판으로 분할되고, 각 제2 기판 상에는 히트싱크(390)가 배치될 수 있다. 열전소자(300)에 전압을 인가하면, 제1 기판(310)은 펠티에 효과(Peltier effect)에 따라 열을 흡수하여 저온부로 작용하고, 제 2 기판부(380)는 열을 방출하여 고온부로 작용할 수 있다. 또는, 제1 기판(310) 및 제2 기판부(3800)에 서로 다른 온도를 가하면, 온도 차에 의해 고온 영역의 전자가 저온 영역으로 이동하면서 열기전력이 발생한다. 이를 제벡 효과(Seebeck effect)라고 하며, 이로 인한 열기전력에 의하여 열전소자의 회로 내에 전기가 발생할 수 있다. 제1 기판(310)에는 복수의 제1 관통홀(311)이 형성될 수 있다. 이와 마찬가지로, 제2 기판부(380) 및 히트싱크(390)에는 복수의 제2 관통홀(3901)이 형성될 수 있으며, 복수의 제1 관통홀(311)은 복수의 제2 관통홀(3901)에 대응하는 위치에 배치될 수 있다. 이에 따라, 복수의 결합부재(미도시)는 복수의 제1 관통홀(311)과 복수의 제2 관통홀(3901)을 통과할 수 있으며, 복수의 결합부재(미도시)에 의하여 제1 기판(310)과 제2 기판부(3901)가 고정될 수 있다.
편의를 위하여, 도 15, 도 17 및 도 19에서 절연층(320), 제1 전극부(330), 반도체 구조물(340, 350) 및 제2 전극부(380)에 관한 세부 구성을 생략하여 도시한다.
일반적으로, 구리 기판의 열팽창계수(CTE)는 약 18*10-6/mK이고, 반도체 구조물인 열전레그의 열팽창계수(CTE)는 약 17.5*10-6/mK이며, 제1 절연층(321) 및 제2 절연층(322)의 열팽창계수는 구리 기판 및 열전레그의 열팽창계수보다 크고, 제2 절연층(322)의 열팽창계수는 제1 절연층(321)의 열팽창계수보다 클 수 있다. 예를 들어, 제2 절연층(322)의 접합 성능 및 제1 절연층(321)의 내전압 성능을 모두 만족시키기 위하여, 제2 절연층(322)의 열팽창계수는 제1 절연층(321)의 열팽창계수의 2배 이상이 될 수도 있다.
도 16, 도 18 및 도 20에 도시된 바와 같이, 제2 절연층(322)의 면적은 제1 절연층(321)의 면적보다 작을 수 있다. 즉, 제2 절연층(322)은 제1 절연층(321)의 전면이 아닌 일부 상에 배치될 수 있다. 이에 따르면, 제1 절연층(321)과 제2 절연층(322) 간 열팽창계수 차로 인한 제1 기판(310)의 휨 현상을 개선하며, 열응력을 완화할 수 있다. 이에 따라, 제1 전극(330) 또는 반도체 구조물(340, 350)이 탈락되거나, 전기적으로 개방되는 문제를 방지할 수 있으며, 열전달 효과를 개선할 수 있고, 최종적으로는 열전소자의 발전량 또는 냉각 특성을 개선할 수 있다.
더욱 구체적으로, 제2 절연층(322)은 제1 전극부(330), 복수의 반도체 구조물(340, 350) 및 제2 전극부(380)가 수직으로 중첩되는 영역(P1)을 포함할 수 있다. 이하, 본 명세서에서, 수직 방향은 제1 기판(310)으로부터 제2 기판부(380)를 향하는 방향(제3방향)을 의미할 수 있다.
그리고, 제2 절연층(322)은 제1 전극부(330), 복수의 반도체 구조물(340, 350) 및 제2 전극부(380)가 수직으로 중첩되는 영역(P1)에서 제1 기판(310)의 제1 외측(S1)을 향하여 돌출된 돌출 패턴(P2, P3)을 더 포함할 수 있다. 여기서, 제1 외측(S1)은 제1 기판(310)을 이루는 제1 내지 제4 외측(S1~S4) 중 하나이며, 터미널 전극(330T1, 330T2)이 돌출된 방향일 수 있다. 본 명세서에서, 터미널 전극(330T1, 330T2)은 전선을 연결하기 위한 전극으로, 제2 절연층(322) 상에서 제1 전극부(321)와 동일 평면 상에 배치될 수 있다. 터미널 전극(330T1, 330T2) 각각의 면적은 제1 전극부(330)에 포함된 각 전극의 면적보다 클 수 있으며, 이에 따라, 각 터미널 전극(330T1, 330T2) 상에는 전선 연결을 위한 커넥터가 배치될 수 있다. 터미널 전극(330T1, 330T2)이 제1 전극부(330)로부터 제1 외측(S1)을 향하여 돌출될 경우, 제1 기판(310)의 제1 외측(S1)으로부터 제1 외측(S1)에 대향하는 제2 외측(S2)을 향하는 거리, 즉 제2 방향 거리는 제1 기판(310)의 제3 외측(S3)으로부터 제3 외측(S3)에 대향하는 제4 외측(S4)을 향하는 거리, 즉 제1 방향 거리보다 클 수 있다.
본 발명의 실시예에 따르면, 돌출 패턴(P2, P3)은 서로 이격되도록 배치된 제1 돌출 패턴(P2) 및 제2 돌출 패턴(P3)을 포함하며, 제1 돌출 패턴(P2) 상에 제1 터미널 전극(330T1)이 배치되고, 제2 돌출 패턴(P3) 상에 제2 터미널 전극(330T2)이 배치될 수 있다. 이에 따르면, 제1 기판(310)의 일부에는 제2 절연층(322)이 배치되지 않을 수 있으므로, 열팽창계수가 큰 제2 절연층(322)으로 인하여 제1 기판(310)이 휘는 문제를 최소화할 수 있다.
더욱 구체적으로, 본 발명의 실시예에 따르면, 돌출 패턴(P2, P3)의 폭(L1+L2)는 복수의 제1 전극(330), 복수의 반도체 구조물(340, 350) 및 복수의 제2 전극(360)이 수직으로 중첩되는 영역(P1)의 폭(L)보다 작을 수 있으며, 돌출 패턴(P2, P3)과 제1 기판(310)의 제1 외측(S1)은 서로 이격될 수 있다. 본 명세서에서, 폭은 제1 방향의 거리로 정의되고, 길이는 제2 방향의 거리로 정의될 수 있다. 이에 따르면, 제1 전극부(330), 복수의 반도체 구조물(340, 350) 및 제2 전극부(360)가 수직으로 중첩되는 영역(P1)과 제1 기판(310)의 제1 외측(S1) 간 일부에 제2 절연층(322)이 배치되지 않으므로, 제1 기판(310)의 제2 방향으로의 휨을 줄일 수 있다.
이때, 제1 돌출 패턴(P2) 및 제2 돌출 패턴(P3) 간 이격 거리(d1)는 제1 기판(310)의 제3 외측(S3)과 제1 돌출 패턴(P2) 간 거리(d2) 및 제1 기판(310)의 제4 외측(S4)과 제2 돌출 패턴(P3) 간 거리(d3) 각각의 0.9 내지 2배, 바람직하게는 0.95 내지 1.5배, 더욱 바람직하게는 0.97 내지 1.2배일 수 있다. 이에 따르면, 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 제2 절연층(322)이 배치되지 않은 영역 및 제1 돌출 패턴(P2)과 제2 돌출 패턴(P3) 사이에서 제2 절연층(322)이 배치되지 않은 영역이 제2 절연층(322)의 돌출 패턴(P2, P3)의 열팽창에 대한 완충 작용을 하므로, 제1 기판(310)의 제1 방향에 대한 휨을 줄일 수 있으며, 제1 기판(310)의 제1 방향에 대한 휨은 제1 기판(310)의 제1 방향 중심에 대하여 대칭일 수 있다.
한편, 전술한 바와 같이, 돌출 패턴(P2, P3)과 제1 기판(310)의 제1 외측(S1)은 서로 이격될 수 있다. 이에 따르면, 돌출 패턴(P2, P3)과 제1 기판(310)의 제1 외측(S1) 사이에서 제2 절연층(322)이 배치되지 않은 영역은 제2 절연층(322)의 돌출 패턴(P2, P3)의 열팽창에 대한 완충 작용을 하므로, 제1 기판(310)의 제2 방향에 대한 휨을 줄일 수 있다.
이때, 실링부재(미도시)는 제1 외측(S1)에서 제1 절연층(321)과 접촉하도록 배치되고, 제2 외측(S2)에서 제2 절연층(322)과 접촉하도록 배치될 수 있다. 즉, 제2 절연층(322)은 제1 기판(310)의 제1 외측(S1)에 배치되지 않으므로, 터미널 전극(T1, T2)으로 인하여 제1 기판(310)의 제2 방향 길이가 길어지더라도, 제1 기판(310)의 제2 방향 휨을 줄일 수 있다. 이때, 돌출 패턴(P2, P3)의 돌출 길이는 돌출 패턴(P2, P3)으로부터 제1 기판(310)의 제1 외측(S1)까지의 길이보다 클 수 있다. 이에 따르면, 제1 기판(310)의 Y방향 길이가 필요 이상으로 길지 않으므로, 제1 기판(310)의 제2 방향에 대한 휨을 줄일 수 있다.
한편, 본 발명의 실시예에 따르면, 제1 절연층(321)은 제1 기판(310)의 가장자리, 즉 제1 기판(310)의 제1 내지 제4 외측(S1~S4)의 적어도 일부로부터 이격되도록 배치될 수 있다. 제1 절연층(321)이 제1 기판(310)의 가장자리의 적어도 일부로부터 이격되도록 배치될 경우, 제1 기판(310)의 가장자리는 제1 절연층(321)의 열팽창에 따른 완충 역할을 할 수 있으므로, 제1 기판(310)의 휨을 줄일 수 있다. 또한 예시적으로, 제1 절연층(321)의 열팽창계수는 제1 기판(310)의 열팽창계수와 다를 수 있고, 제1 기판(310)의 열팽창계수보다 클 수 있다.
이와 마찬가지로, 제2 절연층(322)은 제1 절연층(321)의 가장자리의 적어도 일부로부터 이격되도록 배치될 수 있다. 제2 절연층(322)이 제1 절연층(321)의 가장자리의 적어도 일부로부터 이격되도록 배치될 경우, 제1 절연층(321)의 가장자리는 제2 절연층(322)의 열팽창에 따른 완충 역할을 할 수 있으므로, 제1 기판(310)의 휨을 줄일 수 있다. 또한, 예시적으로, 제2 절연층(322)의 열팽창계수는 제1 절연층(321)의 열팽창계수보다 클 수 있다.
한편, 제2 기판부(380)는 제2 절연층(322)의 돌출 패턴(P2, P3)과 수직으로 중첩되지 않을 수 있다. 제2 절연층(322)의 돌출 패턴(P2, P3) 상에는 터미널 전극(330T1, 330T2)이 배치되고, 터미널 전극(330T1, 330T2) 상에는 전선 연결을 위한 커넥터가 배치되므로, 제2 기판부(380)는 제2 절연층(322)의 돌출 패턴(P2, P3)과 수직으로 중첩되지 않을 경우, 커넥터를 통한 전선 연결이 용이하다.
전술한 바와 같이, 제2 절연층(322)의 제2 오목면(R2)은 제1 전극부(330)에 포함된 각 전극 주변에 배치될 수 있다. 각 전극은 제1 방향의 길이와 제2 방향의 길이가 서로 상이한 형상을 가질 수 있다. 따라서, 제2 절연층(322)의 제2 오목면(R2)도 제2 방향의 길이가 서로 상이하거나 제1 방향의 길이가 서로 상이한 복수의 형상을 가질 수 있다. 제1 전극부(330) 및 제2 전극부(360)가 수직으로 중첩되는 영역 내에서, 제2 절연층(324)의 제2 오목면(R2)이 전극과 전극 사이에 위치하는 구조를 가질 수 있으며, 제2 절연층(324)의 돌출 패턴(P2, P3)에는 오목부가 아닌 평탄부가 위치할 수 있다. 따라서, 제1 기판(310)에서 제2 절연층(322)으로 인가되는 응력을 제1 방향 및 제2 방향으로 완화하여 기판의 휨 현상을 방지할 수 있고, 제1 절연층(321) 및 제2 절연층(322)의 크랙이나 박리 현상을 방지할 수 있다. 다만, 이에 한정되지 않고 터미널 전극(330T1)과 제1 전극(330) 사이의 거리가 제1 전극부(330) 내 이웃하는 전극들 사이 거리에 비해 크기 때문에 제2 절연층(322)의 돌출 패턴(P2, P2)에서는 제2 절연층(322)의 제2 오목면(R2)이 평탄부로 나타날 수 있고, 제1 전극부(330) 내 이웃하는 전극들 사이에 배치된 제2 절연층(322)의 제2 오목면(R2) 보다 제1 방향 폭 및 제2 방향 길이가 큰 오목면이 배치될 수도 있다. 제2 절연층(322)의 제2 오목면(R2)이 제1 전극부(330) 및 제2 전극부(360)가 수직으로 중첩되는 영역(P1)에서 서로 다른 폭을 갖고, 돌출 패턴(P2, P3)에서 갖는 폭도 서로 상이한 구조를 가질 수 있기 때문에, 기판의 휨을 억제하는 효과를 가질 수 있고, 제2 절연층(322)의 크랙이나 박리를 방지하는 데에 효과적일 수 있다.
상술한 실시 예에서는 제1 절연층(321)과 제2 절연층(322)를 별도로 배치한 구성에 대하여 개시하였으나, 이에 한정하지 않고 제1 절연층(321)과 제2 절연층(322)는 단일층으로 배치될 수 있다. 단일층으로 배치되는 경우에도 상술한 열전도 특성과 내전압 특성을 확보하기 위해 무기물 충전재를 포함하는 수지 물질이 적용될 수 있지만, 이에 한정하지 않는다. 또한, 단일층으로 배치되는 경우에도 제2 절연층(322)의 패턴은 같은 형태를 취할 수 있다.
한편, 본 발명의 실시예에 따르면, 기판의 휨을 줄이기 위하여, 하나의 제1 기판(310)에 대하여 제2 기판부(380)는 분할된 복수의 기판으로 구성될 수 있다.
제2 기판부(380)는 도 15에 도시한 바와 같이 제2 방향을 따라 분할되거나, 도 17에 도시된 바와 같이 제1 방향을 따라 분할되거나, 도 19에 도시된 바와 같이 제1 방향 및 제2 방향을 따라 분할될 수 있다. 여기서, 제2 방향을 따라 분할되는 것은, 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 제3 외측(S3) 및 제4 외측(S4)과 평행한 방향으로 분할되는 것을 의미하고, 제1 방향을 따라 분할되는 것은, 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 제1 외측(S1) 및 제2 외측(S2)과 평행한 방향으로 분할되는 것을 의미할 수 있다.
본 발명의 실시예에 따르면, 제2 기판부(380)의 분할 방향 또는 분할 위치에 따라 하나의 제1 기판(310) 상에 제1 전극부(330)를 배치할 수 있다. 이에 따르면, 제2 기판부(380)가 서로 이격되어 배치되는 복수의 제2 기판을 포함하더라도, 제1 전극부(330), 반도체 구조물(340, 350) 및 제2 전극부(360)는 한 쌍의 터미널 전극(330T1, 330T2)을 이용하여 전기적으로 연결될 수 있으며, 단위 면적 당 최대 개수의 반도체 구조물(340, 350)을 수용할 수 있으므로, 높은 열전 성능을 가질 수 있다.
도 16, 도 18 및 도 20을 참조하면, 절연층(320) 상에 제1 전극부(330)가 배치되며, 제1 전극부(330)는 복수의 전극 그룹을 포함하고, 각 전극 그룹은 복수의 제1 전극을 포함할 수 있다.
예를 들어, 도 15 내지 도 16에 도시된 바와 같이, 제2 기판부(380)가 제2 방향을 따라 서로 이격되도록 배치된 제2-1 기판(380-1) 및 제2-2 기판(380-2)을 포함하는 경우, 제1 전극 그룹(G1)은 제2-1 기판(380-1)과 수직으로 중첩되도록 배치되고, 제2 전극 그룹(G2)은 제2-2 기판(380-2)과 수직으로 중첩되도록 배치될 수 있다. 이에 따르면, 제1 전극 그룹(G1) 및 제2 전극 그룹(G2)은 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
제1 터미널 전극(330T1)은 제1 전극 그룹(G1) 측에 배치되고, 제2 터미널 전극(330T2)은 제2 전극 그룹(G2) 측에 배치되며, 제1 전극 그룹(G1)과 제2 전극 그룹(G2)은 연결 전극(CE1)에 의하여 연결될 수 있다. 제1 전극 그룹(G1)과 제2 전극 그룹(G2)은 각각 복수의 제1 전극(E1, E2)을 포함할 수 있고, 연결 전극(CE1)은 제1 전극 그룹(G1)과 제2 전극 그룹(G2) 내 복수의 제1 전극(E1, E2) 중 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치될 수 있다. 연결전극(CE1)의 장변은 각 제1 전극(E1, E2)의 장변보다 길며, 연결전극(CE1)의 적어도 일부는 제2-1 기판(380-1) 및 제2-2 기판(380-2)과 수직으로 중첩되지 않을 수 있다. 즉, 연결전극(CE1)의 적어도 일부는 제2-1 기판(380-1) 및 제2-2 기판(380-2) 사이의 이격 영역 내에 배치되며, 제1 전극 그룹(G1)과 제2 전극 그룹(G2)을 연결할 수 있다.
도 17 내지 도 18에 도시된 바와 같이, 제2 기판부(380)가 제1 방향을 따라 서로 이격되도록 배치된 제2-3 기판(380-3) 및 제2-4 기판(380-4)을 포함하는 경우, 제3 전극 그룹(G3)은 제2-3 기판(380-3)와 수직으로 중첩되도록 배치되고, 제4 전극 그룹(G4)은 제2-4 기판(380-4)과 수직으로 중첩되도록 배치될 수 있다. 이에 따르면, 제3 전극 그룹(G3) 및 제4 전극 그룹(G4)은 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할될 수 있다.
여기서, 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)은 모두 제3 전극 그룹(G3) 측에 배치될 수 있고, 서로 인접하여 배치되는 두 개의 연결전극(CE2, CE3)은 제3 전극 그룹(G3) 및 제4 전극 그룹(G4)을 연결할 수 있다. 두 개의 연결전극(CE2, CE3)은 연결전극(CE2) 및 연결전극(CE2)과 인접하여 서로 나란히 배치되는 연결전극(CE3)일 수 있다. 본 명세서에서 두 개의 연결전극이 인접하여 서로 나란히 배치되는 것은, 두 개의 연결전극 중 하나의 장변과 다른 하나의 장변이 인접하여 서로 마주보도록 배치되는 것을 의미할 수 있다. 즉, 두 개의 연결전극이 장변 방향으로 서로 평행하게 배치되는 것을 의미할 수 있다. 도시되지 않았으나, 두 개의 연결전극(CE2, CE3)의 적어도 일부는 제2-3 기판(380-3) 및 제2-4 기판(380-4)과 수직으로 중첩되지 않으며, 제2-3 기판(380-3) 및 제2-4 기판(380-4) 사이의 이격 영역에 배치될 수 있다.
이때, 두 개의 연결전극(CE2, CE3)은 제3 전극 그룹(G3) 및 제4 전극 그룹(G4) 내 복수의 제1 전극(E3, E4) 중 최외측열에 가장 인접한 두 개의 열에 배치될 수 있다.
도 18에서, 두 개의 연결전극(CE2, CE3)이 제3 전극 그룹(G3) 및 제4 전극 그룹(G4) 내 복수의 제1 전극(E3, E4)의 왼쪽에서 최외측열에 가장 인접한 두 개의 열에 배치되는 것으로 도시되어 있으나, 이로 제한되는 것은 아니다. 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되는 두 개의 전극 그룹을 연결하는 두 개의 연결전극은 두 개의 전극 그룹 내 복수의 제1 전극의 오른쪽에서 최외측열에 가장 인접한 두 개의 열에 인접하여 서로 나란히 배치될 수도 있다.
도 19 내지 도 20을 참조하면, 제2 기판부(380)가 제1 방향 및 제2 방향을 따라 서로 이격되도록 배치된 제2-11 기판(380-11), 제2-12 기판(380-12), 제2-21 기판(380-21) 및 제2-22 기판(380-22)을 포함하는 경우, 제11 전극 그룹(G11)은 제2-11 기판(380-11)과 수직으로 중첩되도록 배치되고, 제12 전극 그룹(G12)은 제2-12 기판(380-12)과 수직으로 중첩되도록 배치되며, 제21 전극 그룹(G21)은 제2-21 기판(380-21)과 수직으로 중첩되도록 배치되고, 제22 전극 그룹(G22)은 제2-22 기판(380-22)과 수직으로 중첩되도록 배치될 수 있다. 이에 따르면, 제11 전극 그룹(G11) 및 제12 전극 그룹(G12)은 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되고, 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)은 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)은 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
여기서, 제1 터미널 전극(330T1)은 제11 전극 그룹(G11) 측에 배치되고, 제2 터미널 전극(330T2)은 제12 전극 그룹(G12) 측에 배치되며, 제11 전극 그룹(G11)과 제12 전극 그룹(G12)은 연결 전극(CE1)에 의하여 연결될 수 있다. 제11 전극 그룹(G11)과 제12 전극 그룹(G12)은 각각 복수의 제1 전극(E11, E12)을 포함할 수 있고, 연결 전극(CE1)은 제11 전극 그룹(G11)과 제12 전극 그룹(G12) 내 복수의 제1 전극(E11, E12) 중 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치될 수 있다. 도시되지 않았으나, 연결 전극(CE1)의 적어도 일부는 제2-11 기판(380-11) 및 제2-12 기판(380-12) 사이의 이격 영역과 수직으로 중첩되도록 배치될 수 있다.
그리고, 서로 인접하여 나란히 배치되는 두 개의 연결전극(CE2, CE3)은 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)을 연결할 수 있다. 도시되지 않았으나, 두 개의 연결전극(CE2, CE3)의 적어도 일부는 제2-11 기판(380-11) 및 제2-21 기판(380-21)과 수직으로 중첩되지 않으며, 제2-11 기판(380-11) 및 제2-21 기판(380-21) 사이의 이격 영역과 수직으로 중첩되도록 배치될 수 있다.
이때, 두 개의 연결전극(CE2, CE3)은 제11 전극 그룹(G11) 및 제21 전극 그룹(G21) 내 복수의 제1 전극(E11, E21) 중 최외측열에 가장 인접한 두 개의 열에 서로 나란히 배치될 수 있다.
도 20에서, 두 개의 연결전극(CE2, CE3)이 제11 전극 그룹(G11) 및 제21 전극 그룹(G21) 내 복수의 제1 전극(E11, E21)의 왼쪽에서 최외측열에 가장 인접한 두 개의 열에 배치되는 것으로 도시되어 있으나, 이로 제한되는 것은 아니다. 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되는 두 개의 전극 그룹을 연결하는 두 개의 연결전극은 두 개의 전극 그룹 내 복수의 제1 전극의 오른쪽에서 최외측열에 가장 인접한 두 개의 열에 서로 나란히 배치될 수도 있다.
그리고, 서로 인접하여 나란히 배치되는 두 개의 연결전극(CE5, CE6)은 제11 전극 그룹(G11) 및 제12 전극 그룹(G12)을 연결할 수 있다. 전술한 바와 같이, 연결전극(CE1)이 제11 전극 그룹(G11)과 제12 전극 그룹(G12) 내 복수의 제1 전극(E11, E12) 중 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치되므로, 두 개의 연결전극(CE5, CE6)은 제11 전극 그룹(G11)과 제12 전극 그룹(G12) 내 복수의 제1 전극(E11, E12) 중 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 멀리 배치된 최외측행 및 이에 가장 인접한 행에 서로 나란히 배치될 수 있다.
이와 마찬가지로, 서로 인접하여 나란히 배치되는 두 개의 연결전극(CE7, CE8)은 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)을 연결할 수 있으며, 두 개의 연결전극(CE7, CE8)은 제21 전극 그룹(G21)과 제22 전극 그룹(G22) 내 복수의 제1 전극(E21, E22) 중 최외측행 및 이에 가장 인접한 행에 나란히 배치될 수 있다.
도 15 내지 도 20의 실시예에서, 복수의 전극 그룹 간 이격 영역에는 도 10 내지 도 12를 참조하여 설명한 더미부가 더 배치될 수도 있다. 더미부는 각 전극 그룹에 포함된 전극과 동일한 형상 및 크기를 가지고, 서로 이격되도록 배치된 복수의 더미 구조물을 포함할 수 있다. 이에 따르면, 제1 기판(310)이 고온에 노출될 경우, 제1 기판(310)에 전체적으로 균일하게 응력이 가해지므로, 제1 기판(310)의 휨 형상을 최소화할 수 있다.
이상에서 제2 기판부(380)가 제1 방향을 따라 2개로 분할되거나 제2 방향을 따라 2개로 분할되는 실시예를 설명하였으나, 이는 제2 기판부(380)가 제1 방향을 따라 2개 이상으로 분할되거나 제2 방향을 따라 2개 이상으로 분할되는 실시예에도 적용될 수 있다.
본 발명의 실시예에 따르면, 제1행 전극 그룹, 제2행 전극 그룹 및 제3행 전극 그룹이 순차적으로 배치될 때, 제1행 전극 그룹과 제2행 전극 그룹은 인접하여 서로 나란히 배치되는 두 개의 연결전극에 의하여 연결되며, 제2행 전극 그룹과 제3행 전극 그룹은 인접하여 서로 나란히 배치되는 다른 두 개의 연결전극에 의하여 연결될 수 있다. 이때, 두 개의 연결전극 및 다른 두 개의 연결전극은 제1 전극부의 최외측열에서 가장 인접한 두 개의 열에 배치될 수 있다. 예를 들어, 제1행 전극 그룹과 제2행 전극 그룹을 연결하는 두 개의 연결전극이 제1 전극부 중 왼쪽 최외측열에서 가장 인접한 두 개의 열에 배치될 경우, 제2행 전극 그룹과 제3행 전극 그룹을 연결하는 다른 두 개의 연결전극은 제1 전극부 중 오른쪽 최외측열에서 가장 인접한 두 개의 열에 배치될 수 있다. 이와 반대로, 제1행 전극 그룹과 제2행 전극 그룹을 연결하는 두 개의 연결전극이 제1 전극부 중 오른쪽 최외측열에서 가장 인접한 두 개의 열에 배치될 경우, 제2행 전극 그룹과 제3행 전극 그룹을 연결하는 다른 두 개의 연결전극은 제1 전극부 중 왼쪽 최외측열에서 가장 인접한 두 개의 열에 배치될 수 있다.
본 발명의 실시예에 따르면, 제1열 전극 그룹, 제2열 전극 그룹 및 제3열 전극 그룹이 순차적으로 배치될 때, 제1열 전극 그룹, 제2열 전극 그룹 및 제3열 전극 그룹은 적어도 하나의 연결전극에 의하여 연결될 수 있다. 이때, 적어도 하나의 연결전극은 제1열 전극 그룹, 제2열 전극 그룹 및 제3열 전극 그룹 내 최외측행에 배치될 수 있다.
도 21 내지 도 24는 본 발명의 실시예에 따른 열전소자에 포함되는 전극 배치의 개략도이다. 설명의 편의를 위하여, 세부적인 전극 배치는 도시하지 않고 있으며, 전극 연결 방향만을 개략적으로 도시한다.
도 21을 참조하면, 제11 전극 그룹(G11) 및 제12 전극 그룹(G12)은 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되고, 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)은 제31 전극 그룹(G31) 및 제32 전극 그룹(G32)과 제1 기판(110)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할될 수 있다.
그리고, 제11 전극 그룹(G11), 제21 전극 그룹(G21) 및 제31 전극 그룹(G31)은 제12 전극 그룹(G12), 제22 전극 그룹(G22) 및 제32 전극 그룹(G32)과 제1 기판(110)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
도 22를 참조하면, 제11 전극 그룹(G11) 및 제12 전극 그룹(G12)은 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되고, 제21 전극 그룹(G21) 및 제22 전극 그룹(G22)은 제31 전극 그룹(G31) 및 제32 전극 그룹(G32)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할되며, 제31 전극 그룹(G31) 및 제32 전극 그룹(G32)은 제41 전극 그룹(G41) 및 제42 전극 그룹(G42)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할될 수 있다.
그리고, 제11 전극 그룹(G11), 제21 전극 그룹(G21), 제31 전극 그룹(G31) 및 제41 전극 그룹(G41)은 제12 전극 그룹(G12), 제22 전극 그룹(G22), 제32 전극 그룹(G32) 및 제42 전극 그룹(G42)과 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
여기서, 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)은 서로 다른 전극 그룹, 예를 들어 제11 전극 그룹(G11) 측 및 제12 전극 그룹(G12) 측에 각각 배치되며, 제11 전극 그룹(G11)과 제12 전극 그룹(G12)은 연결 전극(CE1)에 의하여 연결될 수 있다. 이때, 연결 전극(EC1)은 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치될 수 있다.
도 23을 참조하면, 제11 전극 그룹(G11), 제12 전극 그룹(G12) 및 제13 전극 그룹(G13)은 제21 전극 그룹(G21), 제22 전극 그룹(G22) 및 제23 전극 그룹(G23)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할될 수 있다.
그리고, 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)은 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)과 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할되고, 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)은 제13 전극 그룹(G13) 및 제23 전극 그룹(G23)과 제1 기판(110)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
여기서, 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)은 서로 다른 전극 그룹, 예를 들어 제11 전극 그룹(G11) 측 및 제13 전극 그룹(G13) 측에 각각 배치되고, 제11 전극 그룹(G11)과 제12 전극 그룹(G12)은 연결전극(CE11)에 의하여 연결되고, 제12 전극 그룹(G12)과 제13 전극 그룹(G13)은 연결전극(CE12)에 의하여 연결될 수 있다.
이때, 연결 전극(CE11, CE12)은 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치될 수 있다.
이와 유사하게, 도 24를 참조하면, 제11 전극 그룹(G11), 제12 전극 그룹(G12), 제13 전극 그룹(G13) 및 제14 전극 그룹(G14)은 제21 전극 그룹(G21), 제22 전극 그룹(G22), 제23 전극 그룹(G23) 및 제24 전극 그룹(G24)과 제1 기판(310)의 제1 외측(S1) 및 제2 외측(S2) 사이에서 분할될 수 있다.
그리고, 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)은 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)과 제1 기판(110)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할되고, 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)은 제13 전극 그룹(G13) 및 제23 전극 그룹(G23)과 제1 기판(110)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할되며, 제13 전극 그룹(G13) 및 제23 전극 그룹(G23)은 제14 전극 그룹(G14) 및 제24 전극 그룹(G24) 과 제1 기판(310)의 제3 외측(S3) 및 제4 외측(S4) 사이에서 분할될 수 있다.
여기서, 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)은 서로 다른 전극 그룹, 예를 들어 제11 전극 그룹(G11) 측 및 제14 전극 그룹(G14) 측에 각각 배치되고, 제11 전극 그룹(G11)과 제12 전극 그룹(G12)은 연결전극(CE11)에 의하여 연결되고, 제12 전극 그룹(G12)과 제13 전극 그룹(G13)은 연결전극(CE12)에 의하여 연결되며, 제13 전극 그룹(G13)과 제14 전극 그룹(G14)은 연결전극(CE13)에 의하여 연결될 수 있다.
이때, 연결 전극(CE11, CE12, CE13)은 제1 터미널 전극(330T1) 및 제2 터미널 전극(330T2)에 가장 가까운 행에 배치될 수 있다.
도 21 내지 도 22를 참조하면, 제1행 전극 그룹(G11, G12) 중 하나는 제2행 전극 그룹(G21, G22) 중 하나와 서로 인접하여 나란히 배치되는 두 개의 연결전극(CE21, CE22)에 의하여 연결되며, 제2행 전극 그룹(G21, G22) 중 하나는 제3행 전극 그룹(G31, G32) 중 하나와 서로 인접하여 나란히 배치되는 다른 두 개의 연결전극(CE31, CE32)에 의하여 연결될 수 있다.
이때, 두 개의 연결전극(CE21, CE22)이 제1 기판(310)의 제3 외측(S3) 측에 배치된 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)을 연결하면, 다른 두 개의 연결전극(CE31, CE32)은 제1 기판(310)의 제4 외측(S4) 측에 배치된 제22 전극 그룹(G22) 및 제32 전극 그룹(G32)을 연결할 수 있다. 이때, 두 개의 연결전극(CE21, CE22)은 제11 전극 그룹(G11) 및 제21 전극 그룹(G21)의 왼쪽 최외측열에 가장 인접한 두 개의 열에 나란히 배치되고, 다른 두 개의 연결전극(CE31, CE32)은 제22 전극 그룹(G22) 및 제32 전극 그룹(G32)의 오른쪽 최외측열에 가장 인접한 두 개의 열에 나란히 배치될 수 있다.
또는, 두 개의 연결전극(CE21, CE22)이 제1 기판(310)의 제4 외측(S4) 측에 배치된 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)을 연결하면, 다른 두 개의 연결전극(CE31, CE32)은 제1 기판(310)의 제3 외측(S3) 측에 배치된 제21 전극 그룹(G21) 및 제31 전극 그룹(G31)을 연결할 수 있다. 이때, 두 개의 연결전극(CE21, CE22)은 제12 전극 그룹(G12) 및 제22 전극 그룹(G22)의 오른쪽 최외측열에 가장 인접한 두 개의 열에 배치되고, 다른 두 개의 연결전극(CE31, CE32)은 제21 전극 그룹(G21) 및 제31 전극 그룹(G31)의 왼쪽 최외측열에 가장 인접한 두 개의 열에 배치될 수 있다.
도 21 내지 도 24를 참조하면, 제1열 전극 그룹(G11, G21, G31, G41)은 제2열 전극 그룹(G12, G22, G32, G42)와 서로 인접하여 나란히 배치되는 두 개의 연결전극(CE41, CE42)에 의하여 연결될 수 있다. 이와 마찬가지로, 제2열 전극 그룹(G12, G13)은 제3열 전극 그룹(G13, G23)과 서로 인접하여 나란히 배치되는 다른 두 개의 연결전극(CE51, CE52)에 의하여 연결될 수 있다.
이때, 두 개의 연결전극(CE41, CE42)은 제1열 전극 그룹(G11, G21, G31, G41)의 최외측행에 배치되고, 다른 두 개의 연결전극(CE51, CE52)은 제2열 전극 그룹(G12, G13)의 최외측행에 배치될 수 있다.
이러한 전극 배치 구조에 따르면, 제2 기판부(380)가 복수로 분할된 경우에도 단위 면적당 최대 개수의 열전레그가 수용될 수 있으므로, 높은 열전효율을 가질 수 있으며, 한 쌍의 터미널 전극을 이용하여 제1 전극부, 반도체 구조물 및 제2 전극부가 전기적으로 연결될 수 있다.
도시되지 않았으나, 본 발명의 실시예에 따른 열전소자가 제백효과를 이용하는 발전장치에 적용되는 경우, 열전소자는 제1 유체 유동부 및 제2 유체 유동부와 결합할 수 있다. 제1 유체 유동부는 열전소자의 제1 기판 및 제2 기판 중 하나에 배치되고, 제2 유체 유동부는 열전소자의 제1 기판 및 제2 기판 중 다른 하나에 배치될 수 있다. 제1 유체 유동부 및 제2 유체 유동부 중 적어도 하나에는 제1 유체 및 제2 유체 중 적어도 하나가 유동하도록 유로가 형성될 수 있으며, 경우에 따라 제1 유체 유동부 및 제2 유체 유동부 중 적어도 하나가 생략되고, 제1 유체 및 제2 유체 중 적어도 하나가 열전소자의 기판으로 직접적으로 유동할 수도 있다. 예를 들어, 제1 기판 및 제2 기판 중 하나와 인접하여 제1 유체가 유동하고, 다른 하나와 인접하여 제2 유체가 유동할 수 있다. 이때, 제2 유체의 온도는 제1 유체의 온도보다 더 높을 수 있다. 이에 따라, 제1 유체 유동부는 냉각부라 지칭될 수도 있다. 다른 실시예로서, 제1 유체의 온도는 제2 유체의 온도보다 더 높을 수 있다. 이에 따라, 제2 유체 유동부는 냉각부라 지칭될 수 있다. 히트싱크(390)는 제1 유체 유동부 및 제2 유체 유동부 중 더 높은 온도의 유체가 흐르는 쪽의 기판에 연결될 수 있다. 제1 유체와 제2 유체 간 온도 차의 절대 값은 40℃이상, 바람직하게는 70℃이상, 더 바람직하게는 95℃내지 185℃일 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 하나의 제1 기판,
    상기 하나의 제1 기판 상에 배치된 절연층,
    상기 절연층 상에 배치된 제1 전극부,
    상기 절연층 상에 배치되며, 상기 제1 전극부로부터 상기 제1 기판의 제1 외측을 향하도록 돌출된 제1 터미널 전극 및 제2 터미널 전극,
    상기 제1 전극부 상에 배치된 반도체 구조물,
    상기 반도체 구조물 상에 배치된 제2 전극부, 그리고
    상기 제2 전극부 상에 배치된 제2 기판부를 포함하고,
    상기 제2 기판부는 서로 이격되도록 배치된 복수의 제2 기판을 포함하며,
    상기 제1 전극부는,
    상기 복수의 제2 기판 각각과 수직으로 중첩된 복수의 전극 그룹, 그리고
    상기 복수의 전극 그룹 중 서로 다른 두 개의 전극 그룹을 연결하는 제1 연결 전극을 포함하며,
    상기 제1 연결 전극의 장변은 상기 복수의 전극 그룹에 포함된 제1 전극의 장변보다 길고,
    상기 제1 연결 전극의 적어도 일부는 상기 복수의 제2 기판과 수직으로 중첩되지 않도록 배치되는 열전소자.
  2. 제1항에 있어서,
    상기 제1 터미널 전극 및 상기 제2 터미널 전극은 각각 서로 다른 전극 그룹에 배치되고,
    상기 제1 연결 전극은 상기 서로 다른 전극 그룹을 연결하도록 상기 복수의 전극 그룹 내에서 상기 제1 터미널 전극 및 상기 제2 터미널 전극에 가장 가까운 행에 배치된 열전소자.
  3. 제1항에 있어서,
    상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 분할된 서로 다른 전극 그룹을 포함하고, 상기 제1 전극부는 상기 서로 다른 전극 그룹을 연결하도록 두 개의 연결 전극을 포함하며,
    상기 두 개의 연결 전극은,
    상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극인 열전소자.
  4. 제3항에 있어서,
    상기 두 개의 연결 전극은 상기 복수의 전극 그룹 내에서 최외측열에 가장 인접한 두 개의 열에 배치된 열전소자.
  5. 제1항에 있어서,
    상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 순차적으로 분할된 제1 전극 그룹, 제2 전극 그룹 및 제3 전극 그룹을 포함하고,
    상기 제1 전극부는 상기 제1 전극 그룹 및 상기 제2 전극 그룹을 연결하도록 서로 인접하여 배치되는 두 개의 연결 전극 및 상기 제2 전극 그룹 및 상기 제3 전극 그룹을 연결하도록 서로 인접하여 배치되는 다른 두 개의 연결 전극을 포함하며,
    상기 두 개의 연결 전극은 상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극을 포함하며 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 중 한 측에 배치되고,
    상기 다른 두 개의 연결 전극은 제3 연결 전극 및 상기 제3 연결 전극과 인접하여 서로 나란히 배치된 제4 연결 전극을 포함하며 상기 제3 외측 및 상기 제4 외측 중 다른 한 측에 배치되는 열전소자.
  6. 제5항에 있어서,
    상기 두 개의 연결 전극은 상기 제3 외측의 최외측열에 가장 인접한 두 개의 열에 배치되고, 상기 다른 두 개의 연결 전극은 상기 제4 외측의 최외측열에 가장 인접한 두 개의 열에 배치된 열전소자.
  7. 제1항에 있어서,
    상기 복수의 전극 그룹은 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 사이에서 분할된 서로 다른 전극 그룹을 포함하고, 상기 제1 연결 전극은 상기 서로 다른 전극 그룹 내 최외측행에 배치된 열전소자.
  8. 제7항에 있어서,
    상기 제1 전극부는 상기 서로 다른 전극 그룹을 연결하도록 배치되는 두 개의 연결 전극을 포함하며,
    상기 두 개의 연결 전극은 상기 제1 연결 전극 및 상기 제1 연결 전극과 인접하여 서로 나란히 배치된 제2 연결 전극을 포함하며 상기 서로 다른 전극 그룹 내 최외측행 및 상기 최외측행에 가장 인접한 행에 배치된 열전소자.
  9. 제1항에 있어서,
    상기 절연층은 상기 제1 기판 상에 배치된 제1 절연층, 그리고 상기 제1 절연층 상에 배치되고 상기 제1 절연층의 면적보다 작은 면적을 갖는 제2 절연층을 포함하고,
    상기 제2 절연층은 상기 제2 기판부와 수직으로 중첩되는 중첩 영역 및 상기 중첩 영역에서 상기 제1 기판의 제1 외측을 향하여 돌출된 돌출 패턴을 포함하는 열전소자.
  10. 제9항에 있어서,
    상기 돌출 패턴은 서로 이격되도록 배치된 제1 돌출 패턴 및 제2 돌출 패턴을 포함하고,
    상기 제1 돌출 패턴 상에 상기 제1 터미널 전극이 배치되고, 상기 제2 돌출 패턴 상에 상기 제2 터미널 전극이 배치된 열전소자.
  11. 제1항에 있어서,
    상기 복수의 전극 그룹은 상기 절연층 상에서 서로 이격되도록 배치되며,
    상기 절연층 상에서 상기 복수의 전극 그룹 사이에 배치된 더미부를 더 포함하는 열전소자.
  12. 제11항에 있어서,
    상기 더미부는 상기 복수의 전극 그룹 각각에 포함된 각 전극과 동일한 형상 및 크기를 가지고, 서로 이격되도록 배치된 복수의 더미 구조물을 포함하는 열전소자.
  13. 제12항에 있어서,
    각 더미 구조물은 금속층 또는 수지층인 열전소자.
  14. 제11항에 있어서,
    상기 복수의 전극 그룹은 상기 제1 외측 및 상기 제1 외측에 대향하는 제2 외측 사이에서 분할된 제1 전극 그룹 및 제2 전극 그룹을 포함하고,
    상기 제1 전극 그룹은 상기 제1 외측에 수직하는 제3 외측 및 상기 제3 외측에 대향하는 제4 외측 사이에서 분할된 제1-1 전극 그룹 및 제1-2 전극 그룹을 포함하고,
    상기 제2 전극 그룹은 상기 제3 외측 및 상기 제4 외측 사이에서 분할된 제2-1 전극 그룹 및 제2-2 전극 그룹을 포함하며,
    상기 더미부는 상기 제1-1 전극 그룹과 상기 제1-2 전극 그룹 사이에 배치된 제1 더미부, 상기 제2-1 전극 그룹과 제2-2 전극 그룹 사이에 배치된 제2 더미부 및 상기 제1 전극 그룹과 상기 제2 전극 그룹 사이에 배치된 제3 더미부를 포함하는 열전소자.
  15. 제14항에 있어서,
    상기 제1 더미부 및 상기 제2 더미부는 서로 이격되도록 배치된 열전소자.
PCT/KR2021/009353 2020-09-24 2021-07-20 열전소자 WO2022065651A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21872684.2A EP4220744A4 (en) 2020-09-24 2021-07-20 THERMOELECTRIC DEVICE
JP2023519048A JP2023542708A (ja) 2020-09-24 2021-07-20 熱電素子
CN202180065767.0A CN116250387A (zh) 2020-09-24 2021-07-20 热电装置
US18/028,016 US20240040929A1 (en) 2020-09-24 2021-07-20 Thermoelectric device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20200124094 2020-09-24
KR10-2020-0124094 2020-09-24
KR20210091531 2021-07-13
KR10-2021-0091531 2021-07-13
KR10-2021-0095001 2021-07-20
KR1020210095001A KR20220040980A (ko) 2020-09-24 2021-07-20 열전소자

Publications (1)

Publication Number Publication Date
WO2022065651A1 true WO2022065651A1 (ko) 2022-03-31

Family

ID=80844603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009353 WO2022065651A1 (ko) 2020-09-24 2021-07-20 열전소자

Country Status (5)

Country Link
US (1) US20240040929A1 (ko)
JP (1) JP2023542708A (ko)
KR (1) KR20220066013A (ko)
CN (1) CN116250387A (ko)
WO (1) WO2022065651A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240086030A (ko) * 2022-12-09 2024-06-18 엘지이노텍 주식회사 열전 모듈 어레이 및 이를 포함하는 발전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164945A (ja) * 1998-11-30 2000-06-16 Komatsu Electronics Kk サーモモジュール
KR20190090928A (ko) * 2018-01-26 2019-08-05 엘지이노텍 주식회사 열전 모듈
KR20190093516A (ko) * 2018-02-01 2019-08-09 엘지이노텍 주식회사 열전장치
KR20190115967A (ko) * 2018-04-04 2019-10-14 엘지이노텍 주식회사 열전소자
KR20200098391A (ko) * 2019-02-12 2020-08-20 엘지이노텍 주식회사 열전모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164945A (ja) * 1998-11-30 2000-06-16 Komatsu Electronics Kk サーモモジュール
KR20190090928A (ko) * 2018-01-26 2019-08-05 엘지이노텍 주식회사 열전 모듈
KR20190093516A (ko) * 2018-02-01 2019-08-09 엘지이노텍 주식회사 열전장치
KR20190115967A (ko) * 2018-04-04 2019-10-14 엘지이노텍 주식회사 열전소자
KR20200098391A (ko) * 2019-02-12 2020-08-20 엘지이노텍 주식회사 열전모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220744A4 *

Also Published As

Publication number Publication date
KR20220066013A (ko) 2022-05-23
JP2023542708A (ja) 2023-10-11
CN116250387A (zh) 2023-06-09
US20240040929A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2022060026A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2022065651A1 (ko) 열전소자
WO2019194595A1 (ko) 열변환장치
WO2022005099A1 (ko) 파워모듈 및 그 제조방법
WO2021145621A1 (ko) 발전장치
WO2022050820A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2021256852A1 (ko) 열전모듈 및 이를 포함하는 발전장치
WO2022065824A1 (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2021145677A1 (ko) 발전장치
WO2021145620A1 (ko) 발전장치
WO2019143140A1 (ko) 열전 소자
EP4220744A1 (en) Thermoelectric device
WO2020130282A1 (ko) 열전 소자 및 이에 포함되는 솔더 페이스트
WO2021201494A1 (ko) 열전소자
WO2022005183A1 (ko) 파워모듈
WO2021194111A1 (ko) 열전 장치
WO2021101267A1 (ko) 열전소자
WO2024117759A1 (ko) 열전장치 및 이를 포함하는 열전 시스템
WO2020153799A1 (ko) 열전 소자
WO2021256810A1 (ko) 열전모듈 및 이를 포함하는 발전장치
WO2021045516A1 (en) Thermoelectric module
WO2022092737A1 (ko) 열전소자
WO2012173350A4 (ko) 태양전지 모듈
WO2022019569A1 (ko) 열전 소자
WO2022035215A1 (ko) 열전 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18028016

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023519048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872684

Country of ref document: EP

Effective date: 20230424