WO2022019467A1 - 국소 지혈 파우더 조성물 및 이의 제조방법 - Google Patents
국소 지혈 파우더 조성물 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2022019467A1 WO2022019467A1 PCT/KR2021/006759 KR2021006759W WO2022019467A1 WO 2022019467 A1 WO2022019467 A1 WO 2022019467A1 KR 2021006759 W KR2021006759 W KR 2021006759W WO 2022019467 A1 WO2022019467 A1 WO 2022019467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder composition
- hemostatic powder
- weight
- polymer
- sap
- Prior art date
Links
- 0 CCCC(C(*)C(O)OC1CO)C1OC(*C(CC)C(*C1OC(CO)C(*C(C(*C(C)=N)C2O)OC(CN)C2O)C(*)C1N)C1O)C1NC(CC#C)=O Chemical compound CCCC(C(*)C(O)OC1CO)C1OC(*C(CC)C(*C1OC(CO)C(*C(C(*C(C)=N)C2O)OC(CN)C2O)C(*)C1N)C1O)C1NC(CC#C)=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/043—Mixtures of macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/08—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0023—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0052—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/009—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/418—Agents promoting blood coagulation, blood-clotting agents, embolising agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/04—Materials for stopping bleeding
Definitions
- the present invention relates to a topical hemostatic powder composition and a method for preparing the same, and more particularly, to include a biodegradable superabsorbable polymer and a bioadhesive polymer to provide in vivo biodegradability and provide excellent hemostatic efficacy while providing surgical and endoscopy , and to a technology for providing a powder-type hemostatic agent applicable to minimally invasive surgery such as laparoscopy.
- Blood ( ⁇ ) is a body fluid that supplies oxygen and nutrients to cells in the body, and collects and transports carbon dioxide and waste products generated by cell metabolism.
- Bleeding means blood coming out of the blood vessels, and the blood vessels composing the whole body circulate the blood in the blood vessels throughout the body by the pressure of the heart. This means leaking out of the wound. Bleeding, in which blood is drained out of the blood vessels, can occur in daily life injuries or medical practices such as surgery. In this case, it is most important to quickly stop the bleeding site by suturing or pressing the wound site with a hemostatic agent, a bandage, a dressing, or the like. In order to respond to this, various types of hemostatic agents from various raw materials are being developed.
- Korean Patent Application Laid-Open No. 10-2013-0055847 discloses a hydrogel comprising chitosan or polyamine to which a catechol group is bonded and a polaxomer to which a thiol group is bonded to a terminal, a method for preparing the same, and a hemostatic agent using the same. More specifically, it has safety in and out of the body, is temperature-sensitive, and has excellent hemostatic effect, so it features an adhesive composition that can be used as a bioadhesive, and a medical adhesive, anti-adhesion agent and surface adsorption inhibitor comprising the same.
- Korean Patent No. 10-1507589 discloses a method for producing a bone hemostatic agent comprising electrospun gelatin/BCP (Biphasic Calcium Phosphate) and chitosan hydrogel.
- the technical feature is to provide an effect of making a hemostatic agent having a biocompatibility that has a minimal effect on bone tissue regeneration and can provide an effective hemostatic action during bone bleeding.
- the present invention has been completed in order to provide a powder-type hemostatic agent that is excellent in blood compatibility and biocompatibility and can be applied to surgical or minimally invasive procedures in addition to conventional use. .
- Patent Document 1 Korean Patent Publication No. 10-2013-0055847 (2013.05.29)
- Patent Document 2 Korean Patent Registration No. 10-1507589 (2014.12.31)
- An object of the present invention is to solve the problems and technical problems of the prior art as described above.
- An object of the present invention is to provide a topical hemostatic powder composition and a method for preparing the same, which provides in vivo biodegradability and excellent hemostatic efficacy.
- the powder-type hemostatic agent can be used in surgical procedures, and it is possible to apply it to endoscopic and laparoscopic procedures, thereby improving the utility of the technology.
- a topical hemostatic powder composition comprising a biodegradable superabsorbent polymer (Bio-SAP) and a bioadhesive polymer (BP).
- Bio-SAP biodegradable superabsorbent polymer
- BP bioadhesive polymer
- a topical hemostatic powder comprising the above composition.
- preparing solutions A and B respectively;
- the present invention may provide a topical hemostatic powder composition and a method for preparing the same.
- the present invention can provide excellent hemostatic efficacy by providing biodegradability in vivo and remarkably improved blood absorption.
- the present invention may provide a powder-type hemostatic agent, thereby providing ease of use and handling.
- the present invention provides a powder-type hemostatic agent, which does not cause an immune response and can provide a safe and economical hemostatic agent.
- the powder-type hemostatic agent can be used in surgical procedures, and can be applied to endoscopic and laparoscopic procedures, thereby providing an effect of improving the utility of the technology.
- BP bioadhesive polymer
- Example 2 is a graph showing blood and water absorption rates according to Example 1 and Comparative Examples 1 and 2 according to the present invention.
- Bio-SAP biodegradable superabsorbent polymer
- Example 7 is a result showing the SEM photos according to Example 1 and Comparative Examples 1 to 3 according to the present invention.
- Example 8 is a result showing a TEM photograph of TCP (Thiolated Chitosan Stearic Particle) of Example 2 according to the present invention.
- FIG. 10 is a photograph of coagulation in an in vitro hemostatic test according to the present invention.
- a topical hemostatic powder composition comprising a biodegradable superabsorbent polymer (Bio-SAP) and a bioadhesive polymer (BP).
- Bio-SAP biodegradable superabsorbent polymer
- BP bioadhesive polymer
- the biodegradable superabsorbent polymer has a structurally cross-linked polymer structure to absorb water, such as water or a fluid containing moisture, , it can absorb up to 30 times its original volume. Therefore, it is possible to provide a topical hemostatic powder with excellent biodegradability in the body while having excellent blood absorption and hemostatic ability, including Bio-SAP.
- the biodegradable super absorbent polymer may preferably be provided with a polysaccharide (polysaccharide).
- Polysaccharides provided include, for example, starch, modified starch chitosan, pullulan, keratin, alginate, carrageenan, cellulose and natural gums, hyaluronic acid, glycoaminoglycan , GAG) and at least any one or more selected from derivatives thereof.
- the natural gums may include tragacanth, and the like, and the glycoaminoglycans (GAG) may include chondroitin sulfate.
- GAG glycoaminoglycans
- the biodegradable superabsorbent polymer is an interpenetrating polymer network (Interpenetrating Polymer Networks, IPN) or semi-interpenetrating polymer network (Semi) by the following Structural Formula 1, Structural Formula 2 and a crosslinking agent Interpenetrating Polymer Networks, SIPN) is provided a topical hemostatic powder composition comprising a structure.
- IPN Interpenetrating Polymer Networks
- SIPN Interpenetrating Polymer Networks
- Structural Formula 1 is as follows.
- chitosan In the case of Structural Formula 1, it represents the structure of chitosan. In this case, n is provided as 155 to 3235. In general, chitosan may have a weight average molecular weight of 50,000 to 1,100,000, but is not limited thereto.
- Chitosan refers to a substance obtained by deacetylating chitin.
- chitin is a mucopolysaccharide in which N-acetylglucosamine is bound to beta-1,4.
- the shells of crustaceans such as shrimp, crab, and lobsters, the epidermis of insects, and the cell walls of mushrooms and fungi contain as components, and in plants, like cellulose, It is a natural polymer material that acts as a support and auxiliary for living things.
- Chitosan is a polysaccharide bound to 2-amino-2-deoxy-D-glucose with beta-1,4, and since it is produced by deacetylating chitin, its molecular weight is smaller than that of chitin.
- chitosan is soluble in an organic acid aqueous solution and has a high viscosity, which is different depending on molecular weight, degree of deacetylation, ionic strength, pH, and the like.
- chitosan has excellent biocompatibility and has excellent adsorption properties by forming chelates with metal ions. In particular, it is characterized in that it does not significantly affect the shape of the chelate even when ions such as magnesium, copper, and potassium exist in a large amount.
- the natural polymer is less likely to be depleted, exhibits excellent biocompatibility in tissues or bodies of humans, animals, plants, etc., has little toxicity and is easily biodegradable.
- Structural Formula 2 is as follows.
- the modified starch preferably means sodium starch glycolate (Sodium Starch Glycolate), and in this case, n is provided as 800 to 1800.
- the sodium starch glycolate (Sodium Starch Glycolate) provides excellent fluidity and mixability, and provides high swelling properties when in contact with moisture.
- the weight average molecular weight is provided in the range of 500,000 to 1,000,000.
- the crosslinking agent is glyoxal, glutaraldehyde, citric acid, 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDAC), N-hydroxysuccinimide (NHS) , at least one or more selected from diisocyanate and diacetaldehyde may be provided.
- EDAC 1-ethyl-3(3-dimethylaminopropyl)carbodiimide
- NHS N-hydroxysuccinimide
- glyoxal may be provided.
- Glyoxal is also commonly referred to as glyoxylaldehyde.
- the hemostatic ability according to the crosslinking agent was compared through an in vitro hemostasis test.
- 0.1 g of each sample was put into the blood, and the hemostatic capacity was measured in a constant temperature water bath at 37°C.
- the crosslinking agent glutaraldehyde or glyoxal is provided, it exhibits excellent hemostatic properties unlike other materials.
- hemostasis time control 8 minutes 35 seconds chitosan 5 minutes 10 seconds Starch no bleeding Bio-SAP (chitosan+starch) Glutaraldehyde 1% 2 minutes 54 seconds Bio-SAP (chitosan+starch) Glyoxal 1% 3 minutes Bio-SAP(chitosan+starch)Citric acid 1% no bleeding
- the biodegradable superabsorbent polymer is an interpenetrating polymer network (Interpenetrating Polymer Networks, IPN) or semi-interpenetrating polymer network (Semi Interpenetrating) by the above Structural Formula 1, Structural Formula 2 and a crosslinking agent Polymer Networks, SIPN) structure is provided. Accordingly, the Bio-SAP formation process is shown in FIG. 13 .
- IPN structure refers to Interpenetrating Polymer Networks. It is a new type of polymer composed of two polymers in the form of a network. do.
- SIPN structure refers to Semi Interpenetrating Polymer Networks, which means that one or more polymers form a linear or branched network. It is formed by polymerization of a hydrophilic monomer.
- the structural formula 1 and glyoxal include sodium starch glycolate (Sodium Starch Glycolate) of structural formula 2 in chitosan cross-linking, Interpenetrating Polymer Networks (IPN) or semi-interpenetrating polymer networks (Semi Interpenetrating Polymer Networks, SIPN) structure is provided. Accordingly, it is possible to rapidly improve blood absorption and remarkably improve the hemostatic effect by providing a porous structure including a random semi-open cell structure including the SIPN structure.
- IPN Interpenetrating Polymer Networks
- SIPN semi-interpenetrating Polymer Networks
- the crosslinking agent comprises 0.01 to 4 parts by weight. Preferably 0.5 to 2 parts by weight may be provided.
- crosslinking agents glyoxal, glutaraldehyde, citric acid, 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDAC), N-hydroxysuccinimide (NHS), diisocyanate and diacetaldehyde
- EDAC 1-ethyl-3(3-dimethylaminopropyl)carbodiimide
- NHS N-hydroxysuccinimide
- diacetaldehyde At least any one or more selected from may be provided, preferably glyoxal or glutaraldehyde may be provided.
- the bioadhesive polymer may be provided with a polysaccharide (polysaccharide), for example, starch, chitosan, pullulan, keratin, alginate, carrageenan, cellulose It is provided including at least one selected from natural gums, such as tragacanth, hyaluronic acid, glycoaminoglycan (GAG), and derivatives thereof.
- a polysaccharide for example, starch, chitosan, pullulan, keratin, alginate, carrageenan, cellulose
- natural gums such as tragacanth, hyaluronic acid, glycoaminoglycan (GAG), and derivatives thereof.
- modified starch, fullulan, keratin, and chitosan may be provided, but the present invention is not limited thereto.
- the bioadhesive polymer (BP) is provided with a topical hemostatic powder composition comprising the following structural formula (3).
- the bioadhesive polymer (BP) may form a particle structure.
- a TEM (transmission electron microscope) photograph of the bioadhesive polymer (BP) particle structure according to the present invention can be seen in FIG. 8 .
- the bioadhesive polymer (BP) according to the present invention has a thiol group, a catechol group, an aldehyde group, and a dihydrazide group on the surface to improve the hemostatic ability. and at least one selected from a methacrylate group.
- it is provided in a chemically modified structure including a thiol group.
- the bioadhesive polymer (BP) structure of the present invention is a structure chemically modified by thioglycolic acid (TGA, Thio glycolic acid) and a crosslinking agent when chitosan is provided as a polysaccharide, Thiolated Chitosan Stearic Particle (TCP) can be modified to provide bioadhesiveness.
- TGA Thioglycolic acid
- TCP Thiolated Chitosan Stearic Particle
- the bioadhesive polymer (BP) can introduce a thiol group to the micelle surface by reacting thioglycolic acid with chitosan, and according to the result of FIG. and changes in the concentration of thiol groups on the surface of the bioadhesive polymer.
- concentration of thioglycolic acid (TGA) is provided in the range of 0.05 to 0.2, Thiolated Chitosan Stearic Particles (TCP) desired in the present invention may be formed.
- the ratio of the biodegradable superabsorbent polymer (Bio-SAP) and the bioadhesive polymer (BP) is 2 to 8: 8 to 2 is provided a topical hemostatic powder composition. Preferably 5:5 is provided. Therefore, in light of the results of Table 5 to be described later, when the ratio of the biodegradable superabsorbent polymer (Bio-SAP) and the bioadhesive polymer (BP) is provided within the above range, excellent performance is provided in both blood absorption, absorption rate and absorption rate. can confirm that it can be done.
- a hemostatic powder comprising the topical hemostatic powder composition.
- the average diameter of the powder is provided in the range of 1 to 500 ⁇ m.
- Bio-SAP biodegradable superabsorbable polymer
- BP bioadhesive polymer
- a method for preparing the above-described topical hemostatic powder composition there is provided a method for preparing the above-described topical hemostatic powder composition.
- the same content as the above-described topical hemostatic powder composition may be applied, and a description within the overlapping range will be omitted.
- preparing solutions A and B respectively;
- Bio-SAP biodegradable superabsorbent polymer
- Solution A of step (a) is based on 100 parts by weight of the acid aqueous solution, starch, chitosan, pullulan, keratin, alginate, carrageenan, cellulose and natural gums, hyaluronic acid, glycoaminoglycan It is prepared by including 1 to 20 parts by weight of at least one selected from (glycoaminoclican, GAG) and their derivatives.
- chitosan is easily dissolved in an aqueous acid solution, which is an organic solvent. It is prepared by dissolving chitosan in 1 to 5% by weight of acetic acid, and may further include a process of dissolving and filtering to remove impurities and storing at room temperature if necessary.
- the solution B of step (a) is prepared by dissolving 1 to 10 parts by weight of starch or modified starch with respect to 100 parts by weight of distilled water.
- sodium starch glycolate (Sodium Starch Glycolate) is provided as the modified starch to provide excellent fluidity and mixability and to provide high swelling properties when in contact with moisture.
- the weight average molecular weight of sodium starch glycolate is provided in the range of 500,000 to 1,000,000, and the dissolution temperature is provided in the range of 70 to 100 °C, preferably at 80 °C.
- the crosslinking agent is added in the above range, gelation occurs, and interpenetrating polymer networks (IPN) or semi-interpenetrating polymer networks (SIPN) that provide excellent performance by freeze-drying are provided. It can be confirmed that excellent performance as a hemostatic powder can be provided.
- IPN interpenetrating polymer networks
- SIPN semi-interpenetrating polymer networks
- the crosslinking agent is glyoxal, glutaraldehyde, citric acid, 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDAC), N-hydroxysuccinimide (NHS) , it may provide at least any one or more selected from diisocyanate and diacetaldehyde.
- glyoxal may be provided
- the reaction conditions provide that the reaction temperature is 70 to 100° C., and the reaction time is 3 to 7 hours. Preferably 80° C. is provided, and a reaction time of 5 hours is provided. After the gelled solution undergoes a spray drying process, a biodegradable superabsorbent polymer can be finally formed.
- Spray drying may be performed by a conventional spray drying apparatus, for example, by using a spray dryer having a drying chamber and an atomizer.
- the spray dryer is controlled so that the maximum drying temperature in the drying chamber does not exceed 80°C by the amount of heat of evaporation of 20 to 40 kg/hr, and the raw material supplied to the drying chamber is diffused by the atomizer rotating at a speed of 5,000 to 30,000 rpm. It can be dried and dried through a drying residence time of 10 to 100 seconds.
- step (c) the step of preparing the bioadhesive polymer (BP) is provided.
- thioglycolic acid based on 100 parts by weight of the acid aqueous solution, 0.01 to 4 parts by weight of thioglycolic acid and at least selected from chitosan, collagen, hyuronic acid, alginate, carboxymethyl serulose and hydroxyethyl cellulose. It is prepared by including 1 to 20 parts by weight including any one or more.
- the acid aqueous solution provided may include at least one selected from stearic acid, acetic acid, formic acid, ascorbic acid, citric acid, and oxalic acid, but is not limited thereto.
- the aqueous acid solution is a crosslinking agent glyoxal, glutaraldehyde, citric acid, 1-ethyl-3 (3-dimethylaminopropyl) carbodiimide (EDAC), N-hydroxysuccinimide (NHS), diisocyanate and It is provided including at least any one or more selected from diacetaldehyde, and in this case as well, 0.01 to 4 parts by weight of the crosslinking agent is provided based on 100 parts by weight of the acid aqueous solution.
- EDAC as a crosslinking agent
- a crosslinking agent for example, it refers to a water-soluble carbodiimide that can be used to cross-link biomaterials containing carboxylate acid and primary amines.
- the amine group of quinoic acid and the carboxylic acid group of stearic acid can react to provide cross-linking.
- NHS N-Hydroxyl succinimide, and can provide a biocompatible and biodegradable composition by providing a role as a coupling crosslinking agent together with EDAC.
- the carboxyl group of thioglycolic acid can also be combined with the primary amine of chitosan, and as the concentration of TGA increases, the thiol group on the surface of the produced micelles increases.
- the results are shown in FIG. 9 .
- step (d) mixing the biodegradable superabsorbent polymer (Bio-SAP) and the bioadhesive polymer (BP); by providing a method for preparing a topical hemostatic powder composition is provided.
- a mixing ratio of 2 to 8: 8 to 2 is provided in the mixing step. The numerical meaning of the mixing ratio is the same as described above.
- Celox Media a hemostatic powder commercially available from US Celox Media, was used.
- Arista-AH a hemostatic powder commercially available from C.R Bard in the United States, was used.
- Sodium starch glycolate (Sodium Starch Glycolate) was used.
- Example 1 and Comparative Examples 1 and 2 The blood and water absorption rates according to Examples and Comparative Examples according to Example 1 and Comparative Examples 1 and 2 are shown in FIG. 2 .
- the measurement method is the same as described below.
- Examples 1 to 5 and Comparative Examples 1 to 5 were quantified in a basis weight dish with a weight of 0.5 g. Using a micropipette, spray 1ml of water / 1ml of blood to the experimental group. If water/blood flows out when the dish is tilted, it is considered that it is no longer absorbed, and the amount of water/blood absorbed is recorded. The results are shown in Tables 4 and 5 in the case of water absorption, and in Tables 5 and 6 in the case of blood absorption.
- Example 1 has an excellent blood absorption rate compared to Comparative Examples 1 and 2.
- TCP thiolated chitosan particle
- TGA Thio glycolic acid
- T 1,2,3,4 The higher the number, the higher the TGA concentration is added.
- Ellman's reagent buffer solution dissolve L-Cystein at different concentrations.
- T 1,2,3,4 are also added to the buffer solution in turn to dissolve them, and then measure the absorbance to determine the thiol group concentration. The results are shown in FIG. 9 .
- the rat After the rat is anesthetized, one side of the ear is immobilized. An incision is made in the part of the blood vessel about 5 cm away from the tip of the ear. If bleeding is confirmed, 0.8ml of the experimental groups is applied. Record the time to stop bleeding. (In this case, check the hemostasis time, adhesion to tissue, rebleeding, etc.)
- Examples 3 to 5 can confirm excellent hemostasis, and in the case of Example 4, it was confirmed that the average hemostasis time can also be greatly shortened.
- the hemostatic ability which is an essential condition of the hemostatic agent
- the topical hemostatic powder according to the present invention helps to manage bleeding by inducing hemostasis immediately, secures the view of doctors, enables rapid surgery, and can quickly stop excessive bleeding, thereby providing an excellent effect as a hemostatic agent.
- the present invention may provide a topical hemostatic powder composition and a method for preparing the same.
- the present invention provides in vivo biodegradability and remarkably improves blood absorption, thereby providing excellent hemostatic efficacy.
- the present invention may provide a powder-type hemostatic agent, thereby providing ease of use and handling.
- the present invention provides a powder-type hemostatic agent, which does not cause an immune response and can provide a safe and economical hemostatic agent.
- the powder-type hemostatic agent can be used in surgical procedures, and can be applied to endoscopic and laparoscopic procedures, thereby providing an effect of improving the utility of the technology.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Surgery (AREA)
- Hematology (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 국소 지혈 파우더 조성물 및 이의 제조방법에 관한 것으로, 보다 상세하게는 고흡수성 폴리머 및 생체점착성 폴리머(BP)를 포함하여, 생체 내 생분해성을 제공하고, 우수한 지혈능 유효성을 제공하면서, 외과적 시술 및 내시경, 복강경 등의 최소침습시술(minimal invasive surgery)에도 적용이 가능한 파우더 타입의 지혈제를 제공하는 기술에 관한 것이다.
Description
본 발명은 국소 지혈 파우더 조성물 및 이의 제조방법에 관한 것으로 보다 상세하게는 생분해성 고흡수성 폴리머 및 생체점착성 폴리머를 포함하여 생체 내 생분해성을 제공하고, 우수한 지혈능 유효성을 제공하면서 외과적 시술 및 내시경, 복강경 등의 최소침습시술(minimal invasive surgery)에도 적용이 가능한 파우더 타입의 지혈제를 제공하는 기술에 관한 것이다.
혈액(血液)은 몸 안의 세포에 산소와 영양소를 공급하고 세포의 신진대사에 의해 발생하는 이산화탄소와 노폐물을 회수하여 운반하는 것과 같은 역할을 하는 체액이다.
출혈이란, 혈액이 혈관 밖으로 나오는 것을 의미하여 온 몸을 구성하는 혈관들이 심장의 압력에 의해 혈관 안의 혈액을 몸 전체로 순환을 시키는데, 일부 혈관에서 상처가 생기게 되면 압력이 빠져나갈 공간이 생기게 되어 혈액이 상처 밖으로 새는 것을 의미한다. 혈액이 혈관 밖으로 배출되는 출혈은 일상생활에서의 부상, 수술과 같은 의료 행위에서 일어날 수 있다. 이 경우, 지혈제, 붕대, 드레싱 등으로 상처 부위를 봉합하거나 압박하여 출혈 부위를 빠르게 지혈하는 것이 무엇보다 중요하다. 이에 대응하기 위하여, 다양한 원료로 다양한 형태의 지혈제들이 개발 중에 있다.
예를 들어서, 한국공개특허공보 제10-2013-0055847호는 카테콜기가 결합된 키토산 또는 폴리아민 및 말단에 티올기가 결합된 폴락소머를 포함하는 하이드로젤 및 이의 제조방법 및 이를 이용한 지혈제를 개시한다. 보다 상세하게는 생체 내외에서의 안전성을 갖고, 온도 감응적이며, 지혈효과가 우수하여 생체접착제로서 이용 가능한 접착제 조성물 및 이를 포함하는 의료용 접착제, 유착 방지제 및 표면 흡착 방지제에 관한 기술을 특징으로 한다.
다른 예로, 한국 등록특허공보 제10-1507589호는 전기방사된 젤라틴/BCP(Biphasic Calcium Phosphate)와 키토산 하이드로젤 조성의 골 지혈제 제조방법이 개시되어 있다. (a) 다공성 구조를 갖는 키토산 하이드로젤 층을 제조하는 단계; (b) 전기방사된 젤라틴/BCP매트를 제조하는 단계; (c) 가교제를 준비하는 단계; (d) 상기 키토산 하이드로젤 층에 상기 전기방사된 젤라틴/BCP 매트를 위치시킨 후에 상기 가교제로 가교시키는 단계; 및 (e) 상기 키토산 하이드로젤 층과 전기방사된 젤라틴/BCP의 합성층을 동결건조시키는 단계;를 포함하는 것을 개시한다. 이에 골 조직 재생시 최소한의 영향을 주고, 골 출혈시 효과적인 지혈 작용을 제공할 수 있는 생체적합성을 가지는 지혈제를 만들 수 있는 효과를 제공하는 것을 기술적 특징으로 한다.
전술한 바와 같이, 지혈제에 대한 연구는 활발하게 이뤄지고 있지만 기존의 파우더형의 지혈제의 경우 유효한 혈액 흡수 능력 또는 출혈액과 같이 흘러버리는 문제점이 있어서 외과적 시술에 있어서 사용에 어려움이 있었다.
따라서, 이러한 문제를 해결하기 위한 연구의 방안으로 본 발명은 혈액 적합성 및 생체 적합성이 우수하면서도 통상적인 사용에서 나아가 외과적 또는 최소침습시술에까지 적용이 가능한 파우더형 지혈제를 제공하기 위하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국특허공개공보 제10-2013-0055847호 (2013.05.29)
(특허문헌 2) 한국특허등록공보 제10-1507589호 (2014.12.31)
본 발명은 상기와 같은 종래 기술의 문제점과 기술적 과제를 해결하는 것을 목적으로 한다.
본 발명의 목적은 국소 지혈 파우더 조성물 및 그 제조방법을 제공하는 것으로 생체 내 생분해성을 제공하고 우수한 지혈능 유효성을 제공하는 것이다.
본 발명의 목적은 파우더 타입의 지혈제를 제공하여, 보관, 사용 및 취급상의 용이성을 제공하는 것이다.
나아가, 상기 파우더 타입의 지혈제는 외과적 시술에서도 사용이 가능하며 내시경, 복강경 시술에도 적용이 가능케 하여 기술의 활용성을 향상시키는 것에 목적이 있다.
본 발명의 일 실시예를 따르면, 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)를 포함하는 국소 지혈 파우더 조성물이 제공된다.
본 발명의 일 실시예를 따르면, 상기의 조성물을 포함하는 국소 지혈 파우더가 제공된다.
본 발명의 일 실시예를 따르면, (a) A 및 B 용액을 각각 제조하는 단계; (b) 상기 A 및 B 용액을 혼합한 혼합 용액에 가교제를 투입하여 생분해성 고흡수성 폴리머(Bio-SAP)를 형성하는 단계; (c) 생체점착성 폴리머(BP)를 제조하는 단계; 및 (d) 상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 상기 생체점착성 폴리머(BP)를 혼합하는 단계;를 포함하는 국소 지혈 파우더 조성물의 제조방법이 제공된다.
본 발명은 국소 지혈 파우더 조성물 및 그 제조방법을 제공할 수 있다.
본 발명은 국소 지혈 파우더 조성물의 경우, 생체 내 생분해성을 제공하고 혈액에 대한 흡수능이 현저하게 향상되어 우수한 지혈능 유효성을 제공할 수 있다.
또한, 기존에 파우더 타입의 지혈제가 출혈액에 의해 흘러버리는 문제점을 해결할 수 있다.
본 발명은 파우더 타입의 지혈제를 제공하여, 사용 및 취급상의 용이성을 제공할 수 있다.
본 발명은 파우더 타입의 지혈제를 제공하여, 면역반응을 일으키지 않으며 안전하면서 경제적인 지혈제를 제공할 수 있다.
또한, 상기 파우더 타입의 지혈제를 외과적 시술에서도 사용이 가능케 하며, 내시경, 복강경 시술에도 적용이 가능케 하여 기술의 활용성을 향상시키는 효과를 제공할 수 있다.
도 1은 본 발명에 따른 생체점착성 폴리머(BP)의 TEM 사진을 나타내는 것이다.
도 2는 본 발명에 따른 실시예 1 및 비교예 1과 2에 따른 혈액 및 수분 흡수율 나타내는 것이다.
도 3은 본 발명에 따른 생분해성 고흡수성 폴리머(Bio-SAP)와 그 원재료의 IR값을 나타내는 것이다.
도 4는 본 발명에 따른 가교제의 농도에 따른 혈액 흡수량을 나타내는 것이다.
도 5는 본 발명에 따른 비교예 1 내지 4에 따른 수흡수량을 나타낸 결과이다.
도 6은 본 발명에 따른 비교예 1 내지 4에 따른 혈액흡수량을 나타낸 결과이다.
도 7은 본 발명에 따른 실시예 1 및 비교예 1 내지 3에 따른 SEM 사진을 나타낸 결과이다.
도 8은 본 발명에 따른 실시예 2의 TCP(Thiolated Chitosan Stearic Particle)의 TEM 사진을 나타낸 결과이다.
도 9는 본 발명에 따른 TCP의 TGA 농도에 따른 흡광도 및 티올(Thiol)기의 농도를 나타낸 결과이다.
도 10은 본 발명에 in vitro 지혈능 실험의 응고에 대한 사진이다.
도 11은 본 발명에 따른 실시예 1,2 및 4 및 비교예 1, 2 및 6에 따른 in vivo 지혈능 실험 사진을 나타낸 것이다.
도 12는 본 발명에 따른 실시예 1 내지 2 및 비교예 1에 따른 in vivo 지혈능 실험 사진을 나타낸 것이다.
도 13는 본 발명의 Bio-SAP 형성 과정을 나타낸 것이다.
도 14는 본 발명의 TCP 형성 메커니즘을 나타낸 것이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조 부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
본 발명의 일 실시예를 따르면, 생분해성 고흡수성 폴리머(Biodegradable Superabsorbent Polymer, Bio-SAP) 및 생체점착성 폴리머(Bioadhesive polymer, BP)를 포함하는 국소 지혈 파우더 조성물이 제공된다.
본 발명의 일 실시예를 따르면, 상기 생분해성 고흡수성 폴리머(Bio-SAP)는 구조적으로 크로스-링크된 폴리머 구조를 포함하여 물 또는 수분을 포함하는 플루이드 등의 수분을 흡수할 수 있는 능력을 가지며, 원래 부피의 30 배 정도까지 흡수가 가능하다. 따라서, 이러한 Bio-SAP을 포함하여 혈액 흡수성 및 지혈능이 우수하면서 신체 내에서 생분해성능이 우수한 국소 지혈 파우더를 제공할 수 있다.
본 발명의 일 실시예를 따르면, 상기 생분해성 고흡수성 폴리머(Bio-SAP)는 바람직하게는 폴리사카리드(polysaccharide)가 제공될 수 있다. 제공되는 폴리사카리드(polysaccharide)는 예를 들어서, 전분, 변성전분 키토산, 플루란(pullulan), 케라틴, 알지네이트, 카라기난, 셀룰로오스와 천연검(natural gum)류, 하이루론산, 글리코아미노글리칸(glycoaminoclycan, GAG)류 및 그들의 유도체에서 선택되는 적어도 어느 하나 이상을 포함하여 제공된다.
상기 천연검(natural gum)류는 트라가칸스(tragacanth)등이 제공될 수 있고, 글리코아미노글리칸(glycoaminoclycan, GAG)류는 콘드로이친 설페이트(chondroitin sulfate)등이 제공될 수 있다.
본 발명의 일 실시예를 따르면, 상기 생분해성 고흡수성 폴리머(Bio-SAP)은 하기 구조식 1, 구조식 2 및 가교제에 의해 상호침투폴리머네트워크(Interpenetrating Polymer Networks, IPN) 또는 반상호침투폴리머네트워크(Semi Interpenetrating Polymer Networks, SIPN)구조를 포함하는 것인 국소 지혈 파우더 조성물이 제공된다. 이하, 구조식 1, 구조식 2 및 가교제를 보다 상세하게 설명하기로 한다.
본 발명의 일 실시예를 따르면, 상기 구조식 1은 하기와 같다.
[구조식 1]
상기 구조식 1의 경우, 키토산(chitosan)의 구조를 나타내는 것으로 이 경우, n은 155 내지 3235으로 제공된다. 이에 통상적으로 키토산은 중량평균분자량이 50,000 내지 1,100,000으로 제공될 수 있으며, 이에 제한되지 않는다.
키토산은 키틴을 탈아세틸화하여 얻어낸 물질을 의미한다. 보다 자세하게키틴은 N-아세틸글루코사민이 베타-1,4 결합한 뮤코다당류로서 새우, 게, 바닷가재 등 갑각류의 껍데기, 곤충류의 표피, 버섯이나 균류의 세포벽이 구성성분으로 함유하고 있고 식물에서는 셀룰로오스와 같이 생물의 지지체와 보조역할을 하는 천연고분자물질이다. 키토산은 2-아미노-2-데옥시-D-글루코스가 베타-1,4 결합한 다당류로서 키틴을 탈아세틸화하여 제조되기 때문에 분자량이 키틴보다는 작다.
또한, 키토산은 유기산 수용액에 용해가 되며, 점도가 높은 특징이 있는데 이는 분자량, 탈아세틸화도, 이온강도, pH 등에 따라 차이가 있다. 더불어, 키토산은 생체적합성이 우수하며 금속 이온과 킬레이트를 형성하여 흡착성이 우수하므로 체액이나 침출액 등을 흡착하여 출혈 부위에서 효율적으로 지혈 효과를 제공할 수 있다. 특히, 마그네슘, 구리, 칼륨 등의 이온이 다량으로 존재하여도 킬레이트 형상에 크게 영향을 주지 않는 것이 특징이다. 또한, 천연 고분자로 고갈 가능성이 낮으며, 인간, 동물, 식물 등의 조직이나 체내에서 우수한 생체 적합성을 나타내고, 독성이 거의 없고 쉽게 생분해가 되는 장점이 있다.
본 발명의 일 실시예를 따르면, 상기 구조식 2는 하기와 같다.
[구조식 2]
상기 구조식 2의 경우, 변성전분으로 바람직하게는 전분 글리콜산 나트륨(Sodium Starch Glycolate)을 의미하며, 이 경우, n은 800 내지 1800로 제공된다. 상기 전분 글리콜산 나트륨(Sodium Starch Glycolate)은 우수한 유동성, 혼합성을 제공하고, 수분과 접촉 시, 높은 팽윤성을 제공한다. 통상적으로 중량평균분자량이 500,000 내지 1,000,000으로 제공된다.
본 발명의 일 실시예를 따르면, 상기 가교제는 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상이 제공될 수 있다. 바람직하게는 글리옥살이 제공될 수 있다. 글리옥살은 관용명으로는 글리옥실알데하이드(Glyoxylaldehyde)으로 불리기도 한다. 전분 글리콜산 나트륨(Sodium Starch Glycolate)에 글리옥살을 투입함으로써 서로 간에 가교 결합을 통해 응집이 발생이 되면서 본 발명에서는 가교제로의 역할을 제공할 수 있다.
하기 표 1을 참고하면, 가교제를 글루타르알데하이드(Glutaraldehyde), 글리옥실알데하이드(Glyoxylaldehyde) 및 시트르산 (Citric acid)을 각각 적용한 결과값을 나타내고 있다.
샘플무게 | 흡수량 | 흡수율1) | 흡수속도2) | |
Bio-SAP(chitosan+starch)글루타르알데하이드(Glutaraldehyde) 1% | 0.5 | 8 | 1600 | 1 |
Bio-SAP(chitosan+starch)글리옥살(Glyoxal) 1% | 0.5 | 6 | 1200 | 1 |
Bio-SAP(chitosan+starch)시트르산 (Citric acid) 1% | 0.5 | 4 | 800 | 1 |
1) 흡수율(W1-W0)*100,
2) 흡수속도: 1-5초이내(1), 2-10초이내(2), 3-30초이내(3), 4-30초 이상(4)
또한, 하기 표 2 내용을 참고하면, In vitro 지혈실험을 통해 가교제에 따른 지혈능을 비교하였다. 먼저 각 시료 0.1g을 혈액에 넣고, 37℃ 항온수조 안에서의 지혈능을 측정하였다. 시간에 지남에 따라 혈전을 형성하는 시간을 관찰하였을 때, 가교제 글루타르알데하이드 또는 글리옥살을 제공하는 경우 다른 재료들과는 달리 우수한 지혈능을 나타낸다.
지혈 시간 | |
대조군 | 8분 35초 |
키토산 (chitosan) | 5분 10초 |
Starch | 지혈 안됨 |
Bio-SAP(chitosan+starch)글루타르알데하이드(Glutaraldehyde) 1% | 2분 54초 |
Bio-SAP(chitosan+starch)글리옥살(Glyoxal) 1% | 3분 |
Bio-SAP(chitosan+starch)시트르산 (Citric acid) 1% | 지혈 안됨 |
본 발명의 일 실시예를 따르면, 생분해성 고흡수성 폴리머(Bio-SAP)는 상기 구조식 1, 구조식 2 및 가교제에 의한 상호침투폴리머네트워크(Interpenetrating Polymer Networks, IPN) 또는 반상호침투폴리머네트워크(Semi Interpenetrating Polymer Networks, SIPN)구조를 포함하는 것을 제공한다. 이에, Bio-SAP 형성 과정에 대하여 도 13에 나타내었다.
일반적으로 IPN 구조는 Interpenetrating Polymer Networks를 의미하는 것으로 두 가지의 고분자가 네트워크 형태로 구성된 새로운 형태의 중합물 형태로서 적어도 한 종류의 고분자는 다른 고분자와는 공유 결합되지 않은 상태로 중합되어 가교된 시스템을 뜻한다. 또한, SIPN 구조는 Semi Interpenetrating Polymer Networks를 의미하는 것으로 하나 또는 그 이상의 고분자들이 선형 또는 가지의 네트워크를 형성하는 것을 뜻하며, 이 네트워크는 수용성 고분자를 이용하여 방사선이나 화학적 방법을 통한 가교방법 또는 가교제를 이용한 친수단량체의 중합방법으로 형성된다.
도 13을 참고하면, 상기 구조식 1과 글리옥살은 키토산 가교결합에 구조식 2인 전분 글리콜산 나트륨(Sodium Starch Glycolate)을 포함하여, 상호침투폴리머네트워크(Interpenetrating Polymer Networks, IPN) 또는 반상호침투폴리머네트워크(Semi Interpenetrating Polymer Networks, SIPN)구조를 제공이 됨을 확인할 수 있다. 이에 SIPN 구조를 포함하여 랜덤으로 세미오픈셀 구조를포함하여 다공성 구조를 제공하여 혈액흡수력을 빠르게 향상시키고 지혈효과를 현저하게 향상시킬 수 있다.
본 발명의 일 실시예를 따르면, 상기 생분해성 고흡수성 폴리머(Bio-SAP) 100 중량부에 대하여, 상기 가교제는 0.01 내지 4 중량부를 포함하며. 바람직하게 0.5 내지 2 중량부를 제공될 수 있다. 이 경우, 가교제로 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상이 제공될 수 있으며, 바람직하게는 글리옥살 또는 글루타르알데하이드가 제공될 수 있다.
특히, 하기의 표 3 및 도 4에서는 가교제의 농도에 따른 혈액 흡수량, 흡수율 및 흡수속도를 나타내고 있다. 이러한 결과에 비추어 가교제가 상기 범위의 농도로 제공되는 경우, 지혈제로 우수한 성능을 제공할 수 있음을 확인할 수 있다. 더불어, 도 3에서 제공되는 IR 값에 비추어, 키토산(Chitosan) 및 Starch의 IR값과, 본 발명에 따른 생분해성 고흡수성 폴리머(Bio-SAP)의 IR 값의 피크에 비교하여, 흡수 파장이 유사함을 확인할 수 있다.
가교제 비율 | 샘플무게(g) | 흡수량(g) | 흡수율(%)1) | 흡수속도2) |
0.5 | 0.5 | 3 | 600 | 1 |
1 | 0.5 | 6 | 1200 | 1 |
2 | 0.5 | 2 | 400 | 1 |
3 | 0.5 | 2 | 400 | 1 |
4 | 0.5 | 2 | 400 | 1 |
5 | 0.5 | 1.5 | 300 | 1 |
10 | 0.5 | 1 | 200 | 1 |
1) 흡수율(W1-W0)*100,
2) 흡수속도: 1-5초이내(1), 2-10초이내(2), 3-30초이내(3), 4-30초 이상(4)
본 발명의 일 실시예를 따르면, 생체점착성 폴리머(BP)는 폴리사카리드(polysaccharide)가 제공될 수 있고, 구체적인 예를 들어서, 전분, 키토산, 플루란(pullulan), 케라틴, 알지네이트, 카라기난, 셀룰로오스와 트라가칸스(tragacanth)등 천연검(natural gum)류, 하이루론산, 글리코아미노글리칸(glycoaminoclycan, GAG)류 및 그들의 유도체에서 선택되는 적어도 어느 하나 이상을 포함하여 제공된다. 바람직하게는 변성전분, 플루란, 케라틴, 키토산이 제공될 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 일 실시예를 따르면, 상기 생체점착성 폴리머(BP)는 하기 구조식 3을 포함하는 국소 지혈 파우더 조성물이 제공된다. 상기 생체점착성 폴리머(BP)는 파티클(Particle)구조를 형성할 수 있다. 본 발명에 따른 생체점착성 폴리머(BP) 파티클(Particle)구조의 TEM(transmission electron microscope) 사진을 도 8에서 확인할 수 있다.
[구조식 3]
특히, 본 발명에 따른 상기 생체점착성 폴리머(BP)는 지혈능을 향상시키기 위하여, 표면에 티올(thiol)기, 카테콜(catechol)기, 알데하이드 (aldehyde)기, 디하이드라자이드(dihydrazide)기 및 메타크릴레이트(methacrylate)기에서 선택되는 적어도 어느 하나 이상을 포함할 수 있다. 바람직하게는 티올(thiol)기를 포함하여 화학적으로 변형된 구조로 제공된다.
즉, 본 발명의 생체점착성 폴리머(BP) 구조는 폴리사카리드(polysaccharide)로 키토산이 제공될 때, 티오글리콜산(TGA, Thio glycolic acid) 및 가교제에 의하여 화학적으로 변형된 구조인 Thiolated Chitosan Stearic Particle(TCP)으로 변형되어 생체점착성을 제공할 수 있다. 이에 대한 메커니즘은 도 14에 나타내었다.
즉, 상기 생체점착성 폴리머(BP)는 키토산에 티오글리콜산을 반응시켜 마이셀 표면에 티올(thiol)기의 도입이 가능하며, 도 9의 결과에 따르면, 티오글리콜산(TGA) 농도에 따른 흡광도 변화와 생체점착성 폴리머 표면의 티올(thiol)기의 농도에 변화를 확인할 수 있다. 또한, 티오글리콜산(TGA) 농도의 농도가 0.05 내지 0.2의 범위로 제공되는 경우, 본 발명에서 목적하는 Thiolated Chitosan Stearic Particle(TCP)을 형성할 수 있다.
본 발명의 일 실시예를 따르면, 상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)의 비율은 2 내지 8: 8 내지 2인 국소 지혈 파우더 조성물이 제공된다. 바람직하게는 5:5가 제공된다. 이에 후술할 표 5의 결과에 비추어 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)의 비율이 상기 범위로 제공되는 경우, 혈액의 흡수량, 흡수율 및 흡수속도에서 모두 우수한 성능을 제공할 수 있음을 확인할 수 있다.
본 발명의 일 실시예를 따르면, 상기 국소 지혈 파우더 조성물을 포함하는 지혈 파우더를 제공할 수 있다. 또한, 이 경우, 파우더의 평균 직경은 1 내지 500㎛으로 제공된다. 또한, 파우더 형태로 제공하여, 취급과 보관에 있어서 용이함을 제공할 수 있다. 또한, 혈액 흡수능이 우수하며, 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)를 포함하는 구조를 제공하여, 점착성이 향상되어, 기존의 파우더 경우, 출혈액에 의해 쉽게 흘러가버리는 단점을 보완할 수 있으며, 혈전증에 의한 재수혈의 리스크도 낮은 장점을 제공할 수 있다. 나아가, 이는 복강경 시술 또는 내시경 등의 외과적 시술에 있어서 적용이 유리함을 제공한다.
한편, 본 발명의 일 실시예를 따르면, 전술한 국소 지혈 파우더 조성물의제조방법이 제공된다. 또한, 이하에서는 전술한 국소 지혈 파우더 조성물과 동일한 내용이 적용될 수 있고, 중복되는 범위 내에서 설명은 생략하도록 한다.
본 발명의 일 실시예를 따르면, (a) A 및 B 용액을 각각 제조하는 단계; (b) 상기 A 및 B 용액을 혼합한 혼합 용액에 가교제를 투입하여 생분해성 고흡수성 폴리머(Bio-SAP)를 형성하는 단계; (c) 생체점착성 폴리머(BP)를 제조하는 단계; 및 (d) 상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 상기 생체점착성 폴리머(BP)를 혼합하는 단계;를 포함하는 국소 지혈 파우더 조성물의 제조방법이 제공된다.
먼저, 상기 (a) 단계 내지 (b) 단계에서 생분해성 고흡수성 폴리머(Bio-SAP)을 제조하는 방법을 제공된다.
상기 (a) 단계의 용액 A는 산 수용액 100 중량부에 대하여, 전분, 키토산, 플루란(pullulan), 케라틴, 알지네이트, 카라기난, 셀룰로오스와 천연검(natural gum)류, 하이루론산, 글리코아미노글리칸(glycoaminoclycan, GAG)류 및 그들의 유도체에서 선택되는 적어도 어느 하나 이상을 1 내지 20 중량부 포함하여 제조한다.
예를 들어서, 키토산은 유기용매인 산 수용액에 용해가 잘 일어난다. 1 내지 5 중량% 아세트산에 키토산을 용해하여 제조하며, 필요에 따라 용해 후 여과하여 불순물을 제거하여 상온에 보관하는 과정을 더 포함할 수 있다.
본 발명의 일 실시예를 따르면, 상기 (a) 단계의 용액 B는 증류수 100 중량부에 대하여, 전분 또는 변성전분을 1 내지 10 중량부 포함하여 용해하여 제조한다. 바람직하게 변성전분으로 전분 글리콜산 나트륨(Sodium Starch Glycolate)이 제공되어 우수한 유동성, 혼합성을 제공하고 수분과 접촉 시, 높은 팽윤성을 제공할 수 있다. 또한, 전분 글리콜산 나트륨의 중량평균분자량이 500,000 내지 1,000,000으로 제공되며, 용해 온도는 70 내지 100℃가 제공되며, 바람직하게는 80℃에서 진행할 수 있다
본 발명의 일 실시예를 따르면, 상기 (b) 단계의 혼합 용액 100 중량부에 대하여, 가교제는 0.01 내지 4 중량부를 포함하여 제공된다. 바람직하게는 1 내지 2 중량부가 제공될 수 있다. 가교제를 상기 범위로 투입하면, 겔화가 발생되고, 이를 동결건조하여 우수한 성능을 제공하는 상호침투폴리머네트워크(Interpenetrating Polymer Networks, IPN) 또는 반상호침투폴리머네트워크(Semi Interpenetrating Polymer Networks, SIPN)를 제공할 수 있으며, 지혈 파우더로서의 우수한 성능을 제공할 수 있음을 확인할 수 있다.
본 발명의 일 실시예를 따르면, 상기 가교제는 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상을 제공할 수 있다. 바람직하게는 글리옥살이 제공될 수 있다
더불어, 가교제를 투입하여 겔화가 형성될 때까지, 반응 조건은 반응 온도가 70 내지 100℃이고, 반응 시간은 3시간 내지 7시간 진행되는 것을 제공한다. 바람직하게는 80℃가 제공되며, 반응 시간은 5시간이 제공된다. 겔화가 진행된 용액은 스프레이 건조 과정을 거친 후, 생분해성 고흡수성 폴리머를 최종적으로 형성할 수 있다.
스프레이 건조는 통상적인 분무 건조 장치로 수행할 수 있으며, 예를 들어서, 건조 챔버와 아토마이저(atomiser)를 구비하는 스프레이 건조기를 이용하여 수행할 수 있다. 스프레이 건조기는 20 내지 40 kg/hr의 증발 열량에 의해 건조 챔버 내의 최고 건조온도가 80℃를 넘지 않도록 제어되며, 건조 챔버에 공급된 원료가 5,000 내지 30,000 rpm의 속도로 회전하는 아토마이저에 의해 확산 건조되고, 10 내지 100초의 건조 체류시간을 거쳐 건조될 수 있다.
다음으로 상기 (c) 단계에서, 생체점착성 폴리머(BP)를 제조하는 단계가 제공된다.
본 발명의 일 실시예를 따르면, 산 수용액 100 중량부에 대하여, 티오글리콜산 0.01 내지 4 중량부 및 키토산, 콜라겐, 하이루론산, 알지네이트, 카복시메틸세를로오스 및 하이드록시에틸셀룰로오스에서 선택되는 적어도 어느 하나 이상을 포함하는 1 내지 20 중량부 포함하여 제조한다.
이 경우 제공되는 상기 산 수용액은 상기 산 수용액은 스테아르산, 아세트산, 포름산, 아스코르브산, 시트르산, 옥살산에서 선택되는 적어도 어느 하나 이상을 제공할 수 있으며, 이에 제한되는 것은 아니다.
또한, 상기 산 수용액은 가교제로 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상을 포함하여 제공되며, 이 경우도 산 수용액 100 중량부에 대하여, 가교제는 0.01 내지 4 중량부를 포함하여 제공된다.
가교제로 예를 들어 EDAC의 경우, carboxylate acid와 일차 amine을 함유한 생체물질을 교차 결합하는데 사용할 수 있는 수용성 carbodiimide를 의미한다. 따라서, 키노산의 아민기와 스테아르산의 카복실산기가 반응하여, 교차 결합을 제공할 수 있다. 또한, NHS의 경우, N-Hydroxyl succinimide를 의미하며, EDAC와 함께 커플링 가교제로서 역할을 제공하여 생체적합성 및 생분해성 조성물을 제공할 수 있다.
본 발명의 일 실시예를 따르면, 상기 티오글리콜산(TGA)의 카복실기 또한 키토산의 1차 아민과 결합이 가능하며, TGA의 농도가 증가할수록 제조되는 마이셀의 표면에 티올(thiol)기가 증가하는 데, 이에 대한 결과는 도 9에 나타내었다.
이에 따라, 최종적으로 (d) 단계로 상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 상기 생체점착성 폴리머(BP)를 혼합하는 단계;를 제공함으로써, 국소 지혈 파우더 조성물의 제조방법이 제공된다. 이 경우, 상기 혼합하는 단계에서 혼합비는 2 내지 8: 8 내지 2로 제공된다. 혼합비의 수치적 의미는 전술한 바와 같다.
이하, 실시예를 통해 본 발명을 설명하고자 하며, 이로써 본 발명을 제한하는 것은 아니다.
<실시예>
[실시예 1: Bio-SAP 제조]
2% 아세트산 수용액에 키토산을 1.25g 넣고 용해시켜 A용액을 제조한다. 증류수에 starch 0.75g을 넣고 80℃에서 용해시켜 B용액을 제조한다. A 및 B 용액을 함께 섞어 교반한 뒤, 가교제(글리옥살)을 넣어 겔화가 형성 되면, 동결건조 후 샘플을 수득한다. 이 경우, 온도는 80℃에서 5시간 정도 반응을 최대로 진행시킨 후, Bio-SAP 를 제조하였다. 이에 대한 SEM(scanning electron microscopy)사진을 비교예와 함께 도 7에 나타내었다.
[실시예 2: Mucoadhesive Polymer 제조]
스테아르산 수용액에 키토산을 1.25g 용해하고 가교제로 EDAC를 0.05g 투입하여, C용액을 제조한다. 상기 용액 C에 티오글리콜산(TGA) 1.1g을 투입하고, 가교제로 EDAC 0.08g, NHS 0.1g 투입한다. 이에 Thiolated Chitosan Particle(TCP)를 파우더를 제조하였다. 이에 대한 TEM 사진을 도 1에 나타내었다.
[실시예 3]
실시예 1 및 실시예 2에 따라 제조된 Bio-SAP 제조 및 BP를 혼합하여 국소 지혈제 파우더를 제조하였다. 이 때, 혼합 비율은 Bio-SAP: BP = 2: 8이다.
[실시예 4]
실시예 3과 혼합 비율을 Bio-SAP: BP = 5: 5인 점을 제외하고 동일하게 제조하였다.
[실시예 5]
실시예 3과 혼합 비율을 Bio-SAP: BP = 8: 2인 점을 제외하고 동일하게 제조하였다.
<비교예>
[비교예 1]
시판중인 미국 Celox Media사의 지혈파우더인 상표명 Celox를 사용하였다.
[비교예 2]
시판중인 미국 C.R Bard사의 지혈파우더인 상표명 Arista-AH를 사용하였다.
[비교예 3]
키토산(chitosan) 분말을 사용하였다.
[비교예 4]
전분 글리콜산 나트륨(Sodium Starch Glycolate)을 사용하였다.
[비교예 5]
Crosslinking-chitosan으로 키토산만 가교 결합된 분말을 사용하였다.
[비교예 6]
시판중인 미국 Baxter사의 상표명 Floseal을 사용하였다.
<실험예>
<실험예 1> 수흡수량/혈액흡수량 측정
실시예 1 및 비교예 1 내지 2에 따른 실시예 및 비교예에 따른 혈액 및 수분 흡수율을 도 2에 나타내었다. 측정방법은 하기 설명과 동일하다.
또한, 평량디쉬에 실시예 1 내지 5 및 비교예 1 내지 5를 0.5g의 무게로 정량한다. 마이크로피펫을 사용하여 물 1ml/혈액 1ml씩 실험군에 분사한다. 디쉬를 기울였을 때, 물/혈액이 흘러나올 경우 더 이상 흡수하지 못한다고 보고, 수흡수량/혈액흡수량을 기록한다. 결과값은 수흡수량의 경우, 표 4 및 도 5에 나타내고, 혈액흡수량의 경우, 표 5 및 도 6에 나타내었다.
샘플무게(g) | 흡수량(g) | 흡수율(%)1) | 흡수속도2) | |
비교예 1 | 0.5 | 7 | 1,400 | 1 |
비교예 2 | 0.1 | 1 | 1,000 | 1 |
비교예 3 | 0.5 | 3 | 600 | 1 |
비교예 4 | 0.5 | 12 | 2,400 | 1 |
비교예 5 | 0.1 | - | - | - |
실시예 1 | 0.5 | 5 | 1,000 | 1 |
실시예 2 | 0.5 | 0.5 | 100 | 2 |
실시예 3 | 0.1 | 0.9 | 900 | 2 |
실시예 4 | 0.1 | 0.6 | 600 | 2 |
실시예 5 | 0.1 | 0.4 | 400 | 2 |
1) 흡수율(W1-W0)*100,
2) 흡수속도: 1-5초이내(1), 2-10초이내(2), 3-30초이내(3), 4-30초 이상(4)
샘플무게(g) | 흡수량(g) | 흡수율(%)1) | 흡수속도2) | |
비교예 1 | 0.5 | 2 | 400 | 4 |
비교예 2 | 0.1 | 0.4 | 400 | 4 |
비교예 3 | 0.5 | 1 | 200 | 4 |
비교예 4 | 0.5 | 3 | 600 | 4 |
비교예 5 | 0.1 | 0.6 | 600 | 2 |
실시예 1 | 0.5 | 6 | 1,200 | 1 |
실시예 2 | 0.5 | 0.5 | 100 | 2 |
실시예 3 | 0.1 | 1 | 1,000 | 2 |
실시예 4 | 0.1 | 0.6 | 600 | 2 |
실시예 5 | 0.1 | 0.4 | 400 | 2 |
1) 흡수율(W1-W0)*100,
2) 흡수속도: 1-5초이내(1), 2-10초이내(2), 3-30초이내(3), 4-30초 이상(4)
도 2의 결과를 참고로 실시예 1의 경우, 비교예 1과 2에 비하여, 혈액 흡수율이 우수함을 확인할 수 있다.
또한, 수흡수량을 나타내는 표 4 및 도 5에 비추어, 비교예 1 내지 2의 경우 약 1000%의 수흡수량을 나타내었고, 비교예 5의 경우 흡수가 일어나지 않고, 표면에 분리되어 있는 모습을 나타내었다. 또한, 실시예 2인 BP(Thiolated Chitosan Particle)만 사용한 경우보다, 실시예 1의 SAP을 혼합한 실시예 3 내지 5의 경우가 수흡수능이 향상되는 것을 육안으로 확인할 수 있었다.
더불어, 혈액흡수량을 나타내는 표 5 및 도 6에 비추어, 실시예 2인 인 BP(Thiolated Chitosan Particle)만 사용한 경우보다, 실시예 1의 SAP을 혼합한 실시예 3 내지 5의 경우가 혈액흡수능이 향상되는 것을 확인할 수 있었다.
또한, 비교예에 비하여, 실시예 3 내지 5의 경우, 흡수속도 또한 향상되는 것을 확인할 수 있다. 반면, 도 6의 비교예의 경우, 혈액이 잘 흡수하지 않는 것을 육안으로 확인할 수 있다.
<실험예 2> Thiol기 정량
실시예 2에서 제조되는 TCP(Thiolated Chitosan Particle) 합성 시, TGA(Thio glycolic acid)의 농도를 다르게 하여 합성을 진행한다. (T1,2,3,4: 숫자가 커질수록 높은 TGA 농도를 첨가한다.) 합성 완료 후, Ellman's reagent buffer solution을 이용하여, L-Cystein을 각기 다른 농도로 용해시켜준다. UV를 이용하여 Calivration curve를 측정한 뒤, T1,2,3,4도 차례로 buffer solution에 넣어 용해시킨 뒤 흡광도를 측정하여 Thiol기 농도를 구해준다. 결과값은 도 9에 나타내었다.
도 9에서는 TGA 농도에 따른 흡광도 및 Thiol기의 농도를 나타낸 결과값을 나타내고 있다. 따라서, TGA 농도가 증가할수록 키토산 표면의 Thiol 농도가 증가하는 것을 확인할 수 있다. Thiol기 농도가 증가할수록 출혈부위 조직과의 접착력이 높아진다. 이는 국소지혈파우더가 출혈부위에서 혈액과 상호작용하여 물리적인 장벽 역할까지 기대할 수 있으므로 더욱 빠른 지혈효과를 나타난다.
<실험예 3> in vitro 지혈능 실험
20ml vial에 혈액 4ml, 0.25M CaCl2 용액을 0.4ul을 넣어준다. 샘플을 0.4ml 정도 취하여, 1)의 vial에 넣어 준 뒤 37℃ 항온 수조에 넣고 시간을 측정한다. Vial을 기울였을 때 혈액이 흐르지 않는 시점에서 시간을 기록한다. 이에 결과값을 표 6 및 도 10에 나타내었다.
지혈시간 | |
비교예 1 | 6분 33초 |
비교예 2 | 7분 27초 |
비교예 3 | 5분 17초 |
비교예 4 | - |
실시예 1 | 3분 |
실시예 2 | 4분 55초 |
실시예 3 | 3분 58초 |
실시예 4 | 3분 5초 |
실시예 5 | 3분 30초 |
상기 표 6 및 도 10에 비추어, 비교예 1 내지 4에 비하여, 본 발명에 따른실시예 3 내지 5의 경우 지혈 시간이 현저하게 단축되는 것을 확인할 수 있다. 특히, 실시예 4의 경우인 혼합 비율은 Bio-SAP: BP = 5: 5의 경우 지혈 시간이 매우 단축되는 것을 확인할 수 있다. 이에 지혈 파우더로서 수술 시, 의사의 시야를 확보할 수 있으며, 수술 시간을 단축시킬 수 있는 효과를 제공할 수 있다. 또한, 도 10에서 전체적인 응고보다 바닥 부분에서 응고가 먼저 일어나는 것을 확인할 수 있었다.
<실험예 4> in vivo 지혈능 실험(Rat liver)
Rat을 마취하여 복부를 절개한 후, 간을 꺼내 필터페이퍼로 말려들어가지 않게 고정한다. 간 1cm 정도를 절개한 뒤 출혈이 관찰되면 샘플을 적용한다. 샘플은 0.4ml씩 적용한다. 출혈이 더 이상 일어나지 않는 시점의 구별이 명확하지 않는 점에서 2분의 시간을 기준으로 지혈능을 확인하였다. (이 경우, 지혈시간, 조직과의 접착성, 재출혈 여부 등을 확인한다.
지혈시간 | ||
비교예 1 | 2분 | 2분 |
비교예 2 | 2분(재출혈 관찰됨) | 2분 |
비교예 6 | 1분 | 2분 |
실시예 1 | 지혈 안 됨 | 지혈 안 됨 |
실시예 2 | 2분 뒤 지혈(재출혈 관찰됨) | 2분 뒤 지혈 (재출혈 관찰됨) |
실시예 3 | 2분 | 2분(재출혈 관찰됨) |
실시예 4 | 2분 | 2분 |
실시예 5 | 2분 | 2분(재출혈 관찰됨) |
상기 표 7에 비추어, 실시예 2 내지 4의 경우, 지혈능이 우수함을 확인할 수 있으며, 특히, 실시예 4의 경우, 지혈 시간은 2분으로 매우 우수하면서, 재출혈 또한 관찰되지 않는 점에서 우수한 지혈능을 제공할 수 있음을 확인하였다.
<실험예 5> in vivo 지혈능 실험(Rat ear)
Rat을 마취시키고 난 뒤, 귀 한쪽을 고정한다. 귀 끝 부분에서 5cm정도 떨어진 혈관 부분을 절개한다. 출혈이 확인되면 실험군들을 0.8ml 적용한다. 지혈되는 시간을 기록한다. (이 경우, 지혈시간, 조직과의 접착성, 재출혈 여부 등을 확인한다.)
평균 지혈 시간 | |
비교예 1 | 지혈 안 됨 |
실시예 1 | 지혈 안 됨 |
실시예 2 | 2분 15초 |
실시예 3 | 1분 11초 |
실시예 4 | 38초 |
실시예 5 | 1분 37초 |
상기 표 8에 비추어, 비교예 1에 비하여, 실시예 3 내지 5는 우수한 지혈능을 확인할 수 있으며, 실시예 4의 경우 평균 지혈 시간 또한 매우 단축이 가능한 것을 확인하였다.
본 발명에 따른 실시예를 다양한 실험방법으로 실험해본 결과, 지혈제의 필수 조건인 지혈능이 우수함을 확인 가능하다. 외과적 수술 시, 출혈을 멈추게 하거나 예방하기 위해서 제공되는 지혈제는, 유효 지혈능이 중요하며, 특히, 지혈에 걸리는 시간은 매우 중요하다. 이에, 본 발명에 따른 국소 지혈 파우더는 지혈을 즉각적으로 유도함으로써 출혈 관리를 도와 의사들의 시야를 확보하여 빠른 수술을 가능하게 하고, 과다 출혈을 신속하게 지혈할 수 있으므로 지혈제로의 우수한 효과를 제공하는 것을 확인할 수 있다.
또한, 이는 파우더 타입으로 사용이 간편하고, 우수한 지혈능이 있는 점에서 복강경, 내시경 등의 시술에서 적용을 할 수 있으며, 또한, 생체생분해능 또한 우수하여, 인체에 무해하며 면역반응을 일으키지 않으며, 발열 반응 역시 일으키지 않는 점에서 다양하게 용도에 따라 적용이 가능하다.
더불어, 기존의 파우더에 비하여, 혈액에 의하여 잘 흘러가버리는 문제점 역시 해결하여, 안전하면서 경제적으로도 유용한 지혈제를 제공할 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.
본 발명은 국소 지혈 파우더 조성물 및 그 제조방법을 제공할 수 있다.
본 발명은 국소 지혈 파우더 조성물의 경우, 생체 내 생분해성을 제공하고 혈액에 대한 흡수능이 현저하게 향상되어 우수한 지혈능 유효성을 제공할 수 있다.
또한, 기존에 파우더 타입의 지혈제가 출혈액에 의해 흘러버리는 문제점을 해결할 수 있다.
본 발명은 파우더 타입의 지혈제를 제공하여, 사용 및 취급상의 용이성을 제공할 수 있다.
본 발명은 파우더 타입의 지혈제를 제공하여, 면역반응을 일으키지 않으며 안전하면서 경제적인 지혈제를 제공할 수 있다.
또한, 상기 파우더 타입의 지혈제를 외과적 시술에서도 사용이 가능케 하며, 내시경, 복강경 시술에도 적용이 가능케 하여 기술의 활용성을 향상시키는 효과를 제공할 수 있다.
Claims (18)
- 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)를 포함하는 국소 지혈 파우더 조성물.
- 제 1 항에 있어서,상기 생분해성 고흡수성 폴리머(Bio-SAP)는 가교제에 의해 상호침투폴리머네트워크(IPN) 또는 반상호침투폴리머네트워크(SIPN) 구조를 포함하는 국소 지혈 파우더 조성물.
- 제 1 항에 있어서,상기 생분해성 고흡수성 폴리머(Bio-SAP)는 폴리사카리드(polysaccharide)로 전분, 키토산, 플루란(pullulan), 케라틴, 알지네이트, 카라기난, 셀룰로오스와 천연검(natural gum)류, 하이루론산, 글리코아미노글리칸(glycoaminoclycan, GAG)류 및 그들의 유도체에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물.
- 제 1 항에 있어서,상기 생체점착성 폴리머(BP)의 표면은 티올(thiol)기, 카테콜(catechol)기, 알데하이드(aldehyde)기, 디하이드라자이드(dihydrazide)기 및 메타크릴레이트(methacrylate)기에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물.
- 제 2 항에 있어서,상기 생분해성 고흡수성 폴리머(Bio-SAP) 100 중량부에 대하여, 가교제는 0.01 내지 4 중량부를 포함하는 국소 지혈 파우더 조성물.
- 제 2 항에 있어서,상기 가교제는 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물.
- 제 1 항에 있어서,상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 생체점착성 폴리머(BP)의 비율은 2 내지 8: 8 내지 2인 국소 지혈 파우더 조성물.
- 제 1 항 내지 제 7 항 중 어느 한 항에 따른 조성물을 포함하는 국소 지혈 파우더.
- 제 8 항에 있어서,상기 국소 지혈 파우더의 평균 직경은 1 내지 500㎛인 국소 지혈 파우더.
- (a) 용액 A 및 B를 각각 제조하는 단계;(b) 상기 A 및 B 용액을 혼합한 혼합 용액에 가교제를 투입하여 생분해성 고흡수성 폴리머(Bio-SAP)를 형성하는 단계;(c) 생체점착성 폴리머(BP)를 제조하는 단계; 및(d) 상기 생분해성 고흡수성 폴리머(Bio-SAP) 및 상기 생체점착성 폴리머(BP)를 혼합하는 단계;를 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (a)단계의 용액 A는 산 수용액 100 중량부에 대하여, 키토산, 전분,케라틴, 플루란에서 선택되는 적어도 어느 하나 이상을 1 내지 20 중량부 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (a)단계의 용액 B는 증류수 100 중량부에 대하여, 전분 또는 변성전분을 1 내지 10 중량부 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (b)단계의 혼합 용액 100 중량부에 대하여, 가교제는 0.01 내지 4 중량부를 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (b)단계의 가교제는 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (c)단계의 생체점착성 폴리머(BP)의 제조는산 수용액 100 중량부에 대하여, 티오글리콜산 0.01 내지 4 중량부 및 폴리사카리드(polysaccharide) 1 내지 20 중량부 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 15 항에 있어서,상기 폴리사카리드(polysaccharide)는 전분, 키토산, 플루란(pullulan), 케라틴, 알지네이트, 카라기난, 셀룰로오스, 천연검(natural gum)류, 하이루론산, 글리코아미노글리칸(glycoaminoclycan, GAG)류 및 그들의 유도체에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 15 항에 있어서,상기 산 수용액은 가교제로 글리옥살, 글루타르알데하이드, 시트르산, 1-에틸-3(3-디메틸아미노프로필)카보디이미드(EDAC), N-하이드록시숙신이미드(NHS), 디아이소시아네이트 및 디아세트알데하이드에서 선택되는 적어도 어느 하나 이상을 포함하는 국소 지혈 파우더 조성물의 제조방법.
- 제 10 항에 있어서,상기 (d)단계의 생분해성 고흡수성 폴리머(Bio-SAP) 및 상기 생체점착성 폴리머(BP)를 혼합하는 단계에서 혼합비는 2 내지 8: 8 내지 2인 것인 국소 지혈 파우더 조성물의 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/006,061 US20230277721A1 (en) | 2020-07-20 | 2021-05-31 | Topical hemostatic powder composition and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0089427 | 2020-07-20 | ||
KR1020200089427A KR102521769B1 (ko) | 2020-07-20 | 2020-07-20 | 국소 지혈 파우더 조성물 및 이의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022019467A1 true WO2022019467A1 (ko) | 2022-01-27 |
Family
ID=79728833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/006759 WO2022019467A1 (ko) | 2020-07-20 | 2021-05-31 | 국소 지혈 파우더 조성물 및 이의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230277721A1 (ko) |
KR (1) | KR102521769B1 (ko) |
WO (1) | WO2022019467A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102685039B1 (ko) | 2021-07-05 | 2024-07-18 | 주식회사 테라시온바이오메디칼 | 생체적합성 고분자를 포함하는 파우더형 지혈제 및 그의 제조방법 |
WO2024035145A1 (ko) * | 2022-08-10 | 2024-02-15 | 연세대학교 산학협력단 | 알데히드와 카테콜기가 도입된 전분 하이드로젤 및 이의 용도 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080030094A (ko) * | 2005-07-13 | 2008-04-03 | 헴콘, 인크. | 키토산과 같은 친수성 중합체 포움으로부터 형성된 입상지혈제를 사용하는 지혈 조성물, 집합체, 시스템 및 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2849288C (en) | 2011-11-21 | 2016-03-22 | Innotherapy Inc. | Hydrogel comprising catechol group-coupled chitosan or polyamine and poloxamer comprising thiol group coupled to end thereof, preparation method thereof, and hemostat using same |
KR101507589B1 (ko) | 2013-06-19 | 2015-04-08 | 순천향대학교 산학협력단 | 전기방사된 젤라틴/bcp와 키토산 하이드로젤 조성의 골 지혈제 제조방법 |
WO2017165490A1 (en) | 2016-03-22 | 2017-09-28 | President And Fellows Of Harvard College | Biocompatible adhesives and methods of use thereof |
CN107501577B (zh) | 2017-09-21 | 2020-02-18 | 天津工业大学 | 一种可降解原位凝胶的制备方法 |
-
2020
- 2020-07-20 KR KR1020200089427A patent/KR102521769B1/ko active IP Right Grant
-
2021
- 2021-05-31 US US18/006,061 patent/US20230277721A1/en active Pending
- 2021-05-31 WO PCT/KR2021/006759 patent/WO2022019467A1/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080030094A (ko) * | 2005-07-13 | 2008-04-03 | 헴콘, 인크. | 키토산과 같은 친수성 중합체 포움으로부터 형성된 입상지혈제를 사용하는 지혈 조성물, 집합체, 시스템 및 방법 |
Non-Patent Citations (4)
Title |
---|
EL-MEKAWY AHMED, M. HEGAB HANAA, EL-BAZ ASHRAF, M. HUDSON SAMUEL: "Fabrication and Characterization of Fungal Chitosan-SAP Membranes for Hemostatic Application", CURRENT BIOCHEMICAL ENGINEERING, BENTHAM SCIENCE PUBLISHERS LTD., NL, vol. 1, no. 1, 27 October 2013 (2013-10-27), NL , pages 75 - 82, XP055889809, ISSN: 2212-7119, DOI: 10.2174/22127119113019990001 * |
MEENA LALIT KUMAR, RAVAL PAVANI, KEDARIA DHAVAL, VASITA RAJESH: "Study of locust bean gum reinforced cyst-chitosan and oxidized dextran based semi-IPN cryogel dressing for hemostatic application", BIOACTIVE MATERIALS, vol. 3, no. 3, 8 December 2017 (2017-12-08), pages 370 - 384, XP055889812, ISSN: 2452-199X, DOI: 10.1016/j.bioactmat.2017.11.005 * |
NGWABEBHOH FAHANWI ASABUWA; GAZI MUSTAFA; OLADIPO AKEEM ADEYEMI: "Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel", CHEMICAL ENGINEERING RESEARCH AND DESIGN, ELSEVIER, AMSTERDAM, NL, vol. 112, 1 July 2016 (2016-07-01), AMSTERDAM, NL, pages 274 - 288, XP029666839, ISSN: 0263-8762, DOI: 10.1016/j.cherd.2016.06.023 * |
WU ZHENGGUO, ZHOU WEI, DENG WEIJIE, XU CHANGLIANG, CAI YUN, WANG XIAOYING: "Antibacterial and Hemostatic Thiol-Modified Chitosan-Immobilized AgNPs Composite Sponges", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 18, 6 May 2020 (2020-05-06), US , pages 20307 - 20320, XP055889810, ISSN: 1944-8244, DOI: 10.1021/acsami.0c05430 * |
Also Published As
Publication number | Publication date |
---|---|
US20230277721A1 (en) | 2023-09-07 |
KR20220010831A (ko) | 2022-01-27 |
KR102521769B1 (ko) | 2023-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022019467A1 (ko) | 국소 지혈 파우더 조성물 및 이의 제조방법 | |
ES2299182T3 (es) | Dispositivos medicos bioabsorbibles de polisacaridos oxidados. | |
WO2020116924A1 (ko) | 파이로갈롤기로 기능화한 다당류 기반의 지혈용 조직 접착제 및 조성물 | |
JP3337472B2 (ja) | 創傷治癒剤 | |
JP4566189B2 (ja) | 癒着防止材 | |
EP1156839B1 (fr) | Peptide collagenique reticule pour la prevention des adherences post-chirurgicales | |
WO2019022493A1 (ko) | 히알루론산-칼슘 및 폴리라이신을 포함하는 창상 피복재 및 그 제조 방법 | |
WO2022265368A1 (ko) | 점막 부착성과 팽윤성이 우수한 필름 형태의 유착방지용 조성물 | |
KR20100093516A (ko) | 외과용 하이드로겔 | |
WO2010050787A2 (ko) | 스프레이 가능한 캡슐화된 기능성 미립자 조성물 및 그 제조방법 | |
JPH0811121B2 (ja) | 生物分解可能なマトリックスおよびその製造法 | |
KR20070051297A (ko) | 조직-접착성 물질 | |
EP1940877A1 (fr) | Polymères biodégradables modifiés, leur préparation et leur usage pour la fabrication de biomatériaux et de pansements | |
WO2004081055A1 (ja) | 架橋性多糖誘導体、その製造方法、架橋性多糖組成物および医療用処置材 | |
CN111848855A (zh) | 一种具有pH响应的可注射水凝胶敷料及其制备方法和应用 | |
KR20160060519A (ko) | 창상치료용 알긴산 하이드로젤 및 그 제조방법 | |
Zhao et al. | Engineering pH responsive carboxyethyl chitosan and oxidized pectin-based hydrogels with self-healing, biodegradable and antibacterial properties for wound healing | |
WO2022019701A1 (ko) | 유착방지용 고분자 조성물 | |
CN116870243B (zh) | 一种具有止血抗炎作用的水凝胶及其制备方法和应用 | |
WO2022126629A1 (zh) | 一种液体创可贴及其制备方法 | |
CN105126153B (zh) | 一种含有凝血酶的复合止血膜及其制备方法 | |
WO2024035145A1 (ko) | 알데히드와 카테콜기가 도입된 전분 하이드로젤 및 이의 용도 | |
WO2023182763A1 (ko) | 아민-말단화 된 페놀 유도체가 수식된 알데히드 치환 히알루론산 유도체 및 그의 용도 | |
WO2022119289A1 (ko) | 팽창성 창상피복재 및 이의 제조방법 | |
Liu et al. | A biodegradable, adhesive, and stretchable hydrogel and potential applications for allergic rhinitis and epistaxis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21847257 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21847257 Country of ref document: EP Kind code of ref document: A1 |