WO2022019286A1 - 衝撃吸収シート - Google Patents

衝撃吸収シート Download PDF

Info

Publication number
WO2022019286A1
WO2022019286A1 PCT/JP2021/027061 JP2021027061W WO2022019286A1 WO 2022019286 A1 WO2022019286 A1 WO 2022019286A1 JP 2021027061 W JP2021027061 W JP 2021027061W WO 2022019286 A1 WO2022019286 A1 WO 2022019286A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
layer
shock absorbing
absorbing sheet
containing layer
Prior art date
Application number
PCT/JP2021/027061
Other languages
English (en)
French (fr)
Inventor
翔 英
香織 宮崎
毅 倉知
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020237001954A priority Critical patent/KR20230041697A/ko
Priority to JP2022538011A priority patent/JPWO2022019286A1/ja
Priority to CN202180045535.9A priority patent/CN115715255A/zh
Publication of WO2022019286A1 publication Critical patent/WO2022019286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin

Definitions

  • the present disclosure relates to a shock absorbing sheet, and more particularly to a shock absorbing sheet including a silicone-containing layer and an elastic layer.
  • the display of the display device used in various electronic devices is provided with a shock absorbing sheet for absorbing shocks and vibrations generated when the display device is dropped.
  • these electronic devices have been rapidly reduced in size and thickness, and in response to this, shock absorbing sheets that can exhibit excellent shock absorption even if the shock absorbing layer is thinned have been studied (in response to this). See Patent Document 1, Patent Document 2 and Patent Document 3).
  • the shock absorbing sheet used in a display device including such a flexible display may have problems such as deformation such as unevenness caused by collision with an object due to dropping or the like.
  • An object of the present disclosure is to provide a shock absorbing sheet having excellent shock absorbing properties and recoverability against uneven deformation.
  • the shock absorbing sheet includes a silicone-containing layer containing a silicone resin and an elastic layer overlapping the silicone-containing layer.
  • the thickness of the silicone-containing layer is 50% or more and 98% or less of the thickness of the shock absorbing sheet.
  • the degree of needle insertion at 25 ° C. according to JIS K 2207 of the silicone-containing layer is 60 or more and 160 or less.
  • the tensile elastic modulus of the elastic layer is 1 ⁇ 10 6 Pa or more and 1 ⁇ 10 9 Pa or less, and the breaking elongation rate of the elastic layer is 100% or more.
  • FIG. 1 is a schematic cross-sectional view of a shock absorbing sheet according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a shock absorbing sheet according to another embodiment of the present disclosure.
  • the shock absorbing sheet according to the present embodiment (hereinafter, also referred to as shock absorbing sheet 1) includes a silicone-containing layer containing a silicone resin and an elastic layer overlapping the silicone-containing layer.
  • the thickness of the silicone-containing layer is 50% or more and 98% or less of the thickness of the shock absorbing sheet 1.
  • the degree of needle insertion at 25 ° C. according to JIS K 2207 of the silicone-containing layer is 60 or more and 160 or less.
  • the tensile elastic modulus of the elastic layer is 1 ⁇ 10 6 Pa or more and 1 ⁇ 10 9 Pa or less, and the breaking elongation rate of the elastic layer is 100% or more.
  • "overlapping" means that the silicone-containing layer and the elastic layer overlap in a plan view.
  • the present inventors have the efficiency of absorbing energy due to impact, the ability to recover to the original state when uneven deformation occurs, and the silicone-containing layer. It was found that there is a relationship between the degree of needle penetration and the tensile elastic modulus and the elongation at break of the elastic layer. That is, the degree of needle penetration of the silicone-containing layer is within the above-mentioned specific range, the tensile elastic modulus of the elastic layer is 1 ⁇ 10 6 Pa or more and 1 ⁇ 10 9 Pa or less, and the breaking elongation rate is 100% or more.
  • the shock absorbing sheet 1 can improve the recoverability against uneven deformation without impairing the shock absorbing property.
  • the degree of needle penetration of the silicone-containing layer is out of the above range, or the tensile elastic modulus of the elastic layer is out of the above range or the elongation at break is less than the above value, the flexibility of the silicone-containing layer or the elastic layer is appropriate. The resilience to uneven deformation is reduced due to the fact that it disappears.
  • the thickness of the silicone-containing layer is 50% or more of the thickness of the impact absorbing sheet 1 98. We found that it was necessary to be less than or equal to%. If this thickness is less than 50%, the impact absorption is lowered because the flexibility of the impact absorption sheet 1 is not appropriate. Further, when this thickness exceeds 98%, the thickness of the elastic layer becomes thin, and thus the recoverability against uneven deformation becomes low.
  • FIG. 1 shows an example of a shock absorbing sheet according to this embodiment.
  • the shock absorbing sheet 1 of FIG. 1 includes a silicone-containing layer 2 and an elastic layer 3 that directly overlaps the silicone-containing layer 2.
  • the silicone-containing layer 2 contains a silicone resin.
  • the silicone-containing layer 2 preferably contains a silicone resin as a main component.
  • the "main component” refers to a component having the largest mass ratio, preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.
  • the shock absorbing sheet 1 may have one silicone-containing layer 2 or two or more layers, but is usually one layer.
  • the shape of the silicone-containing layer 2 is, for example, a film shape, a sheet shape, a plate shape, or the like.
  • the thickness of the silicone-containing layer 2 is 50% or more and 98% or less of the thickness of the shock absorbing sheet 1.
  • the thickness of the silicone-containing layer 2 is preferably 63% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 83% or more.
  • the thickness of the silicone-containing layer 2 is preferably 96% or less, more preferably 94% or less, further preferably 92% or less, and particularly preferably 90% or less.
  • the thickness of the silicone-containing layer 2 is preferably 50 ⁇ m or more. In this case, the impact absorption of the impact absorption sheet 1 can be further improved. This thickness is more preferably 100 ⁇ m or more, further preferably 150 ⁇ m or more, and particularly preferably 200 ⁇ m or more. Further, the thickness of the silicone-containing layer 2 is preferably 500 ⁇ m or less. In this case, the shock absorbing sheet 1 can further improve the bending resistance. This thickness is more preferably 400 ⁇ m or less, further preferably 350 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the degree of needle penetration of the silicone-containing layer 2 is 60 or more and 160 or less.
  • This needle insertion degree is in accordance with JIS K2207, using the needle insertion degree tester RPM-201 manufactured by Rigo Co., Ltd., in a sample at 25 ° C. under the condition that the total weight of the needle holder and the needle is 50 g. It is a value obtained by multiplying the depth (mm) of the needle penetration by 10 in 5 seconds.
  • the degree of needle entry is preferably 70 or more, more preferably 80 or more, further preferably 90 or more, and particularly preferably 100 or more. In this case, the shock absorption can be further improved. Further, the degree of needle entry is preferably 150 or less, more preferably 140 or less, further preferably 130 or less, and particularly preferably 120 or less. In this case, the recoverability against uneven deformation can be further improved.
  • the storage elastic modulus (G1) at ⁇ 20 ° C. and the storage elastic modulus (G2) at 25 ° C. of the silicone-containing layer 2 are both preferably 1 ⁇ 10 4 Pa or more and less than 1 ⁇ 10 6 Pa.
  • At least one of G1 and G2 is less than 1 ⁇ 10 4 Pa or 1 ⁇ 10 6 Pa or more, the adhesive force between the layers becomes small at low temperature, the peeling resistance decreases, and the impact resistance and the recovery against uneven deformation Sex may be reduced.
  • At least one of G1 and G2 is more preferably 1.5 ⁇ 10 4 or more and 1 ⁇ 10 5 or less, further preferably 1.8 ⁇ 10 4 or more and 5 ⁇ 10 4 or less, and 2 ⁇ 10 4 It is particularly preferable that the amount is 3 ⁇ 10 4 or less, and even more preferably 2.2 ⁇ 10 4 or more and 2.7 ⁇ 10 4 or less. Further, it is most preferable that both G1 and G2 are in the above range. By setting G1 and G2 in the above range, peeling resistance and bending resistance at low temperatures can be further improved.
  • the "silicone resin” refers to a compound containing a polysiloxane chain (-Si-O-Si-O-) composed of a siloxane bond as a main skeleton.
  • the silicone resin preferably contains a silicone gel from the viewpoint of shock absorption performance, and more preferably contains an addition reaction type silicone gel from the viewpoint that the degree of needle penetration of the silicone-containing layer 2 can be easily adjusted in the above range.
  • the addition reaction type silicone gel is obtained, for example, by using organohydrogenpolysiloxane and alkenylpolysiloxane, which will be described later, as raw materials, and subjecting both to a hydrosilylation reaction (addition reaction) in the presence of a catalyst.
  • the organohydrogenpolysiloxane is represented by, for example, the following formula (1).
  • R 1 represents the same or different substituted or unsubstituted monovalent hydrocarbon group.
  • R 2, R 3 and R 4 represents R 1 or -H, at least two of R 2, R 3 and R 4 represents -H.
  • x and y indicate the number of each unit, and are independently integers of 0 or more.
  • x + y is an integer of 5 or more and 300 or less.
  • x is 10 or more and 30 or less.
  • y is preferably 1 or more and 10 or less.
  • x + y is preferably 30 or more and 200 or less.
  • y / (x + y) is preferably 0.1 or less. If y / (x + y) exceeds 0.1, the number of cross-linking points may increase and the impact absorption may decrease.
  • each unit in the equation (1) may be random or block, but random is preferable.
  • the hydrogen atom (Si—H) directly bonded to the silicon atom is necessary for performing an addition reaction (hydrosilylation reaction) with the alkenyl group directly or indirectly bonded to the silicon atom, and is contained in the organohydrogenpolysiloxane molecule. It is preferable to have at least two of them.
  • the alkenylpolysiloxane is represented by, for example, the following formula (2).
  • R 1 represents the same or different substituted or unsubstituted monovalent hydrocarbon group.
  • R 5 , R 6 and R 7 represent R 1 or an alkenyl group. At least two of R 5 , R 6 and R 7 represent alkenyl groups.
  • s and t indicate the number of each unit, and are independently integers of 0 or more.
  • s + t is an integer of 10 or more and 600 or less.
  • s is 10 or more and 30 or less.
  • t is preferably 1 or more and 10 or less.
  • t / (s + t) is preferably 0.1 or less. If t / (s + t) exceeds 0.1, the number of cross-linking points may increase and the impact absorption may decrease.
  • alkenyl group (vinyl group, allyl group, etc.) directly or indirectly bonded to a silicon atom is necessary for carrying out an addition reaction (hydrosilylation reaction) with a hydrogen atom (Si—H) directly bonded to a silicon atom.
  • R 1 in the formula (1) and the formula (2) examples include an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group; a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group; a phenyl group and a trill group.
  • alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group
  • a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group
  • a phenyl group and a trill group examples include an aryl group; an aralkyl group such as a benzyl group and a phenethyl group; a halogenated hydrocarbon group in which a part or all of the hydrogen atom of these groups is substituted with a chlorine atom, a fluorine atom or the
  • the hydrosilylation reaction can be carried out using a known technique.
  • the catalyst for the hydrosilylation reaction include platinum chloride acid, a complex obtained from platinum chloride acid and an alcohol, a platinum-olefin complex, a platinum-vinylsiloxane complex, and a platinum-phosphorus complex.
  • the amount of the catalyst used is usually 1 ppm or more and 500 ppm or less, and preferably 3 ppm or more and 200 ppm or less as a platinum atom with respect to the alkenylpolysiloxane.
  • the silicone-containing layer 2 may contain components other than the silicone resin, such as resins, pigments, heat-dissipating fine particles, flame retardants, and heat stabilizers, as long as the effects of the present disclosure are not impaired.
  • the method for forming the silicone-containing layer 2 is not particularly limited, but for example, a method of applying a silicone resin to the surface of the elastic layer 3, a composition containing a precursor of the silicone resin is molded by a molding method such as an extrusion molding method, and then the silicone-containing layer 2 is formed. Examples thereof include a method of forming a silicone resin by performing a curing reaction such as a hydrosilylation reaction.
  • the elastic layer 3 is arranged so as to be overlapped with the silicone-containing layer 2.
  • the elastic layer 3 has a tensile elastic modulus of 1 ⁇ 10 6 Pa or more and 1 ⁇ 10 9 Pa or less, and a breaking elongation rate of 100% or more.
  • the shock absorbing sheet 1 may be provided with one elastic layer 3, two layers, or three or more layers.
  • the shape of the elastic layer 3 is, for example, a film shape, a sheet shape, a plate shape, or the like.
  • the thickness of the elastic layer 3 is preferably 5 ⁇ m or more. In this case, the shock absorption can be further improved. This thickness is more preferably 10 ⁇ m or more, and further preferably 20 ⁇ m or more. Further, this thickness is preferably 100 ⁇ m or less. In this case, the bending resistance can be further improved. This thickness is more preferably 70 ⁇ m or less, and further preferably 50 ⁇ m or less.
  • Tensile modulus of the elastic layer 3 is preferably not less 2.5 ⁇ 10 6 or more 5.0 ⁇ 10 8 or less, more preferably 5.0 ⁇ 10 6 or more 2.5 ⁇ 10 8 or less, It is more preferably 1.0 ⁇ 10 7 or more and 1.0 ⁇ 10 8 or less, and particularly preferably 2.5 ⁇ 10 7 or more and 7.5 ⁇ 10 7 or less. In this case, the recoverability against uneven deformation can be further improved without impairing the impact absorption.
  • the material that can be used for the elastic layer 3 is not particularly limited as long as it is a resin having a tensile elastic modulus and a breaking elongation in the above range.
  • the resin include (meth) acrylic resin, polyester resin, urethane resin, polyvinyl resin (polyvinyl alcohol, vinyl chloride-vinyl acetate copolymer, etc.), epoxy resin, and the like.
  • the (meth) acrylic resin comprises both acrylic and methacrylic resins and contains structural units derived from (meth) acrylic acid esters.
  • the elastic layer 3 preferably contains an elastic elastomer resin from the viewpoint of further improving the recoverability against uneven deformation.
  • stretchable elastomer resin examples include acrylic elastomers, urethane elastomers, olefin elastomers, amide elastomers, styrene elastomers, and ester elastomers.
  • acrylic elastomer examples include copolymers in which the hard segment contains a (meth) acrylic acid ester unit and the soft segment contains an acrylonitrile unit, an ethylene unit, a (meth) acrylic acid ester unit, and the like.
  • urethane-based elastomer examples include a copolymer in which the hard segment contains a polyurethane structure and the soft segment contains a polyester structure, a polyether structure, a polycaprolactone structure, and the like.
  • the olefin-based elastomer is a polymer alloy in which an olefin-based rubber such as ethylene / propylene rubber or an ethylene / propylene / diene ternary copolymer is finely dispersed in a matrix of an olefin resin such as polypropylene or polyethylene; a hard segment.
  • an olefin-based rubber such as ethylene / propylene rubber or an ethylene / propylene / diene ternary copolymer is finely dispersed in a matrix of an olefin resin such as polypropylene or polyethylene; a hard segment.
  • a copolymer containing a polybutadiene structure and a soft segment containing a polyether structure, a polyester structure, or the like can be mentioned.
  • amide-based elastomer examples include a copolymer in which the hard segment contains a polyamide structure and the soft segment contains a polyether structure, a polyester structure, and the like.
  • styrene-based elastomer examples include copolymers in which the hard segment contains a styrene unit and the soft segment contains a butadiene unit or a hydrogenated butadiene unit, or an isoprene unit or a hydrogenated isoprene unit.
  • ester-based elastomer examples include a copolymer in which the hard segment contains a polyester structure and the soft segment contains a polyether structure, a polyester structure, and the like.
  • the elastic layer 3 preferably contains at least one of a (meth) acrylic resin and an acrylic elastomer from the viewpoint of adhesiveness, transparency and weather resistance.
  • Examples of the (meth) acrylic acid ester that gives the (meth) acrylic resin and the acrylic elastomer include (meth) acrylic monomers such as the (meth) acrylic acid ester having a substituted or unsubstituted monovalent hydrocarbon group. Be done.
  • Examples of the monovalent hydrocarbon group include an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group and a butyl group; and a cycloalkyl group having 3 to 20 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
  • An aryl group having 6 or more and 20 or less carbon atoms such as a phenyl group and a trill group; and an aralkyl group having 7 or more and 20 or less carbon atoms such as a benzyl group and a phenethyl group can be mentioned.
  • the (meth) acrylic resin and the acrylic elastomer have a (meth) acrylic monomer (hereinafter, monomer A) having a homopolymer glass transition temperature (Tg) of ⁇ 10 ° C. or lower from the viewpoint of further improving the recoverability against uneven deformation. It is preferable that the homopolymer contains a copolymer of a (meth) acrylic monomer (hereinafter, also referred to as monomer B) having a Tg of 60 ° C. or higher.
  • Examples of the monomer A include n-butyl acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, isononyl (meth) acrylate, and lauryl methacrylate.
  • Examples of the monomer B include methyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, isobornyl (meth) acrylate and the like.
  • the ratio of the structural unit derived from the monomer A is preferably 45% by mass or more with respect to all the structural units constituting the (meth) acrylic resin and the acrylic elastomer. ..
  • the adhesive force between the elastic layer 3 and the silicone-containing layer 2 can be further increased, and as a result, the peel resistance and the bending resistance can be further improved.
  • This ratio is more preferably 50% by mass or more, further preferably 55% by mass or more, and particularly preferably 60% by mass or more.
  • the proportion of the structural unit derived from the monomer A is preferably 95% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the elastic layer 3 preferably contains a (meth) acrylic block copolymer elastomer having a block composed of a structural unit derived from the monomer A and a block composed of a structural unit derived from the monomer B, and preferably contains a butyl acrylate unit and a methyl. It is more preferred to include (meth) acrylic block copolymer elastomers with methacrylate units.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, aralkyl epoxy resin, phenol novolac type epoxy resin, alkylphenol novolak type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • examples thereof include a dicyclopentadiene type epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group, triglycidyl isocyanurate, an alicyclic epoxy resin and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • epoxy resin for example, a stretchable epoxy elastomer containing two or more epoxy groups and three methyl groups in one molecule and having a molecular weight of 500 or more is preferably exemplified.
  • the epoxy resin may be cured by using an additive such as a curing agent or a curing accelerator.
  • the elastic layer 3 preferably contains at least one of a (meth) acrylic block copolymer elastomer and an epoxy resin, and at least one of the (meth) acrylic block copolymer elastomer and the epoxy resin having a butyl acrylate unit and a methyl methacrylate unit. It is more preferable to include one.
  • the method for forming the elastic layer 3 is not particularly limited, but for example, a method of applying a material constituting the elastic layer 3 to the surface of the silicone-containing layer 2, a method of applying the material constituting the elastic layer 3 to the surface of the elastic layer 3, and a material constituting the silicone-containing layer 2.
  • a method of co-extruding the material constituting the silicone-containing layer 2 and the material constituting the elastic layer 3, a method of forming the elastic layer 3 and the silicone-containing layer 2 separately, and laminating them. can be mentioned.
  • the adhesive strength of the silicone-containing layer 2 to the elastic layer 3 at room temperature is preferably 2N / 25 mm or more. In this case, peel resistance and bending resistance can be further improved.
  • This adhesive force is more preferably 3N / 25 mm or more, further preferably 5N / 25 mm or more, and particularly preferably 7N / 25 mm or more.
  • the shock absorbing sheet 1 may include other layers in addition to the silicone-containing layer 2 and the elastic layer 3.
  • the shape of the other layer is, for example, a film shape, a sheet shape, a plate shape, or the like, and may include an adhesive layer.
  • Examples of other layers include a heat-diffusing layer having a heat-diffusing property, a shield layer having an electromagnetic wave shielding property, and a protective layer such as a separator.
  • Examples of the layer structure of the shock absorbing sheet 1 according to the present embodiment include the following (a) to (p).
  • the notation of A / B / C indicates that, for example, A, B, and C are stacked in this order from the back side of the display.
  • FIG. 2 shows a shock absorbing sheet having the layer structure of (j).
  • the shock absorbing sheet 1 of FIG. 2 has a silicone-containing layer 2, two elastic layers 3 and 3 directly laminated on both surfaces of the silicone-containing layer 2, and two adhesive layers directly laminated on these elastic layers 3, 3.
  • the layers 4 and 4 are provided with separators 5 and 5 directly laminated on the adhesive layers 4 and 4.
  • the total thickness of the silicone-containing layer 2 and the elastic layer 3 in the shock absorbing sheet 1 is preferably 50 ⁇ m or more. In this case, the impact absorption of the impact absorption sheet 1 can be further improved. This thickness is more preferably 100 ⁇ m or more, and further preferably 200 ⁇ m or more. The total thickness is preferably 500 ⁇ m or less. In this case, the bending resistance can be further improved. This thickness is more preferably 400 ⁇ m or less, and further preferably 350 ⁇ m or less.
  • the thickness of the shock absorbing sheet 1 is preferably 50 ⁇ m or more. In this case, the strength of the shock absorbing sheet 1 can be further improved. This thickness is more preferably 100 ⁇ m or more, and further preferably 200 ⁇ m or more. The thickness of the shock absorbing sheet 1 is preferably 500 ⁇ m or less. In this case, it is possible to further reduce the thickness of the display device including the display. This thickness is more preferably 400 ⁇ m or less, and further preferably 350 ⁇ m or less.
  • the impact absorption rate of the impact absorbing sheet 1 is preferably 10% or more, more preferably 20% or more, further preferably 30% or more, and particularly preferably 40% or more.
  • the upper limit of this shock absorption rate may be 100%.
  • the impact absorption rate of the impact absorbing sheet 1 is a value measured by, for example, a steel ball dropping method. The method for measuring the impact absorption rate will be described in the column of Examples described later.
  • the shock absorbing sheet 1 according to the present embodiment can be suitably used for a flexible display.
  • the shock absorbing sheet 1 is preferably used by arranging it on the back surface side or the front surface side of a flexible display such as an organic EL, more preferably arranged on the back surface side, and on the back surface of the flexible display. It is more preferable to use them by directly laminating them.
  • the shock absorbing sheet 1 which is excellent in both shock absorbing property and recoverability against uneven deformation according to the present embodiment in a display device including a flexible display, the flexible display is effectively protected from shock and vibration. be able to.
  • -Resin B Two-component addition reaction type silicone gel (manufactured by Shin-Etsu Chemical Co., Ltd., product number: X32-3443, having a main agent (A) and a curing agent (B))
  • -Resin C Additive-curing silicone adhesive (manufactured by Shin-Etsu Chemical Co., Ltd., product number: X-40-3240, having a main agent (A) and a curing agent (B))
  • the main agent (A) and the curing agent (B) were mixed and used in the blending ratios shown in Table 1.
  • -Elastomer resin that provides an elastic layer-Acrylic elastomer (block copolymer of butyl acrylate (BA) and methyl methacrylate (MMA), manufactured by Claret, product number: LA4285), and acrylic elastomer (butyl acrylate (BA) and methyl).
  • a block copolymer of methacrylate (MMA), manufactured by Kuraray Co., Ltd., product number: LA2270) was used in combination, and the ratio (mass ratio) of BA / MMA was 55/45 (Example 1, Example 2, Example 4, Example). 8 and Example 12) or 52/48 (Example 3 and Comparative Example 4) were mixed and used.
  • LA4285 and an acrylic elastomer (block copolymer of butyl acrylate (BA) and methyl methacrylate (MMA), manufactured by Kuraray Co., Ltd., product number: LA2250) are used in combination, and the ratio of BA / MMA is 65/35 (Example 5). , 13 and 14) were mixed and used. Further, LA4285 and an acrylic elastomer (block copolymer of butyl acrylate (BA) and methyl methacrylate (MMA), manufactured by Kuraray Co., Ltd., product number: LK9243) are used in combination, and the ratio of BA / MMA is 80/20 (Comparative Example 2). ) was mixed and used.
  • the silicone-containing layer was cut into a size of 10 mm in width and 20 mm in length to prepare a test piece.
  • This test piece uses a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) and has a storage elastic modulus at -20 ° C and 25 ° C under the conditions of a frequency of 10 Hz and a heating rate of 5 ° C / min. (Pa) was measured.
  • DVA-200 dynamic viscoelasticity measuring device
  • the elastic layer was cut into a size of 10 mm in width and 20 mm in length to prepare a test piece.
  • a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) was used to determine the tensile elastic modulus (Pa) at 25 ° C. under the conditions of a frequency of 10 Hz and a heating rate of 5 ° C./min. It was measured.
  • This test piece was subjected to room temperature (23 ° C.) by a method based on JIS-Z0237 "Adhesive Tape / Adhesive Sheet Test Method" (bonding conditions: 2 kg roller 1 reciprocation, peeling speed: 300 mm / min, peeling angle: 180 °). ) In the environment.
  • Impact absorption rate (%) (Peak acceleration of aluminum alone-Peak acceleration when a test piece is used) x 100 / (Peak acceleration of aluminum alone)
  • the bending resistance of the shock absorbing sheet was evaluated by performing the bending test shown below.
  • the shock absorbing sheet was cut into a 2 ⁇ 10 cm rectangular object to prepare a test piece.
  • This test piece was used in a planar unloaded U-shaped expansion / contraction tester (manufactured by Yuasa System Equipment Co., Ltd., model number: main body: DMLHB, jig: planar unloaded U-shaped expansion / contraction test jig) with a bending radius of 5 mm. I fixed it so that it would be.
  • the operation of bending the shock absorbing sheet and the operation of returning the shock absorbing sheet were repeated at a speed of 30 times per minute, and the test was performed 10,000 times.
  • the test piece after the bending test was visually observed, and the bending resistance of the shock absorbing sheet was evaluated according to the following criteria.
  • C Wrinkles do not disappear.

Landscapes

  • Laminated Bodies (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

衝撃吸収シート1は、シリコーン樹脂を含むシリコーン含有層2と、シリコーン含有層2に重なる弾性層3とを備える。シリコーン含有層2の厚みは、衝撃吸収シート1の厚みの50%以上98%以下である。シリコーン含有層2のJIS K 2207に準拠した25℃における針入度は80以上160以下である。弾性層3の引張弾性率は1×10Pa以上1×10Pa以下であり、かつ弾性層3の破断伸び率は100%以上である。

Description

衝撃吸収シート
 本開示は、衝撃吸収シートに関し、詳しくは、シリコーン含有層と弾性層とを備える衝撃吸収シートに関する。
 スマートフォン、タブレット型端末、ノートパソコン等の各種電子機器に用いられる表示装置のディスプレイには、表示装置を落下等した際に生じる、衝撃や振動を吸収するための衝撃吸収シートが設けられている。近年、これらの電子機器は小型化、薄型化が急速に進んでおり、これに対応して、衝撃吸収層を薄くしても優れた衝撃吸収性を発揮できる衝撃吸収シートが検討されている(特許文献1、特許文献2及び特許文献3参照)。
 最近では、フォルダブル端末や電子ペーパー等において、有機EL等の可撓性を有するディスプレイが用いられるようになってきている。このような可撓性ディスプレイを含む表示装置に用いられる衝撃吸収シートは、落下等による物体との衝突によって凹凸が生ずる等の変形が起こるなどの不具合が起こることがある。
特開2016-030394号公報 国際公開第2018/131619号 特開2012-102878号公報
 本開示の課題は、衝撃吸収性及び凹凸変形に対する回復性に共に優れる衝撃吸収シートを提供することにある。
 本開示の一態様に係る衝撃吸収シートは、シリコーン樹脂を含むシリコーン含有層と、前記シリコーン含有層に重なる弾性層とを備える。前記シリコーン含有層の厚みは、前記衝撃吸収シートの厚みの50%以上98%以下である。前記シリコーン含有層のJIS K 2207に準拠した25℃における針入度は60以上160以下である。前記弾性層の引張弾性率は1×10Pa以上1×10Pa以下であり、かつ前記弾性層の破断伸び率は100%以上である。
図1は本開示の一実施形態に係る衝撃吸収シートの概略の断面図である。 図2は本開示の他の実施形態に係る衝撃吸収シートの概略の断面図である。
<衝撃吸収シート>
 本実施形態に係る衝撃吸収シート(以下、衝撃吸収シート1ともいう)は、シリコーン樹脂を含むシリコーン含有層と、シリコーン含有層に重なる弾性層とを備える。シリコーン含有層の厚みは、衝撃吸収シート1の厚みの50%以上98%以下である。シリコーン含有層のJIS K 2207に準拠した25℃における針入度は60以上160以下である。弾性層の引張弾性率は1×10Pa以上1×10Pa以下であり、かつ弾性層の破断伸び率は100%以上である。なお、「重なる」とは、平面視において、シリコーン含有層と弾性層とが重なることをいう。
 本発明者らは、シリコーン含有層と弾性層とを備える衝撃吸収シート1において、衝撃によるエネルギーを吸収する効率、及び凹凸変形が起こった場合に元の通りに回復する性能と、シリコーン含有層の針入度、並びに弾性層の引張弾性率及び破断伸び率との間に関連があることを見出した。すなわち、シリコーン含有層の針入度が前記特定範囲であり、かつ弾性層の引張弾性率が1×10Pa以上1×10Pa以下であり、かつ破断伸び率が100%以上であることで、衝撃吸収シート1は、衝撃吸収性を損なうことなく、凹凸変形に対する回復性を向上させることができることを見出した。このように、本開示によれば、衝撃吸収性及び凹凸変形に対する回復性に共に優れる衝撃吸収シートを提供することができる。シリコーン含有層の針入度が前記範囲外であるか、又は弾性層の引張弾性率が前記範囲外若しくは破断伸び率が前記値未満である場合、シリコーン含有層又は弾性層の柔軟性等が適度でなくなることなどにより、凹凸変形に対する回復性が低下する。また、衝撃吸収シート1の衝撃吸収性及び凹凸変形に対する回復性を共に優れたものにするためには、これらに加えて、シリコーン含有層の厚みが、衝撃吸収シート1の厚みの50%以上98%以下であることが必要であることを見出した。この厚みが50%未満の場合、衝撃吸収シート1の柔軟性が適度でなくなること等により、衝撃吸収性が低下する。また、この厚みが98%超の場合、弾性層の厚みが薄くなること等により、凹凸変形に対する回復性が低くなる。
 図1に、本実施形態に係る衝撃吸収シートの一例を示す。図1の衝撃吸収シート1は、シリコーン含有層2と、シリコーン含有層2に直接重なる弾性層3とを備えている。
[シリコーン含有層]
 シリコーン含有層2は、シリコーン樹脂を含む。シリコーン含有層2は、シリコーン樹脂を主成分として含むことが好ましい。「主成分」とは、最も質量割合の大きい成分をいい、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上含有する成分をいう。
 衝撃吸収シート1は、シリコーン含有層2を1層有しても、2層以上有してもよいが、通常1層である。シリコーン含有層2の形状は、例えばフィルム状、シート状、板状等である。
 シリコーン含有層2の厚みは、衝撃吸収シート1の厚みの50%以上98%以下である。シリコーン含有層2の厚みは、63%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、83%以上であることが特に好ましい。シリコーン含有層2の厚みは、96%以下であることが好ましく、94%以下であることがより好ましく、92%以下であることがさらに好ましく、90%以下であることが特に好ましい。シリコーン含有層2の厚みを前記範囲とすることで、衝撃吸収性及び凹凸変形に対する回復性をより向上させることができる。
 シリコーン含有層2の厚みは、50μm以上であることが好ましい。この場合、衝撃吸収シート1の衝撃吸収性をより向上させることができる。この厚みは、100μm以上であることがより好ましく、150μm以上であることがさらに好ましく、200μm以上であることが特に好ましい。また、シリコーン含有層2の厚みは、500μm以下であることが好ましい。この場合、衝撃吸収シート1は、耐屈曲性をより向上させることができる。この厚みは、400μm以下であることがより好ましく、350μm以下であることがさらに好ましく、300μm以下であることが特に好ましい。
 シリコーン含有層2の針入度は、60以上160以下である。この針入度は、JIS K 2207に準拠し、離合社製の針入度試験機RPM-201を用い、針保持具と針の自重が合わせて50gとなる条件にて、25℃の試料中に垂直に貫入させ、5秒間で針が貫入した深さ(mm)を10倍した数値である。針入度は70以上であることが好ましく、80以上であることがより好ましく、90以上であることがさらに好ましく、100以上であることが特に好ましい。この場合、衝撃吸収性をより向上させることができる。また、針入度は150以下であることが好ましく、140以下であることがより好ましく、130以下であることがさらに好ましく、120以下であることが特に好ましい。この場合、凹凸変形に対する回復性をより向上させることができる。
 シリコーン含有層2の-20℃における貯蔵弾性率(G1)及び25℃における貯蔵弾性率(G2)は、共に1×10Pa以上1×10Pa未満であることが好ましい。この場合、低温下におけるシリコーン含有層2と弾性層3との間の粘着力の低下を低減でき、衝撃吸収シート1の耐剥離性をより向上させることができる。また、この場合、低温下におけるシリコーン含有層2と弾性層3との濡れ性を維持させることができると考えられ、層間の粘着力が大幅に低下することなく、低温下の耐剥離性がより向上する。G1及びG2の少なくとも一方が1×10Pa未満若しくは1×10Pa以上の場合、低温下で層間の粘着力が小さくなり、耐剥離性が低下すると共に、耐衝撃性及び凹凸変形に対する回復性が低下する場合がある。G1及びG2の少なくとも一方は、1.5×10以上1×10以下であることがより好ましく、1.8×10以上5×10以下であることがさらに好ましく、2×10以上3×10以下であることが特に好ましく、2.2×10以上2.7×10以下であることがさらに特に好ましい。また、G1及びG2が共に前記範囲であることが最も好ましい。G1及びG2を前記範囲とすることで、低温下における耐剥離性及び耐屈曲性をより向上させることができる。
(シリコーン樹脂)
 「シリコーン樹脂」とは、シロキサン結合からなるポリシロキサン鎖(-Si-O-Si-O-)を主骨格として含む化合物をいう。シリコーン樹脂としては、衝撃吸収性能の観点から、シリコーンゲルを含むことが好ましく、シリコーン含有層2の針入度を前記範囲により調整しやすい観点から、付加反応型シリコーンゲルを含むことがより好ましい。付加反応型シリコーンゲルは、例えば後述するオルガノハイドロジェンポリシロキサンとアルケニルポリシロキサンとを原料とし、両者を触媒の存在下でハイドロシリル化反応(付加反応)させることにより得られる。オルガノハイドロジェンポリシロキサンは、例えば下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは、同一又は異種の置換若しくは非置換の1価の炭化水素基を表す。R、R及びRは、R又は-Hを表し、R、R及びRの少なくとも2つは、-Hを表す。x及びyは、各単位の数を示し、それぞれ独立して、0以上の整数である。x+yは、5以上300以下の整数である。
 xは、10以上30以下であることが好ましい。yは、1以上10以下であることが好ましい。x+yは、30以上200以下であることが好ましい。y/(x+y)は、0.1以下であることが好ましい。y/(x+y)が0.1を超えると、架橋点が多くなり、衝撃吸収性が低下する場合がある。
 式(1)中の各単位の配置は、ランダムであってもブロックであってもよいが、ランダムが好ましい。
 ケイ素原子に直接結合した水素原子(Si-H)は、ケイ素原子に直接又は間接に結合したアルケニル基と付加反応(ハイドロシリル化反応)を行うために必要であり、オルガノハイドロジェンポリシロキサン分子中に少なくとも2個有することが好ましい。
 アルケニルポリシロキサンは、例えば下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rは、同一又は異種の置換若しくは非置換の1価の炭化水素基を表す。R、R及びRは、R又はアルケニル基を表す。R、R及びRの少なくとも2つは、アルケニル基を表す。s及びtは、各単位の数を示し、それぞれ独立して、0以上の整数である。s+tは、10以上600以下の整数である。
 sは、10以上30以下であることが好ましい。tは、1以上10以下であることが好ましい。t/(s+t)は0.1以下であることが好ましい。t/(s+t)が0.1を超えると、架橋点が多くなり、衝撃吸収性が低下する場合がある。
 ケイ素原子に直接又は間接に結合したアルケニル基(ビニル基、アリル基等)は、ケイ素原子に直接結合した水素原子(Si-H)と付加反応(ハイドロシリル化反応)を行うために必要であり、アルケニルポリシロキサン分子中に少なくとも2個有することが好ましい。
 式(1)及び式(2)におけるRとしては、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;これらの基の水素原子の一部又は全部が塩素原子、フッ素原子等で置換されたハロゲン化炭化水素基などが挙げられる。
 ハイドロシリル化反応は、公知の技術を用いて行うことができる。ハイドロシリル化反応の触媒としては、例えば塩化白金酸、塩化白金酸とアルコールとから得られる錯体、白金-オレフィン錯体、白金-ビニルシロキサン錯体、白金-リン錯体等が挙げられる。触媒の使用量は、アルケニルポリシロキサンに対して、白金原子として通常1ppm以上500ppm以下であり、3ppm以上200ppm以下であることが好ましい。
 シリコーン含有層2は、シリコーン樹脂以外に、本開示の効果を損なわない範囲において、シリコーン樹脂以外の他の樹脂、顔料、放熱微粒子、難燃剤、熱安定剤等の成分を含んでいてもよい。
 シリコーン含有層2の形成方法は、特に限定されないが、例えば弾性層3の面にシリコーン樹脂を塗布する方法、シリコーン樹脂の前駆体を含む組成物を押出成形法等の成形方法で成形した後、ハイドロシリル化反応等の硬化反応を行ってシリコーン樹脂を形成する方法などが挙げられる。
[弾性層]
 弾性層3は、シリコーン含有層2に重ねて配置される。弾性層3は、引張弾性率が1×10Pa以上1×10Pa以下であり、かつ破断伸び率が100%以上である。衝撃吸収シート1は、弾性層3を1層備えてもよく、2層備えてもよく、3層以上備えてもよい。
 弾性層3の形状は、例えばフィルム状、シート状、板状等である。
 弾性層3の厚みは、5μm以上であることが好ましい。この場合、衝撃吸収性をより向上させることができる。この厚みは、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。また、この厚みは、100μm以下であることが好ましい。この場合、耐屈曲性をより向上させることができる。この厚みは、70μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
 弾性層3の引張弾性率は、2.5×10以上5.0×10以下であることが好ましく、5.0×10以上2.5×10以下であることがより好ましく、1.0×10以上1.0×10以下であることがさらに好ましく、2.5×10以上7.5×10以下であることが特に好ましい。この場合、衝撃吸収性を損なうことなく、凹凸変形に対する回復性をより向上させることができる。
 弾性層3に用いることのできる材料としては、引張弾性率及び破断伸び率が前記範囲である樹脂であれば、特に限定されない。前記樹脂としては、例えば(メタ)アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリビニル樹脂(ポリビニルアルコール、塩化ビニル-酢酸ビニル共重合体等)、エポキシ樹脂などが挙げられる。(メタ)アクリル樹脂は、アクリル樹脂及びメタクリル樹脂の両方を含み、(メタ)アクリル酸エステルに由来する構造単位を含む。
 弾性層3は、凹凸変形に対する回復性をより向上させる観点から、伸縮性のエラストマー樹脂を含むことが好ましい。
 伸縮性のエラストマー樹脂としては、例えばアクリル系エラストマー、ウレタン系エラストマー、オレフィン系エラストマー、アミド系エラストマー、スチレン系エラストマー、エステル系エラストマー等が挙げられる。
 アクリル系エラストマーとしては、例えばハードセグメントが(メタ)アクリル酸エステル単位を含み、ソフトセグメントがアクリロニトリル単位、エチレン単位、(メタ)アクリル酸エステル単位等を含む共重合体などが挙げられる。
 ウレタン系エラストマーとしては、例えばハードセグメントがポリウレタン構造を含み、ソフトセグメントがポリエステル構造、ポリエーテル構造、ポリカプロラクトン構造等を含む共重合体などが挙げられる。
 オレフィン系エラストマーとしては、例えばポリプロピレン、ポリエチレン等のオレフィン系樹脂のマトリックスに、例えばエチレン・プロピレンゴム、エチレン・プロピレン・ジエン三元共重合体等のオレフィン系ゴムを微分散させたポリマーアロイ;ハードセグメントがポリブタジエン構造を含み、ソフトセグメントがポリエーテル構造、ポリエステル構造等を含む共重合体などが挙げられる。
 アミド系エラストマーとしては、例えばハードセグメントがポリアミド構造を含み、ソフトセグメントがポリエーテル構造、ポリエステル構造等を含む共重合体などが挙げられる。
 スチレン系エラストマーとしては、例えばハードセグメントがスチレン単位を含み、ソフトセグメントがブタジエン単位若しくは水添ブタジエン単位、又はイソプレン単位若しくは水添イソプレン単位等を含む共重合体などが挙げられる。
 エステル系エラストマーとしては、例えばハードセグメントがポリエステル構造を含み、ソフトセグメントがポリエーテル構造、ポリエステル構造等を含む共重合体などが挙げられる。
 弾性層3は、粘着性、透明性及び耐候性の観点から、(メタ)アクリル樹脂及びアクリル系エラストマーの少なくとも一方を含むことが好ましい。
 (メタ)アクリル樹脂及びアクリル系エラストマーを与える(メタ)アクリル酸エステルとしては、例えば置換若しくは非置換の1価の炭化水素基を有する(メタ)アクリル酸エステルなどの(メタ)アクリルモノマーなどが挙げられる。
 1価の炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基等の炭素数1以上20以下のアルキル基;シクロペンチル基、シクロヘキシル基等の炭素数3以上20以下のシクロアルキル基;フェニル基、トリル基等の炭素数6以上20以下のアリール基;ベンジル基、フェネチル基等の炭素数7以上20以下のアラルキル基などが挙げられる。
 (メタ)アクリル樹脂及びアクリル系エラストマーは、凹凸変形に対する回復性をより向上させる観点から、ホモポリマーのガラス転移温度(Tg)が-10℃以下である(メタ)アクリルモノマー(以下、モノマーAともいう)と、ホモポリマーのTgが60℃以上である(メタ)アクリルモノマー(以下、モノマーBともいう)との共重合体を含むことが好ましい。
 モノマーAとしては、例えばn-ブチルアクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリルメタクリレート等が挙げられる。モノマーBとしては、例えばメチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、イソボルニル(メタ)アクリレート等が挙げられる。
 (メタ)アクリル樹脂及びアクリル系エラストマーにおいて、モノマーAに由来する構造単位の割合は、(メタ)アクリル樹脂及びアクリル系エラストマーを構成する全構造単位に対して、45質量%以上であることが好ましい。この場合、弾性層3とシリコーン含有層2との間の粘着力をより大きくすることができ、その結果、耐剥離性及び耐屈曲性をより向上させることができる。この割合は、50質量%以上であることがより好ましく、55質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。また、このモノマーAに由来する構造単位の割合は、95質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 弾性層3は、モノマーAに由来する構造単位からなるブロックと、モノマーBに由来する構造単位からなるブロックとを有する(メタ)アクリルブロック共重合体エラストマーを含むことが好ましく、ブチルアクリレート単位とメチルメタクリレート単位とを有する(メタ)アクリルブロック共重合体エラストマーを含むことがさらに好ましい。
 エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アラルキルエポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 エポキシ樹脂として、より好ましくは、例えば1つの分子中に2つ以上のエポキシ基と3つのメチル基とを含み、かつ分子量が500以上である伸縮性エポキシエラストマーが好適に例示される。エポキシ樹脂は、硬化剤、硬化促進剤等の添加剤などを用いて、硬化させてもよい。
 弾性層3は、(メタ)アクリルブロック共重合体エラストマー及びエポキシ樹脂の少なくとも一方を含むことが好ましく、ブチルアクリレート単位とメチルメタクリレート単位とを有する(メタ)アクリルブロック共重合体エラストマー及びエポキシ樹脂の少なくとも一方を含むことがより好ましい。
 弾性層3の形成方法は、特に限定されないが、例えば、シリコーン含有層2の面に、弾性層3を構成する材料を塗布する方法、弾性層3の面に、シリコーン含有層2を構成する材料を塗布する方法、シリコーン含有層2を構成する材料と、弾性層3を構成する材料とを共押出等する方法、弾性層3とシリコーン含有層2と別々に形成し、これらを張り合わせる方法などが挙げられる。
 常温におけるシリコーン含有層2の弾性層3に対する粘着力は、2N/25mm以上であることが好ましい。この場合、耐剥離性及び耐屈曲性をより向上させることができる。この粘着力は、3N/25mm以上であることがより好ましく、5N/25mm以上であることがさらに好ましく、7N/25mm以上であることが特に好ましい。
[他の層]
 衝撃吸収シート1は、シリコーン含有層2及び弾性層3以外に、他の層を備えてもよい。他の層の形状は、例えばフィルム状、シート状、板状等であり、粘着層を備えていてもよい。
 他の層としては、例えば熱拡散性を有する熱拡散層、電磁波遮蔽性を有するシールド層、セパレーター等の保護層などが挙げられる。
[層構成]
 本実施形態に係る衝撃吸収シート1の層構成としては、例えば下記(a)~(p)等が挙げられる。以下において、A/B/Cの表記は、例えばディスプレイの背面側から、A、B、Cの順に積層していることを示す。
(a)弾性層/シリコーン含有層
(b)弾性層/シリコーン含有層/弾性層
(c)弾性層/シリコーン含有層/熱拡散層
(d)弾性層/シリコーン含有層/熱拡散層/粘着層
(e)弾性層/シリコーン含有層/熱拡散層/粘着層/シールド層
(f)弾性層/シリコーン含有層/熱拡散層/粘着層/シールド層/粘着層
(g)弾性層/シリコーン含有層/粘着層/熱拡散層/粘着層/シールド層
(h)弾性層/シリコーン含有層/粘着層/熱拡散層/粘着層/シールド層/粘着層
(i)セパレーター/粘着層/弾性層/シリコーン含有層
(j)セパレーター/粘着層/弾性層/シリコーン含有層/弾性層/粘着層/セパレーター
(k)セパレーター/粘着層/弾性層/シリコーン含有層/熱拡散層
(l)セパレーター/粘着層/弾性層/シリコーン含有層/熱拡散層/粘着層/セパレーター
(m)セパレーター/粘着層/弾性層/シリコーン含有層/熱拡散層/粘着層/シールド層
(n)セパレーター/粘着層/弾性層/シリコーン含有層/熱拡散層/粘着層/シールド層/粘着層/セパレーター
(o)セパレーター/粘着層/弾性層/シリコーン含有層/粘着層/熱拡散層/粘着層/シールド層
(p)セパレーター/粘着層/弾性層/シリコーン含有層/粘着層/熱拡散層/粘着層/シールド層/粘着層/セパレーター
 図2は、前記(j)の層構成を有する衝撃吸収シートを示す。図2の衝撃吸収シート1は、シリコーン含有層2と、シリコーン含有層2の両面に直接積層される2つの弾性層3,3と、これらの弾性層3,3に直接積層される2つの粘着層4,4と、これらの粘着層4,4に直接積層されるセパレーター5,5とを備えている。
 衝撃吸収シート1におけるシリコーン含有層2の厚み及び弾性層3の厚みの総計は、50μm以上であることが好ましい。この場合、衝撃吸収シート1の衝撃吸収性をより向上させることができる。この厚みは、100μm以上であることがより好ましく、200μm以上であることがさらに好ましい。また、この厚みの総計は、500μm以下であることが好ましい。この場合、耐屈曲性をより向上させることができる。この厚みは、400μm以下であることがより好ましく、350μm以下であることがさらに好ましい。
 衝撃吸収シート1の厚みは、50μm以上であることが好ましい。この場合、衝撃吸収シート1の強度をより向上させることができる。この厚みは、100μm以上であることがより好ましく、200μm以上であることがさらに好ましい。衝撃吸収シート1の厚みは、500μm以下であることが好ましい。この場合、ディスプレイを含む表示装置の薄型化をより図ることができる。この厚みは、400μm以下であることがより好ましく、350μm以下であることがさらに好ましい。
 衝撃吸収シート1の衝撃吸収率は、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましく、40%以上であることが特に好ましい。この衝撃吸収率の上限値は、100%であってもよい。衝撃吸収シート1の衝撃吸収率は、例えば鋼球落下法により測定される値である。衝撃吸収率の測定方法は、後掲の実施例の欄で説明する。
 本実施形態に係る衝撃吸収シート1は、可撓性ディスプレイ用に好適に用いることができる。衝撃吸収シート1は、有機EL等の可撓性ディスプレイの背面側又は表面側に配置して用いられることが好ましく、背面側に配置して用いられることがより好ましく、可撓性ディスプレイの背面に直接積層して用いられることがさらに好ましい。本実施形態に係る衝撃吸収性及び凹凸変形に対する回復性に共に優れる衝撃吸収シート1を、可撓性ディスプレイを含む表示装置において用いることにより、可撓性ディスプレイを衝撃や振動から効果的に保護することができる。
 以下、本開示を実施例によってさらに詳しく説明するが、本開示はこれらの実施例に何ら限定されるものではない。
 1.衝撃吸収シートの作製
-シリコーン含有層を与えるシリコーン樹脂
・樹脂A:2液付加反応型シリコーンゲル(信越化学工業社製、品番:KE-104、主剤(A)と硬化剤(B)とを有する)
・樹脂B:2液付加反応型シリコーンゲル(信越化学工業社製、品番:X32-3443、主剤(A)と硬化剤(B)とを有する)
・樹脂C:付加硬化型シリコーン粘着剤(信越化学工業社製、品番:X-40-3240、主剤(A)と硬化剤(B)とを有する)
 樹脂A~Cについて、主剤(A)と硬化剤(B)とを、表1に示す配合比で混合して用いた。
-弾性層を与えるエラストマー樹脂
・アクリル系エラストマー(ブチルアクリレート(BA)及びメチルメタクリレート(MMA)のブロック共重合体、クラレ社製、品番:LA4285)、並びにアクリル系エラストマー(ブチルアクリレート(BA)及びメチルメタクリレート(MMA)のブロック共重合体、クラレ社製、品番:LA2270)を併用し、BA/MMAの比(質量比)が55/45(実施例1、実施例2、実施例4、実施例8及び実施例12)又は52/48(実施例3及び比較例4)となるように混合して用いた。また、LA4285とアクリル系エラストマー(ブチルアクリレート(BA)及びメチルメタクリレート(MMA)のブロック共重合体、クラレ社製、品番:LA2250)を併用し、BA/MMAの比が65/35(実施例5、実施例13及び実施例14)となるように混合して用いた。また、LA4285とアクリル系エラストマー(ブチルアクリレート(BA)及びメチルメタクリレート(MMA)のブロック共重合体、クラレ社製、品番:LK9243)を併用し、BA/MMAの比が80/20(比較例2)となるように混合して用いた。
・伸縮性エポキシエラストマーとして、エポキシ樹脂(三菱ケミカル社製、品番JER1003)及びポリロタキサン(ASM社製、品番SH3400P)を併用し、JER1003/SH3400Pの比が表1に示す通りになるように混合して用いた。伸縮性エポキシエラストマー100質量部に対して、硬化剤として、酸無水物(三菱ケミカル社製の「YH-307」、単官能酸無水物、官能基当量:231)1質量部、及び硬化促進剤として、イミダゾール系硬化促進剤(四国化成工業社製の「2E4MZ」、2-エチル-4-メチルイミダゾール)0.5質量部を混合して用いた。
-衝撃吸収シートの作製
(i)2液付加反応型シリコーンゲルを、押出成形によりシート状に成形した後、乾燥及び硬化させることにより、表1に示す厚みのシリコーン含有層を形成した。
(ii)次に、前記合成したエラストマー樹脂を離型ポリエチレンテレフタレートフィルムの離型処理面に塗布し乾燥させることにより、表1に示す樹脂の種類及び厚みの弾性層1及び弾性層2を形成した。
(iii)次いで、シリコーン含有層の両面に、前記形成した弾性層1及び弾性層2を張り合わせた。このようにして、衝撃吸収シートを作製した。
 表1中の弾性層1及び弾性層2における「-」は、該当する弾性層を用いなかったことを示す。
2.物性測定
[シリコーン含有層の貯蔵弾性率]
 シリコーン含有層を、幅10mm、長さ20mmのサイズにカットし、試験片を作製した。この試験片について、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用い、周波数10Hz、昇温速度5℃/分の条件で、-20℃及び25℃における貯蔵弾性率(Pa)を測定した。
[弾性層の引張弾性率]
 弾性層を、幅10mm、長さ20mmのサイズにカットし、試験片を作製した。この試験片について、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用い、周波数10Hz、昇温速度5℃/分の条件で、25℃における引張弾性率(Pa)を測定した。
[弾性層の破断伸び率]
(試験片の作製)
 JIS K 6251規定の6号ダンベル試験片を打ち抜いて試験片とした。
(破断伸び率の測定)
 得られた試験片を用いて、島津製作所社製オートグラフ(AGS-X)にて以下に示す条件で引張試験を実施した。
 温度:25℃
 ロードセル:50N
 初期つかみ具間距離:35mm
 引張速度:25mm/min
(破断伸び率の算出)
 破断伸び率(%)は、破断時のつかみ具の移動距離を用いて次式により算出される。
 破断伸び率(%)=(L-Lo)×100/Lo
 Lo:試験前の試料長さ、L:破断時の試料長さ
[シリコーン含有層の弾性層に対する粘着力]
 シリコーン含有層を幅25mm、長さ100mmのサイズに切断し、弾性層に積層し、その積層体に2.0kgのゴムローラを用いて、300mm/分の速度でゴムローラを一往復させることにより、シリコーン含有層と弾性層とを貼り合わせた。次に、25℃の条件下に20分間放置し、試験片を作製した。この試験片について、JIS-Z0237「粘着テープ・粘着シート試験方法」に準拠した方法(貼り合わせ条件:2kgローラー1往復、剥離速度:300mm/分、剥離角度:180°)により、常温(23℃)の環境下で測定した。
3.評価
[衝撃吸収率](鋼球落下試験)
(サンプル作製)
 衝撃吸収シートを5cm×5cmのサイズにカットして、鋼球落下試験用サンプルを作製した。
(評価方法)
 デジタル加速度計(昭和測器社製、MODEL-1340B)の加速度センサー素子を、10cm角で厚み2mmのアルミ板の片方の面に、汎用の厚さ25μmの粘着テープを用いて、固定した。次に、加速度センサーを下向きにした状態で、アルミ板を架台に固定した。次いで、アルミ板の上に、カットしたサンプルを乗せて、ドロップ高さ10cmの条件で、直径20mm、重さ14gのSUS球を用いて、鋼球落下試験を実施した。
(衝撃吸収率の算出)
 下記式により、衝撃吸収率(%)を算出した。
 衝撃吸収率(%)=(アルミ単体でのピーク加速度-試験片を用いた場合のピーク加速度)×100/(アルミ単体でのピーク加速度)
[凹凸変形回復試験](鋼球落下試験)
(サンプル作製)
 衝撃吸収シートを5cm×5cmのサイズにカットして、鋼球落下試験用サンプルを作製した。
(評価方法)
 10cm角で厚み2mmのアルミ板に、カットしたサンプルを乗せて、ドロップ高さ10cmの条件で、直径20mm、重さ14gのSUS球を用いて、鋼球落下試験を実施した。
(凹凸評価)
 鋼球落下直後の試験用サンプルの凹みを、目視にて観察し、衝撃吸収シートの凹凸変形に対する回復性を以下の基準により評価した。
A:凹みなし
B:2時間以内に凹みが消失
C:凹みが消失しない
[屈曲試験]
 衝撃吸収シートの耐屈曲性について、以下に示す屈曲試験を行うことにより評価した。
衝撃吸収シートを、2×10cm矩形物に切断し、試験片を作製した。この試験片を、面状体無負荷U字伸縮試験機(ユアサシステム機器社製、型番:本体:DMLHB、治具:面状体無負荷U字伸縮試験治具)において、屈曲半径が5mmとなるように固定した。屈曲試験は、1分間に30回の速度で、衝撃吸収シートを折り曲げる動作と元に戻す動作とを繰り返し、1万回試験を行った。屈曲試験後の試験片を目視にて観察し、衝撃吸収シートの耐屈曲性を以下の基準により評価した。
A:外観変化やシワなし
B:24時間以内にシワが消失
C:シワが消失しない。
Figure JPOXMLDOC01-appb-T000003
 1 衝撃吸収シート
 2 シリコーン含有層
 3 弾性層
 4 粘着層
 5 セパレーター

Claims (5)

  1.  シリコーン樹脂を含むシリコーン含有層と、
     前記シリコーン含有層に重なる弾性層と
     を備える衝撃吸収シートであって、
     前記シリコーン含有層の厚みが、前記衝撃吸収シートの厚みの50%以上98%以下であり、
     前記シリコーン含有層のJIS K 2207に準拠した25℃における針入度が60以上160以下であり、
     前記弾性層の引張弾性率が1×10Pa以上1×10Pa以下であり、かつ前記弾性層の破断伸び率が100%以上である衝撃吸収シート。
  2.  鋼球落下法により測定される衝撃吸収率が20%以上である請求項1に記載の衝撃吸収シート。
  3.  前記シリコーン含有層の前記弾性層に対する粘着力が2N/25mm以上である請求項1又は2に記載の衝撃吸収シート。
  4.  厚みが50μm以上500μm以下である請求項1から3のいずれか一項に記載の衝撃吸収シート。
  5.  前記弾性層が、ブチルアクリレート単位とメチルメタクリレート単位とを有する(メタ)アクリルブロック共重合体エラストマー、及びエポキシ樹脂の少なくとも一方を含む請求項1から4のいずれか一項に記載の衝撃吸収シート。
PCT/JP2021/027061 2020-07-21 2021-07-20 衝撃吸収シート WO2022019286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237001954A KR20230041697A (ko) 2020-07-21 2021-07-20 충격 흡수 시트
JP2022538011A JPWO2022019286A1 (ja) 2020-07-21 2021-07-20
CN202180045535.9A CN115715255A (zh) 2020-07-21 2021-07-20 冲击吸收片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063054434P 2020-07-21 2020-07-21
US63/054,434 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019286A1 true WO2022019286A1 (ja) 2022-01-27

Family

ID=79728789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027061 WO2022019286A1 (ja) 2020-07-21 2021-07-20 衝撃吸収シート

Country Status (5)

Country Link
JP (1) JPWO2022019286A1 (ja)
KR (1) KR20230041697A (ja)
CN (1) CN115715255A (ja)
TW (1) TW202204140A (ja)
WO (1) WO2022019286A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151035A (ja) * 1984-08-16 1986-03-13 Kiyuubitsuku Eng:Kk 緩衝体
JPS6428974A (en) * 1987-07-24 1989-01-31 Toyama Prefecture Piezoelectric pressure sensitive element and manufacture thereof
JPH02219645A (ja) * 1989-02-22 1990-09-03 Inaba Rubber Kk 緩衝体及びその製造方法
JP2007029234A (ja) * 2005-07-25 2007-02-08 Taika:Kk 化粧料コンパクト容器
JP2016124940A (ja) * 2014-12-26 2016-07-11 株式会社潤工社 ゴム又は熱可塑性エラストマー組成物及び当該組成物からなる成形体
JP2018032397A (ja) * 2016-08-17 2018-03-01 株式会社半導体エネルギー研究所 タッチ入力ペン、電子機器、およびタッチ入力ペンを用いた電子機器への入力方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352661B2 (ja) 2011-11-22 2013-11-27 株式会社タイカ 薄型衝撃緩衝材および薄型衝撃緩衝積層体
JP2016030394A (ja) 2014-07-29 2016-03-07 岩谷産業株式会社 衝撃吸収フィルム
WO2018131619A1 (ja) 2017-01-11 2018-07-19 積水化学工業株式会社 衝撃吸収シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151035A (ja) * 1984-08-16 1986-03-13 Kiyuubitsuku Eng:Kk 緩衝体
JPS6428974A (en) * 1987-07-24 1989-01-31 Toyama Prefecture Piezoelectric pressure sensitive element and manufacture thereof
JPH02219645A (ja) * 1989-02-22 1990-09-03 Inaba Rubber Kk 緩衝体及びその製造方法
JP2007029234A (ja) * 2005-07-25 2007-02-08 Taika:Kk 化粧料コンパクト容器
JP2016124940A (ja) * 2014-12-26 2016-07-11 株式会社潤工社 ゴム又は熱可塑性エラストマー組成物及び当該組成物からなる成形体
JP2018032397A (ja) * 2016-08-17 2018-03-01 株式会社半導体エネルギー研究所 タッチ入力ペン、電子機器、およびタッチ入力ペンを用いた電子機器への入力方法

Also Published As

Publication number Publication date
KR20230041697A (ko) 2023-03-24
TW202204140A (zh) 2022-02-01
CN115715255A (zh) 2023-02-24
JPWO2022019286A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP7036715B2 (ja) 両面粘着テープ
KR101074309B1 (ko) 열전도성 감압 접착제 조성물 및 열전도성 감압 접착성 시트상 성형체
US20060069200A1 (en) Acrylic adhesive composition and acrylic adhesive sheet
WO2016075753A1 (ja) 発泡樹脂基材を有する粘着テープ及びその製造方法
EP1398361A1 (en) Double-sided pressure-sensitive adhesive tape and adhesion method
US20060069201A1 (en) Acrylic flame retardant adhesive composition and acrylic flame retardant adhesive sheet
CN113302250A (zh) 粘合带
WO2022113400A1 (ja) 光学積層体
KR20210010534A (ko) 부분 커버리지 다층 댐핑 라미네이트
JP2014098128A5 (ja)
CN112601795B (zh) 双面粘合带
WO2022019286A1 (ja) 衝撃吸収シート
KR101836757B1 (ko) 발포 수지 시트 및 이것을 구비하는 전기ㆍ전자 기기
WO2022113401A1 (ja) 光学積層体
JP2016018810A (ja) ダイシング−ダイボンディングテープ
CN112041406A (zh) 双面粘合胶带
WO2016084123A1 (ja) 粘着剤組成物及び粘着テープ
JP6336288B2 (ja) 熱伝導性両面粘着シート
WO2018089494A1 (en) Low temperature curable adhesive composition and articles including the same
US11827822B2 (en) Adhesive tape and electronic device
JP2008277759A (ja) 絶縁性熱伝導シート
JP2016018811A (ja) ダイシング−ダイボンディングテープ
JP2006124654A (ja) アクリル系接着剤組成物およびアクリル系接着剤シート
WO2022181656A1 (ja) 粘着層付弾性シート及びそれを用いた可撓性ディスプレイ装置
JP2022098240A (ja) 衝撃吸収シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846231

Country of ref document: EP

Kind code of ref document: A1