WO2022019151A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2022019151A1
WO2022019151A1 PCT/JP2021/025939 JP2021025939W WO2022019151A1 WO 2022019151 A1 WO2022019151 A1 WO 2022019151A1 JP 2021025939 W JP2021025939 W JP 2021025939W WO 2022019151 A1 WO2022019151 A1 WO 2022019151A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
light emitting
drive current
annular
output
Prior art date
Application number
PCT/JP2021/025939
Other languages
English (en)
French (fr)
Inventor
武志 湯脇
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to DE112021003857.5T priority Critical patent/DE112021003857T5/de
Priority to US18/004,793 priority patent/US20230246411A1/en
Publication of WO2022019151A1 publication Critical patent/WO2022019151A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • This disclosure relates to a light emitting device.
  • a light emitting device of a distance measuring system that can irradiate light with various light emitting patterns by individually controlling the driving of a plurality of light emitting elements provided in a plan view matrix.
  • the wiring width of the bus connecting the group of light emitting elements (hereinafter referred to as "stage") in several rows adjacent to each other in the column direction and the power supply is widened as the bus is connected to the stage farther from the power supply.
  • stage the wiring width of the bus connecting the group of light emitting elements in several rows adjacent to each other in the column direction and the power supply is widened as the bus is connected to the stage farther from the power supply.
  • a light emitting device that suppresses a voltage drop by reducing the wiring resistance (see, for example, Patent Document 1). As a result, the light emitting device reduces the uneven brightness between the stages.
  • a light emitting device capable of suppressing luminance unevenness in a group of several rows of light emitting elements adjacent to each other in the column direction.
  • a light emitting device includes a light emitting unit, an output unit, and a drive current supply wiring.
  • a plurality of light emitting elements are provided in a plan view matrix.
  • the output unit is provided in a matrix so that a plurality of output pads that output drive currents to the light emitting element overlap with the light emitting element in a plan view.
  • the drive current supply wiring is provided in a wiring layer on which the output units are laminated, and supplies a drive current from the power supply to the light emitting element via the output pad.
  • the drive current supply wiring includes a plurality of annular wirings having a rectangular frame shape, common wirings, and connection wirings.
  • the plurality of annular wirings having a rectangular frame shape surround the plurality of output pads in an annular shape for each of the predetermined number of rows of the output pads adjacent to each other in the column direction, and are connected to the enclosed output pads in the column direction of the output pads. Arranged along.
  • the shared wiring is provided on both sides of the plurality of annular wirings in a direction orthogonal to the arrangement direction in a plan view in parallel with the arrangement direction and is connected to the power supply.
  • the connection wiring connects the annular wiring and the common wiring.
  • FIG. 1 is a diagram showing a configuration example of a distance measuring device according to the present disclosure.
  • the distance measuring device 100 according to the present disclosure is, for example, a device that calculates the distance to the distance measuring object by the DirectToF (Time of Flight) method.
  • DirectToF Time of Flight
  • the DirectToF method emits irradiation light toward an object, detects the reflected light that is reflected by the surface of the object and returns, and the time from when the irradiation light is emitted until the reflected light is received. Is detected as a phase difference, and the distance to the object is calculated based on the phase difference.
  • the distance measuring device 100 includes a light emitting device 1, an image pickup device 2, and a control device 3.
  • the light emitting device 1 includes a light emitting unit 11, a drive circuit 12, a power supply circuit 13, and a light emitting side optical system 14.
  • the image pickup device 2 includes an image sensor 21, an image processing unit 22, and an image pickup side optical system 23.
  • the control device 3 includes a ranging unit 31.
  • the control device 3 may be included in the light emitting device 1, included in the image pickup device 2, or may be configured separately from the light emitting device 1 and the image pickup device 2.
  • the light emitting unit 11 includes a plurality of light emitting elements arranged in a plane-viewing matrix that emits laser light.
  • Each light emitting element has, for example, a VCSEL (Vertical Cavity Surface Emitting Laser) and functions as a light source for a structured light.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the drive circuit 12 has an electric circuit for driving the light emitting unit 11.
  • the power supply circuit 13 generates the power supply voltage of the drive circuit 12 from the input voltage supplied from, for example, a battery (not shown) provided in the distance measuring device 100.
  • the drive circuit 12 supplies a power supply voltage (drive current) to the light emitting unit 11 to drive the light emitting unit 11.
  • the light emitted from the light emitting unit 11 irradiates the subject 101 to be distance measured via the light emitting side optical system 14. Then, the reflected light from the subject 101 of the light irradiated in this way is incident on the image pickup surface of the image sensor 21 via the image pickup side optical system 23.
  • the image sensor 21 has an image pickup element such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and the reflected light from the subject 101 incident via the image pickup side optical system 23 as described above. Is received, photoelectrically converted into an electric signal, and output.
  • image pickup element such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor
  • the image sensor 21 executes, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, etc. on the electric signal obtained by photoelectric conversion of the received light, and further performs A / D (Analog /). Digital) Perform conversion processing.
  • CDS Correlated Double Sampling
  • AGC Automatic Gain Control
  • the image sensor 21 outputs an image signal as digital data to the image processing unit 22 in the subsequent stage. Further, the image sensor 21 outputs a frame synchronization signal to the drive circuit 12. As a result, the drive circuit 12 can make the light emitting element 321 in the light emitting unit 11 emit light at a timing corresponding to the frame period of the image sensor 21.
  • the drive circuit 12 may output a signal indicating the light emission timing of the light emitting unit 11 to the image sensor 21, and the image sensor 21 may receive the reflected light at a light reception timing shifted from the light emission timing by a predetermined phase.
  • the image processing unit 22 is configured by, for example, an image processing processor such as a DSP (Digital Signal Processor).
  • the image processing unit 22 performs various image signal processing on the digital signal (image signal) input from the image sensor 21.
  • the control device 3 is composed of, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), or an information processing device such as a DSP.
  • the control device 3 controls the drive circuit 12 for controlling the light emitting operation by the light emitting unit 11 and the control related to the image pickup operation by the image sensor 21.
  • control device 3 has a function as a ranging unit 31.
  • the distance measuring unit 31 measures the distance to the subject 101 based on the image signal input via the image processing unit 22 (that is, the image signal obtained by receiving the reflected light from the subject 101).
  • the distance measuring unit 31 measures the distance of each part of the subject 101 in order to enable the identification of the three-dimensional shape of the subject 101.
  • the control device 3 may be configured to control the power supply circuit 13.
  • the distance measuring method in the distance measuring device 100 for example, a distance measuring method using an STL (Structured Light) method or a ToF (Time of Flight) method can be adopted.
  • STL Structured Light
  • ToF Time of Flight
  • the STL method is a method of measuring a distance based on an image obtained by imaging a subject 101 irradiated with light having a predetermined bright / dark pattern such as a dot pattern or a grid pattern.
  • the subject 101 is irradiated with pattern light based on a dot pattern.
  • the pattern light is divided into a plurality of blocks, and different dot patterns are assigned to each block so that the dot patterns do not overlap between the blocks.
  • the light emitting unit 11 functions as a light source of the STL.
  • the distance to the object is measured by detecting the flight time (time difference) of the light emitted from the light emitting unit 11 until the light is reflected by the object and reaches the image sensor 21. It is a method.
  • SPAD Single Photon Avalanche Diode
  • the ranging unit 31 calculates the time difference from light emission to light reception for the light emitted from the light emitting unit 11 and received by the image sensor 21 based on the image signal input via the image processing unit 22.
  • the distance to each part of the subject 101 is calculated based on the time difference and the speed of light.
  • the so-called indirect ToF method phase difference method
  • an IR (infrared light) image sensor is used as the image sensor.
  • the light emitting unit 11 functions as a light source of the ToF sensor.
  • FIG. 2 is a diagram showing an arrangement of a drive circuit and a light emitting unit according to the present disclosure. As shown in FIG. 2, the light emitting unit 11 is laminated on the drive circuit 12. As a result, the light emitting device 1 can be miniaturized by reducing the occupied area as compared with the case where the light emitting unit 11 and the drive circuit 12 are placed horizontally on the same plane, for example.
  • a plurality of light emitting elements are provided on the upper surface of the light emitting unit 11 in a plan view matrix.
  • an input pad for inputting the drive current of the light emitting element is provided at a position overlapping each light emitting element in a plan view.
  • an output pad that outputs a drive current to the input pad is provided at a position overlapping the input pad of the light emitting unit 11 in a plan view.
  • Each output pad and each input pad are connected by a bump 15.
  • FIG. 3 is an explanatory view of the drive circuit according to the present disclosure in a plan view.
  • the column direction of the light emitting element, the column direction of the output pad, and the arrangement direction of the annular wiring described later are referred to as the Y direction
  • the row direction of the light emitting element, the row direction of the output pad, and the annular direction are referred to as the X direction.
  • the drive circuit 12 includes a drive control circuit 41, an output unit 42, and a correction unit 43.
  • the drive control circuit 41 supplies a drive current to a plurality of output pads 44 provided in a plan view matrix on the output unit 42 via a drive current supply wiring described later.
  • the drive control circuit 41 also controls to output the selection signal to be emitted to the output unit 42 among the plurality of light emitting elements provided in the light emitting unit 11.
  • the correction unit 43 divides the area of the output unit 42 where the plurality of output pads 44 are provided into a plurality of areas, and corrects the drive current supplied to the output pads 44 for each area. For example, when the number of light emitting elements is 800 (800 channels), the correction unit 43 divides the output unit 42 into 50 areas 45-1 to 45-50. In this case, each area 45-1 to 45-50 includes a total of 16 output pads 44 in 4 rows and 4 columns. The correction unit 43 corrects the drive current supplied to the output pads 44 of each area 45-1 to 45-50 for each area 45-1 to 45-50.
  • areas 45-1 to 45-50 do not refer to a specific area, they are simply described as area 45. Further, the rows of the area 45 arranged in the X-axis direction from the area 45-1 are described as 1st row, and the rows of the area 45 sequentially adjacent to the 1st row in the Y direction are described as 2nd row, 3rd row, and the like.
  • the drive current supplied to each stage and each area 45 can be uniformly approached by correcting the drive current for each area 45 by the correction unit 43. That is, the correction unit 43 can reduce the error of the drive current between each stage and between each area 45.
  • the drive circuit 12 may not be able to uniformly approach the drive current to be supplied to the individual output pads 44 in the stage and in the area 45. There is.
  • the drive circuit 12 includes a drive current supply wiring having a wiring pattern capable of uniformly approaching the drive currents supplied to the individual output pads 44 in the stage and in the area 45.
  • a drive current supply wiring having a wiring pattern capable of uniformly approaching the drive currents supplied to the individual output pads 44 in the stage and in the area 45.
  • FIG. 4 is a plan view of the drive current supply wiring related to the inverse proportion. Note that FIG. 4 shows a case where the number of areas 45 is 16.
  • FIG. 5 is a diagram showing an error rate for each area of the drive current supplied to each output pad when the drive current supply wiring related to the inverse proportion is adopted. Note that FIG. 5 shows the error rate when the drive current supply wiring related to the inverse proportion is adopted for the output unit 42 shown in FIG.
  • the error rate here is the difference between the maximum value and the minimum value of the drive current actually supplied to each output pad 44 in the area 45 with respect to the drive current value to be supplied to each output pad 44 in each area 45. The ratio.
  • the drive current supply wiring related to the inverse proportion includes common wiring 51 extending in parallel with the Y direction on both sides in the X direction of the region where the area 45 is provided in a matrix. Further, the drive current supply wiring related to the inverse proportion includes a plurality of connection wirings 52-1, 52-2, 52-3, etc. parallel to the X direction connecting the common wirings 51 on both sides.
  • the shared wiring 51 is connected to the power supply pad 50 at both ends in the Y direction.
  • Each connection wiring 52-1, 52-2, 52-3 ... Is connected to the output pad 44 in the corresponding area 45, respectively.
  • the connection wirings 52-1, 52-2, 52-3 are connected to output pads 44 provided in each area 45 in one stage to supply a drive current.
  • the connection wiring 52-3 is also connected to an output pad 44 provided in each area 45 in two stages adjacent to the first stage in the Y direction to supply a drive current.
  • the power supply pad 50 provided in the upper left of FIG. 4 passes through the common wiring 51, the supply path L10 passing through the connection wiring 52-1 and the connection wiring 52-3.
  • the drive current is supplied to the output pad 44 in one stage by the supply path L12.
  • the output pad 44 connected to the connection wiring 52-3 is supplied with a drive current smaller than that of the output pad 44 connected to the connection wiring 52-1.
  • connection wiring 52-3 also supplies a drive current to the output pad 44 in the second stage. Therefore, the difference between the drive current supplied to the output pad 44 in one stage connected to the connection wiring 52-3 and the drive current supplied to the output pad 44 connected to the connection wiring 52-1 is It gets even bigger.
  • the error rate of the drive current supplied to each output pad 44 in the area 45 included in the first stage becomes large. Further, since the drive current supplied to the area 45 closer to the power supply pad 50 is larger, the error of the drive current in the area 45 due to the difference in wiring resistance is the area 45 near the four corners of the area where the area 45 is provided in a matrix. It gets bigger.
  • FIG. 6 is a plan view of the drive current supply wiring according to the present disclosure. Note that FIG. 6 shows a case where the number of areas 45 is 16.
  • FIG. 7 is a diagram showing an error rate for each area of the drive current supplied to each output pad when the drive current supply wiring related to the inverse proportion is adopted. Note that FIG. 7 shows an error rate when the drive current supply wiring according to the present disclosure is adopted for the output unit 42 shown in FIG.
  • the drive current supply wiring includes a plurality of annular wirings 62 having a rectangular frame shape, a shared wiring 61, and a connection wiring 63.
  • the annular wiring 62 encloses a plurality of output pads 44 in an annular shape for each output pad 44 in a predetermined number (“4” in the example shown in FIG. 3) adjacent to each other in the column direction (Y direction), and is surrounded by the output pads 44. They are connected and arranged along the row direction (Y direction) of the output pads 44.
  • the annular wiring 62 surrounds the plurality of output pads 44 in an annular shape for each stage of the area 45.
  • the shared wiring 61 is provided parallel to the arrangement direction (Y direction) on both sides of the arrangement direction (Y direction) of the plurality of annular wiring 62 and the direction orthogonal to the plan view (X direction), and the power supply pads are provided at both ends in the Y direction. Connected to 50.
  • the connection wiring 63 connects the annular wiring 62 and the common wiring 61.
  • the wiring resistance of the supply paths L1 and L2 is obtained by evenly approaching the path lengths of the two supply paths L1 and L2 for supplying the drive current to the output pad 44 in one stage. Can be brought closer.
  • the drive current supply wiring according to the present disclosure has an error in the drive current supplied to the output pad 44 connected to each pair of wiring portions parallel to the X direction constituting both ends of the annular wiring 62 in the Y direction. Can be reduced.
  • the drive current supply wiring according to the present disclosure when the drive current supply wiring according to the present disclosure is adopted, the error rate of the drive current supplied to the output pad 44 included in the first stage can be reduced, so that the drive current supply wiring is connected to the output pad in the area 45. It is possible to suppress uneven brightness of the light emitting element.
  • connection wiring 63 includes the central portion of the wiring portion parallel to the Y direction and the shared wiring 61 constituting both ends of the annular wiring 62 in the direction orthogonal to the arrangement direction (Y direction) and the plan view (X direction). To connect.
  • the lengths of the two supply paths L1 and L2 that supply the drive current are the same, so that the amount of drive current supplied by the supply path L1 and the amount of drive current supplied by the supply path L2 are set. Can be an exact match. Therefore, according to the drive current supply wiring according to the present disclosure, it is possible to more reliably suppress the uneven brightness of the light emitting element connected to the output pad 44 in each area 45 included in one stage.
  • each annular wiring 62 adjacent to each other in the Y direction is separated by the slit 65.
  • each annular wiring 62 does not supply the drive current to both of the two adjacent stages, so that the drive current can be uniformly supplied to the plurality of output pads 44 in the region surrounded by the annular. can.
  • the path lengths of the two drive currents that enter each annular wiring 62 from each connection wiring 63 and branch into two branches are the same length. As a result, it is possible to suppress uneven brightness of the light emitting element connected to the output pad 44 included in each of the second, third, and fourth stages.
  • the correction unit 43 corrects the drive current to be supplied for each annular wiring 62 so that the drive current supplied to each stage becomes uniform.
  • the correction unit 43 can also eliminate the difference in the supply current between the areas 45 arranged in the X direction in each stage by correcting the drive current supplied for each area 45.
  • the light emitting device 1 can reduce the error of the drive current between each stage and between each area 45. Therefore, as shown in FIG. 7, when the drive current supply wiring according to the present disclosure is adopted, the error rate of the drive current can be suppressed to less than 1% in all the areas 45.
  • the drive current supply wiring according to the present disclosure includes a reinforcing wiring 64 for connecting wiring portions parallel to the X direction constituting both ends of the arrangement direction (Y direction) in each annular wiring 62.
  • the drive current can be efficiently supplied to each output pad 44 by lowering the wiring resistance of the drive current supply wiring as a whole.
  • FIG. 8 is a cross-sectional view of the drive current supply wiring according to the present disclosure.
  • FIG. 8 shows a cross section of the first stage 71 and the second stage 72 of the cross section in which the drive current supply wiring is cut by a line parallel to the Y direction passing through the reinforcing wiring 64 in a plan view.
  • the annular wiring 62 includes a first annular wiring M2, a second annular wiring M3, a third annular wiring M4, a fourth annular wiring M5, and a fifth annular wiring M2 laminated on the first wiring layer M1. It has a multi-layer wiring structure including wiring M6.
  • the output unit 42 is provided on the lower surface of the wiring layer in which the first wiring layer M1 and the first to fifth annular wirings M2 to M6 shown in FIG. 8 are provided. .. That is, when mounted, the output unit 42 is laminated on the wiring layer.
  • the layers of the first wiring layer M1 and the first to fifth annular wirings M2 to M6 are connected by contacts.
  • the first wiring layer M1 is connected to the sub-contact 81 and the polyclonal transistor 82 via the contact. Further, in a cross-sectional view, an output wiring 73 having a multi-layer structure is provided between the annular wiring 62 and the reinforcing wiring 64.
  • the annular wiring 62 and the reinforcing wiring 64 are connected to the source of the polyclonal transistor 82 via the contact and the first wiring layer M1.
  • the output wiring 73 is connected to the drain of the polyclonal transistor 82 via the contact and the first wiring layer M1.
  • the drive circuit 12 applies a negative gate voltage to the gate of the polyclonal transistor 82 from the annular wiring 62 and the reinforcing wiring 64 via the polyclonal transistor 82, the output wiring 73, and the output pad 44 (see FIG. 3). , Supply the drive current to the light emitting element.
  • FIG. 9 is a cross-sectional view of the drive current supply wiring according to the modified example of the present disclosure.
  • the drive current supply wiring according to the modified example is the one-stage annular wiring 62 by further adding the contact 74 connecting between the first-stage first to fifth annular wirings M2 to M6. Wiring resistance can be reduced.
  • the drive current supply wiring according to the modified example conversely reduces the number of contacts 74 connecting between the first to fifth annular wirings M2 to M6 in the first stage to reduce the wiring resistance of the annular wiring 62 in the first stage. Can be increased.
  • the number of contacts 75 connecting between the first to fifth annular wirings M2 to M6 between the layers is increased so that the drive current supplied by each annular wiring 62 is equal. It is adjusted for each annular wiring 62. As a result, in the drive current supply wiring, the drive current supplied by each annular wiring 62 becomes uniform, and the difference in drive current between the stages can be reduced.
  • the wiring width of the second to fourth annular wirings M3 to M5 in two stages is set to the wiring width of the first annular wiring M2 and the fifth annular wiring M6.
  • the wiring resistance of the two-stage annular wiring 62 can be increased.
  • the wiring resistance of the two-stage annular wiring 62 can be reduced by expanding the two-stage first to fifth annular wirings M2 to M6. Therefore, in the drive current supply wiring according to the modified example, the wiring width of the annular wiring 62 is adjusted for each annular wiring 62 so that the drive current supplied by each annular wiring 62 becomes uniform. As a result, in the drive current supply wiring, the drive current supplied by each annular wiring 62 becomes uniform, and the difference in drive current between the stages can be reduced.
  • the light emitting device 1 includes a light emitting unit 11, an output unit 42, and a drive current supply wiring.
  • the light emitting unit 11 is provided with a plurality of light emitting elements in a plan view matrix.
  • the output unit 42 is provided in a matrix so that a plurality of output pads 44 that output a drive current to the light emitting element overlap with the light emitting element in a plan view.
  • the drive current supply wiring is provided in the wiring layer on which the output units 42 are laminated, and supplies the drive current from the power supply to the light emitting element via the output pad 44.
  • the drive current supply wiring includes a plurality of annular wirings 62 having a rectangular frame shape, a common wiring 61, and a connection wiring 63.
  • the annular wiring 62 encloses a plurality of output pads 44 in a ring shape for each of a predetermined number of rows of output pads 44 adjacent in the column direction, is connected to the enclosed output pads 44, and is arranged along the column direction of the output pads 44. ..
  • the shared wiring 61 is provided on both sides of the plurality of annular wirings 62 in a direction orthogonal to the arrangement direction in a plan view and is connected to the power supply.
  • the connection wiring 63 connects the annular wiring 62 and the common wiring 61.
  • connection wiring 63 connects the central portion of the wiring portion constituting both ends of the annular wiring 62 in the direction orthogonal to the arrangement direction in the plan view and the common wiring 61.
  • the drive current supply wiring further includes a reinforcing wiring 64 that connects the wiring portions constituting both ends of the annular wiring 62 in the arrangement direction.
  • the wiring width of the annular wiring 62 is adjusted for each annular wiring 62 so that the drive current supplied by each annular wiring 62 is equal.
  • the drive current supplied by each annular wiring 62 becomes uniform, and the difference in drive current between the stages can be reduced.
  • the drive current supply wiring includes a plurality of layers of annular wiring 62 to be laminated, and the number of contacts connecting the annular wiring 62 between the layers is equal to each annular wiring 62 so that the driving current supplied by each annular wiring 62 is equal. Is adjusted to. As a result, in the drive current supply wiring, the drive current supplied by each annular wiring 62 becomes uniform, and the difference in drive current between the stages can be reduced.
  • the light emitting device 1 includes a correction unit 43 that corrects the drive current supplied to the output pad 44 for each of a predetermined number of rows of output pads 44.
  • the correction unit 43 can eliminate the difference in the supply current between the stages by correcting the drive current supplied for each stage.
  • the light emitting device 1 includes a correction unit 43 that corrects the drive current supplied to the output pads 44 for each output pad 44 having a predetermined number of matrices.
  • the correction unit 43 can eliminate the difference in the supply current between the areas 45 arranged in the X direction in each stage by correcting the drive current supplied for each area 45.
  • the shared wiring 61 is connected to the power supply pad 50 at both ends in the extending direction. As a result, the drive circuit 12 can evenly supply the drive current to all the output pads 44 in the output unit 42.
  • the present technology can also have the following configurations.
  • a light emitting unit in which a plurality of light emitting elements are provided in a plane view matrix, and An output unit in which a plurality of output pads for outputting a drive current to the light emitting element are provided in a matrix so as to overlap the light emitting element in a plan view. It is provided in a wiring layer in which the output unit is laminated, and is provided with a drive current supply wiring that supplies a drive current from a power source to the light emitting element via the output pad.
  • the drive current supply wiring is The plurality of output pads are enclosed in a ring shape for each of a predetermined number of rows of the output pads adjacent to each other in the column direction, connected to the enclosed output pads, and formed into a rectangular frame shape arranged along the column direction of the output pads.
  • a common wiring provided in parallel with the arrangement direction on both sides of the arrangement direction of the plurality of annular wirings and a direction orthogonal to each other in a plan view and connected to a power source.
  • a light emitting device having a connection wiring for connecting the annular wiring and the common wiring.
  • connection wiring is The light emitting device according to (1) above, which connects the central portion of the wiring portion constituting both ends in the direction orthogonal to the arrangement direction of the annular wiring in the plan view and the shared wiring.
  • the drive current supply wiring is The light emitting device according to (1) or (2) above, further comprising reinforcing wiring for connecting between wiring portions constituting both ends of the annular wiring in the arrangement direction.
  • the drive current supply wiring is The light emitting device according to any one of (1) to (3), wherein the wiring width of the annular wiring is adjusted for each annular wiring so that the drive current supplied by each annular wiring is equalized.
  • the drive current supply wiring is The number of contacts connecting the annular wirings between the layers is adjusted for each annular wiring so that the driving current supplied by each of the annular wirings including the plurality of layers of the annular wiring is equalized.
  • the shared wiring is The light emitting device according to (1) above, which is connected to a power source at both ends in the stretching direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

本開示に係る発光装置(1)は、発光部(11)と、出力部(42)と、駆動電流供給配線とを備える。発光部(11)は、複数の発光素子が行列状に設けられる。出力部(42)は、発光素子に駆動電流を出力する複数の出力パッドが平面視において発光素子と重なるように設けられる。駆動電流供給配線は、配線層に設けられ、電源から出力パッドを介して発光素子に駆動電流を供給する。駆動電流供給配線は、環状配線(62)と、共用配線(61)と、接続配線(63)とを有する。環状配線(62)は、複数の出力パッドを所定数行の出力パッド毎に環状に囲み、囲まれる出力パッドに接続され、出力パッドの列方向に沿って配列される。共用配線(61)は、複数の環状配線(62)の配列方向と直交する方向の両側に配列方向と平行に設けられ、電源に接続される。接続配線(63)は、環状配線(62)と共用配線(61)とを接続する。

Description

発光装置
 本開示は、発光装置に関する。
 平面視行列状に設けられる複数の発光素子の駆動を、個別に制御することによって、様々な発光パターンによる光の照射を可能とした測距システムの発光装置がある。
 かかる発光装置では、電源から遠い発光素子ほど、電源から近い発光素子よりも配線長が長くなるため、電源から近い発光素子に比べて電圧降下が大きくなり、駆動電流が減少して発光輝度が低くなるので、輝度ムラが発生する。
 このため、列方向に隣接する数行の発光素子のグループ(以下、「段」と記載する)と電源とを接続するバスの配線幅を、電源から遠い段に接続されるバスほど広くし、配線抵抗を小さくして電圧降下を抑制する発光装置がある(例えば、特許文献1参照)。これにより、発光装置は、段間における輝度ムラを低減する。
特開2012-226360号公報
 しかしながら、上記の従来技術では、段間における輝度ムラを低減することはできるが、列方向に隣接する数行の発光素子のグループ内における輝度ムラを抑制することができない。
 そこで、本開示では、列方向に隣接する数行の発光素子のグループ内における輝度ムラを抑制することができる発光装置を提案する。
 本開示によれば、発光装置が提供される。発光装置は、発光部と、出力部と、駆動電流供給配線とを備える。発光部は、複数の発光素子が平面視行列状に設けられる。出力部は、前記発光素子に駆動電流を出力する複数の出力パッドが平面視において前記発光素子と重なるように行列状に設けられる。駆動電流供給配線は、前記出力部が積層される配線層に設けられ、電源から前記出力パッドを介して前記発光素子に駆動電流を供給する。駆動電流供給配線は、矩形額縁状をした複数の環状配線と、共用配線と、接続配線とを有する。矩形額縁状をした複数の環状配線は、前記複数の出力パッドを列方向に隣接する所定数行の前記出力パッド毎に環状に囲み、囲まれる前記出力パッドに接続され、前記出力パッドの列方向に沿って配列される。共用配線は、前記複数の環状配線の配列方向と平面視において直交する方向の両側に前記配列方向と平行に設けられ、電源に接続される。接続配線は、前記環状配線と前記共用配線とを接続する。
本開示に係る測距装置の構成例を示す図である。 本開示に係る駆動回路および発光部の配置を示す図である。 本開示に係る駆動回路の平面視による説明図である。 対比例に係る駆動電流供給配線の平面図である。 対比例に係る駆動電流供給配線を採用した場合に、各出力パッドに供給される駆動電流のエリア毎の誤差率を示す図である。 本開示に係る駆動電流供給配線の平面図である。 本開示に係る駆動電流供給配線を採用した場合に、各出力パッドに供給される駆動電流のエリア毎の誤差率を示す図である。 本開示に係る駆動電流供給配線の断面図である。 本開示の変形例に係る駆動電流供給配線の断面図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
[1.測距装置]
 まず、図1を参照し、本開示に係る発光装置を備える測距装置の構成について説明する。図1は、本開示に係る測距装置の構成例を示す図である。本開示に係る測距装置100は、例えば、IndirectToF(Time of Flight)方式によって測距対象物までの距離を算出する装置である。
 IndirectToF方式は、物体に向かって照射光を発光し、その照射光が物体の表面で反射されて返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの時間を位相差として検出し、位相差に基づいて物体までの距離を算出する。
 図1に示すように、本開示に係る測距装置100は、発光装置1と、撮像装置2と、制御装置3とを備える。発光装置1は、発光部11と、駆動回路12と、電源回路13と、発光側光学系14とを備える。撮像装置2は、イメージセンサ21と、画像処理部22と、撮像側光学系23とを備える。
 制御装置3は、測距部31を備える。制御装置3は、発光装置1に含まれる場合、撮像装置2に含まれる場合、或いは、発光装置1や撮像装置2とは別体に構成される場合がある。
 発光部11は、レーザ光を出射する平面視行列状に配列された複数の発光素子を備える。各発光素子は、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)を有し、ストラクチャードライトの光源として機能する。
 駆動回路12は、発光部11を駆動するための電気回路を有する。電源回路13は、例えば、測距装置100に設けられたバッテリ(図示略)等から供給される入力電圧から駆動回路12の電源電圧を生成する。駆動回路12は、電源電圧(駆動電流)を発光部11に供給して発光部11を駆動する。
 発光部11から出射される光は、発光側光学系14を介して測距対象となる被写体101に照射される。そして、このように照射された光の被写体101からの反射光は、撮像側光学系23を介してイメージセンサ21の撮像面に入射する。
 イメージセンサ21は、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の撮像素子を有し、上記のように撮像側光学系23を介して入射する被写体101からの反射光を受光し、電気信号に光電変換して出力する。
 イメージセンサ21は、受光した光を光電変換して得た電気信号に対して、例えば、CDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。
 そして、イメージセンサ21は、デジタルデータとしての画像信号を、後段の画像処理部22に出力する。また、イメージセンサ21は、フレーム同期信号を駆動回路12に出力する。これにより、駆動回路12は、発光部11における発光素子321をイメージセンサ21のフレーム周期に応じたタイミングで発光させることが可能となる。
 なお、駆動回路12からイメージセンサ21へ発光部11の発光タイミングを示す信号を出力し、イメージセンサ21によって発光タイミングから所定位相ずらした受光タイミングで反射光を受光させてもよい。
 画像処理部22は、例えば、DSP(Digital Signal Processor)等の画像処理プロセッサによって構成される。画像処理部22は、イメージセンサ21から入力されるデジタル信号(画像信号)に対して、各種の画像信号処理を施す。
 制御装置3は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータ、或いはDSP等の情報処理装置によって構成される。制御装置3は、発光部11による発光動作を制御するための駆動回路12の制御や、イメージセンサ21による撮像動作に係る制御を行う。
 また、制御装置3は、測距部31としての機能を有する。測距部31は、画像処理部22を介して入力される画像信号(つまり被写体101からの反射光を受光して得られる画像信号)に基づき、被写体101までの距離を測定する。
 また、測距部31は、被写体101の三次元形状の特定を可能とするために、被写体101の各部について距離の測定を行う。また、制御装置3は、電源回路13に対する制御を行う構成とされる場合もある。
 ここで、測距装置100における具体的な測距の手法について説明する。測距装置100における測距手法としては、例えばSTL(Structured Light:構造化光)方式やToF(Time of Flight:光飛行時間)方式による測距手法を採用することができる。
 STL方式は、例えばドットパターンや格子パターン等の所定の明/暗パターンを有する光を照射された被写体101を撮像して得られる画像に基づいて距離を測定する方式である。
 STL方式では、ドットパターンによるパターン光を被写体101に照射する。パターン光は、複数のブロックに分割されており、各ブロックにはそれぞれ異なるドットパターンが割当てられており、ブロック間でドットパターンが重複しないようにされている。STL方式を採用する場合、発光部11は、STLの光源として機能する。
 また、ToF方式は、発光部11より発された光が対象物で反射されてイメージセンサ21に到達するまでの光の飛行時間(時間差)を検出することで、対象物までの距離を測定する方式である。
 ToF方式として、いわゆるダイレクトToF方式を採用する場合、イメージセンサ21としてはSPAD(Single Photon Avalanche Diode)を用い、また発光部11はパルス駆動する。
 この場合、測距部31は、画像処理部22を介して入力される画像信号に基づき、発光部11より発せられイメージセンサ21により受光される光について発光から受光までの時間差を計算し、該時間差と光の速度とに基づいて被写体101の各部までの距離を計算する。
 なお、ToF方式として、いわゆるインダイレクトToF方式(位相差法)を採用する場合、イメージセンサとしては、例えば、IR(赤外光)イメージセンサが用いられる。ToF方式を採用する場合、発光部11は、ToFセンサの光源として機能する。
[2.駆動回路および発光部の配置]
 図2は、本開示に係る駆動回路および発光部の配置を示す図である。図2に示すように、発光部11は、駆動回路12上に積層される。これにより、発光装置1は、例えば、発光部11と駆動回路12とが同一平面上に平置きされる場合に比べて、占有面積を小さくすることによって、小型化が可能となる。
 発光部11は、上面に複数の発光素子が平面視行列状に設けられる。発光部11の下面には、平面視において各発光素子と重なる位置に、発光素子の駆動電流が入力される入力パッドが設けられる。
 一方、駆動回路12の上面には、平面視において発光部11の入力パッドと重なる位置に、入力パッドに対して駆動電流を出力する出力パッドが設けられる。各出力パッドと各入力パッドとはバンプ15によって接続される。
[3.駆動回路の構成]
 図3は、本開示に係る駆動回路の平面視による説明図である。以下の説明では、便宜上、平面視における発光素子の列方向、出力パッドの列方向、および後述する環状配線の配列方向をY方向と称し、発光素子の行方向、出力パッドの行方向、および環状配線の配列方向と平面視において直交する方向をX方向と称する。
 図3に示すように、駆動回路12は、駆動制御回路41と、出力部42と、補正部43とを備える。駆動制御回路41は、出力部42に平面視行列状に設けられる複数の出力パッド44へ後述する駆動電流供給配線を介して駆動電流を供給する。なお、駆動制御回路41は、発光部11に設けられる複数の発光素子のうち、発光させる選択信号を出力部42に出力する制御も合わせて行う。
 補正部43は、出力部42における複数の出力パッド44が設けられる領域を複数のエリアに分割し、出力パッド44に供給する駆動電流をエリア毎に補正する。例えば、発光素子の数が800(800ch)の場合、補正部43は、出力部42を50個のエリア45-1~45-50に分割する。この場合、各エリア45-1~45-50には、4行4列の計16個の出力パッド44が含まれる。補正部43は、各エリア45-1~45-50の出力パッド44に供給する駆動電流をエリア45-1~45-50毎に補正する。
 以下、エリア45-1~45-50について、特定のエリアを指さない場合は、単にエリア45と記載する。また、エリア45-1からX軸方向に配列されるエリア45の行を1段と記載し、1段とY方向に順次隣接するエリア45の行を2段、3段などと記載する。
 かかる駆動回路12では、補正部43によるエリア45毎の駆動電流の補正によって、各段および各エリア45に対して供給する駆動電流を均一に近付けることができる。つまり、補正部43は、各段間および各エリア45間の駆動電流の誤差を低減することができる。
 しかし、駆動回路12は、出力パッド44へ駆動電流を供給する駆動電流供給配線のレイアウトによっては、段内およびエリア45内の個々の出力パッド44に供給する駆動電流を均一に近付けることができない場合がある。
 そこで、本開示に係る駆動回路12は、段内およびエリア45内の個々の出力パッド44に供給する駆動電流を均一に近付けることができる配線パターンの駆動電流供給配線を備える。次に、本開示に係る駆動電流供給配線の作用効果を明確にするために、まず、対比例に係る駆動電流供給配線について説明し、その後、本開示に係る駆動電流供給配線について説明する。
[4.対比例に係る駆動電流供給配線]
 図4は、対比例に係る駆動電流供給配線の平面図である。なお、図4には、エリア45の数が16個である場合を示している。図5は、対比例に係る駆動電流供給配線を採用した場合に、各出力パッドに供給される駆動電流のエリア毎の誤差率を示す図である。なお、図5には、図3に示す出力部42に、対比例に係る駆動電流供給配線を採用した場合の誤差率を示している。
 ここでの誤差率は、各エリア45内の各出力パッド44へ供給すべき駆動電流値に対するエリア45内の各出力パッド44へ実際に供給された駆動電流の最大値と最小値との差分の比率である。
 図4に示すように、対比例に係る駆動電流供給配線は、エリア45が行列状に設けられる領域のX方向における両側に、Y方向と平行に延伸する共用配線51を備える。また、対比例に係る駆動電流供給配線は、両側の共用配線51間を接続するX方向に平行な複数本の接続配線52-1,52-2,52-3・・・を備える。
 共用配線51は、Y方向の両端において電源パッド50に接続される。各接続配線52-1,52-2,52-3・・・は、それぞれ対応するエリア45内の出力パッド44に接続される。例えば、接続配線52-1,52-2,52-3は、1段内の各エリア45に設けられる出力パッド44に接続されて駆動電流を供給する。なお、接続配線52-3は、1段とY方向において隣接する2段内の各エリア45に設けられる出力パッド44にも接続されて駆動電流を供給する。
 かかる駆動電流供給配線を採用した場合、例えば、図4中の左上に設けられる電源パッド50から共用配線51を経由し、接続配線52-1を通る供給経路L10と、接続配線52-3を通る供給経路L12とによって1段内の出力パッド44に駆動電流が供給される。
 このとき、供給経路L12は、供給経路L10よりも長いため、配線抵抗が大きくなる。このため、接続配線52-3に接続される出力パッド44には、接続配線52-1に接続される出力パッド44よりも少ない駆動電流が供給される。
 しかも、接続配線52-3は、2段内の出力パッド44にも駆動電流を供給する。このため、接続配線52-3に接続される1段内の出力パッド44に供給される駆動電流と、接続配線52-1に接続される出力パッド44に供給される駆動電流との差は、さらに大きくなる。
 その結果、1段に含まれるエリア45内の各出力パッド44に供給される駆動電流の誤差率が大きくなる。また、電源パッド50に近いエリア45ほど供給される駆動電流が大きいため、配線抵抗の違いによるエリア45内の駆動電流の誤差は、エリア45が行列状に設けられる領域の4隅に近いエリア45ほど大きくなる。
 図5に示すように、対比例に係る駆動電流供給配線が採用される場合、エリア45が行列状に設けられる領域の4隅に位置するエリア45では、駆動電流の誤差率が4%を超えている。これにより、エリア45内の出力パッドに接続される発光素子では輝度ムラが大きくなる。
[5.本開示に係る駆動電流供給配線]
 図6は、本開示に係る駆動電流供給配線の平面図である。なお、図6には、エリア45の数が16個である場合を示している。図7は、対比例に係る駆動電流供給配線を採用した場合に、各出力パッドに供給される駆動電流のエリア毎の誤差率を示す図である。なお、図7には、図3に示す出力部42に、本開示に係る駆動電流供給配線を採用した場合の誤差率を示している。
 図6に示すように、本開示に係る駆動電流供給配線は、矩形額縁状をした複数の環状配線62と、共用配線61と、接続配線63とを有する。環状配線62は、複数の出力パッド44を列方向(Y方向)に隣接する所定数(図3に示す例では「4」)行の出力パッド44毎に環状に囲み、囲まれる出力パッド44に接続され、出力パッド44の列方向(Y方向)に沿って配列される。換言すれば、環状配線62は、複数の出力パッド44をエリア45の段毎に環状に囲む。
 共用配線61は、複数の環状配線62の配列方向(Y方向)と平面視において直交する方向(X方向)の両側に配列方向(Y方向)と平行に設けられ、Y方向の両端において電源パッド50に接続される。接続配線63は、環状配線62と共用配線61とを接続する。
 かかる駆動電流供給配線を採用した場合、図中の左上に設けられる電源パッド50から共用配線61と接続配線63とを経由し、接続配線63から分岐する環状配線62を通る2つの供給経路L1,L2によって1段内の出力パッド44に駆動電流が供給される。
 本開示に係る駆動電流供給配線によれば、1段内の出力パッド44に駆動電流を供給する2つの供給経路L1,L2の経路長を均等に近付けることによって、供給経路L1,L2の配線抵抗を近付けることができる。
 これにより、本開示に係る駆動電流供給配線は、環状配線62におけるY方向の両端を構成するX方向と平行な一対の各配線部に接続される出力パッド44に供給される駆動電流の誤差を低減できる。
 したがって、本開示に係る駆動電流供給配線を採用した場合には、1段に含まれる出力パッド44に供給する駆動電流の誤差率を低減することができるので、エリア45内の出力パッドに接続される発光素子の輝度ムラを抑制することができる。
 また、接続配線63は、環状配線62における配列方向(Y方向)と平面視において直交する方向(X方向)の両端を構成するY方向と平行な配線部の平面視中央部と共用配線61とを接続する。
 これにより、駆動電流を供給する2つの供給経路L1,L2の長さを同じ長さになるので、供給経路L1によって供給される駆動電流量と、供給経路L2によって供給される駆動電流量とを完全に一致させることができる。したがって、本開示に係る駆動電流供給配線によれば、1段に含まれる各エリア45内の出力パッド44に接続される発光素子の輝度ムラをより確実に抑制することができる。
 また、Y方向において隣接する環状配線62がスリット65によって分離される。これにより、各環状配線62は、隣接する2つの段の双方に駆動電流を供給することがないので、環状に囲む領域内の複数の出力パッド44に対して均一に駆動電流を供給することができる。
 また、2段、3段、および4段内の出力パッドにおいても、各接続配線63から各環状配線62に入り、2股に分岐する2つの駆動電流の経路長は、同じ長さになる。これにより、2段、3段、および4段の各段に含まれる出力パッド44に接続される発光素子の輝度ムラを抑制することができる。
 本開示に係る駆動電流供給配線では、電源パッド50から、それぞれの段の環状配線62に至るまでの配線経路長に差がある。このため、補正部43は、各段に供給される駆動電流が均等になるように、環状配線62毎に、供給する駆動電流を補正する。
 これにより、各環状配線62によって供給される駆動電流が均等になり、段間における駆動電流の差が低減される。また、補正部43は、各段内のX方向に配列されるエリア45間の供給電流の差についても、エリア45毎に供給する駆動電流を補正することによって解消することができる。
 これにより、発光装置1は、各段間および各エリア45間の駆動電流の誤差を低減することができる。したがって、図7に示すように、本開示に係る駆動電流供給配線が採用される場合、全てのエリア45において、駆動電流の誤差率を1%未満に抑えることができる。
 また、本開示に係る駆動電流供給配線は、各環状配線62における配列方向(Y方向)の両端を構成するX方向に平行な配線部間を接続する補強配線64を備える。これにより、駆動電流供給配線全体としての配線抵抗を下げることによって、各出力パッド44へ効率的に駆動電流を供給することができる。
[6.駆動電流供給配線の断面構造]
 図8は、本開示に係る駆動電流供給配線の断面図である。図8には、平面視において補強配線64を通るY方向に平行な線によって駆動電流供給配線を切断した断面のうち、1段71および2段72の部分の断面を示している。
 図8に示すように、環状配線62は、第1配線層M1上に積層される第1環状配線M2、第2環状配線M3、第3環状配線M4、第4環状配線M5、および第5環状配線M6を含む多層配線構造となっている。
 ここでは、駆動電流供給配線の天地が反転されているが、図8に示す第1配線層M1および第1~第5環状配線M2~M6が設けられる配線層の下面に出力部42が設けられる。つまり、実装される場合には、配線層に出力部42が積層されることになる。第1配線層M1および第1~第5環状配線M2~M6の層間は、コンタクトによって接続される。
 第1配線層M1は、コンタクトを介して、サブコンタクト81と、PMOSトランジスタ82に接続される。また、断面視において、環状配線62と補強配線64との間には、多層構造の出力配線73が設けられる。
 環状配線62および補強配線64は、コンタクトおよび第1配線層M1を介して、PMOSトランジスタ82のソースに接続される。一方、出力配線73は、コンタクトおよび第1配線層M1を介して、PMOSトランジスタ82のドレインに接続される。
 駆動回路12は、PMOSトランジスタ82のゲートに負のゲート電圧を印加することにより、環状配線62および補強配線64から、PMOSトランジスタ82、出力配線73、および出力パッド44(図3参照)を介して、発光素子に駆動電流を供給する。
[7.駆動電流供給配線の断面構造の変形例]
 図9は、本開示の変形例に係る駆動電流供給配線の断面図である。図9に示すように、変形例に係る駆動電流供給配線は、1段の第1~第5環状配線M2~M6間を接続するコンタクト74をさらに追加することによって、1段の環状配線62の配線抵抗を低減させることができる。
 また、変形例に係る駆動電流供給配線は、逆に1段の第1~第5環状配線M2~M6間を接続するコンタクト74の数を減らすことによって、1段の環状配線62の配線抵抗を増大させることができる。
 そこで、変形例に係る駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になるように、層間において第1~第5環状配線M2~M6間を接続するコンタクト75の数が環状配線62毎に調整される。これにより、駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になり、段間における駆動電流の差を低減することができる。
 また、図9に示すように、変形例に係る駆動電流供給配線は、例えば、2段の第2~第4環状配線M3~M5の配線幅を第1環状配線M2および第5環状配線M6の配線幅よりも狭くすることにより、2段の環状配線62の配線抵抗を増大させることができる。
 また、変形例に係る駆動電流供給配線は、逆に2段の第1~第5環状配線M2~M6を広げることにより、2段の環状配線62の配線抵抗を低減させることができる。そこで、変形例に係る駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になるように、環状配線62の配線幅が環状配線62毎に調整される。これにより、駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になり、段間における駆動電流の差を低減することができる。
[8.効果]
 発光装置1は、発光部11と、出力部42と、駆動電流供給配線とを備える。発光部11は、複数の発光素子が平面視行列状に設けられる。出力部42は、発光素子に駆動電流を出力する複数の出力パッド44が平面視において発光素子と重なるように行列状に設けられる。駆動電流供給配線は、出力部42が積層される配線層に設けられ、電源から出力パッド44を介して発光素子に駆動電流を供給する。駆動電流供給配線は、矩形額縁状をした複数の環状配線62と、共用配線61と、接続配線63とを有する。環状配線62は、複数の出力パッド44を列方向に隣接する所定数行の出力パッド44毎に環状に囲み、囲まれる出力パッド44に接続され、出力パッド44の列方向に沿って配列される。共用配線61は、複数の環状配線62の配列方向と平面視において直交する方向の両側に配列方向と平行に設けられ、電源に接続される。接続配線63は、環状配線62と共用配線61とを接続する。これにより、発光装置1は、各段内の出力パッド44に供給する駆動電流を均一にすることで、各段に対応する列方向に隣接する数行の発光素子のグループ内における輝度ムラを抑制することができる。
 接続配線63は、環状配線62における配列方向と平面視において直交する方向の両端を構成する配線部の平面視中央部と共用配線61とを接続する。これにより、発光装置1は、各段内の出力パッド44に供給する駆動電流をより均一にすることができる。
 駆動電流供給配線は、環状配線62における配列方向の両端を構成する配線部間を接続する補強配線64をさらに備える。これにより、駆動電流供給配線全体としての配線抵抗を下げることによって、各出力パッド44へ効率的に駆動電流を供給することができる。
 駆動電流供給配線は、各環状配線62によって供給する駆動電流が均等になるように、環状配線62の配線幅が環状配線62毎に調整される。これにより、駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になり、段間における駆動電流の差を低減することができる。
 駆動電流供給配線は、積層される複数層の環状配線62を含み、各環状配線62によって供給する駆動電流が均等になるように、層間において環状配線62を接続するコンタクトの数が環状配線62毎に調整される。これにより、駆動電流供給配線は、各環状配線62によって供給される駆動電流が均等になり、段間における駆動電流の差を低減することができる。
 発光装置1は、出力パッド44に供給する駆動電流を所定数行の出力パッド44毎に補正する補正部43を備える。これにより、補正部43は、各段間の供給電流の差を、段毎に供給する駆動電流を補正することによって解消することができる。
 発光装置1は、出力パッド44に供給する駆動電流を所定数行列の出力パッド44毎に補正する補正部43を備える。これにより、補正部43は、各段内のX方向に配列されるエリア45間の供給電流の差を、エリア45毎に供給する駆動電流を補正することによって解消することができる。
 共用配線61は、延伸方向の両端において電源パッド50に接続される。これにより、駆動回路12は、出力部42内の全ての出力パッド44に均等に駆動電流を供給することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の発光素子が平面視行列状に設けられる発光部と、
 前記発光素子に駆動電流を出力する複数の出力パッドが平面視において前記発光素子と重なるように行列状に設けられる出力部と、
 前記出力部が積層される配線層に設けられ、電源から前記出力パッドを介して前記発光素子に駆動電流を供給する駆動電流供給配線と
 を備え、
 前記駆動電流供給配線は、
 前記複数の出力パッドを列方向に隣接する所定数行の前記出力パッド毎に環状に囲み、囲まれる前記出力パッドに接続され、前記出力パッドの列方向に沿って配列される矩形額縁状をした複数の環状配線と、
 前記複数の環状配線の配列方向と平面視において直交する方向の両側に前記配列方向と平行に設けられ、電源に接続される共用配線と、
 前記環状配線と前記共用配線とを接続する接続配線と
 を有する発光装置。
(2)
 前記接続配線は、
 前記環状配線における前記配列方向と平面視において直交する方向の両端を構成する配線部の平面視中央部と前記共用配線とを接続する
 前記(1)に記載の発光装置。
(3)
 前記駆動電流供給配線は、
 前記環状配線における前記配列方向の両端を構成する配線部間を接続する補強配線
 をさらに備える前記(1)または(2)に記載の発光装置。
(4)
 前記駆動電流供給配線は、
 各前記環状配線によって供給する駆動電流が均等になるように、前記環状配線の配線幅が前記環状配線毎に調整される
 前記(1)~(3)のいずれか一つに記載の発光装置。
(5)
 前記駆動電流供給配線は、
 積層される複数層の前記環状配線を含み、各前記環状配線によって供給する駆動電流が均等になるように、層間において前記環状配線を接続するコンタクトの数が前記環状配線毎に調整される
 前記(1)~(4)のいずれか一つに記載の発光装置。
(6)
 前記出力パッドに供給する駆動電流を前記所定数行の前記出力パッド毎に補正する補正部
 を備える前記(1)~(5)のいずれか一つに記載の発光装置。
(7)
 前記出力パッドに供給する駆動電流を所定数行列の前記出力パッド毎に補正する補正部
 を備える前記(1)~(5)のいずれか一つに記載の発光装置。
(8)
 前記共用配線は、
 延伸方向の両端において電源に接続される
 前記(1)に記載の発光装置。
 1 発光装置
 11 発光部
 12 駆動回路
 13 電源回路
 41 駆動制御回路
 42 出力部
 43 補正部
 44 出力パッド
 45 エリア
 50 電源パッド
 61 共用配線
 62 環状配線
 63 接続配線
 64 補強配線

Claims (8)

  1.  複数の発光素子が平面視行列状に設けられる発光部と、
     前記発光素子に駆動電流を出力する複数の出力パッドが平面視において前記発光素子と重なるように行列状に設けられる出力部と、
     前記出力部が積層される配線層に設けられ、電源から前記出力パッドを介して前記発光素子に駆動電流を供給する駆動電流供給配線と
     を備え、
     前記駆動電流供給配線は、
     前記複数の出力パッドを列方向に隣接する所定数行の前記出力パッド毎に環状に囲み、囲まれる前記出力パッドに接続され、前記出力パッドの列方向に沿って配列される矩形額縁状をした複数の環状配線と、
     前記複数の環状配線の配列方向と平面視において直交する方向の両側に前記配列方向と平行に設けられ、電源に接続される共用配線と、
     前記環状配線と前記共用配線とを接続する接続配線と
     を有する発光装置。
  2.  前記接続配線は、
     前記環状配線における前記配列方向と平面視において直交する方向の両端を構成する配線部の平面視中央部と前記共用配線とを接続する
     請求項1に記載の発光装置。
  3.  前記駆動電流供給配線は、
     前記環状配線における前記配列方向の両端を構成する配線部間を接続する補強配線
     をさらに備える請求項1に記載の発光装置。
  4.  前記駆動電流供給配線は、
     各前記環状配線によって供給する駆動電流が均等になるように、前記環状配線の配線幅が前記環状配線毎に調整される
     請求項1に記載の発光装置。
  5.  前記駆動電流供給配線は、
     積層される複数層の前記環状配線を含み、各前記環状配線によって供給する駆動電流が均等になるように、層間において前記環状配線を接続するコンタクトの数が前記環状配線毎に調整される
     請求項1に記載の発光装置。
  6.  前記出力パッドに供給する駆動電流を前記所定数行の前記出力パッド毎に補正する補正部
     を備える請求項1に記載の発光装置。
  7.  前記出力パッドに供給する駆動電流を所定数行列の前記出力パッド毎に補正する補正部
     を備える請求項1に記載の発光装置。
  8.  前記共用配線は、
     延伸方向の両端において電源に接続される
     請求項1に記載の発光装置。
PCT/JP2021/025939 2020-07-20 2021-07-09 発光装置 WO2022019151A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021003857.5T DE112021003857T5 (de) 2020-07-20 2021-07-09 Lichtemissionsvorrichtung
US18/004,793 US20230246411A1 (en) 2020-07-20 2021-07-09 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020124070 2020-07-20
JP2020-124070 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022019151A1 true WO2022019151A1 (ja) 2022-01-27

Family

ID=79728725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025939 WO2022019151A1 (ja) 2020-07-20 2021-07-09 発光装置

Country Status (3)

Country Link
US (1) US20230246411A1 (ja)
DE (1) DE112021003857T5 (ja)
WO (1) WO2022019151A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151276A (ja) * 2000-08-10 2002-05-24 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
US20050168156A1 (en) * 2004-01-30 2005-08-04 1 Energy Solutions, Inc. LED light module and lighting string
JP2008235894A (ja) * 2007-03-19 2008-10-02 Seoul Opto Devices Co Ltd 交流駆動型の発光ダイオード
JP2010145661A (ja) * 2008-12-17 2010-07-01 Canon Inc 表示装置
JP2011181925A (ja) * 2010-02-27 2011-09-15 Samsung Led Co Ltd マルチセルアレイを有する半導体発光装置、発光モジュール及び照明装置
US8272757B1 (en) * 2005-06-03 2012-09-25 Ac Led Lighting, L.L.C. Light emitting diode lamp capable of high AC/DC voltage operation
JP2014093453A (ja) * 2012-11-05 2014-05-19 Nec Saitama Ltd 電子機器
WO2015011983A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイ
JP2016006914A (ja) * 2015-10-15 2016-01-14 シャープ株式会社 発光装置
JP2020013910A (ja) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122998A1 (ja) 2008-03-31 2009-10-08 富士電機ホールディングス株式会社 面発光表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151276A (ja) * 2000-08-10 2002-05-24 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
US20050168156A1 (en) * 2004-01-30 2005-08-04 1 Energy Solutions, Inc. LED light module and lighting string
US8272757B1 (en) * 2005-06-03 2012-09-25 Ac Led Lighting, L.L.C. Light emitting diode lamp capable of high AC/DC voltage operation
JP2008235894A (ja) * 2007-03-19 2008-10-02 Seoul Opto Devices Co Ltd 交流駆動型の発光ダイオード
JP2010145661A (ja) * 2008-12-17 2010-07-01 Canon Inc 表示装置
JP2011181925A (ja) * 2010-02-27 2011-09-15 Samsung Led Co Ltd マルチセルアレイを有する半導体発光装置、発光モジュール及び照明装置
JP2014093453A (ja) * 2012-11-05 2014-05-19 Nec Saitama Ltd 電子機器
WO2015011983A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイ
JP2016006914A (ja) * 2015-10-15 2016-01-14 シャープ株式会社 発光装置
JP2020013910A (ja) * 2018-07-18 2020-01-23 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距モジュール

Also Published As

Publication number Publication date
DE112021003857T5 (de) 2023-05-04
US20230246411A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
CN108886589B (zh) 固态成像元件、成像装置和电子装置
CN101794800B (zh) 固态成像装置及电子设备
JP7273565B2 (ja) 受光装置及び距離測定装置
CN109040626B (zh) 拍摄元件
US20210409635A1 (en) Synchronized solid-state imaging element, imaging device, and electronic device
US9203523B2 (en) Modular chip layout for active optical links
JP6645520B2 (ja) 撮像素子の製造方法、撮像素子、および撮像装置
US20210349188A1 (en) Light source apparatus and sensing module
US11825216B2 (en) Image sensor
US20220013558A1 (en) Solid-state image pickup device and image pickup apparatus
WO2022019151A1 (ja) 発光装置
US20190327404A1 (en) High-resolution active image data generating apparatus having diffractive optical element unit
TW201421720A (zh) 光學互連裝置
JP5172584B2 (ja) 撮像装置
WO2020183533A1 (ja) 距離画像センサ及び距離画像撮像装置
US20190148438A1 (en) Image sensor and electronic apparatus including the same
JP2006325024A (ja) 密着型イメージセンサ
JP7322552B2 (ja) 光電変換装置、ラインセンサ、画像読取装置、及び画像形成装置
US20180166428A1 (en) Light source comprising a number of semi-conductor components
CN113838877A (zh) 光电转换装置和系统、可移动体控制系统及半导体装置
US9804000B2 (en) Optical sensor array apparatus
JP2017084930A (ja) 撮像装置
KR20210023459A (ko) 이미지 센싱 장치
WO2023074190A1 (ja) 半導体装置および測距装置
JP2020008412A (ja) 測距センサ及びタイムオブフライトセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845188

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21845188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP