WO2022017216A1 - 参考信号接收功率确定方法、装置、设备和存储介质 - Google Patents

参考信号接收功率确定方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022017216A1
WO2022017216A1 PCT/CN2021/105797 CN2021105797W WO2022017216A1 WO 2022017216 A1 WO2022017216 A1 WO 2022017216A1 CN 2021105797 W CN2021105797 W CN 2021105797W WO 2022017216 A1 WO2022017216 A1 WO 2022017216A1
Authority
WO
WIPO (PCT)
Prior art keywords
sss
time
pbch dmrs
domain channel
pss
Prior art date
Application number
PCT/CN2021/105797
Other languages
English (en)
French (fr)
Inventor
梁立宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022017216A1 publication Critical patent/WO2022017216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, apparatus, device, and storage medium for determining received power of a reference signal.
  • RSRP Reference Signal Receiving Power
  • the RSRP value on the received resource is measured based on the SSS received symbol or based on the SSS+PBCH DMRS received symbol.
  • the existing RSRP measurement schemes have many defects.
  • Embodiments of the present application provide a reference signal received power method, apparatus, device, and storage medium.
  • an embodiment of the present application provides a method for determining received power of a reference signal, including: determining a time-domain channel estimate on the PSS based on a primary synchronization signal PSS on an SSB; determining the SSS based on reference signals on the SSS and PBCH DMRS and time-domain channel estimation on the PBCH DMRS; based on the time-domain channel estimation on the PSS and the time-domain channel estimation on the SSS and the PBCH DMRS, the reference signal received power RSRP of the SSB is determined.
  • an embodiment of the present application provides an apparatus for determining received power of a reference signal, including: a time-domain channel estimation and determination module configured to determine a time-domain channel estimation on the PSS based on the primary synchronization signal PSS on the SSB; based on the SSS and The reference signal on the PBCH DMRS determines the time domain channel estimate on the SSS and the PBCH DMRS; the RSRP determination module is configured to determine the SSB based on the time domain channel estimate on the PSS and the time domain channel estimate on the SSS and the PBCH DMRS The reference signal received power RSRP.
  • embodiments of the present application provide a device, including: one or more processors; a memory configured to store one or more programs; when the one or more programs are processed by the one or more programs The processor executes, so that the one or more processors implement the method according to any one of the embodiments of the present application.
  • an embodiment of the present application provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the method according to any one of the embodiments of the present application is implemented.
  • FIG. 1 is a flowchart of a method for determining received power of a reference signal provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a RSRP estimation method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an apparatus for determining received power of a reference signal provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the technical solution of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LIE-A (Advanced long term evolution, advanced long term evolution) system, universal mobile communication system (Universal Mobile Telecommunication System, UMTS), and the fifth generation mobile communication technology (5th generation wireless systems, 5G) system, etc., the embodiments of the present application are not limited.
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution, advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile communication technology
  • the embodiments of the present application are not limited.
  • the 5G system is used as an example for description.
  • the base station may be a device capable of communicating with a user terminal.
  • the base station can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small cell, a transmission reference point (transmission reference point, TRP), etc., which are not limited in the embodiments of the present application.
  • a 5G base station is used as an example for description.
  • the user terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed on In the air (eg on airplanes, balloons and satellites, etc.).
  • the user terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, an industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a user terminal may also sometimes be referred to as a terminal, access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication device, UE proxy, or UE device, or the like.
  • the embodiments of the present application are not limited.
  • the present application provides a method for determining RSRP of reference signal received power.
  • the method for determining RSRP provided by this embodiment mainly includes steps S11 , S12 and S13 .
  • the synchronization signal and PBCH block (Synchronization Signal and PBCH block, SSB), which consists of a primary synchronization signal (Primary Synchronization Signals, referred to as PSS), a secondary synchronization signal (Secondary Synchronization Signals, referred to as SSS), PBCH three parts composed together.
  • PSS Primary Synchronization Signals
  • SSS Secondary Synchronization Signals
  • the determining the time-domain channel estimation on the PSS based on the primary synchronization signal PSS on the SSB includes: performing a fast Fourier transform (FFT) on the received time-domain PSS signal on the SSB to obtain a first frequency domain signal; conjugate the first frequency domain signal with the local PSS training sequence to obtain a frequency domain descrambling result; perform an inverse fast Fourier transform (IFFT) on the frequency domain descrambling result to obtain Time-domain channel estimation on the PSS.
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the determining the time-domain channel estimate on each of the SSS and the PBCH DMRS based on the reference signal on each of the SSS and the PBCH DMRS includes: based on the first SSS and the PBCH DMRS on the first A physical broadcast channel demodulation reference signal PBCH DMRS determines the time domain channel estimation on the first SSS and PBCH DMRS; Time domain channel estimation; the second reference signal includes one or more of the following: secondary synchronization signal SSS, PBCH DMRS; based on the third SSS and the second physical broadcast channel demodulation reference signal PBCH DMRS on the PBCH DMRS to determine the Time domain channel estimation on the third SSS and PBCH DMRS.
  • the time-domain channel estimation is determined by transforming the received signal into the frequency domain through FFT, multiplying the local code in the frequency domain, and then transforming it into the time domain through IFFT to obtain the time-domain channel estimation.
  • the time-domain channel estimates are obtained directly in the time-domain through correlation operations.
  • the determining the RSRP in the SSB based on the time domain channel estimation on the PSS and the signal estimation values on the SSS and the PBCH DMRS includes: the time domain channel based on the SSS and the PBCH DMRS Estimate and determine a plurality of effective channel taps; for each effective channel tap, determine the power sum of all SSB symbols at the effective channel tap based on the time domain channel estimation on the PSS and the time domain channel estimation of the SSS and PBCH DMRS; The RSRP of the SSB is determined based on the power sum.
  • the time domain channel estimation of the SSS and PBCH DMRS includes the time domain channel estimation of the first SSS and PBCH DMRS, the time domain channel estimation of the second SSS and PBCH DMRS and the third SSS and In the case of time-domain channel estimation of PBCH DMRS, determining effective channel taps based on the time-domain channel estimation of each of the SSS and PBCH DMRS, including: combining the time-domain on the same channel tap in each of the SSS and PBCH DMRS The channel estimates are added to obtain the sum of the time-domain channel estimates of the channel taps; the channel taps whose sum of the time-domain channel estimates of the channel taps is greater than the channel estimation threshold are determined as effective channel taps.
  • the channel estimates of the first SSS and PBCH DMRS, the channel estimates of the second SSS and PBCH DMRS, and the channel estimates of the third SSS and PBCH DMRS on the first channel tap are added to obtain the first time sum of domain channel estimates; add the channel estimates of the first SSS and PBCH DMRS, the channel estimates of the second SSS and PBCH DMRS, and the channel estimates of the third SSS and PBCH DMRS on the second channel tap to obtain the second time domain
  • the channel estimate sum, and so on, determines the time domain channel estimate sum corresponding to all channel taps included in the SSB.
  • the signal estimation values of the SSS and the PBCH DMRS determine the power sum of all SSB symbols in the effective channel taps, including: determining the channel taps corresponding to the effective channel taps in the PSS; Describe the PSS power of the corresponding channel tap, and the power of each SSS and PBCH DMRS on the effective channel tap; add the PSS power to the power of each SSS and PBCH DMRS to obtain all SSB symbols in the effective channel the power of the tap and.
  • Determining the channel tap corresponding to the effective channel tap in the PSS may be determining the time domain position of the effective channel tap, and obtaining the channel tap at the time domain position in the PSS and determining it as the corresponding channel tap in the PSS.
  • the co-channel interference on SSS and PBCH DMRS on SSS and PBCH DMRS is relatively small, and the effective tap selected at this time is the effective tap of the target cell. Due to the propagation characteristics of the wireless channel, in the time domain, on adjacent symbols, it can be considered that the positions of the effective taps are the same. The distances from multiple cells to the terminal are not the same, so the channel tap positions of each cell in the time domain are not exactly the same; therefore, the effective channel taps on the SSS and PBCH DMRS can be used to select the corresponding channel taps on the PSS, which can effectively The measurement performance can be improved by using the received signal of the PSS, and co-channel interference can be avoided to a certain extent.
  • the RSRP estimation method provided by this embodiment mainly includes the following processes.
  • the cell ID and cell timing can be obtained.
  • Estimate h 0 ifft(H 0 ).
  • steps 3 and 3' are selected to be executed, and it is not necessary that steps 3 and 3' be executed at the same time.
  • symbol 0 may be the aforementioned SSB
  • symbol 1 may be the aforementioned first SSS and PBCH DMRS
  • symbol 2 may be the aforementioned second SSS and PBCH DMRS
  • symbol 3 may be the aforementioned third SSS and PBCH DMRS.
  • time-domain channel estimation h 0 of symbol 0 in 1 select the time-domain channel taps corresponding to the time-domain positions of the L time-domain channel taps, and confirm that they are valid channel taps.
  • this scheme can improve the performance by about 1.67dB and 3dB respectively.
  • the received signal is transformed into the frequency domain through FFT, multiplied by the local code in the frequency domain, and then transformed into the time domain through IFFT to obtain the channel estimation in the time domain.
  • the time-domain channel estimates are obtained through correlation operations.
  • steps 1, 2, 3, and 4 in this embodiment do not limit the execution order thereof.
  • the present application provides an apparatus for determining RSRP of reference signal received power.
  • the apparatus for determining RSRP provided in this embodiment mainly includes a time-domain channel estimation determining module 31 and an RSRP determining module 32 .
  • the time-domain channel estimation determining module 31 is configured to determine the time-domain channel estimation on the PSS based on the primary synchronization signal PSS on the SSB; determine the time-domain channel estimation on the SSS and the PBCH DMRS based on the reference signals on the SSS and the PBCH DMRS ;
  • the RSRP determination module 32 is configured to determine the reference signal received power RSRP of the SSB based on the time domain channel estimate on the PSS and the time domain channel estimate on each of the SSS and PBCH DMRS.
  • the determining the time-domain channel estimate on the PSS based on the primary synchronization signal PSS on the SSB includes: performing a fast Fourier transform (FFT) on the received time-domain PSS signal on the SSB , obtain the first frequency domain signal; multiply the conjugate of the first frequency domain signal and the local PSS training sequence to obtain the frequency domain descrambling result; perform the inverse fast Fourier transform IFFT transform on the frequency domain descrambling result , to obtain the time-domain channel estimate on the PSS.
  • FFT fast Fourier transform
  • the determining the time-domain channel estimate on each of the SSS and the PBCH DMRS based on the reference signal on each of the SSS and the PBCH DMRS includes: based on the first SSS and the PBCH DMRS on the first A physical broadcast channel demodulation reference signal PBCH DMRS determines the time domain channel estimation on the first SSS and PBCH DMRS; Time domain channel estimation; the second reference signal includes one or more of the following: secondary synchronization signal SSS, PBCH DMRS; based on the third SSS and the second physical broadcast channel demodulation reference signal PBCH DMRS on the PBCH DMRS to determine the Time domain channel estimation on the third SSS and PBCH DMRS.
  • the determining the RSRP of the SSB based on the time domain channel estimation on the PSS and the time domain channel estimation on the SSS and the PBCH DMRS includes: based on the time domain channel of the SSS and the PBCH DMRS Estimate and determine a plurality of effective channel taps; for each effective channel tap, determine the power sum of all SSB symbols at the effective channel tap based on the time-domain channel estimation of the PSS and the time-domain channel estimation of the SSS and PBCH DMRS; based on The power sum determines the RSRP of the SSB.
  • the time domain channel estimation of the SSS and PBCH DMRS includes the time domain channel estimation of the first SSS and PBCH DMRS, the time domain channel estimation of the second SSS and PBCH DMRS and the third SSS and In the case of time-domain channel estimation of PBCH DMRS, determining effective channel taps based on the time-domain channel estimation of each of the SSS and PBCH DMRS, including: combining the time-domain on the same channel tap in each of the SSS and PBCH DMRS The channel estimates are added to obtain the sum of the time-domain channel estimates of the channel taps; the channel taps whose sum of the time-domain channel estimates of the channel taps is greater than the channel estimation threshold are determined as effective channel taps.
  • the signal estimates of the SSS and the PBCH DMRS determine the sum of the powers of all the data blocks in the effective channel taps, including: determining the channel taps corresponding to the effective channel taps in the PSS; The PSS power corresponding to the corresponding channel tap, and the power of each SSS and PBCH DMRS on the effective channel tap; the SSB power is added to the power of each SSS and PBCH DMRS, and all SSB symbols are obtained The power sum of the channel taps.
  • the apparatus for determining the received power of a reference signal provided in this embodiment can execute the method for determining the received power of a reference signal provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the apparatus for determining the received power of a reference signal provided in this embodiment can execute the method for determining the received power of a reference signal provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • FIG. 4 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 41 , a memory 42 , an input device 43 , an output device 44 and Communication device 45; the number of processors 41 in the device may be one or more, and one processor 41 is taken as an example in FIG. 4; For connection in other ways, in Figure 4, the connection through the bus is taken as an example.
  • the memory 42 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the reference signal received power method in the embodiments of the present application (for example, reference signal receiving power). Time-domain channel estimation determination module 31 and RSRP determination module 32) in the power device.
  • the processor 41 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 42, ie, implements any method provided by the embodiments of the present application.
  • the memory 42 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 42 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some instances, memory 42 may further include memory located remotely from processor 41, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 43 may be configured to receive input numerical or character information and to generate key signal input related to user settings and function control of the device.
  • the output device 44 may include a display device such as a display screen.
  • the communication device 45 may include a receiver and a transmitter.
  • the communication device 45 is configured to transmit and receive information according to the control of the processor 41 .
  • an embodiment of the present application further provides a storage medium containing computer-executable instructions, the computer-executable instructions being used to execute a method for determining received power of a reference signal when executed by a computer processor ,include;
  • the reference signal received power RSRP of the SSB is determined based on the time domain channel estimates on the PSS and the time domain channel estimates on the SSS and PBCH DMRS.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also perform the reference signal received power determination provided by any embodiment of the present application. related operations in the method.
  • the method, apparatus, device, and storage medium for determining the received power of a reference signal determine the time-domain channel estimation on the PSS based on the primary synchronization signal PSS on the SSB; Time-domain channel estimation on SSS and PBCH DMRS; based on time-domain channel estimation on PSS and time-domain channel estimation on SSS and PBCH DMRS, the reference signal received power RSRP of SSB is determined, and the received primary synchronization signal PSS is effectively used to The RSRP is determined, thereby improving the estimation performance of the RSRP and avoiding co-channel interference to a certain extent.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and of course can also be implemented by hardware, but in many cases the former is a better implementation manner .
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in a computer-readable storage medium, such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer , server, or network device, etc.) to execute the methods described in the various embodiments of this application.
  • a computer-readable storage medium such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • the computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号接收功率确定方法、装置、设备和存储介质,该方法包括:基于SSB上的主同步信号PSS确定PSS上的时域信道估计(S11);基于SSS和PBCH DMRS上的参考信号确定SSS和PBCH DMRS上的时域信道估计(S12);基于PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB中的参考信号接收功率RSRP(S13)。

Description

参考信号接收功率确定方法、装置、设备和存储介质
相关申请的交叉引用
本申请基于申请号为202010700847.6、申请日为2020年07月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,具体涉及一种参考信号接收功率确定方法、装置、设备和存储介质。
背景技术
在5G无线移动通信系统中,需要基于同步信号和PBCH(Physical Broadcast Channel,物理广播信道)块(Synchronization Signal PBCH block,简称SSB)来测量参考信号接收功率(Reference Signal Receiving Power,RSRP),用于评估链路质量。
现有方案中,基于SSS接收符号或者基于SSS+PBCH DMRS接收符号,来测量接收资源上的RSRP值。然而,现有RSRP的测量方案存在诸多缺陷。
发明内容
本申请实施例提供参考信号接收功率方法、装置、设备和存储介质。
第一方面,本申请实施例提供一种参考信号接收功率确定方法,包括:基于SSB上的主同步信号PSS确定PSS上的时域信道估计;基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
第二方面,本申请实施例提供一种参考信号接收功率确定装置,包括:时域信道估计确定模块,被配置为基于SSB上的主同步信号PSS确定PSS上的时域信道估计;基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;RSRP确定模块,被配置为基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
第三方面,本申请实施例提供一种设备,包括:一个或多个处理器;存储器,被设置成存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例提供的任一项所述的方法。
第四方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例提供的任一项所述的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请实施例提供的一种参考信号接收功率确定方法的流程图;
图2是本申请实施例提供的一种RSRP估计方法的流程图;
图3是本申请实施例提供的一种参考信号接收功率确定装置的结构示意图;
图4是本申请实施例提供的一种设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信技术(5th generation wireless systems,5G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例中,基站可以是能和用户终端进行通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。在本申请中以5G基站为例进行说明。
本申请实施例中,用户终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户终端有时也可以称为终端、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
在一个实施例中,本申请提供一种参考信号接收功率RSRP确定方法,如图1所示,本实施例提供的RSRP确定方法主要包括步骤S11、S12和S13。
S11、基于SSB上的主同步信号PSS确定PSS上的时域信道估计。
S12、基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计。
S13、基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
在本实施例中,同步信号和PBCH块(Synchronization Signal and PBCH block,SSB),它由主同步信号(Primary Synchronization Signals,简称PSS)、辅同步信号(Secondary Synchronization Signals,简称SSS)、PBCH三部分共同组成。
在一个示例性的实施方式中,所述基于SSB上的主同步信号PSS确定PSS上的时域信道估计,包括:将接收到的SSB上的时域PSS信号进行快速傅里叶变换FFT,得到第一频域信号;将所述第一频域信号与本地PSS训练序列共轭相乘,得到频域解扰结果;将所述频域解扰结果进行逆快速傅里叶变换IFFT变换,得到所述PSS上的时域信道估计。
在本实施例中,接收SSB上256样点的时域PSS信号r 0,并做256点的FFT,得到频域的接收信号R 0=fft(r 0),抽取其中的PSS,和本地频域PSS训练序列S 0的共轭相乘,得到频域的解扰结果H 0=R 0*conj(S 0),对H 0做256点的IFFT变换,得到接收的符号0上的时域信道估计h 0=ifft(H 0)。
在一个示例性的实施方式中,所述基于每个SSS和PBCH DMRS上的参考信号确定每个所述SSS和PBCH DMRS上的时域信道估计,包括:基于第一SSS和PBCH DMRS上的第一物理广播信道解调参考信号PBCH DMRS确定所述第一SSS和PBCH DMRS上的时域信道估计;基于第二SSS和PBCH DMRS上的第二参考信号确定所述第二SSS和PBCH DMRS上的时域信道估计;所述第二参考信号包括如下一种或多种:辅同步信号SSS,PBCH DMRS;基于第三SSS和PBCH DMRS上的第二物理广播信道解调参考信号PBCH DMRS确定所述第三SSS和PBCH DMRS上的时域信道估计。
接收第一SSS和PBCH DMRS上256样点的时域PBCH DMRS信号r 1,并做256点的FFT,得到频域的接收信号R 1=fft(r 1),抽取其中的PBCH DMRS,和本地PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 1=R 1*conj(S 1),对H 1做256点的IFFT变换,得到接收的第一SSS和PBCH DMRS上的时域信道估计h 1=ifft(H 1)。
接收第二SSS和PBCH DMRS上256样点的时域SSS+PBCH DMRS信号r 2,并做256点的FFT,得到频域的接收信号R 2=fft(r 2),抽取其中的SSS符号,和本地SSS训练序列,在频域相乘,得到频域的解扰结果H 2=R 2*conj(S 2),对H 2做256点的IFFT变换,得到接收的第二SSS和PBCH DMRS上的时域信道估计h 2=ifft(H 2)。或者,接收第二SSS和PBCH DMRS上256样点的时域SSS+PBCH DMRS信号r 2,并做256点的FFT,得到频域的接收信号R 2=fft(r 2),抽取其中的SSS+PBCH DMRS符号,和SSS+PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 2=R 2*conj(S 2),对H 2做256点的IFFT变换,得到接收的第二SSS和PBCH DMRS上的时域信道估计h 2=ifft(H 2)。
接收第三SSS和PBCH DMRS上256样点的时域PBCH DMRS信号r 3,并做256点的FFT,得到频域的接收信号R 3=fft(r 3),抽取其中的PBCH DMRS,和本地的PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 3=R 3*conj(S 3),对H 3做256点的IFFT变换,得到接收的第三SSS和PBCH DMRS上的时域信道估计h 3=ifft(H 3)。
需要说明的是,本实施例中确定时域信道估计是通过FFT将接收信号变换到频域,在频域和本地码相乘,再通过IFFT变换到时域,得到时域信道估计,也可以直接在时域通过相关运算得到时域信道估计。
在一个示例性的实施方式中,所述基于所述PSS上的时域信道估计和SSS和PBCH DMRS 上的信号估计值确定SSB中的RSRP,包括:基于所述SSS和PBCH DMRS的时域信道估计确定多个有效信道抽头;针对每个有效信道抽头,基于所述PSS上的时域信道估计和所述SSS和PBCH DMRS的时域信道估计确定所有SSB符号在该有效信道抽头的功率和;基于所述功率和确定SSB的RSRP。
在一个示例性的实施方式中,在所述SSS和PBCH DMRS的时域信道估计包括第一SSS和PBCH DMRS的时域信道估计,第二SSS和PBCH DMRS的时域信道估计和第三SSS和PBCH DMRS的时域信道估计的情况下,基于每个所述SSS和PBCH DMRS的时域信道估计确定有效信道抽头,包括:将每个所述SSS和PBCH DMRS中在同一信道抽头上的时域信道估计相加,得到该信道抽头的时域信道估计总和;将所述信道抽头的时域信道估计总和大于信道估计阈值的信道抽头确定为有效信道抽头。
在本实施例中,将在第一信道抽头上的第一SSS和PBCH DMRS的信道估计、第二SSS和PBCH DMRS的信道估计和第三SSS和PBCH DMRS的信道估计相加,得到第一时域信道估计总和;将在第二信道抽头上的第一SSS和PBCH DMRS的信道估计、第二SSS和PBCH DMRS的信道估计和第三SSS和PBCH DMRS的信道估计相加,得到第二时域信道估计总和,依次类推,确定SSB中包括的所有信道抽头对应的时域信道估计总和。
将各个时域信道估计总和与所述信道估计阈值相比较,将时域信道估计总和大于所述信道估计阈值对应的信道抽头确定为有效信道抽头。
在一个示例性的实施方式中,所述SSS和PBCH DMRS的信号估计值确定所有SSB符号在有效信道抽头的功率和,包括:确定在PSS中与所述有效信道抽头对应的信道抽头;获取所述对应的信道抽头的PSS功率,以及在有效信道抽头上每个SSS和PBCH DMRS的功率;将所述PSS功率与所述每个SSS和PBCH DMRS的功率相加,得到所有SSB符号在有效信道抽头的功率和。
确定在PSS中与所述有效信道抽头对应的信道抽头可以是确定有效信道抽头的时域位置,获取PSS中该时域位置的信道抽头确定为PSS中对应的信道抽头。
SSS和PBCH DMRS上的SSS和PBCH DMRS上的同频干扰相对较小,此时选出的有效抽头即是目标小区的有效抽头。由于无线信道的传播特性,在时域上,相邻符号上,可以认为有效抽头的位置相同。多个小区到终端的距离不相同,因此时域上的各个小区的信道抽头位置不完全相同;因此,可以用SSS和PBCH DMRS上的有效信道抽头选出PSS上对应的信道抽头,这样可以有效利用PSS的接收信号提升测量性能,又可以在一定程度上避免同频干扰。
在一个应用性实例中,提供一种在5G系统中,基于SSB对RSRP进行估计的方法,如图2所示,本实施例提供的RSRP估计方法主要包括如下过程。
1、根据小区搜索的PSS和SSS检测过程,能得到小区ID和小区定时。在此基础上接收符号0上256样点的时域PSS信号r 0,并做256点的FFT,得到频域的接收信号R 0=fft(r 0),抽取其中的PSS,和本地频域PSS训练序列S 0的共轭相乘,得到频域的解扰结果H 0=R 0*conj(S 0),对H 0做256点的IFFT变换,得到接收的符号0上的时域信道估计h 0=ifft(H 0)。
2、接收符号1上256样点的时域PBCH DMRS信号r 1,并做256点的FFT,得到频域的 接收信号R 1=fft(r 1),抽取其中的PBCH DMRS,和本地PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 1=R 1*conj(S 1),对H 1做256点的IFFT变换,得到接收的符号1上的时域信道估计h 1=ifft(H 1)。
3、接收符号2上256样点的时域SSS+PBCH DMRS信号r 2,并做256点的FFT,得到频域的接收信号R 2=fft(r 2),抽取其中的SSS符号,和本地SSS训练序列,在频域相乘,得到频域的解扰结果H 2=R 2*conj(S 2),对H 2做256点的IFFT变换,得到接收的符号2上的时域信道估计h 2=ifft(H 2)。
3’接收符号2上256样点的时域SSS+PBCH DMRS信号r 2,并做256点的FFT,得到频域的接收信号R 2=fft(r 2),抽取其中的SSS符号+PBCH DMRS符号,和SSS+PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 2=R 2*conj(S 2),对H 2做256点的IFFT变换,得到接收的符号2上的时域信道估计h 2=ifft(H 2)。
需要说明的是,步骤3和3’中任一选择一个步骤执行,并不需要步骤3和3’同时执行。
4、接收符号3上256样点的时域PBCH DMRS信号r 3,并做256点的FFT,得到频域的接收信号R 3=fft(r 3),抽取其中的PBCH DMRS,和本地的PBCH DMRS训练序列,在频域相乘,得到频域的解扰结果H 3=R 3*conj(S 3),对H 3做256点的IFFT变换,得到接收的符号3上的时域信道估计h 3=ifft(H 3)。
本实施例中的符号0可以是上述SSB,符号1可以是上述第一SSS和PBCH DMRS,符号2可以是上述第二SSS和PBCH DMRS,符号3可以是上述第三SSS和PBCH DMRS。
5、将上述2、3、4中计算出来的时域信道估计相干或者非相干累加,并选出能量最大的L个时域信道抽头,记录这L个时域信道抽头的时域位置。
6、在1中的符号0的时域信道估计h 0中,选出L个时域信道抽头的时域位置对应的时域信道抽头,确认为是有效信道抽头。
7、计算符号0、符号1、符号2、符号3中有效抽头的功率和,则为这4个符号的信号功率和,进一步可以计算出每个符号、每个子载波上的RSRP。
本方案比传统的基于SSS+PBCH DMRS或者仅仅基于SSS来估计RSRP的方法,分别能提升约1.67dB和3dB的性能。
需要说明的是,在本实施例中,是通过FFT将接收信号变换到频域,在频域和本地码相乘,再通过IFFT变换到时域,得到时域信道估计,也可以直接在时域通过相关运算得到时域信道估计。
需要说明的是,本实施例中的步骤1,2,3,4并不限定其执行顺序。
在一个实施例中,本申请提供一种参考信号接收功率RSRP确定装置,如图3所示,本实施例提供的RSRP确定装置主要包括时域信道估计确定模块31和RSRP确定模块32。
时域信道估计确定模块31,被配置为基于SSB上的主同步信号PSS确定PSS上的时域信道估计;基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;
RSRP确定模块32,被配置为基于所述PSS上的时域信道估计和每个SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
在一个示例性的实施方式中,所述基于SSB上的主同步信号PSS确定所述PSS上的时域信道估计,包括:将接收到的SSB上的时域PSS信号进行快速傅里叶变换FFT,得到第一频域信号;将所述第一频域信号与本地PSS训练序列共轭相乘,得到频域解扰结果;将所述频域解扰结果进行逆快速傅里叶变换IFFT变换,得到所述PSS上的时域信道估计。
在一个示例性的实施方式中,所述基于每个SSS和PBCH DMRS上的参考信号确定每个所述SSS和PBCH DMRS上的时域信道估计,包括:基于第一SSS和PBCH DMRS上的第一物理广播信道解调参考信号PBCH DMRS确定所述第一SSS和PBCH DMRS上的时域信道估计;基于第二SSS和PBCH DMRS上的第二参考信号确定所述第二SSS和PBCH DMRS上的时域信道估计;所述第二参考信号包括如下一种或多种:辅同步信号SSS,PBCH DMRS;基于第三SSS和PBCH DMRS上的第二物理广播信道解调参考信号PBCH DMRS确定所述第三SSS和PBCH DMRS上的时域信道估计。
在一个示例性的实施方式中,所述基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的RSRP,包括:基于所述SSS和PBCH DMRS的时域信道估计确定多个有效信道抽头;针对每个有效信道抽头,基于所述PSS的时域信道估计和所述SSS和PBCH DMRS的时域信道估计确定所有SSB符号在该有效信道抽头的功率和;基于所述功率和确定SSB的RSRP。
在一个示例性的实施方式中,在所述SSS和PBCH DMRS的时域信道估计包括第一SSS和PBCH DMRS的时域信道估计,第二SSS和PBCH DMRS的时域信道估计和第三SSS和PBCH DMRS的时域信道估计的情况下,基于每个所述SSS和PBCH DMRS的时域信道估计确定有效信道抽头,包括:将每个所述SSS和PBCH DMRS中在同一信道抽头上的时域信道估计相加,得到该信道抽头的时域信道估计总和;将所述信道抽头的时域信道估计总和大于信道估计阈值的信道抽头确定为有效信道抽头。
在一个示例性的实施方式中,所述SSS和PBCH DMRS的信号估计值确定所有数据块在有效信道抽头的功率和,包括:确定在PSS中与所述有效信道抽头对应的信道抽头;获取所述对应的信道抽头对应的PSS功率,以及在有效信道抽头上每个SSS和PBCH DMRS的功率;将所述SSB功率与所述每个SSS和PBCH DMRS的功率相加,得到所有SSB符号在有效信道抽头的功率和。
本实施例中提供的参考信号接收功率确定装置可执行本申请任意实施例所提供的参考信号接收功率确定方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的参考信号接收功率确定方法。
值得注意的是,上述参考信号接收功率确定装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请实施例还提供一种设备,图4是本申请实施例提供的一种设备的结构示意图,如图4所示,该设备包括处理器41、存储器42、输入装置43、输出装置44和通信装置45;设备中处理器41的数量可以是一个或多个,图4中以一个处理器41为例;设备中的处理器41、存储器42、输入装置43和输出装置44可以通过总线或其他方式连接,图4中以通过总线连接为例。
存储器42作为一种计算机可读存储介质,可被设置成存储软件程序、计算机可执行程序以及模块,如本申请实施例中的参考信号接收功率方法对应的程序指令/模块(例如,参考信号接收功率装置中的时域信道估计确定模块31和RSRP确定模块32)。处理器41通过运行存储在存储器42中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器42可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器42可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器42可进一步包括相对于处理器41远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置43可被设置成接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置44可包括显示屏等显示设备。
通信装置45可以包括接收器和发送器。通信装置45设置为根据处理器41的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种参考信号接收功率确定方法,包括;
基于SSB上的主同步信号PSS确定所述PSS上的时域信道估计;
基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;
基于所述PSS上的时域信道估计和所述SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的参考信号接收功率确定方法中的相关操作。
本申请实施例提供的参考信号接收功率确定方法、装置、设备和存储介质,基于SSB上的主同步信号PSS确定PSS上的时域信道估计;基于每个SSS和PBCH DMRS上的参考信号确定每个SSS和PBCH DMRS上的时域信道估计;基于PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP,通过有效利用接收的主同步信号PSS来确定RSRP,从而提升了RSRP的估计性能,在一定程度上避免同频干扰。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的一些实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (9)

  1. 一种参考信号接收功率确定方法,包括:
    基于SSB上的主同步信号PSS确定PSS上的时域信道估计;
    基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;
    基于所述PSS上的时域信道估计和所述SSS和PBCH DMRS上的时域信道估计确定SSB中的参考信号接收功率RSRP。
  2. 根据权利要求1所述的方法,其中,所述基于SSB上的主同步信号PSS确定PSS上的时域信道估计,包括:
    将接收的SSB上的时域PSS信号进行快速傅里叶变换FFT,得到第一频域信号;
    将所述第一频域信号与本地PSS训练序列共轭相乘,得到频域解扰结果;
    将所述频域解扰结果进行逆快速傅里叶变换IFFT变换,得到所述PSS上的时域信道估计。
  3. 根据权利要求1所述的方法,其中,所述基于SSS和PBCH DMRS上的参考信号确定每个所述SSS和PBCH DMRS上的时域信道估计,包括:
    基于第一SSS和PBCH DMRS上的第一物理广播信道解调参考信号PBCH DMRS确定所述第一SSS和PBCH DMRS上的时域信道估计;
    基于第二SSS和PBCH DMRS上的第二参考信号确定所述第二SSS和PBCH DMRS上的时域信道估计;所述第二参考信号包括如下一种或多种:辅同步信号SSS,PBCH DMRS;
    基于第三SSS和PBCH DMRS上的第二PBCH DMRS确定所述第三SSS和PBCH DMRS上的时域信道估计。
  4. 根据权利要求1所述的方法,其中,所述基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB中的RSRP,包括:
    基于每个所述SSS和PBCH DMRS上的时域信道估计确定多个有效信道抽头;
    针对每个有效信道抽头,基于所述PSS上的时域信道估计和每个所述SSS和PBCH DMRS的时域信道估计确定所有SSB符号在该有效信道抽头的功率和;
    基于所述功率和确定所述SSB中的RSRP。
  5. 根据权利要求4所述的方法,其中,在所述SSS和PBCH DMRS的时域信道估计包括第一SSS和PBCH DMRS的时域信道估计,第二SSS和PBCH DMRS的时域信道估计和第三SSS和PBCH DMRS的时域信道估计的情况下,基于每个所述SSS和PBCH DMRS的时域信道估计确定有效信道抽头,包括:
    将每个所述SSS和PBCH DMRS中在同一信道抽头上的时域信道估计相加,得到该信道抽头的时域信道估计总和;
    将所述信道抽头的时域信道估计总和大于信道估计阈值的信道抽头确定为有效信道抽头。
  6. 根据权利要求4所述的方法,其中,所述基于所述PSS上的时域信道估计和每个所述SSS和PBCH DMRS上的时域信道估计确定所有SSB符号在有效信道抽头的功率和,包括:
    确定在PSS中与所述有效信道抽头对应的信道抽头;
    获取所述对应的信道抽头的PSS功率,以及在有效信道抽头上每个SSS和PBCH DMRS的功率;
    将所述PSS功率与所述每个SSS和PBCH DMRS的功率相加,得到所有SSB符号在有效信道抽头的功率和。
  7. 一种参考信号接收功率确定装置,包括:
    时域信道估计确定模块,被配置为基于SSB上的主同步信号PSS确定所述PSS上的时域信道估计;基于SSS和PBCH DMRS上的参考信号确定所述SSS和PBCH DMRS上的时域信道估计;
    RSRP确定模块,被配置为基于所述PSS上的时域信道估计和SSS和PBCH DMRS上的时域信道估计确定SSB的参考信号接收功率RSRP。
  8. 一种设备,包括:
    一个或多个处理器;
    存储器,被设置成存储一个或多个程序;其中,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-6任一项所述的方法。
  9. 一种存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-6任一项所述的方法。
PCT/CN2021/105797 2020-07-20 2021-07-12 参考信号接收功率确定方法、装置、设备和存储介质 WO2022017216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010700847.6A CN113965279A (zh) 2020-07-20 2020-07-20 参考信号接收功率确定方法、装置、设备和存储介质
CN202010700847.6 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022017216A1 true WO2022017216A1 (zh) 2022-01-27

Family

ID=79459465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105797 WO2022017216A1 (zh) 2020-07-20 2021-07-12 参考信号接收功率确定方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN113965279A (zh)
WO (1) WO2022017216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567357A (zh) * 2022-09-09 2023-01-03 京信网络系统股份有限公司 时频同步方法、装置、设备、存储介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196486A (zh) * 2010-12-31 2011-09-21 重庆重邮信科通信技术有限公司 正交频分复用系统参考信号接收功率测量方法和装置
WO2020033894A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Using physical channels for positioning measurement signals
WO2020061494A1 (en) * 2018-09-20 2020-03-26 Intel Corporation Synchronization signal block pattern and demodulation reference signal design for physical broadcast channel for channel frequencies above 52.6ghz
CN111294294A (zh) * 2019-05-15 2020-06-16 展讯通信(上海)有限公司 小区搜索方法、用户终端及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196486A (zh) * 2010-12-31 2011-09-21 重庆重邮信科通信技术有限公司 正交频分复用系统参考信号接收功率测量方法和装置
WO2020033894A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Using physical channels for positioning measurement signals
WO2020061494A1 (en) * 2018-09-20 2020-03-26 Intel Corporation Synchronization signal block pattern and demodulation reference signal design for physical broadcast channel for channel frequencies above 52.6ghz
CN111294294A (zh) * 2019-05-15 2020-06-16 展讯通信(上海)有限公司 小区搜索方法、用户终端及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "SS Burst Set Composition and SS Block Configuration", 3GPP TSG RAN WG1 NR AD HOC#2 R1-1710023, 30 June 2017 (2017-06-30), XP051299248 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567357A (zh) * 2022-09-09 2023-01-03 京信网络系统股份有限公司 时频同步方法、装置、设备、存储介质和程序产品

Also Published As

Publication number Publication date
CN113965279A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
JP2019510414A5 (zh)
CN110149656B (zh) 无线信号覆盖测试方法及装置
WO2018120833A1 (zh) 一种同步接入信号块的传输方法、网络侧设备和用户终端
JP2020504934A (ja) 高次元(HiDi)無線環境評価および表現
WO2018064909A1 (zh) 干扰源小区定位方法和装置以及对应的基站
WO2021218497A1 (zh) 确定方法、装置、通信节点及存储介质
WO2022017216A1 (zh) 参考信号接收功率确定方法、装置、设备和存储介质
CN104363037A (zh) 一种lte系统天线端口数的快速检测系统及方法
CN112449403B (zh) 低轨卫星通信中的随机接入信道传输方法及装置
CN109274619B (zh) 一种频率偏移确定方法及装置
CN103873414A (zh) 一种接收机的信号处理方法及装置
CN110933009B (zh) 频偏估计方法、系统、电子设备及存储介质
CN111614592B (zh) 多径选择门限的确定方法、装置、存储介质及电子设备
WO2019205111A1 (zh) 数据合并方法、装置及设备
JP5381153B2 (ja) 無線受信機、受信レベル測定方法、受信レベル測定プログラムおよびプログラム記録媒体
CN111147416B (zh) 窄带物联网的信号处理方法、装置、存储介质和电子设备
CN117118791B (zh) 频偏估计方法、装置、计算机设备和存储介质
CN105357721A (zh) 邻区检测方法和装置
CN111181889B (zh) 频偏估计样本接收控制方法、系统、设备及存储介质
EP4187861A9 (en) Data processing method and apparatus, and device and storage medium
CN111107032A (zh) 参考信号的生成方法、终端设备和网络侧设备
US10014995B2 (en) Data transmission method, data reception and detection method, base station and user equipment
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2021109639A1 (zh) 信道估计方法、装置、设备及存储介质
CN111602458A (zh) 用于nprach检测的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21845243

Country of ref document: EP

Kind code of ref document: A1