WO2022012387A1 - 信号处理和信息配置方法、装置、设备和存储介质 - Google Patents

信号处理和信息配置方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022012387A1
WO2022012387A1 PCT/CN2021/104946 CN2021104946W WO2022012387A1 WO 2022012387 A1 WO2022012387 A1 WO 2022012387A1 CN 2021104946 W CN2021104946 W CN 2021104946W WO 2022012387 A1 WO2022012387 A1 WO 2022012387A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
sequence number
beams
resource
resources
Prior art date
Application number
PCT/CN2021/104946
Other languages
English (en)
French (fr)
Inventor
胡林曦
张楠
曹伟
杨振
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020237005457A priority Critical patent/KR20230037656A/ko
Priority to AU2021310150A priority patent/AU2021310150A1/en
Priority to EP21841992.7A priority patent/EP4184840A1/en
Priority to US18/016,253 priority patent/US20230291522A1/en
Publication of WO2022012387A1 publication Critical patent/WO2022012387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a signal processing and information configuration method, apparatus, device, and storage medium.
  • a base station In a Non-Terrestrial Network (NTN), a base station contains multiple service beams, and the coverage of each beam corresponds to a service area on the ground. For a high-speed air base station, the coverage of multiple beams will form a physical cell, corresponding to the same physical cell ID (Physical Cell ID, PCI). Users in the same physical cell only need to change the service beam. You can switch within the cell.
  • NTN Non-Terrestrial Network
  • the signal processing and information configuration method, apparatus, device and storage medium provided by the present application can better resist the influence of interference.
  • an embodiment of the present application provides a signal processing method, where the method is applied to a first node, including:
  • the reference signal configuration information includes a reference signal generation method
  • the signal is processed based on the reference signal configuration information.
  • an embodiment of the present application provides an information configuration method, where the method is applied to a second node, including:
  • the reference signal configuration information includes a reference signal generation method
  • an embodiment of the present application provides a signal processing apparatus, the apparatus is configured on a first node, and includes:
  • a receiving module configured to receive reference signal configuration information, where the reference signal configuration information includes a reference signal generation method
  • a processing module configured to process the signal based on the reference signal configuration information.
  • an embodiment of the present application provides an information configuration apparatus, where the apparatus is configured on a second node, including:
  • a determining module configured to determine reference signal configuration information, where the reference signal configuration information includes a reference signal generation manner
  • a sending module configured to send the reference signal configuration information.
  • an embodiment of the present application provides a device, including:
  • processors one or more processors
  • memory for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method according to any one of the embodiments of this application.
  • an embodiment of the present application provides a storage medium, where the storage medium stores a computer program, and the computer program implements the method according to any one of the embodiments of the present application when the computer program is executed by a processor.
  • FIG. 1 is a schematic diagram of an NTN physical cell and beam distribution provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a signal processing method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of an information configuration method provided by an embodiment of the present application.
  • FIG. 4 is a CRS utilizing FDM resource mapping diagram provided by an embodiment of the present application.
  • FIG. 5 is a mapping diagram of NRS utilizing FDM resources provided by an embodiment of the present application.
  • FIG. 6 is a mapping diagram of eMTC downlink DMRS utilizing FDM resources provided by an embodiment of the present application
  • FIG. 7 is a mapping diagram of eMTC uplink DMRS utilizing TDM resources provided by an embodiment of the present application.
  • FIG. 8 is a mapping diagram of NB-IoT uplink DMRS utilizing TDM resources provided by an embodiment of the present application.
  • FIG. 9 is a structural diagram of a signal processing apparatus provided by an embodiment of the present application.
  • FIG. 10 is a structural diagram of an information configuration apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution, Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 5th generation wireless systems, 5G beyond fifth generation mobile communication system
  • 6th generation wireless systems, 6G) systems etc.
  • the 5G system is used as an example for description.
  • the embodiments of the present application can be used for wireless networks of different standards.
  • the radio access network may include different communication nodes in different systems, and the communication nodes include at least a base station and a user terminal.
  • the base station may be a device capable of communicating with a user terminal.
  • the base station can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small cell, a transmission reference point (transmission reference point, TRP), etc., which are not limited in the embodiments of the present application.
  • cloud radio access network cloud radio access network, CRAN
  • TRP transmission reference point
  • the user terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed on In the air (eg on airplanes, balloons and satellites, etc.).
  • the user terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, an industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a user terminal may also sometimes be referred to as a terminal, an access terminal, a UE (User Equipment) unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE proxy, or a UE device Wait.
  • UE User Equipment
  • the embodiments of the present application are not limited.
  • a base station contains multiple service beams, and the coverage of each beam corresponds to a service area on the ground.
  • the service beam corresponding to the ground user also needs to be switched in time.
  • the coverage of each beam corresponds to a PCI, it may cause a large number of users to frequently Inter-cell handover, resulting in a lot of signaling overhead. Therefore, the coverage of multiple beams will form a physical cell, corresponding to the same PCI, which makes users in the same physical cell only need to perform cell switching when changing service beams.
  • multiple beams The coverage is composed of PCI-1
  • the coverage of multiple beams is composed of PCI-2
  • the coverage of multiple beams is composed of PCI-3.
  • reference signals are usually used to accurately measure and estimate wireless channels to ensure transmission performance on other physical channels.
  • the interference to the reference signal must be reduced as much as possible.
  • the reference signal configuration in NB-IoT and eMTC can only deal with the interference between cells, users and ports, and there is no way to deal with the interference between beams.
  • the Frequency Reuse Factor (FRF) is used to characterize the number of non-overlapping frequency bands divided by the entire system bandwidth. Each beam can be assigned a certain frequency band. For example, when the reuse factor is 1, it means All beams use the same frequency band.
  • adjacent beams can use different frequency bands, but non-adjacent beams may still use the same frequency band.
  • Reference signals between beams using the same frequency band will overlap in resources and cause interference.
  • DMRS demodulation reference signal
  • the demodulation reference signal DMRS, DeModulation Reference Signal
  • DMRS is used to estimate the channel of the corresponding data.
  • beam 1 the equivalent channel estimated by its DMRS is h_1+h_2, where h_1 and h_2 are the channels actually experienced by beam 1 and beam 2 reaching the same receiving end, respectively.
  • the data sequences sent by the two beams are not exactly the same, so the equivalent channel experienced by the data of beam 1 is , which greatly reduces the accuracy of estimating the data channel using DMRS.
  • the signal processing method provided by the embodiment of the present application mainly includes steps S11 and S12.
  • the signal processing method is performed by a first node, and the first node may be any of the above-mentioned user terminals.
  • the receiving reference signal configuration information may be receiving reference signal configuration information sent by a second node, and the second node may be any of the foregoing base stations.
  • the reference signal configuration information is configured and sent by the second node.
  • the reference signal generation method refers to processing the existing reference signal so that the interference between different beams in the same physical cell can be suppressed.
  • the reference signal configuration information is received in one or more of the following ways:
  • Radio resource control RRC signaling radio resource control RRC signaling
  • medium access control layer control unit MAC CE signaling radio resource control unit
  • the reference signal generation manner is associated with a beam-related sequence number.
  • the reference signals are in one-to-one correspondence with beams.
  • the beam can be represented by one or more of the following: reference signal identifier, quasi co-location (quasi Co-location) relationship, polarization pattern (polarization pattern), frequency domain resource identifier, time domain resource identifier, space domain resource (including Antenna port, codebook, transport layer, etc.) identification, geographic area identification, cell identification, tracking area identification.
  • reference signal identifier quasi co-location (quasi Co-location) relationship
  • polarization pattern polarization pattern
  • frequency domain resource identifier polarization pattern
  • time domain resource identifier time domain resource identifier
  • space domain resource including Antenna port, codebook, transport layer, etc.
  • the reference signal generation manner and the beam correlation sequence number association include one or more of the following:
  • the resource occupied by the reference signal in the frequency domain is associated with the beam correlation sequence number
  • the resource occupied by the reference signal in the time domain is associated with the beam correlation sequence number
  • the sequence code of the reference signal is associated with the beam-related sequence number.
  • the above-mentioned reference signal generation methods can be used independently or in combination, and the corresponding relationship with the beam-related sequence numbers is pre-defined for any combination.
  • the correspondence between the combination of reference signal generation methods and the beam-related sequence numbers can be notified to the user through broadcast signaling, Media Access Control Element (MAC CE) or Radio Resource Control (RRC) signaling .
  • MAC CE Media Access Control Element
  • RRC Radio Resource Control
  • the resource occupied by the reference signal in the frequency domain is associated with the beam-related sequence number, which may be that the beams are allocated different frequency bands, that is, different beams are allocated different resource block (Resource Block, RB) resources; or when the beams are allocated the same RB resources, Reference signals (Reference Signal, RS) of different beams occupy different subcarriers, or resource elements (Resource Element, RE), or resource units (Resource Unit, RU) in the frequency domain.
  • Reference Signal Reference Signal
  • RE Resource Element
  • RE resource units
  • the resources occupied by the reference signal in the time domain are associated with the relative sequence numbers of the beams.
  • the RSs of different beams occupy different orthogonal frequency division multiplexing technologies (Orthogonal Frenquency Division Multiplexing, OFDM) in the time domain. symbol.
  • the association between the random sequence code of the reference signal and the beam related sequence number may be that different random seeds are used for RSs of different beams to generate different random sequences, and the value of the random seed is related to the beam sequence number.
  • the association between the random sequence code of the reference signal and the beam related sequence number may also be to perform beam-level scrambling on the RS generation sequences of different beams with a random scrambling code, and the random seed of the random scrambling code sequence is related to the beam sequence number.
  • the resources occupied by the reference signal in the frequency domain include one or more of the following:
  • Resource block RB carrier; sub-carrier; resource element RE; resource unit RU.
  • the method for associating the resources occupied in the frequency domain with the beam-related sequence numbers includes one or more of the following: the location of the resources is determined by the beam-related sequence numbers and the frequency-domain spacing; the number of resources varies with the beam The relative sequence numbers are mapped in a specific way.
  • the resources occupied by the reference signal in the time domain include: Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method for associating resources occupied in the time domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the time domain interval
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • sequence code of the reference signal includes one or more of the following:
  • the reference signal generation sequence the scrambling sequence of the reference signal.
  • the beam-related sequence numbers include one or more of the following:
  • Beam ID Beam Group ID
  • Beam Group ID Beam Group ID
  • Resource ID of the resource occupied by the beam.
  • the resources corresponding to the resource identifiers of the resources occupied by the above beams are resources other than time-frequency resources, and should be numbered on the basis that the time-frequency resources are consistent, that is, different resource identifiers should be discussed when the time-frequency resources are consistent.
  • the resource identifier may be an antenna port ID or the like.
  • the beam-related sequence number is a beam identifier.
  • the relative sequence number of the beam can be the beam ID, which is expressed as The base station directly indicates the beam ID through the broadcast signal.
  • the beam correlation sequence number is the beam group identifier.
  • the beam related sequence number is the beam group ID, denoted as n group , and the base station broadcasts the beam group ID through a broadcast signal.
  • the ID in the beam group is represented as n local , which corresponds to non-overlapping time-frequency resources.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use the same time-frequency resources.
  • the beams are numbered, and the beam-related sequence number is an identifier within the beam group.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use non-overlapping time-frequency resources, The beams are numbered, and the beam-related sequence number is the resource identifier of the resource occupied by the beam.
  • the beam group ID is expressed as n group , corresponding to the non-overlapping time-frequency resources ,
  • the relative sequence number of the beam can be the ID in the beam group, expressed as n local , and the base station broadcasts the ID in the beam group through the broadcast signal;
  • the relative sequence number of the beam can be the resource ID of the resource (non-time-frequency resource) occupied by the beam, expressed as n resource , and the user obtains the resource ID according to the resource occupied by the beam;
  • the information configuration method provided by the embodiment of the present application mainly includes steps S21 and S22.
  • the information configuration method is performed by a second node, and the second node may be any of the above-mentioned base stations.
  • the reference signal configuration information is configured by the second node and sent to the first node.
  • the reference signal generation method refers to processing the existing reference signal so that the interference between different beams in the same physical cell can be suppressed.
  • the reference signal configuration information is determined and sent by the first node.
  • the reference signal configuration information is received in one or more of the following ways:
  • the reference signal generation manner is associated with a beam-related sequence number.
  • the reference signals are in one-to-one correspondence with beams.
  • the beam can be represented by one or more of the following: reference signal identifier, quasi co-location (quasi Co-location) relationship, polarization pattern (polarization pattern), frequency domain resource identifier, time domain resource identifier, space domain resource (including Antenna port, codebook, transport layer, etc.) identification, geographic area identification, cell identification, tracking area identification.
  • reference signal identifier quasi co-location (quasi Co-location) relationship
  • polarization pattern polarization pattern
  • frequency domain resource identifier polarization pattern
  • time domain resource identifier time domain resource identifier
  • space domain resource including Antenna port, codebook, transport layer, etc.
  • the reference signal generation manner and the beam correlation sequence number association include one or more of the following:
  • the resource occupied by the reference signal in the frequency domain is associated with the beam correlation sequence number
  • the resource occupied by the reference signal in the time domain is associated with the beam correlation sequence number
  • the sequence code of the reference signal is associated with the beam-related sequence number.
  • the resources occupied by the reference signal in the frequency domain include one or more of the following:
  • Resource block RB carrier; sub-carrier; resource element RE; resource unit RU.
  • the method for associating resources occupied in the frequency domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the interval in the frequency domain;
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • the resources occupied by the reference signal in the time domain include: Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method for associating resources occupied in the time domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the time domain interval
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • sequence code of the reference signal includes one or more of the following:
  • the reference signal generation sequence the scrambling sequence when the reference signal performs resource mapping.
  • the beam-related sequence numbers include one or more of the following:
  • Beam ID Beam Group ID
  • Beam Group ID Beam Group ID
  • Resource ID of the resource occupied by the beam.
  • the beam-related sequence number is a beam identifier.
  • the beam correlation sequence number is the beam group identifier.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use the same time-frequency resources.
  • the beams are numbered, and the beam-related sequence number is an identifier within the beam group.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use non-overlapping time-frequency resources, The beams are numbered, and the beam-related sequence number is the resource identifier of the resource occupied by the beam.
  • an inter-beam cell reference signal (Cell Reference Signal, CRS) interference suppression method is provided.
  • Cell Reference Signal, CRS Cell Reference Signal
  • CRS is a cell-specific reference signal, and in NTN, the same beam is included in almost all downlink subframes.
  • the physical cells under NTN are numbered and expressed as (if NB-IoT, then ), the beam correlation sequence number can be obtained as follows:
  • the base station directly indicates the beam ID through the broadcast signal
  • the base station broadcasts the beam group ID through a broadcast signal
  • the base station broadcasts the ID within the beam group through a broadcast signal
  • the user obtains the resource ID according to the resource occupied by the beam.
  • the beam ID may also be the reference signal ID.
  • Interference suppression methods include but are not limited to the following:
  • each carrier corresponds to a RB-sized bandwidth
  • different beams can be allocated on different carriers, each carrier corresponds to a narrowband (Narrowband) with a size of 6RB, and the beams are separated by using the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, the beam ID directly corresponds to the carrier frequency.
  • c(i) is the pseudo-random sequence defined in the standard, that is, a 31-long Gold sequence
  • N seq is the length of the scrambled sequence, which is equal to the length of the scrambled CRS generation sequence.
  • r(m) is the CRS generation sequence before scrambling
  • s(m) is the scrambling sequence
  • the CRS of different beams use the resource mapping position of frequency division multiplexing (FDM, Frequency Division Multiplexing) on the subframe resource element (RE, Resource Element), as shown in the figure 4 shown.
  • v shift represents the shift of the mapping position of the CRS in the frequency domain.
  • an inter-beam narrowband reference signal (Narrowband reference signal, NRS) interference suppression method is provided.
  • NRS narrowband reference signal
  • NRS is the only reference signal for NB-IoT, which exists in Inband, Guardband, and standalone deployment modes.
  • the physical cells under NTN are numbered and expressed as The beam correlation sequence number can be obtained as follows:
  • the base station directly indicates the beam ID through the broadcast signal
  • the base station broadcasts the beam group ID through a broadcast signal
  • the base station broadcasts the ID within the beam group through a broadcast signal
  • the user obtains the resource ID according to the resource occupied by the beam.
  • the interference suppression of inter-beam NRS is similar to that of CRS, including but not limited to the following interference suppression methods:
  • each carrier corresponds to a bandwidth of an RB size, and the beams are separated by using the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, the beam ID directly corresponds to the carrier frequency.
  • c(i) is the pseudo-random sequence defined in the standard, that is, a 31-long Gold sequence
  • N seq is the length of the scrambled sequence, which is the same length as the scrambled NRS generation sequence.
  • the beam correlation sequence number is the aforementioned beam ID
  • the random seed of the pseudo-random sequence If the beam correlation sequence number is the aforementioned beam group ID, then the random seed of the pseudo-random sequence If the beam correlation sequence number is the ID in the aforementioned beam group, then the random seed of the pseudo-random sequence If the beam correlation sequence number is the aforementioned resource ID, the random seed of the pseudo-random sequence In the case of the same physical cell, up to 2 16 different beam scrambling sequences can be supported.
  • the beam-level scrambled sequence can be expressed as:
  • r(m) is the NRS generation sequence before scrambling
  • s(m) is the scrambling sequence
  • the resource mapping positions of the NRS of different beams using the FDM method on the subframe RE are shown in FIG. 5 .
  • v shift represents the displacement of the NRS mapping position in the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, then If the beam correlation sequence number is the aforementioned beam group ID, then If the beam correlation sequence number is the ID in the aforementioned beam group, then If the beam-related sequence number is the aforementioned resource ID, then
  • an eMTC downlink demodulation reference signal (DMRS, DeModulation Reference Signal) interference suppression method is provided.
  • DMRS Downlink demodulation Reference signal
  • the physical cells under NTN are numbered and expressed as The beam correlation sequence number can be obtained as follows:
  • the base station directly indicates the beam ID through the broadcast signal
  • the base station broadcasts the beam group ID through a broadcast signal
  • the base station broadcasts the ID within the beam group through a broadcast signal
  • the user obtains the resource ID according to the resource occupied by the beam.
  • eMTC downlink demodulation reference signals including but not limited to the following interference suppression methods:
  • each carrier corresponds to a narrowband (Narrowband) with a size of 6RB, and the beams are separated by using the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, the beam ID directly corresponds to the carrier frequency.
  • Beam-level scrambling is performed on the DMRS generation sequence, and the scrambling sequence
  • c(i) is the pseudo-random sequence defined in the standard, that is, a 31-long Gold sequence
  • N seq is the length of the scrambled sequence, which is the same length as the scrambled downlink DMRS generation sequence.
  • the beam correlation sequence number is the aforementioned beam ID
  • the random seed of the pseudo-random sequence If the beam correlation sequence number is the aforementioned beam group ID, then the random seed of the pseudo-random sequence If the beam correlation sequence number is the ID in the aforementioned beam group, then the random seed of the pseudo-random sequence If the beam correlation sequence number is the aforementioned resource ID, the random seed of the pseudo-random sequence In the case of the same physical cell, up to 2 16 different beam scrambling sequences can be supported.
  • the beam-level scrambled sequence can be expressed as
  • r(m) is the downlink DMRS generation sequence before scrambling
  • s(m) is the scrambling sequence.
  • the resource mapping positions of the downlink DMRS of different beams on the subframe RE using the FDM mode are shown in FIG. 6 .
  • k pattern represents the displacement of the downlink DMRS mapping position in the frequency domain.
  • an eMTC uplink DMRS interference suppression method is provided.
  • the physical cells under NTN are numbered and expressed as The beam correlation sequence number can be obtained as follows:
  • the base station directly indicates the beam ID through the broadcast signal
  • the base station broadcasts the beam group ID through a broadcast signal
  • the base station broadcasts the ID within the beam group through a broadcast signal
  • the user obtains the resource ID according to the resource occupied by the beam.
  • the eMTC uplink demodulation reference signal including but not limited to the following interference suppression methods:
  • each carrier corresponds to a narrowband (Narrowband) with a size of 6RB, and the beams are separated by using the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, the beam ID directly corresponds to the carrier frequency.
  • Beam-level scrambling is performed on the DMRS generation sequence, and the scrambling sequence
  • c(i) is a pseudo-random sequence defined in the standard, that is, a 31-long Gold sequence
  • N seq is the length of the scrambled sequence, which is the same length as the scrambled uplink DMRS generation sequence.
  • r(m) is the DMRS generation sequence before scrambling
  • s(m) is the scrambling sequence
  • the resource mapping positions of the uplink DMRS of different beams using the Time Division Multiplexing (TDM, Time Division Multiplexing) method on the subframe RE are shown in Figure 5, where ⁇ shift represents the uplink Different mapping methods of DMRS in the time domain. If the beam correlation sequence number is the aforementioned beam ID, then If the beam correlation sequence number is the aforementioned beam group ID, then If the beam correlation sequence number is the ID in the aforementioned beam group, then If the beam-related sequence number is the aforementioned resource ID, then
  • a method for suppressing NB-IoT uplink DMRS interference is provided.
  • the physical cells under NTN are numbered and expressed as The beam correlation sequence number can be obtained as follows:
  • the base station directly indicates the beam ID through the broadcast signal
  • the base station broadcasts the beam group ID through a broadcast signal
  • the base station broadcasts the ID within the beam group through a broadcast signal
  • the user obtains the resource ID according to the resource occupied by the beam.
  • Inter-beam interference suppression for uplink DMRS including but not limited to the following interference suppression methods:
  • each carrier corresponds to a bandwidth of an RB size, and the beams are separated by using the frequency domain. If the beam correlation sequence number is the aforementioned beam ID, the beam ID directly corresponds to the carrier frequency.
  • Beam-level scrambling is performed on the uplink DMRS generation sequence, and the scrambling sequence
  • c(i) is a pseudo-random sequence defined in the standard, that is, a 31-long Gold sequence
  • N seq is the length of the scrambled sequence, which is the same length as the scrambled uplink DMRS generation sequence.
  • r(m) is the upstream DMRS generation sequence before scrambling
  • s(m) is the scrambling sequence
  • NPUSCH Narrow-Band Physical Uplink Share Channel
  • RU Resource Unit
  • the DMRS of different RUs in NPUSCH format 1 can use the TDM method to suppress inter-beam interference during resource mapping.
  • the DMRS mapping structure of each slot in the RU is consistent.
  • the mapping structure in one slot is shown in Figure 8, where ⁇ shift Indicates different mapping methods of uplink DMRS in the time domain. If the beam correlation sequence number is the aforementioned beam ID, then If the beam correlation sequence number is the aforementioned beam group ID, then If the beam correlation sequence number is the ID in the aforementioned beam group, then If the beam-related sequence number is the aforementioned resource ID, then
  • the RU-to-subcarrier spacing of NPUSCH format 2 is 3.75kHz and 15kHz. Only one RU contains one subcarrier in the frequency domain, and the time domain contains four time slots.
  • the generation sequence of the DMRS is:
  • the random seed of the pseudo-random sequence c(i) can be associated with the beam correlation sequence number.
  • the signal processing apparatus provided by the embodiment of the present application mainly includes a receiving module 91 and a processing module 92 .
  • the signal processing device is configured in the first communication node.
  • the receiving module 91 is configured to receive reference signal configuration information, where the reference signal configuration information includes a reference signal generation method;
  • the processing module 92 is configured to process the signal based on the reference signal configuration information.
  • the reference signal configuration information is received in one or more of the following ways:
  • Radio resource control RRC signaling radio resource control RRC signaling
  • medium access control layer control unit MAC CE signaling radio resource control unit
  • the reference signal generation manner is associated with a beam-related sequence number.
  • the reference signals are in one-to-one correspondence with beams.
  • the beam can be represented by one or more of the following: reference signal identifier, quasi co-location (quasi Co-location) relationship, polarization pattern (polarization pattern), frequency domain resource identifier, time domain resource identifier, space domain resource (including Antenna port, codebook, transport layer, etc.) identification, geographic area identification, cell identification, tracking area identification.
  • reference signal identifier quasi co-location (quasi Co-location) relationship
  • polarization pattern polarization pattern
  • frequency domain resource identifier polarization pattern
  • time domain resource identifier time domain resource identifier
  • space domain resource including Antenna port, codebook, transport layer, etc.
  • the reference signal generation manner and the beam correlation sequence number association include one or more of the following:
  • the resource occupied by the reference signal in the frequency domain is associated with the beam correlation sequence number
  • the resource occupied by the reference signal in the time domain is associated with the beam correlation sequence number
  • the sequence code of the reference signal is associated with the beam-related sequence number.
  • the resources occupied by the reference signal in the frequency domain include one or more of the following:
  • Resource block RB carrier; sub-carrier; resource element RE; resource unit RU.
  • the method for associating resources occupied in the frequency domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the interval in the frequency domain;
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • the resources occupied by the reference signal in the time domain include: Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method for associating resources occupied in the time domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the time domain interval
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • sequence code of the reference signal includes one or more of the following:
  • the reference signal generation sequence the scrambling sequence when the reference signal performs resource mapping.
  • the beam-related sequence numbers include one or more of the following:
  • Beam ID Beam Group ID
  • Beam Group ID Beam Group ID
  • Resource ID of the resource occupied by the beam.
  • the beam-related sequence number is a beam identifier.
  • the beam correlation sequence number is the beam group identifier.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use the same time-frequency resources.
  • the beams are numbered, and the beam-related sequence number is an identifier within the beam group.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use non-overlapping time-frequency resources, The beams are numbered, and the beam-related sequence number is the resource identifier of the resource occupied by the beam.
  • the signal processing apparatus provided in this embodiment can execute the signal processing method provided by any embodiment of the present application, and has corresponding functional modules for executing the method.
  • the signal processing apparatus provided in this embodiment can execute the signal processing method provided by any embodiment of the present application, and has corresponding functional modules for executing the method.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • the signal processing apparatus provided in this embodiment of the present application mainly includes a determining module 101 and a sending module 102 .
  • the information configuration device is configured in the second communication node.
  • the determining module 101 is configured to determine reference signal configuration information, where the reference signal configuration information includes a reference signal generation method;
  • the sending module 102 is configured to send the reference signal configuration information.
  • the reference signal configuration information is sent in one or more of the following ways:
  • the reference signal generation manner is associated with a beam-related sequence number.
  • the reference signals are in one-to-one correspondence with beams.
  • the beam can be represented by one or more of the following: reference signal identifier, quasi co-location (quasi Co-location) relationship, polarization pattern (polarization pattern), frequency domain resource identifier, time domain resource identifier, space domain resource (including Antenna port, codebook, transport layer, etc.) identification, geographic area identification, cell identification, tracking area identification.
  • reference signal identifier quasi co-location (quasi Co-location) relationship
  • polarization pattern polarization pattern
  • frequency domain resource identifier polarization pattern
  • time domain resource identifier time domain resource identifier
  • space domain resource including Antenna port, codebook, transport layer, etc.
  • the reference signal generation manner and the beam correlation sequence number association include one or more of the following:
  • the resource occupied by the reference signal in the frequency domain is associated with the beam correlation sequence number
  • the resource occupied by the reference signal in the time domain is associated with the beam correlation sequence number
  • the sequence code of the reference signal is associated with the beam-related sequence number.
  • the resources occupied by the reference signal in the frequency domain include one or more of the following:
  • Resource block RB carrier; sub-carrier; resource element RE; resource unit RU.
  • the method for associating resources occupied in the frequency domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the interval in the frequency domain;
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • the resources occupied by the reference signal in the time domain include: Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method for associating resources occupied in the time domain with beam-related sequence numbers includes one or more of the following:
  • the location of the resource is determined by the relative sequence number of the beam and the time domain interval
  • the number of resources corresponds in a specific way with the relative sequence number of the beam.
  • sequence code of the reference signal includes one or more of the following:
  • the reference signal generation sequence the scrambling sequence of the reference signal.
  • the beam-related sequence numbers include one or more of the following:
  • Beam ID Beam Group ID
  • Beam Group ID Beam Group ID
  • Resource ID of the resource occupied by the beam.
  • the beam-related sequence number is a beam identifier.
  • the beam correlation sequence number is the beam group identifier.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use the same time-frequency resources.
  • the beams are numbered, and the beam-related sequence number is an identifier within the beam group.
  • the beams are grouped, and the beams in the same group use the same time-frequency resources, and the beams in different groups use non-overlapping time-frequency resources, if the beams in the same group use non-overlapping time-frequency resources, The beams are numbered, and the beam-related sequence number is the resource identifier of the resource occupied by the beam.
  • the information configuration apparatus provided in this embodiment can execute the information configuration method provided by any embodiment of this application, and has corresponding functional modules for executing the method. For technical details not described in detail in this embodiment, reference may be made to the information configuration method provided by any embodiment of this application.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • FIG. 11 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 111 , a memory 112 , an input device 113 , an output device 114 and Communication device 115; the number of processors 111 in the device may be one or more, and one processor 111 is taken as an example in FIG. 11; the processor 111, memory 112, input device 113 and output device 114 in the device can be For connection in other ways, in FIG. 11, the connection by bus is taken as an example.
  • the memory 112 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the information configuration method in the embodiments of the present application (for example, the determination module in the information configuration apparatus). 101 and the sending module 102), which are also program instructions/modules corresponding to the signal processing method in the embodiments of the present application (for example, the receiving module 91 and the processing module 91 in the signal processing apparatus).
  • the processor 111 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 112 , that is, implements any method provided by the embodiments of the present application.
  • the memory 112 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 112 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some instances, the memory 112 may further include memory located remotely from the processor 111, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 113 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 114 may include a display device such as a display screen.
  • the communication device 115 may include a receiver and a transmitter.
  • the communication device 115 is configured to transmit and receive information according to the control of the processor 111 .
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a signal processing method when executed by a computer processor, and the The method is applied to the first node, comprising;
  • the reference signal configuration information includes a reference signal generation method
  • the beams are processed based on the reference signal configuration information.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the signal processing methods provided by any of the embodiments of the present application. related operations.
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute an information configuration method when executed by a computer processor, and the The method is applied to the second node, comprising;
  • the reference signal configuration information includes a reference signal generation method
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the information configuration methods provided by any embodiment of the present application. related operations.
  • the present application can be implemented by software and necessary general-purpose hardware, and of course can also be implemented by hardware, but in many cases, the former is a better implementation.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology such as, but not limited to, read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). (Digital Versatile Disc, DVD) or compact disc (Compact Disk, CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Process (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Process
  • ASIC Application Specific Integrated Circuit
  • FGPA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号处理和信息配置方法、装置、设备和存储介质,包括:接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;基于所述参考信号配置信息对信号进行处理。

Description

信号处理和信息配置方法、装置、设备和存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种信号处理和信息配置方法、装置、设备和存储介质。
背景技术
在非地面网络(Non-Terrestrial Network,NTN)中,一个基站会包含多个服务波束,每个波束的覆盖范围对应地面的一块服务区域。对于高速运动的空中基站而言,多个波束的覆盖范围会组成一个物理小区,对应同一个物理小区ID(Physical Cell ID,PCI),同一个物理小区内的用户在更换服务波束时只需进行小区内切换即可。
对于同一个物理小区中不同波束之间的信号,如果所使用的无线时频资源相同,则会形成干扰。
发明内容
本申请提供的信号处理和信息配置方法、装置、设备和存储介质,以实现更好地抵抗干扰的影响。
第一方面,本申请实施例提供一种信号处理方法,所述方法应用于第一节点,包括:
接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
基于所述参考信号配置信息对信号进行处理。
第二方面,本申请实施例提供一种信息配置方法,所述方法应用于第二节点,包括:
确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
发送所述参考信号配置信息。
第三方面,本申请实施例提供一种信号处理装置,所述装置配置于第一节点,包括:
接收模块,被配置为接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
处理模块,被配置为基于所述参考信号配置信息对信号进行处理。
第四方面,本申请实施例提供一种信息配置装置,所述装置配置于第二节点,包括:
确定模块,被配置为确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
发送模块,被配置为发送所述参考信号配置信息。
第五方面,本申请实施例提供一种设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例提供的任一项所述的方法。
第六方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例提供的任一项所述的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请实施例提供的NTN物理小区与波束分布示意图;
图2是本申请实施例提供的一种信号处理方法的流程图;
图3是本申请实施例提供的一种信息配置方法的流程图;
图4是本申请实施例提供的CRS利用FDM资源映射图;
图5是本申请实施例提供的NRS利用FDM资源映射图;
图6是本申请实施例提供的eMTC下行DMRS利用FDM资源映射图;
图7是本申请实施例提供的eMTC上行DMRS利用TDM资源映射图;
图8是本申请实施例提供的NB-IoT上行DMRS利用TDM资源映射图;
图9是本申请实施例提供的一种信号处理装置的结构图;
图10是本申请实施例提供的一种信息配置装置的结构图;
图11是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、第五代移动通信技术(5th generation wireless systems,5G)系统、超5代移动通信系统(Beyond Fifth Generation,B5G)系统,第六代移动通信技术(6th generation wireless systems,6G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的通信节点,通信节点至少包括基站和用户终端。
首先,本申请实施例中,基站可以是能和用户终端进行通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。
本申请实施例中,用户终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户终端有时也可以称为终端、接入终端、UE(User Equipment)单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
在NTN中,一个基站会包含多个服务波束,每个波束的覆盖范围对应地面的一块服务区域。对于高速运动的空中基站而言,当波束覆盖范围跟随卫星移动时,地面用户对应的服务波束也需要及时切换,此时若每个波束的覆盖范围分别对应一个PCI,则可能引起大量用户频繁进行小区间切换,从而导致大量信令开销。因此,多个波束的覆盖范围会组成一个物理小区,对应同一个PCI,这使得同一个物理小区内的用户在更换服务波束时只需进行小区切换即可,如图1所示,多个波束的覆盖范围的组成的PCI-1,多个波束的覆盖范围的组成的PCI-2,多个波束的覆盖范围的组成的PCI-3。
然而,对于同一个物理小区中不同波束之间的信号,如果所使用的无线时频资源相同,则会形成干扰。目前NB-IoT(Narrow-band Internet of Things)以及eMTC(enhanced Machine Type Communication)的地面网络配置中只能通过PCI来区分物理小区并减弱小区间干扰,而没有处理波束之间的干扰的相关操作,因此,NTN中的NB-IoT以及eMTC需要对波束间干扰进行抑制。
在无线通信中,通常利用参考信号准确地测量和估计无线信道,来保证其他物理信道上的传输性能。而要提高参考信号测量和估计的准确性,则必须尽可能减少参考信号受到的干扰。目前NB-IoT和eMTC中的参考信号配置,只能应对小区间、用户间及端口间的干扰,没有应对波束间干扰的办法。在NTN中,频率复用因子(Frequency Reuse Factor,FRF)用来表征整个系统带宽所分割的无重叠频段数,每个波束可被分配其中的某一频段,如复用因子为1时,表示所有波束使用相同的频段,复用因子大于1时,相邻波束可使用不同的频段,但不相邻的波束之间仍可能使用相同频段。使用相同频段的波束之间参考信号会发生资源重叠,形成干扰,对于FRF=1而言,干扰主要来自相邻波束,而FRF>1时,干扰主要来自使用相同频段的非相邻波束。若使用相同频段的波束之间没有抑制参考信号干扰的方法,则很可能由于干扰过大影响系统性能。
以解调参考信号(DMRS,DeModulation Reference Signal)为例,DMRS用来对相应的数据进行信道估计,根据目前的协议,假设有两个波束,波束1和波束2,若其对应的数据信道分配的物理资源相同,则只要PCI相同,则相应的DMRS序列和DMRS对应的时频位置也相同。对波束1而言,用其DMRS估计的等效信道为h_1+h_2,其中h_1和h_2分别为波束1和波束2到达同一个接收端实际经历的信道。但对于数据而言,两个波束所发送的数据序列是不完全相同的,因此波束1的数据所经历的等效信道为,这就导致利用DMRS对数据信道进行估计的准确性大大降低。
为解决上述问题,本申请实施例中提供了如下技术方案。
在一个实施例中,如图2所示,本申请实施例提供的信号处理方法主要包括步骤S11、S12。
S11、接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
S12、基于所述参考信号配置信息对信号进行处理。
所述信号处理方法由第一节点执行,所述第一节点可以是上述的任意用户终端。
接收参考信号配置信息可以是接收第二节点发送的参考信号配置信息,所述第二节点可以是上述的任意基站。参考信号配置信息由第二节点配置并发送。
所述参考信号生成方式是指对现有的参考信号进行处理,使其可以抑制同一物理小区内的不同波束之间的干扰。
在一个示例性的实施方式中,所述参考信号配置信息通过如下一种或多种方式接收:
广播消息;无线资源控制RRC信令;介质访问控制层控制单元MAC CE信令。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号与波束一一对应。
所述波束可以由如下一个或多个进行表示:参考信号标识,准共址(quasi Co-location)关系,极化模式(polarization pattern),频域资源标识,时域资源标识,空域资源(包括天线端口,码本,传输层等)标识,地理区域标识,小区标识,跟踪区域(tracking area)标识。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联包括如下一种或多种:
所述参考信号在频域所占资源与波束相关序号关联;
所述参考信号在时域所占资源与波束相关序号关联;
所述参考信号的序列码与波束相关序号关联。
上述提到的参考信号生成方式,可以分别独立使用,也可组合使用,且任意一种组合都预先定义好与波束相关序号的对应关系。参考信号生成方式的组合与波束相关序号的对应关系可以通过广播信令、介质访问控制层控制单元(Media Access Contraol Control Element,MAC CE)或无线资源控制(Radio Resource Control,RRC)信令告知用户。
所述参考信号在频域所占资源与波束相关序号关联可以是波束分配不同的频段,即不同的波束分配不同的资源块(Resource Block,RB)资源;也可以是波束分配相同RB资源时,不同波束的参考信号(Reference Signal,RS)在频域占用不同的子载波,或资源元素(Resource Element,RE),或资源单元(Resource Unit,RU)。
所述参考信号在时域所占资源与波束相关序号关联可以是波束占用相同频域资源时,不同波束的RS在时域占用不同的正交频分复用技术(Orthogonal Frenquency Division Multiplexing,OFDM)符号。
所述参考信号的随机序列码与波束相关序号关联可以是对不同波束的RS使用不同的随机种子,生成不同的随机序列,随机种子的取值与波束序号相关。
所述参考信号的随机序列码与波束相关序号关联也可以是用随机扰码对不同波束的RS生成序列进行波束级加扰,随机扰码序列的随机种子与波束序号相关。
在一个示例性的实施方式中,所述参考信号在频域所占资源包括如下的一种或多种:
资源块RB;载波;子载波;资源元素RE;资源单元RU。
在一个示例性的实施方式中,所述在频域所占资源与波束相关序号关联的方法包括如下一种或多种:资源的位置由波束相关序号和频域间隔决定;资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号在时域所占资源包括:正交频 分复用技术OFDM符号。
在一个示例性的实施方式中,所述在时域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号与时域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号的序列码包括如下一种或多种:
所述参考信号生成序列;所述参考信号的加扰序列。
在一个示例性的实施方式中,所述波束相关序号包括如下一种或多种:
波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
上述波束所占用资源的资源标识所对应的资源是除时频资源以外的其他资源,且应该在时频资源一致的基础上进行编号,即不同的资源标识应在时频资源一致的情况下讨论。资源标识可以为天线端口ID等。
在一个示例性的实施方式中,如果未对波束进行分组的情况下,所述波束相关序号是波束标识。
如果基站不对波束进行分组,直接对波束进行编号,则波束相关序号可以为波束ID,表示为
Figure PCTCN2021104946-appb-000001
基站通过广播信号直接指示波束ID。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
如果基站对波束进行分组,且组内的波束使用互不重叠的时频资源,则波束相关序号为波束组ID,表示为n group,基站通过广播信号广播波束组ID。其中,波束组内ID表示为n local,与互不重叠的时频资源相对应。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用 相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
如果基站对波束进行分组,且组内的波束使用相同的时频资源,组之间使用互不重叠的时频资源,则波束组ID表示为n group,与互不重叠的时频资源相对应,
若基站对组内波束进行编号,则波束相关序号可以为波束组内ID,表示为n local,基站通过广播信号广播波束组内ID;
若基站不对组内波束进行编号,则波束相关序号可以为波束所占资源(非时频资源)的资源ID,表示为n resource,用户根据波束所占资源获得资源ID;
在一个实施例中,如图3所示,本申请实施例提供的信息配置方法主要包括步骤S21、S22。
S21、确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式。
S22、发送所述参考信号配置信息。
所述信息配置方法由第二节点执行,所述第二节点可以是上述的任意基站。参考信号配置信息由第二节点配置并发送至第一节点。
所述参考信号生成方式是指对现有的参考信号进行处理,使其可以抑制同一物理小区内的不同波束之间的干扰。其中,参考信号配置信息由第一节点确定并发送。
在一个示例性的实施方式中,所述参考信号配置信息通过如下一种或多种方式接收:
广播消息;
无线资源控制RRC信令;
介质访问控制层控制单元MAC CE信令。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号与波束一一对应。
所述波束可以由如下一个或多个进行表示:参考信号标识,准共址(quasi Co-location)关系,极化模式(polarization pattern),频域资源标识,时域资源标识,空域资源(包括天线端口,码本,传输层等)标识,地理区域标识,小区标识,跟踪区域(tracking area)标识。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联包括如下一种或多种:
所述参考信号在频域所占资源与波束相关序号关联;
所述参考信号在时域所占资源与波束相关序号关联;
所述参考信号的序列码与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号在频域所占资源包括如下的一种或多种:
资源块RB;载波;子载波;资源元素RE;资源单元RU。
在一个示例性的实施方式中,所述在频域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号和频域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号在时域所占资源包括:正交频分复用技术OFDM符号。
在一个示例性的实施方式中,所述在时域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号与时域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号的序列码包括如下一种或多种:
所述参考信号生成序列;所述参考信号进行资源映射时的加扰序列。
在一个示例性的实施方式中,所述波束相关序号包括如下一种或多种:
波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
在一个示例性的实施方式中,如果未对波束进行分组的情况下,所述波束相关序号是波束标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
本实施例中,关于参考信号生成方式与波束相关序号的具体内容,可以参考上述实施例中的描述,本实施例中不再赘述。
在一个实施例中,提供一种波束间小区参考信号(Cell Reference Signal,CRS)干扰抑制方法。
CRS为小区特定的参考信号,在NTN中对于同一波束,包含在几乎所有下行子帧中。将NTN下的物理小区进行编号,表示为
Figure PCTCN2021104946-appb-000002
(如果为NB-IoT,则为
Figure PCTCN2021104946-appb-000003
),波束相关序号可根据如下方式得到:
如果波束相关序号为前述波束ID,基站通过广播信号直接指示波束ID;
如果波束相关序号为前述波束组ID,则基站通过广播信号广播波束组ID;
如果波束相关序号为前述波束组内ID,则基站通过广播信号广播波束组内ID;
如果波束相关序号为前述波束所占资源的资源ID,如天线端口ID,用户 根据波束所占资源获得资源ID。
在本实施例中,波束与参考信号是一一对应的关系,波束ID也可以是参考信号ID。
进一步的,波束相关序号与干扰抑制方式组合的对应关系由基站通过MAC CE或RRC告知用户终端。干扰抑制方式包括但不限于下列几种:
1)对于NB-IoT以Inband模式部署时,可将不同波束分配在不同的锚点载波(anchor carrier)或非锚点载波(non-anchor carrier)上,每个载波对应一个RB大小的带宽,利用频域将波束分开。对于eMTC,可将不同波束分配在不同的载波上,每个载波对应一个6RB大小的窄带(Narrowband),利用频域将波束分开。若波束相关序号为前述波束ID,则波束ID与载波频率直接对应,如共有10个可用载波频率f(n carrier)为f(0),f(1),...,f(9),其中n carrier为载波频率编号,则波束序号与载波频率对应为
Figure PCTCN2021104946-appb-000004
若波束相关序号为前述波束组ID,则波束组内ID与载波频率直接对应,即载波频率为f(n carrier):n carrier=n local;若波束相关序号为前述波束组内ID或资源ID,则波束组ID与载波频率直接对应,即载波频率为:f(n carrier):n carrier=n group
2)对CRS生成序列进行波束级加扰,加扰序列:
s(m)=c(m),m=0,1,...,N seq
其中c(i)为标准中定义的伪随机序列,即31长Gold序列,N seq为加扰序列长度,与被加扰的CRS生成序列长度相等。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000005
若波束相关序号为前述波束组ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000006
若波束相关序号为前述波束组内ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000007
若波束相关 序号为前述资源ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000008
在物理小区相同的情况下,可支持最多2 16个不同的波束加扰序列。波束级加扰后的序列可表示为:
Figure PCTCN2021104946-appb-000009
其中r(m)为加扰前的CRS生成序列,s(m)为加扰序列。
3)以一个波束只对应一个天线端口为例,不同波束的CRS在子帧资源元素(RE,Resource Element)上利用频分复用(FDM,Frequency Division Multiplexing)的方式的资源映射位置,如图4所示。其中v shift表示CRS的映射位置在频域上的位移,若波束相关序号为前述波束ID,则
Figure PCTCN2021104946-appb-000010
若波束相关序号为前述波束组ID,则
Figure PCTCN2021104946-appb-000011
若波束相关序号为前述波束组内ID,则
Figure PCTCN2021104946-appb-000012
若波束相关序号为前述资源ID,则
Figure PCTCN2021104946-appb-000013
在一个实施例中,提供一种波束间窄带参考信号(Narrowband reference signa,NRS)干扰抑制方法。
NRS是NB-IoT才有的参考信号,在Inband,Guardband,和standalone部署模式中均存在。将NTN下的物理小区进行编号,表示为
Figure PCTCN2021104946-appb-000014
波束相关序号可根据如下方式得到:
如果波束相关序号为前述波束ID,基站通过广播信号直接指示波束ID;
如果波束相关序号为前述波束组ID,则基站通过广播信号广播波束组ID;
如果波束相关序号为前述波束组内ID,则基站通过广播信号广播波束组内ID;
如果波束相关序号为前述波束所占资源的资源ID,如天线端口ID,用户根据波束所占资源获得资源ID。
进一步的,波束相关序号与干扰抑制方式组合的对应关系由基站通过MAC CE或RRC告知用户。对于波束间NRS的干扰抑制,与CRS类似,包括但不限于下列干扰抑制方式:
1)可将不同波束分配在不同的锚点载波(anchor carrier)或非锚点载波(non-anchor carrier)上,每个载波对应一个RB大小的带宽,利用频域将波束分开。若波束相关序号为前述波束ID,则波束ID与载波频率直接对应,如共有10个可用载波频率f(n carrier)为f(0),f(1),...,f(9),其中n carrier为载波频率编号,则波束序号与载波频率对应为
Figure PCTCN2021104946-appb-000015
若波束相关序号为前述波束组ID,则波束组内ID与载波频率直接对应,即载波频率为f(n carrier):n carrier=n local;若波束相关序号为前述波束组内ID或资源ID,则波束组ID与载波频率直接对应,即载波频率为:f(n carrier):n carrier=n group
2)对NRS生成序列进行波束级加扰,加扰序列
s(m)=c(m),m=0,1,...,N seq
其中c(i)为标准中定义的伪随机序列,即31长Gold序列,N seq为加扰序列长度,与被加扰的NRS生成序列等长。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000016
若波束相关序号为前述波束组ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000017
若波束相关序号为前述波束组内ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000018
若波束相关序号为前述资源ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000019
在物理小区相同的情况下,可支持最多2 16个不 同的波束加扰序列。波束级加扰后的序列可表示为:
Figure PCTCN2021104946-appb-000020
其中,r(m)为加扰前的NRS生成序列,s(m)为加扰序列。
3)以一个波束只对应一个天线端口为例,不同波束的NRS在子帧RE上利用FDM方式的资源映射位置如图5所示。其中v shift表示NRS的映射位置在频域上的位移,若波束相关序号为前述波束ID,则
Figure PCTCN2021104946-appb-000021
若波束相关序号为前述波束组ID,则
Figure PCTCN2021104946-appb-000022
若波束相关序号为前述波束组内ID,则
Figure PCTCN2021104946-appb-000023
若波束相关序号为前述资源ID,则
Figure PCTCN2021104946-appb-000024
在一个实施例中,提供一种eMTC下行解调参考信号(DMRS,DeModulation Reference Signal)干扰抑制方法。
将NTN下的物理小区进行编号,表示为
Figure PCTCN2021104946-appb-000025
波束相关序号可根据如下方式得到:
如果波束相关序号为前述波束ID,基站通过广播信号直接指示波束ID;
如果波束相关序号为前述波束组ID,则基站通过广播信号广播波束组ID;
如果波束相关序号为前述波束组内ID,则基站通过广播信号广播波束组内ID;
如果波束相关序号为前述波束所占资源的资源ID,如天线端口ID,用户根据波束所占资源获得资源ID。
且波束序号与干扰抑制方式组合的对应关系由基站通过MAC CE或RRC告知用户。对于eMTC下行解调参考信号,包括但不限于下列干扰抑制方式:
1)可将不同波束分配在不同的载波上,每个载波对应一个6RB大小的窄 带(Narrowband),利用频域将波束分开。若波束相关序号为前述波束ID,则波束ID与载波频率直接对应,如共有10个可用载波频率f(n carrier)为f(0),f(1),...,f(9),其中n carr i er为载波频率编号,则波束序号与载波频率对应为
Figure PCTCN2021104946-appb-000026
若波束相关序号为前述波束组ID,则波束组内ID与载波频率直接对应,即载波频率为f(n carrier):n carrier=n local;若波束相关序号为前述波束组内ID或资源ID,则波束组ID与载波频率直接对应,即载波频率为:f(n carrier):n carrier=n group
2)对DMRS生成序列进行波束级加扰,加扰序列
s(m)=c(m),m=0,1,...,N seq
其中c(i)为标准中定义的伪随机序列,即31长Gold序列,N seq为加扰序列长度,与被加扰的下行DMRS生成序列等长。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000027
若波束相关序号为前述波束组ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000028
若波束相关序号为前述波束组内ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000029
若波束相关序号为前述资源ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000030
在物理小区相同的情况下,可支持最多2 16个不同的波束加扰序列。波束级加扰后的序列可表示为
Figure PCTCN2021104946-appb-000031
其中r(m)为加扰前的下行DMRS生成序列,s(m)为加扰序列。
3)以一个波束只对应一个天线端口为例,不同波束的下行DMRS在子帧RE上利用FDM方式的资源映射位置如图6所示。其中k pattern表示下行 DMRS的映射位置在频域上的位移,若波束相关序号为前述波束ID,则
Figure PCTCN2021104946-appb-000032
若波束相关序号为前述波束组ID,则
Figure PCTCN2021104946-appb-000033
若波束相关序号为前述波束组内ID,则
Figure PCTCN2021104946-appb-000034
若波束相关序号为前述资源ID,则
Figure PCTCN2021104946-appb-000035
在一个实施例中,提供一种eMTC上行DMRS干扰抑制方法。
将NTN下的物理小区进行编号,表示为
Figure PCTCN2021104946-appb-000036
波束相关序号可根据如下方式得到:
如果波束相关序号为前述波束ID,基站通过广播信号直接指示波束ID;
如果波束相关序号为前述波束组ID,则基站通过广播信号广播波束组ID;
如果波束相关序号为前述波束组内ID,则基站通过广播信号广播波束组内ID;
如果波束相关序号为前述波束所占资源的资源ID,如天线端口ID,用户根据波束所占资源获得资源ID。
且波束序号与干扰抑制方式组合的对应关系由基站通过MAC CE或RRC告知用户。对于eMTC上行解调参考信号,包括但不限于下列干扰抑制方式:
1)可将不同波束分配在不同的载波上,每个载波对应一个6RB大小的窄带(Narrowband),利用频域将波束分开。若波束相关序号为前述波束ID,则波束ID与载波频率直接对应,如共有10个可用载波频率f(n carrier)为f(0),f(1),...,f(9),其中n carrier为载波频率编号,则波束序号与载波频率对应为
Figure PCTCN2021104946-appb-000037
若波束相关序号为前述波束组ID,则波束 组内ID与载波频率直接对应,即载波频率为f(n carrier):n carrier=n local;若波束相关序号为前述波束组内ID或资源ID,则波束组ID与载波频率直接对应,即载波频率为:f(n carrier):n carrier=n group
2)对DMRS生成序列进行波束级加扰,加扰序列
s(m)=c(m),m=0,1,...,N seq
其中c(i)为标准中定义的伪随机序列,即31长Gold序列,N seq为加扰序列长度,与被加扰的上行DMRS生成序列等长。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000038
若波束相关序号为前述波束组ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000039
若波束相关序号为前述波束组内ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000040
若波束相关序号为前述资源ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000041
在物理小区相同的情况下,可支持最多2 16个不同的波束加扰序列。波束级加扰后的序列可表示为
Figure PCTCN2021104946-appb-000042
其中r(m)为加扰前的DMRS生成序列,s(m)为加扰序列。
3)以一个波束只对应一个天线端口为例,不同波束的上行DMRS在子帧RE上利用时分复用(TDM,Time Division Multiplexing)方式的资源映射位置如Figure 5所示,其中τ shift表示上行DMRS在时域的不同映射方式。若波束相关序号为前述波束ID,则
Figure PCTCN2021104946-appb-000043
若波束相关序号为前述波束组ID,则
Figure PCTCN2021104946-appb-000044
若波束相关序号为前述波束组内ID,则
Figure PCTCN2021104946-appb-000045
若波束相关序号为前述资源ID,则
Figure PCTCN2021104946-appb-000046
在一个实施例中,提供一种NB-IoT上行DMRS干扰抑制方法。
将NTN下的物理小区进行编号,表示为
Figure PCTCN2021104946-appb-000047
波束相关序号可根据如下方式得到:
如果波束相关序号为前述波束ID,基站通过广播信号直接指示波束ID;
如果波束相关序号为前述波束组ID,则基站通过广播信号广播波束组ID;
如果波束相关序号为前述波束组内ID,则基站通过广播信号广播波束组内ID;
如果波束相关序号为前述波束所占资源的资源ID,如天线端口ID,用户根据波束所占资源获得资源ID。
且波束序号与干扰抑制方式组合的对应关系由基站通过MAC CE或RRC告知用户。对于波束间上行DMRS的干扰抑制,包括但不限于下列干扰抑制方式:
可将不同波束分配在不同的锚点载波(anchor carrier)或非锚点载波(non-anchor carrier)上,每个载波对应一个RB大小的带宽,利用频域将波束分开。若波束相关序号为前述波束ID,则波束ID与载波频率直接对应,如共有10个可用载波频率f(n carrier)为f(0),f(1),...,f(9),其中n carrier为载波频率编号,则波束序号与载波频率对应为
Figure PCTCN2021104946-appb-000048
若波束相关序号为前述波束组ID,则波束组内ID与载波频率直接对应,即载波频率为f(n carrier):n carrier=n local;若波束相关序号为前述波束组内ID或资源ID,则波束组ID与载波频率直接对应,即载波频率为:f(n carrier):n carrier=n group
对上行DMRS生成序列进行波束级加扰,加扰序列
s(m)=c(m),m=0,1,...,N seq
其中c(i)为标准中定义的伪随机序列,即31长Gold序列,N seq为加扰序列长度,与被加扰的上行DMRS生成序列等长。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000049
若波束相关序号为前述波束组ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000050
若波束相关序号为前述波束组内ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000051
若波束相关序号为前述资源ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000052
在物理小区相同的情况下,可支持最多2 16个不同的波束加扰序列。波束级加扰后的序列可表示为
Figure PCTCN2021104946-appb-000053
其中r(m)为加扰前的上行DMRS生成序列,s(m)为加扰序列。
以一个波束只对应一个天线端口为例,由于NB-IoT上行共享资源信道(NPUSCH,Narrow-Band Physical Uplink Share Channel)基本单元为资源单元(RU,Resource Unit)。子载波间隔,所包含的子载波个数,以及所包含的时隙数,三者唯一确定了一个RU。如表1所示
表1 NPUSCH的RU定义表
Figure PCTCN2021104946-appb-000054
Figure PCTCN2021104946-appb-000055
其中NPUSCH格式1不同RU的DMRS在可以利用TDM方式在资源映射时抑制波束间干扰,RU中每个时隙的DMRS映射结构一致,一个时隙中的映射结构如图8所示,其中τ shift表示上行DMRS在时域的不同映射方式。若波束相关序号为前述波束ID,则
Figure PCTCN2021104946-appb-000056
若波束相关序号为前述波束组ID,则
Figure PCTCN2021104946-appb-000057
若波束相关序号为前述波束组内ID,则
Figure PCTCN2021104946-appb-000058
若波束相关序号为前述资源ID,则
Figure PCTCN2021104946-appb-000059
1)根据表1可知NPUSCH格式2的RU对子载波间隔为3.75kHz和15kHz都只有一个RU在频域包含一个子载波,时域包含4个时隙一种形式。对于RU只包含一个子载波的情况,DMRS的生成序列为
Figure PCTCN2021104946-appb-000060
其中
Figure PCTCN2021104946-appb-000061
为NPUSCH的调度重复次数,
Figure PCTCN2021104946-appb-000062
为RU包含的时隙数,N RU为调度给NPUSCH的RU数。为了随机化波束间干扰,可以令伪随机序列c(i)的随机种子与波束相关序号相关联。若波束相关序号为前述波束ID,则伪随机序列的随机种子
Figure PCTCN2021104946-appb-000063
若波束相关序号为前述波束组ID,则伪随机序列的随机种子c init=n group;若波束相关序号为前述波束组内ID,则伪随机序列的随机种子c init=n local;若波束相关序号为前述资源ID,则伪随机序列的随机种子c init=n resource
在一个实施例中,如图9所示,本申请实施例提供的信号处理装置主要包括接收模块91和处理模块92。其中,所述信号处理装置配置于第一通信节点。
接收模块91,被配置为接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
处理模块92,被配置为基于所述参考信号配置信息对信号进行处理。
在一个示例性的实施方式中,所述参考信号配置信息通过如下一种或多种方式接收:
广播消息;无线资源控制RRC信令;介质访问控制层控制单元MAC CE信令。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号与波束一一对应。
所述波束可以由如下一个或多个进行表示:参考信号标识,准共址(quasi Co-location)关系,极化模式(polarization pattern),频域资源标识,时域资源标识,空域资源(包括天线端口,码本,传输层等)标识,地理区域标识,小区标识,跟踪区域(tracking area)标识。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联包括如下一种或多种:
所述参考信号在频域所占资源与波束相关序号关联;
所述参考信号在时域所占资源与波束相关序号关联;
所述参考信号的序列码与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号在频域所占资源包括如下的一种或多种:
资源块RB;载波;子载波;资源元素RE;资源单元RU。
在一个示例性的实施方式中,所述在频域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号和频域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号在时域所占资源包括:正交频分复用技术OFDM符号。
在一个示例性的实施方式中,所述在时域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号与时域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号的序列码包括如下一种或多种:
所述参考信号生成序列;所述参考信号进行资源映射时的加扰序列。
在一个示例性的实施方式中,所述波束相关序号包括如下一种或多种:
波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
在一个示例性的实施方式中,如果未对波束进行分组的情况下,所述波束相关序号是波束标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
本实施例中提供的信号处理装置可执行本申请任意实施例所提供的信号处理方法,具备执行该方法相应的功能模块。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的信号处理方法。
值得注意的是,上述信号处理装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应 的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
在一个实施例中,如图10所示,本申请实施例提供的信号处理装置主要包括确定模块101和发送模块102。其中,所述信息配置装置配置于第二通信节点。
确定模块101,被配置为确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
发送模块102,被配置为发送所述参考信号配置信息。
在一个示例性的实施方式中,所述参考信号配置信息通过如下一种或多种方式发送:
广播消息;
无线资源控制RRC信令;
介质访问控制层控制单元MAC CE信令。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号与波束一一对应。
所述波束可以由如下一个或多个进行表示:参考信号标识,准共址(quasi Co-location)关系,极化模式(polarization pattern),频域资源标识,时域资源标识,空域资源(包括天线端口,码本,传输层等)标识,地理区域标识,小区标识,跟踪区域(tracking area)标识。
在一个示例性的实施方式中,所述参考信号生成方式与波束相关序号关联包括如下一种或多种:
所述参考信号在频域所占资源与波束相关序号关联;
所述参考信号在时域所占资源与波束相关序号关联;
所述参考信号的序列码与波束相关序号关联。
在一个示例性的实施方式中,所述参考信号在频域所占资源包括如下的一 种或多种:
资源块RB;载波;子载波;资源元素RE;资源单元RU。
在一个示例性的实施方式中,所述在频域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号和频域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号在时域所占资源包括:正交频分复用技术OFDM符号。
在一个示例性的实施方式中,所述在时域所占资源与波束相关序号关联的方法包括如下一种或多种:
资源的位置由波束相关序号与时域间隔决定;
资源的数量随波束相关序号以特定方式进行对应。
在一个示例性的实施方式中,所述参考信号的序列码包括如下一种或多种:
所述参考信号生成序列;所述参考信号的加扰序列。
在一个示例性的实施方式中,所述波束相关序号包括如下一种或多种:
波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
在一个示例性的实施方式中,如果未对波束进行分组的情况下,所述波束相关序号是波束标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
在一个示例性的实施方式中,如果对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
本实施例中提供的信息配置装置可执行本申请任意实施例所提供的信息配置方法,具备执行该方法相应的功能模块。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的信息配置方法。
值得注意的是,上述信息配置装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请实施例还提供一种设备,图11是本申请实施例提供的一种设备的结构示意图,如图11所示,该设备包括处理器111、存储器112、输入装置113、输出装置114和通信装置115;设备中处理器111的数量可以是一个或多个,图11中以一个处理器111为例;设备中的处理器111、存储器112、输入装置113和输出装置114可以通过总线或其他方式连接,图11中以通过总线连接为例。
存储器112作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的信息配置方法对应的程序指令/模块(例如,信息配置装置中的确定模块101和发送模块102),又如本申请实施例中的信号处理方法对应的程序指令/模块(例如,信号处理装置中的接收模块91和处理模块91)。处理器111通过运行存储在存储器112中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器112可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器112可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器112可进一步包括相对于处理器111 远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置113可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置114可包括显示屏等显示设备。
通信装置115可以包括接收器和发送器。通信装置115设置为根据处理器111的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信号处理方法,所述方法应用于第一节点,包括;
接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
基于所述参考信号配置信息对波束进行处理。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信号处理方法中的相关操作。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息配置方法,所述方法应用于第二节点,包括;
确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
发送所述参考信号配置信息。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信息配置方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上 或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本 地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Process,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (34)

  1. 一种信号处理方法,所述方法应用于第一节点,包括:
    接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
    基于所述参考信号配置信息对信号进行处理。
  2. 根据权利要求1所述的方法,其中,所述参考信号配置信息通过如下至少一种方式接收:
    广播消息;
    无线资源控制RRC信令;
    介质访问控制层控制单元MAC CE信令。
  3. 根据权利要求1所述的方法,其中,所述参考信号生成方式与波束相关序号关联。
  4. 根据权利要求3所述的方法,其中,所述参考信号与波束一一对应。
  5. 根据权利要求3所述的方法,其中,所述参考信号生成方式与波束相关序号关联包括如下至少一种:
    所述参考信号在频域所占资源与波束相关序号关联;
    所述参考信号在时域所占资源与波束相关序号关联;
    所述参考信号的序列码与波束相关序号关联。
  6. 根据权利要求5所述的方法,其中,所述参考信号在频域所占资源包括如下的至少一种:
    资源块RB;载波;子载波;资源元素RE;资源单元RU。
  7. 根据权利要求5所述的方法,其中,所述在频域所占资源与波束相关序号关联的方法包括如下至少一种:
    资源的位置由波束相关序号和频域间隔决定;
    资源的数量随波束相关序号以特定方式进行对应。
  8. 根据权利要求5所述的方法,其中,所述参考信号在时域所占资源包括:正交频分复用技术OFDM符号。
  9. 根据权利要求5所述的方法,其中,所述在时域所占资源与波束相关序 号关联的方法包括如下至少一种:
    资源的位置由波束相关序号与时域间隔决定;
    资源的数量随波束相关序号以特定方式进行对应。
  10. 根据权利要求5所述的方法,其中,所述参考信号的序列码包括如下至少一种:
    所述参考信号生成序列;所述参考信号加扰序列。
  11. 根据权利要求3所述的方法,其中,所述波束相关序号包括如下至少一种:
    波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
  12. 根据权利要求11所述的方法,其中,在未对波束进行分组的情况下,所述波束相关序号是波束标识。
  13. 根据权利要求11所述的方法,其中,在对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
  14. 根据权利要求11所述的方法,其中,在对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
  15. 根据权利要求11所述的方法,其中,在对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
  16. 一种信息配置方法,所述方法应用于第二节点,包括:
    确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
    发送所述参考信号配置信息。
  17. 根据权利要求16所述的方法,其中,所述参考信号配置信息通过如下至少一种方式发送:
    广播消息;
    无线资源控制RRC信令;
    介质访问控制层控制单元MAC CE信令。
  18. 根据权利要求16所述的方法,其中,所述参考信号生成方式与波束相关序号关联。
  19. 根据权利要求18所述的方法,其中,所述参考信号与波束一一对应。
  20. 根据权利要求18所述的方法,其中,所述参考信号生成方式与波束相关序号关联包括如下至少一种:
    所述参考信号在频域所占资源与波束相关序号关联;
    所述参考信号在时域所占资源与波束相关序号关联;
    所述参考信号的序列码与波束相关序号关联。
  21. 根据权利要求20所述的方法,其中,所述参考信号在频域所占资源包括如下的至少一种:
    资源块RB;载波;子载波;资源元素RE;资源单元RU。
  22. 根据权利要求20所述的方法,其中,所述在频域所占资源与波束相关序号关联的方法包括如下至少一种:
    资源的位置由波束相关序号和频域间隔决定;
    资源的数量随波束相关序号以特定方式进行对应。
  23. 根据权利要求20所述的方法,其中,所述参考信号在时域所占资源包括:正交频分复用技术OFDM符号。
  24. 根据权利要求20所述的方法,其中,所述在时域所占资源与波束相关序号关联的方法包括如下至少一种;
    资源的位置由波束相关序号与时域间隔决定;
    资源的数量随波束相关序号以特定方式进行对应。
  25. 根据权利要求20所述的方法,其中,所述参考信号的序列码包括如下至少一种:
    所述参考信号生成序列;所述参考信号加扰序列。
  26. 根据权利要求18所述的方法,其中,所述波束相关序号包括如下至少一种:
    波束标识,波束组标识,波束组内标识,波束所占用资源的资源标识。
  27. 根据权利要求26所述的方法,其中,在未对波束进行分组的情况下,所述波束相关序号是波束标识。
  28. 根据权利要求26所述的方法,其中,在对波束进行分组,且同一组内的波束使用互不重叠的时频资源的情况下,所述波束相关序号是波束组标识。
  29. 根据权利要求26所述的方法,其中,在对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若对同一组内的波束进行编号,所述波束相关序号是波束组内标识。
  30. 根据权利要求26所述的方法,其中,在对波束进行分组,且同一组内波束使用相同的时频资源,不同组之间波束使用互不重叠的时频资源的情况下,若未对同一组内的波束进行编号,所述波束相关序号是波束所占用资源的资源标识。
  31. 一种信号处理装置,所述装置配置于第一节点,包括:
    接收模块,被配置为接收参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
    处理模块,被配置为基于所述参考信号配置信息对信号进行处理。
  32. 一种信息配置装置,所述装置配置于第二节点,包括:
    确定模块,被配置为确定参考信号配置信息,所述参考信号配置信息包括参考信号生成方式;
    发送模块,被配置为发送所述参考信号配置信息。
  33. 一种设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理 器实现如权利要求1-30任一项所述的方法。
  34. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-30任一项所述的方法。
PCT/CN2021/104946 2020-07-17 2021-07-07 信号处理和信息配置方法、装置、设备和存储介质 WO2022012387A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237005457A KR20230037656A (ko) 2020-07-17 2021-07-07 신호 처리 방법과 장치, 정보 구성 방법과 장치, 디바이스 및 저장 매체
AU2021310150A AU2021310150A1 (en) 2020-07-17 2021-07-07 Signal processing method and apparatus, information configuration method and apparatus, device, and storage medium
EP21841992.7A EP4184840A1 (en) 2020-07-17 2021-07-07 Signal processing method and apparatus, information configuration method and apparatus, device, and storage medium
US18/016,253 US20230291522A1 (en) 2020-07-17 2021-07-07 Signal processing method, information configuration method, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010693884.9A CN111901090A (zh) 2020-07-17 2020-07-17 信号处理和信息配置方法、装置、设备和存储介质
CN202010693884.9 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022012387A1 true WO2022012387A1 (zh) 2022-01-20

Family

ID=73190509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104946 WO2022012387A1 (zh) 2020-07-17 2021-07-07 信号处理和信息配置方法、装置、设备和存储介质

Country Status (6)

Country Link
US (1) US20230291522A1 (zh)
EP (1) EP4184840A1 (zh)
KR (1) KR20230037656A (zh)
CN (1) CN111901090A (zh)
AU (1) AU2021310150A1 (zh)
WO (1) WO2022012387A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901090A (zh) * 2020-07-17 2020-11-06 中兴通讯股份有限公司 信号处理和信息配置方法、装置、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197659A1 (en) * 2013-08-05 2016-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system
CN109120388A (zh) * 2017-06-23 2019-01-01 中国移动通信有限公司研究院 参考信号配置、接收方法、基站、终端、计算机可读存储介质
WO2019096237A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 一种参考信号的处理方法和网络设备以及终端设备
CN111294188A (zh) * 2019-07-16 2020-06-16 北京展讯高科通信技术有限公司 参考信号信息的确定方法及装置、存储介质、终端
CN111901090A (zh) * 2020-07-17 2020-11-06 中兴通讯股份有限公司 信号处理和信息配置方法、装置、设备和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160075996A (ko) * 2014-12-19 2016-06-30 한국전자통신연구원 빔간 간섭 제거를 위한 송신 방법 및 그 장치
KR20160143509A (ko) * 2015-06-04 2016-12-14 주식회사 케이티 빔포밍 시스템에서 이웃 셀 탐색을 위한 방법 및 장치
CN106888042B (zh) * 2017-03-01 2020-06-02 北京小米移动软件有限公司 基于波束赋形的波束选取方法及装置、基站和终端
CN113329503B (zh) * 2017-11-17 2023-10-17 中兴通讯股份有限公司 信息处理方法、通信设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160197659A1 (en) * 2013-08-05 2016-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal through beam grouping in wireless communication system
CN109120388A (zh) * 2017-06-23 2019-01-01 中国移动通信有限公司研究院 参考信号配置、接收方法、基站、终端、计算机可读存储介质
WO2019096237A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 一种参考信号的处理方法和网络设备以及终端设备
CN111294188A (zh) * 2019-07-16 2020-06-16 北京展讯高科通信技术有限公司 参考信号信息的确定方法及装置、存储介质、终端
CN111901090A (zh) * 2020-07-17 2020-11-06 中兴通讯股份有限公司 信号处理和信息配置方法、装置、设备和存储介质

Also Published As

Publication number Publication date
AU2021310150A1 (en) 2023-03-16
US20230291522A1 (en) 2023-09-14
CN111901090A (zh) 2020-11-06
EP4184840A1 (en) 2023-05-24
KR20230037656A (ko) 2023-03-16

Similar Documents

Publication Publication Date Title
US10645688B2 (en) Time-frequency resource allocation method and apparatus
CN113765640B (zh) 用于在无线通信系统中发射/接收定位参考信号的方法和装置
CN106797611B (zh) 信息搜索方法、信息发送方法、装置及系统
EP3579469B1 (en) Wireless communication method and device
JP7368549B2 (ja) システムメッセージの伝送方法及び装置
RU2604649C2 (ru) Способы и устройства в системе беспроводной связи
WO2018127137A1 (zh) 参考信号的传输方法和装置
WO2019153195A1 (en) Methods and apparatuses for phase tracking reference signal configuration
CN109845173B (zh) 用于在无线通信系统中发射/接收定位参考信号的方法和装置
US12015572B2 (en) Communication method and communications apparatus
JP7186853B2 (ja) 端末、基地局及び無線通信方法
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输系统
JP6824232B2 (ja) データを伝送するための方法およびデバイス
CN111867038A (zh) 一种通信方法及装置
JP2018532309A (ja) 狭帯域直交周波数分割多重化信号を伝送するための方法およびデバイス
CN108282288B (zh) 一种参考信号配置的方法、基站、用户设备和系统
CN114175697A (zh) 使用比特图的长期演进-m资源预留
WO2022012387A1 (zh) 信号处理和信息配置方法、装置、设备和存储介质
EP4120645A1 (en) Ofdm-based method and device for spreading and transmitting compressed data
US11962521B2 (en) Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
US20230045122A1 (en) Methods and apparatus for frequency layer configuration for nr positioning reference signals
CN115379569A (zh) 一种通信方法及通信装置
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
US20220263614A1 (en) Method and Devices for Wireless Communication
CN117918060A (zh) 用于在通信系统中发送和接收信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237005457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021841992

Country of ref document: EP

Effective date: 20230217

ENP Entry into the national phase

Ref document number: 2021310150

Country of ref document: AU

Date of ref document: 20210707

Kind code of ref document: A