WO2019205111A1 - 数据合并方法、装置及设备 - Google Patents

数据合并方法、装置及设备 Download PDF

Info

Publication number
WO2019205111A1
WO2019205111A1 PCT/CN2018/084935 CN2018084935W WO2019205111A1 WO 2019205111 A1 WO2019205111 A1 WO 2019205111A1 CN 2018084935 W CN2018084935 W CN 2018084935W WO 2019205111 A1 WO2019205111 A1 WO 2019205111A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data
channel
channel response
confidence
Prior art date
Application number
PCT/CN2018/084935
Other languages
English (en)
French (fr)
Inventor
王继辉
陈佳超
郁新华
赵所峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880000707.9A priority Critical patent/CN110651453B/zh
Priority to PCT/CN2018/084935 priority patent/WO2019205111A1/zh
Publication of WO2019205111A1 publication Critical patent/WO2019205111A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data combining method, apparatus, and device for a cellular-based narrowband Internet of Things NB-IoT.
  • NB-IoT Narrow Band Internet of Things
  • the prior art adopts a confidence optimization channel estimation algorithm to improve the accuracy of channel estimation.
  • the channel estimation values at the valleys with low SNR are often inaccurate, and thus cause severe distortion of the data after equalization, thereby affecting the demodulation performance of the fading channel with low SNR.
  • the invention provides a data merging method, device and device to optimize the merging data in the NB-IoT scenario and improve the demodulation performance of the low SNR data.
  • the present invention provides a data merging method, including:
  • intermediate data of the subframe where the intermediate data refers to data obtained by multiplying the equalization data by the confidence
  • the intermediate data of all the sub-frames are combined to obtain the combined data.
  • the obtaining channel estimation result of the subframe includes:
  • Determining the confidence of the data received in the subframe according to the channel estimation result including:
  • the associated value of the combined power value is used as a confidence level of the received data in the subframe, wherein the associated value of the combined power value includes: a square of the combined power value, a cube of the combined power value.
  • the obtaining channel estimation result of the subframe includes:
  • Determining the confidence of the data received in the subframe according to the channel estimation result including:
  • the obtaining channel estimation result of the subframe includes:
  • Determining the confidence of the data received in the subframe according to the channel estimation result including:
  • the confidence of the data received in the subframe is set according to the size of the channel response of the subframe.
  • the present invention provides a data merging apparatus, including:
  • An obtaining module configured to obtain a channel estimation result of the subframe
  • a determining module configured to determine a confidence level of the data received in the subframe according to the channel estimation result
  • An equalization module configured to perform equalization processing on the data received in the subframe to obtain corresponding equalized data
  • a processing module configured to acquire intermediate data of the subframe, where the intermediate data refers to data obtained by multiplying the equalization data by the confidence;
  • the merging module is configured to combine the intermediate data of all the subframes to obtain the merged data.
  • the acquiring module is specifically configured to:
  • the determining module is specifically configured to:
  • the associated value of the combined power value is used as a confidence level of the received data in the subframe, wherein the associated value of the combined power value includes: a square of the combined power value, a cube of the combined power value.
  • the acquiring module is specifically configured to:
  • the determining module is specifically configured to:
  • the acquiring module is specifically configured to:
  • the determining module is specifically configured to:
  • the confidence of the data received in the subframe is set according to the size of the channel response of the subframe.
  • the present invention provides a data combining device, including:
  • processor for executing the program stored by the memory, the processor for performing the method of any of the first aspects when the program is executed.
  • the invention provides a computer readable storage medium comprising: instructions, when executed on a computer, causing a computer to perform the method of any of the first aspects.
  • the data combining method, device and device provided by the present invention obtain the channel estimation result of the subframe; determine the confidence of the data received in the subframe according to the channel estimation result; and receive the received data in the subframe
  • the data is equalized to obtain corresponding equalized data
  • the intermediate data of the subframe is obtained, wherein the intermediate data refers to the data obtained by multiplying the equalized data by the confidence; the middle of all the subframes
  • the data is merged to obtain the combined data.
  • 1 is a schematic diagram of channel fading of the extended pedestrian channel model EPA5;
  • FIG. 2 is a flowchart of a method for data merging according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram showing a comparison result of Block Error Rate (BLER) performance when data is merged by using the confidence method and the direct merge method to expand the NPBCH channel of the extended pedestrian channel model EPA1;
  • BLER Block Error Rate
  • FIG. 4 is a schematic structural diagram of a data combining apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a data combining device according to Embodiment 3 of the present invention.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP The 3rd Generation Partnership Project
  • the LTE system introduces key transmission technologies such as OFDM (Orthogonal Frequency Division Multiplexing) and MIMO (Multi-Input & Multi-Output), which significantly increases spectrum efficiency and data transmission rate, and supports multiple Bandwidth allocation: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz, etc., and support the global mainstream 2G/3G frequency band and some new frequency bands, so the spectrum allocation is more flexible, system capacity and coverage are also significantly improved.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multi-Input & Multi-Output
  • NB-IoT Cellular-based Narrow Band Internet of Things
  • GSM Global System for Mobile communications
  • UMTS Universal Mobile Subscriber
  • LTE Long Term Evolution
  • NB-IoT is an emerging technology in the IoT space that supports low-power devices in the WAN cellular data connection, also known as low-power wide area network (LPWA).
  • LPWA low-power wide area network
  • NB-IoT supports efficient connection of devices with long standby time and high requirements for network connection.
  • Least Square is a mathematical optimization technique that finds the best function matching of data by minimizing the square of the error; using the least squares method, the unknown data can be easily obtained and made The sum of the squares of the errors between these obtained data and the actual data is minimal.
  • Zero Forced (ZF) is a linear equalization algorithm.
  • NPBCH NB-IoT Physical Broadcast Channel
  • the Block Error Rate (BLER) of the block with error and the digital circuit receives the correct data block received by detecting the cyclic redundancy on each transport block after channel deinterleaving and decoding.
  • the ratio determines the demodulation performance of the system.
  • AWGN Additive White Gaussian Noise
  • the NB-IoT-based data merging method provided by the present invention can be applied in a cellular-based narrowband Internet of Things NB-IoT, and the NB-IoT standard is used as an LTE evolved Internet of Things protocol branch, and the receiver algorithm is very similar to LTE.
  • the channel estimation result is very poor and can only meet the minimum requirements of the protocol.
  • the number of pilot signals of NB-IoT is much less than that of LTE, so it often requires a large number of sub- Frames are combined for data, and the time span is large, which is much more affected by fading than LTE.
  • Figure 1 is a schematic diagram of the channel fading of the extended pedestrian channel model EPA5.
  • the peaks and troughs of the power curve of the signal passing through the EPA5 channel are more than 9 dB.
  • the combination of troughs and peaks can be directly combined in a conventional manner to effectively reduce the effects of noise.
  • the channel estimates at the troughs will no longer be accurate, and the equalized data will be severely distorted, affecting the quality of the demodulated data.
  • the data merging method provided by the present invention aims to solve the problems existing in the prior art.
  • FIG. 2 is a flowchart of a method for data merging according to Embodiment 1 of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the data sent by the transmitting end is divided into data blocks according to the subframe, and a plurality of frequency points are included in one subframe.
  • the channel response power value at each frequency point can be known, especially in low signal to noise.
  • the channel fading is obvious compared to the area. Therefore, in order to improve the quality of the combined data, it is necessary to reduce the influence of the channel estimation value at the trough.
  • channel estimation is performed on data of a subframe, and a corresponding channel estimation result is obtained.
  • the most common channel estimation method may be a least squares method; however, it should be noted that this embodiment does not limit the specific manner of channel estimation, and all existing channel estimation methods can be applied in this embodiment.
  • all pilot signals in the subframe may be received;
  • Channel estimation is performed on all pilot signals in the subframe to obtain channel response power of all pilot signals.
  • all pilot signals in the subframe may be selected for channel estimation, and channel response power corresponding to the pilot channel is obtained.
  • channel response power of the eight pilot signals can be separately obtained. It should be noted that this embodiment does not limit the number of selected pilot signals.
  • the channel response power of the subcarriers in the subframe may be acquired.
  • the channel estimation results of all the pilot signals in the subframe may be interpolated to obtain channel estimation results of all subcarriers in the subframe, and the channel response power of the subcarriers in the subframe is obtained, where the default subcarrier channel is used.
  • the response power value is accurate, so pilot combining is not required to reduce the effect of noise on the estimation results.
  • the pilot signal sent by the transmitting end, the pilot signal received by the receiving end, and the noise superimposed on the channel may also be acquired;
  • the channel response of the subframe is calculated according to the pilot signal sent by the transmitting end, the pilot signal received by the receiving end, and the noise superimposed on the channel.
  • the channel response of the subframe may be calculated by using a pilot signal transmitted by the transmitting end, a pilot signal received by the receiving end, and a noise superimposed on the channel.
  • OFDM Orthogonal Frequency Division Multiplexing
  • H is the channel response
  • X is the pilot signal transmitted by the transmitting end
  • Y is the pilot signal received by the receiving end
  • W is the AWGN vector superimposed on the pilot subchannel.
  • the confidence of the data received in the subframe is set by the channel estimation result, and the confidence is also the weight value of the data received in the subframe.
  • channel response powers of all pilot signals in the subframe may be summed to obtain combined power values of channel response powers of all pilot signals
  • the associated value of the combined power value is used as a confidence level of the received data in the subframe, wherein the associated value of the combined power value includes: a square of the combined power value, a cube of the combined power value.
  • the associated value of the channel response power of the subcarrier of the subframe is used as the confidence of the data received in the subframe, where the associated value of the channel response power includes: The square of the channel response power, the cube of the channel response power.
  • the confidence of the data received in the subframe may be set according to the size of the channel response of the subframe. The larger the channel response, the greater the corresponding confidence.
  • the zero-forcing algorithm can be used for the data equalization process.
  • the present embodiment does not limit the specific manner of data equalization, and all existing data equalization methods can be applied in this embodiment.
  • the equalized data obtained by performing equalization processing on the data received in the subframe is multiplied by the confidence to obtain intermediate data of the subframe.
  • the intermediate data of the subframe is combined, and may be intermediate data of multiple subframes, or may be merged with intermediate data of multiple subcarriers in one subframe.
  • the data block is transmitted by multiple subframes
  • data of multiple subframes needs to be combined.
  • intermediate data of multiple subcarriers in the subframe is performed. merge.
  • y is the merged data
  • x(i) is the i-th intermediate data
  • w(i) is the confidence corresponding to the i-th intermediate data
  • the channel estimation result of the subframe is obtained; the confidence of the data received in the subframe is determined according to the channel estimation result; and the data received in the subframe is equalized to obtain a corresponding And equalizing data; obtaining intermediate data of the subframe, wherein the intermediate data refers to data obtained by multiplying the equalization data by the confidence; and combining intermediate data of all subframes to obtain combined data .
  • the optimized data in the NB-IoT scenario is optimized, and the demodulation performance of the low SNR data is improved.
  • FIG. 3 is a schematic diagram showing the result of comparing the Block Error Rate (BLER) performance of the NPBCH channel of the extended pedestrian channel model EPA1 by using the confidence method and the direct combining method.
  • BLER Block Error Rate
  • the data merging of the NPBCH channel of the EPA1 by the confidence method has better BLER performance than the method of directly combining the channel data; especially for the channel with low SNR, the BLER performance is especially improved. obvious.
  • the 99% NPBCH detection success rate is improved by 4db or more compared with the direct combination. It can be seen that the method provided by the embodiment of the invention can effectively reduce the number of retransmissions and power consumption, improve the traffic, and can meet higher requirements. Depth coverage required.
  • FIG. 4 is a schematic structural diagram of a data merging apparatus according to Embodiment 2 of the present invention. As shown in FIG. 3, the apparatus in this embodiment may include:
  • the obtaining module 10 is configured to obtain a channel estimation result of the subframe
  • a determining module 20 configured to determine, according to the channel estimation result, a confidence level of data received in the subframe
  • the equalization module 30 is configured to perform equalization processing on the data received in the subframe to obtain corresponding equalized data.
  • the processing module 40 is configured to acquire intermediate data of the subframe, where the intermediate data refers to data obtained by multiplying the equalization data by the confidence;
  • the merging module 50 is configured to combine the intermediate data of all the subframes to obtain the merged data.
  • the obtaining module 10 is specifically configured to:
  • Channel estimation is performed on all pilot signals in the subframe to obtain channel response power of all pilot signals.
  • the obtaining module 10 is specifically configured to:
  • the obtaining module 10 is specifically configured to:
  • the channel response of the subframe is calculated according to the pilot signal sent by the transmitting end, the pilot signal received by the receiving end, and the noise superimposed on the channel.
  • the determining module 20 is specifically configured to:
  • the associated value of the combined power value is used as a confidence level of the received data in the subframe, wherein the associated value of the combined power value includes: a square of the combined power value, a cube of the combined power value.
  • the determining module 20 is specifically configured to:
  • the determining module 20 is specifically configured to:
  • the confidence of the data received in the subframe is set according to the size of the channel response of the subframe, and the greater the channel response, the greater the corresponding confidence.
  • the data merging device in this embodiment can perform the method shown in FIG. 2 .
  • the data merging device in this embodiment can perform the method shown in FIG. 2 .
  • the specific implementation process and technical principles refer to the related description in the method shown in FIG. 2 , and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a data merging device according to Embodiment 3 of the present invention. As shown in FIG. 5, the data merging device 60 in this embodiment includes:
  • the memory 62 is configured to store executable instructions, which may also be flash (flash memory).
  • the processor 61 is configured to execute executable instructions stored in the memory to implement various steps in the method involved in the foregoing embodiments. For details, refer to the related description in the foregoing method embodiments.
  • the memory 62 can be either stand-alone or integrated with the processor 61.
  • the data merging device 60 may further include:
  • a bus 63 is provided for connecting the memory 62 and the processor 61.
  • the embodiment of the present application further provides a computer readable storage medium, where computer execution instructions are stored, when the at least one processor of the user equipment executes the computer to execute an instruction, the user equipment performs the foregoing various possibilities.
  • the computer readable medium comprises a computer storage medium and a communication medium, wherein the communication medium comprises any medium that facilitates transfer of the computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in an application specific integrated circuit (ASIC). Additionally, the application specific integrated circuit can be located in the user equipment.
  • ASIC application specific integrated circuit
  • the processor and the storage medium may also reside as discrete components in the communication device.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据合并方法、装置及设备。该方法,包括:获取子帧的信道估计结果;根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;将所有子帧的中间数据进行合并处理,得到合并数据。从而实现对NB-IoT场景中合并数据的优化,提高低信噪比数据的解调性能。

Description

数据合并方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种基于蜂窝的窄带物联网NB-IoT的数据合并方法、装置及设备。
背景技术
随着通信技术的发展,万物互联已成为了必然的趋势,然而当前的4G网络还远远不能满足物与物之间的连接需求。无线通信协议标准组织(3rd Generation Partnership Project,3GPP)在2016年正式确定基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)标准来提高网络的覆盖性能。
目前,由于NB-IoT技术需要对大量的子帧进行数据合并,时间跨度大,因此信道衰落对合并的影响也较大,而信道的深度衰落会严重限制信道估计的准确度和均衡性能。针对这一问题,现有技术中采用了置信度优化信道估计算法的方式来提升信道估计的准确度。
但是,低信噪比下波谷处的信道估计值往往不准确,因此会造成均衡后数据的严重失真,从而影响低信噪比的衰落信道的解调性能。
发明内容
本发明提供一种数据合并方法、装置及设备,以实现对NB-IoT场景中合并数据的优化,提高低信噪比数据的解调性能。
第一方面,本发明提供一种数据合并方法,包括:
获取子帧的信道估计结果;
根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;
对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;
获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;
将所有子帧的中间数据进行合并处理,得到合并数据。
可选地,所述获取子帧的信道估计结果,包括:
接收所述子帧内的所有导频信号;
对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率;
根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
对所述子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
可选地,所述获取子帧的信道估计结果,包括:
获取所述子帧内子载波的信道响应功率;
根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率的平方、信道响应功率的立方。
可选地,所述获取子帧的信道估计结果,包括:
获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应;
根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置信度。
第二方面,本发明提供一种数据合并装置,包括:
获取模块,用于获取子帧的信道估计结果;
确定模块,用于根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;
均衡模块,用于对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;
处理模块,用于获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;
合并模块,用于将所有子帧的中间数据进行合并处理,得到合并数据。
可选地,所述获取模块,具体用于:
接收所述子帧内的所有导频信号;
对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率;
所述确定模块,具体用于:
对所述子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
可选地,所述获取模块,具体用于:
获取所述子帧内子载波的信道响应功率;
所述确定模块,具体用于:
将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率的平方、信道响应功率的立方。
可选地,所述获取模块,具体用于:
获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应;
所述确定模块,具体用于:
根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置 信度。
第三方面,本发明提供一种数据合并设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行第一方面中任一所述的方法。
第四方面,本发明提供一种计算机可读存储介质,包括:指令,当其在计算机上运行时,使得计算机执行第一方面中任一所述的方法。
本发明提供的数据合并方法、装置及设备,通过获取子帧的信道估计结果;根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;将所有子帧的中间数据进行合并处理,得到合并数据。从而实现对NB-IoT场景中合并数据的优化,提高低信噪比数据的解调性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图进行简单的介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为扩展步行者信道模型EPA5的信道衰落示意图;
图2为本发明实施例一提供的数据合并方法的方法流程图;
图3为采用置信度方法和直接合并方法对扩展步行者信道模型EPA1的NPBCH信道进行数据合并时的误块率(Block Error Rate,BLER)性能对比结果示意图;
图4为本发明实施例二提供的数据合并装置的结构示意图;
图5为本发明实施例三提供的数据合并设备的结构示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开提到的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例,能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)长期演进技术(Long Term Evolution,LTE),是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)组织制定的UMTS(Universal Mobile Telecommunications System,通用移动通信系统)技术标准的长期演进。LTE系统引入了OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)和MIMO(Multi-Input&Multi-Output,多输入多输出)等关键传输技术,显著增加了频谱效率和数据传输速率,并支持多种带宽分配:1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz等,且支持全球主流2G/3G频段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。
2)基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT),构建于蜂窝网络,只消耗大约180KHz的带宽,可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。NB-IoT是IoT 领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWA)。NB-IoT支持待机时间长、对网络连接要求较高的设备的高效连接。
3)最小二乘法(Least Square,LS),是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配;利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
4)迫零算法(Zero Forced,ZF),是一种线性均衡算法。
5)窄带物理广播信道(NB-IoT Physical Broadcast Channel,NPBCH),用于承载NB-IoT网络的最基础最重要的小区信息。
6)有差错的块与数字电路接收的总块数之比(Block Error Rate,BLER),是在信道解交错和解码后,通过检测各传输块上的循环冗余判断接收到的正确数据块的比率,确定系统的解调性能。
7)扩展步行者信道模型(Extended Pedestrian A model 5Hz,EPA5),多普勒频移为5Hz,NB-IoT最常见的信道之一。
8)加性高斯白噪声(Additive White Gaussian Noise,AWGN),幅度服从均值为0的正态分布,功率谱密度服从均匀分布的噪声信号。
本发明提供的基于NB-IoT的数据合并方法,可以应用在基于蜂窝的窄带物联网NB-IoT中,NB-IoT标准作为LTE的演进物联网协议分支,接收机算法和LTE非常类似。但是如果NB-IoT完全套用LTE算法处理流程会使信道估计结果很差,只能满足协议最低要求,其中一个原因是NB-IoT的导频信号数量相比LTE少很多,因此往往需要大量的子帧进行数据合并,时间跨度大,受衰落影响远远大于LTE。衰落信道的深度衰落会导致信道估计和均衡性能受限,严重的情况下甚至造成干扰,从而大大增加了重复合并的次数,造成数据传输效率低,功耗大,对NB-IoT终端造成不良影响。图1为扩展步行者信道模型EPA5的信道衰落示意图,如图1所示,信号经过EPA5信道的功率曲线的波峰和波谷相差了9dB以上。在高信噪比下,按照传统方式直接将波谷和波峰合并,可以有效降低噪声影响。但是在较低信噪比下,波谷处信道估计值将不再准确,均衡后的数据会出现严重失真,从而影响解调数据的质量。
本发明提供的数据合并方法,旨在解决现有技术中存在的问题。
下面以具体的实施例对本发明的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
图2为本发明实施例一提供的数据合并方法的方法流程图,如图2所示,本实施例中的方法可以包括:
S101、获取子帧的信道估计结果。
本实施例中,发送端发出的数据按照子帧进行分数据块传输,一个子帧中包括多个频点,参考图1,可以知道各个频点处的信道响应功率值,尤其在低信噪比区域,信道衰落明显。因此为了提升合并数据的质量,就需要降低波谷处信道估计值的影响度。本实施例中,对子帧的数据进行信道评估,并获得相应的信道估计结果。最常见的信道估计方式可以是最小二乘法;但是,需要说明的是,本实施例不限定信道估计的具体方式,所有现有的信道估计方法均可以应用在本实施例中。
可选地,可以接收所述子帧内的所有导频信号;
对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率。
本实施例中,可以选取子帧内的所有导频信号进行信道估计,并获得导频信道相应的信道响应功率。具体地,假设一个子帧包含8个导频信号,则可以分别获取这8个导频信号的信道响应功率。需要说明的是,本实施例不限定选取的导频信号的数量。
可选地,可以获取所述子帧内子载波的信道响应功率。
本实施例中,可以对子帧内的所有导频信号的信道估计结果进行插值,得到子帧内所有子载波的信道估计结果,得到子帧内子载波的信道响应功率,这里默认子载波的信道响应功率值是准确的,因此无需进行导频合并来减少噪声对估计结果的影响。
可选地,还可以获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应。
本实施例中,可以通过发送端发送的导频信号、接收端接收到的导频 信号,以及信道上叠加的噪音,计算出所述子帧的信道响应。以正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统模型为例,发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音、信道响应间存在如下的关系:
Y=XH+W
式中:H为信道响应,X为发送端发送的导频信号,Y为接收端接收到的导频信号,W为在导频子信道上叠加的AWGN矢量。结合图1,在波谷位置处信道响应较小,表明此处受噪声影响相对较大,因此得到的信道估计结果相对不可靠;而波峰位置处信道响应较大,表明此处受噪声影响相对较小,得到的信道估计结果相对可靠。
S102、根据所述信道估计结果,确定所述子帧内接收到的数据的置信度。
本实施例中,通过信道估计结果来设置子帧内接收到的数据的置信度,置信度也是子帧内接收到的数据的权重值,权重值越大,说明子帧内接收到的数据对总数据(合并数据)的影响越大,权重值越小,说明子帧内接收到的数据对总数据(合并数据)的影响越小。
与信道估计的方式相对应地,可以对子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
与信道估计的方式相对应地,将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率的平方、信道响应功率的立方。
与信道估计的方式相对应地,可以根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置信度,信道响应越大,则对应的置信度也越大。
S103、对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据。
本实施例中,可以采用迫零算法进行数据均衡处理,但是,需要说明的是,本实施例不限定数据均衡的具体方式,所有现有的数据均衡方法均 可以应用在本实施例中。
S104、获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据。
本实施例中,将子帧内接收到的数据进行均衡处理之后得到的均衡数据与所述置信度相乘,得到所述子帧的中间数据。
S105、将所有子帧的中间数据进行合并处理,得到合并数据。
本实施例中,将子帧的中间数据进行合并,可以是多个子帧的中间数据,也可以是一个子帧内的多个子载波的中间数据进行合并。具体地,当数据块是由多个子帧进行传输时,需要对多个子帧的数据进行合并,当数据块由一个子帧就可以传输时,则对子帧内的多个子载波的中间数据进行合并。
具体地,以8个待合并的中间数据为例,可以按照如下的计算公式进行:
Figure PCTCN2018084935-appb-000001
式中:y为合并数据,x(i)为第i个中间数据,w(i)为第i个中间数据对应的置信度。
本实施例,通过获取子帧的信道估计结果;根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;将所有子帧的中间数据进行合并处理,得到合并数据。从而实现对NB-IoT场景中合并数据的优化,提高低信噪比数据的解调性能。
图3为采用置信度方法和直接合并方法对扩展步行者信道模型EPA1的NPBCH信道进行数据合并时的误块率(Block Error Rate,BLER)性能对比结果示意图。如图3所示,采用置信度方法对EPA1的NPBCH信道进行数据合并相比于直接合并信道数据的方式,具备更佳的BLER性能;尤其是针对低信噪比的信道,BLER性能的改善尤其明显。以EPA1的衰落信道模型为例,99%NPBCH检测成功率性能相比直接合并提升达4db以上,可见发明实施例提供的方法可以有效减少重传次数和功耗,提升流量,并能够满足更高要求的深度覆盖。
图4为本发明实施例二提供的数据合并装置的结构示意图,如图3所示,本实施例中的装置可以包括:
获取模块10,用于获取子帧的信道估计结果;
确定模块20,用于根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;
均衡模块30,用于对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;
处理模块40,用于获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;
合并模块50,用于将所有子帧的中间数据进行合并处理,得到合并数据。
可选地,所述获取模块10,具体用于:
接收所述子帧内的所有导频信号;
对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率。
可选地,所述获取模块10,具体用于:
获取所述子帧内子载波的信道响应功率。
可选地,所述获取模块10,具体用于:
获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应。
可选地,所述确定模块20,具体用于:
对所述子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
可选地,所述确定模块20,具体用于:
将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率 的平方、信道响应功率的立方。
可选地,所述确定模块20,具体用于:
根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置信度,信道响应越大,则对应的置信度也越大。
本实施例中的数据合并装置可以执行图2所示的方法,其具体实现过程和技术原理参见图2所示方法中的相关描述,此处不再赘述。
图5为本发明实施例三提供的数据合并设备的结构示意图,如图5所示,本实施例中的数据合并设备60包括:
处理器61以及存储器62;其中:
存储器62,用于存储可执行指令,该存储器还可以是flash(闪存)。
处理器61,用于执行存储器存储的可执行指令,以实现上述实施例涉及的方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器62既可以是独立的,也可以跟处理器61集成在一起。
当所述存储器62是独立于处理器61之外的器件时,所述数据合并设备60还可以包括:
总线63,用于连接所述存储器62和处理器61。
此外,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当用户设备的至少一个处理器执行该计算机执行指令时,用户设备执行上述各种可能的方法。
其中,计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于应用专用集成电路(ASIC)中。另外,该应用专用集成电路可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于通信设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:只读存储器(ROM)、随机存取存储器(RAM)、磁 碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本发明旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求书指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求书来限制。

Claims (10)

  1. 一种数据合并方法,其特征在于,包括:
    获取子帧的信道估计结果;
    根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;
    对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;
    获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;
    将所有子帧的中间数据进行合并处理,得到合并数据。
  2. 根据权利要求1所述的方法,其特征在于,所述获取子帧的信道估计结果,包括:
    接收所述子帧内的所有导频信号;
    对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率;
    根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
    对所述子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
    将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
  3. 根据权利要求1所述的方法,其特征在于,所述获取子帧的信道估计结果,包括:
    获取所述子帧内子载波的信道响应功率;
    根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
    将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率的平方、信道响应功率的立方。
  4. 根据权利要求1所述的方法,其特征在于,所述获取子帧的信道估计结果,包括:
    获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
    根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应;
    根据所述信道估计结果,确定所述子帧内接收到的数据的置信度,包括:
    根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置信度。
  5. 一种数据合并装置,其特征在于,包括:
    获取模块,用于获取子帧的信道估计结果;
    确定模块,用于根据所述信道估计结果,确定所述子帧内接收到的数据的置信度;
    均衡模块,用于对所述子帧内接收到的数据进行均衡处理,得到对应的均衡数据;
    处理模块,用于获取所述子帧的中间数据,其中,所述中间数据是指所述均衡数据与所述置信度相乘后的数据;
    合并模块,用于将所有子帧的中间数据进行合并处理,得到合并数据。
  6. 根据权利要求5所述的装置,其特征在于,所述获取模块,具体用于:
    接收所述子帧内的所有导频信号;
    对所述子帧内的所有导频信号进行信道估计,得到所有导频信号的信道响应功率;
    所述确定模块,具体用于:
    对所述子帧内的所有导频信号的信道响应功率进行求和,得到所有导频信号的信道响应功率的合并功率值;
    将所述合并功率值的关联值作为所述子帧内接收到的数据的置信度,其中,所述合并功率值的关联值包括:合并功率值的平方、合并功率值的立方。
  7. 根据权利要求5所述的装置,其特征在于,所述获取模块,具体用于:
    获取所述子帧内子载波的信道响应功率;
    所述确定模块,具体用于:
    将所述子帧的子载波的信道响应功率的关联值作为所述子帧内接收到的数据的置信度,其中,所述信道响应功率的关联值包括:信道响应功率的平方、信道响应功率的立方。
  8. 根据权利要求5所述的装置,其特征在于,所述获取模块,具体用于:
    获取发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音;
    根据发送端发送的导频信号、接收端接收到的导频信号,以及信道上叠加的噪音,计算出所述子帧的信道响应;
    所述确定模块,具体用于:
    根据所述子帧的信道响应的大小来设置所述子帧内接收到的数据的置信度。
  9. 一种数据合并设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1-4中任一所述的方法。
  10. 本发明提供一种计算机可读存储介质,其特征在于,包括:指令,当其在计算机上运行时,使得计算机执行如权利要求1-4中任一所述的方法。
PCT/CN2018/084935 2018-04-27 2018-04-27 数据合并方法、装置及设备 WO2019205111A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000707.9A CN110651453B (zh) 2018-04-27 2018-04-27 数据合并方法、装置及设备
PCT/CN2018/084935 WO2019205111A1 (zh) 2018-04-27 2018-04-27 数据合并方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084935 WO2019205111A1 (zh) 2018-04-27 2018-04-27 数据合并方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2019205111A1 true WO2019205111A1 (zh) 2019-10-31

Family

ID=68294348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084935 WO2019205111A1 (zh) 2018-04-27 2018-04-27 数据合并方法、装置及设备

Country Status (2)

Country Link
CN (1) CN110651453B (zh)
WO (1) WO2019205111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900256A (zh) * 2022-05-20 2022-08-12 中国电信股份有限公司 通信场景识别方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388540A (zh) * 2009-04-11 2012-03-21 高通股份有限公司 用于仅前向链路系统中的交错的设备及方法
CN104718781A (zh) * 2012-08-17 2015-06-17 瑞典爱立信有限公司 用于获得无线网络中的系统信息的方法、系统和装置
CN105024950A (zh) * 2014-04-16 2015-11-04 普天信息技术有限公司 一种数据检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189151A1 (en) * 2006-02-10 2007-08-16 Interdigital Technology Corporation Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
CN105356924B (zh) * 2014-08-21 2019-05-10 中兴通讯股份有限公司 双极化天线系统doa-bf权值估计方法和装置
CN106603137B (zh) * 2015-10-19 2021-06-15 中兴通讯股份有限公司 天线合并的方法及装置
CN106972915B (zh) * 2017-03-30 2020-03-06 深圳市励科机电科技工程有限公司 一种信号传输方法和窄带无线终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388540A (zh) * 2009-04-11 2012-03-21 高通股份有限公司 用于仅前向链路系统中的交错的设备及方法
CN104718781A (zh) * 2012-08-17 2015-06-17 瑞典爱立信有限公司 用于获得无线网络中的系统信息的方法、系统和装置
CN105024950A (zh) * 2014-04-16 2015-11-04 普天信息技术有限公司 一种数据检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900256A (zh) * 2022-05-20 2022-08-12 中国电信股份有限公司 通信场景识别方法和装置
CN114900256B (zh) * 2022-05-20 2024-03-01 中国电信股份有限公司 通信场景识别方法和装置

Also Published As

Publication number Publication date
CN110651453A (zh) 2020-01-03
CN110651453B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
CN103701478B (zh) 干扰消除装置和接收机
CN106972915A (zh) 一种信号传输方法和窄带无线终端
US9210004B2 (en) Radio channel estimation
US9986521B1 (en) Systems and methods for detecting a primary synchronization signal in a wireless communication system
WO2020134611A1 (zh) 多普勒频移的确定方法及装置
WO2021113883A2 (en) Apparatus and method of flexible cell selection
CN113746770A (zh) 线性调频通信系统及其信道估计方法、装置、介质和芯片
WO2020220959A1 (zh) 信息传输的方法、装置、节点和服务器
CN103167549A (zh) 一种测量参考信号处理方法和装置
WO2023140852A1 (en) Apparatus and method implementing frequency offset estimation
CN113037590B (zh) 一种用于通信系统中的时延估计方法和装置
US8594238B2 (en) Apparatus and method for estimating channel in channel domain
WO2019205111A1 (zh) 数据合并方法、装置及设备
US8094760B2 (en) Channel estimation
CN104052706A (zh) 噪声加干扰空间协方差矩阵确定装置、干扰抑制合并装置
US8559398B2 (en) Channel estimation using precoded reference symbols
CN110011744B (zh) 端口检测方法、系统和终端
CN109150783A (zh) 一种信道估计方法及装置
CN108430071A (zh) 一种数据干扰的检测方法及装置
CN103444105A (zh) 接收装置及接收方法、以及计算机程序
CN116055260A (zh) 信道估计方法及装置、存储介质、终端设备、网络设备
US9787508B2 (en) Computing system with communication link mechanism and method of operation thereof
KR101329335B1 (ko) 주파수 영역의 채널 추정 장치 및 방법
US8270548B2 (en) Method for determining system information, and decoder, terminal, and computer program
KR20170024317A (ko) 무선 통신 시스템에서 주파수 오프셋 추정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916106

Country of ref document: EP

Kind code of ref document: A1