WO2020220959A1 - 信息传输的方法、装置、节点和服务器 - Google Patents

信息传输的方法、装置、节点和服务器 Download PDF

Info

Publication number
WO2020220959A1
WO2020220959A1 PCT/CN2020/083861 CN2020083861W WO2020220959A1 WO 2020220959 A1 WO2020220959 A1 WO 2020220959A1 CN 2020083861 W CN2020083861 W CN 2020083861W WO 2020220959 A1 WO2020220959 A1 WO 2020220959A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning
prs
configuration information
supplementary
Prior art date
Application number
PCT/CN2020/083861
Other languages
English (en)
French (fr)
Inventor
毕程
陈诗军
蒋创新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/605,292 priority Critical patent/US11988761B2/en
Priority to EP20799248.8A priority patent/EP3944684A4/en
Priority to CA3138224A priority patent/CA3138224A1/en
Publication of WO2020220959A1 publication Critical patent/WO2020220959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • G01S5/0063Transmission from base station to mobile station of measured values, i.e. measurement on base station and position calculation on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This article relates to (but not limited to) a method, device, node, server and computer-readable storage medium for information transmission.
  • Satellite-based positioning can provide a certain accuracy of positioning results in open outdoor scenes, but the positioning needs in scenes with obstructions and indoors cannot be solved by satellite positioning.
  • LTE Long Term Evolution
  • LTE supports Cell Reference Signal (CRS), Multicast Broadcast Single Frequency Network (MBSFN) reference Signal, demodulation reference signal (Demodulation Reference Signal, DMRS), channel state information reference signal (Channel State Information-Reference Signal,) CSI-RS and positioning reference signal (Positioning Reference Signal, PRS), PRS is used for downlink positioning.
  • CRS Cell Reference Signal
  • MRSFN Multicast Broadcast Single Frequency Network
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • PRS Positioning Reference Signal
  • the embodiments of the present disclosure provide a method, device, node, server, and computer-readable storage medium for information transmission, so as to reasonably use reference signals for positioning.
  • the embodiment of the present disclosure provides a method for information transmission, including: a transmitting node determines a reference signal used for positioning, and sends configuration information of the reference signal used for positioning to a positioning server, where the used for positioning
  • the reference signal includes at least a positioning reference signal PRS; and the transmitting node transmits the reference signal according to the configuration information.
  • the embodiment of the present disclosure also provides a method for information transmission, including: a positioning server receives configuration information of a reference signal for positioning sent by a transmitting node; and the positioning server sends the configuration information to a receiving node so that all The receiving node receives a reference signal used for positioning according to the configuration information, where the reference signal used for positioning includes at least a positioning reference signal PRS.
  • the embodiment of the present disclosure also provides a method for information transmission, including: a receiving node receives configuration information of a reference signal used for positioning sent by a positioning server; and the receiving node receives the information used for positioning transmitted by the transmitting node according to the configuration information. Reference signal; and the receiving node performs positioning measurement according to the reference signal, wherein the reference signal used for positioning includes at least a positioning reference signal PRS.
  • the embodiment of the present disclosure further provides an information transmission device, including: a first sending module, configured to determine a reference signal used for positioning, and send configuration information of the reference signal used for positioning to a positioning server, wherein: The reference signal used for positioning includes at least a positioning reference signal PRS; and a second sending module configured to transmit the reference signal according to the configuration information.
  • a first sending module configured to determine a reference signal used for positioning, and send configuration information of the reference signal used for positioning to a positioning server, wherein: The reference signal used for positioning includes at least a positioning reference signal PRS; and a second sending module configured to transmit the reference signal according to the configuration information.
  • An embodiment of the present disclosure also provides an information transmission device, including: a first receiving module, configured to receive configuration information of a reference signal for positioning sent by a transmitting node; and a third sending module, configured to transmit the configuration information Sent to the receiving node, so that the receiving node receives a reference signal for positioning according to the configuration information, where the reference signal for positioning at least includes a positioning reference signal PRS.
  • the embodiment of the present disclosure further provides an information transmission device, including: a second receiving module, configured to receive configuration information of a reference signal used for positioning sent by a positioning server; and a third receiving module, configured to receive according to the configuration information A reference signal used for positioning transmitted by a transmitting node; and a positioning module, configured to perform positioning measurement according to the reference signal, wherein the reference signal used for positioning includes at least a positioning reference signal PRS.
  • the embodiment of the present disclosure also provides a transmitting node, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the method for implementing the information transmission when the processor executes the program.
  • the embodiment of the present disclosure also provides a positioning server, including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • a positioning server including: a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor executes the program, the information transmission according to the present disclosure is realized. method.
  • the embodiment of the present disclosure further provides a receiving node, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a receiving node including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, the information transmission according to the present disclosure is realized. method.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions.
  • the processor executes the information transmission method according to the present disclosure.
  • Fig. 1 is a flowchart of an information transmission method according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of PRS mute according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an information transmission method applied to a transmitting node according to an embodiment of the present disclosure
  • Fig. 4 is a flowchart of an information transmission method applied to a positioning server according to an embodiment of the present disclosure
  • Fig. 5 is a flowchart of an information transmission method applied to a receiving node according to an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of a PRS resource selection sequence according to an application example of the present disclosure
  • Fig. 7 is a schematic diagram of a signal with supplementary resources according to an application example of the present disclosure.
  • Fig. 8 is a transmission flowchart of supplementary reference signal resource configuration information according to an application example of the present disclosure
  • Fig. 9 is a schematic diagram of supplementary reference signal resources according to an application example of the present disclosure.
  • FIG. 10 is a schematic diagram of a PRS resource set and a supplementary reference signal set according to an application example of the present disclosure
  • Fig. 11 is a transmission flowchart of supplementary reference signal resource set configuration information according to an application example of the present disclosure
  • Fig. 12 is a schematic diagram of a non-periodical supplementary resource set according to an application example of the present disclosure
  • Fig. 13 is a schematic diagram of an information transmission device applied to a transmitting node according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of an information transmission device applied to a positioning server according to an embodiment of the present disclosure
  • 15 is a schematic diagram of an information transmission device applied to a receiving node according to an embodiment of the present disclosure
  • Figure 16 is a schematic diagram of a transmitting node according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a positioning server according to an embodiment of the present disclosure.
  • Fig. 18 is a schematic diagram of a receiving node according to an embodiment of the present disclosure.
  • muting is a mechanism of PRS to reduce the interference between cells, which will inevitably affect the positioning performance and time delay of some positioning nodes, and use other existing reference signals to compensate for this. An impact will be a reasonable solution.
  • the information transmission method of the embodiment of the present disclosure includes the following steps 101 to 106.
  • step 101 the transmitting node determines a reference signal used for positioning, and sends configuration information of the reference signal used for positioning to the positioning server.
  • the transmitting node may be a base station.
  • the reference signal used for positioning includes at least PRS.
  • the configuration information of the reference signal used for positioning includes the configuration information of the PRS.
  • the configuration information of the PRS may include a PRS resource selection sequence and a PRS resource set mute sequence.
  • the bit sequence used to indicate the actual transmission of PRS resources in a resource set can be called a PRS resource selection sequence.
  • the PRS resource selection sequence is used to indicate whether the resource blocks in the resource set are used to send PRS.
  • 0 and “1” can be used to indicate whether the PRS resource corresponding to this bit is sent. For example, “0” means sending, and “1" means not sending.
  • the transmitting node does not send any other signals.
  • the PRS resource set mute sequence is used to indicate whether the PRS is sent in the corresponding PRS period.
  • "0" and “1” can be used to indicate whether the PRS resource set corresponding to this bit is muted. For example, “0” means mute, and "1" means unmuted.
  • the “mute” means that the transmitting node transmits PRS with 0 power.
  • the transmitting node does not send any other signals.
  • the configuration information of the PRS may further include at least one of the following information: the sequence generation ID of the PRS resource, the time domain start point, the frequency domain density, and the mute configuration information of the PRS resource set.
  • the initialization pseudo-random sequence of the PRS is generated by the following formula:
  • n ID is a scrambling code identifier
  • the existing reference signal can be used to supplement the positioning reference signal in two ways, and this reference signal is called a supplementary reference signal.
  • the supplementary reference signal may include CSI-RS.
  • the transmitting node may use the reference signals that meet the positioning requirements in the PRS resource set interval other than the PRS as the supplementary reference signal, determine the supplementary reference signal resource occupied by the supplementary reference signal, and supplement the reference signal resource configuration information Sent to the positioning server, wherein the configuration information includes supplementary reference signal resource configuration information.
  • the transmitting node determines that there are other reference signals that can be used for downlink positioning measurement, the reference signal resource is used as a supplementary reference signal resource, and the configuration information of the reference signal is sent Give the location server.
  • the supplementary reference signal resource periodically exists in the mute configuration period and exists in each PRS resource period.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal resource configuration information includes the quasi co-location relationship.
  • the supplementary reference signal resource configuration information includes the following parameters of the supplementary reference signal: bandwidth, frequency domain density, time domain start point, time domain density, period, resource identification (ID).
  • the supplementary reference signal resource configuration information may further include a scrambling code ID.
  • the transmitting node may consider the reference signal set that meets the positioning requirements and the time difference between the PRS period to be muted and is less than the preset threshold as the supplementary reference signal resource set, and the value of the supplementary reference signal resource set
  • the configuration information is sent to the positioning server, where the configuration information includes configuration information of a supplementary reference signal resource set.
  • the transmitting node configures other reference signal sets that may meet the positioning requirements near the muted PRS period, the other reference signal set information is used as the supplementary reference signal resource set Send to the positioning server.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal is a periodic signal set, and the period of the supplementary reference signal has an integer multiple relationship with the PRS.
  • the configuration information of the supplementary reference signal resource set includes a supplementary resource indicator sequence and a time offset from the PRS resource set, and the supplementary resource indicator sequence is used to indicate whether to send the supplementary reference signal in a corresponding time period.
  • the combination of the supplementary resource indication sequence and the time offset from the PRS resource set is used to indicate the position of the supplementary reference signal in a mute configuration period.
  • the supplementary reference signal resource set configuration information includes the following parameters of the supplementary reference signal: bandwidth, period, frequency domain density, time domain start point, resource set ID, and supplementary reference signal mute sequence.
  • the supplementary reference signal resource set configuration information may further include a scrambling code ID.
  • n ID is a scrambling code identifier
  • step 102 the positioning server receives the configuration information and sends the configuration information to the receiving node.
  • the receiving node may be User Equipment (UE).
  • UE User Equipment
  • the positioning server may send the PRS resource selection sequence and the PRS resource set mute sequence, and the configuration information of the supplementary reference signal as auxiliary information to the receiving node at the initial stage of the positioning process.
  • the positioning server may determine the reference cell and the neighboring cell of the receiving node, and send configuration information of the reference signal for positioning of the reference cell and the neighboring cell to the receiving node.
  • step 103 the receiving node receives the configuration information.
  • the receiving node may determine the position of the reference signal used for positioning in the time domain and the frequency domain according to the configuration information, so as to receive the corresponding reference signal.
  • step 104 the transmitting node transmits the reference signal according to the configuration information.
  • the transmitting node transmits the reference signal in the corresponding time domain and frequency domain according to the configuration information of the reference signal.
  • step 105 the receiving node receives the reference signal transmitted by the transmitting node according to the configuration information.
  • the receiving node sets a corresponding detection time window and detection period detection reference signal according to the configuration information.
  • the receiving node determines the position of the PRS resource according to the PRS resource selection sequence, determines the position of the muted time-frequency resource according to the PRS resource set mute sequence, and detects and receives the PRS at the position of the non-muted PRS resource.
  • the receiving node determines the position of the supplementary reference signal according to the supplementary reference signal resource configuration information, so as to perform detection and obtain the supplementary reference signal.
  • step 106 the receiving node performs positioning measurement according to the reference signal.
  • the receiving node may perform positioning measurement according to the received PRS, or according to the received PRS and supplementary reference signals.
  • the positioning measurement may adopt a time difference of arrival positioning method (Observed Time Difference of Arrival, OTDOA) for positioning.
  • OTDOA Observed Time Difference of Arrival
  • the embodiments of the present disclosure make reasonable use of existing reference signals, realize the balance of resource overhead and positioning effect, and enhance the positioning effect.
  • the information transmission method applied to the transmitting node according to the embodiment of the present disclosure includes steps 201 to 202.
  • the transmitting node determines a reference signal used for positioning, and sends configuration information of the reference signal used for positioning to the positioning server, where the reference signal used for positioning includes at least a PRS.
  • the transmitting node may be a base station.
  • the configuration information of the reference signal used for positioning includes the configuration information of the PRS.
  • the configuration information of the PRS may include a PRS resource selection sequence and a PRS resource set mute sequence.
  • the bit sequence used to indicate the actual transmission of PRS resources in a resource set can be called a PRS resource selection sequence.
  • the PRS resource selection sequence is used to indicate whether the resource blocks in the resource set are used to send PRS.
  • 0 and “1” can be used to indicate whether the PRS resource corresponding to this bit is sent. For example, “0” means sending, and “1" means not sending.
  • the transmitting node does not send any other signals.
  • the PRS resource set mute sequence is used to indicate whether the PRS is sent in the corresponding PRS period.
  • "0" and “1” can be used to indicate whether the PRS resource set corresponding to this bit is muted. For example, “0” means mute, and "1" means unmuted.
  • the “mute” means that the transmitting node transmits PRS with 0 power.
  • the transmitting node does not send any other signals.
  • the configuration information of the PRS may further include at least one of the following information: the sequence generation ID of the PRS resource, the time domain start point, the frequency domain density, and the mute configuration information of the PRS resource set.
  • the initialization pseudo-random sequence of the PRS is generated by the following formula:
  • n ID is a scrambling code identifier
  • the existing reference signal can be used to supplement the positioning reference signal in two ways, and this reference signal is called a supplementary reference signal.
  • the supplementary reference signal may include CSI-RS.
  • the transmitting node may use the reference signals that meet the positioning requirements in the PRS resource set interval other than the PRS as the supplementary reference signal, determine the supplementary reference signal resource occupied by the supplementary reference signal, and supplement the reference signal resource configuration information Sent to the positioning server, wherein the configuration information includes supplementary reference signal resource configuration information.
  • the transmitting node determines that there are other reference signals that can be used for downlink positioning measurement, the reference signal resource is used as a supplementary reference signal resource, and the configuration information of the reference signal is sent Give the location server.
  • the supplementary reference signal resource periodically exists in the mute configuration period and exists in each PRS resource period.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal resource configuration information includes the quasi co-location relationship.
  • the supplementary reference signal resource configuration information includes the following parameters of the supplementary reference signal: bandwidth, frequency domain density, time domain start point, time domain density, period, resource ID.
  • the supplementary reference signal resource configuration information may further include a scrambling code ID.
  • the transmitting node may consider the reference signal set that meets the positioning requirements and the time difference between the PRS period to be muted and is less than the preset threshold as the supplementary reference signal resource set, and the value of the supplementary reference signal resource set
  • the configuration information is sent to the positioning server, where the configuration information includes configuration information of a supplementary reference signal resource set.
  • the transmitting node configures other reference signal sets that may meet the positioning requirements near the muted PRS period, the other reference signal set information is used as the supplementary reference signal resource set Send to the positioning server.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal is a periodic signal set, and the period of the supplementary reference signal has an integer multiple relationship with the PRS.
  • the configuration information of the supplementary reference signal resource set includes a supplementary resource indicator sequence and a time offset from the PRS resource set, and the supplementary resource indicator sequence is used to indicate whether to send the supplementary reference signal in a corresponding time period.
  • the combination of the supplementary resource indication sequence and the time offset from the PRS resource set is used to indicate the position of the supplementary reference signal in a mute configuration period.
  • the supplementary reference signal resource set configuration information includes the following parameters of the supplementary reference signal: bandwidth, period, frequency domain density, time domain start point, resource set ID, and supplementary reference signal mute sequence.
  • the supplementary reference signal resource set configuration information may further include a scrambling code ID.
  • n ID is a scrambling code identifier
  • step 202 the transmitting node transmits the reference signal according to the configuration information.
  • the transmitting node transmits the reference signal in the corresponding time domain and frequency domain according to the configuration information of the reference signal.
  • the embodiments of the present disclosure make reasonable use of existing reference signals, realize the balance of resource overhead and positioning effect, and enhance the positioning effect.
  • the information transmission method applied to the positioning server in the embodiment of the present disclosure includes steps 301 to 302.
  • step 301 the positioning server receives the configuration information of the reference signal used for positioning sent by the transmitting node.
  • the reference signal used for positioning includes at least PRS.
  • the configuration information of the reference signal used for positioning includes the configuration information of the PRS.
  • the configuration information of the PRS includes a PRS resource selection sequence, and the PRS resource selection sequence is used to indicate whether a resource block in the resource set is used to send the PRS.
  • the PRS configuration information includes a PRS resource set mute sequence, and the PRS resource set mute sequence is used to indicate whether to send the PRS in the corresponding PRS period.
  • the initialization pseudo-random sequence of the PRS is generated by the following formula:
  • n ID is a scrambling code identifier
  • the reference signal used for positioning also includes a supplementary reference signal.
  • the supplementary reference signal includes a reference signal that meets a positioning requirement in a PRS resource set interval except for the PRS, and the configuration information includes supplementary reference signal resource configuration information.
  • the supplementary reference signal includes a reference signal set that meets positioning requirements within a mute configuration period, and has a time difference from the muted PRS period that is less than a preset threshold, and the configuration information includes a supplementary reference signal resource set configuration information.
  • step 302 the positioning server sends the configuration information to a receiving node, so that the receiving node receives a reference signal for positioning according to the configuration information.
  • the receiving node may be a UE.
  • the positioning server may send the PRS resource selection sequence and the PRS resource set mute sequence, and the configuration information of the supplementary reference signal as auxiliary information to the receiving node at the initial stage of the positioning process.
  • the positioning server may determine the reference cell and the neighboring cell of the receiving node, and send configuration information of the reference signal used for positioning of the reference cell and the neighboring cell to the receiving node.
  • the information transmission method applied to the receiving node in the embodiment of the present disclosure includes steps 401 to 403.
  • step 401 the receiving node receives configuration information of a reference signal for positioning sent by a positioning server.
  • the receiving node may be a UE.
  • the reference signal used for positioning includes at least a positioning reference signal PRS.
  • the configuration information of the reference signal used for positioning includes the configuration information of the PRS.
  • the configuration information of the PRS includes a PRS resource selection sequence, and the PRS resource selection sequence is used to indicate whether a resource block in the resource set is used to send the PRS.
  • the PRS configuration information includes a PRS resource set mute sequence, and the PRS resource set mute sequence is used to indicate whether to send the PRS in the corresponding PRS period.
  • the initialization pseudo-random sequence of the PRS is generated by the following formula:
  • n ID is a scrambling code identifier
  • the reference signal used for positioning also includes a supplementary reference signal.
  • the supplementary reference signal includes a reference signal that meets a positioning requirement in a PRS resource set interval except for the PRS, and the configuration information includes supplementary reference signal resource configuration information.
  • the supplementary reference signal includes a reference signal set that meets positioning requirements within a mute configuration period, and has a time difference from the muted PRS period that is less than a preset threshold, and the configuration information includes a supplementary reference signal resource set configuration information.
  • step 402 the receiving node receives, according to the configuration information, a reference signal for positioning transmitted by the transmitting node.
  • the receiving node sets a corresponding detection time window and detection period detection reference signal according to the configuration information.
  • the receiving node determines the position of the PRS resource according to the PRS resource selection sequence, determines the position of the muted time-frequency resource according to the PRS resource set mute sequence, and receives the PRS at the position of the non-muted PRS resource.
  • the receiving node determines the position of the supplementary reference signal according to the supplementary reference signal resource configuration information, so as to perform detection and obtain the supplementary reference signal.
  • the quasi-co-location relationship of the PRS is determined according to the supplementary reference signal resource configuration information, and the position of the supplementary reference signal is determined according to the quasi-co-location relationship and the location of the PRS resource, so as to perform detection and obtain the supplementary reference signal.
  • detection is performed at the closest position of the PRS silent period (that is, the position where the time difference is less than the preset threshold) to obtain the supplementary reference signal.
  • step 403 the receiving node performs positioning measurement according to the reference signal.
  • the receiving node may perform positioning measurement according to the received PRS, or according to the received PRS and supplementary reference signals.
  • the positioning measurement can be performed in an OTDOA manner.
  • the index numbers of the 8 PRS resources are 0 to 7.
  • the transmitting node chooses to send only the 0th, 2, 4, and 6th PRS resources, and the PRS resource selection sequence is 10101010.
  • the transmitting node reports the PRS resource selection sequence as PRS configuration information to the positioning server.
  • the PRS configuration information also includes the sequence generation IDs of 4 PRS resources, the time domain start point, the frequency domain density, and the mute configuration of the PRS resource set.
  • the positioning server sends the PRS configuration information of the transmitting node that may be measured to the receiving node, and the receiving node configures the corresponding detection time window and detection period to detect the PRS of the reference cell and the neighboring cell.
  • the transmitting node sends other reference signals at the potential resource locations that have not selected to send PRS, and
  • the configuration can be used for positioning measurement, and the other reference signal is the supplementary reference signal, as shown in Figure 7.
  • the transmitting node reports the supplementary reference signal resource configuration information and the PRS configuration information to the positioning server together.
  • the positioning server sends the above configuration information to the receiving node, and the receiving node determines the detection time window according to the configuration information, the detection period, and the local sequence used for detection to detect the PRS and the supplementary reference signal for positioning. As shown in Figure 8, it is the transmission process of supplementary reference signal resource configuration information.
  • the transmission period of the PRS resource set is T prs
  • the PRS mute configuration period is six PRS transmission periods. Assuming that three PRS resource sets are muted, the PRS resource set mute configuration sequence of the transmitting node is 110010, and the PRS mute configuration sequence is 110010. Within a PRS transmission period, since the PRS transmission of the node is muted, the positioning of the signal in the corresponding period will be affected depending on the signal transmitted by the node. At the same time, the node has the configuration of other reference signal resource sets, which can meet the positioning requirements. It is the same as the period of the PRS resource set, with a difference of t offset in the time domain, and the indication sequence of the supplementary reference signal resource set is 111111, as shown in FIG. 10.
  • the transmitting node sends the supplementary reference signal resource set configuration information and PRS configuration information to the positioning server, and the positioning server sends the information to the receiving node.
  • the receiving node configures the detection time window and the detection period according to the information, and detects the supplementary reference signal during the period when the PRS signal is muted to complete positioning.
  • the receiving node configures the detection time window to cover the supplementary reference signal resource set and the PRS resource set, and locates based on the mutual arrival time difference between the supplementary reference signal and the PRS signal of each transmitting node. As shown in Figure 11, it is a transmission process of supplementary reference signal resource set configuration information.
  • the supplementary reference signal resource set is not periodic, and the supplementary reference signal resource set configuration information no longer includes the supplementary reference signal resource set indication sequence.
  • the transmitting node sends the supplementary reference signal resource set configuration information and PRS configuration information to the positioning server, and the positioning server sends the information to the receiving node.
  • the receiving node configures the detection time window and the detection period according to the information, and detects the supplementary reference signal during the period when the PRS signal is muted to complete positioning.
  • the receiving node configures the detection time window to cover the supplementary reference signal resource set and the PRS resource set, and locates based on the mutual arrival time difference between the supplementary reference signal and the PRS signal of each transmitting node.
  • an embodiment of the present disclosure also provides an information transmission device, which is applied to a transmitting node, and includes a first sending module 501 and a second sending module 502.
  • the first sending module 501 is configured to determine a reference signal used for positioning, and send configuration information of the reference signal used for positioning to a positioning server, where the reference signal used for positioning includes at least a positioning reference signal PRS.
  • the second sending module 502 is configured to transmit the reference signal according to the configuration information.
  • the configuration information of the PRS includes a PRS resource selection sequence, and the PRS resource selection sequence is used to indicate whether a resource block in the resource set is used to send the PRS.
  • the PRS configuration information includes a PRS resource set mute sequence, and the PRS resource set mute sequence is used to indicate whether to send the PRS in the corresponding PRS period.
  • the initialization pseudo-random sequence of the PRS is generated by the following formula:
  • n ID is a scrambling code identifier
  • the reference signal used for positioning further includes a supplementary reference signal.
  • the configuration information includes supplementary reference signal resource configuration information
  • the first sending module 501 is configured to: use reference signals that meet positioning requirements in the PRS resource set interval except for the PRS as supplementary reference signals , Determining the supplementary reference signal resource occupied by the supplementary reference signal, and sending the supplementary reference signal resource configuration information to the positioning server.
  • the supplementary reference signal resource periodically exists in the mute configuration period and exists in each PRS resource period.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal resource configuration information includes the quasi co-location relationship.
  • the supplementary reference signal resource configuration information includes the following parameters of the supplementary reference signal: bandwidth, frequency domain density, time domain start point, time domain density, period, resource identification ID.
  • the configuration information includes supplementary reference signal resource set configuration information
  • the first sending module 501 is configured to: in the mute configuration period, the transmitting node will meet the positioning requirements, and is related to the muted PRS period
  • the reference signal set whose time difference is less than the preset threshold is used as the supplementary reference signal, and the supplementary reference signal resource set configuration information is sent to the positioning server.
  • the supplementary reference signal includes a reference signal that has a quasi-co-location relationship with the PRS.
  • the supplementary reference signal is a periodic signal set, and the period of the supplementary reference signal has an integer multiple relationship with the PRS.
  • the configuration information of the supplementary reference signal resource set includes a supplementary resource indicator sequence and a time offset from the PRS resource set, and the supplementary resource indicator sequence is used to indicate whether to send the supplementary reference signal in a corresponding time period.
  • the supplementary reference signal resource set configuration information includes the following parameters of the supplementary reference signal: bandwidth, period, frequency domain density, time domain start point, resource set ID, and supplementary reference signal mute sequence.
  • an embodiment of the present disclosure also provides an information transmission device, which is applied to a positioning server, and includes a first receiving module 601 and a third sending module 602.
  • the first receiving module 601 is configured to receive configuration information of a reference signal used for positioning sent by a transmitting node.
  • the third sending module 602 is configured to send the configuration information to a receiving node, so that the receiving node receives a reference signal for positioning according to the configuration information.
  • the reference signal used for positioning includes at least PRS.
  • the reference signal used for positioning further includes a supplementary reference signal.
  • the supplementary reference signal includes a reference signal that meets a positioning requirement in a PRS resource set interval except for the PRS, and the configuration information includes supplementary reference signal resource configuration information.
  • the supplementary reference signal includes a reference signal set that meets positioning requirements within a mute configuration period, and has a time difference from the muted PRS period that is less than a preset threshold, and the configuration information includes a supplementary reference signal resource set configuration information.
  • an embodiment of the present disclosure also provides an information transmission device, which is applied to a receiving node, and includes a second receiving module 701, a third receiving module 702, and a positioning module 703.
  • the second receiving module 701 is configured to receive configuration information of a reference signal used for positioning sent by a positioning server.
  • the third receiving module 702 is configured to receive, according to the configuration information, the reference signal used for positioning transmitted by the transmitting node.
  • the positioning module 703 is configured to perform positioning measurement according to the reference signal.
  • the reference signal used for positioning includes at least a positioning reference signal PRS.
  • an embodiment of the present disclosure also provides a transmitting node, including: a memory 801, a processor 802, and a computer program 803 stored in the memory 801 and running on the processor 802, and the processor 802 executes The computer program 803 realizes the method of information transmission as shown in FIG. 3.
  • an embodiment of the present disclosure also provides a positioning server, including: a memory 901, a processor 902, and a computer program 903 stored on the memory 901 and running on the processor 902, and the processor 902 executes
  • the computer program 903 implements the information transmission method described in FIG. 4.
  • an embodiment of the present disclosure also provides a receiving node, including: a memory 1001, a processor 1002, and a computer program 1003 stored on the memory 1001 and running on the processor 1002, and the processor 1002 executes
  • the computer program 1003 implements the information transmission method as shown in FIG. 5.
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions.
  • the processor executes the information transmission method according to the embodiments of the present disclosure. .
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • U disk Read-Only Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • mobile hard disk magnetic disk or optical disk, etc.
  • Computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输的方法、装置、节点、服务器和计算机可读存储介质,所述方法包括:发射节点确定用于定位的参考信号,将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS;以及所述发射节点按照所述配置信息发射所述参考信号。

Description

信息传输的方法、装置、节点和服务器 技术领域
本文涉及(但不限于)一种信息传输的方法、装置、节点、服务器和计算机可读存储介质。
背景技术
定位一直是一种来自各行各业的重要需求,基于卫星的定位在室外开阔场景可以提供一定精度的定位结果,但是在有遮挡场景和室内的定位需求无法通过卫星定位解决。
参考信号在长期演进(Long Term Evolution,LTE)系统中有着重要的作用,LTE支持小区参考信号(Cell Reference Signal,CRS),多播/组播单频网络(Multicast Broadcast Single Frequency Network,MBSFN)参考信号,解调参考信号(Demodulation Reference Signal,DMRS),信道状态信息参考信号(Channel State Information-Reference Signal,)CSI-RS和定位参考信号(Positioning Reference Signal,PRS),PRS用于下行定位。
在5G研究阶段,采用什么参考信号进行定位,还没有相关标准。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种信息传输的方法、装置、节点、服务器和计算机可读存储介质,以合理利用参考信号进行定位。
本公开实施例提供了一种信息传输的方法,包括:发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS;以及所述发射节点按照所述配置信息发射所述参考信号。
本公开实施例还提供一种信息传输的方法,包括:定位服务器接收发射节点发送的用于定位的参考信号的配置信息;以及所述定位 服务器将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号,其中,所述用于定位的参考信号至少包括定位参考信号PRS。
本公开实施例还提供一种信息传输的方法,包括:接收节点接收定位服务器发送的用于定位的参考信号的配置信息;所述接收节点按照所述配置信息接收发射节点发射的用于定位的参考信号;以及所述接收节点根据所述参考信号进行定位测量,其中,所述用于定位的参考信号至少包括定位参考信号PRS。
本公开实施例还提供一种信息传输的装置,包括:第一发送模块,用于确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS;以及第二发送模块,用于按照所述配置信息发射所述参考信号。
本公开实施例还提供一种信息传输的装置,包括:第一接收模块,用于接收发射节点发送的用于定位的参考信号的配置信息;以及第三发送模块,用于将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号,其中,所述用于定位的参考信号至少包括定位参考信号PRS。
本公开实施例还提供一种信息传输的装置,包括:第二接收模块,用于接收定位服务器发送的用于定位的参考信号的配置信息;第三接收模块,用于按照所述配置信息接收发射节点发射的用于定位的参考信号;以及定位模块,用于根据所述参考信号进行定位测量,其中,所述用于定位的参考信号至少包括定位参考信号PRS。
本公开实施例还提供一种发射节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述信息传输的方法。
本公开实施例还提供一种定位服务器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现根据本公开的信息传输的方法。
本公开实施例还提供一种接收节点,包括:存储器、处理器及 存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现根据本公开的信息传输的方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理器执行根据本公开的信息传输的方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是根据本公开实施例的信息传输方法的流程图;
图2是根据本公开实施例的PRS静音示意图;
图3是根据本公开实施例的应用于发射节点的信息传输方法的流程图;
图4是根据本公开实施例的应用于定位服务器的信息传输方法的流程图;
图5是根据本公开实施例的应用于接收节点的信息传输方法的流程图;
图6是根据本公开应用实例的PRS资源选择序列的示意图;
图7是根据本公开应用实例的具有补充资源信号的示意图;
图8是根据本公开应用实例的补充参考信号资源配置信息的传输流程图;
图9是根据本公开应用实例的补充参考信号资源的示意图;
图10是根据本公开应用实例的PRS资源集合和补充参考信号集合的示意图;
图11是根据本公开应用实例的补充参考信号资源集合配置信息的传输流程图;
图12是根据本公开应用实例的非周期性补充资源集合的示意图;
图13是根据本公开实施例的应用于发射节点的信息传输装置的示意图;
图14是根据本公开实施例的应用于定位服务器的信息传输装置的示意图;
图15是根据本公开实施例的应用于接收节点的信息传输装置的示意图;
图16是根据本公开实施例的发射节点的示意图;
图17是根据本公开实施例的定位服务器的示意图;以及
图18是根据本公开实施例的接收节点的示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在5G Rel-15阶段,和以前相比增加了很多参考信号,有些和LTE中的定位参考信号有些相似性,但是还没有定义定位参考信号。目前的标准进度中,定义新无线(New Radio,NR)新的定位参考信号和复用一些其他的NR的参考信号两种方式各有利弊,如何保证定位效果,同时不造成不必要的资源开销,又不影响其他参考信号本来的功能是一个难题,急需一个合适的解决方法。
在LTE中,静音(muting)是PRS的一个机制,以减小各个小区间的干扰,不可避免地也会影响某些定位节点的定位性能和时延,利用已有的其他参考信号去弥补这一影响将会是合理的解决方法。
如图1所示,本公开实施例的信息传输的方法,包括如下步骤101至106。
在步骤101,发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器。
所述发射节点可以是基站。
所述用于定位的参考信号至少包括PRS。
所述用于定位的参考信号的配置信息包括PRS的配置信息。
所述PRS的配置信息可以包括PRS资源选择序列和PRS资源集合静音序列。
用于标明一个资源集合中实际发送PRS资源的比特序列,可以 称为PRS资源选择序列。所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
可以采用“0”和“1”表示该位对应的PRS资源是否发送。例如,“0”表示发送,“1”表示未发送。
在选择发送PRS资源的位置处,所述发射节点不发送其他任何信号。
如图2所示,所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。可以用“0”和“1”表示该位对应的PRS资源集合是否静音。例如,“0”表示静音,“1”表示未静音。
所述“静音”是指所述发射节点以0功率发射PRS。
在静音的时-频资源的位置处,所述发射节点不发送任何其他信号。
所述PRS的配置信息还可以包括如下信息中的至少之一:PRS资源的序列生成ID、时域起点、频域密度、以及PRS资源集合的静音配置信息。
在一实施例中,所述PRS的初始化伪随机序列由以下公式生成:
Figure PCTCN2020083861-appb-000001
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000002
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000003
是一个时隙内符号个数。
本公开实施例可以采用两种方式利用已有参考信号对定位参考信号进行补充,将这种参考信号称为补充参考信号。所述补充参考信号可以包括CSI-RS。
方式一
所述发射节点可以将PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号作为补充参考信号,确定所述补充参考信号占用的补充参考信号资源,并将补充参考信号资源配置信息发送至所述定位服务器,其中,所述配置信息包括补充参考信号资源配置信息。
也就是说,在一个PRS资源集合区间内,如果发射节点判断有其他参考信号可以用作下行定位测量,则将所述参考信号资源作为补充参考信号资源,并将所述参考信号的配置信息发送给定位服务器。
在实施例中,所述补充参考信号资源周期性地存在于静音配置周期内,且存在于每个PRS资源时段。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号资源配置信息包括所述准共位置关系。
在实施例中,所述补充参考信号资源配置信息包括所述补充参考信号以下参数:带宽、频域密度、时域起点、时域密度、周期、资源标识(ID)。
在实施例中,所述补充参考信号资源配置信息还可包括扰码ID。
方式二
在静音配置周期内,所述发射节点可以将满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合作为补充参考信号资源集合,并将所述补充参考信号资源集合的配置信息发送至所述定位服务器,其中,所述配置信息包括补充参考信号资源集合的配置信息。
也就是说,在一个静音配置周期内,如果所述发射节点在被静音的PRS时段附近配置有可能满足定位要求的其他参考信号集合,则将所述其他参考信号集合信息作为补充参考信号资源集合发送给定位服务器。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号为周期性的信号集合,所述补充参考信号的周期与所述PRS存在整数倍关系。
在实施例中,所述补充参考信号资源集合的配置信息包括补充资源指示序列和与PRS资源集合时间偏移,所述补充资源指示序列用于指示在对应时段是否发送所述补充参考信号。
补充资源指示序列和与PRS资源集合时间偏移的组合用于指示补充参考信号在一个静音配置周期的位置。
在实施例中,所述补充参考信号资源集合配置信息包括所述补 充参考信号以下参数:带宽、周期、频域密度、时域起点、资源集合ID、补充参考信号静音序列。
在实施例中,所述补充参考信号资源集合配置信息还可包括扰码ID。
需要说明的是,上述两种方式利用补充参考信号对PRS进行补充,所述PRS的初始化伪随机序列同样可由以下公式生成:
Figure PCTCN2020083861-appb-000004
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000005
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000006
是一个时隙内符号个数。
在步骤102,定位服务器接收所述配置信息,并将所述配置信息发送至接收节点。
所述接收节点可以是用户设备(User Equipment,UE)。
定位服务器在定位过程的起始阶段可以将PRS资源选择序列和PRS资源集合静音序列,以及补充参考信号的配置信息作为辅助信息发给接收节点。
在步骤102中,定位服务器可以确定接收节点的参考小区和相邻小区,并将参考小区和相邻小区的用于定位的参考信号的配置信息均发送给接收节点。
在步骤103,所述接收节点接收所述配置信息。
所述接收节点可以根据所述配置信息确定用于定位的参考信号的在时域和频域的位置,以便接收相应的参考信号。
在步骤104,所述发射节点按照所述配置信息发射所述参考信号。
所述发射节点根据参考信号的配置信息,在相应的时域和频域的位置发射所述参考信号。
在步骤105,所述接收节点按照所述配置信息接收发射节点发射的参考信号。
所述接收节点根据所述配置信息,设置相应的检测时间窗和检测周期检测参考信号。
所述接收节点根据PRS资源选择序列确定PRS资源的位置,根据PRS资源集合静音序列确定静音的时-频资源位置,在非静音的PRS 资源的位置检测接收PRS。
所述接收节点根据补充参考信号资源配置信息,确定补充参考信号的位置,从而进行检测,获取补充参考信号。
在步骤106,所述接收节点根据所述参考信号进行定位测量。
所述接收节点可以根据接收到的PRS,或者根据接收到的PRS和补充参考信号,进行定位测量。所述定位测量可以采用到达时间差定位法(Observed Time Difference of Arrival,OTDOA)的方式进行定位。
本公开实施例对已有的参考信号进行了合理的利用,实现了资源开销和定位效果的平衡,增强了定位效果。
下面对各节点进行分别阐述。
如图3所示,本公开实施例的应用于发射节点的信息传输方法包括步骤201至202。
在步骤201,发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括PRS。
所述发射节点可以是基站。
所述用于定位的参考信号的配置信息包括PRS的配置信息。
所述PRS的配置信息可以包括PRS资源选择序列和PRS资源集合静音序列。
用于标明一个资源集合中实际发送PRS资源的比特序列,可以称为PRS资源选择序列。所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
可以采用“0”和“1”表示该位对应的PRS资源是否发送。例如,“0”表示发送,“1”表示未发送。
在选择发送PRS资源的位置处,所述发射节点不发送其他任何信号。
所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。可以用“0”和“1”表示该位对应的PRS资源集合是否静音。例如,“0”表示静音,“1”表示未静音。
所述“静音”是指所述发射节点以0功率发射PRS。
在静音的时-频资源的位置处,所述发射节点不发送任何其他信号。
所述PRS的配置信息还可以包括如下信息中的至少之一:PRS资源的序列生成ID、时域起点、频域密度、以及PRS资源集合的静音配置信息。
在一实施例中,所述PRS的初始化伪随机序列由以下公式生成:
Figure PCTCN2020083861-appb-000007
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000008
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000009
是一个时隙内符号个数。
本公开实施例可以采用两种方式利用已有参考信号对定位参考信号进行补充,将这种参考信号称为补充参考信号。所述补充参考信号可以包括CSI-RS。
方式一
所述发射节点可以将PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号作为补充参考信号,确定所述补充参考信号占用的补充参考信号资源,并将补充参考信号资源配置信息发送至所述定位服务器,其中,所述配置信息包括补充参考信号资源配置信息。
也就是说,在一个PRS资源集合区间内,如果发射节点判断有其他参考信号可以用作下行定位测量,则将所述参考信号资源作为补充参考信号资源,并将所述参考信号的配置信息发送给定位服务器。
在实施例中,所述补充参考信号资源周期性地存在于静音配置周期内,且存在于每个PRS资源时段。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号资源配置信息包括所述准共位置关系。
在实施例中,所述补充参考信号资源配置信息包括所述补充参考信号以下参数:带宽、频域密度、时域起点、时域密度、周期、资源ID。
在实施例中,所述补充参考信号资源配置信息还可包括扰码ID。
方式二
在静音配置周期内,所述发射节点可以将满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合作为补充参考信号资源集合,并将所述补充参考信号资源集合的配置信息发送至所述定位服务器,其中,所述配置信息包括补充参考信号资源集合的配置信息。
也就是说,在一个静音配置周期内,如果所述发射节点在被静音的PRS时段附近配置有可能满足定位要求的其他参考信号集合,则将所述其他参考信号集合信息作为补充参考信号资源集合发送给定位服务器。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号为周期性的信号集合,所述补充参考信号的周期与所述PRS存在整数倍关系。
在实施例中,所述补充参考信号资源集合的配置信息包括补充资源指示序列和与PRS资源集合时间偏移,所述补充资源指示序列用于指示在对应时段是否发送所述补充参考信号。
补充资源指示序列和与PRS资源集合时间偏移的组合用于指示补充参考信号在一个静音配置周期的位置。
在实施例中,所述补充参考信号资源集合配置信息包括所述补充参考信号以下参数:带宽、周期、频域密度、时域起点、资源集合ID、补充参考信号静音序列。
在实施例中,所述补充参考信号资源集合配置信息还可包括扰码ID。
需要说明的是,上述两种方式利用补充参考信号对PRS进行补充,所述PRS的初始化伪随机序列同样可由以下公式生成:
Figure PCTCN2020083861-appb-000010
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000011
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000012
是一个时隙内符号个数。
在步骤202,所述发射节点按照所述配置信息发射所述参考信号。
所述发射节点根据参考信号的配置信息,在相应的时域和频域的位置发射所述参考信号。
本公开实施例对已有的参考信号进行了合理的利用,实现了资源开销和定位效果的平衡,增强了定位效果。
如图4所示,本公开实施例的应用于定位服务器的信息传输方法包括步骤301至302。
在步骤301,定位服务器接收发射节点发送的用于定位的参考信号的配置信息。
所述用于定位的参考信号至少包括PRS。
在实施例中,所述用于定位的参考信号的配置信息包括PRS的配置信息。
在实施例中,所述PRS的配置信息包括PRS资源选择序列,所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
在实施例中,所述PRS配置信息包括PRS资源集合静音序列,所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。
在实施例中,所述PRS的初始化伪随机序列由以下公式生成:
Figure PCTCN2020083861-appb-000013
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000014
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000015
是一个时隙内符号个数。
所述用于定位的参考信号还包括补充参考信号。
在实施例中,所述补充参考信号包括PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号,所述配置信息包括补充参考信号资源配置信息。
在实施例中,所述补充参考信号包括在静音配置周期内,满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合,所述配置信息包括补充参考信号资源集合配置信息。
在步骤302,所述定位服务器将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号。
所述接收节点可以是UE。
定位服务器在定位过程的起始阶段可以将PRS资源选择序列和PRS资源集合静音序列,以及补充参考信号的配置信息作为辅助信息发给接收节点。
定位服务器可以确定接收节点的参考小区和相邻小区,并将参考小区和相邻小区的用于定位的参考信号的配置信息均发送给接收节点。
如图5所示,本公开实施例的应用于接收节点的信息传输方法,,包括步骤401至403。
在步骤401,接收节点接收定位服务器发送的用于定位的参考信号的配置信息。
所述接收节点可以是UE。
所述用于定位的参考信号至少包括定位参考信号PRS。
在实施例中,所述用于定位的参考信号的配置信息包括PRS的配置信息。
在实施例中,所述PRS的配置信息包括PRS资源选择序列,所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
在实施例中,所述PRS配置信息包括PRS资源集合静音序列,所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。
在实施例中,所述PRS的初始化伪随机序列由以下公式生成:
Figure PCTCN2020083861-appb-000016
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000017
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000018
是一个时隙内符号个数。
所述用于定位的参考信号还包括补充参考信号。
在实施例中,所述补充参考信号包括PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号,所述配置信息包括补充参考信号资源配置信息。
在实施例中,所述补充参考信号包括在静音配置周期内,满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合,所述配置信息包括补充参考信号资源集合配置信息。
在步骤402,所述接收节点按照所述配置信息接收发射节点发射 的用于定位的参考信号。
所述接收节点根据所述配置信息,设置相应的检测时间窗和检测周期检测参考信号。
所述接收节点根据PRS资源选择序列确定PRS资源的位置,根据PRS资源集合静音序列确定静音的时-频资源位置,在非静音的PRS资源的位置接收PRS。
所述接收节点根据补充参考信号资源配置信息,确定补充参考信号的位置,从而进行检测,获取补充参考信号。
例如,根据补充参考信号资源配置信息确定所述PRS的准共位置关系,并且根据该准共位置关系以及PRS资源的位置确定补充参考信号的位置,从而进行检测,获取补充参考信号。
又例如,根据补充参考信号资源集合配置信息,在PRS静音时段最近的位置(即,时差小于预设阈值的位置)进行检测,获取补充参考信号。
在步骤403,所述接收节点根据所述参考信号进行定位测量。
所述接收节点可以根据接收到的PRS,或者根据接收到的PRS和补充参考信号,进行定位测量。所述定位测量可以采用OTDOA的方式进行定位。
下面以一些应用实例进行说明。
应用实例一
如图6所示,在一个PRS资源集合内有
Figure PCTCN2020083861-appb-000019
个PRS资源,在本应用实例中
Figure PCTCN2020083861-appb-000020
取8,8个PRS资源的索引编号为0至7,该发射节点选择只发送第0、2、4、6个PRS资源,则PRS资源选择序列为10101010。
发射节点将该PRS资源选择序列作为PRS配置信息上报给定位服务器,PRS的配置信息还包括4个PRS资源的序列生成ID,时域起点,频域密度,PRS资源集合的静音配置。
定位服务器将可能被测量的发射节点的PRS的配置信息发送给接收节点,接收节点配置相应的检测时间窗和检测周期去检测参考小区和相邻小区的PRS。
采用OTDOA方式进行定位。
应用实例二
其他场景同应用实例一,但是四个PRS资源集合所提供的覆盖和信号强度并不能满足更高的定位精度要求,同时该发射节点在未选择发送PRS的潜在资源位置有发送其他参考信号,且其配置可以用作定位测量,该其他参考信号即补充参考信号,如图7所示。
发射节点将补充参考信号资源配置信息和PRS配置信息一起上报给定位服务器。定位服务器将上述配置信息发送给接收节点,接收节点根据其配置信息确定检测时间窗,检测周期和检测所用的本地序列对PRS和补充参考信号进行检测进行定位。如图8所示,为补充参考信号资源配置信息的传输流程。
应用实例三
其他场景同应用实例二,参照图9,在该发射节点除发送PRS资源外在其他位置有发送其他参考信号,并不与PRS可用资源完全重叠。且其配置可以用作定位测量,该其他参考信号即为补充参考信号。
应用实例四
PRS资源集合的发送周期为T prs,PRS静音配置周期为六个PRS发送周期,假设有三个PRS资源集合被静音,该发射节点的PRS资源集合静音配置序列为110010,在第3、4、6个PRS发射时段内,由于该节点发PRS发射被静音,所以依赖于该节点所发射信号在对应时段定位将会受到影响。同时该节点有其他参考信号资源集合的配置,能够满足定位需求,与PRS资源集合的周期一样,时域上相差t offset,补充参考信号资源集合的指示序列为111111,如图10所示。
该发射节点将该补充参考信号资源集合配置信息和PRS配置信息发送给定位服务器,定位服务器将所述信息发送给接收节点。接收节点根据所述信息配置检测时间窗和检测周期,在PRS信号被静音的周期内检测补充参考信号以完成定位。接收节点配置检测时间窗能够覆盖补充参考信号资源集合和PRS资源集合,根据补充参考信号和各个发射节点的PRS信号互相到达时间差进行定位。如图11所示,为补充参考信号资源集合配置信息的传输流程。
应用实例五
其他条件同应用实例四,参照图12,补充参考信号资源集合并不是周期性的,补充参考信号资源集合配置信息不再包括补充参考信号资源集合指示序列。
该发射节点将该补充参考信号资源集合配置信息和PRS配置信息发送给定位服务器,定位服务器将所述信息发送给接收节点。接收节点根据所述信息配置检测时间窗和检测周期,在PRS信号被静音的周期内检测补充参考信号以完成定位。接收节点配置检测时间窗能够覆盖补充参考信号资源集合和PRS资源集合,根据补充参考信号和各个发射节点的PRS信号互相到达时间差进行定位。
如图13所示,本公开实施例还提供一种信息传输的装置,应用于发射节点,包括第一发送模块501和第二发送模块502。
第一发送模块501用于确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS。
第二发送模块502用于按照所述配置信息发射所述参考信号。
在实施例中,所述PRS的配置信息包括PRS资源选择序列,所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
在实施例中,所述PRS配置信息包括PRS资源集合静音序列,所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。
在实施例中,所述PRS的初始化伪随机序列由以下公式生成:
Figure PCTCN2020083861-appb-000021
其中,所述n ID是扰码标识,
Figure PCTCN2020083861-appb-000022
是一个无线帧内的时隙号,
Figure PCTCN2020083861-appb-000023
是一个时隙内符号个数。
在实施例中,所述用于定位的参考信号还包括补充参考信号。
在实施例中,所述配置信息包括补充参考信号资源配置信息,所述第一发送模块501用于:将PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号作为补充参考信号,确定所述补充参考信号占用的补充参考信号资源,并将所述补充参考信号资源配置信息发送至所述定位服务器。
在实施例中,所述补充参考信号资源周期性存在于静音配置周 期内,且存在于每个PRS资源时段。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号资源配置信息包括所述准共位置关系。
在实施例中,所述补充参考信号资源配置信息包括所述补充参考信号以下参数:带宽、频域密度、时域起点、时域密度、周期、资源标识ID。
在实施例中,所述配置信息包括补充参考信号资源集合配置信息,所述第一发送模块501用于:在静音配置周期内,所述发射节点将满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合作为补充参考信号,将所述补充参考信号资源集合配置信息发送至所述定位服务器。
在实施例中,所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
在实施例中,所述补充参考信号为周期性的信号集合,所述补充参考信号的周期与所述PRS存在整数倍关系。
在实施例中,所述补充参考信号资源集合的配置信息包括补充资源指示序列和与PRS资源集合时间偏移,所述补充资源指示序列用于指示在对应时段是否发送所述补充参考信号。
在实施例中,所述补充参考信号资源集合配置信息包括所述补充参考信号以下参数:带宽、周期、频域密度、时域起点、资源集合ID、补充参考信号静音序列。
如图14所示,本公开实施例还提供一种信息传输的装置,应用于定位服务器,包括第一接收模块601和第三发送模块602。
第一接收模块601用于接收发射节点发送的用于定位的参考信号的配置信息。
第三发送模块602用于将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号。
所述用于定位的参考信号至少包括PRS。
在实施例中,所述用于定位的参考信号还包括补充参考信号。
在实施例中,所述补充参考信号包括PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号,所述配置信息包括补充参考信号资源配置信息。
在实施例中,所述补充参考信号包括在静音配置周期内,满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合,所述配置信息包括补充参考信号资源集合配置信息。
如图15所示,本公开实施例还提供一种信息传输的装置,应用于接收节点,包括第二接收模块701、第三接收模块702和定位模块703。
第二接收模块701用于接收定位服务器发送的用于定位的参考信号的配置信息。
第三接收模块702用于按照所述配置信息接收发射节点发射的用于定位的参考信号。
定位模块703用于根据所述参考信号进行定位测量。
所述用于定位的参考信号至少包括定位参考信号PRS。
如图16所示,本公开实施例还提供一种发射节点,包括:存储器801、处理器802及存储在存储器801上并可在处理器802上运行的计算机程序803,所述处理器802执行所述计算机程序803时实现如图3所述信息传输的方法。
如图17所示,本公开实施例还提供一种定位服务器,包括:存储器901、处理器902及存储在存储器901上并可在处理器902上运行的计算机程序903,所述处理器902执行所述计算机程序903时实现如图4所述信息传输的方法。
如图18所示,本公开实施例还提供一种接收节点,包括:存储器1001、处理器1002及存储在存储器1001上并可在处理器1002上运行的计算机程序1003,所述处理器1002执行所述计算机程序1003时实现如图5所述信息传输的方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理 器执行根据本公开各实施例的信息传输的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。

Claims (29)

  1. 一种信息传输的方法,包括:
    发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS;以及
    所述发射节点按照所述配置信息发射所述参考信号。
  2. 如权利要求1所述的方法,其中,
    所述PRS的配置信息包括PRS资源选择序列,并且所述PRS资源选择序列用于表示资源集合中的资源块是否用于发送PRS。
  3. 如权利要求1所述的方法,其中,
    所述PRS配置信息包括PRS资源集合静音序列,并且所述PRS资源集合静音序列用于表示在对应的PRS时段是否发送PRS。
  4. 如权利要求1所述的方法,其中,所述PRS的初始化伪随机序列由以下公式生成:
    Figure PCTCN2020083861-appb-100001
    其中,所述n ID是扰码标识,
    Figure PCTCN2020083861-appb-100002
    是一个无线帧内的时隙号,
    Figure PCTCN2020083861-appb-100003
    是一个时隙内符号个数。
  5. 如权利要求1至3中任意一项所述的方法,其中,
    所述用于定位的参考信号还包括补充参考信号。
  6. 如权利要求5所述的方法,其中,所述配置信息包括补充参考信号资源配置信息,并且发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器的步骤包括:
    所述发射节点将PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号作为补充参考信号,确定所述补充参考信号占用的 补充参考信号资源,并将所述补充参考信号资源配置信息发送至所述定位服务器。
  7. 如权利要求6所述的方法,其中,
    所述补充参考信号资源周期性存在于静音配置周期内,且存在于每个PRS资源时段。
  8. 如权利要求6所述的方法,其中,
    所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
  9. 如权利要求8所述的方法,其中,
    所述补充参考信号资源配置信息包括所述准共位置关系。
  10. 如权利要求6所述的方法,其中,所述补充参考信号资源配置信息包括所述补充参考信号以下参数:
    带宽、频域密度、时域起点、时域密度、周期、资源标识ID。
  11. 如权利要求5所述的方法,其中,所述配置信息包括补充参考信号资源集合配置信息,并且发射节点确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器的步骤包括:
    在静音配置周期内,所述发射节点将满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合作为补充参考信号,并将所述补充参考信号资源集合配置信息发送至所述定位服务器。
  12. 如权利要求11所述的方法,其中,
    所述补充参考信号包括与所述PRS存在准共位置关系的参考信号。
  13. 如权利要求11所述的方法,其中,
    所述补充参考信号为周期性的信号集合,并且所述补充参考信号的周期与所述PRS存在整数倍关系。
  14. 如权利要求13所述的方法,其中,
    所述补充参考信号资源集合的配置信息包括补充资源指示序列和与PRS资源集合时间偏移,并且所述补充资源指示序列用于指示在对应时段是否发送所述补充参考信号。
  15. 如权利要求11所述的方法,其中,所述补充参考信号资源集合配置信息包括所述补充参考信号以下参数:
    带宽、周期、频域密度、时域起点、资源集合ID、补充参考信号静音序列。
  16. 一种信息传输的方法,包括:
    定位服务器接收发射节点发送的用于定位的参考信号的配置信息;以及
    所述定位服务器将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号,
    其中,所述用于定位的参考信号至少包括定位参考信号PRS。
  17. 如权利要求16所述的方法,其中,
    所述用于定位的参考信号还包括补充参考信号。
  18. 如权利要求17所述的方法,其中,
    所述补充参考信号包括PRS资源集合区间内除所述PRS之外的满足定位要求的参考信号,并且所述配置信息包括补充参考信号资源配置信息。
  19. 如权利要求17所述的方法,其中,
    所述补充参考信号包括在静音配置周期内,满足定位要求,且与被静音的PRS时段的时差小于预设阈值的参考信号集合,并且所述配置信息包括补充参考信号资源集合配置信息。
  20. 一种信息传输的方法,包括:
    接收节点接收定位服务器发送的用于定位的参考信号的配置信息;
    所述接收节点按照所述配置信息接收发射节点发射的用于定位的参考信号;以及
    所述接收节点根据所述参考信号进行定位测量,
    其中,所述用于定位的参考信号至少包括定位参考信号PRS。
  21. 一种信息传输的装置,包括:
    第一发送模块,用于确定用于定位的参考信号,并将所述用于定位的参考信号的配置信息发送至定位服务器,其中,所述用于定位的参考信号至少包括定位参考信号PRS;以及
    第二发送模块,用于按照所述配置信息发射所述参考信号。
  22. 一种信息传输的装置,包括:
    第一接收模块,用于接收发射节点发送的用于定位的参考信号的配置信息;以及
    第三发送模块,用于将所述配置信息发送至接收节点,以使所述接收节点按照所述配置信息接收用于定位的参考信号;
    其中,所述用于定位的参考信号至少包括定位参考信号PRS。
  23. 一种信息传输的装置,包括:
    第二接收模块,用于接收定位服务器发送的用于定位的参考信号的配置信息;
    第三接收模块,用于按照所述配置信息接收发射节点发射的用于定位的参考信号;以及
    定位模块,用于根据所述参考信号进行定位测量,
    其中,所述用于定位的参考信号至少包括定位参考信号PRS。
  24. 一种发射节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至15中任意一项所述信息传输的方法。
  25. 一种定位服务器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求16至19中任意一项所述信息传输的方法。
  26. 一种接收节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求20所述信息传输的方法。
  27. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理器执行如权利要求1至15中任意一项所述信息传输的方法。
  28. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理器执行如权利要求16至19中任意一项所述信息传输的方法。
  29. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理器执行如权利要求20所述信息传输的方法。
PCT/CN2020/083861 2019-04-29 2020-04-09 信息传输的方法、装置、节点和服务器 WO2020220959A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/605,292 US11988761B2 (en) 2019-04-29 2020-04-09 Information transmission method and device, node and server
EP20799248.8A EP3944684A4 (en) 2019-04-29 2020-04-09 INFORMATION TRANSMISSION METHOD AND DEVICE, NODES AND SERVERS
CA3138224A CA3138224A1 (en) 2019-04-29 2020-04-09 Information transmission method and device, node and server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356081.1A CN111867050B (zh) 2019-04-29 2019-04-29 一种信息传输的方法、装置、节点和服务器
CN201910356081.1 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220959A1 true WO2020220959A1 (zh) 2020-11-05

Family

ID=72966403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083861 WO2020220959A1 (zh) 2019-04-29 2020-04-09 信息传输的方法、装置、节点和服务器

Country Status (5)

Country Link
US (1) US11988761B2 (zh)
EP (1) EP3944684A4 (zh)
CN (1) CN111867050B (zh)
CA (1) CA3138224A1 (zh)
WO (1) WO2020220959A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4277378A4 (en) * 2021-01-14 2024-03-06 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US11558160B2 (en) 2021-02-26 2023-01-17 Qualcomm Incorporated Positioning system to leverage map data collected by user equipment
CN115550833A (zh) * 2021-06-30 2022-12-30 乐鑫信息科技(上海)股份有限公司 Wi-Fi定位方法和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110230144A1 (en) * 2010-03-17 2011-09-22 Iana Siomina Method and Apparatus for Muting Signaling in a Wireless Communication Network
CN102835084B (zh) * 2010-04-12 2016-05-11 瑞典爱立信有限公司 无线通信网络中用于参考信号静音检测的方法和设备
WO2012008816A2 (ko) * 2010-07-16 2012-01-19 엘지전자 주식회사 무선 통신 시스템에서 위치 추정을 위한 메시지 전송 방법 및 장치
US20160080106A1 (en) * 2014-09-17 2016-03-17 Qualcomm Incorporated Method for assigning prs muting patterns for rstd measurement acquisition
US9755799B2 (en) 2014-10-22 2017-09-05 Alcatel-Lucent Usa Inc. Coordinating transmission of positioning reference signals and non-reference signals
CN109644423B (zh) * 2016-08-12 2021-11-05 索尼公司 位置服务器、基础设施设备、通信装置和用于使用补充定位参考信号的方法
ES2770678T3 (es) * 2016-08-12 2020-07-02 Nokia Technologies Oy Detección de posición de equipos de usuario dentro de una red de telecomunicaciones inalámbrica
US10616858B2 (en) * 2018-04-23 2020-04-07 Qualcomm Incorporated Optimized observed time difference of arrival (OTDOA) in licensed-assisted access (LAA)
WO2020205891A1 (en) * 2019-04-01 2020-10-08 Apple Inc. New radio (nr) downlink (dl) positioning reference signal (prs) design resource allocation and mapping in nr positioning
KR20230078650A (ko) * 2020-09-30 2023-06-02 퀄컴 인코포레이티드 슬롯 오정렬이 존재하는 경우 다운링크 prs 포지셔닝 성능을 개선하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475A (zh) * 2012-01-16 2013-07-17 华为技术有限公司 定位方法、定位服务器、终端和基站
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "DL and UL Reference Signals for NR Positioning", R1-1905346, 3GPP TSG RAN WG1 #96BIS, 3 April 2019 (2019-04-03), XP051707421, DOI: 20200604162843X *
INTEL CORPORATION: "Offline Discussion Outcome on DL Reference Signals for NR Positioning", R1-1905847, 3GPP TSG RAN WG1 MEETING #96BIS, 15 April 2019 (2019-04-15), XP051707893, DOI: 20200604162950A *
See also references of EP3944684A4 *

Also Published As

Publication number Publication date
CA3138224A1 (en) 2020-11-05
EP3944684A1 (en) 2022-01-26
US20220229144A1 (en) 2022-07-21
EP3944684A4 (en) 2022-12-28
CN111867050B (zh) 2023-03-14
US11988761B2 (en) 2024-05-21
CN111867050A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
US9435876B2 (en) Autonomous muting indication to enable improved time difference of arrival measurements
WO2020220959A1 (zh) 信息传输的方法、装置、节点和服务器
KR101317518B1 (ko) 관측 도착 시간차 위치에 대한 서빙 셀 간섭을 억제하기 위한 타임 마스크의 뮤팅
RU2561605C2 (ru) Способ и аппаратура для сигнализации приглушения в сети беспроводной связи
US11387928B2 (en) Methods and user equipment, radio transmitter and network node for managing positioning reference signals
CN106559207B (zh) 移动终端设备、移动处理电路和处理信号的方法
US20110176440A1 (en) Restrictions on autonomous muting to enable time difference of arrival measurements
US9490935B2 (en) Blind search for network positioning reference signal (PRS) configuration parameters
US9386549B2 (en) Synchronisation in a communication system
WO2017128883A1 (zh) 一种导频信号发送、信道估计方法及设备
TW201813355A (zh) 傳輸參考訊號的方法、網路裝置和終端裝置
WO2020143702A1 (zh) 参考信号的接收、发送方法及装置
US9357349B2 (en) Determining a location of a wireless endpoint device in a wireless network
WO2019205111A1 (zh) 数据合并方法、装置及设备
CA3061389C (en) Method for transmitting reference signal, terminal and network device
CN117440390A (zh) Pucch信号的检测方法、装置、接入网设备及存储介质
CN116782246A (zh) 信号处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3138224

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020799248

Country of ref document: EP

Effective date: 20211022