WO2022016923A1 - 一种薄膜连续耐电压的测试方法 - Google Patents

一种薄膜连续耐电压的测试方法 Download PDF

Info

Publication number
WO2022016923A1
WO2022016923A1 PCT/CN2021/088079 CN2021088079W WO2022016923A1 WO 2022016923 A1 WO2022016923 A1 WO 2022016923A1 CN 2021088079 W CN2021088079 W CN 2021088079W WO 2022016923 A1 WO2022016923 A1 WO 2022016923A1
Authority
WO
WIPO (PCT)
Prior art keywords
withstand voltage
central control
control system
testing
film
Prior art date
Application number
PCT/CN2021/088079
Other languages
English (en)
French (fr)
Inventor
程跃
胡园园
鲍晋珍
匡吴奇
洪一生
虞少波
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2022016923A1 publication Critical patent/WO2022016923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation

Definitions

  • the invention relates to the field of thin film testing equipment, in particular to a method for testing the continuous withstand voltage of thin films.
  • the battery manufacturer will assemble the positive and negative electrodes of the battery and the separator material, and load a certain voltage on the positive and negative electrodes of the battery to test the short-circuit rate of the lithium battery; in this test, if the resistance of the separator is If the voltage value is too small, it is easy to be broken down, which will cause the lithium battery to be short-circuited and scrapped, resulting in waste of raw materials and increased cost. Therefore, it is necessary to develop a test device for the withstand voltage value of lithium battery separators to predict problems such as battery yield and raw material waste.
  • the test method of the breakdown voltage of the diaphragm is generally the test of a fixed area or a moving conductive rod.
  • a method for testing the breakdown voltage of a single-point fixed area although it can accurately measure the value of the breakdown voltage of the diaphragm in a certain area, it cannot be tested at most locations, and it is easy to ignore the existence of the diaphragm.
  • CN 208818795 U mentioned a test method for the breakdown voltage of the isolation film, which uses the sliding of a conductive rod as an electrode to test the breakdown voltage. Although continuous testing is possible, there are problems of jitter and parallelism during the movement of the conductive rod. The pressure and temperature are also uncontrollable, and the test stability is poor.
  • the current soft-pack lithium-ion battery will undergo a process of hot and cold pressing during assembly, and there is a certain tension in the diaphragm inside the winding core. Under this pressure and temperature conditions, the withstand voltage characteristics of the diaphragm will change to a certain extent.
  • the present invention expects to provide a method for continuously testing the breakdown voltage of the separator under pressure and heat, so as to better simulate the pressure and withstand voltage of the separator in the battery, and predict the battery production and reduce the Waste raw materials in the production process of battery cells and improve yield.
  • the invention provides a method for testing the continuous withstand voltage of a film, comprising a withstand voltage tester, a booster pump, an upper electrode plate, a lower electrode plate, an upper flexible conductive film layer, a lower flexible conductive film layer, a heating rod, and a winding and unwinding device.
  • central control system including the following steps:
  • the pressure range provided by the booster pump is set between 0 and 5MPa through the central control system
  • the booster pump is connected with the upper pole plate through a connecting shaft; the heating rod is built in the hole structure of the upper and lower pole plates; the side of the corresponding surface of the upper and lower pole plates is on the side
  • the upper and lower flexible conductive film layers are respectively covered, and are connected with the withstand voltage tester through wires; the withstand voltage tester is connected with the central control system through the converter; the central control system controls the winding and unwinding device.
  • the film to be tested is located between the upper flexible conductive film layer and the lower flexible conductive film layer and is in close contact.
  • the upper and lower flexible conductive film layers are filled with elastic medium.
  • the elastic medium adopts conductive silicone pad or conductive graphite.
  • the upper and lower pole plates are made of metal material.
  • the metal material is stainless steel or red copper.
  • the surfaces of the upper and lower electrode plates are smooth and flat without damage, and the surface roughness Ra ⁇ 2.
  • the length of the upper and lower pole plates is 50-800 mm, the width is 40-600 mm, and the thickness is 1-20 mm.
  • the heating rod is controlled by the central control system, so that the output temperature of the upper and lower plates is within the deviation range of ⁇ 3°C.
  • the withstand voltage tester is a DC voltage tester.
  • the working voltage of the DC voltage tester is 0-5KV
  • the voltage increasing speed is 0-500V/s
  • the breakdown current capture range is 0.1-99mA.
  • the film to be tested is a lithium battery separator.
  • the lithium battery separator is a base film or a coating film.
  • the invention also provides a method for testing the continuous withstand voltage of the film, including a withstand voltage tester, a booster pump, an upper electrode plate, a lower electrode plate, an upper flexible conductive film layer, a lower flexible conductive film layer, a heating rod, a winding and unwinding roll device and central control system; including the following steps:
  • the pressure range provided by the booster pump is set between 0 and 5MPa through the central control system
  • the booster pump is connected with the upper pole plate through a connecting shaft; the heating rod is built in the hole structure of the upper and lower pole plates; the side of the corresponding surface of the upper and lower pole plates is on the side
  • the upper and lower flexible conductive film layers are respectively covered, and are connected with the withstand voltage tester through wires; the withstand voltage tester is connected with the central control system through the converter; the central control system controls the winding and unwinding device.
  • the film to be tested is located between the upper flexible conductive film layer and the lower flexible conductive film layer and is in close contact.
  • the upper and lower flexible conductive film layers are filled with elastic medium.
  • the elastic medium adopts conductive silicone pad or conductive graphite.
  • the upper and lower pole plates are made of metal material.
  • the metal material is stainless steel or red copper.
  • the surfaces of the upper and lower electrode plates are smooth and flat without damage, and the surface roughness Ra ⁇ 2.
  • the length of the upper and lower pole plates is 50-800 mm, the width is 40-600 mm, and the thickness is 1-20 mm.
  • the heating rod is controlled by the central control system, so that the output temperature of the upper and lower plates is within the deviation range of ⁇ 3°C.
  • the withstand voltage tester is a DC voltage tester.
  • the working voltage of the DC voltage tester is 0-5KV
  • the voltage increasing speed is 0-500V/s
  • the breakdown current capture range is 0.1-99mA.
  • the film to be tested is a lithium battery separator.
  • the lithium battery separator is a base film or a coating film.
  • the present invention provides a test method for the continuous withstand voltage of the film, through which the breakdown voltage value of the isolation film under pressure and heat can be effectively measured, thereby judging whether there is a breakdown weak point and weak point. According to the position of the battery cell, it can predict the subsequent battery production, reduce the waste of raw materials in the production process of the battery cell, and improve the yield rate;
  • the present invention provides a test method for the continuous withstand voltage of the film.
  • the rolled diaphragm to be tested is closely attached to the lower electrode plate, and the upper electrode plate is pushed downward by a booster pump, and the set pressure is applied to the diaphragm, so as to finally realize the resistance of the diaphragm.
  • the voltage tester measures the withstand voltage value of the local area of the diaphragm, reduces the test area and can accurately locate the location of the breakdown weak point, and realizes the local continuous test of the lithium battery diaphragm.
  • the system can maintain the intermittent and stable testing of the diaphragm by controlling the intermittent speed of the rewinding and unwinding, matching the frequency of the upper plate movement and pressing down to the test;
  • the present invention provides a method for testing the continuous withstand voltage of the film.
  • the lower surface of the upper electrode plate and the surface of the lower electrode plate are covered with a flexible conductive film with an elastic medium.
  • the high elasticity of the flexible conductive layer can further eliminate the problems caused by the electrode plate. Poor contact caused by uneven flatness or diaphragm thickness, thus improving the accuracy of the lithium battery diaphragm withstand voltage value test.
  • FIG. 1 is a schematic diagram of a device corresponding to the testing method of the continuous withstand voltage of the thin film of the present invention
  • the specific embodiment of the present invention provides a method for testing the continuous withstand voltage of a thin film, as shown in FIG. , the lower flexible conductive film layer 8, the heating rod 6, the winding and unwinding device 9, the central control system 2; including the following steps:
  • the pressure range provided by the booster pump 3 through the central control system 2 is set between 0 and 5MPa;
  • the booster pump 3 is connected with the upper pole plate 4 through a connecting shaft; the heating rod 6 is built in the hole structure of the upper and lower pole plates 4 and 5; the upper and lower pole plates 4 and 5 are The side of the corresponding surface of 5 is covered with upper and lower flexible conductive film layers 7 and 8 respectively, and is connected with the withstand voltage tester 1 through wires; the withstand voltage tester 1 is connected with the central control system 2 through a converter ; The central control system 2 controls the winding and unwinding device 9 .
  • the film to be tested is located between the upper flexible conductive film layer 7 and the lower flexible conductive film layer 8 and is in close contact.
  • the upper and lower flexible conductive film layers 7 and 8 are filled with elastic medium.
  • the elastic medium adopts conductive silicone pad or conductive graphite.
  • the upper and lower pole plates 4 and 5 are made of metal material.
  • the metal material is stainless steel or red copper.
  • the surfaces of the upper and lower electrode plates 4 and 5 are smooth and flat without damage, and the surface roughness Ra ⁇ 2.
  • the lengths of the upper and lower pole plates 4 and 5 are 50-800 mm, the widths are 40-600 mm, and the thicknesses are 1-20 mm.
  • the heating rod 6 is controlled by the central control system 2, so that the output temperature of the upper and lower pole plates 4 and 5 is within a deviation range of ⁇ 3°C.
  • the withstand voltage tester 1 is a DC voltage tester.
  • the working voltage of the DC voltage tester is 0-5KV
  • the voltage increasing speed is 0-500V/s
  • the breakdown current capture range is 0.1-99mA.
  • the film to be tested is a lithium battery separator.
  • the lithium battery separator is a base film or a coating film.
  • the present invention also provides a method for testing the continuous withstand voltage of the film, as shown in FIG. 1 , including a withstand voltage tester 1, a booster pump 3, an upper electrode plate 4, a lower electrode plate 5, an upper flexible conductive film layer 7, a lower electrode
  • the pressure range provided by the booster pump 3 through the central control system 2 is set between 0 and 5MPa;
  • the booster pump 3 is connected with the upper pole plate 4 through a connecting shaft; the heating rod 6 is built in the hole structure of the upper and lower pole plates 4 and 5; the upper and lower pole plates 4 and 5 are The side of the corresponding surface of 5 is covered with upper and lower flexible conductive film layers 7 and 8 respectively, and is connected with the withstand voltage tester 1 through wires; the withstand voltage tester 1 is connected with the central control system 2 through a converter ; The central control system 2 controls the winding and unwinding device 9 .
  • the film to be tested is located between the upper flexible conductive film layer 7 and the lower flexible conductive film layer 8 and is in close contact.
  • the upper and lower flexible conductive film layers 7 and 8 are filled with elastic medium.
  • the elastic medium adopts conductive silicone pad or conductive graphite.
  • the upper and lower pole plates 4 and 5 are made of metal material.
  • the metal material is stainless steel or red copper.
  • the surfaces of the upper and lower electrode plates 4 and 5 are smooth and flat without damage, and the surface roughness Ra ⁇ 2.
  • the lengths of the upper and lower pole plates 4 and 5 are 50-800 mm, the widths are 40-600 mm, and the thicknesses are 1-20 mm.
  • the heating rod 6 is controlled by the central control system 2, so that the output temperature of the upper and lower pole plates 4 and 5 is within a deviation range of ⁇ 3°C.
  • the withstand voltage tester 1 is a DC voltage tester.
  • the working voltage of the DC voltage tester is 0-5KV
  • the voltage increasing speed is 0-500V/s
  • the breakdown current capture range is 0.1-99mA.
  • the film to be tested is a lithium battery separator.
  • the lithium battery separator is a base film or a coating film.
  • test method of the continuous withstand voltage of the two thin films it is not limited to the method of sequentially implementing steps (1)-(4).
  • (1)-(4) can be in any order.
  • Program boosting method use the pole plates 4 and 5 with a size of 400*200*5 (length, width and thickness) mm, set the temperature of the upper and lower pole plates 4 and 5 to 25°C through the central control system 2, and the rewinding and unwinding device 9 runs intermittently
  • the speed is 10m/min
  • the pressure of booster pump 3 is 0.2MPa
  • the program boosting rate is 500V/s.
  • the central control device reads the breakdown voltage value of each segment (400mm) diaphragm (12 micron PE base film) in real time for 1 minute and records the data in the following table, unit (V).
  • Program boosting method Use the pole plates 4 and 5 with a size of 400*200*5 (length, width and thickness) mm, set the temperature of the upper and lower pole plates 4 and 5 to 25°C through the central control system 2, and control the winding and unwinding device 9 intermittently
  • the walking speed is 10m/min
  • the pressure of booster pump 3 is 5MPa
  • the program boosting rate is 500V/s.
  • the central control device reads the breakdown voltage value of each segment (400mm) diaphragm (12 micron PE base film) in real time for 1 minute and records the data in the following table, unit (V).
  • Program boosting method Use the pole plates 4 and 5 with a size of 400*200*5 (length, width and thickness) mm, set the temperature of the upper and lower pole plates 4 and 5 to 25°C through the central control system 2, and control the winding and unwinding device 9 intermittently
  • the walking speed is 10m/min
  • the pressure of booster pump 3 is 0.1KPa
  • the program boosting rate is 500V/s.
  • the central control device reads the breakdown voltage value of each segment (400mm) diaphragm (12 micron PE base film) in real time for 1 minute and records the data in the following table, unit (V).
  • Program boosting method use the pole plates 4 and 5 with a size of 400*200*5mm (length, width and thickness), set the temperature of the upper and lower pole plates 4 and 5 to 45°C through the central control system 2, and the rewinding and unwinding device 9 runs intermittently 10m/min, the pressure of booster pump 3 is 0.2MPa, and the program boosting rate is 500V/s. Turn on the test circuit in turn, and turn on the rewinding and unwinding device 9 .
  • the central control device reads the breakdown voltage value of each segment (400mm) diaphragm (12 micron PE base film) in real time for 1 minute and records the data in the following table, unit (V).
  • Program boosting method use the pole plates 4 and 5 with a size of 400*200*5mm (length, width and thickness), set the temperature of the upper and lower pole plates 4 and 5 to 45°C through the central control system 2, and control the winding and unwinding device 9 to run intermittently
  • the speed is 10m/min
  • the pressure applied by the booster pump 3 is 0.8MPa
  • the program boosting rate is 500V/s.
  • the central control device reads the breakdown voltage value of each segment (400mm) diaphragm (12 micron PE base film) in real time for 1 minute and records the data in the following table, unit (V).
  • the fixed output voltage is set to 1000V
  • the upper limit of the leakage current detection is 5mA
  • the pole plate with the size of 600*200*5 (length, width and thickness) mm is used. 5.
  • the temperature is 45°C
  • the intermittent speed of the rewinding and unwinding device 9 is controlled to be 15m/min
  • the pressure of the booster pump 3 is 0.2MPa. Turn on the test circuit in turn, and turn on the rewinding and unwinding device 9 .
  • the central control device displays the withstand voltage characteristics of each segment (400mm) diaphragm (12 micron PE base film) in real time. By displaying OK, once a weak point is broken down, it will display NG for 1 minute and record the data in the following table, unit ( V).
  • Program boosting method use the pole plates 4 and 5 with a size of 400*200*5 (length, width and thickness) mm, set the temperature of the upper and lower pole plates 4 and 5 to 45°C through the central control system 2, and control the winding and unwinding device 9 intermittently
  • the walking speed is 10m/min
  • the pressure applied by the booster pump 3 is 0.2MPa
  • the program boosting rate is 500V/s.
  • the central control device reads the breakdown voltage value of each segment (400mm) of diaphragm (12-micron PE base film coated with 4-micron ceramic layer) in real time for 1 minute and records the data in the following table, unit (V).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种薄膜连续耐电压的测试方法,包括如下步骤: (1)将待测薄膜置于收放卷装置上,待放卷; (2)通过中控系统设置增压泵提供的压力范围在0~5MPa之间; (3)通过中控系统设置加热棒工作或不工作; (4)通过中控系统设置收放卷装置的间歇行进速度、升压速率、击穿电流上限和/或下限; (5)开启测试电路开关,进行程序升压,开始测试; (6)当耐电压测试仪自动断电,蜂鸣响起时,结束测试,记录此时该区域的显示电压; (7)通过收放卷装置连续测试待测薄膜的不同区域,得到薄膜的击穿电压数据。采用该方法,可以更好的模拟隔膜在电池中的受压耐压情况,对电池制作进行预判,减少电芯生产过程中的原材料浪费,提高良品率。

Description

一种薄膜连续耐电压的测试方法 技术领域
本发明涉及薄膜测试设备领域,具体涉及一种薄膜连续耐电压的测试方法。
背景技术
随着电动汽车的推广,动力电池市场日趋扩大,对锂离子电池的电性能和安全性能提出了更高的要求。而隔膜作为锂电池关键材料之一,对锂离子电池的电性能和安全性能起着重要的影响。
一般,锂电池在生产制作过程中,电池厂家会将电池正负极和隔膜材料组装后,在电池正、负极负载一定的电压来测试锂电池的短路率;在此测试中,如果隔膜的耐电压值过小,容易被击穿,会造成锂电池短路报废;从而造成原材料的浪费和成本的增加。因此,需要开发一种锂电池隔膜耐电压值的测试装置,用以预判电池良品率和原材料浪费等问题。
由于隔膜本身孔的大小分布不是均匀的,膜面与厚度也存在不均一性,因而存在易被击穿的薄弱点。目前,隔膜击穿电压测试方法一般为固定面积或者移动导电棒的测试。如CN 207366690 U提到的一种单点固定面积测试击穿电压的方法,虽然能够准确的测出一定区域内的隔膜击穿电压的值,但大部位置测试不到,容易忽略隔膜上存在的击穿电压薄弱点,取样存在较大随机性,测试范围也有限;且电极 板的平行度较差,易导致待测薄膜与电极板贴合程度不高,测得的数据不一定是隔膜中最低耐压值,因而测试结果存在较大误差。CN 208818795 U提到一种隔离膜击穿电压的测试方法,采用导电棒滑动做电极进行击穿电压的测试,虽然可以连续测试,但导电棒运动过程中,存在抖动及平行度问题,两电极间压力和温度也不可控,测试稳定性较差。而且,目前软包锂离子电池在组装时会经过热冷压的过程,卷芯内部隔膜存在一定的张力,在此压力和温度条件下,隔膜的耐电压特性会发生一定的变化。
发明内容
有鉴于此,本发明期望提供一种可以连续测试隔离膜受压受热情况下的击穿电压测试方法,更好的模拟隔膜在电池中的受压耐压情况,对电池制作进行预判,减少电芯生产过程中的原材料浪费,提高良品率。
为达到上述目的,本发明的技术方案是这样实现的:
本发明提供一种薄膜连续耐电压的测试方法,包括耐电压测试仪、增压泵、上极板、下极板、上柔性导电薄膜层、下柔性导电薄膜层、加热棒、收放卷装置、中控系统;包括如下步骤:
(1)将待测薄膜置于收放卷装置上,待放卷;
(2)通过中控系统设置增压泵提供的压力范围在0~5MPa之间;
(3)通过中控系统设置加热棒工作或不工作;
(4)通过中控系统设置收放卷装置的间歇行进速度、升压速率、击穿电流上限和/或下限;
(5)开启测试电路开关,进行程序升压,开始测试;
(6)当耐电压测试仪自动断电,蜂鸣响起时,结束测试,记录此时该区域的显示电压;
(7)通过收放卷装置连续测试待测薄膜的不同区域,得到薄膜的击穿电压数据。
进一步地,所述增压泵通过连轴与上极板相连;所述加热棒内置于所述上、下极板的孔结构中;所述上、下极板的相对应面的该侧上分别覆盖有上、下柔性导电薄膜层,并通过导线与耐电压测试仪相连;所述耐电压测试仪通过转换器与中控系统相连;所述中控系统控制收放卷装置。
进一步地,测试时,待测薄膜位于所述上柔性导电薄膜层与下柔性导电薄膜层之间并紧密接触。
更进一步地,所述上、下柔性导电薄膜层内均填充有弹性介质。
具体地,所述弹性介质采用导电硅胶垫或导电石墨。
进一步地,所述上、下极板均采用金属材质。
更进一步地,所述金属材质为不锈钢或紫铜。
进一步地,所述上、下极板表面光滑平整、无损伤,表面粗糙度Ra≤2。
进一步地,所述上、下极板的长度为50~800mm,宽度为40~600mm,厚度为1~20mm。
进一步地,通过中控系统控制加热棒,使得上、下极板输出温度在±3℃的偏差范围。
进一步地,所述耐电压测试仪为直流电压测试仪。
更进一步地,所述直流电压测试仪工作电压为0~5KV,电压增加速度为0~500V/s,击穿电流捕捉范围为0.1~99mA。
进一步地,所述待测薄膜为锂电池隔膜。
更进一步地,所述锂电池隔膜为基膜或涂布膜。
本发明还提供一种薄膜连续耐电压的测试方法,包括耐电压测试仪、增压泵、上极板、下极板、上柔性导电薄膜层、下柔性导电薄膜层、加热棒、收放卷装置、中控系统;包括如下步骤:
(1)将待测薄膜置于收放卷装置上,待放卷;
(2)通过中控系统设置增压泵提供的压力范围在0~5MPa之间;
(3)通过中控系统设置加热棒工作或不工作;
(4)通过中控系统设置收放卷装置的间歇行进速度、固定电压、漏电流检出上限;
(5)开启测试电路开关,开始测试;
(6)当电流值小于设定上限值,判定OK;
(7)当电流超过设定上限值,判定NG。
进一步地,所述增压泵通过连轴与上极板相连;所述加热棒内置于所述上、下极板的孔结构中;所述上、下极板的相对应面的该侧上分别覆盖有上、下柔性导电薄膜层,并通过导线与耐电压测试仪相连;所述耐电压测试仪通过转换器与中控系统相连;所述中控系统控制收放卷装置。
进一步地,测试时,待测薄膜位于所述上柔性导电薄膜层与下柔 性导电薄膜层之间并紧密接触。
更进一步地,所述上、下柔性导电薄膜层内均填充有弹性介质。
具体地,所述弹性介质采用导电硅胶垫或导电石墨。
进一步地,所述上、下极板均采用金属材质。
更进一步地,所述金属材质为不锈钢或紫铜。
进一步地,所述上、下极板表面光滑平整、无损伤,表面粗糙度Ra≤2。
进一步地,所述上、下极板的长度为50~800mm,宽度为40~600mm,厚度为1~20mm。
进一步地,通过中控系统控制加热棒,使得上、下极板输出温度在±3℃的偏差范围。
进一步地,所述耐电压测试仪为直流电压测试仪。
更进一步地,所述直流电压测试仪工作电压为0~5KV,电压增加速度为0~500V/s,击穿电流捕捉范围为0.1~99mA。
进一步地,所述待测薄膜为锂电池隔膜。
更进一步地,所述锂电池隔膜为基膜或涂布膜。
本发明有益效果如下:
1)本发明提供一种薄膜连续耐电压的测试方法,通过该测试方法能有效地测出隔离膜在受压受热情况下的击穿电压值的大小,从而判断是否存在击穿薄弱点及薄弱点的位置,对后续电池制作进行预判,减少电芯生产过程中的原材料浪费,提高良品率;
2)本发明提供一种薄膜连续耐电压的测试方法,待测成卷隔膜 紧贴下极板,通过增压泵推动上极板向下运动,并对隔膜施加所设压力,最终实现由耐电压测试仪测得隔膜局部区域的耐电压值,缩小了测试面积和可精确定位出击穿薄弱点的区域位置,实现对锂电池隔膜进行局部连续测试,具有较快的测试速度,同时中控系统可以通过控制收放卷的间歇走速,匹配上极板运动下压至测试的频率,保持隔膜的间歇稳定测试;
3)本发明提供一种薄膜连续耐电压的测试方法,上极板下表面以及下极板上表面覆盖有有弹性介质的柔性导电薄膜,利用柔性导电层的高弹性,可进一步消除因电极板平整度或隔膜厚度不均匀而导致的接触不良,从而提升了锂电池隔膜耐电压值测试的准确度。
附图说明
图1为本发明薄膜连续耐电压的测试方法对应装置示意图
元件标号说明
1          耐电压测试仪
2          中控系统
3          增压泵
4          上极板
5          下极板
6          加热棒
7          上柔性导电薄膜层
8          下柔性导电薄膜层
9          收放卷装置
具体实施方式
以下对本发明的具体实施方式结合附图进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明具体实施方式提供一种薄膜连续耐电压的测试方法,如图1所示,包括耐电压测试仪1、增压泵3、上极板4、下极板5、上柔性导电薄膜层7、下柔性导电薄膜层8、加热棒6、收放卷装置9、中控系统2;包括如下步骤:
(1)将待测薄膜置于收放卷装置9上,待放卷;
(2)通过中控系统2设置增压泵3提供的压力范围在0~5MPa之间;
(3)通过中控系统2设置加热棒6工作或不工作;
(4)通过中控系统2设置收放卷装置9的间歇行进速度、升压速率、击穿电流上限和/或下限;
(5)开启测试电路开关,进行程序升压,开始测试;
(6)当耐电压测试仪1自动断电,蜂鸣响起时,结束测试,记录此时该区域的显示电压;
(7)通过收放卷装置9连续测试待测薄膜的不同区域,得到薄膜的击穿电压数据。
进一步地,所述增压泵3通过连轴与上极板4相连;所述加热棒6内置于所述上、下极板4和5的孔结构中;所述上、下极板4和5的相对应面的该侧上分别覆盖有上、下柔性导电薄膜层7和8,并通过导线与 耐电压测试仪1相连;所述耐电压测试仪1通过转换器与中控系统2相连;所述中控系统2控制收放卷装置9。
进一步地,测试时,待测薄膜位于所述上柔性导电薄膜层7与下柔性导电薄膜层8之间并紧密接触。
更进一步地,所述上、下柔性导电薄膜层7和8内均填充有弹性介质。
具体地,所述弹性介质采用导电硅胶垫或导电石墨。
进一步地,所述上、下极板4和5均采用金属材质。
更进一步地,所述金属材质为不锈钢或紫铜。
进一步地,所述上、下极板4和5表面光滑平整、无损伤,表面粗糙度Ra≤2。
进一步地,所述上、下极板4和5的长度为50~800mm,宽度为40~600mm,厚度为1~20mm。
进一步地,通过中控系统2控制加热棒6,使得上、下极板4和5输出温度在±3℃的偏差范围。
进一步地,所述耐电压测试仪1为直流电压测试仪。
更进一步地,所述直流电压测试仪工作电压为0~5KV,电压增加速度为0~500V/s,击穿电流捕捉范围为0.1~99mA。
进一步地,所述待测薄膜为锂电池隔膜。
更进一步地,所述锂电池隔膜为基膜或涂布膜。
本发明还提供一种薄膜连续耐电压的测试方法,如图1所示,包括耐电压测试仪1、增压泵3、上极板4、下极板5、上柔性导电薄膜层 7、下柔性导电薄膜层8、加热棒6、收放卷装置9、中控系统2;包括如下步骤:
(1)将待测薄膜置于收放卷装置9上,待放卷;
(2)通过中控系统2设置增压泵3提供的压力范围在0~5MPa之间;
(3)通过中控系统2设置加热棒6工作或不工作;
(4)通过中控系统2设置收放卷装置9的间歇行进速度、固定电压、漏电流检出上限;
(5)开启测试电路开关,开始测试;
(6)当电流值小于设定上限值,判定OK;
(7)当电流超过设定上限值,判定NG。
进一步地,所述增压泵3通过连轴与上极板4相连;所述加热棒6内置于所述上、下极板4和5的孔结构中;所述上、下极板4和5的相对应面的该侧上分别覆盖有上、下柔性导电薄膜层7和8,并通过导线与耐电压测试仪1相连;所述耐电压测试仪1通过转换器与中控系统2相连;所述中控系统2控制收放卷装置9。
进一步地,测试时,待测薄膜位于所述上柔性导电薄膜层7与下柔性导电薄膜层8之间并紧密接触。
更进一步地,所述上、下柔性导电薄膜层7和8内均填充有弹性介质。
具体地,所述弹性介质采用导电硅胶垫或导电石墨。
进一步地,所述上、下极板4和5均采用金属材质。
更进一步地,所述金属材质为不锈钢或紫铜。
进一步地,所述上、下极板4和5表面光滑平整、无损伤,表面粗糙度Ra≤2。
进一步地,所述上、下极板4和5的长度为50~800mm,宽度为40~600mm,厚度为1~20mm。
进一步地,通过中控系统2控制加热棒6,使得上、下极板4和5输出温度在±3℃的偏差范围。
进一步地,所述耐电压测试仪1为直流电压测试仪。
更进一步地,所述直流电压测试仪工作电压为0~5KV,电压增加速度为0~500V/s,击穿电流捕捉范围为0.1~99mA。
进一步地,所述待测薄膜为锂电池隔膜。
更进一步地,所述锂电池隔膜为基膜或涂布膜。
此外,两种薄膜连续耐电压的测试方法中,并不局限于依次实施步骤(1)-(4)的方法。例如,(1)-(4)可以按任意顺序。
以下将通过实施例对本发明进行详细描述。
实施例1
程序升压方式:使用大小为400*200*5(长宽厚)mm的极板4和5,通过中控系统2设定上下极板4和5温度为25℃,收放卷装置9间歇走速10m/min,增压泵3施加压力0.2MPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
1350 1560 1216 1420 1320
1250 1585 1524 1462 1344
1660 1364 1660 1106 1130
1231 1431 1530 1206 1337
1402 1430 1060 1615 1422
实施例2
程序升压方式:使用大小为400*200*5(长宽厚)mm的极板4和5,通过中控系统2设定上下极板4和5温度为25℃,控制收放卷装置9间歇走速10m/min,增压泵3施加压力5MPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
550 395 485 350 256
360 355 439 462 352
360 423 335 306 460
403 523 324 440 361
532 351 295 387 286
实施例3
程序升压方式:使用大小为400*200*5(长宽厚)mm的极板4和5,通过中控系统2设定上下极板4和5温度为25℃,控制收放卷装置9间歇走速10m/min,增压泵3施加压力0.1KPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
1455 1460 1536 1620 1420
1351 1485 1501 1434 1452
1356 1402 1320 1158 1230
1241 1351 1430 1316 1437
1402 1430 1060 1615 1422
实施例4
程序升压方式:使用大小为400*200*5mm(长宽厚)的极板4和5,通过中控系统2设定上下极板4和5温度为45℃,收放卷装置9间歇走速10m/min,增压泵3施加压力0.2MPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
1250 1450 1036 1429 1586
1060 1285 1524 1462 1325
1260 1060 1460 1106 950
1130 1420 1530 1206 1450
1206 1430 1320 1068 1362
实施例5
程序升压方式:使用大小为400*200*5mm(长宽厚)的极板4和5,通过中控系统2设定上下极板4和5温度为45℃,控制收放卷装置9间歇走速10m/min,增压泵3施加压力0.8MPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
1050 1020 892 956 1050
1025 1213 822 1062 950
1160 923 1036 806 1059
1231 1310 950 1059 1138
1253 1030 1260 1284 859
实施例6
根据中控系统2设定固定输出电压为1000V,漏电流检出上限为5mA,使用大小为600*200*5(长宽厚)mm的极板,通过中控系统2设定上下极板4和5温度为45℃,控制收放卷装置9间歇走速15m/min,增压泵3施加压力0.2MPa。依次打开开启测试电路,开启收放卷装置9。中控装置实时显示每段(400mm)隔膜(12微米PE 基膜)的耐电压特性,通过显示OK,一旦有薄弱点被击穿则显示NG,持续1分钟并记录数据于下表,单位(V)。
屏显状态 电压 屏显状态 电压
OK 1305 OK 1053
OK 1402 OK 1062
OK 1250 OK 1230
OK 1106 OK 1430
OK 1460 OK 1130
OK 1382 OK 1456
OK 1120 OK 1482
OK 1026 OK 1530
OK 1536 OK 1205
OK 1486 NG 920
OK 1320 OK 1360
OK 1395 OK 1264
OK 1438    
实施例7
程序升压方式:使用大小为400*200*5(长宽厚)mm的极板4和5,通过中控系统2设定上下极板4和5温度为45℃,控制收放卷装置9间歇走速10m/min,增压泵3施加压力0.2MPa,程序升压速率500V/s。依次打开开启测试电路,开启收放卷装置9。中控装置实时读取每段(400mm)隔膜(12微米PE基膜涂覆4微米陶瓷层)的击穿电压值,持续1分钟并记录数据于下表,单位(V)。
1550 1395 1489 1652 1429
1660 1359 1439 1462 1562
1560 1623 1435 1306 1460
1503 1623 1624 1540 1361
1653 1352 1299 1587 1468
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本发明的一些具体实施例而已,并不用以限制本发 明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (15)

  1. 一种薄膜连续耐电压的测试方法,其特征在于,包括耐电压测试仪、增压泵、上极板、下极板、上柔性导电薄膜层、下柔性导电薄膜层、加热棒、收放卷装置、中控系统;包括如下步骤:
    (1)将待测薄膜置于收放卷装置上,待放卷;
    (2)通过中控系统设置增压泵提供的压力范围在0~5MPa之间;
    (3)通过中控系统设置加热棒工作或不工作;
    (4)通过中控系统设置收放卷装置的间歇行进速度、升压速率、击穿电流上限和/或下限;
    (5)开启测试电路开关,进行程序升压,开始测试;
    (6)当耐电压测试仪自动断电,蜂鸣响起时,结束测试,记录此时该区域的显示电压;
    (7)通过收放卷装置连续测试待测薄膜的不同区域,得到薄膜的击穿电压数据。
  2. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述增压泵通过连轴与上极板相连;所述加热棒内置于所述上、下极板的孔结构中;所述上、下极板的相对应面的该侧上分别覆盖有上、下柔性导电薄膜层,并通过导线与耐电压测试仪相连;所述耐电压测试仪通过转换器与中控系统相连;所述中控系统控制收放卷装置。
  3. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征 在于:测试时,待测薄膜位于所述上柔性导电薄膜层与下柔性导电薄膜层之间并紧密接触。
  4. 根据权利要求1-3所述的薄膜连续耐电压的测试方法,其特征在于:所述上、下柔性导电薄膜层内均填充有弹性介质。
  5. 根据权利要求4所述的薄膜连续耐电压的测试方法,其特征在于:所述弹性介质采用导电硅胶垫或导电石墨。
  6. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述上、下极板均采用金属材质。
  7. 根据权利要求6所述的薄膜连续耐电压的测试方法,其特征在于:所述金属材质为不锈钢或紫铜。
  8. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述上、下极板表面光滑平整、无损伤,表面粗糙度Ra≤2。
  9. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述上、下极板的长度为50~800mm,宽度为40~600mm,厚度为1~20mm。
  10. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:通过中控系统控制加热棒,使得上、下极板输出温度在±3℃的偏差范围。
  11. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述耐电压测试仪为直流电压测试仪。
  12. 根据权利要求11所述的薄膜连续耐电压的测试方法,其特征在于:所述直流电压测试仪工作电压为0~5KV,电压增加速度为 0~500V/s,击穿电流捕捉范围为0.1~99mA。
  13. 根据权利要求1所述的薄膜连续耐电压的测试方法,其特征在于:所述待测薄膜为锂电池隔膜。
  14. 根据权利要求13所述的薄膜连续耐电压的测试装置,其特征在于:所述锂电池隔膜为基膜或涂布膜。
  15. 一种薄膜连续耐电压的测试方法,其特征在于,包括耐电压测试仪、增压泵、上极板、下极板、上柔性导电薄膜层、下柔性导电薄膜层、加热棒、收放卷装置、中控系统;包括如下步骤:
    (1)将待测薄膜置于收放卷装置上,待放卷;
    (2)通过中控系统设置增压泵提供的压力范围在0~5MPa之间;
    (3)通过中控系统设置加热棒工作或不工作;
    (4)通过中控系统设置收放卷装置的间歇行进速度、固定电压、漏电流检出上限;
    (5)开启测试电路开关,开始测试;
    (6)当电流值小于设定上限值,判定OK;
    (7)当电流超过设定上限值,判定NG。
PCT/CN2021/088079 2020-07-21 2021-04-19 一种薄膜连续耐电压的测试方法 WO2022016923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010707447.8A CN111812470B (zh) 2020-07-21 2020-07-21 一种薄膜连续耐电压的测试方法
CN202010707447.8 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022016923A1 true WO2022016923A1 (zh) 2022-01-27

Family

ID=72861582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088079 WO2022016923A1 (zh) 2020-07-21 2021-04-19 一种薄膜连续耐电压的测试方法

Country Status (2)

Country Link
CN (1) CN111812470B (zh)
WO (1) WO2022016923A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812470B (zh) * 2020-07-21 2021-05-04 上海恩捷新材料科技有限公司 一种薄膜连续耐电压的测试方法
CN113008942A (zh) * 2021-03-04 2021-06-22 上海恩捷新材料科技有限公司 涂布膜涂层浆料分散性的检测方法、系统
CN114779032B (zh) * 2022-06-22 2022-09-30 深圳市博盛新材料有限公司 一种锂离子电池隔膜用击穿电压测试装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115846A (ja) * 1983-11-29 1985-06-22 Hitachi Ltd 絶縁薄膜検査方法及び検査装置
JP2013044023A (ja) * 2011-08-24 2013-03-04 Toshiba Corp 多元系合金の絶縁破壊電圧の評価方法
CN208188252U (zh) * 2018-04-03 2018-12-04 上海恩捷新材料科技股份有限公司 锂离子电池隔膜击穿电压测试装置及系统
CN208818795U (zh) * 2018-09-17 2019-05-03 江苏安瑞达新材料有限公司 锂电池隔膜耐电压值的测试装置
CN209784507U (zh) * 2018-12-27 2019-12-13 中兴高能技术有限责任公司 隔膜测试装置及隔膜测试系统
CN210427706U (zh) * 2019-06-18 2020-04-28 江苏厚生新能源科技有限公司 用于检测隔膜击穿电压的测试装置
CN111077422A (zh) * 2019-12-31 2020-04-28 河北金力新能源科技股份有限公司 一种锂离子电池隔膜击穿强度测试装置及其测试方法
CN111812470A (zh) * 2020-07-21 2020-10-23 上海恩捷新材料科技有限公司 一种薄膜连续耐电压的测试方法
CN212808485U (zh) * 2020-07-21 2021-03-26 上海恩捷新材料科技有限公司 一种薄膜连续耐电压的测试装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090217A (zh) * 2014-07-10 2014-10-08 深圳市星源材质科技股份有限公司 隔膜击穿电压测试装置及测试方法
CN205507003U (zh) * 2015-11-24 2016-08-24 上海恩捷新材料科技股份有限公司 一种电池隔膜耐电压测试夹具
CN207366690U (zh) * 2017-11-13 2018-05-15 上海恩捷新材料科技股份有限公司 一种测试隔膜击穿电压的装置
WO2019095258A1 (zh) * 2017-11-17 2019-05-23 太仓市何氏电路板有限公司 一种铝基板耐压测试平台
CN108627387B (zh) * 2018-06-28 2020-12-04 桑顿新能源科技有限公司 一种电池隔膜抗穿刺能力的测试方法和测试组合装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115846A (ja) * 1983-11-29 1985-06-22 Hitachi Ltd 絶縁薄膜検査方法及び検査装置
JP2013044023A (ja) * 2011-08-24 2013-03-04 Toshiba Corp 多元系合金の絶縁破壊電圧の評価方法
CN208188252U (zh) * 2018-04-03 2018-12-04 上海恩捷新材料科技股份有限公司 锂离子电池隔膜击穿电压测试装置及系统
CN208818795U (zh) * 2018-09-17 2019-05-03 江苏安瑞达新材料有限公司 锂电池隔膜耐电压值的测试装置
CN209784507U (zh) * 2018-12-27 2019-12-13 中兴高能技术有限责任公司 隔膜测试装置及隔膜测试系统
CN210427706U (zh) * 2019-06-18 2020-04-28 江苏厚生新能源科技有限公司 用于检测隔膜击穿电压的测试装置
CN111077422A (zh) * 2019-12-31 2020-04-28 河北金力新能源科技股份有限公司 一种锂离子电池隔膜击穿强度测试装置及其测试方法
CN111812470A (zh) * 2020-07-21 2020-10-23 上海恩捷新材料科技有限公司 一种薄膜连续耐电压的测试方法
CN212808485U (zh) * 2020-07-21 2021-03-26 上海恩捷新材料科技有限公司 一种薄膜连续耐电压的测试装置

Also Published As

Publication number Publication date
CN111812470B (zh) 2021-05-04
CN111812470A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2022016923A1 (zh) 一种薄膜连续耐电压的测试方法
CN108199005B (zh) 一种电池极片的碾压方法及设备
CN105680114B (zh) 一种锂离子电池的低温快速自加热方法
CN105355962B (zh) 一种卷绕式叠片电池的制备方法
CN107658428B (zh) 一种锂离子电池负极极片补锂装置及补锂方法
CN108598372A (zh) 一种极片补锂系统及补锂方法
KR20120020223A (ko) 에너지 저장 장치의 전극 제조용 도핑 장치 및 이를 이용한 전극 제조 방법
CN103606644A (zh) 锂离子电池的负极片、隔膜及两者的制造方法
US20220352491A1 (en) Asynchronous heating and calendering device, large wide ultra-thin lithium metal foil, preparation method therefor, and application thereof
CN109148827A (zh) 一种锂电池电极的预锂化方法
WO2003005480A1 (en) Secondary battery, manufacturing method for secondary battery, and manufacturing apparatus for secondary battery
CN108134042B (zh) 一种高密封防漏液的锂离子电池极耳的生产工艺
WO2023024652A1 (zh) 料带缺陷修复装置
CN210427706U (zh) 用于检测隔膜击穿电压的测试装置
CN113078347A (zh) 一种具有负极极片多间隙结构的锂电池
CN212808485U (zh) 一种薄膜连续耐电压的测试装置
JP2005183181A (ja) 非水電解質二次電池用電極板およびその製造方法
CN112563445B (zh) 一种锂离子电池复合极片的辊压装置及辊压方法
CN207572479U (zh) 一种预防锂离子电芯形变的卷绕装置
CN111300854A (zh) 一种涂胶卷料的制备方法及制备装置
CN211926814U (zh) 一种提升电池能量密度的覆膜宽度检测装置
CN215529362U (zh) 一种极片加热机构及极片辊压装置
CN114759154A (zh) 一种固态锂电池的制备方法
CN110137574B (zh) 一种动力锂电池化成方法与装置
CN209592187U (zh) 一种锂离子电池正极片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845321

Country of ref document: EP

Kind code of ref document: A1