WO2022016662A1 - 光伏组件,光伏组件的背板和光伏组件的制造方法 - Google Patents

光伏组件,光伏组件的背板和光伏组件的制造方法 Download PDF

Info

Publication number
WO2022016662A1
WO2022016662A1 PCT/CN2020/112082 CN2020112082W WO2022016662A1 WO 2022016662 A1 WO2022016662 A1 WO 2022016662A1 CN 2020112082 W CN2020112082 W CN 2020112082W WO 2022016662 A1 WO2022016662 A1 WO 2022016662A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermally conductive
conductive layer
photovoltaic module
battery
Prior art date
Application number
PCT/CN2020/112082
Other languages
English (en)
French (fr)
Inventor
陈道远
薛文娟
周艳方
赵双
李坚
Original Assignee
晶澳太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010712100.2A external-priority patent/CN111816724B/zh
Priority claimed from CN202010818096.8A external-priority patent/CN111952393B/zh
Priority claimed from CN202010818105.3A external-priority patent/CN111952413B/zh
Application filed by 晶澳太阳能有限公司 filed Critical 晶澳太阳能有限公司
Priority to US17/614,310 priority Critical patent/US20220320356A1/en
Priority to EP20931723.9A priority patent/EP3971994B1/en
Publication of WO2022016662A1 publication Critical patent/WO2022016662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a photovoltaic assembly, a backplane of the photovoltaic assembly, and a manufacturing method of the photovoltaic assembly.
  • the hot spot effect of photovoltaic modules refers to the phenomenon that under certain conditions, the shaded battery cells in the series branch will be used as loads, consuming the energy generated by other illuminated battery cells, and the shaded battery cells will heat up at this time.
  • the hot spot temperature can reach above 170°C.
  • the damage caused by the hot spot effect of photovoltaic modules is very serious.
  • the shaded battery cells will consume some or all of the energy generated by the illuminated battery cells to generate heat, reduce the output power, and in severe cases will permanently damage the battery cells. , or even burn the battery cells. Therefore, reducing the hot spot temperature of photovoltaic modules is an urgent problem to be solved.
  • An aspect of the present disclosure provides a photovoltaic assembly including a cell layer and a thermally conductive layer.
  • the battery layer includes a plurality of battery cells arranged in an array and configured to receive light and generate power.
  • the thermally conductive layer is formed of or includes a thermally conductive material, and is in thermal communication with the battery layer.
  • the heat-conducting layer is in the shape of a mesh, and includes a frame portion and a hollow portion surrounded by the frame portion. In the thickness direction of the photovoltaic module, at least a part of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps with the battery cells.
  • a backsheet for a photovoltaic module including a thermally conductive layer.
  • the thermally conductive layer is in the shape of a mesh, and includes a frame portion and a hollow portion surrounded by the frame portion.
  • Another aspect of the present disclosure provides a method for manufacturing a photovoltaic module, comprising: providing a transparent front sheet; providing a back sheet; providing a thermally conductive layer, wherein the thermally conductive layer is in a mesh shape and includes a frame portion and a frame portion formed by the frame portion a surrounding hollow portion; and a battery layer including a plurality of battery cells is provided between the front plate and the back plate, the plurality of battery cells are arranged in an array such that in the thickness direction of the photovoltaic module, all At least a part of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps with the battery cells.
  • FIG. 1 shows a plan view from one side of a photovoltaic assembly according to an embodiment of the present disclosure
  • Figure 2 shows a plan view from the other side of the photovoltaic module of Figure 1;
  • Figure 3 shows a cross-sectional view of the photovoltaic assembly in Figure 1;
  • FIG. 4 shows a plan view of the thermally conductive layer of the photovoltaic module of FIG. 1;
  • Fig. 5 shows a plan view of the back sheet of the photovoltaic module of Fig. 1;
  • FIG. 6 shows a cross-sectional view of a skeleton portion of a thermally conductive layer and an adhesive layer of the thermally conductive layer according to an embodiment of the present disclosure
  • FIG. 7 shows a cross-sectional view of a skeleton portion of a thermally conductive layer and an adhesive layer of the thermally conductive layer according to another embodiment of the present disclosure
  • FIG. 8 shows a plan view of a thermally conductive layer according to another embodiment of the present disclosure.
  • FIG. 9 shows a plan view of a thermally conductive layer according to another embodiment of the present disclosure.
  • FIG. 10 shows a plan view of a thermally conductive layer according to another embodiment of the present disclosure.
  • FIG. 11 shows a cross-sectional view of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 12 shows a cross-sectional view of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIGS. 13A-13C illustrate cross-sectional views of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • 14A-14B illustrate cross-sectional views of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 15 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 16 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 17 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 18 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 19 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 20 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 21 shows a cross-sectional view of a backsheet of a photovoltaic assembly according to another embodiment of the present disclosure
  • FIG. 22 shows a cross-sectional view of a photovoltaic assembly according to another embodiment of the present disclosure
  • Figure 23 shows a plan view of the thermally conductive layer of Figure 22
  • FIG. 24 shows a cross-sectional view of a photovoltaic assembly according to another embodiment of the present disclosure.
  • Figure 26 shows a cross-sectional view of a bifacial cell.
  • Photovoltaic modules are usually in the form of plates or sheets, which extend substantially in a plane and have a certain thickness.
  • a direction perpendicular to the plane of extension of the photovoltaic assembly is defined as a "thickness direction”.
  • a "thermal communication" or “thermal connection” relationship between a component and another component includes not only the heat transfer relationship between the one component and the other component, but also the relationship between the one component and the other component.
  • the heat transfer includes not only heat conduction, but also various heat radiation, heat convection, etc. form of heat transfer.
  • a photovoltaic module generally includes a backplane and a battery layer disposed on the backplane, in which a plurality of battery cells are arranged in an array.
  • the battery cells may be single-sided battery cells or double-sided battery cells.
  • a single-sided cell is a cell that can only receive light from one side and convert the light into electrical power.
  • Bifacial cells are cells that can receive light from both sides and convert the light into electrical power.
  • Photovoltaic modules including bifacial cells can not only receive direct sunlight from one side (ie, the front side) to convert it into electrical power, but also receive reflected light, such as from the ground or scattered light, from the other side (ie, the back side) light such as light, thereby improving the power generation efficiency of photovoltaic modules.
  • Figure 26 shows a cross-sectional view of a bifacial cell.
  • the double-sided battery cell includes a metal front electrode 141, a front surface anti-reflection film 142, a boron-doped emission layer 143, an n-type silicon layer 144, a phosphorus-doped back field (BSF) layer 145, and a back surface anti-reflection film 146 and metal back electrode 147.
  • the battery cells may also have other configurations, and the present disclosure is not limited thereto.
  • photovoltaic modules may have hot spots that damage the photovoltaic modules. It is necessary to reduce the temperature of the photovoltaic modules when the hot spots occur to improve the reliability of the photovoltaic modules.
  • a photovoltaic module adopts a heat-dissipating aluminum backplane structure to dissipate heat from the photovoltaic module.
  • aluminum is opaque, when the photovoltaic module adopts double-sided battery cells, the shading of the aluminum layer will affect the back surface of the double-sided battery cells of the photovoltaic module. power generation.
  • a photovoltaic assembly has a mesh-shaped thermally conductive layer in thermal communication with the cell layer, and includes a skeleton portion and a hollow portion surrounded by the skeleton portion.
  • the skeleton portion is made of or contains a thermally conductive material.
  • the thermally conductive layer overlaps with the gap between adjacent battery cells, and the hollow portion of the thermally conductive layer overlaps with the battery cells. That is, at least a part of the skeleton portion extends along the gap between adjacent battery cells, and the hollow portion is provided at the battery cell.
  • the heat generated by the battery cells can be conducted along the skeleton part of the thermal conductive layer, and on the other hand, light (such as reflected light from the ground, scattered light, etc.) can pass through the hollow part of the thermal conductive layer. Transmits from one side (back side) of the photovoltaic module towards the other side (front side) to be received by the back side of the cells, thereby reducing the impact on the amount of light on the back side of the photovoltaic module. While ensuring the backside power generation of the photovoltaic modules with double-sided power generation, the heat at the hot spots of the photovoltaic modules is conducted out in time to suppress the temperature of the photovoltaic cells where the hot spots are formed. Therefore, while ensuring the power generation efficiency of the photovoltaic module, the stability of the photovoltaic module is improved.
  • photovoltaic modules according to some embodiments of the present disclosure are particularly described by taking a bifacial cell unit as an example, the present disclosure is not limited thereto.
  • a photovoltaic assembly includes a back sheet 110 , a thermally conductive layer 130 disposed on the back sheet 110 , and a battery layer including a plurality of battery cells disposed on the thermally conductive layer 130 140.
  • the front plate 150 covering the battery layer 140, the battery layer 140 is bonded to the front plate 150 through the second bonding layer 122 and to the back plate 110 through the first bonding layer 121, thereby Packaged into a photovoltaic module, the thermally conductive layer 130 is bonded to the back sheet 110 through the thermally conductive layer adhesive layer 131 .
  • the back plate 110 and the front plate 150 can be glass plates, etc., or the back plate 110 can be made of other materials, such as high molecular polymer materials, which can form, for example, an insulating barrier layer, a fluorine-containing weather-resistant layer, a first layer Three bonding layers or bonding transition layers, etc.
  • the first adhesive layer 121 and the second adhesive layer 122 may be EVA (ethylene vinyl acetate) or POE (polyethylene-octene elastomer) or the like.
  • the thermally conductive layer 130 is in the shape of a mesh, and includes a skeleton portion 130a and a hollow portion 130b surrounded by the skeleton portion 130a.
  • the skeleton portion 130a is formed of or contains a thermally conductive material. As shown in FIG. 3, in the thickness direction of the photovoltaic module, at least a part of the skeleton portion 130a overlaps with the gap between the battery cells and covers the edge portion of the adjacent battery cell, thereby forming thermal communication with the battery cell, and the hollow portion 130b overlaps the battery cells.
  • the hollow portion 130b is filled with the first adhesive layer 121 .
  • the temperature of the battery cell with the hot spot is above 105°C, for example, while the temperature of the surrounding battery cells is usually about 60°C, for example, due to the existence of the temperature gradient, the heat will be conducted in the way of heat conduction.
  • the skeleton portion 130a of the thermally conductive layer 130 diffuses from the high temperature region at the hot spot to the low temperature region, thereby reducing the temperature at the hot spot.
  • the light can pass through the hollow portion 130b of the thermally conductive layer 130 and transmit through the photovoltaic module, so as to reduce the influence on the amount of light on the backside of the photovoltaic module, thereby ensuring the backside power generation of the photovoltaic module.
  • the skeleton portion 130a of the thermally conductive layer 130 includes a plurality of first strip-shaped thermally conductive portions 132 extending in a first direction (up-down direction in FIGS. 1 , 2 and 4 ) and a A plurality of second strip-shaped heat-conducting portions 133 extending in the second direction of the direction (the left-right direction in FIGS. 1 , 2 and 4 ), the first strip-shaped heat-conducting portions 132 and the second strip-shaped heat-conducting portions 133 are formed mesh. As shown in FIGS.
  • the first strip-shaped heat-conducting portion 132 or the second strip-shaped heat-conducting portion 133 of the heat-conducting layer 130 overlaps with the gap between adjacent battery cells. That is, the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 are arranged to extend along the gaps between adjacent battery cells.
  • the hollow portion 130b of the thermally conductive layer 130 formed between the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 overlaps the battery cell in the thickness direction. Therefore, the thermally conductive layer 130 can conduct heat away from the battery cells, and at the same time reduce the influence on the light transmission through the photovoltaic module and the power generation efficiency of the backside of the photovoltaic module.
  • the first strip-shaped heat-conducting portion 132 and the second strip-shaped heat-conducting portion 133 of the heat-conducting layer 130 may are arranged to overlap the edges of the battery cells adjacent thereto.
  • the first strip-shaped heat-conducting portion 132 and the second strip-shaped heat-conducting portion 133 may not overlap the edges of adjacent battery cells.
  • the thermally conductive layer 130 is also configured to reflect light, and thus, as shown in FIG. 3 , the light irradiated on the thermally conductive layer 130 can be reflected, and then irradiated to the battery by, for example, the reflection of the back surface of the front plate 150 .
  • the front side of the unit thereby enhancing the front power generation efficiency of the photovoltaic module.
  • the thermally conductive layer 130 is configured to reflect at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of light incident thereon.
  • the thermally conductive layer 130 may be a thermally conductive material such as aluminum foil or copper foil.
  • the thermally conductive layer 130 may be plated with tin or nickel.
  • FIG. 6 shows a cross-sectional view of the skeleton portion 130a of the thermally conductive layer 130 and the thermally conductive layer adhesive layer 131 according to an embodiment of the present disclosure.
  • the thermally conductive layer adhesive layer 131 is disposed between the backplane 110 and the thermally conductive layer 130 .
  • the thermally conductive layer 130 (specifically, the skeleton portion 130 a thereof) is bonded to the back plate 110 through the thermally conductive layer adhesive layer 131 .
  • the surface of the skeleton portion 130a of the thermally conductive layer 130 facing the battery layer 140 may be a flat surface.
  • FIG. 7 illustrates a cross-sectional view of the skeleton portion 130a of the thermally conductive layer 130 and the thermally conductive layer adhesive layer 131 according to another embodiment of the present disclosure.
  • the surface of the skeleton portion 130 a of the thermally conductive layer 130 facing the battery layer 140 may also be toothed, which acts as a prism to better reflect light to the battery cells of the battery layer 140 and increase the size of the photovoltaic module positive power generation efficiency.
  • the thermally conductive layer adhesive layer 131 may include EVA, POE, EAA, EEA (ethylene-ethyl acrylate), PP (polypropylene), SIS (styrene-isoprene-styrene), SBS (styrene- butadiene-styrene), etc.
  • the thermal conductive layer adhesive layer 131 may be EVA, POE, or PP, which may be press-fitted to the backplane 110 at a high temperature.
  • the thermal conductive layer adhesive layer 131 may be a blended resin of EVA, EAA (ethylene acrylic acid), and SIS, which may be press-fitted to the back sheet 110 at a high temperature.
  • a manufacturing method of manufacturing a photovoltaic module such as that shown in FIG. 3 may include: S11, providing a backsheet; S12, laminating a thermally conductive layer on the backsheet; and S13, laminating a battery layer including a plurality of battery cells on the thermally conductive layer.
  • the heat-conducting layer is in the form of a mesh, which includes a skeleton part and a hollow part surrounded by the skeleton part.
  • the plurality of battery cells are arranged in an array. In the thickness direction of the photovoltaic module, at least a part of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps with the battery cells.
  • the thermally conductive layer 130 in the embodiments shown in FIGS. 1-5 can be formed by various methods.
  • the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 are respectively bonded on the back plate 110 to form a thermally conductive layer.
  • the rolled strip of strip-shaped aluminum foil can be unrolled and attached to the backing plate 110 to form the first strip-shaped thermally conductive portion 132, and then the rolled strip of strip-shaped aluminum foil can be unwound and attached to the backing plate 110,
  • the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 intersect each other to form a mesh pattern, thereby forming the skeleton portion 130a of the thermally conductive layer 130, while the first strip-shaped thermally conductive portion 133 intersects with each other to form a mesh pattern.
  • the portion surrounded by 132 and the second strip-shaped heat-conducting portion 133 forms the hollow portion 130b of the heat-conducting layer 130 .
  • the first strip-shaped thermally conductive part 132 and the second strip-shaped thermally conductive part 133 may have the same width.
  • the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 can be formed by using the same winding tape, which reduces cost and facilitates manufacturing.
  • the first strip-shaped thermally conductive portion 132 and the second strip-shaped thermally conductive portion 133 may also have different widths as required.
  • the pattern composed of the skeleton portion 130a and the hollow portion 130b of the thermally conductive layer 130 may also be formed by punching a sheet material.
  • the present invention is not limited thereto, and the thermally conductive layer may also be formed on the backplane 110 by other methods such as screen printing, coating, spraying, sintering, and the like.
  • the thermally conductive layer 130 shown in FIG. 4 has a rectangular mesh pattern, but the present disclosure is not limited thereto. 8-10 illustrate plan views of thermally conductive layers 130 according to other embodiments of the present disclosure. As shown in FIG. 8 , the thermally conductive layer 130 is in a "rice"-shaped mesh pattern. As shown in FIG. 9 , the thermally conductive layer 130 has a honeycomb mesh pattern. As shown in FIG. 10 , the thermally conductive layer 130 is in a grid-like mesh pattern. The patterns shown in FIGS. 8-10 are based on the first strip-shaped heat-conducting portion 132 and the second strip-shaped heat-conducting portion 133 shown in FIG. 4 , and a skeleton portion 130 a overlapping the battery cells is added.
  • the rectangular mesh pattern shown in FIG. 4 has less influence on the backside power generation efficiency of the photovoltaic module, while the thermal conductive layer 130 shown in FIGS. 8-10 has a larger overlapping area with the battery cells, so that the thermal conductivity is more efficient.
  • the specific pattern of the thermally conductive layer 130 can be designed according to different needs.
  • the thermally conductive layer 130 shown in FIG. 10 is in a grid-like mesh pattern, and the light-shielding area where the skeleton portion 130a overlaps with the battery cells includes a plurality of sub-strip-shaped thermally conductive portions 134, which are preferably connected with the battery cells.
  • Busbars overlap. Since the plurality of sub-strip-shaped heat-conducting portions 134 overlap with the busbars of the battery cells, they can quickly conduct the heat at the busbars, thereby minimizing the melting phenomenon of the solder at the busbars caused by local overheating.
  • the busbar is a bus bar that is connected to the thin grid (eg, front electrode, back electrode of the battery cell) to collect current from the thin grid.
  • Photovoltaic modules can also have other stacked structures.
  • the photovoltaic module includes a back sheet 210 , a first adhesive layer 221 disposed on the first surface of the back sheet 210 , and a battery layer 240 including a plurality of battery cells disposed on the first adhesive layer 221 , a second adhesive layer 222 covering the battery layer 240 , a front plate 250 disposed on the second adhesive layer 222 , and a thermally conductive layer 230 disposed on a second surface of the back plate 210 opposite to the first surface.
  • the thermally conductive layer 230 is bonded to the back plate 210 through the thermally conductive layer adhesive layer 231 .
  • a fluororesin layer 260 serving as a protective layer may be provided on the opposite side of the thermally conductive layer 230 from the back plate 210, for example, by spraying.
  • the photovoltaic module includes a back sheet 310 , a first adhesive layer 321 disposed on the first surface of the back sheet 310 , and a battery layer 340 including a plurality of battery cells disposed on the first adhesive layer 321 , a second adhesive layer 322 covering the battery layer 340 , a front plate 350 disposed on the second adhesive layer 322 , and a thermally conductive layer 330 disposed on a second surface of the back plate 310 opposite to the first surface.
  • the thermally conductive layer 330 is bonded to the back plate 310 through the thermally conductive layer adhesive layer 331 .
  • a fluorine-containing weather-resistant layer 380 serving as a protective layer may be provided on the opposite side of the thermally-conductive layer 330 from the back sheet 310 .
  • the fluorine-containing weather-resistant layer 380 Attached to the thermally conductive layer 330 by a fourth adhesive layer 370 .
  • the fourth adhesive layer 370 may be polyurethane, EVA, POE, PP or a blended resin of EVA, EAA, SIS or a blended resin of EVA, EEA, SBS.
  • the manufacturing method of manufacturing a photovoltaic module may include: S21, providing a back sheet; S22, laminating a cell layer on the first side of the back sheet; and S23, laminating a thermally conductive layer on the back sheet and the back sheet. on the second side opposite the first side.
  • the battery cells are arranged in an array.
  • the heat-conducting layer is in the form of a mesh, which includes a skeleton part and a hollow part surrounded by the skeleton part. In the thickness direction of the photovoltaic module, at least a part of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps with the battery cells.
  • the thermally conductive layer may also be compounded into the backing sheet rather than being provided on the backing sheet independently of the backing sheet.
  • the thermally conductive layer in the backplane is in the shape of a mesh, and the battery layer including a plurality of battery cells is disposed on the backplane. At least a part of the skeleton part of the thermal conductive layer overlaps with the gap between adjacent battery cells and the edge of the adjacent battery cells in the thickness direction, and the hollow part of the thermal conductive layer overlaps with the battery cells in the thickness direction.
  • the backplane may include a stacked thermally conductive layer 407 , a first and third adhesive layer 406 , a fluorine-containing weather-resistant layer 405 , a second and third adhesive layer 404 , and an insulating barrier layer 403 in sequence. , the third third bonding layer 402 and the bonding transition layer 401 .
  • the cell layers may be attached to the bonding transition layer 401, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the bonding transition layer is arranged on the outermost side of the backing sheet, here is the outer side of the third and third bonding layers 402, which helps to enhance the bonding force of the first bonding layer to the backing sheet, so as to make the backing sheet and the backing sheet
  • the battery layers are more firmly bonded together.
  • the thermally conductive layer 407 is in the shape of a mesh, including a skeleton portion and a hollow portion, the hollow portion can be filled with air (see FIG. 13B ) or by the first and third adhesive layers 406 adjacent thereto. (See Figure 13C).
  • the backplane may include a laminated fluorine-containing weather-resistant layer 507 , a first and third adhesive layer 506 , an insulating barrier layer 505 , a second and third adhesive layer 504 , and a thermally conductive layer in sequence. 503 , the third third bonding layer 502 and the bonding transition layer 501 .
  • the cell layers may be attached to the bonding transition layer 501, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • a first bonding layer eg, the first bonding layer 121 shown in FIG. 3
  • the thermally conductive layer 503 is in the shape of a mesh and includes a skeleton portion and a hollow portion, the hollow portion can be filled with the third third adhesive layer 502 and/or the second third adhesive layer 504 adjacent thereto.
  • the backplane may include a laminated fluorine-containing weather-resistant layer 607 , a first and third adhesive layer 606 , a thermally conductive layer 605 , a second and third adhesive layer 604 , and an insulating barrier layer in sequence. 603 , the third third bonding layer 602 and the bonding transition layer 601 .
  • the cell layers may be attached to the bonding transition layer 601, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the backplane may include a laminated fluorine-containing weather-resistant layer 706 , a first and third adhesive layer 705 , an insulating barrier layer 704 , a second and third adhesive layer 703 , and a thermally conductive layer in sequence. 702 and bonding transition layer 701.
  • the cell layer may be attached to the bonding transition layer 701, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the bonding transition layer is arranged on the outermost side of the backplane, here on the outer side of the thermally conductive layer 702, which helps to enhance the bonding force of the first bonding layer to the backplane, so that the backplane and the battery layer can be more firmly attached bonded together.
  • the backplane may include a laminated fluorine-containing weather-resistant layer 806 , a first and third adhesive layer 805 , a thermally conductive layer 804 , a second and third adhesive layer 803 , and an insulating barrier layer in sequence. 802 and bonding transition layer 801.
  • the cell layers may be attached to the bonding transition layer 801, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the bonding transition layer is arranged on the outermost side of the backsheet, here is the outer side of the insulating barrier layer 802, which helps to enhance the bonding force of the first bonding layer to the backsheet, so as to make the backsheet and the battery layer stronger glued together.
  • the backplane may include a stacked thermally conductive layer 906 , a first and third adhesive layer 905 , a fluorine-containing weather-resistant layer 904 , a second and third adhesive layer 903 , and an insulating barrier layer in sequence. 902 and bonding transition layer 901.
  • the cell layer may be attached to the bonding transition layer 901, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the backsheet may include a laminated fluorine-containing weathering layer 1005, a thermally conductive layer 1004, a third adhesive layer 1003, an insulating barrier layer 1002, and an adhesive transition layer 1001 in sequence.
  • the cell layer may be attached to the bonding transition layer 1001, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the backsheet may include a laminated fluorine-containing weather-resistant layer 1105 , an insulating barrier layer 1104 , a third adhesive layer 1103 , a thermally conductive layer 1102 and an adhesive transition layer 1101 in sequence.
  • the cell layer may be attached to the bonding transition layer 1101, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the backplane may include a stacked thermally conductive layer 1205 , a third adhesive layer 1204 , a fluorine-containing weather-resistant layer 1203 , an insulating barrier layer 1202 and an adhesive transition layer 1201 in sequence.
  • the cell layer may be attached to the bonding transition layer 1201, for example, by a first bonding layer (eg, the first bonding layer 121 shown in FIG. 3).
  • the backplane uses a 5-layer structure. While ensuring other performances of the backplane, since the number of layers of the backplane is small and the overall thickness is relatively thin, the thermally conductive layers 1004 , 1102 , and 1205 can better conduct heat out.
  • the fluorine-containing weather-resistant layer may be a fluorine film, such as a PVDF (polyvinylidene fluoride) film, a TEDLAR (registered trademark) film (polyvinyl fluoride film), a fluorocarbon resin, or the like.
  • the third adhesive layer in the above-mentioned back sheet may be polyurethane or the like.
  • the insulating barrier layer may be PET (polyethylene terephthalate) or the like.
  • the adhesive transition layer may be EVA, POE, LDPE (low density polyethylene), PVDF film, TEDLAR film (eg, as shown in Figures 13A-15), or may be a fluororesin such as a fluorocarbon resin (eg , shown in Figure 16- Figure 21) and so on.
  • EVA EVA
  • POE low density polyethylene
  • LDPE low density polyethylene
  • PVDF film PVDF film
  • TEDLAR film eg, as shown in Figures 13A-15
  • fluororesin such as a fluorocarbon resin
  • the manufacturing method of manufacturing a photovoltaic module may include: S31 , providing a back sheet; and S32 , stacking the battery cell numbers in an array on the back sheet.
  • the heat conducting layer is in the shape of a mesh, which includes a skeleton part and a hollow part surrounded by the skeleton part, and in the thickness direction of the photovoltaic module, at least a part of the skeleton part overlaps with the gap between adjacent battery cells, and the hollow part is connected to the battery cell. overlapping.
  • the step S31 of providing the backplane includes, for example, laminating the thermally conductive layer with at least one of an insulating barrier layer, a fluorine-containing weather-resistant layer, and an adhesive transition layer to form a backplane.
  • the thermally conductive layer can be formed together with the backplane during the manufacturing process of the backplane, which simplifies the manufacturing cost.
  • the thermally conductive layers 407 , 503 , 605 , 702 , 804 , 906 , 1004 , 1102 , 1205 may be aluminum foils.
  • the thermally conductive layers 407 , 503 , 605 , 702 , 804 , 906 , 1004 , 1102 , 1205 may also include polymeric resins such as PET, POE, PE and mixed in polymeric resins.
  • Thermally conductive particles such as copper particles or aluminum particles in the Additionally, in some examples, where the thermally conductive layers 503, 605, 702, 804, 1004, 1102 include a polymeric resin and metal thermally conductive particles mixed in the polymeric resin, the thermally conductive layers 503, 605, 702, 804, 1004, 1102 may be positioned adjacent to an insulating barrier layer of the same polymeric resin (eg, PET) and coextruded with the insulating barrier layer. In this way, the third adhesive layer between the thermally conductive layer and the insulating barrier layer is omitted, the thickness of the backplane is reduced, and the formation process of the thermally conductive layer and the backplane including the thermally conductive layer is simplified.
  • PET polymeric resin
  • the thermally conductive layers 503, 605, 702, 804, 1004, 1102 may be positioned adjacent to an insulating barrier layer of the same polymeric resin (eg, PET) and coextruded with the insulating barrier layer. In this way, the third adhesive layer between the thermally
  • thermally conductive layers with other patterns, not limited to mesh-like thermally conductive layers, for example, without hollow parts but with a complete surface
  • thermally conductive layer such as the thermally conductive layer in Figure 23 to be described below.
  • a photovoltaic assembly includes a back sheet, a thermally conductive layer, a cell layer, and a front sheet.
  • the photovoltaic assembly may include a backsheet, a thermally conductive layer disposed on the backing sheet, disposed on the thermally conductive layer
  • the battery layer including a plurality of battery cells and a front plate covering the battery layer.
  • a photovoltaic assembly may include a backsheet, similar to the photovoltaic assembly shown in Figures 11, 12 (but excluding the thermally conductive layer adhesive layers 231, 331) and Figures 22, 24 to be described below , a battery layer including a plurality of battery cells disposed above the back plate, a front plate covering the battery layer, and a thermally conductive layer disposed on a side of the back plate facing away from the battery layer.
  • the thermally conductive layer is in the shape of a mesh, including a skeleton part and a hollow part surrounded by the skeleton part, and in the thickness direction of the photovoltaic module, at least a part of the skeleton part overlaps with the gap between adjacent battery cells, and the hollow part is connected to the battery cell. Cells overlap.
  • the thermally conductive layer is a thermally conductive film layer bonded to a surface of the backplane, and the thermally conductive film layer includes thermally conductive particles and white inorganic pigments.
  • the heat-conducting particles in the heat-conducting film layer make the heat-conducting film layer have good heat-conducting properties, so as to conduct the heat of the battery layer at the hot spot in time.
  • the white inorganic pigment in the thermal conductive film layer makes the thermal conductive layer have good reflection characteristics, so that the light irradiated on the thermal conductive layer can be reflected to the battery unit, thereby increasing the power generation efficiency of the photovoltaic module.
  • the thermally conductive particles may include one or more of silicon carbide, aluminum nitride, and boron carbide.
  • the thermally conductive particles may further include one or more of aluminum particles, silver particles, copper particles, and gold particles.
  • white inorganic pigments may include tincture, titanium dioxide, talc, lead white, mica, calcium carbonate, calcium sulfate, zinc oxide, antimony trioxide, magnesium oxide, magnesium carbonate, iron oxide, silicon dioxide, One or more of zirconium, barium sulfate and alumina.
  • Adhesives are used to securely attach the thermally conductive layer to a backplane, eg, a glass backplane.
  • the binder can include organic polymers or colloids generated from organic salts, inorganic salts, and metal-organic compounds.
  • the salts may be organic, such as Ti (OR) 4 or Si (OR) 4 alkoxides or Pb (CH 3 COO) 2.
  • the inorganic salt may be Zn (NO 3) 2 or zirconium oxychloride.
  • the organic polymer may include phenolic resins, urea-formaldehyde resins, epoxies, polyvinyl acetates, polyvinyl-ethyl vinyl esters, acrylates, polystyrenes, alkyds, polyurethanes, polyisocyanates, acrylic dimethacrylates Esters, silanes, polybenzimidazole, polyimide or butyl rubber.
  • Auxiliaries are used to improve other properties such as the stability of the thermally conductive film layer, for example, emulsifiers, dispersants, polymerization inhibitors, rheology agents, anti-settling agents, driers, One or more of anti-scratch agent, antioxidant, lubricant, mold release agent, heat stabilizer, light stabilizer, antistatic agent, anti-wear agent, thickener and defoamer.
  • the catalyst can be one or more of inorganic acids, organic acids, bases, acid salts, basic salts, and organic ammonium salts.
  • thermally conductive layer preform The above-mentioned white inorganic pigments, thermally conductive particles, and agents such as binders, auxiliary agents, and catalyst lamps are mixed with a solvent to prepare a thermally conductive layer preform.
  • the thermally conductive layer preform is screen-printed, rolled, sprayed, pulled, spin-coated, slotted (a coating method in which the solution is pressed out along the die gap and transferred to a moving substrate), ultrasonic atomization or The combination is applied to the backsheet. Then, the thermally conductive layer preform is dried at a suitable temperature to form a backing sheet with the thermally conductive layer attached.
  • the drying temperature may be, for example, in the range of 0-800°C, or in the range of 0-60°C.
  • the thermally conductive film layer can be attached to the backplane by coating, so the manufacturing is convenient and the cost is low, and the manufacturing process of the thermally conductive layer can be integrated into the manufacturing process of the backplane, which is convenient for management.
  • the thermally conductive layer is in the form of a mesh.
  • the photovoltaic assembly includes a backsheet, a thermally conductive layer, a cell layer, and a frontsheet, and the thermally conductive layer may, for example, be disposed substantially over the entire surface of the backsheet.
  • the thermally conductive layer is a thermally conductive film layer bonded to substantially the entire surface of the backplane, the thermally conductive film layer including thermally conductive particles and white inorganic pigments. The heat-conducting particles in the heat-conducting film layer make the heat-conducting film layer have good heat-conducting properties, so as to conduct the heat of the battery layer at the hot spot in time.
  • the white inorganic pigment in the thermal conductive film layer makes the thermal conductive layer have good reflection characteristics, so that the light irradiated on the thermal conductive layer can be reflected to the battery unit, thereby increasing the power generation efficiency of the photovoltaic module.
  • Other aspects of the thermally conductive layer may be configured as in the above-described embodiments.
  • the photovoltaic module includes a laminate structure and a thermally conductive layer 130 .
  • the laminated structure includes a front sheet 150 , a first adhesive layer 122 , a battery layer 140 , a second adhesive layer 121 and a back sheet 110 .
  • the battery layer 140 includes a plurality of battery cells arranged in an array and configured to receive light and generate power.
  • the battery layer 140 is bonded to the front plate 150 through the first adhesive layer 122 and to the back plate 110 through the second adhesive layer 121, and then the front plate 150, the first adhesive layer 122, the battery layer 140, the The second adhesive layer 121 and the back sheet 110 form a laminated structure.
  • the thermally conductive layer 130 is formed on the surface of the side of the back plate 110 facing away from the battery layer 140 . Therefore, the thermally conductive layer 130 may be formed on the outer surface of the laminated structure after the laminated structure is formed. Therefore, the forming step of the thermally conductive layer 130 can be conveniently and economically combined with the existing manufacturing line. In addition, maintenance and repair (eg, repair) of the thermally conductive layer 130 may be facilitated after the photovoltaic module is put into use.
  • the front plate 150 may be a transparent glass plate.
  • the back sheet 110 may be a glass sheet, or may be, for example, a composite sheet including an insulating barrier layer, a fluorine-containing weathering layer, a third adhesive layer, and an adhesive transition layer.
  • a method of manufacturing a photovoltaic module such as that described above in FIG. 22 may include: providing a transparent front sheet 150; providing a back sheet 110; providing a cell layer 140 between the front sheet 150 and the back sheet 110; laminating including the front sheet 150, the cell layer 140 and a laminated structure of the back sheet 110 to form a laminated structure; and after lamination, a thermally conductive layer 130 is provided on a surface of the back sheet 110 on the side away from the battery layer 140 .
  • providing the thermally conductive layer 130 may include: coating a thermally conductive layer solution containing thermally conductive particles on the surface of the backplane 110 on the side away from the battery layer 140 ; and drying the thermally conductive layer solution to form the thermally conductive layer 130 .
  • the thermally conductive particles may include, for example, one or more of aluminum particles, silver particles, copper particles, and gold particles, and these metal particles have good thermal conductivity and are easy to be uniformly coated.
  • the thermally conductive particles may also include silicon carbide, aluminum nitride, boron carbide, and the like.
  • the thermally conductive layer solution includes a curing component and a diluting component.
  • the curing components may include rheology aids, acrylic resins, amino resins, first solvent, cellulose acetate butyrate solution, and leveling agents.
  • the diluent components may include a second solvent and an isocyanate.
  • the rheology additive has a directional effect on the aluminum particles, for example, it can be an ethylene-vinyl acetate copolymer dispersion or a polyolefin anti-settling agent.
  • the first solvent may be, for example, an alcohol ether-based organic solvent containing a hydrophilic group and a lipophilic group.
  • the second solvent may be aliphatic, ketone, glycol, glycol ether, glycol ester, or aromatic carbon hydrocarbon solvent.
  • the thermally conductive layer solution may be applied to the backing plate 110 by any one of screen printing, roll coating, spray coating, pulling, spin coating, slot method, ultrasonic atomization, or a combination thereof on said surface.
  • the manufacturing method may further include: providing the first adhesive layer 122 ; and providing the second adhesive layer 121 .
  • the above lamination step is to laminate a laminated structure including the front plate 150 , the first adhesive layer 122 , the battery layer 140 , the second adhesive layer 121 and the back plate 110 in sequence.
  • the thermally conductive layer solution is directly coated on the laminated structure including the front plate 150 , the back plate 110 and the battery layer 140 to form the thermally conductive layer 130 . Therefore, a photovoltaic module with the thermally conductive layer 130 can be formed by directly adding a process of manufacturing the thermally conductive layer 130 to the existing production process, so that the manufacturing process of the thermally conductive layer 130 can be conveniently and low-costly combined with the existing process. In addition, since the thermally conductive layer 130 is directly formed on the laminated structure instead of inside the laminated structure, long-term maintenance of the photovoltaic module in the later period is facilitated.
  • thermally conductive layer 130 by coating the thermally conductive layer solution and drying the thermally conductive layer solution simplifies the manufacturing and post-maintenance of the thermally conductive layer 130 on the laminated structure, and reduces the manufacturing cost of the photovoltaic module.
  • FIG. 23 shows a plan view of the thermally conductive layer 130 of FIG. 22 .
  • the thermally conductive layer 130 may cover substantially the entire surface of the backplane 110 .
  • the pattern of the thermally conductive layer 130 is not limited thereto, for example, the thermally conductive layer 130 may be in a mesh shape.
  • a cross-sectional view of the photovoltaic module is shown, for example, in FIG. 24 .
  • the thermally conductive layer 130 is bonded to the surface of the backplane 110 on the side away from the battery layer 140 through the thermally conductive layer adhesive layer 131 .
  • the photovoltaic module includes a front sheet 150 , a first adhesive layer 122 , a cell layer 140 , a second adhesive layer 121 , a back sheet 110 , a thermally conductive layer, an adhesive layer 131 and a thermally conductive layer 130 .
  • thermally conductive layer is formed on the surface of the backsheet 110 on the side away from the cell layer 140 , maintenance and repair (eg, repair) of the thermally conductive layer 130 may be facilitated after the photovoltaic module is put into use.
  • the thermally conductive layer 130 may be, for example, a sheet containing thermally conductive particles, such as a foil of aluminum, silver, gold, copper or alloys thereof. In the embodiment shown in FIG. 25, similar to the thermally conductive layer 130 shown in FIG. 23, the thermally conductive layer 130 may cover substantially the entire surface of the backing plate 110. However, those skilled in the art should understand that the thermally conductive layer 130 may have other patterns.
  • a method of manufacturing a photovoltaic module such as that shown in FIG. 25 described above may include: providing a transparent front sheet 150; providing a back sheet 110; providing a cell layer 140 between the front sheet 150 and the back sheet 110; The laminated structure including the front plate 150 , the battery layer 140 and the back plate 110 is pressed to form a laminated structure; and after lamination, a thermally conductive layer 130 is provided on the surface of the back plate 110 on the side away from the battery layer 140 .
  • providing the thermally conductive layer includes: bonding the thermally conductive layer 330 to a surface of the back plate 110 on the side away from the battery layer 140 through the thermally conductive layer adhesive layer 131 .
  • the thermal conductive layer adhesive layer 131 may be epoxy resin, acrylic resin, amino resin or silicone.
  • a thermally conductive layer bonding layer 131 can bond the thermally conductive layer 130 such as aluminum foil to the backplane 110 at normal temperature, which facilitates the formation of the thermally conductive layer 130 .
  • a photovoltaic module having the thermally conductive layer 130 can be formed by directly adding a process of manufacturing the thermally conductive layer 130 to the existing production process, thereby facilitating the manufacturing process of the thermally conductive layer 130 And it can be combined with the existing technology at low cost.
  • a method of manufacturing a photovoltaic module such as that shown in FIG. 25 described above may include: providing a transparent front sheet 150; providing a back sheet 110; providing a cell layer 140 between the front sheet 150 and the back sheet 110; providing Thermally conductive layer 130; a thermally conductive layer adhesive layer 131 is provided between the thermally conductive layer 130 and the surface of the backplane 110 facing away from the battery layer 140; Laminated structure of layer 131 and thermally conductive layer 130 .
  • the thermally conductive layer adhesive layer 131 is melted due to high temperature, and the thermally conductive layer 130 is bonded to the back plate 110 by means of thermal fusion welding using the thermally conductive layer adhesive layer 131 .
  • the thermal conductive layer adhesive layer 131 can be a photovoltaic module encapsulation film such as EVA or POE, or other adhesive materials, as long as the thermal conductive layer adhesive layer 131 is connected to the first adhesive layer 122 and the second adhesive layer 121
  • the materials have the same lamination temperature range, which facilitates lamination together.
  • first adhesive layer 122 may also be provided between the front sheet 150 and the battery layer 140
  • second adhesive layer 121 may be provided between the back sheet 110 and the battery layer 140, and be simultaneously laminated in the above-mentioned lamination process The first adhesive layer 122 and the second adhesive layer 121 .
  • the front sheet 150, the first adhesive layer 122, the cell layer 140, the second adhesive layer 121, the back sheet 110, the thermally conductive layer adhesive layer 3113 and the thermally conductive layer 130 are simultaneously laminated together to form a photovoltaic module, there are It helps to simplify the manufacturing process and reduce the manufacturing cost of the photovoltaic module, and helps to combine the formation of the thermally conductive layer 130 with the existing manufacturing process economically and conveniently.
  • a photovoltaic module comprising:
  • a battery layer comprising a plurality of battery cells arranged in an array and configured to receive light and generate power
  • thermally conductive layer formed of or comprising a thermally conductive material and in thermal communication with the battery layer
  • the heat conducting layer is in the shape of a mesh, including a skeleton part and a hollow part surrounded by the skeleton part, and in the thickness direction of the photovoltaic module, at least a part of the skeleton part and the adjacent battery cells The gap overlaps, and the hollow portion overlaps the battery unit.
  • thermovoltaic module according to item (2) or (3), further comprising a thermally conductive layer adhesive layer disposed between the back sheet and the thermally conductive layer to connect the thermally conductive layer A thermally conductive layer is bonded to the backplane.
  • the skeleton portion of the thermally conductive layer is configured to reflect light.
  • the skeleton part of the thermally conductive layer is aluminum foil or copper foil.
  • the skeleton portion of the thermally conductive layer is plated with tin or nickel.
  • a surface of the skeleton portion of the thermally conductive layer facing the battery layer is tooth-shaped.
  • the at least a portion of the skeleton portion overlaps the edge of the battery cell.
  • the skeleton portion includes a plurality of first strip-shaped thermally conductive portions extending in a first direction and a plurality of second strip-shaped thermally conductive portions extending in a second direction intersecting the first direction.
  • the first direction is perpendicular to the second direction.
  • the thermally conductive layer may be formed by punching a sheet material.
  • the heat-conducting layer is in a grid-like mesh pattern, and the skeleton part includes a plurality of sub-strip-shaped heat-conducting parts overlapping the battery cells, and the plurality of sub-strip-shaped heat-conducting parts overlap with the main grids of the battery cells.
  • a protective layer, the protective layer is disposed on the side of the thermally conductive layer facing away from the back plate.
  • a front plate, the front plate is disposed on the side of the battery layer facing away from the back plate, and sandwiches the battery layer between the back plate and the front plate.
  • thermoly conductive layer is a thermally conductive film layer bonded to one surface of the back plate, the thermally conductive film layer including thermally conductive particles and white Inorganic Pigments.
  • thermoly conductive particles include one or more of silicon carbide, aluminum nitride, and boron carbide.
  • the backplane includes a glass layer.
  • the back sheet includes at least one of an insulating barrier layer, a fluorine-containing weather-resistant layer, a third adhesive layer and an adhesive transition layer.
  • a backplane of a photovoltaic module comprising:
  • the heat-conducting layer is in the form of a mesh, and the heat-conducting layer includes a frame part and a hollow part surrounded by the frame part.
  • the insulating barrier layer at least one of the insulating barrier layer, the fluorine-containing weathering layer and the adhesive transition layer
  • the thermally conductive layer is adjacent to at least one of the third adhesive layers.
  • the thermally conductive layer is adjacent to at least one of the third adhesive layers.
  • the backplane includes five layers and also includes:
  • the thermally conductive layer is adjacent to at least one of the third adhesive layers.
  • the thermally conductive layer includes a polymeric resin and thermally conductive particles mixed in the polymeric resin.
  • the thermally conductive layer is adjacent to the insulating barrier layer, and the thermally conductive layer and the insulating barrier layer are formed by co-extrusion.
  • the insulating barrier layer includes the polymeric resin, and the polymeric resin is PET.
  • a photovoltaic module comprising:
  • a battery layer comprising a plurality of battery cells arranged in an array
  • the backsheet of any one of items (23) to (30), the battery layer is bonded to the backsheet by a first adhesive layer.
  • a method for manufacturing a photovoltaic module comprising:
  • the thermally conductive layer is in the form of a mesh, which includes a skeleton portion and a hollow portion surrounded by the skeleton portion;
  • a battery layer including a plurality of battery cells is stacked on the thermally conductive layer, and the plurality of battery cells are arranged in an array, so that in the thickness direction of the photovoltaic module, at least a part of the skeleton portion is adjacent to The gaps between the battery cells overlap, and the hollow portion overlaps with the battery cells.
  • the thermally conductive layer is a thermally conductive film layer bonded to a surface of the backplane, the thermally conductive film layer includes thermally conductive particles and white inorganic pigments,
  • Laminating the thermally conductive layer on the backplane includes:
  • thermally conductive layer preform including the thermally conductive particles and the white inorganic pigment on the surface of the backplane
  • the thermally conductive layer preform is dried to form the thermally conductive film layer.
  • a method for manufacturing a photovoltaic module comprising:
  • the battery layer includes a plurality of battery cells arranged in an array
  • a thermally conductive layer is laminated on a second side of the back plate opposite to the first side, the thermally conductive layer is in the form of a mesh, which includes a skeleton portion and a hollow portion surrounded by the skeleton portion, and the laminated In the thickness direction of the photovoltaic module, at least a part of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps with the battery cells.
  • the thermally conductive layer is a thermally conductive film layer bonded to a surface of the backplane, the thermally conductive film layer includes thermally conductive particles and white inorganic pigments,
  • Laminating a thermally conductive layer on a second side of the backplane opposite the first side includes:
  • thermally conductive layer preform including the thermally conductive particles and the white inorganic pigment onto the surface on the first side of the backsheet
  • the thermally conductive layer preform is dried to form the thermally conductive film layer.
  • a method for manufacturing a photovoltaic module comprising:
  • the battery layer includes a plurality of battery cells, the battery cells are arranged in an array, and the stacking is such that in the thickness direction of the photovoltaic module, At least a portion of the skeleton portion overlaps with the gap between adjacent battery cells, and the hollow portion overlaps the battery cells.
  • a method for making a photovoltaic module comprising:
  • the battery layer including a plurality of battery cells arranged in an array and configured to receive light and generate power;
  • a thermally conductive layer is provided on the surface of the back plate on the side facing away from the cell layer.
  • the lamination includes a laminated structure of the front sheet, the battery layer, and the back sheet, wherein,
  • the thermally conductive layer is provided.
  • Providing the thermally conductive layer includes:
  • thermally conductive layer solution containing thermally conductive particles on the surface of the side of the back plate facing away from the battery layer
  • the thermally conductive layer solution is dried to form a thermally conductive layer on the surface of the backplane.
  • the thermally conductive layer solution is applied to the surface of the backing sheet by any one or a combination of screen printing, rolling, spraying, pulling, spin coating, slot method, ultrasonic atomization .
  • the thermally conductive particles include one or more of aluminum particles, silver particles, copper particles, and gold particles.
  • Providing the thermally conductive layer includes:
  • the thermally conductive layer is bonded to the surface on the side of the backsheet facing away from the cell layer by a thermally conductive layer bonding layer.
  • the thermal conductive layer adhesive layer is epoxy resin, acrylic resin, amino resin or silicone.
  • thermally conductive layer bonding layer between the thermally conductive layer and the surface of the backplane
  • the lamination sequentially includes a laminated structure of the front sheet, the first adhesive layer, the battery layer, the second adhesive layer, the back sheet, the thermally conductive layer adhesive layer and the thermally conductive layer .
  • the thermal conductive layer adhesive layer is EVA or POE.
  • the thermally conductive layer is a sheet containing thermally conductive particles.
  • the thermally conductive layer is provided such that it includes a skeleton portion and a hollow portion surrounded by the skeleton portion, and at least a portion of the skeleton portion overlaps with a gap between adjacent battery cells in the thickness direction of the photovoltaic module , the hollow portion overlaps with the battery unit.
  • the thermally conductive layer is provided such that the at least a portion of the skeleton portion overlaps the edge of the battery cell in the thickness direction of the photovoltaic module.
  • the skeleton portion includes a plurality of first strip-shaped thermally conductive portions extending in a first direction and a plurality of second strip-shaped thermally conductive portions extending in a second direction intersecting the first direction.
  • the thermally conductive layer is provided such that the skeleton portion includes a plurality of sub-strip-shaped thermally conductive portions overlapping the battery cells, the plurality of sub-stripe-shaped thermally conductive portions overlapping the busbars of the battery cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开的至少一些实施例提供光伏组件的背板、光伏组件及其制造方法。该光伏组件包括:多个电池单元,其以阵列布置并且配置为接收光并产生功率;导热层,其呈网状,包括骨架部分和由骨架部分围绕的镂空部分。在光伏组件的厚度方向上,骨架部分的至少一部分与相邻电池单元之间的间隙重叠,镂空部分与电池单元重叠。该光伏组件在保证光伏组件的发电效率的同时,能够把光伏组件的热斑处的热量及时传导出去,从而提高了光伏组件的稳定性。

Description

光伏组件,光伏组件的背板和光伏组件的制造方法
本申请要求于2020年7月22日提交的题为“光伏组件,光伏组件的背板和光伏组件的制造方法”的中国专利申请No.202010712100.2、于2020年8月14日提交的题为“光伏组件,光伏组件的背板和光伏组件的制造方法”的中国专利申请No.202010818096.8以及于2020年8月14日提交的题为“光伏组件的制作方法”的中国专利申请No.202010818105.3的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种光伏组件、一种光伏组件的背板和一种光伏组件的制造方法。
背景技术
光伏组件热斑效应是指在一定条件下,串联支路中被遮蔽的电池单元将当做负载,消耗其他被光照的电池单元所产生的能量,被遮挡的电池单元此时将会发热的现象。热斑温度可以达到170℃以上。
光伏组件热斑效应造成的危害很大,被遮挡的电池单元、将会消耗有光照的电池单元所产生的部分能量或所有能量而产生热量,降低输出功率,严重的将会永久性破坏电池单元、甚至烧毁电池单元。因此,降低光伏组件的热斑温度,是迫切需要解决的问题。
发明内容
本公开的一方面提供一种光伏组件,其包括电池层和导热层。所述电池层包括多个电池单元,所述多个电池单元以阵列布置并且配置为接收光并产生功率。所述导热层由导热材料形成或包含导热材料,并与所述电池层热连通。所述导热层呈网状,包括骨架部分和由所述 骨架部分围绕的镂空部分。在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
本公开的另一方面提供一种光伏组件的背板,其包括导热层。所述导热层呈网状,并且包括骨架部分和由所述骨架部分围绕的镂空部分。
本公开的另一方面提供一种光伏组件的制造方法,包括:提供透明的前板;提供背板;提供导热层,其中所述导热层呈网状,其包括骨架部分和由所述骨架部分围绕的镂空部分;以及在所述前板和所述背板之间提供包括多个电池单元的电池层,所述多个电池单元以阵列布置,使得在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
附图说明
图1示出了根据本公开的一实施例的光伏组件的从一侧看的平面图;
图2示出了图1中光伏组件的从另一侧看的平面图;
图3示出了图1中光伏组件的剖视图;
图4示出了图1中光伏组件的导热层的平面图;
图5示出了图1中光伏组件的背板的平面图;
图6示出了根据本公开一实施例的导热层的骨架部分和导热层粘结层的剖视图;
图7示出了根据本公开另一实施例的导热层的骨架部分和导热层粘结层的剖视图;
图8示出了根据本公开另一实施例的导热层的平面图;
图9示出了根据本公开另一实施例的导热层的平面图;
图10示出了根据本公开另一实施例的导热层的平面图;
图11示出了根据本公开另一实施例的光伏组件的剖视图;
图12示出了根据本公开另一实施例的光伏组件的剖视图;
图13A-图13C示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图14A-图14B示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图15示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图16示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图17示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图18示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图19示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图20示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图21示出了根据本公开另一实施例的光伏组件的背板的剖视图;
图22示出了根据本公开的另一实施例的光伏组件的剖视图;
图23示出了图22中的导热层的平面图;
图24示出了根据本公开的另一实施例的光伏组件的剖视图;
图25示出了根据本公开的另一实施例的光伏组件的剖视图;
图26示出了一种双面电池单元的剖视图。
具体实施方式
光伏组件通常为板状或片状,其基本上在一平面内延伸并具有一定的厚度。为了方便和清楚地描述根据本公开的光伏组件,将与光伏组件的延伸的平面垂直的方向定义为“厚度方向”。在本文中,一个部件与另一个部件的“热连通”或“热连接”关系,不仅包括所述一个部件与所述另一个部件接触而形成的热传递关系,还包括在所述一个部件和所述另一个部件之间设置有中间部件的情形,所述一个部件的热量通过该中间部件传递到所述另一个部件,所述热传递不仅包括热传导,而且包括热辐射、热对流等各种形式的热传递。
光伏组件通常包括背板和设置在背板上的电池层,在电池层中,多个电池单元呈阵列布置。电池单元可以是单面电池单元或者是双面电池单元。单面电池单元是仅能够从一侧接收光并将光转换成电功率的电池单元。双面电池单元是能够从两侧接收光并将光转换成电功率的电池单元。包括双面电池单元的光伏组件不但能够从一侧(即,正面)接收阳光的直接照射以将其转换为电功率,还能够从另一侧(即,背面)接收诸如来自地面的反射光或散射光等的光,从而提高了光伏组件的发电效率。例如,图26示出了一种双面电池单元的剖视图。如图所示,双面电池单元包括金属前电极141、前表面减反膜142、硼掺杂发射层143、n型硅层144、磷掺杂背场(BSF)层145、背面减反射膜146和金属背电极147。但电池单元还可以具有其他配置,本公开不限于此。
如前面提到的,光伏组件可能会出现损坏光伏组件的热斑,需要降低热斑发生时的光伏组件的温度,提高光伏组件的可靠性。
一种光伏组件采用散热铝背板结构对光伏组件进行散热,然而,由于铝不透明,因此,当光伏组件采用双面电池单元时,铝层的遮挡将影响光伏组件的双面电池单元的背面的发电量。
根据本公开的至少一实施例的光伏组件具有呈网状的导热层,该导热层与电池层热连通,并且包括骨架部分和由骨架部分围绕的镂空部分。该骨架部分由导热材料制成或包含导热材料。在光伏组件的厚度方向上,该导热层的骨架部分的至少一部分与相邻电池单元之间的间隙重叠,该导热层的镂空部分与电池单元重叠。也就是说,骨架部分的至少一部分沿相邻电池单元之间的间隙延伸,而将镂空部分设置在电池单元处。因此,一方面,可以沿着导热层的骨架部分将电池单元所产生的热量传导出去,另一方面,又能够允许光(诸如来自地面的反射光、散射光等)穿过导热层的镂空部分从光伏组件的一侧(背面)朝向另一侧(正面)透射通过以被电池单元的背面接收,从而降低对光伏组件的背面的光照量的影响。在保证双面发电的光伏组件的 背面发电量的同时,将光伏组件的热斑处的热量及时传导出去,抑制形成热斑处的光伏电池的温度。从而,在保证光伏组件的发电效率的同时,提高了光伏组件的稳定性。
需要说明的是,尽管根据本公开的一些实施例的光伏组件特别以双面电池单元为例进行了描述,但本公开不限于此。
图1示出了根据本公开的一实施例的光伏组件的从一侧看(正面)的平面图,图2示出了图1中光伏组件的从另一侧看(背面)的平面图,图3示出了图1中光伏组件的剖视图,图4示出了图1中光伏组件的导热层130的平面图,图5示出了图1中光伏组件的背板110的平面图。在图1中,为了清楚地示出背板110和设置在其上的导热层130,仅示出了背板110、导热层130和电池层140(以电池层中的一个电池单元为例),而省略了其他部件。在图2中,仅示出了电池层140和导热层130,而省略了其他部件。
如图1至图5所示,根据本公开的一实施例的光伏组件包括背板110、设置在背板110上的导热层130、设置在导热层130上的包括多个电池单元的电池层140、覆盖电池层140的前板150,所述电池层140通过第二粘结层122与前板150粘结并通过第一粘结层(bonding layer)121与背板110粘结,由此封装成光伏组件,该导热层130通过导热层粘结层131粘结到背板110。
例如,背板110和前板150可以为玻璃板等,或者背板110可以采用其他材料,例如高分子聚合物材料,该高分子聚合物材料可以形成例如绝缘阻隔层、含氟耐候层、第三粘结层或粘结过渡层等。例如,第一粘结层121和第二粘结层122可以为EVA(乙烯醋酸乙烯酯)或POE(聚乙烯-辛烯弹性体)等。
导热层130呈网状,其包括骨架部分130a和由骨架部分130a围绕的镂空部分130b,该骨架部分130a由导热材料形成或包含导热材料。如图3所示,在光伏组件的厚度方向上,骨架部分130a的至少一部分与电池单元之间的间隙重叠并覆盖相邻电池单元的边缘部分,由此与 电池单元形成热连通,而镂空部分130b与电池单元重叠。在实施例中,该镂空部分130b被第一粘结层121填充。
一方面,当出现热斑时,出现热斑的电池单元的温度例如在105℃以上,而周边的电池单元的温度则通常例如在约60℃,由于温度梯度的存在,热量将以热传导的方式通过导热层130的骨架部分130a从热斑处的高温区向低温区扩散,从而降低热斑处的温度。
另一方面,光可以穿过导热层130的镂空部分130b而透射通过光伏组件,以减小对光伏组件背面的光照量的影响,从而保证光伏组件的背面发电量。
在本实施例中,导热层130的骨架部分130a包括在第一方向(图1、图2和图4中的上下方向)上延伸的多个第一条形导热部分132和在垂直于第一方向的第二方向(图1、图2和图4中的左右方向)上延伸的多个第二条形导热部分133,该第一条形导热部分132和该第二条形导热部分133形成网状。如图3和图4所示,在光伏组件的厚度方向上,导热层130的第一条形导热部分132或第二条形导热部分133与相邻电池单元之间的间隙重叠。也就是说,第一条形导热部分132和第二条形导热部分133布置成沿相邻电池单元之间的间隙延伸。而在第一条形导热部分132和第二条形导热部分133之间形成的导热层130的镂空部分130b则在厚度方向上与电池单元重叠。因此,导热层130能够在将电池单元处的热量传导出去的同时,降低对光透过光伏组件以及光伏组件的背面发电效率的影响。
如图3所示,在本实施例中,为了能够更好地将电池层140的电池单元处的热量传导出去,导热层130的第一条形导热部分132和第二条形导热部分133可以被布置成与与其相邻的电池单元的边缘重叠。但是,本领域技术人员可以理解,在其他实施例中,第一条形导热部分132和第二条形导热部分133可以不与相邻的电池单元的边缘重叠。
在一些实施例中,为了保证良好的导热效果,导热层130的厚度可以在0.01-1mm的范围内。此外,第一条形导热部分132和第二条形 导热部分133的宽度可以在5-50mm的范围内。
此外,导热层130还被配置成能够反射光,因此,如图3所示,照射到导热层130上的光能够被反射,然后通过例如前板150的背面的反射作用,而被照射到电池单元的正面处,从而增强了光伏组件的正面发电效率。例如,导热层130配置为能够将入射到其上的光的至少50%、至少60%、至少70%、至少80%或至少90%进行反射。
例如,导热层130可以为铝箔、铜箔等导热材料。为了增强导热层130的反射性能,导热层130可以镀锡或镀镍。
图6示出了根据本公开一实施例的导热层130的骨架部分130a和导热层粘结层131的剖视图。该导热层粘结层131设置在背板110和导热层130之间。如图6所示,导热层130(具体地,其的骨架部分130a)通过导热层粘结层131粘合到背板110。导热层130的骨架部分130a的面向电池层140的表面可以为平坦表面。图7示出了根据本公开另一实施例的导热层130的骨架部分130a和导热层粘结层131的剖视图。如图7所示,导热层130的骨架部分130a的面向电池层140的表面也可以为齿状,其用作棱镜,以将光更好地反射到电池层140的电池单元,增大光伏组件的正面的发电效率。
例如,导热层粘结层131可以包括EVA、POE、EAA、EEA(乙烯-丙烯酸乙酯)、PP(聚丙烯)、SIS(苯乙烯-异戊二烯-苯乙烯)、SBS(苯乙烯-丁二烯-苯乙烯)等。例如,导热层粘结层131可以为EVA、POE、PP,其可以高温下压合到背板110上。或者,导热层粘结层131可以为EVA、EAA(乙烯丙烯酸)、SIS的共混树脂,其可以在高温下压合到背板110上。例如,这样的导热层粘结层131可以与第一粘结层121和第二粘结层122一起被热压处理,以形成光伏组件。或者,导热层粘结层131可以为EVA、EEA、SBS的共混树脂,其可以在低温或常温下压合到背板110上。本公开不限于此。
制造诸如图3所示的光伏组件的制造方法可以包括:S11,提供背板;S12,将导热层层叠于背板上;以及S13,将包括多个电池单元的 电池层层叠于导热层上。该导热层呈网状,其包括骨架部分和由骨架部分围绕的镂空部分。该多个电池单元以阵列形式排列。在光伏组件的厚度方向上,骨架部分的至少一部分与相邻电池单元之间的间隙重叠,镂空部分与电池单元重叠。
图1-图5所示的实施例中的导热层130可以通过多种方法形成。在一个实施例中,在背板110上分别粘合第一条形导热部分132和第二条形导热部分133来形成导热层。例如,可以将条形铝箔的卷绕带展开并贴合到背板110上,以形成第一条形导热部分132,然后将条形铝箔的卷绕带展开并贴合到背板110上,以形成第二条形导热部分133,第一条形导热部分132和第二条形导热部分133彼此相交,构成网状图案,进而形成导热层130的骨架部分130a,而第一条形导热部分132和第二条形导热部分133围绕的部分则形成导热层130的镂空部分130b。例如,第一条形导热部分132和第二条形导热部分133可以具有相同的宽度。由此,可以使用相同的卷绕带来形成第一条形导热部分132和第二条形导热部分133,降低了成本和方便了制造。第一条形导热部分132和第二条形导热部分133也可以具有根据需要具有不同的宽度。
在另一实施例中,还可以通过对片状材料进行冲压来形成导热层130的由骨架部分130a和镂空部分130b组成的图案。但是,本发明并不局限于此,导热层也可以通过例如丝网印刷、涂覆、喷涂、烧结等其他方式形成在背板110上。
图4所示的导热层130呈矩形网状图案,但本公开不限于此。图8-图10示出了根据本公开的其他实施例的导热层130的平面图。如图8所示,导热层130呈“米”字形网状图案。如图9所示,导热层130呈蜂窝状网状图案。如图10所示,导热层130呈栅格状网状图案。图8-图10所示的图案在图4所示的第一条形导热部分132和第二条形导热部分133的基础上增加了与电池单元重叠的骨架部分130a。图4所示的矩形网状图案对光伏组件的背面发电效率的影响更小,而图8-图10所示的导热层130与电池单元的重叠面积更大,从而导热效率更高。可以 根据不同的需要设计导热层130的具体图案。
图10所示的导热层130呈栅格状网状图案,其骨架部分130a与电池单元重叠的遮光区包括多个子条形导热部分134,该多个子条形导热部分134优选地与电池单元的主栅重叠。由于该多个子条形导热部分134与电池单元的主栅重叠,其能够将主栅处的热量快速地传导出去,从而能够最大化地减少局部过热对主栅处的焊锡的熔融现象。在此,主栅是与细栅(例如,电池单元的前电极、背电极)连接以从细栅收集电流的汇流线。
光伏组件还可以具有其他层叠结构。
图11示出了根据本公开另一实施例的光伏组件的剖视图。如图11所示,光伏组件包括背板210、设置在背板210的第一表面上的第一粘结层221、设置在第一粘结层221上的包括多个电池单元的电池层240、覆盖电池层240的第二粘结层222、设置在第二粘结层222上的前板250以及设置在背板210的与第一表面相反的第二表面上的导热层230。导热层230通过导热层粘结层231粘结到背板210。为了增大导热层230的导热效率,在厚度方向上,导热层230的骨架部分与与其相邻的电池单元的边缘重叠。可选地,由于导热层230暴露于大气,为了保护导热层230,可以在导热层230的与背板210相反的一侧设置用作保护层的氟树脂层260,例如,通过喷涂而设置。
图12示出了根据本公开的另一实施例的组件的剖视图。如图12所示,光伏组件包括背板310、设置在背板310的第一表面上的第一粘结层321、设置在第一粘结层321上的包括多个电池单元的电池层340、覆盖电池层340的第二粘结层322、设置在第二粘结层322上的前板350以及设置在背板310的与第一表面相反的第二表面上的导热层330。导热层330通过导热层粘结层331粘结到背板310。为了增大导热层330的导热效率,在厚度方向上,导热层330的骨架部分与与其相邻的电池单元的边缘重叠。与图11所示的光伏组件不同的是,为了保护导热层330,可以在导热层330的与背板310相反的一侧设置用作保护层的含 氟耐候层380,该含氟耐候层380通过第四粘结层370附接到导热层330。例如,该第四粘结层370可以为聚氨酯、EVA、POE、PP或EVA、EAA、SIS的共混树脂或EVA、EEA、SBS的共混树脂。
制造诸如11和图12所示的光伏组件的制造方法可以包括:S21,提供背板;S22,将电池层层叠于背板的第一侧上;以及S23,将导热层层叠于背板的与第一侧相反的第二侧上。该电池单元以阵列形式排列。该导热层呈网状,其包括骨架部分和由骨架部分围绕的镂空部分。在光伏组件的厚度方向上,骨架部分的至少一部分与相邻电池单元之间的间隙重叠,镂空部分与电池单元重叠。
图13A-图21分别示出了根据本公开的另一实施例的光伏组件的背板的剖视图。如图13A-图21所示,导热层还可以被复合到背板中而不是独立于背板设置在背板上。在图13A-图21所示的实施例中,背板中的导热层呈网状,包括多个电池单元的电池层设置在背板上。导热层的骨架部分的至少一部分在厚度方向上与相邻电池单元之间的间隙以及与其相邻的电池单元的边缘重叠,而导热层的镂空部分在厚度方向上与电池单元重叠。
如图13A所示,在一示例中,背板可以依次包括层叠的导热层407、第一第三粘结层406、含氟耐候层405、第二第三粘结层404、绝缘阻隔层403、第三第三粘结层402和粘结过渡层401。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层401上。该粘结过渡层被设置背板的最外侧,这里为在第三第三粘结层402的外侧,这有助于增强第一粘结层对背板的粘结力,以使背板与电池层更牢固地粘结在一起。如图13B和图13C所示,由于导热层407呈网状,包括骨架部分和镂空部分,该镂空部分可以被空气填充(参见图13B)或者被邻近其的第一第三粘结层406填充(参见图13C)。
如图14A所示,在另一示例中,背板可以依次包括层叠的含氟耐候层507、第一第三粘结层506、绝缘阻隔层505、第二第三粘结层504、导热层503、第三第三粘结层502和粘结过渡层501。电池层例如可以 通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层501上。如图14B所示,由于导热层503呈网状,包括骨架部分和镂空部分,该镂空部分可以被邻近其的第三第三粘结层502和/或第二第三粘结层504填充。
如图15所示,在另一示例中,背板可以依次包括层叠的含氟耐候层607、第一第三粘结层606、导热层605、第二第三粘结层604、绝缘阻隔层603、第三第三粘结层602和粘结过渡层601。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层601上。
如图16所示,在另一示例中,背板可以依次包括层叠的含氟耐候层706、第一第三粘结层705、绝缘阻隔层704、第二第三粘结层703、导热层702和粘结过渡层701。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层701上。该粘结过渡层被设置背板的最外侧,这里为在导热层702的外侧,这有助于增强第一粘结层对背板的粘结力,以使背板与电池层更牢固地粘结在一起。
如图17所示,在另一示例中,背板可以依次包括层叠的含氟耐候层806、第一第三粘结层805、导热层804、第二第三粘结层803、绝缘阻隔层802和粘结过渡层801。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层801上。该粘结过渡层被设置背板的最外侧,这里为在绝缘阻隔层802的外侧,这有助于增强第一粘结层对背板的粘结力,以使背板与电池层更牢固地粘结在一起。
如图18所示,在另一示例中,背板可以依次包括层叠的导热层906、第一第三粘结层905、含氟耐候层904、第二第三粘结层903、绝缘阻隔层902和粘结过渡层901。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层901上。
如图19所示,在另一示例中,背板可以依次包括层叠的含氟耐候 层1005、导热层1004、第三粘结层1003、绝缘阻隔层1002和粘结过渡层1001。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层1001上。
如图20所示,在另一示例中,背板可以依次包括层叠的含氟耐候层1105、绝缘阻隔层1104、第三粘结层1103、导热层1102和粘结过渡层1101。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层1101上。
如图21所示,在另一示例中,背板可以依次包括层叠的导热层1205、第三粘结层1204、含氟耐候层1203、绝缘阻隔层1202和粘结过渡层1201。电池层例如可以通过一第一粘结层(例如,图3中所示的第一粘结层121)附接到粘结过渡层1201上。
在图19-21所示的示例中,背板采用5层结构。在保证背板的其他性能的同时,由于背板层数较少,整体较薄,因此,导热层1004、1102、1205能够更好地将热量传导出去。
例如,含氟耐侯层可以为氟膜,如PVDF(聚偏氟乙烯)膜、TEDLAR(注册商标)膜(聚氟乙烯膜)、氟碳树脂等。例如,上述背板中的第三粘结层可以为聚氨酯等。例如,绝缘阻隔层可以为PET(聚对苯二甲酸乙二醇酯)等。例如,粘结过渡层可以为EVA、POE、LDPE(低密度聚乙烯)、PVDF膜、TEDLAR膜(例如,图13A-图15中所示),或者可以为诸如氟碳树脂的氟树脂(例如,图16-图21中所示)等。
制造诸如13和图21所示的光伏组件的制造方法可以包括:S31,提供背板;以及S32,将电池单元号以阵列层叠于背板。该导热层呈网状,其包括骨架部分和由骨架部分围绕的镂空部分,并且在光伏组件的厚度方向上,骨架部分的至少一部分与相邻电池单元之间的间隙重叠,镂空部分与电池单元重叠。提供背板的步骤S31例如包括将导热层与绝缘阻隔层、含氟耐候层、粘结过渡层中的至少一个层叠在一起以形成背板。根据本实施例,导热层可以在背板制造过程中与背板一起 形成,简化了制造成本。
在图13A-图21所示的示例中,导热层407、503、605、702、804、906、1004、1102、1205可以为铝箔。此外,在图13A-图21所示的示例中,导热层407、503、605、702、804、906、1004、1102、1205也可以包括诸如PET、POE、PE的聚合树脂和混合在聚合树脂中的诸如铜颗粒或铝颗粒的导热颗粒。另外,在一些示例中,在导热层503、605、702、804、1004、1102包括聚合树脂和混合在聚合树脂中的金属导热颗粒的情况下,导热层503、605、702、804、1004、1102可以设置成与具有同样的聚合树脂(例如,PET)的绝缘阻隔层相邻,并且与绝缘阻隔层一起通过共挤的方式形成。这样,省略了导热层与绝缘阻隔层之间的第三粘结层,降低了背板的厚度,并且简化了导热层以及包括该导热层的背板的形成过程。
本领域技术人员应当理解,诸如图13A-图21所示的背板结构也可以应用于具有其他图案的导热层,而不限于网状的导热层,例如,不具有镂空部分而具有完整表面的导热层,例如下面将要描述的图23中的导热层。
根据本公开另一实施例的光伏组件包括背板、导热层、电池层和前板。例如,在一示例中,类似于如图3所示的光伏组件(但不包括导热层粘结层131),光伏组件可以包括背板、设置在背板上的导热层、设置在导热层上的包括多个电池单元的电池层和覆盖电池层的前板。例如,在另外的示例中,类似于如图11、图12(但不包括导热层粘结层231、331)和下面将要描述的图22、24所示的光伏组件,光伏组件可以包括背板、设置在背板上方的包括多个电池单元的电池层、覆盖电池层的前板以及设置在背板的背离电池层的一侧上的导热层。例如,该导热层呈网状,包括骨架部分和由骨架部分围绕的镂空部分,并且在光伏组件的厚度方向上,骨架部分的至少一部分与相邻电池单元之间的间隙重叠,镂空部分与电池单元重叠。
在本实施例中,导热层为结合到背板的一表面上的导热膜层,该 导热膜层包括导热颗粒和白色无机颜料。导热膜层中的导热颗粒使得导热膜层具有良好的导热特性,以将电池层在热斑处的热量及时传导出去。而导热膜层中的白色无机颜料使得导热层具有良好的反射特性,以将照射到导热层上的光反射到电池单元,从而增加光伏组件的发电效率。
例如,导热颗粒可以包括碳化硅、氮化铝和碳化硼中的一种或多种。此外,导热颗粒还可以包括铝颗粒、银颗粒、铜颗粒和金颗粒中的一种或多种。
例如,白色无机颜料可以包括锌钡白、二氧化钛、滑石粉、铅白、云母、碳酸钙、硫酸钙、氧化锌、三氧化二锑、氧化镁、碳酸镁、氧化铁、二氧化硅、二氧化锆、硫酸钡和氧化铝中的一种或多种。
此外,导热层还可以包括粘结剂、助剂或催化剂。
粘结剂用于使导热层牢固地附接到背板,例如,玻璃背板。粘结剂可以包括有机聚合物或以有机盐、无机盐、金属有机化合物为原料生成的胶体。例如,该有机盐可以为诸如Ti(OR) 4或Si(OR) 4的醇盐或Pb(CH 3COO) 2。例如,该无机盐可以为Zn(NO 3) 2或氧氯化锆。例如,该有机聚合物可以包括酚醛树脂、脲醛树脂、环氧树脂、聚乙酸乙烯酯、聚乙烯-乙酯乙烯酯、丙烯酸酯、聚苯乙烯类、醇酸树脂、聚氨酯、聚异氰酸酯、丙烯酸双酯、硅烷类、聚苯并咪唑、聚酰亚胺或丁基橡胶。
助剂用于改善导热膜层的稳定性等其他特性,例如,可以为乳化剂、分散剂、阻聚剂、流变剂、防沉剂、催干剂、防结皮剂、防缩剂、抗划伤剂、抗氧化剂、润滑剂、脱模剂、热稳定剂、光稳定剂、抗静电剂、耐磨剂、增稠剂和消泡剂中的一种或几种。催化剂可以为无机酸、有机酸、碱类、酸式盐、碱式盐、有机铵盐中的一种或几种。
将上述白色无机颜料、导热颗粒以及例如粘结剂、助剂和催化剂灯的试剂与溶剂混合以制备导热层预制物。将导热层预制物通过丝网印刷、滚涂、喷涂、提拉、旋涂、狭缝法(将溶液沿着模具缝隙压出 并转移到移动基材上的涂布方法)、超声波雾化或其组合而涂布到背板。然后,将导热层预制物在合适的温度下烘干以形成附接有导热层的背板。例如,烘干温度可以例如在0-800℃的范围内,或者在0-60℃的范围内。这里,背板可以包括玻璃层。例如,该溶剂可以为水、石油溶剂、苯系溶剂、萜烯类溶剂、醇类溶剂、醚类溶剂、酮类溶剂、酯类溶剂、氯代烃类溶剂、硝基烃类溶剂或者胺类溶剂。
导热膜层可以通过涂布的方式附接到背板,因此,制造方便、成本低,并且可以将导热层的制造工序结合到背板的制造过程中,方便管理。
在上述实施例中,导热层为网状,在其他实施例中,光伏组件包括背板、导热层、电池层和前板,并且导热层例如可以设置成基本上遍及背板的整个表面。与上述实施例类似的,该导热层为结合到背板的基本上整个表面上的导热膜层,该导热膜层包括导热颗粒和白色无机颜料。导热膜层中的导热颗粒使得导热膜层具有良好的导热特性,以将电池层在热斑处的热量及时传导出去。而导热膜层中的白色无机颜料使得导热层具有良好的反射特性,以将照射到导热层上的光反射到电池单元,从而增加光伏组件的发电效率。导热层的其他方面可以如上述实施例进行配置。
图22示出了根据本公开的另一实施例的光伏组件的剖视图。如图22所示,光伏组件包括一层压结构和导热层130。层压结构包括前板150、第一粘结层122、电池层140、第二粘结层121和背板110。电池层140包括多个电池单元,该多个电池单元以阵列布置并且配置为接收光并产生功率。电池层140通过第一粘结层122与前板150粘结并通过第二粘结层121与背板110粘结,然后通过层压前板150、第一粘结层122、电池层140、第二粘结层121和背板110来形成层压结构。导热层130形成在背板110的背离电池层140的一侧的表面上。因此,导热层130可以在形成层压结构之后,形成在层压结构的外表面上。因此,导热层130的形成步骤可以方便且经济地与现有的制造生产线结合。此外, 在光伏组件投入使用后,可以方便导热层130的维护和维修(例如,修补)。
例如,前板150可以为透明的玻璃板。背板110可以为玻璃板,或者可以为诸如包括绝缘阻隔层、含氟耐候层、第三粘结层和粘结过渡层的复合板。
制造诸如上述图22光伏组件的制造方法可以包括:提供透明的前板150;提供背板110;在前板150和背板110之间提供电池层140;层压包括前板150、电池层140和背板110的层叠结构以形成层压结构;以及在层压之后,在背板110的背离电池层140的一侧的表面上提供导热层130。
具体地,提供导热层130可以包括:在背板110的背离电池层140的一侧的表面上涂覆含有导热颗粒的导热层溶液;以及烘干导热层溶液以形成导热层130。
导热颗粒例如可以包括铝颗粒、银颗粒、铜颗粒和金颗粒中的一种或多种,这些金属颗粒具有良好的导热性,并且易于被均匀涂覆。此外,导热颗粒还可以包括碳化硅、氮化铝和碳化硼等。
在本示例中,导热层130被提供在背板110的背离电池层140的一侧的表面上,并且在层压之后被提供。然而,本领域技术人员应当理解,这样的提供导热层130的方法可以应用于将导热层130提供到背板的靠近电池层140的一侧的表面上的情况,并且可以在层压之前进行。此外,在其他示例中,导热层溶液还可以包括如上所述的白色颜料等。
在本示例中,导热层溶液包括固化组分和稀释组分。固化组分可以包括流变助剂、丙烯酸树脂、氨基树脂、第一溶剂、醋酸丁酸纤维溶液和流平剂。稀释组分可以包括第二溶剂和异氰酸酯。流变助剂对铝颗粒具有定向作用,例如可以为乙烯-醋酸乙烯共聚物分散液或聚烯烃类防沉剂。第一溶剂例如可以为包含亲水性基团和亲油性基团的醇醚类有机溶剂。第二溶剂可以为脂肪族类、酮类、二元醇类、二元醇醚类、二元醇酯类或芳香族碳烃类溶剂。
例如,可以通过丝网印刷、滚涂、喷涂、提拉、旋涂、狭缝法、超声波雾化中的任一一种或其组合而将所述导热层溶液涂覆到所述背板110的所述表面上。
此外,制造方法还可以包括:提供第一粘结层122;提供第二粘结层121。并且上述层压步骤为层压依次包括前板150、第一粘结层122、电池层140、第二粘结层121和背板110的层叠结构。
在本实施例中,直接在包括前板150、背板110以及电池层140的层压结构上涂覆导热层溶液以形成导热层130。因此,只需要现有生产工序上直接增加一道制造导热层130的工序就可以形成具有导热层130的光伏组件,从而将导热层130的制造工序方便且低成本地与现有工艺进行结合。此外,由于导热层130直接被形成在层压结构上,而不是层压结构内部,因此,方便了后期对光伏组件的长期维护。另外,通过涂覆导热层溶液并烘干导热层溶液而形成导热层130,简化了导热层130在层压结构上的制造和后期维护,并且降低了光伏组件的制造成本。
图23示出了图22中的导热层130的平面图。如图23所示,导热层130可以覆盖于背板110的基本上整个表面上。但导热层130的图案不限于此,例如,导热层130可以呈网状。在导热层130呈网状的情况下,光伏组件的剖视图例如如图24所示。
图25示出了根据本公开的另一实施例的光伏组件的剖视图。如图25所示,与图22所示的实施例不同的是,在本实施例中,导热层130通过导热层粘结层131结合到背板110的背离电池层140的一侧的表面上。如图25所示,光伏组件包括前板150、第一粘结层122、电池层140、第二粘结层121、背板110、导热层粘结层131和导热层130。
由于导热层形成在背板110的背离电池层140的一侧的表面上,因此,在光伏组件投入使用后,可以方便导热层130的维护和维修(例如,修补)。
导热层130例如可以为含有导热颗粒的片材,例如为铝、银、金、铜或其合金的箔材。在如图25所示的实施例中,类似于图23所示的导 热层130,导热层130可以覆盖于背板110的基本上整个表面上。然而,本领域技术人员应当理解,导热层130可以具有其他图案。
在一实施例中,制造诸如上述图25所示的光伏组件的制造方法可以包括:提供透明的前板150;提供背板110;在前板150和背板110之间提供电池层140;层压包括前板150、电池层140和背板110的层叠结构以形成层压结构;以及在层压之后,在背板110的背离电池层140的一侧的表面上提供导热层130。具体地,提供导热层包括:通过导热层粘结层131将导热层330结合到在背板110的背离电池层140的一侧的表面上。
例如,在此,导热层粘结层131可以为环氧树脂类、丙烯酸树脂类、氨基树脂类或有机硅类。这样的导热层粘结层131可以在常温下将诸如铝箔的导热层130粘结到背板110上,方便了导热层130的形成。此外,由于在层压之后形成导热层130,因此,只需要现有生产工序上直接增加一道制造导热层130的工序就可以形成具有导热层130的光伏组件,从而将导热层130的制造工序方便且低成本地与现有工艺进行结合。
在一实施例中,制造诸如上述图25所示的光伏组件的制造方法可以包括:提供透明的前板150;提供背板110;在前板150和背板110之间提供电池层140;提供导热层130;在导热层130和背板110的背离电池层140的表面之间提供导热层粘结层131;以及层压依次包括前板150、电池层140、背板110、导热层粘结层131和导热层130的层叠结构。这里,在层压的过程中,导热层粘结层131由于高温而熔化,导热层130利用导热层粘结层131通过热熔焊接的方式结合到背板110。例如,在此,导热层粘结层131可以为EVA或POE等光伏组件封装胶膜或者其他粘结材料,只要导热层粘结层131与第一粘结层122和第二粘结层121的材料的层压加工温度范围相同,便于一起层压加工。
此外,还可以在前板150和电池层140之间提供第一粘结层122,在背板110和电池层140之间提供第二粘结层121,并且在上述层压过 程中同时层压第一粘结层122和第二粘结层121。
这里,将前板150、第一粘结层122、电池层140、第二粘结层121、背板110、导热层粘结层3113和导热层130同时层压在一起以形成光伏组件,有助于简化光伏组件的制造工艺和降低制造成本,并且有助于将导热层130的形成与现有制造工艺经济且方便地结合。
本说明书至少描述以下事项:
(1)一种光伏组件,包括:
电池层,所述电池层包括多个电池单元,所述多个电池单元以阵列布置并且配置为接收光并产生功率;和
导热层,所述导热层由导热材料形成或包含导热材料,并与所述电池层热连通,
其中,所述导热层呈网状,包括骨架部分和由所述骨架部分围绕的镂空部分,并且在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
(2)根据项(1)所述的光伏组件,还包括背板,所述导热层夹置在所述背板和所述电池层之间。
(3)根据项(1)所述的光伏组件,还包括背板,所述导热层设置在所述背板的背离所述电池层的一侧上。
(4)根据项(2)或(3)所述的光伏组件,还包括导热层粘结层,所述导热层粘结层设置在所述背板和所述导热层之间以将所述导热层粘合到所述背板。
(5)根据项(2)或(3)所述的光伏组件,还包括第一粘结层,所述第一粘结层设置在所述背板和所述电池层之间以将所述电池层粘合到所述背板。
(6)根据项(1)-(5)中任一项所述的光伏组件,其中
所述导热层的所述骨架部分配置成能够反射光。
(7)根据项(1)-(6)中任一项所述的光伏组件,其中
所述导热层的所述骨架部分为铝箔或铜箔。
(8)根据项(1)-(7)中任一项所述的光伏组件,其中
所述导热层的所述骨架部分镀覆有锡或镍。
(9)根据项(1)-(8)中任一项所述的光伏组件,其中
所述导热层的所述骨架部分的面向所述电池层的表面为齿状。
(10)根据项(1)-(9)中任一项所述的光伏组件,其中
在所述厚度方向上,所述骨架部分的所述至少一部分与所述电池单元的边缘重叠。
(11)根据项(1)-(10)中任一项所述的光伏组件,其中,
所述骨架部分包括在第一方向上延伸的多个第一条形导热部分和在与所述第一方向相交的第二方向上延伸的多个第二条形导热部分。
(12)根据项(11)所述的光伏组件,其中,
所述第一方向与所述第二方向垂直。
(13)根据项(11)或(12)所述的光伏组件,其中,所述第一条形导热部分和第二条形导热部分具有相同的宽度。
(14)根据项(1)至(13)中任一项所述的光伏组件,其中,
所述导热层可以通过冲压片状材料而形成。
(15)根据项(1)至(14)中任一项所述的光伏组件,其中,
所述导热层呈栅格状网状图案,所述骨架部分包括与所述电池单元重叠的多个子条形导热部分,所述多个子条形导热部分与所述电池单元的主栅重叠。
(16)根据项(3)所述的光伏组件,还包括:
保护层,所述保护层设置在所述导热层的背离所述背板的一侧上。
(17)根据项(2)或(3)所述的光伏组件,还包括:
前板,所述前板设置在所述电池层的背离所述背板的一侧上,并将所述电池层夹置在所述背板和所述前板之间。
(18)根据项(2)或(3)所述的光伏组件,其中,所述导热层为结合到所述背板的一表面上的导热膜层,所述导热膜层包括导热颗 粒和白色无机颜料。
(19)根据项(18)所述的光伏组件,其中,所述导热颗粒包括碳化硅、氮化铝和碳化硼中的一种或多种。
(20)根据项(18)所述的光伏组件,其中,所述白色无机颜料包括锌钡白、二氧化钛、滑石粉、铅白、云母、碳酸钙、硫酸钙、氧化锌、三氧化二锑、氧化镁、碳酸镁、氧化铁、二氧化硅、二氧化锆、硫酸钡和氧化铝中的一种或多种。
(21)根据项(2)或(3)或(18)所述的光伏组件,其中,
所述背板包括玻璃层。
(22)根据项(2)或(3)所述的光伏组件,其中,
所述背板包括绝缘阻隔层、含氟耐候层、第三粘结层和粘结过渡层中的至少一个。
(23)一种光伏组件的背板,包括:
导热层,其呈网状,所述导热层包括骨架部分和由所述骨架部分围绕的镂空部分。
(24)根据项(23)所述的背板,还包括:
第三粘结层;和
绝缘阻隔层、含氟耐候层和粘结过渡层中的至少一个,
所述导热层与至少一个所述第三粘结层相邻。
(25)根据项(23)所述的背板,还包括:
第三粘结层、绝缘阻隔层、含氟耐候层和粘结过渡层,
所述导热层与至少一个所述第三粘结层相邻。
(26)根据项(23)所述的背板,其中,
所述背板包括五个层,并且还包括:
第三粘结层、绝缘阻隔层、含氟耐候层和位于最外侧的粘结过渡层,
所述导热层与至少一个所述第三粘结层相邻。
(27)根据项(24)-(26)中任一项所述的背板,其中,所述第 三粘结层延伸到所述导热层的镂空部分中。
(28)根据权利要求(23)所述的背板,其中,
所述导热层包括聚合树脂和混合在所述聚合树脂中的导热颗粒。
(29)根据权利要求(28)所述的背板,还包括:
绝缘阻隔层,其中,
所述导热层与所述绝缘阻隔层相邻,并且所述导热层与所述绝缘阻隔层一起通过共挤的方式形成。
(30)根据权利要求(29)所述的背板,其中,
所述绝缘阻隔层包括所述聚合树脂,并且所述聚合树脂为PET。
(31)一种光伏组件,包括:
电池层,所述电池层包括多个以阵列形式排列的电池单元;和
如项(23)至(30)中任一项所述的背板,所述电池层通过第一粘结层粘结到所述背板。
(32)一种光伏组件的制造方法,包括:
提供背板;
将导热层层叠于所述背板上,其中所述导热层呈网状,其包括骨架部分和由所述骨架部分围绕的镂空部分;以及
将包括多个电池单元的电池层层叠于所述导热层上,且所述多个电池单元以阵列形式排列,使得在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
(33)根据项(32)的光伏组件的制造方法,其中,
所述导热层为结合到所述背板的一表面上的导热膜层,所述导热膜层包括导热颗粒和白色无机颜料,
将导热层层叠于所述背板上包括:
将包括所述导热颗粒和所述白色无机颜料的导热层预制物涂布到所述背板的所述表面上;以及
烘干所述导热层预制物以形成所述导热膜层。
(34)一种光伏组件的制造方法,包括:
提供背板;
将电池层层叠于所述背板的第一侧上,其中,所述电池层中包括多个电池单元,所述电池单元以阵列形式排列;以及
将导热层层叠于所述背板的与所述第一侧相反的第二侧上,所述导热层呈网状,其包括骨架部分和由所述骨架部分围绕的镂空部分,并且所述层叠使得在光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
(35)根据项(34)的光伏组件的制造方法,其中,
所述导热层为结合到所述背板的一表面上的导热膜层,所述导热膜层包括导热颗粒和白色无机颜料,
将导热层层叠于所述背板的与所述第一侧相反的第二侧上包括:
将包括所述导热颗粒和所述白色无机颜料的导热层预制物涂布到所述背板的所述第一侧上的所述表面上;以及
烘干所述导热层预制物以形成所述导热膜层。
(36)一种光伏组件的制造方法,包括:
提供如项(23)至(30)中任一项所述的背板;以及
将电池层层叠于所述背板的粘合层上,其中,所述电池层中包括多个电池单元,所述电池单元以阵列形式排列,且所述层叠使得在光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
(37)一种光伏组件的制作方法,包括:
提供透明的前板;
提供背板;
在所述前板和所述背板之间提供电池层,所述电池层包括多个电池单元,所述多个电池单元以阵列布置并且配置为接收光并产生功率;以及
在所述背板的背离所述电池层的一侧的表面上提供导热层。
(38)根据项(37)所述的制作方法,还包括:
层压包括所述前板、所述电池层和所述背板的层叠结构,其中,
在所述层压之后,提供所述导热层。
(39)根据项(38)所述的制作方法,其中,
提供所述导热层包括:
在所述背板的背离所述电池层的一侧的所述表面上涂覆含有导热颗粒的导热层溶液;以及
烘干所述导热层溶液以在所述背板的所述表面上形成导热层。
(40)根据项(39)所述的制作方法,其中,
通过丝网印刷、滚涂、喷涂、提拉、旋涂、狭缝法、超声波雾化中的任何一种或其组合而将所述导热层溶液涂覆到所述背板的所述表面上。
(41)根据项(39)所述的制作方法,其中,
所述导热颗粒包括铝颗粒、银颗粒、铜颗粒和金颗粒中的一种或多种。
(42)根据项(38)所述的制作方法,其中,
提供所述导热层包括:
通过导热层粘结层将导热层粘结到在所述背板的背离所述电池层的一侧的所述表面上。
(43)根据项(42)所述的制作方法,其中,
所述导热层粘结层为环氧树脂类、丙烯酸树脂类、氨基树脂类或有机硅类。
(44)根据项(37)所述的制作方法,还包括:
在所述导热层和所述背板的所述表面之间提供导热层粘结层;
在所述前板和所述电池层之间提供第一粘结层;
在所述背板和所述电池层之间提供第二粘结层;以及
层压依次包括所述前板、所述第一粘结层、所述电池层、所述第 二粘结层、所述背板、所述导热层粘结层和所述导热层的层叠结构。
(45)根据项(44)所述的制作方法,其中,
所述导热层粘结层为EVA或POE。
(46)根据项(44)或(45)所述的制作方法,其中,
所述导热层是含有导热颗粒的片材。
(47)根据项(37)-(46)中任一项所述的制作方法,其中,
提供所述导热层,使得其包括骨架部分和由所述骨架部分围绕的镂空部分,并且在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
(48)根据项(47)所述的制作方法,其中,
提供所述导热层,使得在在所述光伏组件的厚度方向上,所述骨架部分的所述至少一部分与所述电池单元的边缘重叠。
(49)根据项(47)或(48)所述的制作方法,其中,
所述骨架部分包括在第一方向上延伸的多个第一条形导热部分和在与所述第一方向相交的第二方向上延伸的多个第二条形导热部分。
(50)根据项(47)-(49)中任一项所述的制作方法,其中,
提供所述导热层,使得所述骨架部分包括与所述电池单元重叠的多个子条形导热部分,所述多个子条形导热部分与所述电池单元的主栅重叠。
(51)一种光伏组件,其由根据项(37)-(50)中任一项所述的制作方法制作。
本公开的范围并非由上述描述的实施方式来限定,而是由所附的权利要求书及其等同范围来限定。

Claims (43)

  1. 一种光伏组件,包括:
    电池层,所述电池层包括多个电池单元,所述多个电池单元以阵列布置并且配置为接收光并产生功率;和
    导热层,所述导热层由导热材料形成或包含导热材料,并与所述电池层热连通,
    其中,所述导热层呈网状,包括骨架部分和由所述骨架部分围绕的镂空部分,并且在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
  2. 根据权利要求1所述的光伏组件,还包括背板,所述导热层夹置在所述背板和所述电池层之间。
  3. 根据权利要求1所述的光伏组件,还包括背板,所述导热层设置在所述背板的背离所述电池层的一侧上。
  4. 根据权利要求2或3所述的光伏组件,还包括导热层粘结层,所述导热层粘结层设置在所述背板和所述导热层之间以将所述导热层粘合到所述背板。
  5. 根据权利要求1-4中任一项所述的光伏组件,还包括第一粘结层,所述第一粘结层设置在所述背板和所述电池层之间以将所述电池层粘合到所述背板。
  6. 根据权利要求1-5中任一权利要求所述的光伏组件,其中
    所述导热层的所述骨架部分配置成能够反射光。
  7. 根据权利要求1-6中任一权利要求所述的光伏组件,其中
    所述导热层的所述骨架部分为铝箔或铜箔。
  8. 根据权利要求1-7中任一权利要求所述的光伏组件,其中
    所述导热层的所述骨架部分镀覆有锡或镍。
  9. 根据权利要求1-8中任一权利要求所述的光伏组件,其中
    所述导热层的所述骨架部分的面向所述电池层的表面为齿状。
  10. 根据权利要求1-9中任一权利要求所述的光伏组件,其中
    在所述厚度方向上,所述骨架部分的所述至少一部分与所述电池单元的边缘重叠。
  11. 根据权利要求1-10中任一权利要求所述的光伏组件,其中,
    所述骨架部分包括在第一方向上延伸的多个第一条形导热部分和在与所述第一方向相交的第二方向上延伸的多个第二条形导热部分。
  12. 根据权利要求11所述的光伏组件,其中,
    所述第一方向与所述第二方向垂直。
  13. 根据权利要求11或12所述的光伏组件,其中,所述第一条形导热部分和第二条形导热部分具有相同的宽度。
  14. 根据权利要求1至13中任一权利要求所述的光伏组件,其中,
    所述导热层可以通过冲压片状材料而形成。
  15. 根据权利要求1至14中任一权利要求所述的光伏组件,其中,
    所述导热层呈栅格状网状图案,所述骨架部分包括与所述电池单元重叠的多个子条形导热部分,所述多个子条形导热部分与所述电池单元的主栅重叠。
  16. 根据权利要求3所述的光伏组件,还包括:
    保护层,所述保护层设置在所述导热层的背离所述背板的一侧上。
  17. 根据权利要求2或3所述的光伏组件,还包括:
    前板,所述前板设置在所述电池层的背离所述背板的一侧上,并将所述电池层夹置在所述背板和所述前板之间。
  18. 根据权利要求2或3所述的光伏组件,其中,所述导热层为结合到所述背板的一表面上的导热膜层,所述导热膜层包括导热颗粒和白色无机颜料。
  19. 根据权利要求18所述的光伏组件,其中,所述导热颗粒包括碳化硅、氮化铝和碳化硼中的一种或多种。
  20. 根据权利要求18所述的光伏组件,其中,所述白色无机颜料 包括锌钡白、二氧化钛、滑石粉、铅白、云母、碳酸钙、硫酸钙、氧化锌、三氧化二锑、氧化镁、碳酸镁、氧化铁、二氧化硅、二氧化锆、硫酸钡和氧化铝中的一种或多种。
  21. 根据权利要求2或3或18所述的光伏组件,其中,
    所述背板包括玻璃层。
  22. 根据权利要求2或3所述的光伏组件,其中,
    所述背板包括绝缘阻隔层、含氟耐候层、第三粘结层和粘结过渡层中的至少一个。
  23. 一种光伏组件的背板,包括:
    导热层,其呈网状,所述导热层包括骨架部分和由所述骨架部分围绕的镂空部分。
  24. 根据权利要求23所述的背板,还包括:
    第三粘结层;和
    绝缘阻隔层、含氟耐候层和粘结过渡层中的至少一个,
    所述导热层与至少一个所述第三粘结层相邻。
  25. 根据权利要求23所述的背板,还包括:
    第三粘结层、绝缘阻隔层、含氟耐候层和粘结过渡层,
    所述导热层与至少一个所述第三粘结层相邻。
  26. 根据权利要求23所述的背板,其中,
    所述背板包括五个层,并且还包括:
    第三粘结层、绝缘阻隔层、含氟耐候层和位于最外侧的粘结过渡层,
    所述导热层与至少一个所述第三粘结层相邻。
  27. 根据权利要求24-26中任一权利要求所述的背板,其中,所述第三粘结层延伸到所述导热层的镂空部分中。
  28. 根据权利要求23所述的背板,其中,
    所述导热层包括聚合树脂和混合在所述聚合树脂中的导热颗粒。
  29. 根据权利要求28所述的背板,还包括:
    绝缘阻隔层,其中,
    所述导热层与所述绝缘阻隔层相邻,并且所述导热层与所述绝缘阻隔层一起通过共挤的方式形成。
  30. 根据权利要求29所述的背板,其中,
    所述绝缘阻隔层包括所述聚合树脂,并且所述聚合树脂为PET。
  31. 一种光伏组件,包括:
    电池层,所述电池层包括多个以阵列形式排列的电池单元;和
    如权利要求23至30中任一权利要求所述的背板,所述电池层通过第一粘结层粘结到所述背板。
  32. 一种光伏组件的制造方法,包括:
    提供前板;
    提供背板;
    提供导热层,其中所述导热层呈网状,其包括骨架部分和由所述骨架部分围绕的镂空部分;以及
    在所述前板和所述背板之间提供包括多个电池单元的电池层,所述多个电池单元以阵列布置,使得在所述光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
  33. 根据权利要求32的光伏组件的制造方法,其中,
    所述导热层为结合到所述背板的一表面上的导热膜层,所述导热膜层包括导热颗粒和白色无机颜料,
    提供所述导热层包括:
    将包括所述导热颗粒和所述白色无机颜料的导热层预制物涂布到所述背板的所述表面上;以及
    烘干所述导热层预制物以形成所述导热膜层。
  34. 根据权利要求32所述的制造方法,还包括:
    层压包括所述前板、所述电池层和所述背板的层叠结构,其中,
    在所述层压之后,提供所述导热层。
  35. 根据权利要求34所述的制造方法,其中,
    提供所述导热层包括:
    在所述背板的背离所述电池层的一侧的表面上涂覆含有导热颗粒的导热层溶液;以及
    烘干所述导热层溶液以在所述背板的所述表面上形成导热层。
  36. 根据权利要求35所述的制造方法,其中,
    通过丝网印刷、滚涂、喷涂、提拉、旋涂、狭缝法、超声波雾化中的任何一种或其组合而将所述导热层溶液涂覆到所述背板的所述表面上。
  37. 根据权利要求35或36所述的制造方法,其中,
    所述导热颗粒包括铝颗粒、银颗粒、铜颗粒和金颗粒中的一种或多种。
  38. 根据权利要求34所述的制造方法,其中,
    提供所述导热层包括:
    通过导热层粘结层将导热层粘结到在所述背板的背离所述电池层的一侧的表面上。
  39. 根据权利要求38所述的制造方法,其中,
    所述导热层粘结层为环氧树脂类、丙烯酸树脂类、氨基树脂类或有机硅类。
  40. 根据权利要求32所述的制造方法,还包括:
    在所述导热层和所述背板之间提供导热层粘结层;
    在所述前板和所述电池层之间提供第一粘结层;
    在所述背板和所述电池层之间提供第二粘结层;以及
    层压依次包括所述前板、所述第一粘结层、所述电池层、所述第二粘结层、所述背板、所述导热层粘结层和所述导热层的层叠结构。
  41. 根据权利要求40所述的制造方法,其中,
    所述导热层粘结层为EVA或POE。
  42. 根据权利要求40或41所述的制造方法,其中,
    所述导热层是含有导热颗粒的片材。
  43. 一种光伏组件的制造方法,包括:
    提供如权利要求23至30中任一权利要求所述的背板;以及
    将电池层层叠于所述背板的粘合层上,其中,所述电池层中包括多个电池单元,所述电池单元以阵列形式排列,且所述层叠使得在光伏组件的厚度方向上,所述骨架部分的至少一部分与相邻电池单元之间的间隙重叠,所述镂空部分与所述电池单元重叠。
PCT/CN2020/112082 2020-07-22 2020-08-28 光伏组件,光伏组件的背板和光伏组件的制造方法 WO2022016662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/614,310 US20220320356A1 (en) 2020-07-22 2020-08-28 Photovoltaic module, back sheet of photovoltaic module and manufacturing method of photovoltaic module
EP20931723.9A EP3971994B1 (en) 2020-07-22 2020-08-28 Photovoltaic module, backsheet of photovoltaic module, and method for manufacturing photovoltaic module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010712100.2 2020-07-22
CN202010712100.2A CN111816724B (zh) 2020-07-22 2020-07-22 光伏组件,光伏组件的背板和光伏组件的制造方法
CN202010818105.3 2020-08-14
CN202010818096.8 2020-08-14
CN202010818096.8A CN111952393B (zh) 2020-08-14 2020-08-14 光伏组件,光伏组件的背板和光伏组件的制造方法
CN202010818105.3A CN111952413B (zh) 2020-08-14 2020-08-14 光伏组件的制作方法

Publications (1)

Publication Number Publication Date
WO2022016662A1 true WO2022016662A1 (zh) 2022-01-27

Family

ID=78806224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112082 WO2022016662A1 (zh) 2020-07-22 2020-08-28 光伏组件,光伏组件的背板和光伏组件的制造方法

Country Status (3)

Country Link
US (1) US20220320356A1 (zh)
EP (1) EP3971994B1 (zh)
WO (1) WO2022016662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117968005A (zh) * 2024-04-01 2024-05-03 江苏恒天源照明集团有限公司 一种具有自动调节功能的高效太阳能发电路灯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087321A1 (en) * 2006-06-29 2008-04-17 Zalman Schwartzman Photovoltaic array for concentrated solar energy generator
CN202772157U (zh) * 2012-01-06 2013-03-06 旺能光电股份有限公司 太阳能模块
CN106910790A (zh) * 2017-05-02 2017-06-30 协鑫电力设计研究有限公司 光伏光热组件
CN110112224A (zh) * 2018-01-30 2019-08-09 3M创新有限公司 光重定向膜和光伏模块

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985919B1 (en) * 2006-08-18 2011-07-26 Nanosolar, Inc. Thermal management for photovoltaic devices
US20110017265A1 (en) * 2009-07-23 2011-01-27 Farrell James F Photovoltaic module with conductive cooling and enhanced reflection
US9214586B2 (en) * 2010-04-30 2015-12-15 Solar Junction Corporation Semiconductor solar cell package
WO2012050316A1 (ko) * 2010-10-13 2012-04-19 Kim Min-Hyuk 태양광발전용 솔라셀 모듈의 백시트
US9050784B2 (en) * 2010-12-22 2015-06-09 E I Du Pont De Nemours And Company Fire resistant back-sheet for photovoltaic module
JP5842170B2 (ja) * 2011-06-23 2016-01-13 パナソニックIpマネジメント株式会社 太陽電池モジュール
KR101461042B1 (ko) * 2014-06-27 2014-11-17 에디슨솔라이텍(주) 태양광 발전효율 향상 및 최적화 장치를 갖는 지붕 일체형 태양광 발전모듈
US9842951B2 (en) * 2014-06-27 2017-12-12 Sunpower Corporation Encapsulants for photovoltaic modules
DE202015102947U1 (de) * 2015-06-08 2015-07-01 Solarworld Ag Photovoltaik-Modul
JP2017221007A (ja) * 2016-06-06 2017-12-14 大成建設株式会社 太陽電池パネル
CN107611109A (zh) * 2017-10-19 2018-01-19 镇江市鑫汉太阳能电力有限公司 一种基于碳化硅的耐候性太阳能电池板
WO2019150237A1 (en) * 2018-01-30 2019-08-08 3M Innovative Properties Company Light redirecting films and its making method and photovoltaic modules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080087321A1 (en) * 2006-06-29 2008-04-17 Zalman Schwartzman Photovoltaic array for concentrated solar energy generator
CN202772157U (zh) * 2012-01-06 2013-03-06 旺能光电股份有限公司 太阳能模块
CN106910790A (zh) * 2017-05-02 2017-06-30 协鑫电力设计研究有限公司 光伏光热组件
CN110112224A (zh) * 2018-01-30 2019-08-09 3M创新有限公司 光重定向膜和光伏模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971994A4

Also Published As

Publication number Publication date
EP3971994A1 (en) 2022-03-23
EP3971994A4 (en) 2022-07-06
EP3971994B1 (en) 2023-08-02
EP3971994C0 (en) 2023-08-02
US20220320356A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI462309B (zh) 具有冷光下移材料的光伏特裝置
CN111952393B (zh) 光伏组件,光伏组件的背板和光伏组件的制造方法
EP3167490A1 (en) Solar panel and method of manufacturing such a solar panel
TW201349529A (zh) 背接觸型太陽能電池模組
CN102623553A (zh) 一种太阳能电池组件的制备方法
JP2008010857A (ja) 太陽電池モジュール
WO2022016662A1 (zh) 光伏组件,光伏组件的背板和光伏组件的制造方法
CN204315597U (zh) 轻型光伏电池组件
CN111106194A (zh) 一种双面太阳能电池片及光伏组件
CN209981247U (zh) 一种曲面叠瓦光伏组件
CN208622744U (zh) 一种具有定向反射功能的胶膜及光伏组件
WO2018210283A1 (zh) 一种二极管条带、光伏装置及其制造方法
CN111816724B (zh) 光伏组件,光伏组件的背板和光伏组件的制造方法
CN217881539U (zh) 一种新型量子点光伏背板及双面光伏组件
KR20190000875U (ko) 태양전지 어셈블리가 밀봉된 광발전 건축 재료
JP5496413B2 (ja) 太陽電池装置の製造方法
US20120298167A1 (en) Structure and manufacturing of solar panels for a kind of solar shingles
KR20130074599A (ko) 태양전지 모듈 및 그 제조방법
CN210073875U (zh) 太阳能幕墙组件及太阳能幕墙
WO2016027759A1 (ja) インターコネクタ用光拡散部材及びこれを備える太陽電池用インターコネクタ、並びに太陽電池モジュール
WO2019095826A1 (zh) 自加热卷材
JP2004327630A (ja) 太陽電池モジュール
CN111952413B (zh) 光伏组件的制作方法
JP5258851B2 (ja) 太陽電池モジュール
CN113299784B (zh) 光伏组件和光伏组件的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020931723

Country of ref document: EP

Effective date: 20211029

NENP Non-entry into the national phase

Ref country code: DE