WO2022014414A1 - 光学活性な化合物の製造方法 - Google Patents

光学活性な化合物の製造方法 Download PDF

Info

Publication number
WO2022014414A1
WO2022014414A1 PCT/JP2021/025489 JP2021025489W WO2022014414A1 WO 2022014414 A1 WO2022014414 A1 WO 2022014414A1 JP 2021025489 W JP2021025489 W JP 2021025489W WO 2022014414 A1 WO2022014414 A1 WO 2022014414A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically active
formula
trimethyl
cobalt
Prior art date
Application number
PCT/JP2021/025489
Other languages
English (en)
French (fr)
Inventor
レオポル ンパカ ルテテ
弘寿 萩谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to BR112022026601A priority Critical patent/BR112022026601A2/pt
Priority to CN202180049266.3A priority patent/CN115836041A/zh
Priority to EP21842357.2A priority patent/EP4186882A1/en
Priority to JP2022536280A priority patent/JPWO2022014414A1/ja
Priority to CA3186051A priority patent/CA3186051A1/en
Priority to AU2021308138A priority patent/AU2021308138A1/en
Priority to KR1020237003992A priority patent/KR20230041010A/ko
Priority to US18/005,161 priority patent/US20230257408A1/en
Priority to IL299590A priority patent/IL299590A/en
Publication of WO2022014414A1 publication Critical patent/WO2022014414A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • C07C209/88Separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/60Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton containing a ring other than a six-membered aromatic ring forming part of at least one of the condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/08Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms with acylated ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane

Definitions

  • Patent Document 1 describes 1-acetyl-1, in the presence of an asymmetric iridium catalyst as a method for producing optically active 1-acetyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline. A method for reacting 2-dihydro-2,2,4-trimethyl-1-quinoline with hydrogen is described.
  • An object of the present invention is to provide a more efficient method for producing a specific optically active compound, including optically active 1-acetyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline. To provide.
  • equation (2) In the presence of an asymmetric cobalt complex, equation (2): (In the formula, R 5 represents a hydrogen atom or a C1-C6 alkyl group which may have one or more substituents, and R 6 and R 7 are independent hydrogen atoms or C1 respectively. -Representing a C6 alkyl group, R 8 represents a C1-C6 alkyl group, and R 9 , R 10 and R 11 are independent hydrogen atoms, halogen atoms, amino groups, hydroxy groups, one or more.
  • C1-C6 alkyl group may have one or more substituents
  • C1-C6 alkoxy group may have one or more substituents
  • C2- may have one or more substituents.
  • the compound represented by (3) is reacted with hydrogen.
  • R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 have the same meanings as described above.
  • the carbon atom marked with * represents an asymmetric carbon atom.
  • the asymmetric cobalt complex according to [1] is the formula (1) :.
  • each R 1 independently has a C1-C10 alkyl group which may have one or more substituents and a C3-C10 cycloalkyl group which may have one or more substituents. , Or a C6-C10 aryl group which may have one or more substituents.
  • R 2 and R 3 each independently have a hydrogen atom or one or more substituents.
  • one or more substituents optionally C1-C10 may be an alkyl group having a one or more substituents which may have a C1-C10 alkoxy group, A C1-C10 alkylthio group that may have one or more substituents, a C2-C11 alkoxycarbonyl group that may have one or more substituents, and one or more substituents.
  • a C2-C11 alkylcarbonyl group May have a C2-C11 alkylcarbonyl group, a C6-C10 aryl group which may have one or more substituents, a halogen atom, an amino group which may be mono or dialkylated by C1-C10 alkylation, a nitro.
  • N represents 0, 1, 2 or 3. When n is 0 or 1.
  • a plurality of R 4 is optionally different or mutually the same as each other .
  • X is a chlorine atom, a bromine atom or an iodine atom.
  • the hydride reducing agent is a trialkylhydroborated boron alkali metal salt.
  • a method for producing an optically active compound further comprising a step of obtaining the compound represented by.
  • R 6 , R 7 and R 8 in the formula (5) are methyl groups, and R 9 , R 10 and R 11 are hydrogen atoms.
  • Optically active 1, 1, 3 including a step of dissolving the optically active compound represented by the formula (5) obtained in [11] in a solvent and then optically resolution using optically active tartaric acid. -Method for producing trimethyl-4-aminoindane.
  • An optically active 1,1,3-trimethyl including a step of dissolving an optically active compound represented by the formula (5) obtained in [12] in a solvent and then adding an acid for preferential crystallization. -4-Aminoindane manufacturing method.
  • the formula (7) By reacting with the compound represented by, the formula (7): (In the formula, R 12 , R 13 and * have the same meanings as above.) A method for producing an optically active compound, further comprising a step of obtaining an optically active compound represented by. [17] Equation (1'): (In the formula, R 1 represents an isopropyl group or a tert-butyl group. A carbon atom marked with * represents an asymmetric carbon atom.) Asymmetric cobalt complex represented by.
  • Equation (1') (In the formula, R 1 represents an isopropyl group or a tert-butyl group. A carbon atom marked with * represents an asymmetric carbon atom).
  • a hydride complex obtained by reacting an asymmetric cobalt complex represented by (1) with a hydride reducing agent.
  • An alkyl complex obtained by reacting an asymmetric cobalt complex represented by (1) with an alkyllithium.
  • an optically active compound represented by the above formula (3) can be efficiently produced. Further, if the obtained optically active compound represented by the formula (3) is reacted with an acid and then reacted with water, the optically active compound represented by the above formula (5) can be efficiently produced. .. Further, the optically pure 1,1,3-trimethyl-4-aminoindane, which is one of the obtained optically active compounds represented by the formula (5), is optically resolved or preferentially crystallized by an acid to achieve optical purity. 1,1,3-trimethyl-4-aminoindane with high optical purity can be efficiently produced, and the obtained 1,1,3-trimethyl-4-aminoindane with high optical purity is represented by the above formula (6). By reacting with the above compound, the optically active compound represented by the above formula (7) can be efficiently produced.
  • the optically active compound represented by the formula (7) is known to have a plant disease control effect (see International Publication No. 2011/162397).
  • CX-CY in the present specification means that the number of carbon atoms is X to Y.
  • C1-C4 means that the number of carbon atoms is 1 to 4.
  • the C1-C10 alkyl group includes, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group and a heptyl group. , Octyl group, nonyl group, decyl group and the like.
  • C1-C10 alkyl groups may have include, for example, one or more C1-C10 alkyl groups such as a phenyl group, a naphthyl group, a 4-methylphenyl group, and a 4-methoxyphenyl group.
  • a C6-C10 aryl group which may have a C1-C10 alkoxy group; a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butyloxy group, a tert-butoxy group, and a tri.
  • C1-C10 alkoxy group which may have one or more fluorine atoms such as a fluoromethoxy group; one or more such as a benzyloxy group, a 4-methylbenzyloxy group, and a 4-methoxybenzyloxy group.
  • C1-C10 alkoxy group with C6-C10 aryl group which may have C1-C10 alkyl group or C1-C10 alkoxy group; one or more C6-C10 aryloxy groups such as 3-phenoxybenzyloxy group C1-C10 alkoxy group having a C6-C10 aryl group with; one or more C1-C10 alkyl groups or C1 such as a phenoxy group, a 2-methylphenoxy group, a 4-methylphenoxy group, and a 4-methoxyphenoxy group.
  • C6-C10 aryloxy group optionally having C10 alkoxy group; C6-C10 aryloxy group having one or more C6-C10 aryloxy groups such as 3-phenoxyphenoxy group; acetyl group, propionyl One or more C1- such as a group, a benzylcarbonyl group, a 4-methylbenzylcarbonyl group, a 4-methoxybenzylcarbonyl group, a benzoyl group, a 2-methylbenzoyl group, a 4-methylbenzoyl group, and a 4-methoxybenzoyl group.
  • Examples thereof include a C2-C10 acyl group which may have a C10 alkyl group or a C1-C10 alkoxy group and a C6-C10 aryl group; a carboxy group; and a fluorine atom.
  • Examples of the C1-C10 alkyl group having one or more substituents include a fluoromethyl group, a trifluoromethyl group, a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group, a benzyl group, a 4-fluorobenzyl group and a 4-.
  • Examples thereof include a methylbenzyl group, a phenoxymethyl group, a 2-oxopropyl group, a 2-oxobutyl group, a phenacyl group, and a 2-carboxyethyl group.
  • examples of the C3-C10 cycloalkyl group include a cyclopropyl group, a 2,2-dimethylcyclopropyl group, a cyclopentyl group, a cyclohexyl group, and a menthyl group.
  • the substituents that these C3-C10 cycloalkyl groups may have include, for example, one or more C1-C10 alkyl groups such as a phenyl group, a naphthyl group, a 4-methylphenyl group, and a 4-methoxyphenyl group.
  • a C6-C10 aryl group which may have a group or a C1-C10 alkoxy group; a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butyloxy group, a tert-butoxy group, and a group.
  • C1-C10 alkoxy group which may have one or more fluorine atoms such as trifluoromethoxy group; one or more such as benzyloxy group, 4-methylbenzyloxy group, 4-methoxybenzyloxy group and the like.
  • C1-C10 alkoxy group with C6-C10 aryl group which may have C1-C10 alkyl group or C1-C10 alkoxy group; one or more C6-C10 aryloxy groups such as 3-phenoxybenzyloxy group C1-C10 alkoxy group having a C6-C10 aryl group with; one or more C1-C10 alkyl groups or C1 such as a phenoxy group, a 2-methylphenoxy group, a 4-methylphenoxy group, and a 4-methoxyphenoxy group.
  • C6-C10 aryloxy group optionally having C10 alkoxy group; C6-C10 aryloxy group having one or more C6-C10 aryloxy groups such as 3-phenoxyphenoxy group; acetyl group, propionyl One or more C1- such as a group, a benzylcarbonyl group, a 4-methylbenzylcarbonyl group, a 4-methoxybenzylcarbonyl group, a benzoyl group, a 2-methylbenzoyl group, a 4-methylbenzoyl group, and a 4-methoxybenzoyl group.
  • Examples thereof include a C2-C10 acyl group which may have a C10 alkyl group or a C1-C10 alkoxy group and a C6-C10 aryl group; a carboxy group; and a fluorine atom.
  • Examples of the C3-C10 cycloalkyl group having a substituent include a fluorocyclopropyl group, a 4-trifluorocyclohexyl group, a 4-methoxycyclopentyl group, and a 4-phenylcyclohexyl group.
  • Examples of the C6-C10 aryl group in the present specification include a phenyl group and a naphthyl group.
  • substituent which these C6-C10 aryl groups may have, for example, one or more of a methyl group, a fluoromethyl group, a trifluoromethyl group, a methoxymethyl group, an ethoxymethyl group, a methoxyethyl group and the like.
  • C1-C10 alkoxy group or C1-C10 alkyl group which may have a fluorine atom; methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy.
  • C1 which may have one or more C1-C10 alkoxy groups or fluorine atoms such as a group, a pentyloxy group, a fluoromethoxy group, a trifluoromethoxy group, a methoxymethoxy group, an ethoxymethoxy group, and a methoxyethoxy group.
  • -10 alkoxy group; C3-C10 cycloalkyloxy group such as cyclopentyloxy group; and halogen atom such as fluorine atom and chlorine atom can be mentioned.
  • Examples of the C6-C10 aryl group having one or more substituents include a 2-methylphenyl group, a 4-methylphenyl group, a 4-chlorophenyl group and a 4-methoxyphenyl group.
  • the C1-C10 alkoxy group which may have one or more substituents is a hydrogen atom constituting a hydroxy group (-OH) having one or more substituents described above. It is a group replaced with a C1-C10 alkyl group which may be used, and is, for example, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, a sec-butoxy group, a pentyloxy group, a decyloxy group, a fluoromethoxy group, and the like.
  • trifluoromethoxy group methoxymethoxy group, ethoxymethoxy group, benzyloxy group, 4-fluorobenzyloxy group, 4-methylbenzyloxy group, phenoxymethoxy group, 2-oxopropoxy group, and 2-oxobutoxy group. ..
  • the C1-C10 alkylthio group which may have one or more substituents is a hydrogen atom constituting a sulfanyl group (-SH) having one or more substituents described above. It is a group that replaces the C1-C10 alkyl group that may be present, and is, for example, a methylthio group, an ethylthio group, an n-propylthio group, an n-butylthio group, a sec-butylthio group, a pentylthio group, a tidesylthio group, a fluoromethylthio group, or a tri.
  • fluoromethylthio group methoxymethylthio group, ethoxymethylthio group, benzylthio group, 4-fluorobenzylthio group, 4-methylbenzylthio group, phenoxymethylthio group, 2-oxopropylthio group, and 2-oxobutylthio group. ..
  • the C2-C11 alkoxycarbonyl group which may have one or more substituents is such that the hydrogen atom constituting the formyl group (-CHO) has one or more substituents described above. It is a group that replaces the C1-C10 alkoxy group that may be used, and is, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an n-butoxycarbonyl group, a sec-butoxycarbonyl group, or a tert-butoxycarbonyl group.
  • the C2-C11 alkylcarbonyl group which may have one or more substituents may be such that the hydrogen atom constituting the formyl group (-CHO) has the above-mentioned substituents.
  • a group that replaces the C1-C10 alkyl group for example, an acetyl group, an ethylcarbonyl group, a propylcarbonyl group, a butylcarbonyl group, a sec-butylcarbonyl group, a tert-butylcarbonyl group, a pentylcarbonyl group, a decylcarbonyl group, and a fluoro group.
  • Methylcarbonyl group trifluoromethylcarbonyl group, methoxymethylcarbonyl group, ethoxymethylcarbonyl group, benzylcarbonyl group, 4-fluorobenzylcarbonyl group, 4-methylbenzylcarbonyl group, phenoxymethylcarbonyl group, 2-oxopropylcarbonyl group, And 2-oxobutylcarbonyl groups.
  • the mono or dialkylated amino group is a group in which at least one of the two hydrogen atoms constituting the amino group (-NH 2 ) is replaced with the above-mentioned C1-C10 alkyl group, for example. , Methylamino group, dimethylamino group, ethylamino group and diethylamino group.
  • the C1-C10 alkylsulfonyl group is a group in which the OH constituting the sulfo group (-SO 2 OH) is replaced with the above-mentioned C1-C10 alkyl group, for example, a methylsulfonyl group and an ethylsulfonyl group. Can be mentioned.
  • the C6-C10 arylsulfonyl group is a group in which the OH constituting the sulfo group (-SO 2 OH) is replaced with the above-mentioned C6-C10 aryl group, for example, a phenylsulfonyl group and 4-methyl. Examples include phenylsulfonyl groups.
  • the halosulfonyl group is a group in which the OH constituting the sulfo group (—SO 2 OH) is replaced with a halogen atom, and examples thereof include a fluorosulfonyl group and a chlorosulfonyl group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the compound represented by the above formula (2) (hereinafter, may be referred to as “compound (2)” in the present specification) is reacted with hydrogen.
  • a method for producing the optically active compound represented by (3) (hereinafter, may be referred to as “optically active compound (3)” in the present specification) will be described.
  • the asymmetric cobalt complex used in the present invention may be a complex in which an optically active ligand is coordinated to a cobalt metal or a cobalt ion.
  • asymmetric cobalt complex described in Volume 134, pp. 4651-4564 or the complex represented by the above formula (1) (hereinafter, may be referred to as “complex (1)” in the present specification) can be used.
  • it is preferable to use a complex obtained by reacting the complex (1) with a reducing agent hereinafter, may be referred to as "monovalent cobalt complex (1)" in the present specification).
  • Examples of the ring in which R 2 and R 3 are bonded to each other in the above formula (1) and formed together with the carbon atom to which they are bonded include cycloalkane rings such as cyclopentane ring, cyclohexane ring and cycloheptane ring. Be done. These rings may be substituted with a C1-C10 alkyl group which may have one or more substituents as described above, or a substituent which may have a C1-C10 alkyl group.
  • the R 1, preferably 1 or more substituents C1-10 alkyl group which may have one or more substituents may C1-C4 alkyl group which may have a more preferred.
  • R 2 and R 3 hydrogen atoms or C1-C4 alkyl groups are preferable independently of each other.
  • n is preferably 2 or 3, more preferably 3.
  • As X a chlorine atom or a bromine atom is preferable. It is preferable to combine these as R 1 , R 2 , R 3 and X.
  • Examples of the complex (1) include dichloro [2,6-bis [4- (S) -isopropyl-2-oxazolyl] pyridine] cobalt and dichloro [2,6-bis [4- (R) -isopropyl-2-oxazolyl].
  • the complex (1) is, for example, an optically active bis as a precursor according to the method described in the experimental section of the supplementary material, for example, Angelw. Chem. Int. Ed., Vol. 55, pp. 10839 (2016). It can be synthesized by mixing an oxazolinylpyridine derivative and a divalent cobalt halide in a solvent.
  • the optically active bisoxazolinylpyridine derivative as a precursor can be produced, for example, according to the method described in Scheme 1 of Tetrahedron Letters, Vol. 45, p. 8988 (2004).
  • the 2,6-dicarboxypyridine derivative is reacted with thionyl chloride to form the corresponding carboxylic acid chloride, which is reacted with an optically active amino alcohol to form diamide, and then reacted with thionyl chloride to form a hydroxy group.
  • An optically active bisoxazolinylpyridine derivative can be produced by chlorinating and then carrying out a ring closing reaction to the oxazoline ring in NaOH / methanol.
  • an asymmetric cobalt complex represented by the above formula (1') (hereinafter, may be referred to as "complex (1')" in the present specification) is preferable.
  • R 1 is preferably a tert-butyl group.
  • an optically active compound (3) having a high ratio of R-form is usually obtained.
  • the R-form of the optically active compound represented by the above formula (7) has a higher plant disease control effect (see International Publication No. 2011/162397), and the optical compound for use as an intermediate thereof is known.
  • the complex (1') is preferably an S-form.
  • the complex obtained by reacting the complex (1') with the reducing agent may be referred to as a monovalent cobalt complex (1').
  • optical active compounds when the compounds represented by the formulas (3), (4), (5), and (7) are referred to as “optically active compounds” or “optically active compounds”, they are referred to as “optically active compounds”. Unless otherwise specified, it means the form of a mixture of R-form and S-form in which either the R-form or S-form described later is contained in enanti-rich, or either the R-form or the S-form itself.
  • the reducing agent that reacts with the complex (1) examples include a hydride reducing agent, an alkyllithium compound, and a greener reagent. It is preferably a hydride reducing agent.
  • the hydride reducing agent may be any reducing agent capable of reducing the divalent cobalt atom of the complex (1) to form a hydride complex having a monovalent cobalt atom, and may be, for example, triethyl borohydride lithium or triethyl hydrogen.
  • the amount of the hydride reducing agent used is usually in the range of 2 mol to 20 mol, preferably 4 mol to 10 mol, per 1 mol of the complex (1).
  • the reaction is carried out by mixing the complex (1) and the hydride reducing agent in a solvent inert to the hydride reducing agent under the atmosphere of an inert gas.
  • Such solvents include, for example, ether solvents such as diethyl ether, tetrahydrofuran, methyl tetrahydrofuran, 1,4-dioxane, and methyl tert-butyl ether; aliphatic hydrocarbon solvents such as n-hexane, n-heptane, and cyclohexane; Aromatic hydrocarbon solvents such as toluene, xylene, and chlorobenzene; and halogenated hydrocarbon solvents such as dichloromethane and dichloroethane can be mentioned, with ether solvents being preferred.
  • the amount of the solvent used is usually in the range of 2 parts by weight to 100 parts by weight with respect to 1 part by weight of the complex (1).
  • the reaction temperature is usually in the range of ⁇ 70 ° C. to 100 ° C.
  • the reaction time is usually in the range of 10 minutes to 4 hours. After completion of the reaction, the obtained hydride complex may be isolated, but is usually used for the reaction between compound (2) and hydrogen without isolation.
  • the alkyllithium compound may be any reducing agent capable of reducing the divalent cobalt atom of the complex (1) to form an alkyl complex having a monovalent cobalt atom, and may be, for example, methyllithium, ethyllithium, n-. Examples thereof include propyllithium and n-butyllithium.
  • the amount of the alkyllithium compound used is usually in the range of 2 mol to 20 mol, preferably 3 mol to 10 mol, per 1 mol of the complex (1).
  • the reaction is carried out by mixing the complex (1) and the alkyllithium compound in a solvent inert to the alkyllithium compound under an inert gas atmosphere. Further, it may be carried out in the presence of compound (2).
  • Such solvents include, for example, ether solvents such as diethyl ether, tetrahydrofuran, methyl tetrahydrofuran, 1,4-dioxane, and methyl tert-butyl ether; aliphatic hydrocarbon solvents such as n-hexane, n-heptane, and cyclohexane; Aromatic hydrocarbon solvents such as toluene, xylene, and chlorobenzene; and halogenated hydrocarbon solvents such as dichloromethane and dichloroethane can be mentioned, with ether solvents being preferred.
  • the amount of the solvent used is usually in the range of 2 parts by weight to 100 parts by weight with respect to 1 part by weight of the complex (1).
  • the reaction temperature is usually in the range of ⁇ 70 ° C. to 100 ° C.
  • the reaction time is usually in the range of 10 minutes to 4 hours. After completion of the reaction, the obtained alkyl complex may be isolated, but is usually used for the reaction between compound (2) and hydrogen without isolation.
  • the greenier reagent may be any reducing agent capable of reducing the divalent cobalt atom of the complex (1) to form an alkyl complex having a monovalent cobalt atom, for example, methylmagnesium bromide, ethylmagnesium bromide, n. -Propylmagnesium bromide, n-butylmagnesium bromide and the like can be mentioned.
  • the amount of the greenier reagent used is usually in the range of 2 mol to 20 mol, preferably 3 mol to 10 mol, per 1 mol of the complex (1).
  • the reaction is carried out by mixing the complex (1) and the Greenier reagent in a solvent inert to the Guniryer reagent under an inert gas atmosphere.
  • Such solvents include, for example, ether solvents such as diethyl ether, tetrahydrofuran, methyl tetrahydrofuran, 1,4-dioxane, and methyl tert-butyl ether; aliphatic hydrocarbon solvents such as n-hexane, n-heptane, and cyclohexane; Aromatic hydrocarbon solvents such as toluene, xylene, and chlorobenzene; and halogenated hydrocarbon solvents such as dichloromethane and dichloroethane can be mentioned, with ether solvents being preferred.
  • the amount of the solvent used is usually in the range of 2 parts by weight to 100 parts by weight with respect to 1 part by weight of the complex (1).
  • the reaction temperature is usually in the range of ⁇ 70 ° C. to 100 ° C.
  • the reaction time is usually in the range of 10 minutes to 4 hours. After completion of the reaction, the obtained alkyl complex may be isolated, but is usually used for the reaction between compound (2) and hydrogen without isolation.
  • Compound (2) can be synthesized, for example, according to the method described on page 514 of J. Chem. Soc. (C), 1966. Further, a commercially available product can also be used.
  • Examples of compound (2) include 1-acetyl-1,2-dihydro-2,2,4-trimethyl-1-quinolin and 1-acetyl-1,2-dihydro-2,2,4-trimethyl-6. -Fluoro-1-quinolin, 1-acetyl-1,2-dihydro-2,2,4-trimethyl-6-ethoxy-1-quinolin, 1-acetyl-2,2-dimethyl-4-ethyl-1-quinolin , 1-Acetyl-1,2-dihydro-2,2-dimethyl-4-propyl-1-quinolin, 1-acetyl-1,2-dihydro-2,2-dimethyl-4-butyl-1-quinolin, 1 -Acetyl-1,2-dihydro-2,2-diethyl-4-methyl-1-quinolin, 1-acetyl-1,2-dihydro-2,2-dipropyl-4-methyl-1-quinolin, 1-ethyl Carbonyl-1,2-dihydro-2,2,4
  • asymmetric hydrogenation reaction The reaction between compound (2) and hydrogen in the presence of an asymmetric cobalt complex (hereinafter, also referred to as “asymmetric hydrogenation reaction” in the present specification) is usually carried out in the presence of a solvent.
  • a solvent include ether solvents such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, 1,4-dioxane and methyl tetrahydrofuran; halogenated hydrocarbon solvents such as chloroform and chlorobenzene; aromatic solvents such as toluene and xylene.
  • nitrile solvents such as acetonitrile and propionitrile can be mentioned.
  • An ether solvent is preferable, and tetrahydrofuran or 1,4-dioxane is particularly preferable.
  • the amount of the solvent used is not particularly limited, and is practically 100 parts by weight or less with respect to 1 part by weight of the compound (2) in consideration of volumetric efficiency and the like.
  • the asymmetric hydrogenation reaction of the present invention may be further carried out in the presence of a divalent halogenated cobalt salt or a trialkylamine. More preferred.
  • a divalent cobalt halide salt include CoCl 2 , CoBr 2 and CoI 2 . It is preferably CoBr 2 .
  • the amount of the divalent cobalt halide salt used is usually 2 mol or less with respect to 1 mol of the hydride complex (1).
  • trialkylamines include trimethylamine, triethylamine, tripropylamine and tributylamine. Preferred is triethylamine.
  • the amount of triethylamine used is usually 0.5 mol times or more and 3 mol times or less with respect to 1 mol of compound (2).
  • the asymmetric hydrogenation reaction of the present invention is usually carried out by stirring a mixture containing an asymmetric cobalt catalyst and compound (2) in a hydrogen atmosphere.
  • the pressure at the time of reaction may be normal pressure or may be pressurized.
  • the amount of hydrogen used is usually in the range of 1 mol to 10 mol per 1 mol of compound (2).
  • the reaction temperature is usually in the range of ⁇ 40 ° C. to 100 ° C., preferably in the range of ⁇ 20 ° C. to 80 ° C.
  • a monovalent cobalt complex (1) When a monovalent cobalt complex (1) is used as the asymmetric cobalt complex, a separately prepared monovalent cobalt complex (1) and, if necessary, a divalent halogen are prepared in a solution prepared by dissolving compound (2) in a solvent.
  • An asymmetric hydrogenation reaction may be carried out by adding a cobaltified cobalt salt or a trialkylamine and supplying hydrogen thereto, or a mixture obtained by preparing a monovalent cobalt complex (1) in the presence of a solvent. If necessary, a divalent cobalt halide salt or a trialkylamine may be added, and then compound (2) may be added, and hydrogen may be supplied thereto to carry out an asymmetric hydrogenation reaction, or a complex may be carried out.
  • a hydride reducing agent, an alkyllithium compound or a greener reagent is added to a mixture containing (1), compound (2), a solvent and, if necessary, a divalent cobalt halide salt or trialkylamine to reduce the complex (1).
  • the asymmetric hydrogenation reaction may be carried out by supplying hydrogen to the complex.
  • the degree of progress of the reaction can be confirmed by analytical means such as gas chromatography, high performance liquid chromatography, thin layer chromatography, nuclear magnetic resonance spectrum analysis, and infrared absorption spectrum analysis.
  • optically active compound (3) examples include 1-acetyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline and 1-acetyl-2,2,4-trimethyl-6-fluoro-. 1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2,4-trimethyl-6-ethoxy-1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2-dimethyl-4- Ethyl-1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2-dimethyl-4-propyl-1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2-dimethyl-4- Butyl-1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2-diethyl-4-methyl-1,2,3,4-tetrahydroquinoline, 1-acetyl-2,2-dipropyl-4- Methyl-1,2,3,4-tetrahydroquinoline, 1-ethyl
  • the obtained reaction mixture usually contains the optically active compound (3), and after the reaction is completed, the optically active compound (3) is separated by a concentration treatment, a washing treatment, a crystallization treatment or the like. Can be taken out.
  • the reaction mixture is usually concentrated and served as it is.
  • optically active compound represented by the above formula (4) by reacting the optically active compound (3) with an acid (hereinafter, may be referred to as “optically active compound (4)” in the present specification. ), Then the optically active compound (4) is reacted with water, and the optically active compound represented by the above formula (5) is hereinafter referred to as “optically active compound (5)” in the present specification.
  • the process of obtaining (may be) will be described.
  • the reaction between the optically active compound (3) and the acid may be described as an isomerization reaction
  • the reaction between the optically active compound (4) and water may be described as a hydrolysis reaction.
  • the isomerization reaction can be carried out according to, for example, the method described in J. Chem. Soc. (C), 1966, p. 514 or JP-A-7-215921.
  • Sulfuric acid is preferable as the acid.
  • the sulfuric acid concentration is usually in the range of 90% by weight to 98% by weight, preferably in the range of 92% by weight to 97% by weight in terms of yield.
  • the reaction between the optically active compound (3) and the acid is carried out in the absence of an organic solvent, and the reaction temperature is usually in the range of 20 ° C to 80 ° C.
  • the amount of the acid used is usually in the range of 1 part by weight to 10 parts by weight with respect to 1 part by weight of the optically active compound (3).
  • optically active compound (4) examples include N-acetyl-1,1,3-trimethyl-4-aminoindan and N-acetyl-7-fluoro-1,1,3-trimethyl-4-aminoindan.
  • N-Acetyl-7-ethoxy-1,1,3-trimethyl-4-aminoindan N-acetyl-1,1-dimethyl-3-ethyl-4-aminoindan
  • N-acetyl-1,1-dimethyl -3-propyl-4-aminoindan N-acetyl-1,1-dimethyl-3-butyl-4-aminoindan
  • N-acetyl-1,1-dipropyl-3-methyl-4-aminoindan N- Ethylcarbonyl-1,1,3-trimethyl-4-aminoindan, N-ethylcarbonyl-1,1-dimethyl-3-ethyl-4-aminoindan, N-ethylcarbonyl
  • the optically active compound (4) may be taken out from the obtained reaction mixture, but usually, the hydrolysis reaction is carried out by adding water to the obtained reaction mixture.
  • the reaction temperature of the hydrolysis reaction is usually in the range of 50 ° C to 110 ° C.
  • the amount of water used is usually in the range of 1 part by weight to 10 parts by weight with respect to 1 part by weight of the optically active compound (4).
  • Examples of the obtained optically active compound (5) include 1,1,3-trimethyl-4-aminoindane, 7-fluoro-1,1,3-trimethyl-4-aminoindane, and 7-ethoxy-1,1.
  • a solution containing the optically active compound (5) is obtained by neutralizing the obtained reaction mixture with an alkali and extracting it with an organic solvent that is immiscible with water such as toluene.
  • the enantiomer ratio (R-form / S-form or S-form / R-form) of the optically active compound (5) is usually in the range of 60/40 to 90/10.
  • optically active compound obtained in the above (5) of, R 6, R 7 and R 8 in an optically active 1,1,3-trimethyl-4-aminoindan (Equation (5) is a methyl group , And a compound in which R 9 , R 10 and R 11 are hydrogen atoms) is dissolved in a solvent and then optically resolved using optically active tartaric acid (hereinafter referred to as “optical resolution” in the present specification).
  • optical resolution optically active tartaric acid
  • optical resolution of 1,1,3-trimethyl-4-aminoindane is described in International Publication No. 2015/118793, and the optical resolution of the present invention can also be performed according to the description in this international publication.
  • the optical purity is 0% e. e. From 25% e. e. (That is, 1,1,3-trimethyl-4-aminoindane, which has an enantiomer ratio (R-form / S-form or S-form / R-form) in the range of 50/50 to 62.5 / 37.5), is optically resolved. It is stated that it will be provided to.
  • 1,1,3-trimethyl-4-aminoindan having high optical purity obtained through the asymmetric hydrogenation reaction, the isomerization reaction and the hydrolysis reaction described above is subjected to optical resolution. Further, 1,1,3-trimethyl-4-aminoindan having high optical purity can be obtained more efficiently.
  • the optical purity of 1,1,3-trimethyl-4-aminoindane used for the optical resolution of the present invention is usually 40% e. e. From 80% e. e. (For example, 66% e.e. or more) (that is, the enantiomer ratio (R-form / S-form or S-form / R-form) is in the range of 70/30 to 90/10).
  • 1,3-trimethyl-4-aminoindane preferably has a high ratio of R-form. That is, the 1,1,3-trimethyl-4-aminoindane used for the optical resolution of the present invention preferably has an enantiomer ratio of 70/30 or more in the R-form / S-form, and is 70/30 to 90 /. It is more preferably in the range of 10.
  • D-tartaric acid is used as optically active tartaric acid in order to optically resolve 1,1,3-trimethyl-4-aminoindan having a high ratio of R-form to improve the ratio of R-form, and the ratio of S-form is high.
  • L-tartaric acid is used as the optically active tartaric acid in order to optically resolve the high 1,1,3-trimethyl-4-aminoindan to improve the ratio of the S-form.
  • the optically active tartaric acid commercially available ones can be usually used.
  • the amount of optically active tartaric acid used is usually 0.7 to 1.3 mol with respect to 1 mol of optically active 1,1,3-trimethyl-4-aminoindane (total of R-form and S-form). , Preferably in the range of 0.8 to 1.2 mol.
  • the solvent examples include alcohol solvents such as methanol, ethanol and 2-propanol; ether solvents such as tetrahydrofuran; nitrile solvents such as acetonitrile; ester solvents such as ethyl acetate; aromatic hydrocarbon solvents such as toluene, xylene and ethylbenzene; monochlorobenzenes.
  • alcohol solvents such as methanol, ethanol and 2-propanol
  • ether solvents such as tetrahydrofuran
  • nitrile solvents such as acetonitrile
  • ester solvents such as ethyl acetate
  • aromatic hydrocarbon solvents such as toluene, xylene and ethylbenzene
  • monochlorobenzenes Such as halogenated aromatic hydrocarbon solvents; aliphatic hydrocarbon solvents such as heptane and hexane; alicyclic hydrocarbon solvents such as cycl
  • Alcohol solvent or water, or a mixed solvent thereof is preferable.
  • the amount of the solvent used is usually in the range of 0.5 parts by weight to 10 parts by weight with respect to 1 part by weight of the optically active 1,1,3-trimethyl-4-aminoindane.
  • the optical resolution of the present invention is preferably carried out by mixing an optically active 1,1,3-trimethyl-4-aminoindane with an optically active tartaric acid and a solvent.
  • the mixing temperature is usually in the range of 20 ° C to 70 ° C.
  • the mixing order is not particularly limited, and the optically active 1,1,3-trimethyl-4-aminoindan, the optically active tartaric acid, and the solvent may be mixed at once, or a mixture of the optically active tartaric acid and the solvent.
  • optically active 1,1,3-trimethyl-4-aminoindan may be added to the optically active 1,1,3-trimethyl-4-aminoindan, or a mixture of the optically active tartaric acid and the solvent is added to the optically active 1,1,3-trimethyl-4-aminoindan.
  • optically active tartaric acid may be added to a mixture of optically active 1,1,3-trimethyl-4-aminoindane and a solvent.
  • optically active 1,1,3-trimethyl-4-aminoindan, optically active tartaric acid, methanol and water may be mixed at once, or optically active.
  • Optically active 1,1,3-trimethyl-4-aminoindan may be added to a mixture of tartrate acid, an alcohol solvent and water, or optically active 1,1,3-trimethyl-4-aminoindan may be added to the optically active 1,1,3-trimethyl-4-aminoindan.
  • a mixture of tartrate acid, an alcohol solvent and water may be added, or water may be added to a mixture of optically active tartrate acid, an alcohol solvent and optically active 1,1,3-trimethyl-4-aminoindan.
  • optically active tartaric acid may be added to a mixture of optically active 1,1,3-trimethyl-4-aminoindane, an alcohol solvent and water.
  • the material to be added later may be added in a total amount at a time, may be added in several portions (for example, by dropping), or may be added continuously.
  • optically active tartaric acid is added to a mixture of optically active 1,1,3-trimethyl-4-aminoindane and a solvent, it is preferable to add optically active tartaric acid continuously.
  • the resulting mixture is a solution, which is cooled to form crystals containing optically active 1,1,3-trimethyl-4-aminoindane and optically active tartrate. Precipitate.
  • the crystals that precipitate are usually solvates.
  • the temperature after cooling is lower than the above-mentioned mixing temperature, preferably in the range of ⁇ 20 ° C. to 30 ° C., and more preferably in the range of ⁇ 10 ° C. to 20 ° C.
  • the cooling rate is usually in the range of 1 ° C./hour to 10 ° C./hour, and by cooling the mixture at such a cooling rate, the mixture is optically active with high optical purity of 1,1,3-trimethyl-4-aminoindane. Crystals containing tartaric acid can be precipitated.
  • the cooling rate is preferably in the range of 1 ° C./hour to 8 ° C./hour, more preferably in the range of 3 ° C./hour to 6 ° C./hour.
  • crystals containing optically active 1,1,3-trimethyl-4-aminoindane and optically active tartaric acid can be obtained.
  • 1,1,3-trimethyl-4-aminoindane, D-tartaric acid, and methanol, which have a high ratio of R-form are mixed and optically resolved, (R) -1,1,3-trimethyl- is obtained by filtration. It can be separated into crystals containing 4-aminoindane D-tartrate in methanol and a solution containing (S) -1,1,3-trimethyl-4-aminoindane and its D-tartrate. can.
  • the obtained crystals may be washed with the above-mentioned solvent as the solvent used for the optical resolution or other solvents that can be used for the optical resolution, or may be dried if necessary.
  • an aqueous solution of an alkali metal hydroxide By mixing the crystals thus obtained with an aqueous solution of an alkali metal hydroxide, it can be decomposed into an optically active 1,1,3-trimethyl-4-aminoindane and an optically active alkali metal salt of tartaric acid.
  • the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • the amount of the alkali metal hydroxide used is usually in the range of 1 mol to 3 mol in terms of alkali metal with respect to 1 mol of the optically active tartaric acid used for optical resolution.
  • the mixing temperature is usually in the range of 10 ° C to 80 ° C.
  • Mixing of the aqueous solution of the alkali metal hydroxide may be carried out in the presence of an organic solvent.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene, xylene, and ethylbenzene; halogenated aromatic hydrocarbon solvents such as monochlorobenzene; aliphatic hydrocarbon solvents such as heptane and hexane; and cyclopentane and cyclohexane.
  • Examples thereof include alicyclic hydrocarbon solvents; ether solvents such as diethyl ether and tert-butyl methyl ether; and ester solvents such as ethyl acetate.
  • the amount of the organic solvent used is usually 10 parts by weight or less with respect to 1 part by weight of the crystal containing the optically active 1,1,3-trimethyl-4-aminoindane and the optically active tartrate.
  • the mixing order is as follows: once with crystals containing optically active 1,1,3-trimethyl-4-aminoindan, optically active tartrate, an aqueous solution of alkali metal hydroxide, and if necessary, an organic solvent.
  • the crystal may be added to the mixture of the crystal and the organic solvent, an aqueous solution of the alkali metal hydroxide may be added to the mixture, or the crystal may be added to the mixture of the aqueous solution of the alkali metal hydroxide and the organic solvent. May be good. Above all, it is preferable to add the crystals to a mixture of an alkali metal hydroxide and an organic solvent.
  • the aqueous layer is removed from the obtained mixture, and an organic solvent is distilled off from the obtained organic layer as needed to obtain optically active 1,1,3-trimethyl-4-aminoindane. Can be taken out.
  • the optical activity of the obtained 1,1,3-trimethyl-4-aminoindane is higher than that of the 1,1,3-trimethyl-4-aminoindane used for the optical resolution.
  • the preferred crystallization of the present invention is the first step of mixing optically active 1,1,3-trimethyl-4-aminoindan and an achyral acid in the presence of a solvent to precipitate their acid salts, and The second step of mixing the acid salt and the base obtained in the first step to obtain an optically active 1,1,3-trimethyl-4-aminoindan is included.
  • a first step of mixing an acid with a solution containing optically active 1,1,3-trimethyl-4-aminoindane to precipitate an acid salt will be described.
  • the optically active 1,1,3-trimethyl-4-aminoindane used in the first step has an optical purity of 40% e. e.
  • the optical purity of the optically active 1,1,3-trimethyl-4-aminoindane obtained in the second step tends to be high (usually 89% e.e.).
  • the optically active 1,1,3-trimethyl-4-aminoindane preferably contains a large amount of R-form in that it is useful as a synthetic intermediate of the compound having a plant disease preventive effect described in Patent Document 1.
  • the optically active 1,1,3-trimethyl-4-aminoindane used in the first step contains a large amount of R-form
  • the optically active 1,1,3-trimethyl-4-amino usually obtained in the second step is obtained.
  • Indan contains a lot of R-forms.
  • 2,2,4-trimethyl-1-quinoline is acylated with an optically active acylating agent and then hydrogenated to be optically active.
  • optically active acylating agent examples thereof include a production method in which a 2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline derivative is obtained, further isomerized with sulfuric acid, and then hydrolyzed (for example, JP-A-7-215921). See publication). Further, by asymmetric hydrogenating the 2,2,4-trimethyl-1-quinoline derivative, the above-mentioned optically active 2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline derivative can be obtained.
  • optically active 1,1,3-trimethyl-4-aminoindane obtained by these methods can be provided.
  • the acid may be an achiral acid, and among the optically active 1,1,3-trimethyl-4-aminoindane, a large amount of the optically active salt of the optically active substance can be preferentially precipitated. It may be an acid.
  • an acid having an acid dissociation constant (pKa) of less than 2.8 is usually used.
  • the acid dissociation constant is determined by the equilibrium constant (Ka) of the ionization equilibrium of the acid when the acid dissociation reaction in which hydrogen ions are released from the acid, or the dissociation constant (pKa) which is a negative common logarithm thereof. It is an index showing the strength of acid expressed.
  • Acids with an acid dissociation constant (pKa) of less than 2.8 include sulfuric acid, hydrogen sulfate, sulfamic acid, organic sulfonic acid, hydrohalogenate, phosphoric acid, organic phosphoric acids, nitrate, tetrafluoroboric acid and carboxylic acid. Acids are mentioned, and it is preferable to use one or more acids selected from the group consisting of these acids.
  • the hydrogen sulfate include hydrogen sulfate alkali metal salts such as sodium hydrogen sulfate, lithium hydrogen sulfate, and potassium hydrogen sulfate.
  • Examples of the organic sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, taurine and the like.
  • Examples of the hydrohalic acid include hydrochloric acid, hydrobromic acid, and hydrobromic acid.
  • Examples of organic phosphoric acids include phenyl dihydrogen phosphate, ethyl dihydrogen phosphate, phenylphosphonic acid, and methylphosphonic acid.
  • carboxylic acid examples include oxalic acid, trichloroacetic acid, trifluoroacetic acid, dichloroacetic acid, monochloroacetic acid, monobromoacetic acid, 2-nitrobenzoic acid, pentafluorophenylcarboxylic acid and the like.
  • one or more acids selected from the group consisting of sulfuric acid, hydrogen sulfate, sulfamic acid, organic sulfonic acid, hydrohalic acid, phosphoric acid, organic phosphoric acids, nitric acid, tetrafluoroboric acid, and carboxylic acid. It is more preferable to use it.
  • Sulfuric acid sodium hydrogensulfate, potassium hydrogensulfate, sulfamic acid, methanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, phenylphosphate, dihydrogenphobic phenyl, nitrate, tetra It is further preferred to use one or more acids selected from the group consisting of fluoroboric acid, oxalic acid, trifluoroacetic acid, trichloroacetic acid, 2-nitrobenzoic acid, chloroacetic acid, and bromoacetic acid.
  • Sulfuric acid sodium hydrogensulfate, potassium hydrogensulfate, sulfamic acid, methanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, hydrochloric acid, hydrobromic acid, phosphoric acid, phenylphosphate, dihydrogenphobic phenyl, nitrate, tetra It is even more preferred to use one or more acids selected from the group consisting of fluoroboric acid, oxalic acid, trifluoroacetic acid, trichloroacetic acid, and 2-nitrobenzoic acid.
  • the amount of the acid used is usually 0.7 mol to 1.5 mol, preferably 0 in the case of an acid other than sulfuric acid, with respect to 1 mol of optically active 1,1,3-trimethyl-4-aminoindan.
  • the range is from 7.7 mol to 1.0 mol, and in the case of sulfuric acid, it is usually in the range of 0.35 mol to 0.5 mol, preferably 0.35 mol to 0.45 mol.
  • the solvent examples include alcohol solvents such as methanol, ethanol, and 2-propanol; water; ether solvents such as tetrahydrofuran; nitrile solvents such as acetonitrile; ester solvents such as ethyl acetate; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene. Solvents; halogenated aromatic hydrocarbon solvents such as monochlorobenzene; aliphatic hydrocarbon solvents such as heptane and hexane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane, alcohol solvents and aromatics.
  • a hydrocarbon solvent and water are preferable.
  • the amount of the solvent used is usually in the range of 0.5 parts by weight to 20 parts by weight, preferably 1.0 part by weight to 10 parts by weight with respect to 1 part by weight of 1,1,3-trimethyl-4-aminoindane. Is.
  • the mixing temperature is usually in the range of 20 ° C to 100 ° C.
  • the mixing order may be that 1,1,3-trimethyl-4-aminoindane, an acid and a solvent may be mixed at one time, or after mixing the acid and the solvent, the resulting mixture may be mixed with 1,1,1. 3-trimethyl-4-aminoindane may be added. A mixture of an acid and a solvent may be added to 1,1,3-trimethyl-4-aminoindane. Further, after mixing 1,1,3-trimethyl-4-aminoindane with a solvent, an acid or a mixture of an acid and a solvent may be added to the obtained mixture.
  • a method of mixing 1,1,3-trimethyl-4-aminoindane with a solvent and then adding an acid or a mixture of the acid and the solvent to the obtained mixture is preferable. If the crystals do not precipitate even after mixing and cooling, the crystals may be precipitated by partially distilling off the solvent.
  • Mixing may be performed collectively, continuously, or divided (for example, dropped).
  • an acid is added to a mixture of 1,1,3-trimethyl-4-aminoindane and a solvent, the acid may be added all at once or continuously, but may be added in portions. Is preferable.
  • a salt of optically active 1,1,3-trimethyl-4-aminoindane may be precipitated only by mixing an acid with a solution of optically active 1,1,3-trimethyl-4-aminoindane. Usually, by cooling the resulting mixture, the optically active acid salt of 1,1,3-trimethyl-4-aminoindane can be precipitated. By separating the salt precipitated from the mixture by a solid-liquid separation treatment such as filtration, the acid salt of optically active 1,1,3-trimethyl-4-aminoindane and the remaining 1,1,3-trimethyl are obtained. It can be separated into a solution containing -4-aminoindane and its acid salt. If the optically active acid salt of 1,1,3-trimethyl-4-aminoindane does not precipitate even after cooling, the salt may be precipitated by distilling off a part of the solvent.
  • the temperature after cooling is lower than the above-mentioned mixing temperature, preferably in the range of ⁇ 20 ° C. to 30 ° C., and more preferably in the range of ⁇ 10 ° C. to 20 ° C.
  • the cooling rate is not particularly limited, but is usually in the range of about 1 ° C./hour to 100 ° C./hour.
  • optically active acid salt of 1,1,3-trimethyl-4-aminoindane extracted in the first step may be used as it is in the next second step, but at least one selected from the above solvents. It may be served after washing with the solvent of. Further, it may be dried and then subjected to the second step if necessary.
  • any base having a base strength capable of decomposing the optically active acid salt of 1,1,3-trimethyl-4-aminoindane can be used without particular limitation.
  • the base include an inorganic base and an organic base.
  • the inorganic base include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, and alkali metals phosphate.
  • the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • Examples of the alkaline earth metal hydroxide include calcium hydroxide and magnesium hydroxide.
  • Examples of the alkali metal carbonate include potassium carbonate and sodium carbonate.
  • Alkaline carbonate earth metals include calcium carbonate and magnesium carbonate.
  • alkali metal phosphate examples include trisodium phosphate and tripotassium phosphate.
  • Alkali metal hydroxides are preferred.
  • organic bases include tertiary amines, secondary amines, and primary amines.
  • tertiary amine examples include triethylamine, tripropylamine, tributylamine and the like.
  • secondary amine examples include diethylamine, dipropylamine, dibutylamine and the like.
  • Examples of the primary amine include butylamine and benzylamine. It is preferably a tertiary amine.
  • the amount of the base is usually in the range of 0.5 mol to 3 mol in terms of base with respect to 1 mol of the acid used in the first step.
  • the mixing temperature is usually in the range of 10 ° C to 80 ° C.
  • the mixing of the salt and the base obtained in the first step may be carried out in the presence of an organic solvent and / or water.
  • organic solvent include aromatic hydrocarbon solvents such as toluene, xylene and ethylbenzene; halogenated aromatic hydrocarbon solvents such as monochlorobenzene; aliphatic hydrocarbon solvents such as heptane and hexane; alicyclic type such as cyclopentane and cyclohexane.
  • examples include, but are not limited to, hydrocarbon solvents; ether solvents such as diethyl ether and tert-butyl methyl ether; and ester solvents such as ethyl acetate; and mixed solvents thereof.
  • the total amount of the organic solvent and / or water used is usually 10 parts by weight or less with respect to 1 part by weight of the salt.
  • the mixing order may be such that the optically active acid salt of 1,1,3-trimethyl-4-aminoindan, the base in an aqueous solution if necessary, and the organic solvent if necessary may be mixed at once.
  • the acid salt and, if necessary, a mixture with an organic solvent, and if necessary, an aqueous solution of the base may be mixed.
  • the acid salt may be added to a mixture of an aqueous solution of a base and an organic solvent, if necessary.
  • the mixture After completion of mixing, the mixture is usually separated into an organic layer and an aqueous layer, which are separated to obtain an organic layer, and if necessary, an organic solvent is distilled off to obtain an optically active 1, 1,3-trimethyl-4-aminoindane can be taken out.
  • the optical purity of the optically active 1,1,3-trimethyl-4-aminoindane thus obtained is usually the optically active 1,1,3-trimethyl-4-aminoindane used in the first step. Higher than the optical purity of.
  • the optically active 1,1,3-trimethyl-4-aminoindan is used for the amidation reaction D described later, the acid salt is subjected to the reaction with the compound represented by the formula (1-3) as it is.
  • the acid salt is neutralized by the base in the reaction system to give optically active 1,1,3-trimethyl-4-aminoindan, which reacts with the compound represented by the formula (1-3). Therefore, the second step of the present invention and the amidation reaction D can be continuously performed.
  • optically active 1,1,3-trimethyl-4- obtained through the above-mentioned asymmetric hydrogenation reaction, isomerization reaction and hydrolysis reaction, and optionally optical resolution (or preferential crystallization).
  • An optically active compound represented by the above formula (7) by reacting an aminoindan with a compound represented by the above formula (6) (hereinafter, may be referred to as “compound (6)” in the present specification). (In the present specification, hereinafter, it may be referred to as “optically active compound (7)”) will be described.
  • the reaction between the optically active 1,1,3-trimethyl-4-aminoindane and the compound (6) may be referred to as an “amidation reaction”.
  • R 12 in the above formula (6) is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 13 is preferably a methyl group, a monofluoromethyl group, a difluoromethyl group or a trifluoromethyl group, and more preferably a difluoromethyl group.
  • R 14 is preferably a chlorine atom, an ethoxy group and a hydroxy group, and more preferably a chlorine atom.
  • Examples of compound (6) include ethyl 1-methyl-3-difluoromethylpyrazole-4-carboxylate, 1-methyl-3-difluoromethylpyrazole-4-carboxylic acid, and 1-methyl-3-difluoromethylpyrazole-4. -Cylic acid chloride and the like can be mentioned.
  • the obtained optically active compound (7) includes (R)-(-)-N- (1,1,3-trimethylindan-4-yl) -1-methyl-3-difluoromethylpyrazole-4-carboxylic acid.
  • Examples include amides.
  • the amidation reaction may be carried out under the condition that the optically active 1,1,3-trimethyl-4-aminoindane reacts with the compound (6), but the amidation reaction A, B, C or D described below may be used. It is preferable to have.
  • Amidation reaction A is an optically active 1,1,3-trimethyl-4-aminoindan compounds
  • R 14 is a hydroxy group in the formula (6) (herein, the following "Compound (6- 1) ”) is a reaction to obtain an optically active compound (7) in the presence of a dehydration condensing agent.
  • Compound (6- 1) is a reaction to obtain an optically active compound (7) in the presence of a dehydration condensing agent.
  • dehydration condensing agent examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, carbodiimide compounds such as 1,3-dicyclohexylcarbodiimide, and (benzotriazole-1-yloxy) tris (dimethylamino). Phosphonium hexafluorophosphate may be mentioned.
  • the amount of the dehydration condensing agent used is usually in the range of 1 mol to 5 mol per 1 mol of compound (6-1).
  • the amount of optically active 1,1,3-trimethyl-4-aminoindane used is usually in the range of 0.5 mol to 3 mol per 1 mol of compound (6-1).
  • the reaction between the optically active 1,1,3-trimethyl-4-aminoindane and compound (6-1) is usually carried out in the presence of a solvent inert to the reaction.
  • solvents include ether solvents such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and tert-butyl methyl ether; aliphatic hydrocarbon solvents such as hexane, heptane, octane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene.
  • Solvent Halogened hydrocarbon solvent such as chlorobenzene; Ester solvent such as butyl acetate and ethyl acetate; Nitrile solvent such as acetonitrile; Acid amide solvent such as N, N-dimethylformamide; Sulfoxide solvent such as dimethyl sulfoxide, and pyridine Such as nitrogen-containing aromatic compound solvents; as well as mixed solutions of two or more of these.
  • the amount of the solvent used is usually in the range of 1 part by weight to 20 parts by weight with respect to 1 part by weight of the compound (6-1).
  • the reaction temperature is usually in the range of ⁇ 20 ° C. to 150 ° C., and the reaction time is usually in the range of 1 hour to 24 hours.
  • an aqueous solution of a base such as an aqueous solution of sodium hydrogen carbonate, an aqueous solution of sodium carbonate, an aqueous solution of ammonium chloride, an aqueous solution of sodium hydroxide, or an aqueous solution of potassium hydroxide; or an aqueous solution of hydrochloric acid, sulfuric acid, or phosphoric acid.
  • an aqueous solution of an acid such as acetic acid is mixed to precipitate a solid, and the obtained mixture is filtered to take out the optically active compound (7).
  • the optically active compound (7) can be taken out by extracting the obtained mixture with an organic solvent and performing post-treatment operations such as separating, drying and concentrating the organic layer.
  • the organic layer is water: aqueous solution of alkali metal hydrogen carbonate such as sodium hydrogen carbonate aqueous solution: aqueous solution of alkali metal carbonate such as sodium carbonate aqueous solution: ammonium chloride aqueous solution: alkali metal water such as sodium hydroxide aqueous solution and potassium hydroxide aqueous solution.
  • Aqueous solution of oxide Alternatively, it may be washed with an aqueous solution of an acid such as hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid. Cleaning of the organic layer is usually carried out in the range of 0 ° C to 70 ° C, preferably 20 ° C to 60 ° C.
  • the extracted optically active compound (7) can be further purified by column chromatography, recrystallization and the like.
  • the amidation reaction B is a step of reacting the optically active 1,1,3-trimethyl-4-aminoindane with the compound (6-1) in the presence of Lewis acid to obtain the optically active compound (7). be.
  • metal chlorides such as titanium tetrachloride, zirconium tetrachloride, and aluminum chloride: titanium ethoxydo, titanium propoxide, zirconium ethoxide, zirconium propoxide, aluminum ethoxydo, aluminum propoxide, antimonate,
  • metal alkoxide compounds such as antimonpropoxide: tetrakis (dimethylamino) titanium, dichlorobis (dimethylamino) titanium, and metal amide compounds such as tetrakis (diethylamino) titanium: boric acid, 3,5-bis (trifluoromethyl) phenyl.
  • Boron compounds such as boronic acid, 2,4-bis (trifluoromethyl) phenylboronic acid, and pentafluorophenylboronic acid: triphenylmethyltetrakis (pentafluorophenyl) borate, triphenylmethyltetrakis (3,5-bistrifluoro) Examples thereof include borate compounds such as methylphenyl) borate and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate.
  • the amount of Lewis acid used is usually in the range of 0.001 mol to 3 mol per 1 mol of compound (6-1).
  • the amount of optically active 1,1,3-trimethyl-4-aminoindane used is usually in the range of 0.5 mol to 3 mol per 1 mol of compound (6-1).
  • the reaction of the optically active 1,1,3-trimethyl-4-aminoindane with compound (6-1) is usually carried out in the presence of a solvent inert to the reaction.
  • a solvent inert examples include the above-mentioned solvents as the solvents that can be used for the amidation reaction A.
  • the amount of the solvent used is usually in the range of 1 part by weight to 20 parts by weight with respect to 1 part by weight of the compound (6-1).
  • the reaction temperature is usually in the range of ⁇ 20 ° C. to 150 ° C.
  • the reaction time is usually in the range of 1 hour to 120 hours, and it is preferable to carry out the reaction while removing the by-product water.
  • the optically active compound (7) can be taken out by performing the same treatment as in the amidation reaction A.
  • Amidation reaction C is an optically active 1,1,3-trimethyl-4-aminoindan and the above formula wherein R 14 is 1 in (6) one or more optionally substituted C1-C10 alkoxy group with a halogen atom
  • a step of reacting a compound hereinafter, may be referred to as “compound (6-2)” in the present specification
  • compound (6-2) may be referred to as “compound (6-2)” in the present specification
  • a Lewis acid or a Lewis base to obtain an optically active compound (7).
  • Lewis acids include metal chlorides such as titanium tetrachloride, zirconium tetrachloride, and aluminum chloride, and titanium ethoxide, titanium propoxide, zirconium ethoxide, zirconium propoxide, aluminum ethoxydo, aluminum propoxide, and antimonate. And metal alkoxide compounds such as antimonpropoxide.
  • the amount of Lewis acid used is usually in the range of 0.01 to 3 mol per 1 mol of compound (6-2).
  • the amount of optically active 1,1,3-trimethyl-4-aminoindane used is usually in the range of 0.5 mol to 3 mol per 1 mol of compound (6-2).
  • Lewis bases include metal alkoxide compounds such as sodium methoxyd, sodium ethoxydo, sodium tert-butoxide, potassium methoxyd, potassium ethoxydo and potassium tert-butoxide: metal hydrides such as sodium hydride: lithium diisopropylamide and tert.
  • -Lithium compounds such as butyl lithium: silicon compounds such as sodium hexamethyldisilazane and potassium hexamethyldisilazane: aluminum compounds such as trimethylaluminum, triethylaluminum and triisobutylaluminum.
  • the amount of Lewis base used is usually in the range of 0.01 mol to 3 mol per 1 mol of compound (6-2).
  • the amount of optically active 1,1,3-trimethyl-4-aminoindane used is usually in the range of 0.5 mol to 3 mol per 1 mol of compound (6-2).
  • the reaction of the optically active 1,1,3-trimethyl-4-aminoindane with compound (6-2) is usually carried out in the presence of a solvent inert to the reaction.
  • a solvent inert examples include the above-mentioned solvents as the solvents that can be used for the amidation reaction A.
  • the amount of the solvent used is usually in the range of 1 part by weight to 20 parts by weight with respect to 1 part by weight of the compound (6-2).
  • the reaction temperature is usually in the range of ⁇ 20 ° C. to 150 ° C., and the reaction time is usually in the range of 1 hour to 110 hours, and it is preferable to carry out the reaction while removing the by-product alcohol.
  • the optically active compound (7) can be taken out by performing the same treatment as in the amidation reaction A.
  • Amidation reaction D a compound R 14 is a halogen atom in the optically active 1,1,3-trimethyl-4-aminoindan and the formula (6) (herein, the following, "compound (6-3 ) ”) Is a step of reacting with the presence of a base to obtain an optically active compound (7).
  • compound (6-3 ) a compound of formula (6)
  • R 12 and R 13 have the same meanings as described above, and R 14'' represents a halogen atom.
  • the base examples include alkali metal carbonates such as sodium carbonate and potassium carbonate; tertiary amines such as triethylamine and diisopropylethylamine; and nitrogen-containing aromatic compounds such as pyridine and 4-dimethylaminopyridine.
  • the amount of the base used is usually in the range of 5 mol, preferably 1 mol to 3 mol, from the catalytic amount, relative to 1 mol of the optically active 1,1,3-trimethyl-4-aminoindane.
  • the amount of compound (6-3) used is usually 0.5 mol to 1.5 mol, preferably 0.8 mol, relative to 1 mol of optically active 1,1,3-trimethyl-4-aminoindan. From 1.3 mol, more preferably in the range of 1.0 mol to 1.2 mol.
  • the reaction between the optically active 1,1,3-trimethyl-4-aminoindane and compound (6-3) is usually carried out in the presence of a solvent.
  • the solvent may be any one inert to the reaction, for example, an aliphatic hydrocarbon solvent such as pentane, hexane, heptane, octane and cyclohexane; an aromatic hydrocarbon solvent such as toluene, xylene and ethylbenzene; dichloromethane, chloroform.
  • 1,2-Dichloroethane and halogenated aliphatic hydrocarbon solvents such as carbon tetrachloride; halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; diethyl ether, diisopropyl ether, tert-butylmethyl ether, cyclohexyl Ether solvents such as methyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and dioxane; ester solvents such as ethyl acetate and butyl acetate; nitrile solvents such as acetonitrile; and mixed solutions of two or more of these include aromatic hydrocarbon solvents.
  • aromatic hydrocarbon solvents such as carbon tetrachloride
  • halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene
  • Halogenized aromatic hydrocarbon solvents and ether solvents are preferred, with toluene, xylene, ethylbenzene, chlorobenzene and tetrahydrofuran more preferred.
  • the amount of the solvent used is preferably in the range of 1 part by weight to 20 parts by weight, more preferably 2 parts by weight to 10 parts by weight, based on 1 part by weight of the optically active 1,1,3-trimethyl-4-aminoindane. Is.
  • the reaction temperature is usually in the range of ⁇ 20 ° C. to 80 ° C., preferably 0 ° C. to 70 ° C., more preferably 20 ° C. to 60 ° C., and the reaction time is usually in the range of 0.1 hour to 24 hours.
  • the optically active compound (7) can be taken out by performing the same treatment as in the amidation reaction A.
  • the extracted optically active compound (7) can be further purified by column chromatography, recrystallization and the like, and is preferably purified.
  • a purification method a method in which the optically active compound (7) is dissolved in a solvent to prepare a solution and recrystallization is performed using the solution is preferable. Seed crystals may be used for recrystallization.
  • Such solvents include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane and cyclohexane; aromatic hydrocarbon solvents such as toluene, xylene and ethylbenzene; dichloromethane, chloroform, 1,2-dichloroethane and carbon tetrachloride and the like.
  • Halogenated aliphatic hydrocarbon solvent Halogenized aromatic hydrocarbon solvent such as chlorobenzene, dichlorobenzene and trichlorobenzene; diethyl ether, diisopropyl ether, tert-butylmethyl ether, cyclohexylmethyl ether, ethylene glycol dimethyl ether, tetrahydrofuran and dioxane and the like.
  • Ether solvents include aliphatic hydrocarbon solvents, Aromatic hydrocarbon solvents, halogenated aromatic hydrocarbon solvents and ester solvents are preferred, with toluene, xylene, ethylbenzene, hexane, heptane and ethyl acetate more preferred.
  • Example 1 ⁇ Synthesis of dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt> 2.37 g of 2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine and 43 g of tetrahydrofuran were placed in a 100 mL flask equipped with a nitrogen-substituted reflux condenser, and stirred at 25 ° C. for 2 , 6-Bis [4- (S) -t-butyl-2-oxazolyl] pyridine was confirmed to be dissolved.
  • Example 2 ⁇ Synthesis of dibromo [2,6-bis [4- (S) -isopropyl-2-oxazolyl] pyridine] cobalt>
  • Example 1 instead of 2.37 g of 2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine, 2,6-bis [4- (S) -isopropyl-2-oxazolyl] ]
  • the same procedure as in Example 1 was carried out except that 2.16 g of pyridine was used to obtain 3.17 g of blue-green powder. Yield: 85%
  • Example 3 ⁇ Synthesis of dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] -4-methoxypyridin] cobalt>
  • Example 1 instead of 2.37 g of 2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine, 2,6-bis [4- (S) -isobutyl-2-oxazolyl] ] -Except for using 2.59 g of 4-methoxypyridine, the same procedure as in Example 1 was carried out to obtain 3.54 g of a blue-green powder. Yield: 85%
  • Example 4 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 88 mg, 1-acetyl-1,2-dihydro-2, in a 100 mL autoclave with a glass inner tube. 3.44 g of 2,4-trimethyl-1-quinoline and 11.5 g of tetrahydrofuran were charged.
  • Example 5 ⁇ Dichloro [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine]
  • Asymmetric hydrogenation reaction with cobalt hydride reduction complex > Dichloro [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 74 mg, 1-acetyl-1,2-dihydro-2, in a 100 mL autoclave with a glass inner tube. 3.44 g of 2,4-trimethyl-1-quinoline and 11.5 g of tetrahydrofuran were charged.
  • Example 6 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> In a 100 mL autoclave with a glass inner tube, dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 44 mg, 1-acetyl-1,2-dihydro-2, 6.89 g of 2,4-trimethyl-1-quinoline, 17.5 mg of cobalt (II) bromide and 11.5 g of tetrahydrofuran were charged.
  • Example 8 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 88 mg, 1-acetyl-1,2-dihydro-2, in a 100 mL autoclave with a glass inner tube. 6.89 g of 2,4-trimethyl-1-quinoline, 35 mg of cobalt (II) bromide and 11.5 g of tetrahydrofuran were charged.
  • Example 9 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> In a 100 mL autoclave with a glass inner tube, dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 44 mg, 1-acetyl-1,2-dihydro-2, 6.89 g of 2,4-trimethyl-1-quinoline, 3.85 g of triethylamine and 8.2 g of 1,4-dioxane were charged.
  • Example 10 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 22 mg, 1-acetyl-1,2-dihydro-2, in a 100 mL autoclave with a glass inner tube. 3.44 g of 2,4-trimethyl-1-quinoline, 1.93 g of triethylamine and 4.1 g of 1,4-dioxane were charged.
  • Example 11 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 88 mg, 1-acetyl-1,2-dihydro-2, in a 100 mL autoclave with a glass inner tube. 13.8 g of 2,4-trimethyl-1-quinoline, 35 mg of cobalt (II) bromide and 16.5 g of 1,4-dioxane were charged.
  • Example 12 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> In a 100 mL autoclave with a glass inner tube, dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 44 mg, 1-acetyl-1,2-dihydro-2, 6.89 g of 2,4-trimethyl-1-quinoline and 8.2 g of 1,4-dioxane were charged.
  • Example 13 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> In a 100 mL autoclave with a glass inner tube, dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt 44 mg, 1-acetyl-1,2-dihydro-2, 7.5 g of 2,4-trimethyl-6-fluoro-1-quinoline and 8.2 g of 1,4-dioxane were charged.
  • Example 14 ⁇ Dibromo [2,6-bis [4- (S) -isopropyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with cobalt hydride reduction complex> Dibromo [2,6-bis [4- (S) -isopropyl-2-oxazolyl] pyridine] cobalt 52 mg, 1-acetyl-1,2- prepared in Example 2 in a 100 mL autoclave with a glass inner tube. 4.31 g of dihydro-2,2,4-trimethyl-1-quinoline, 2.6 g of triethylamine and 10.1 g of 1,4-dioxane were charged.
  • Example 15 ⁇ Asymmetric hydrogenation reaction of dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] -4-methoxypyridin] cobalt with hydride reduction complex> Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] -4--4methoxypyridine] cobalt 58 mg prepared in Example 3 in a 100 mL autoclave with a glass inner tube. -Acetyl-1,2-dihydro-2,2,4-trimethyl-1-quinoline 4.31 g, triethylamine 2.6 g and 1,4-dioxane 10.1 g were charged.
  • Example 16 ⁇ Dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] Asymmetric hydrogenation reaction with a methyl reduction complex of cobalt> Add 219 mg of dibromo [2,6-bis [4- (S) -t-butyl-2-oxazolyl] pyridine] cobalt, 1,4-dioxane 2 g, and 2 g of toluene to a Schlenk tube in a nitrogen atmosphere, and bring the temperature to -40 ° C. Cooled.
  • Example 17 ⁇ Synthesis of optically active 1,1,3-trimethyl-4-aminoindane>
  • 1-acetyl-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline having an R-form ratio of 77.7% obtained in the same manner as in Example 4 or 6 50 g of a tetrahydrofuran solution was charged, and tetrahydrofuran was distilled off.
  • the flask in which 13.3 g (content 85%) of the concentrate remained was replaced with nitrogen, 22.7 g of 98% sulfuric acid and 260 mg of water were charged at room temperature, and the mixture was heated and stirred at 45 ° C. for 6 hours.
  • Example 18 Optical resolution of 1,1,3-trimethyl-4-aminoindane using d-tartaric acid>
  • the obtained concentrate was optically active 1,1,3-trimethyl-4-aminoindane, and 12.1 g was obtained.
  • Example 20 ⁇ Optical resolution of 1,1,3-trimethyl-4-aminoindane using d-tartaric acid>
  • the temperature was raised to ° C.
  • the solution obtained by dissolving 9.8 g of d-tartaric acid in 23 g of water was added dropwise at 60 ° C. over 30 minutes.
  • Example 25 Synthesis of (R) -1,1,3-trimethyl-4-aminoindane by decomposition of (R) -1,1,3-trimethyl-4-aminoindane / d-tartaric acid methanol solvate salt>
  • 10 g of toluene were charged and the mixture was stirred at room temperature for 30 minutes.
  • Example 26 ⁇ Amidation reaction D> 14.0 parts of 1-methyl-3-difluoromethylpyrazole-4-carboxylic acid and 35.1 parts of xylene were mixed under a nitrogen atmosphere at room temperature. The resulting mixture was heated to 100 ° C. 11.2 parts of thionyl chloride was added dropwise to the obtained mixture over 5 hours. The resulting mixture was stirred at 100 ° C. for 15 hours and then cooled to 40 ° C. Thionyl chloride and xylene were distilled off from the obtained reaction mixture under reduced pressure to obtain brown 1-methyl-3-difluoromethylpyrazole-4-carboxylic acid chloride.
  • optically active (R) -1,1,3-trimethyl-4-aminoindane can be efficiently produced.
  • Such a compound prepares (R)-(-)-(1,1,3-trimethylindan-4-yl) -1-methyl-3-difluoromethylpyrazole-4-carboxylic acid amide having a plant disease preventive effect.
  • the present invention also provides an asymmetric cobalt complex that can be used to produce precursors of such intermediates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、光学活性な1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンを含めた、ある特定の光学活性な化合物の更に効率のよい製造方法を提供することを目的とする。 本発明は、不斉コバルト錯体の存在下、式(2)(式中、Rは、水素原子等を表し、R及びRは、それぞれ独立して、水素原子等を表し、Rは、C1-C6アルキル基を表し、そしてR、R10およびR11は、それぞれ独立して、水素原子等を表す。)で示される化合物と水素とを反応させる、式(3)(式中、R、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)で示される光学活性な化合物の製造方法、を提供する。

Description

光学活性な化合物の製造方法
 光学活性な化合物の製造方法およびそのために有効な不斉コバルト錯体に関する。
 特許文献1には、光学活性な1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンの製造法として、不斉イリジウム触媒の存在下で1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリンと水素とを反応させる方法が記載されている。
国際公開第2015/141564号
 本発明の課題は、光学活性な1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンを含めた、ある特定の光学活性な化合物の更に効率のよい製造方法を提供することにある。
 このような状況下、本発明者は鋭意検討した結果、本発明に至った。すなわち、本発明は以下の発明を含む。
[1] 不斉コバルト錯体の存在下、式(2):

Figure JPOXMLDOC01-appb-I000011
(式中、Rは、水素原子、または1つ以上の置換基を有していてもよいC1-C6アルキル基を表し、R及びRは、それぞれ独立して、水素原子、またはC1-C6アルキル基を表し、Rは、C1-C6アルキル基を表し、そしてR、R10およびR11は、それぞれ独立して、水素原子、ハロゲン原子、アミノ基、ヒドロキシ基、1つ以上の置換基を有していてもよいC1-C6アルキル基、1つ以上の置換基を有していてもよいC1-C6アルコキシ基、1つ以上の置換基を有していてもよいC2-C7アルキルカルボニル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表す。)
で示される化合物と水素とを反応させる、式(3):
Figure JPOXMLDOC01-appb-I000012
(式中、R、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
で示される光学活性な化合物の製造方法。
[2] [1]に記載の不斉コバルト錯体が、式(1):

Figure JPOXMLDOC01-appb-I000013
(式中、Rは各々独立して、1つ以上の置換基を有していてもよいC1-C10アルキル基、1つ以上の置換基を有していてもよいC3-C10シクロアルキル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表す。RおよびRは、それぞれ独立して、水素原子、1つ以上の置換基を有していてもよいC1-C10アルキル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表すか、または、RとRとが互いに結合して、それらが結合する炭素原子とともに環を形成している。Rは、1つ以上の置換基を有していてもよいC1-C10アルキル基、1つ以上の置換基を有していてもよいC1-C10アルコキシ基、1つ以上の置換基を有していてもよいC1-C10アルキルチオ基、1つ以上の置換基を有していてもよいC2-C11アルコキシカルボニル基、1つ以上の置換基を有していてもよいC2-C11アルキルカルボニル基、1つ以上の置換基を有していてもよいC6-C10アリール基、ハロゲン原子、C1-C10アルキル化でモノもしくはジアルキル化されていてもよいアミノ基、ニトロ基、ヒドロキシ基、スルホ基、C1-C10アルキルスルホニル基、C6-C10アリールスルホニル基、またはハロスルホニル基を表す。nは0、1、2または3を表す。nが0または1である場合、複数のRは互いに同一であっても相異なっていてもよい。Xは、塩素原子、臭素原子またはヨウ素原子を表す。そして、*が付された炭素原子は、不斉炭素原子を表す。)
で示される不斉コバルト錯体と、還元剤を反応させて得られる1価のコバルト錯体である、[1]記載の製造方法。
[3] 還元剤が、ヒドリド還元剤で、1価のコバルト錯体がヒドリド錯体である、[2]記載の製造方法。
[4] ヒドリド還元剤が、トリアルキル水素化ホウ素アルカリ金属塩である、[3]記載の製造方法。
[5] さらに、2価のハロゲン化コバルト塩の存在下で反応を実施する、[3]または[4]記載の製造方法。
[6] ヒドリド錯体1モルに対し、2価のハロゲン化コバルト塩の使用量が2モル以下である、[5]記載の製造方法。
[7] さらに、トリアルキルアミンの存在下で反応を実施する、[3]または[4]記載の製造方法。
[8] 式(2)で表される化合物1モルに対し、トリアルキルアミンの使用量が0.5モルから3モルの範囲である、[7]記載の製造方法。
[9] 還元剤が、アルキルリチウムで、1価のコバルト錯体がアルキル錯体である、[2]記載の製造方法。
[10] [1]~[9]のいずれかの製造方法で得られた式(3)で示される光学活性な化合物と酸とを反応させて、式(4):

Figure JPOXMLDOC01-appb-I000014
(式中、R、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
で示される光学活性な化合物を得る工程、及び、
 得られた式(4)で示される光学活性な化合物と水とを反応させて、式(5):

Figure JPOXMLDOC01-appb-I000015
(式中、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
で示される化合物を得る工程をさらに含む、光学活性な化合物の製造方法。
[11] 式(5)におけるR、RおよびRがメチル基であり、そして、R、R10およびR11が水素原子である、[10]記載の製造方法。
[12] [11]で得た式(5)で示される光学活性な化合物を溶媒に溶解させた後、光学活性な酒石酸を用いて光学分割する工程を含む、光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法。
[13] [12]で得た式(5)で示される光学活性な化合物を溶媒に溶解させた後、酸を加えて優先晶析させる工程を含む、光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法。
[14] 酸の酸解離定数(pKa)が2.8未満である、[13]記載の製造方法。
[15] 式(5)で示される光学活性な化合物のエナンチオマー比が、R体/S体で70/30以上である、[12]~[14]のいずれか一項記載の製造方法。
[16] [12]~[15]のいずれか一項記載の製造方法で得た光学活性な1,1,3-トリメチル-4-アミノインダンと式(6):

Figure JPOXMLDOC01-appb-I000016
(式中、R12およびR13は、それぞれ独立して、1つ以上のハロゲン原子で置換されていてもよいC1-C6アルキル基、または水素原子を表し、そして、R14は、ハロゲン原子、ヒドロキシ基、または1つ以上のハロゲン原子で置換されていてもよいC1-C6アルコキシ基を表す。)
で示される化合物とを反応させて、式(7):

Figure JPOXMLDOC01-appb-I000017
(式中、R12、R13および*は、それぞれ上記と同じ意味を表す。)
で表される光学活性な化合物を得る工程をさらに含む、光学活性な化合物の製造方法。
[17] 式(1’):

Figure JPOXMLDOC01-appb-I000018
(式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す。)
で示される不斉コバルト錯体。
[18] 式(1’):
Figure JPOXMLDOC01-appb-I000019
(式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す)
で示される不斉コバルト錯体とヒドリド還元剤とを反応させて得られるヒドリド錯体。
[19] 式(1’):

Figure JPOXMLDOC01-appb-I000020
(式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す)
で示される不斉コバルト錯体とアルキルリチウムとを反応させて得られるアルキル錯体。
 本発明によれば、上記式(3)で示される光学活性な化合物を効率よく製造することができる。また、得られた式(3)で示される光学活性な化合物と酸とを反応させ、次いで水と反応させれば上記式(5)で示される光学活性な化合物を効率よく製造することができる。さらに、得られた式(5)で示される光学活性な化合物の一つである光学活性な1,1,3-トリメチル-4-アミノインダンを光学分割または酸による優先晶析させることにより光学純度の高い1,1,3-トリメチル-4-アミノインダンを効率よく製造することができ、得られた光学純度の高い1,1,3-トリメチル-4-アミノインダンと上記式(6)で示される化合物とを反応させれば上記式(7)で示される光学活性な化合物を効率よく製造することができる。かかる式(7)で示される光学活性な化合物は、植物病害防除効力を有することが知られている(国際公開第2011/162397号参照)。
 以下、本発明について詳細に説明する。
 本明細書における「CX-CY」との表記は、炭素原子数がX乃至Yであることを意味する。例えば「C1-C4」との表記は、炭素原子数が1乃至4であることを意味する。
 本明細書においてC1-C10アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基などが挙げられる。
 これらC1-C10アルキル基が有していてもよい置換基としては、例えば、フェニル基、ナフチル基、4-メチルフェニル基、および4-メトキシフェニル基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリール基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブチルオキシ基、tert-ブトキシ基、およびトリフルオロメトキシ基等の、1つ以上のフッ素原子を有していてもよいC1-C10アルコキシ基;ベンジルオキシ基、4-メチルベンジルオキシ基、および4-メトキシベンジルオキシ基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリール基を有するC1-C10アルコキシ基;3-フェノキシベンジルオキシ基等の、1つ以上のC6-C10アリールオキシ基を有するC6-C10アリール基を有するC1-C10アルコキシ基;フェノキシ基、2-メチルフェノキシ基、4-メチルフェノキシ基、および4-メトキシフェノキシ基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリールオキシ基;3-フェノキシフェノキシ基等の、1つ以上のC6-C10のアリールオキシ基を有するC6-C10アリールオキシ基;アセチル基、プロピオニル基、ベンジルカルボニル基、4-メチルベンジルカルボニル基、4-メトキシベンジルカルボニル基、ベンゾイル基、2-メチルベンゾイル基、4-メチルベンゾイル基、および4-メトキシベンゾイル基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10のアリール基を有していてもよいC2-C10アシル基;カルボキシ基;並びにフッ素原子が挙げられる。
 1つ以上の置換基を有するC1-C10アルキル基としては、例えば、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、ベンジル基、4-フルオロベンジル基、4-メチルベンジル基、フェノキシメチル基、2-オキソプロピル基、2-オキソブチル基、フェナシル基、および2-カルボキシエチル基が挙げられる。
 本明細書においてC3-C10シクロアルキル基としては、シクロプロピル基、2,2-ジメチルシクロプロピル基、シクロペンチル基、シクロヘキシル基、およびメンチル基などが挙げられる。
 これらC3-C10シクロアルキル基が有していてもよい置換基としては、例えば、フェニル基、ナフチル基、4-メチルフェニル基、および4-メトキシフェニル基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリール基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブチルオキシ基、tert-ブトキシ基、およびトリフルオロメトキシ基等の、1つ以上のフッ素原子を有していてもよいC1-C10アルコキシ基;ベンジルオキシ基、4-メチルベンジルオキシ基、4-メトキシベンジルオキシ基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリール基を有するC1-C10アルコキシ基;3-フェノキシベンジルオキシ基等の、1つ以上のC6-C10アリールオキシ基を有するC6-C10アリール基を有するC1-C10アルコキシ基;フェノキシ基、2-メチルフェノキシ基、4-メチルフェノキシ基、および4-メトキシフェノキシ基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10アリールオキシ基;3-フェノキシフェノキシ基等の、1つ以上のC6-C10のアリールオキシ基を有するC6-C10アリールオキシ基;アセチル基、プロピオニル基、ベンジルカルボニル基、4-メチルベンジルカルボニル基、4-メトキシベンジルカルボニル基、ベンゾイル基、2-メチルベンゾイル基、4-メチルベンゾイル基、および4-メトキシベンゾイル基等の、1つ以上のC1-C10アルキル基またはC1-C10アルコキシ基を有していてもよいC6-C10のアリール基を有していてもよいC2-C10アシル基;カルボキシ基;並びにフッ素原子が挙げられる。
 置換基を有するC3-C10シクロアルキル基としては、例えば、フルオロシクロプロピル基、4-トリフルオロシクロヘキシル基、4-メトキシシクロペンチル基、および4-フェニルシクロヘキシル基が挙げられる。
 本明細書においてC6-C10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。
 これらC6-C10アリール基が有していてもよい置換基としては、例えば、メチル基、フルオロメチル基、トリフルオロメチル基、メトキシメチル基、エトキシメチル基、およびメトキシエチル基等の、1つ以上のC1-C10アルコキシ基またはフッ素原子を有していてもよいC1-C10アルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、フルオロメトキシ基、トリフルオロメトキシ基、メトキシメトキシ基、エトキシメトキシ基、およびメトキシエトキシ基等の、1つ以上のC1-C10アルコキシ基またはフッ素原子を有していてもよいC1-10アルコキシ基;シクロペンチルオキシ基などのC3-C10シクロアルキルオキシ基;並びに、フッ素原子、塩素原子等のハロゲン原子が挙げられる。
 1つ以上の置換基を有するC6-C10アリール基としては、例えば、2-メチルフェニル基、4-メチルフェニル基、4-クロロフェニル基および4-メトキシフェニル基が挙げられる。
 本明細書において、1つ以上の置換基を有していてもよいC1-C10アルコキシ基とは、ヒドロキシ基(-OH)を構成する水素原子が、上述した1つ以上の置換基を有していてもよいC1-C10アルキル基に置き換わった基であり、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、ペンチルオキシ基、デシルオキシ基、フルオロメトキシ基、トリフルオロメトキシ基、メトキシメトキシ基、エトキシメトキシ基、ベンジルオキシ基、4-フルオロベンジルオキシ基、4-メチルベンジルオキシ基、フェノキシメトキシ基、2-オキソプロポキシ基、および2-オキソブトキシ基が挙げられる。
 本明細書において、1つ以上の置換基を有していてもよいC1-C10アルキルチオ基とは、スルファニル基(-SH)を構成する水素原子が、上述した1つ以上の置換基を有していてもよいC1-C10アルキル基に置き換わった基であり、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、sec-ブチルチオ基、ペンチルチオ基、チデシルチオ基、フルオロメチルチオ基、トリフルオロメチルチオ基、メトキシメチルチオ基、エトキシメチルチオ基、ベンジルチオ基、4-フルオロベンジルチオ基、4-メチルベンジルチオ基、フェノキシメチルチオ基、2-オキソプロピルチオ基、および2-オキソブチルチオ基が挙げられる。
 本明細書において、1つ以上の置換基を有していてもよいC2-C11アルコキシカルボニル基とは、ホルミル基(-CHO)を構成する水素原子が、上述した1つ以上の置換基を有していてもよいC1-C10アルコキシ基に置き換わった基であり、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、デシルオキシカルボニル基、フルオロメトキシカルボニル基、トリフルオロメトキシカルボニル基、メトキシメトキシカルボニル基、エトキシメトキシカルボニル基、ベンジルオキシカルボニル基、4-フルオロベンジルオキシカルボニル基、4-メチルベンジルオキシカルボニル基、フェノキシメトキシカルボニル基、2-オキソプロポキシカルボニル基、および2-オキソブトキシカルボニル基が挙げられる。
 本明細書において、1つ以上の置換基を有していてもよいC2-C11アルキルカルボニル基とは、ホルミル基(-CHO)を構成する水素原子が上述した置換基を有していてもよいC1-C10アルキル基に置き換わった基であり、例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ブチルカルボニル基、sec-ブチルカルボニル基、tert-ブチルカルボニル基、ペンチルカルボニル基、デシルカルボニル基、フルオロメチルカルボニル基、トリフルオロメチルカルボニル基、メトキシメチルカルボニル基、エトキシメチルカルボニル基、ベンジルカルボニル基、4-フルオロベンジルカルボニル基、4-メチルベンジルカルボニル基、フェノキシメチルカルボニル基、2-オキソプロピルカルボニル基、および2-オキソブチルカルボニル基が挙げられる。
 本明細書において、モノもしくはジアルキル化されたアミノ基とは、アミノ基(-NH)を構成する二つの水素原子のうち少なくとも一つが上述したC1-C10アルキル基に置き換わった基であり、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ基およびジエチルアミノ基が挙げられる。
 本明細書において、C1-C10アルキルスルホニル基とは、スルホ基(-SOOH)を構成するOHが上述したC1-C10アルキル基に置き換わった基であり、例えば、メチルスルホニル基およびエチルスルホニル基が挙げられる。
 本明細書において、C6-C10アリールスルホニル基とは、スルホ基(-SOOH)を構成するOHが上述したC6-C10アリール基に置き換わった基であり、例えば、フェニルスルホニル基および4-メチルフェニルスルホニル基が挙げられる。
 本明細書においてハロスルホニル基とは、スルホ基(-SOOH)を構成するOHがハロゲン原子に置き換わった基であり、例えば、フルオロスルホニル基およびクロロスルホニル基が挙げられる。
 ハロゲン原子とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子である。
 次に、不斉コバルト錯体の存在下、上記式(2)で示される化合物(本明細書中、以下、「化合物(2)」と記載することがある)と水素とを反応させる、上記式(3)で示される光学活性な化合物(本明細書中、以下、「光学活性化合物(3)」と記載することがある)の製造方法について説明する。
 本発明で用いられる不斉コバルト錯体としては、光学活性な配位子がコバルト金属またはコバルトイオンに配位している錯体であればよく、例えば、J. Amer. Chem. Soc., 2012年、134巻、4561-4564ページに記載の不斉コバルト錯体や上記式(1)で示される錯体(本明細書中、以下、「錯体(1)」と記載することがある)を用いることができるが、錯体(1)と還元剤とを反応させて得られる錯体(本明細書中、以下、「1価のコバルト錯体(1)」と記載することがある)を用いることが好ましい。
 上記式(1)においてRとRとが互いに結合して、それらが結合する炭素原子とともに形成する環としては、例えば、シクロペンタン環、シクロヘキサン環およびシクロヘプタン環等のシクロアルカン環が挙げられる。これらの環は、前述した1つ以上の置換基を有していてもよいC1-C10アルキル基、またはC1-C10アルキル基が有していてもよい置換基で置換されていてもよい。
 上記式(1)において、
 Rとしては、1つ以上の置換基を有していてもよいC1-10アルキル基が好ましく、1つ以上の置換基を有していてもよいC1-C4アルキル基がより好ましい。
 RおよびRとしては、それぞれ独立して水素原子、またはC1-C4アルキル基が好ましい。
 Rとしては、C1-C4アルコキシ基、またはハロゲン原子が好ましい。
 nは2または3であることが好ましく、3であることがより好ましい。
 Xとしては、塩素原子または臭素原子が好ましい。
 R、R、RおよびXとして、これらを組み合わせることが好ましい。
 錯体(1)としては、ジクロロ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-エチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-エチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-エチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-エチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-エチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-エチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-メチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-メチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-メチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-メチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-メチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-メチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-フェニル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-ナフチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-クロロピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-ニトロピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-トリフルオロメチルピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-ヒドロキシピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-メチルピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-フェニルメチルピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-メトキシピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]-4-カルボメトキシピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-イソプロピル-2-オキサゾリル]-4-アセチルメチルピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル2-オキサゾリル]-4-ジメチルアミノピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-メチルスルホニルピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-4-ヒドロキシピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-4-ブロモピリジン]コバルト、ジヨード[2,6-ビス[4-(S)-tert-ブチル-2-オキサゾリル]-2-クロロピリジン]コバルト、ジヨード[2,6-ビス[4-(R)-tert-ブチル-2-オキサゾリル]-2-フルオロピリジン]コバルト、ジクロロ[2,6-ビス[4-(S)-tert-ブチル-5,5-ジメチル-2-オキサゾリル]ピリジン]コバルト、ジクロロ[2,6-ビス[4-(R)-tert-ブチル-5,5-ジメチル-2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(S)-tert-ブチル-5,5-ジフェニル―2-オキサゾリル]ピリジン]コバルト、ジブロモ[2,6-ビス[4-(R)-tert-ブチル-5,5-ジフェニル-2-オキサゾリル]ピリジン]コバルト等が挙げられる。
 錯体(1)は、例えば、Angew. Chem. Int. Ed., 第55巻,第10839頁(2016)補足資料の実験項等に記載された方法に準じて、前駆体である光学活性なビスオキサゾリニルピリジン誘導体と、二価のハロゲン化コバルトとを溶媒中で混合することで合成することができる。
 前駆体である光学活性なビスオキサゾリニルピリジン誘導体は、たとえば、Tetrahedron Letters,第45巻,第8988頁(2004)のScheme 1等に記載された方法に準じて製造することができる。即ち、2,6-ジカルボキシピリジン誘導体を塩化チオニルと反応させて対応するカルボン酸クロライドとし、これと光学活性なアミノアルコールとを反応させてジアミドとした後、塩化チオニルと反応させてヒドロキシ基を塩素化し、次いでNaOH/メタノール中でオキサゾリン環への閉環反応を行うことにより、光学活性なビスオキサゾリニルピリジン誘導体を製造することができる。
 錯体(1)のうち、上記式(1’)で示される不斉コバルト錯体(本明細書中、以下、「錯体(1’)」と記載することがある)が好ましい。上記式(1’)において、Rはtert-ブチル基であることが好ましい。S体の錯体(1’)を還元した1価のコバルト錯体を用いて本発明の不斉水素化反応を行えば、通常、R体の比率が高い光学活性化合物(3)が得られる。上記式(7)で示される光学活性な化合物は、R体の方が植物病害防除効力は高いことが知られており(国際公開第2011/162397号参照)、その中間体として用いるための光学活性な化合物(3)を得る観点から、錯体(1’)はS体であることが好ましい。以下、錯体(1’)と還元剤とを反応させて得られる錯体を1価のコバルト錯体(1’)と記載することがある。
 本明細書中で、式(3)、式(4)、式(5)、および式(7)で示される化合物について「光学活性化合物」または「光学活性な化合物」と呼称する場合には、特に断らない限り、後述するそのR体もしくはS体のいずれかがエナンチオリッチに含まれているR体とS体の混合物の形態、またはそのR体もしくはS体のいずれかそのものを意味する。
 上記Tetrahedron Letters,第45巻,第8988頁(2004)のScheme 1(Rはイソプロピル基またはtert-ブチル基である)記載の方法で光学活性なビスオキサゾリニルピリジン配位子を得て、次いで、Angew. Chem. Int. Ed., 第55巻,第10839頁(2016)補足資料の実験項に準じ、二価の塩化コバルトに代えて臭化コバルトと前記配位子とを混合することにより錯体(1’)が得られる。
 錯体(1)と反応させる還元剤としては、ヒドリド還元剤、アルキルリチウム化合物、グリニヤー試薬が挙げられる。好ましくはヒドリド還元剤である。
ヒドリド還元剤としては、錯体(1)の二価のコバルト原子を還元して一価のコバルト原子を有するヒドリド錯体を生成させ得る還元剤であればよく、例えば、トリエチル水素化ホウ素リチウム、トリエチル水素化ホウ素ナトリウム、トリエチル水素化ホウ素カリウム、トリメチル水素化ホウ素リチウム、トリメチル水素化ホウ素ナトリウム、トリプロピル水素化ホウ素リチウム、トリプロピル水素化ホウ素ナトリウム、トリブチル水素化ホウ素リチウム、およびトリブチル水素化ホウ素ナトリウム等のトリアルキル水素化ホウ素アルカリ金属塩が挙げられる。
 ヒドリド還元剤の使用量は、錯体(1)1モルに対して、通常2モルから20モル、好ましくは4モルから10モルの範囲である。
 反応は、不活性ガス雰囲気下で、ヒドリド還元剤に対して不活性な溶媒中で、錯体(1)とヒドリド還元剤とを混合することにより実施される。また、化合物(2)の存在下で実施してもよい。
 かかる溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、1,4-ジオキサン、およびメチルtert-ブチルエーテル等のエーテル溶媒;n-ヘキサン、n-へプタン、およびシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、キシレン、およびクロロベンゼン等の芳香族炭化水素溶媒;ならびに、ジクロロメタン、およびジクロロエタン等のハロゲン化炭化水素溶媒が挙げられ、エーテル溶媒が好ましい。
 溶媒の使用量は、錯体(1)の1重量部に対し、通常2重量部から100重量部の範囲である。
 反応温度は、通常-70℃から100℃の範囲である。
 反応時間は、通常10分から4時間の範囲である。
 反応終了後、得られたヒドリド錯体は、単離してもよいが、通常は、単離することなく化合物(2)と水素との反応に用いられる。
アルキルリチウム化合物としては、錯体(1)の二価のコバルト原子を還元して一価のコバルト原子を有するアルキル錯体を生成させ得る還元剤であればよく、例えば、メチルリチウム、エチルリチウム、n-プロピルリチウム、およびn-ブチルリチウム等が挙げられる。
 アルキルリチウム化合物の使用量は、錯体(1)1モルに対して、通常2モルから20モル、好ましくは3モルから10モルの範囲である。
 反応は、不活性ガス雰囲気下で、アルキルリチウム化合物に対して不活性な溶媒中で、錯体(1)とアルキルリチウム化合物とを混合することにより実施される。また、化合物(2)の存在下で実施してもよい。
 かかる溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、1,4-ジオキサン、およびメチルtert-ブチルエーテル等のエーテル溶媒;n-ヘキサン、n-へプタン、およびシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、キシレン、およびクロロベンゼン等の芳香族炭化水素溶媒;ならびに、ジクロロメタン、およびジクロロエタン等のハロゲン化炭化水素溶媒が挙げられ、エーテル溶媒が好ましい。
 溶媒の使用量は、錯体(1)の1重量部に対し、通常2重量部から100重量部の範囲である。
 反応温度は、通常-70℃から100℃の範囲である。
 反応時間は、通常10分から4時間の範囲である。
 反応終了後、得られたアルキル錯体は、単離してもよいが、通常は、単離することなく化合物(2)と水素との反応に用いられる。
 グリニヤー試薬としては、錯体(1)の二価のコバルト原子を還元して一価のコバルト原子を有するアルキル錯体を生成させ得る還元剤であればよく、例えば、メチルマグネシウムブロマイド、エチルマグネシウムブロマイド、n-プロピルマグネシウムブロマイド、およびn-ブチルマグネシウムブロマイド等が挙げられる。
 グリニヤー試薬の使用量は、錯体(1)1モルに対して、通常2モルから20モル、好ましくは3モルから10モルの範囲である。
 反応は、不活性ガス雰囲気下で、グニリヤー試薬に対して不活性な溶媒中で、錯体(1)とグリニヤー試薬とを混合することにより実施される。また、化合物(2)の存在下で実施してもよい。
 かかる溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、1,4-ジオキサン、およびメチルtert-ブチルエーテル等のエーテル溶媒;n-ヘキサン、n-へプタン、およびシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、キシレン、およびクロロベンゼン等の芳香族炭化水素溶媒;ならびに、ジクロロメタン、およびジクロロエタン等のハロゲン化炭化水素溶媒が挙げられ、エーテル溶媒が好ましい。
 溶媒の使用量は、錯体(1)の1重量部に対し、通常2重量部から100重量部の範囲である。
 反応温度は、通常-70℃から100℃の範囲である。
 反応時間は、通常10分から4時間の範囲である。
 反応終了後、得られたアルキル錯体は、単離してもよいが、通常は、単離することなく化合物(2)と水素との反応に用いられる。
 化合物(2)は、例えば、J. Chem. Soc. (C), 1966年,514頁に記載された方法に準じて合成することができる。また、市販品を用いることもできる。
 化合物(2)としては、例えば、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-6-フルオロ-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-6-エトキシ-1-キノリン、1-アセチル-2,2-ジメチル-4-エチル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2-ジメチル-4-プロピル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2-ジメチル-4-ブチル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2-ジエチル-4-メチル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2-ジプロピル-4-メチル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2-ジメチル-4-エチル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2-ジメチル-4-プロピル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2-ジメチル-4-ブチル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2-ジエチル-4-メチル-1-キノリン、1-エチルカルボニル-1,2-ジヒドロ-2,2-ジプロピル―4-メチル-1-キノリン、1-アセチル-1,2-ジヒドロ-2,2,4、7-テトラメチル-1-キノリン、および1-アセチル-1,2-ジヒドロ-2,2,4、6,7-ペンタメチル-1-キノリンが挙げられる。
 不斉コバルト錯体の存在下における化合物(2)と水素との反応(本明細書中、以下、「不斉水素化反応」と記載することもある)は、通常、溶媒の存在下に実施される。
 かかる溶媒としては、例えば、ジエチルエーテル、メチルtert-ブチルエーテル、テトラヒドロフラン、1,4-ジオキサンおよびメチルテトラヒドロフラン等のエーテル溶媒;クロロホルムおよびクロロベンゼン等のハロゲン化炭化水素溶媒;トルエン、およびキシレン等の芳香族溶媒;並びに、アセトニトリルおよびプロピオニトリル等のニトリル溶媒が挙げられる。好ましくは、エーテル溶媒であり、特に好ましくは、テトラヒドロフランまたは1,4-ジオキサンである。
 溶媒の使用量は特に制限されず、容積効率等を考慮すると、実用的には、化合物(2)1重量部に対して、100重量部以下である。
 不斉コバルト錯体として1価のコバルト錯体(1)を用いる場合、本発明の不斉水素化反応は、さらに、2価のハロゲン化コバルト塩、またはトリアルキルアミンの存在下に実施されることがより好ましい。
 かかる2価のハロゲン化コバルト塩としては、例えば、CoCl、CoBrおよびCoIが挙げられる。好ましくは、CoBrである。
 2価のハロゲン化コバルト塩の使用量は、通常、ヒドリド錯体(1)1モルに対して、2モル以下である。
 かかるトリアルキルアミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン及びトリブチルアミンが挙げられる。好ましくは、トリエチルアミンである。
 トリエチルアミンの使用量は、通常、化合物(2)1モルに対して、0.5モル倍以上から3モル倍以下である。
 本発明の不斉水素化反応は、通常、不斉コバルト触媒および化合物(2)を含む混合物を水素雰囲気下で攪拌することにより実施される。反応時の圧力は常圧であっても、加圧してもよい。
 水素の使用量は、化合物(2)1モルに対して、通常1モルから10モルの範囲である。
 反応温度は、通常-40℃から100℃の範囲であり、好ましくは-20℃から80℃の範囲である。
 不斉コバルト錯体として1価のコバルト錯体(1)を用いる場合、化合物(2)を溶媒に溶解した溶液に、別途調整された1価のコバルト錯体(1)および必要に応じて2価のハロゲン化コバルト塩またはトリアルキルアミンを加え、そこに水素を供給することにより不斉水素化反応を実施してもよく、溶媒存在下で1価のコバルト錯体(1)を調製して得られた混合物に、必要に応じて2価のハロゲン化コバルト塩またはトリアルキルアミンを加え、次いで化合物(2)を加え、そこに水素を供給することにより不斉水素化反応を実施してもよく、あるいは錯体(1)、化合物(2)、溶媒および必要に応じて2価のハロゲン化コバルト塩またはトリアルキルアミンを含む混合物にヒドリド還元剤、アルキルリチウム化合物またはグリニヤー試薬を加えて錯体(1)を還元し、そこに水素を供給することにより不斉水素化反応を実施してもよい。
 反応の進行度合いは、例えばガスクロマトグラフィー、高速液体クロマトグラフィー、薄層クロマトグラフィー、核磁気共鳴スペクトル分析、および赤外吸収スペクトル分析等の分析手段により確認することができる。
 光学活性化合物(3)としては、例えば、1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2,4-トリメチル-6-フルオロ-1、2,3,4-テトラヒドロキノリン、1-アセチル-2,2,4-トリメチル-6-エトキシ-1、2,3,4-テトラヒドロキノリン、1-アセチル-2,2-ジメチル-4-エチル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2-ジメチル-4-プロピル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2-ジメチル-4-ブチル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2-ジエチル-4-メチル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2-ジプロピル―4-メチル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2-ジメチル-4-エチル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2-ジメチル-4-プロピル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2-ジメチル-4-ブチル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2-ジエチル-4-メチル-1,2,3,4-テトラヒドロキノリン、1-エチルカルボニル-2,2-ジプロピル-4-メチル-1,2,3,4-テトラヒドロキノリン、1-アセチル-2,2,4,7-テトラメチル-1,2,3,4-テトラヒドロキノリン、および1-アセチル-2,2,4,6,7-ペンタメチル-1,2,3,4-テトラヒドロキノリンが挙げられる。
 得られる反応混合物には、通常、光学活性化合物(3)が含まれており、反応終了後、濃縮処理、洗浄処理、または晶析処理等することにより、光学活性化合物(3)を分離し、取り出すことができる。次に説明する光学活性化合物(3)と酸との反応に供する場合、通常、上記反応混合物を濃縮処理し、そのまま供する。
 次に、光学活性化合物(3)と酸とを反応させて上記式(4)で示される光学活性な化合物(本明細書中、以下、「光学活性化合物(4)」と記載することもある)を得て、次いで光学活性化合物(4)と水とを反応させて上記式(5)で示される光学活性な化合物(本明細書中、以下、「光学活性化合物(5)」と記載することもある)を得る工程について説明する。以下、光学活性化合物(3)と酸との反応を異性化反応と、光学活性化合物(4)と水との反応を加水分解反応と、それぞれ記載することがある。
 異性化反応は、例えば、J. Chem. Soc. (C),1966年,514頁または特開平7-215921号公報等に記載された方法に準じて実施できる。
 酸としては、硫酸が好ましい。硫酸濃度は、通常90重量%から98重量%の範囲であり、収率の点で92重量%から97重量%の範囲であることが好ましい。
 光学活性化合物(3)と酸との反応は、有機溶媒の非存在下で実施され、反応温度は、通常20℃から80℃の範囲である。
 酸の使用量は、光学活性化合物(3)の1重量部に対して、通常1重量部から10重量部の範囲である。
 得られる光学活性化合物(4)としては、例えば、N-アセチル-1,1,3-トリメチル-4-アミノインダン、N-アセチル-7-フルオロ-1,1,3-トリメチル-4-アミノインダン、N-アセチル-7-エトキシ-1,1,3-トリメチル-4-アミノインダン、N-アセチル-1,1-ジメチル-3-エチル-4-アミノインダン、N-アセチル-1,1-ジメチル-3-プロピル-4-アミノインダン、N-アセチル-1,1-ジメチル-3-ブチル-4-アミノインダン、N-アセチル-1,1-ジプロピル-3-メチル-4-アミノインダン、N-エチルカルボニル-1,1,3-トリメチル-4-アミノインダン、N-エチルカルボニル-1,1-ジメチル-3-エチル-4-アミノインダン、N-エチルカルボニル-1,1-ジメチル-3-プロピル-4-アミノインダン、N-エチルカルボニル-1,1-ジメチル-3-ブチル-4-アミノインダン、N-エチルカルボニル-1,1-ジエチル-3-メチル-4-アミノインダン、N-エチルカルボニル-1,1-ジプロピル-3-メチル-4-アミノインダン、N-アセチル-1,1,3,6-テトラメチル-4-アミノインダン、およびN-アセチル-1,1,3,6,7-ペンタメチル-4-アミノインダンが挙げられる。
 異性化反応終了後、得られた反応混合物から光学活性化合物(4)を取り出してもよいが、通常、得られた反応混合物に水を加えることにより加水分解反応を行う。
 加水分解反応の反応温度は、通常50℃から110℃の範囲である。
 水の使用量は、光学活性化合物(4)1重量部に対して、通常1重量部から10重量部の範囲である。
 得られる光学活性化合物(5)としては、例えば、1,1,3-トリメチル-4-アミノインダン、7-フルオロ-1,1,3-トリメチル-4-アミノインダン、7-エトキシ-1,1,3-トリメチル-4-アミノインダン、1,1-ジメチル-3-エチル-4-アミノインダン、1,1-ジメチル-3-プロピル-4-アミノインダン、1,1-ジメチル-3-ブチル-4-アミノインダン、1,1-ジプロピル-3-メチル-4-アミノインダン、1,1-ジエチル-3-メチル-4-アミノインダン、1,1,3,6-テトラメチル-4-アミノインダン、および1,1,3,6,7-ペンタメチル-4-アミノインダンが挙げられる。
 得られた反応混合物をアルカリで中和し、トルエン等の水と混和しない有機溶媒を用いて抽出することにより、光学活性化合物(5)を含む溶液が得られる。光学活性化合物(5)のエナンチオマー比(R体/S体またはS体/R体)は、通常60/40から90/10の範囲である。
 次に、上記で得られる光学活性化合物(5)のうち、光学活性な1,1,3-トリメチル-4-アミノインダン(式(5)におけるR、RおよびRがメチル基であり、そしてR、R10およびR11が水素原子である化合物)を溶媒に溶解させた後、光学活性な酒石酸を用いて光学分割する(本明細書中、以下、「光学分割」と記載することもある)工程について説明する。
 1,1,3-トリメチル-4-アミノインダンの光学分割については、国際公開2015/118793号公報に記載されており、本発明の光学分割もこの国際公報の記載に準じて行うことができる。この国際公開公報には、光学純度が0%e.e.から25%e.e.(即ち、エナンチオマー比(R体/S体またはS体/R体)が50/50から62.5/37.5)の範囲である1,1,3-トリメチル-4-アミノインダンが光学分割に供されることが記載されている。本発明では、これまでに説明した不斉水素化反応、異性化反応および加水分解反応を経て得られる光学純度の高い1,1,3-トリメチル-4-アミノインダンを光学分割に供することにより、さらに光学純度の高い1,1,3-トリメチル-4-アミノインダンが、より効率よく得られる。本発明の光学分割に供される1,1,3-トリメチル-4-アミノインダンの光学純度は、通常40%e.e.から80%e.e.(例えば、66%e.e.以上)(即ち、エナンチオマー比(R体/S体またはS体/R体)が70/30から90/10)の範囲である。上記式(7)で示される光学活性な化合物は、R体の方が植物病害防除効力は高いことが知られており(国際公開第2011/162397号参照)、その中間体として用いる観点から1,1,3-トリメチル-4-アミノインダンはR体の比率が高いことが好ましい。即ち、本発明の光学分割に供される1,1,3-トリメチル-4-アミノインダンは、エナンチオマー比がR体/S体で70/30以上であることが好ましく、70/30から90/10の範囲であることがより好ましい。
 R体の比率が高い1,1,3-トリメチル-4-アミノインダンを光学分割してR体の比率を向上させるためには光学活性な酒石酸としてD-酒石酸が用いられ、S体の比率が高い1,1,3-トリメチル-4-アミノインダンを光学分割してS体の比率を向上させるためには光学活性な酒石酸としてL-酒石酸が用いられる。
 光学活性な酒石酸は、通常、市販されているものが使用できる。
 光学活性な酒石酸の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダン1モル(R体とS体との合計)に対して、通常0.7モルから1.3モル、好ましくは0.8から1.2モルの範囲である。
 溶媒としては、メタノール、エタノール、2-プロパノール等のアルコール溶媒;テトラヒドロフラン等のエーテル溶媒;アセトニトリル等のニトリル溶媒;酢酸エチル等のエステル溶媒;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素溶媒;モノクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ヘプタン、ヘキサン等の脂肪族炭化水素溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素溶媒;および水が挙げられる。2種以上の溶媒を混合して用いてもよい。アルコール溶媒もしくは水、またはそれらの混合溶媒が好ましい。
 溶媒の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダン1重量部に対して、通常0.5重量部から10重量部の範囲である。
 本発明の光学分割は、好ましくは、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸と溶媒とを混合することにより実施される。
 混合温度は、通常20℃から70℃の範囲である。
 混合順序は特に限定されず、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸と溶媒とを一度に混合してもよいし、光学活性な酒石酸と溶媒との混合物に光学活性な1,1,3-トリメチル-4-アミノインダンを加えてもよいし、光学活性な1,1,3-トリメチル-4-アミノインダンに光学活性な酒石酸と溶媒との混合物を加えてもよいし、光学活性な1,1,3-トリメチル-4-アミノインダンと溶媒との混合物に光学活性な酒石酸を加えてもよい。
 アルコール溶媒と水との混合溶媒を用いる場合、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸とメタノールと水とを一度に混合してもよいし、光学活性な酒石酸とアルコール溶媒と水との混合物に光学活性な1,1,3-トリメチル-4-アミノインダンを加えてもよいし、光学活性な1,1,3-トリメチル-4-アミノインダンに光学活性な酒石酸とアルコール溶媒と水との混合物を加えてもよいし、光学活性な酒石酸とアルコール溶媒と光学活性な1,1,3-トリメチル-4-アミノインダンとの混合物に水を加えてもよいし、光学活性な1,1,3-トリメチル-4-アミノインダンとアルコール溶媒と水との混合物に光学活性な酒石酸を加えてもよい。
 これらの混合順序において、後から加える物は、一度に全量を加えてもよいし、数回に分割(例えば、滴下)して加えてもよいし、連続的に加えていってもよい。光学活性な1,1,3-トリメチル-4-アミノインダンと溶媒との混合物に光学活性な酒石酸を加える場合、光学活性な酒石酸は連続的に加えていくことが好ましい。
 通常、混合が終了した時点では、得られる混合物は溶液であり、これを冷却することにより、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸塩とを含む結晶を析出させる。アルコール溶媒を用いた場合、通常、析出する結晶は溶媒和物である。
 冷却後の温度は、上記した混合温度よりも低い温度であり、-20℃から30℃の範囲が好ましく、-10℃から20℃の範囲がより好ましい。
 冷却速度は、通常1℃/時間から10℃/時間の範囲であり、かかる冷却速度で混合物を冷却することにより、高い光学純度の1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸とを含む結晶が析出させることができる。冷却速度は、好ましくは1℃/時間から8℃/時間の範囲であり、より好ましくは3℃/時間から6℃/時間の範囲である。
 得られた混合物を濾過処理することにより、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸とを含む結晶が得られる。R体の比率が高い1,1,3-トリメチル-4-アミノインダンとD-酒石酸とメタノールとを混合して光学分割する場合、濾過処理により、(R)-1,1,3-トリメチル-4-アミノインダンのD-酒石酸塩のメタノール溶媒和物を含む結晶と、(S)-1,1,3-トリメチル-4-アミノインダンおよびそのD-酒石酸塩を含む溶液とに分離することができる。
 得られた結晶は、光学分割に用いた溶媒またはそれ以外の光学分割に用いることができる溶媒として上述した溶媒で洗浄してもよく、必要に応じて乾燥させてもよい。
 こうして得られた結晶とアルカリ金属水酸化物の水溶液とを混合することにより、光学活性な1,1,3-トリメチル-4-アミノインダンと、光学活性な酒石酸のアルカリ金属塩とに分解できる。
 アルカリ金属水酸化物としては、水酸化ナトリウムおよび水酸化カリウムが挙げられる。
 アルカリ金属水酸化物の使用量は、光学分割に用いた光学活性な酒石酸1モルに対して、アルカリ金属換算で、通常1モルから3モルの範囲である。
 混合温度は、通常10℃から80℃の範囲である。
 アルカリ金属水酸化物の水溶液の混合は、有機溶媒の存在下に実施されてもよい。有機溶媒としては、例えば、トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素溶媒;モノクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ヘプタンおよびヘキサン等の脂肪族炭化水素溶媒;シクロペンタンおよびシクロヘキサン等の脂環式炭化水素溶媒;ジエチルエーテルおよびtert-ブチルメチルエーテル等のエーテル溶媒;および、酢酸エチル等のエステル溶媒が挙げられる。
 有機溶媒の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダンと光学活性な酒石酸塩とを含む結晶1重量部に対して通常10重量部以下である。
 混合順序は、光学活性な1,1,3-トリメチル-4-アミノインダンと、光学活性な酒石酸塩とを含む結晶と、アルカリ金属水酸化物の水溶液と、必要に応じて有機溶媒とを一度に混合してもよいし、前記結晶と有機溶媒との混合物にアルカリ金属水酸化物の水溶液を加えてもよいし、アルカリ金属水酸化物の水溶液と有機溶媒との混合物に前記結晶を加えてもよい。なかでも、アルカリ金属水酸化物と有機溶媒との混合物に前記結晶を加えることが好ましい。
 混合終了後、得られた混合物から水層を除去し、得られた有機層から必要に応じて有機溶媒を留去することにより、光学活性な1,1,3-トリメチル-4-アミノインダンを取り出すことができる。得られる1,1,3-トリメチル-4-アミノインダンの光学活性は、光学分割に供した1,1,3-トリメチル-4-アミノインダンの光学活性よりも高い。
 次に、酸による優先晶析による方法について説明する。
 本発明の優先晶析は、溶媒の存在下、光学活性な1,1,3-トリメチル-4-アミノインダンとアキラルな酸とを混合してそれらの酸塩を析出させる第1工程、および、第1工程で得られた酸塩と塩基とを混合して光学活性な1,1,3-トリメチル-4-アミノインダンを得る第2工程を含む。
 先ず、光学活性な1,1,3-トリメチル-4-アミノインダンを含む溶液と酸とを混合して酸塩を析出させる第1工程について説明する。
 第1工程に供する光学活性な1,1,3-トリメチル-4-アミノインダンは、光学純度が40%e.e.以上(例えば、66%e.e.以上)であると、第2工程で得られる光学活性な1,1,3-トリメチル-4-アミノインダンの光学純度が高くなりやすい(通常89%e.e.以上、例えば、91%e.e.以上、92%e.e.以上、96%e.e.以上、97%e.e.以上、99%e.e.以上になる)ことから好ましい。上記特許文献1記載の植物病害予防効果を有する化合物の合成中間体として有用であるという点で、光学活性な1,1,3-トリメチル-4-アミノインダンはR体を多く含むことが好ましい。第1工程に供する光学活性な1,1,3-トリメチル-4-アミノインダンがR体を多く含むと、通常、第2工程で得られる光学活性な1,1,3-トリメチル-4-アミノインダンはR体を多く含む。
 1,1,3-トリメチル-4-アミノインダンのR体およびS体のそれぞれの構造式を下記に示す。

Figure JPOXMLDOC01-appb-I000021
 光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法として、2,2,4-トリメチル-1-キノリンを光学活性なアシル化剤でアシル化した後、水素化して、光学活性な2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリン誘導体を得、さらに硫酸を用いて異性化した後、加水分解する製造方法が挙げられる(例えば、特開平7-215921号公報参照)。また、2,2,4-トリメチル-1-キノリン誘導体を不斉水素化することにより、前記の光学活性な2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリン誘導体が得られることも知られており(例えば、国際公開第2015/141564号参照)、次いでこれを硫酸で異性化した後、加水分解することにより光学活性な1,1,3-トリメチル-4-アミノインダンを得ることもできる。本発明の第一工程では、これらの方法により得られる光学活性な1,1,3-トリメチル-4-アミノインダンを供することができる。
 酸としては、アキラルな酸であってよく、光学活性な1,1,3-トリメチル-4-アミノインダンに含まれるうち、量の多い光学活性体の光学活性体塩を優先して析出させ得る酸であればよい。
 かかる塩を形成するためには、酸解離定数(pKa)が2.8未満である酸が、通常、用いられる。
 ここで、酸解離定数とは、酸から水素イオンが放出される酸解離反応を考えた場合の酸の電離平衡の平衡定数(Ka)、またはその負の常用対数である解離定数(pKa)によって表される、酸の強さを示す1つの指標である。平衡定数Ka値が大きいほど、あるいは解離定数pKa値が小さいほど、その酸は強い酸であることを意味する。
 本発明における酸解離定数(pKa)として、Chemical Abstracts Serviceが提供するデータベースであるSciFinderに計算値(Advanced Chemistry Development (ACD/Labs) Software V11.02を用いて算出された値)が収録されている場合は、その値を採用する。かかる値は、例えば、化学情報協会のホームページ(https://www.jaici.or.jp/SCIFINDER/)から検索可能である。計算値がSciFinderに収録されていない酸についてはChemical Bookのホームページ(https://www.chemicalbook.com/)に掲載されているデータを採用し、かかるホームページにも掲載されていない酸についてはApplied Catalysis A: General 492 (2015) 252-261に記載されている値を採用し、更にかかる雑誌にも掲載されていない場合は、Advanced Chemistry Development (ACD/Labs) Software V11.02を用いて計算した値を採用する。
 酸解離定数(pKa)が2.8未満である酸としては、硫酸、硫酸水素塩、スルファミン酸、有機スルホン酸、ハロゲン化水素酸、リン酸、有機リン酸類、硝酸、テトラフルオロホウ酸およびカルボン酸が挙げられ、これらの酸からなる群から選ばれる1以上の酸を用いることが好ましい。
 硫酸水素塩としては、硫酸水素ナトリウム、硫酸水素リチウム、および硫酸水素カリウム等の硫酸水素アルカリ金属塩が挙げられる。
 有機スルホン酸としては、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファースルホン酸、およびタウリン等が挙げられる。
 ハロゲン化水素酸としては、塩酸、臭化水素酸、およびヨウ化水素酸が挙げられる。
 有機リン酸類としては、リン酸二水素フェニル、リン酸二水素エチル、フェニルホスホン酸、およびメチルホスホン酸等が挙げられる。
 カルボン酸としては、シュウ酸、トリクロロ酢酸、トリフルオロ酢酸、ジクロロ酢酸、モノクロロ酢酸、モノブロモ酢酸、2-ニトロ安息香酸、およびペンタフルオロフェニルカルボン酸等が挙げられる。
 これらの中でも、硫酸、硫酸水素塩、スルファミン酸、有機スルホン酸、ハロゲン化水素酸、リン酸、有機リン酸類、硝酸、テトラフルオロホウ酸、およびカルボン酸からなる群から選ばれる1以上の酸を用いることがより好ましい。硫酸、硫酸水素ナトリウム、硫酸水素カリウム、スルファミン酸、メタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、塩酸、臭化水素酸、リン酸、フェニルリン酸、リン酸二水素フェニル、硝酸、テトラフルオロホウ酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸、2-ニトロ安息香酸、クロロ酢酸、およびブロモ酢酸からなる群から選ばれる1以上の酸を用いることが、さらに好ましい。硫酸、硫酸水素ナトリウム、硫酸水素カリウム、スルファミン酸、メタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、塩酸、臭化水素酸、リン酸、フェニルリン酸、リン酸二水素フェニル、硝酸、テトラフルオロホウ酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸、および2-ニトロ安息香酸からなる群から選ばれる1以上の酸を用いることが、さらにより好ましい。
 酸の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダンの1モルに対して、硫酸以外の酸の場合は、通常0.7モルから1.5モル、好ましくは0.7モルから1.0モルの範囲であり、硫酸の場合は、通常0.35モルから0.5モル、好ましくは0.35モルから0.45モルの範囲である。
 溶媒としては、メタノール、エタノール、および2-プロパノール等のアルコール溶媒;水;テトラヒドロフラン等のエーテル溶媒;アセトニトリル等のニトリル溶媒;酢酸エチル等のエステル溶媒;トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素溶媒;モノクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ヘプタン、およびヘキサン等の脂肪族炭化水素溶媒;および、シクロペンタン、およびシクロヘキサン等の脂環式炭化水素溶媒が挙げられ、アルコール溶媒、芳香族炭化水素溶媒、水が好ましい。これらの2つ以上の溶媒を混合して用いてもよい。
 溶媒の使用量は、1,1,3-トリメチル-4-アミノインダン1重量部に対して、通常0.5重量部から20重量部、好ましくは、1.0重量部から10重量部の範囲である。
 混合温度は、通常20℃から100℃の範囲である。
 混合順序は、1,1,3-トリメチル-4-アミノインダンと酸と溶媒とを、一度に混合してもよいし、酸と溶媒とを混合した後、得られる混合物に、1,1,3-トリメチル-4-アミノインダンを加えてもよい。1,1,3-トリメチル-4-アミノインダンに、酸と溶媒との混合物を加えてもよい。また、1,1,3-トリメチル-4-アミノインダンと溶媒とを混合した後、得られる混合物に、酸、または酸と溶媒との混合物を加えてもよい。好ましくは、1,1,3-トリメチル-4-アミノインダンと溶媒とを混合した後、得られる混合物に、酸、または酸と溶媒との混合物を加える方法が好ましい。また、混合後、冷却しても結晶が析出しない場合は、溶媒を一部留去することで結晶を析出させてもよい。
 混合は、一括して行ってもよいが、連続して加えてもよいし、分割(例えば、滴下)して行ってもよい。1,1,3-トリメチル-4-アミノインダンと溶媒との混合物に、酸を加える場合、酸は、一括して加えてもよいし、連続して加えてもよいが、分割して加えることが好ましい。
 光学活性な1,1,3-トリメチル-4-アミノインダンの溶液と酸とを混合するだけで光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩が析出することもあるが、通常、得られた混合物を冷却することにより、光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩を析出させることができる。濾過等の固液分離処理により、混合物から析出した塩を分離することにより、光学活性な1,1,3-トリメチル-4-アミノインダンの当該酸塩と、残りの1,1,3-トリメチル-4-アミノインダン及びその酸塩を含む溶液とに分離することができる。冷却しても光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩が析出しない場合は、溶媒を一部留去することで塩を析出させてもよい。
 冷却後の温度は、上記した混合温度よりも低い温度であり、-20℃から30℃の範囲が好ましく、-10℃から20℃の範囲がより好ましい。
 冷却速度は、特に制限されないが、通常1℃/時間から100℃/時間程度の範囲である。
 第1工程で取り出された光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩は、そのまま次の第2工程に供してもよいが、前記の溶媒から選択される少なくとも1種の溶媒で洗浄した後に供してもよい。また、必要に応じて乾燥させてから第2工程に供してもよい。
 次に、第1工程で得られた酸塩と塩基とを混合して光学活性な1,1,3-トリメチル-4-アミノインダンを得る第2工程について説明する。
 塩基としては、光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩を分解できる塩基強度を持つ塩基であれば、特に限定せず用いることができる。
 塩基としては、無機塩基および有機塩基を挙げられる。
 無機塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸アルカリ金属、炭酸アルカリ土類金属、およびリン酸アルカリ金属等が挙げられる。
 アルカリ金属水酸化物としては、水酸化ナトリウムおよび水酸化カリウムが挙げられる。
 アルカリ土類金属水酸化物としては、水酸化カルシウムおよび水酸化マグネシウムが挙げられる。
 炭酸アルカリ金属としては、炭酸カリウムおよび炭酸ナトリウムが挙げられる。
 炭酸アルカリ土類金属としては、炭酸カルシウムおよび炭酸マグネシウムが挙げられる。
 リン酸アルカリ金属としては、リン酸三ナトリウムおよびリン酸三カリウムが挙げられる。
 好ましくは、アルカリ金属水酸化物である。
 有機塩基としては、第3級アミン、第2級アミン、および第1級アミンが挙げられる。
 第3級アミンとしては、トリエチルアミン、トリプロピルアミン、およびトリブチルアミン等が挙げられる。
 第2級アミンとしては、ジエチルアミン、ジプロピルアミン、およびジブチルアミン等が挙げられる。
 第1級アミンとしては、ブチルアミンおよびベンジルアミン等が挙げられる。
 好ましくは、第3級アミンである。
 塩基の量は、第1工程で用いた酸1モルに対して、塩基換算で、通常0.5モルから3モルの範囲である。混合温度は、通常10℃から80℃の範囲である。
 第1工程で得られた塩と塩基との混合は、有機溶媒および/または水の存在下に実施されてもよい。有機溶媒としては、トルエン、キシレンおよびエチルベンゼン等の芳香族炭化水素溶媒;モノクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ヘプタンおよびヘキサン等の脂肪族炭化水素溶媒;シクロペンタンおよびシクロヘキサン等の脂環式炭化水素溶媒;ジエチルエーテルおよびtert-ブチルメチルエーテル等のエーテル溶媒;および、酢酸エチル等のエステル溶媒;およびこれらの2つ以上の混合溶媒が挙げられるが、これらに限定されるものではない。 有機溶媒および/または水の使用量は、塩1重量部に対して、合計で通常10重量部以下である。
 混合順序は、光学活性な1,1,3-トリメチル-4-アミノインダンの酸塩と、必要に応じて水溶液にした塩基と、必要に応じて有機溶媒とを一度に混合してもよいし、酸塩及び必要に応じて有機溶媒との混合物と、必要に応じて水溶液にした塩基とを混合してもよい。また、必要に応じて水溶液にした塩基、及び必要に応じて有機溶媒との混合物に、酸塩を加えてもよい。特に、有機溶媒と必要に応じて水溶液にした塩基との混合物に酸塩を加えることが好ましい。
 混合終了後、混合物は通常、有機層と水層とに分離しており、それを分液処理して有機層を得、必要に応じて有機溶媒を留去することにより、光学活性な1,1,3-トリメチル-4-アミノインダンを取り出すことができる。前述のとおり、こうして得られる光学活性な1,1,3-トリメチル-4-アミノインダンの光学純度は、通常、第1工程に供した光学活性な1,1,3-トリメチル-4-アミノインダンの光学純度よりも高い。
 また、光学活性な1,1,3-トリメチル-4-アミノインダンを後述するアミド化反応Dに用いる場合は、酸塩のまま式(1-3)で示される化合物との反応に供することにより、まずは酸塩が反応系中の塩基により中和されて光学活性な1,1,3-トリメチル-4-アミノインダンを与え、これと式(1-3)で示される化合物とが反応することにより、本発明の第2工程とアミド化反応Dとを連続的に行うことができる。
 最後に、上記の不斉水素化反応、異性化反応および加水分解反応、ならびに必要に応じて光学分割(または優先晶析)を経て得られた光学活性な1,1,3-トリメチル-4-アミノインダンと上記式(6)で示される化合物(本明細書中、以下、「化合物(6)」と記載することもある)とを反応させて上記式(7)で示される光学活性な化合物(本明細書中、以下、「光学活性化合物(7)」と記載することもある)を得る工程について説明する。以下、光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6)との反応を「アミド化反応」と記載することがある。
 上記式(6)におけるR12は、水素原子又はメチル基が好ましく、水素原子がより好ましい。
 R13は、メチル基、モノフルオロメチル基、ジフルオロメチル基又はトリフルオロメチル基が好ましく、ジフルオロメチル基がより好ましい。
 R14は、塩素原子、エトキシ基およびヒドロキシ基が好ましく、塩素原子がより好ましい。
 化合物(6)としては、1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸エチル、1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸、および1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸クロライド等が挙げられる。
 得られる光学活性化合物(7)としては、(R)-(-)-N-(1,1,3-トリメチルインダン-4-イル)-1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸アミド等が挙げられる。
 アミド化反応は、光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6)とが反応する条件で実施すればよいが、以下のアミド化反応A、B、C又はDであることが好ましい。
<アミド化反応A>
 アミド化反応Aは、光学活性な1,1,3-トリメチル-4-アミノインダンと、上記式(6)におけるR14がヒドロキシ基である化合物(本明細書中、以下、「化合物(6-1)」と記載することがある)とを、脱水縮合剤の存在下に反応させて光学活性化合物(7)を得る反応である。

Figure JPOXMLDOC01-appb-I000022
(式中、R12およびR13は前記と同じ意味を表す。)
 脱水縮合剤としては、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、および1,3-ジシクロヘキシルカルボジイミド等のカルボジイミド化合物、および、(ベンゾトリアゾール-1-イルオキシ)トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェートが挙げられる。
 脱水縮合剤の使用量は、化合物(6-1)の1モルに対して、通常1モルから5モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンの使用量は、化合物(6-1)の1モルに対して、通常0.5モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6-1)との反応は、通常、反応に不活性な溶媒の存在下で行われる。かかる溶媒としては、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、およびtert-ブチルメチルエーテル等のエーテル溶媒;ヘキサン、へプタン、オクタン等の脂肪族炭化水素溶媒;トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素溶媒;クロロベンゼン等のハロゲン化炭化水素溶媒;酢酸ブチル、および酢酸エチル等のエステル溶媒;アセトニトリル等のニトリル溶媒;N,N-ジメチルホルムアミド等の酸アミド溶媒;ジメチルスルホキシド等のスルホキシド溶媒、および、ピリジン等の含窒素芳香族化合物溶媒;並びに、これらの2つ以上の混合溶液が挙げられる。溶媒の使用量は、化合物(6-1)の1重量部に対して、通常1重量部から20重量部の範囲である。反応温度は、通常-20℃から150℃の範囲であり、反応時間は通常1時間から24時間の範囲である。
 反応終了後、得られた反応混合物と、水;炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、塩化アンモニウム水溶液、水酸化ナトリウム水溶液、または水酸化カリウム水溶液等の塩基の水溶液;または、塩酸、硫酸、リン酸、または酢酸等の酸の水溶液とを混合し、固体を析出させ、得られた混合物を濾過することにより、光学活性化合物(7)を取り出すことができる。固体が析出しない場合は、得られた混合物を有機溶媒で抽出し、有機層を分離、乾燥、および濃縮する等の後処理操作を行うことにより、光学活性化合物(7)を取り出すことができる。有機層は、水:炭酸水素ナトリウム水溶液等のアルカリ金属炭酸水素塩の水溶液:炭酸ナトリウム水溶液等のアルカリ金属炭酸塩の水溶液:塩化アンモニウム水溶液:水酸化ナトリウム水溶液および水酸化カリウム水溶液等のアルカリ金属水酸化物の水溶液:または、塩酸、硫酸、リン酸および酢酸等の酸の水溶液で洗浄してもよい。有機層の洗浄は、通常0℃から70℃、好ましくは20℃から60℃の範囲で行われる。取り出した光学活性化合物(7)は、カラムクロマトグラフィー、および再結晶等によりさらに精製することもできる。
<アミド化反応B>
 アミド化反応Bは、光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6-1)とを、ルイス酸の存在下に反応させて光学活性化合物(7)を得る工程である。
 ルイス酸としては、四塩化チタン、四塩化ジルコニウム、および塩化アルミニウム等の金属塩化物:チタニウムエトキシド、チタニウムプロポキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、アルミニウムエトキシド、アルミニウムプロポキシド、アンチモンエトキシド、およびアンチモンプロポキシド等の金属アルコキシド化合物:テトラキス(ジメチルアミノ)チタン、ジクロロビス(ジメチルアミノ)チタン、およびテトラキス(ジエチルアミノ)チタン等の金属アミド化合物:ホウ酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸、2,4-ビス(トリフルオロメチル)フェニルボロン酸、およびペンタフルオロフェニルボロン酸等のホウ素化合物:トリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルメチルテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、およびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート等のボレート化合物が挙げられる。
 ルイス酸の使用量は、化合物(6-1)の1モルに対して、通常0.001モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンの使用量は、化合物(6-1)1モルに対して、通常0.5モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6-1)との反応は、通常、反応に不活性な溶媒の存在下で行われる。かかる溶媒としては、アミド化反応Aに用いることのできる溶媒として上述した溶媒が挙げられる。溶媒の使用量は、化合物(6-1)の1重量部に対して、通常1重量部から20重量部の範囲である。反応温度は、通常-20℃から150℃の範囲であり、反応時間は通常1時間から120時間の範囲であり、副生する水を除去しながら反応を行うことが好ましい。
 反応終了後、アミド化反応Aと同様の処理を行うことで光学活性化合物(7)を取り出すことができる。
<アミド化反応C>
 アミド化反応Cは、光学活性な1,1,3-トリメチル-4-アミノインダンと、上記式(6)におけるR14が1つ以上のハロゲン原子で置換されていてもよいC1-C10アルコキシ基である化合物(本明細書中、以下、「化合物(6-2)」と記載することがある)とを、ルイス酸またはルイス塩基の存在下に反応させて光学活性化合物(7)を得る工程である。

Figure JPOXMLDOC01-appb-I000023
(式中、R12およびR13は前記と同じ意味を表し、R14’は、1つ以上のハロゲン原子で置換されていてもよいC1-C10アルコキシ基を表す。)
 ルイス酸としては、四塩化チタン、四塩化ジルコニウム、および塩化アルミニウム等の金属塩化物、およびチタニウムエトキシド、チタニウムプロポキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、アルミニウムエトキシド、アルミニウムプロポキシド、アンチモンエトキシドおよびアンチモンプロポキシド等の金属アルコキシド化合物が挙げられる。
 ルイス酸の使用量は、化合物(6-2)の1モルに対して、通常0.01モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンの使用量は、化合物(6-2)1モルに対して、通常0.5モルから3モルの範囲である。
 ルイス塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシドおよびカリウムtert-ブトキシド等の金属アルコキシド化合物:水素化ナトリウム等の金属水素化物:リチウムジイソプロピルアミドおよびtert-ブチルリチウム等のリチウム化合物:ナトリウムヘキサメチルジシラザンおよびカリウムヘキサメチルジシラザン等のケイ素化合物:トリメチルアルミニウム、トリエチルアルミニウムおよびトリイソブチルアルミニウム等のアルミニウム化合物が挙げられる。
 ルイス塩基の使用量は、化合物(6-2)の1モルに対して、通常0.01モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンの使用量は、化合物(6-2)1モルに対して、通常0.5モルから3モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6-2)との反応は、通常、反応に不活性な溶媒の存在下で行われる。かかる溶媒としては、アミド化反応Aに用いることのできる溶媒として上述した溶媒が挙げられる。溶媒の使用量は、化合物(6-2)の1重量部に対して、通常1重量部から20重量部の範囲である。反応温度は、通常-20℃から150℃の範囲であり、反応時間は通常1時間から110時間の範囲であり、副生するアルコールを除去しながら反応を行うことが好ましい。
 反応終了後、アミド化反応Aと同様の処理を行うことで光学活性化合物(7)を取り出すことができる。
<アミド化反応D>
 アミド化反応Dは、光学活性な1,1,3-トリメチル-4-アミノインダンと上記式(6)におけるR14がハロゲン原子である化合物(本明細書中、以下、「化合物(6-3)」と記載することがある)とを、塩基の存在下に反応させて光学活性化合物(7)を得る工程である。

Figure JPOXMLDOC01-appb-I000024
(式中、R12およびR13は前記と同じ意味を表し、R14’’はハロゲン原子を表す。)
 塩基としては、炭酸ナトリウムおよび炭酸カリウム等のアルカリ金属炭酸塩;トリエチルアミンおよびジイソプロピルエチルアミン等の第三級アミン;および、ピリジンおよび4-ジメチルアミノピリジン等の含窒素芳香族化合物が挙げられる。
 塩基の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダンの1モルに対して、通常、触媒量から5モル、好ましくは1モルから3モルの範囲である。
 化合物(6-3)の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダンの1モルに対して、通常0.5モルから1.5モル、好ましくは0.8モルから1.3モルであり、より好ましくは1.0モルから1.2モルの範囲である。
 光学活性な1,1,3-トリメチル-4-アミノインダンと化合物(6-3)との反応は、通常、溶媒の存在下で行われる。溶媒としては、反応に不活性なものであればよく、例えば、ペンタン、ヘキサン、ヘプタン、オクタンおよびシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、キシレンおよびエチルベンゼン等の芳香族炭化水素溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタンおよび四塩化炭素等のハロゲン化脂肪族炭化水素溶媒;クロロベンゼン、ジクロロベンゼンおよびトリクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロヘキシルメチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル溶媒;酢酸エチルおよび酢酸ブチル等のエステル溶媒;アセトニトリル等のニトリル溶媒;およびこれらの2つ以上の混合溶液が挙げられ、芳香族炭化水素溶媒、ハロゲン化芳香族炭化水素溶媒およびエーテル溶媒が好ましく、トルエン、キシレン、エチルベンゼン、クロロベンゼンおよびテトラヒドロフランがより好ましい。溶媒の使用量は、光学活性な1,1,3-トリメチル-4-アミノインダン1重量部に対して、好ましくは1重量部から20重量部、より好ましくは2重量部から10重量部の範囲である。
 反応温度は、通常-20℃から80℃、好ましくは0℃から70℃、より好ましくは20℃から60℃の範囲であり、反応時間は通常0.1時間から24時間の範囲である。
 反応終了後、アミド化反応Aと同様の処理を行うことで光学活性化合物(7)を取り出すことができる。
 取り出した光学活性化合物(7)は、カラムクロマトグラフィー、および再結晶等によりさらに精製することもでき、精製することが好ましい。
 精製方法としては、光学活性化合物(7)を溶媒に溶解させて溶液を調整し、該溶液を用いて再結晶を行う方法が好ましい。再結晶の際に種晶を用いてもよい。
 かかる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタンおよびシクロヘキサン等の脂肪族炭化水素溶媒;トルエン、キシレンおよびエチルベンゼン等の芳香族炭化水素溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタンおよび四塩化炭素等のハロゲン化脂肪族炭化水素溶媒;クロロベンゼン、ジクロロベンゼンおよびトリクロロベンゼン等のハロゲン化芳香族炭化水素溶媒;ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、シクロヘキシルメチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフランおよびジオキサン等のエーテル溶媒;酢酸エチルおよび酢酸ブチル等のエステル溶媒;アセトニトリル等のニトリル溶媒;メタノール、エタノールおよび2-プロパノール等のアルコール溶媒;およびこれらの2つ以上の混合溶液が挙げられ、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、ハロゲン化芳香族炭化水素溶媒およびエステル溶媒が好ましく、トルエン、キシレン、エチルベンゼン、ヘキサン、ヘプタンおよび酢酸エチルがより好ましい。
 以下、実施例により本発明をさらに詳細に説明する。
 実施例において、R体/S体の比率は、キラルカラムを用いた高速液体クロマトグラフィー(面積百分率法)を用いて分析した。1,1,3-トリメチル-4-アミノインダンおよび(R)-(-)-N-(1,1,3-トリメチルインダン-4-イル)-1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸アミドのそれぞれの含量は、液体クロマトグラフィー(内部標準法)を用いて分析した。
実施例1
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトの合成>
 窒素置換した還流冷却管を付した100mLフラスコに、2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン2.37gとテトラヒドロフラン43gを仕込み、25℃で攪拌して2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジンが溶解したことを確認した。得られた溶液に、25℃で、臭化コバルト(II)1.31gを加えたのち、混合物を昇温して、2時間加熱還流した。室温まで冷却した後、得られた反応混合物から溶媒を留去し、8gのテトラヒドロフランを加え、スラリー状にしたのち、さらにメチル-t-ブチルエーテル185gを加え、混合物を1時間加熱還流した。室温まで冷却して結晶を析出させ、得られた結晶をろ過し、結晶をメチル-t-ブチルエーテル150gで洗浄後、乾燥し、青緑色粉末3.41gを得た。 得られた粉末は、EI-MSより、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトであることを確認した。収率:88%
 EI-MS=546、548、550
実施例2
<ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルトの合成>
 実施例1において、2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン2.37gに代えて、2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン2.16gを用いる以外は、実施例1と同様に実施して、青緑色粉末3.17gを得た。収率:85%
実施例3
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルトの合成>
  実施例1において、2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン2.37gに代えて、2,6-ビス[4-(S)-イソブチル-2-オキサゾリル]-4-メトキシピリジン2.59gを用いる以外は、実施例1と同様に実施して、青緑色粉末3.54gを得た。収率:85%
実施例4
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト88mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン3.44gおよびテトラヒドロフラン11.5gを仕込んだ。窒素置換後、35℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.64mL加え、水素置換し、水素で0.95MPaまで加圧し、混合物を35℃で1時間加圧下に攪拌した。反応後、15℃まで冷却した後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=82.5%、収率=99%
実施例5
<ジクロロ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジクロロ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト74mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン3.44gおよびテトラヒドロフラン11.5gを仕込んだ。窒素置換後、35℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.64mL加え、水素置換し、水素で0.95MPaまで加圧し、混合物を35℃で1時間加圧下に攪拌した。反応後、15℃まで冷却した後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=70%、収率=99%
実施例6
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト44mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン6.89g、臭化コバルト(II)17.5mgおよびテトラヒドロフラン11.5gを仕込んだ。窒素置換後、混合物を40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.8mL加え、水素置換し、水素で0.95MPaまで加圧し、混合物を40℃で2時間加圧下に攪拌した。反応後、混合物を15℃まで冷却した後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=75.0%、収率=100%
実施例7
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 実施例6において臭化コバルト(II)を加えないことを除いては、実施例6の方法に準じて、反応を実施した。反応後、混合物を15℃まで冷却した後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2,3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=58.0%、収率=85%
実施例8
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト88mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン6.89g、臭化コバルト(II)35mgおよびテトラヒドロフラン11.5gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を1.6mL加え、水素置換し、水素で0.95MPaまで加圧し、混合物を40℃で2時間加圧下に攪拌した。反応後、混合物を15℃まで冷却した後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=72.5%、収率=100%
実施例9
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト44mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン6.89g、トリエチルアミン3.85gおよび1,4-ジオキサン8.2gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.64mL加え、40℃で1時間保温攪拌した。1時間後、反応液を15℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を15℃で5時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=90.0%、収率=100%
実施例10
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト22mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン3.44g、トリエチルアミン1.93gおよび1,4-ジオキサン4.1gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.4mL加え、40℃で1時間保温攪拌した。1時間後、反応液を25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で3時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=86.5%、収率=99%
実施例11
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト88mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン13.8g、臭化コバルト(II)35mgおよび1,4-ジオキサン16.5gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を1.2mL加え、40℃で1時間保温攪拌した。1時間後、反応液を25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で4時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=86.0%、収率=100%
実施例12
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト44mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン6.89g、1,4-ジオキサン8.2gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.6mL加え、40℃で1時間保温攪拌した。1時間後、25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で4時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=83.6%、収率=100%
実施例13
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト44mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-6-フルオロ-1-キノリン7.5g、1,4-ジオキサン8.2gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.6mL加え、40℃で1時間保温攪拌した。1時間後、25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で4時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-6-フルオロ-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=84%、収率=91%
実施例14
<ジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、実施例2で調製したジブロモ[2,6-ビス[4-(S)-イソプロピル-2-オキサゾリル]ピリジン]コバルト52mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン4.31g、トリエチルアミン2.6gおよび1,4-ジオキサン10.1gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/トルエン溶液を0.8mL加え、40℃で1時間保温攪拌した。1時間後、25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で3時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=66.3%、収率=65%
実施例15
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]-4-メトキシピリジン]コバルトのヒドリド還元錯体による不斉水素化反応>
 ガラス内筒管を付した100mLオートクレーブに、実施例3で調製したジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]-4-4メトキシピリジン]コバルト58mg、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン4.31g、トリエチルアミン2.6gおよび1,4-ジオキサン10.1gを仕込んだ。窒素置換後、40℃に昇温し、得られた混合物に、1Mのトリエチル水素化ホウ素ナトリウム/テトラヒドロフラン溶液を0.8mL加え、40℃で1時間保温攪拌した。1時間後、25℃まで冷却後、水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で3時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=78.6%、
収率=100%
実施例16
<ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルトのメチル還元錯体による不斉水素化反応>
 窒素雰囲気のシュレンク管に、ジブロモ[2,6-ビス[4-(S)-t-ブチル-2-オキサゾリル]ピリジン]コバルト219mg、1,4-ジオキサン2g、トルエン2gを加え、-40℃に冷却した。この混合液に、1.1Mのメチルリチウム/ジエチルエーテル溶液を2ml加え、そのまま室温になるまで3時間攪拌を継続し、メチル錯体を調製した。
ガラス内筒管を付した100mLオートクレーブに、1-アセチル-1,2-ジヒドロ-2,2,4-トリメチル-1-キノリン8.61g、1,4-ジオキサン10g、トリエチルアミン4.9gを仕込んだ。窒素置換後、25℃で、得られた混合物に、上記シュレンク管で調製したメチル錯体液を全量添加した。水素置換し、水素で0.95MPaまで加圧し、混合物を25℃で4時間加圧下に攪拌した。反応後、窒素置換し、得られた反応混合物のR体比と、1-アセチル-2,2,4-トリメチル-1、2、3,4-テトラヒドロキノリンの収率を、高速液体クロマトグラフィーを用いて分析した。R体比=54.6%、収率=32%
実施例17
<光学活性な1,1,3-トリメチル-4-アミノインダンの合成>
 窒素置換した300mLフラスコに、実施例4または6と同様にして得たR体比が77.7%の1-アセチル-2,2,4-トリメチル-1,2,3,4-テトラヒドロキノリンのテトラヒドロフラン溶液50gを仕込み、テトラヒドロフランを留去した。濃縮液13.3g(含量85%)が残存したフラスコを窒素置換した後に、室温で98%硫酸22.7gおよび水260mgを仕込み、混合物を45℃で6時間加熱攪拌した。反応後、水23gを加え、混合物をさらに110℃で2時間加熱攪拌した。反応終了後、反応液に、27%水酸化ナトリウム水溶液85gを加え、トルエン50gで2回抽出した。トルエン層を合一し、水10gで1回洗浄した後、トルエンを留去した。得られた濃縮液は、光学活性な1、1,3-トリメチル-4-アミノインダンであり、9.6gを得た。液体クロマトグラフィーによる内部標準物質法含量分析法と、光学純度分析を行い、含量と光学純度を求めた。含量90%、光学異性体比 R:S=78.1:21.9%、収率=95%
実施例18
<d-酒石酸を用いる1,1,3-トリメチル-4-アミノインダンの光学分割>
 窒素置換した300mLフラスコに、実施例17で得た1,1,3-トリメチル-4-アミノインダン(R体/S体=78/22)9.6gおよびメタノール36gを仕込み、混合物を60℃に昇温した。d-酒石酸7.4gを水20gに溶解して得られた溶液を、60℃で、30分かけて滴下した。反応混合物を38℃まで冷却後、(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸塩20mgを加えたところ、結晶が析出したので、混合物を10℃まで3時間冷却した。この反応液をヌッチェで減圧濾過を行い、更にヌッチェ上で減圧下、トルエン10gで2回結晶を洗浄、脱液した。この結晶を乾燥して、(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸のメタノール溶媒和物塩を11.4g得た。液体クロマトグラフィーによる光学純度分析を行い、(R)-1,1,3-トリメチル-4-アミノインダンの光学純度を求めた。光学異性体比 R:S=98.1:1.9、収率=65%
実施例19
<光学活性な1,1,3-トリメチル-4-アミノインダンの合成>
 窒素置換した300mLフラスコに、実施例4または6と同様にして得た1-アセチル-2,2,4-トリメチル-1,2、3,4-テトラヒドロキノリン(R体/S体=80.7/19.3)のテトラヒドロフラン溶液53gを仕込み、テトラヒドロフランを留去した。濃縮液15.8g(含量85%)が残存したフラスコを窒素置換した後に、室温で98%硫酸26.9gおよび水180mgを仕込み、混合物を45℃で7時間加熱攪拌した。反応後、水27.3gを加え、混合物をさらに110℃で2時間加熱攪拌した。反応終了後、反応液に、27%水酸化ナトリウム水溶液100gを加え、トルエン60gで2回抽出した。トルエン層を合一し、水12gで1回洗浄した後、トルエンを留去した。得られた濃縮液は、光学活性な1,1,3-トリメチル-4-アミノインダンであり、12.1gを得た。液体クロマトグラフィーによる内部標準物質法含量分析法と、光学純度分析をおこない、含量と光学純度を求めた。含量90%、光学異性体比 R:S=80.7:19.3、収率=98%
実施例20
<d-酒石酸を用いる1,1,3-トリメチル-4-アミノインダンの光学分割>
 窒素置換した300mLフラスコに、実施例19で得た1,1,3-トリメチル-4-アミノインダン(R体/S体=80.7/19.3)12gおよびメタノール46gを仕込み、混合物を60℃に昇温した。d-酒石酸9.8gを水23gに溶解して得られた溶液を、60℃で、30分かけて滴下した。反応混合物を40℃まで冷却後、(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸塩20mgを加えたところ、結晶が析出したので、混合物を10℃まで3時間で冷却した。この反応液をヌッチェで減圧濾過を行い、更にヌッチェ上で減圧下、トルエン10gで2回結晶を洗浄、脱液した。この結晶を乾燥して、(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸のメタノール溶媒和物塩を12.5g得た。液体クロマトグラフィーによる光学純度分析を行い、光学純度を求めた。光学異性体比 R:S=98.1:1.9、収率=70.6%
実施例21
<硫酸水素ナトリウム(pKa=1.99)を用いる優先晶析の第1工程>
 窒素置換した300mLフラスコに1,1,3-トリメチル-4-アミノインダン(R体/S体=83/17)17.5gおよびメタノール60gを仕込み、混合物を60℃に昇温した。硫酸水素ナトリウム・1水和物9.6gを水15gに溶解して得られた溶液を、60℃で、30分かけて滴下したところ、結晶が析出した。反応液を60℃で3時間保温後、室温まで3時間冷却し、さらに10℃まで1時間冷却した。この反応液をヌッチェで減圧濾過を行い、更にヌッチェ上で減圧下、トルエン15gで2回結晶を洗浄、脱液した。この結晶を乾燥して、(R)-1,1,3-トリメチル-4-アミノインダン・硫酸水素ナトリウム塩を19.3g得た。液体クロマトグラフィーによる光学純度分析を行い、光学純度を求めた。
光学異性体比 R:S=96.4:3.6、収率=66%
実施例22
<優先晶析の第2工程>
 窒素置換した100mLフラスコに、実施例21で得た(R)-1,1,3-トリメチル-4-アミノインダン・硫酸水素ナトリウム塩19g、27%水酸化ナトリウム水溶液14.2gおよびトルエン40gを仕込み、混合物を室温で30分攪拌した。トルエン層を、水5gで1回洗浄したのち、トルエンを留去することで(R)-1、1,3-トリメチル-4-アミノインダン11.2gを得た。液体クロマトグラフィーによる内部標準物質法含量分析法と、光学純度分析を行い、含量と光学純度を求めた。
光学異性体比 R:S=96.4:3.6、含量98%、収率=98%
実施例23
<硫酸水素ナトリウム(pKa=1.99)を用いる優先晶析の第1工程>
 窒素置換した300mLフラスコに1,1,3-トリメチル-4-アミノインダン(R体/S体=83/17)17.5gおよびメタノール60gを仕込み、混合物を60℃に昇温した。硫酸水素ナトリウム・1水和物9.3gを水20gに溶解して得られた溶液を、60℃で、30分かけて滴下したところ、結晶が析出した。反応液を70℃で3時間保温後、室温まで3時間冷却し、さらに10℃まで1時間冷却した。この反応液をヌッチェで減圧濾過を行い、更にヌッチェ上で減圧下、トルエン15gで2回結晶を洗浄、脱液した。この結晶を乾燥して、(R)-1,1,3-トリメチル-4-アミノインダン・硫酸水素ナトリウム塩を19.6g得た。液体クロマトグラフィーによる光学純度分析を行い、光学純度を求めた。
光学異性体比 R:S=96.8:3.2、収率=66.5%
実施例24
<硫酸水素ナトリウム(pKa=1.99)を用いる優先晶析の第1工程>
 窒素置換した300mLフラスコに1,1,3-トリメチル-4-アミノインダン(R体/S体=90/10)17.5gおよびメタノール60gを仕込み、混合物を60℃に昇温した。硫酸水素ナトリウム・1水和物11.5gを水18gに溶解して得られた溶液を、60℃で、30分かけて滴下したところ、結晶が析出した。反応液を60℃で2時間保温後、室温まで3時間冷却し、さらに10℃まで1時間冷却した。この反応液をヌッチェで減圧濾過を行い、更にヌッチェ上で減圧下、トルエン15gで2回結晶を洗浄、脱液した。この結晶を乾燥して、(R)-1,1,3-トリメチル-4-アミノインダン・硫酸水素ナトリウム塩を23.5g得た。液体クロマトグラフィーによる光学純度分析を行い、光学純度を求めた。
光学異性体比 R:S=98.4:1.6、収率=80%
実施例25
<(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸メタノール溶媒和物塩の分解による(R)-1,1,3-トリメチル-4-アミノインダン合成>
 窒素置換した100mLフラスコに、実施例17で得た(R)-1,1,3-トリメチル-4-アミノインダン・d-酒石酸のメタノール溶媒和物塩5g、27%水酸化ナトリウム水溶液5.2gおよびトルエン10gを仕込み、混合物を室温で30分攪拌した。トルエン層を、水5gで1回洗浄したのち、トルエンを留去することで(R)-1,1,3-トリメチル-4-アミノインダン2.4gを得た。液体クロマトグラフィーによる内部標準物質法含量分析法と、光学純度分析を行い、含量と光学純度を求めた。
光学異性体比 R:S=98.1:1.9、含量98%、収率=98%
実施例26
<アミド化反応D>
 窒素雰囲気下、室温で、1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸14.0部とキシレン35.1部とを混合した。得られた混合物を100℃に加熱した。得られた混合物に塩化チオニル11.2部を5時間かけて滴下した。得られた混合物を100℃で15時間攪拌した後、40℃まで冷却した。得られた反応混合物から、減圧条件下で、塩化チオニルおよびキシレンを留去して、褐色の1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸クロライドを得た。
 (R)-1,1,3-トリメチル-4-アミノインダン14.6部、トリエチルアミン9.2部およびキシレン38.1部を混合して、溶液を調整した。得られた溶液に、前記で得られた1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸クロライドをキシレン13.2部に溶解させた溶液を、45℃~50℃で、2時間かけて滴下した。得られた混合物を、45℃~50℃で15時間攪拌した。得られた反応混合物と20%水酸化ナトリウム水溶液とを混合した後、有機層を分離した。得られた有機層を、水、18%塩酸、水、1%水酸化ナトリウム水溶液および水で順次洗浄した後、減圧条件下で濃縮して、(R)-(-)-N-(1,1,3-トリメチルインダン-4-イル)-1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸アミド27.5部を得た。
実施例27
<アミド化反応D>
 窒素雰囲気下、室温で、1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸1.8gとトルエン10gとを混合した。得られた混合物を100℃に加熱した。得られた混合物に、ジメチルホルムアミドを30mg添加後、塩化チオニル1.57gをトルエン5gに溶解した混合液を30分かけて滴下した。得られた混合物を100℃で2時間攪拌した後、40℃まで冷却した。得られた反応混合物から、減圧条件下で、塩化チオニルおよびトルエンを留去して、褐色の1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸クロライドを得た。
 この褐色の1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸クロライド液全量、実施例23で得た(R)-1,1,3-トリメチル-4-アミノインダン・硫酸水素ナトリウム塩3g、トルエン10gを混合し、50℃に加温した。この溶液に、トリエチルアミン2.26gとトルエン5gの混合液を、30分で滴下し、2時間保温攪拌した。得られた反応混合物と水を混合した後、有機層を分離した。得られた有機層を、水で3回洗浄した後、減圧条件下で濃縮して、(R)-(-)-N-(1,1,3-トリメチルインダン-4-イル)-1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸アミド3.3gを得た。
 本発明によれば、光学活性な(R)-1,1,3-トリメチル-4-アミノインダンを効率よく製造することができる。かかる化合物は、植物病害予防効果を有する(R)-(-)-(1、1,3-トリメチルインダン-4-イル)-1-メチル-3-ジフルオロメチルピラゾール-4-カルボン酸アミドの製造中間体として有用である。また本発明は、かかる中間体の前駆体の製造に使用できる不斉コバルト錯体を提供する。

Claims (19)

  1.  不斉コバルト錯体の存在下、式(2):

    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは、水素原子、または1つ以上の置換基を有していてもよいC1-C6アルキル基を表し、R及びRは、それぞれ独立して、水素原子、またはC1-C6アルキル基を表し、Rは、C1-C6アルキル基を表し、そしてR、R10およびR11は、それぞれ独立して、水素原子、ハロゲン原子、アミノ基、ヒドロキシ基、1つ以上の置換基を有していてもよいC1-C6アルキル基、1つ以上の置換基を有していてもよいC1-C6アルコキシ基、1つ以上の置換基を有していてもよいC2-C7アルキルカルボニル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表す。)
    で示される化合物と水素とを反応させる、式(3):
    Figure JPOXMLDOC01-appb-I000002
    (式中、R、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
    で示される光学活性な化合物の製造方法。
  2.  請求項1に記載の不斉コバルト錯体が、式(1):

    Figure JPOXMLDOC01-appb-I000003
    (式中、Rは各々独立して、1つ以上の置換基を有していてもよいC1-C10アルキル基、1つ以上の置換基を有していてもよいC3-C10シクロアルキル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表す。RおよびRは、それぞれ独立して、水素原子、1つ以上の置換基を有していてもよいC1-C10アルキル基、または1つ以上の置換基を有していてもよいC6-C10アリール基を表すか、または、RとRとが互いに結合して、それらが結合する炭素原子とともに環を形成している。Rは、1つ以上の置換基を有していてもよいC1-C10アルキル基、1つ以上の置換基を有していてもよいC1-C10アルコキシ基、1つ以上の置換基を有していてもよいC1-C10アルキルチオ基、1つ以上の置換基を有していてもよいC2-C11アルコキシカルボニル基、1つ以上の置換基を有していてもよいC2-C11アルキルカルボニル基、1つ以上の置換基を有していてもよいC6-C10アリール基、ハロゲン原子、C1-C10アルキル化でモノもしくはジアルキル化されていてもよいアミノ基、ニトロ基、ヒドロキシ基、スルホ基、C1-C10アルキルスルホニル基、C6-C10アリールスルホニル基、またはハロスルホニル基を表す。nは0、1、2または3を表す。nが0または1である場合、複数のRは互いに同一であっても相異なっていてもよい。Xは、塩素原子、臭素原子またはヨウ素原子を表す。そして、*が付された炭素原子は、不斉炭素原子を表す。)
    で示される不斉コバルト錯体と、還元剤を反応させて得られる1価のコバルト錯体である、請求項1記載の製造方法。
  3.  還元剤が、ヒドリド還元剤で、1価のコバルト錯体がヒドリド錯体である、請求項2記載の製造方法。
  4. ヒドリド還元剤が、トリアルキル水素化ホウ素アルカリ金属塩である、請求項3記載の製造方法。
  5.  さらに、2価のハロゲン化コバルト塩の存在下で反応を実施する、請求項3または請求項4記載の製造方法。
  6.  ヒドリド錯体1モルに対し、2価のハロゲン化コバルト塩の使用量が2モル以下である、請求項5記載の製造方法。
  7.  さらに、トリアルキルアミンの存在下で反応を実施する、請求項3または請求項4記載の製造方法。
  8.  式(2)で表される化合物1モルに対し、トリアルキルアミンの使用量が0.5モルから3モルの範囲である、請求項7記載の製造方法。
  9.  還元剤が、アルキルリチウムで、1価のコバルト錯体がアルキル錯体である、請求項2記載の製造方法。
  10.  請求項1~請求項9のいずれかの製造方法で得られた式(3)で示される光学活性な化合物と酸とを反応させて、式(4):

    Figure JPOXMLDOC01-appb-I000004
    (式中、R、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
    で示される光学活性な化合物を得る工程、及び、
     得られた式(4)で示される光学活性な化合物と水とを反応させて、式(5):

    Figure JPOXMLDOC01-appb-I000005
    (式中、R、R、R、R、R10およびR11は、それぞれ上記と同じ意味を表す。*が付された炭素原子は、不斉炭素原子を表す。)
    で示される化合物を得る工程をさらに含む、光学活性な化合物の製造方法。
  11.  式(5)におけるR、RおよびRがメチル基であり、そして、R、R10およびR11が水素原子である、請求項10記載の製造方法。
  12.  請求項11で得た式(5)で示される光学活性な化合物を溶媒に溶解させた後、光学活性な酒石酸を用いて光学分割する工程を含む、光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法。
  13.  請求項12で得た式(5)で示される光学活性な化合物を溶媒に溶解させた後、酸を加えて優先晶析させる工程を含む、光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法。
  14.  酸の酸解離定数(pKa)が2.8未満である、請求項13記載の製造方法。
  15.  式(5)で示される光学活性な化合物のエナンチオマー比が、R体/S体で70/30以上である、請求項12~請求項14のいずれか一項記載の製造方法。
  16.  請求項12~請求項15のいずれか一項記載の製造方法で得た光学活性な1,1,3-トリメチル-4-アミノインダンと式(6):

    Figure JPOXMLDOC01-appb-I000006
    (式中、R12およびR13は、それぞれ独立して、1つ以上のハロゲン原子で置換されていてもよいC1-C6アルキル基、または水素原子を表し、そして、R14は、ハロゲン原子、ヒドロキシ基、または1つ以上のハロゲン原子で置換されていてもよいC1-C6アルコキシ基を表す。)
    で示される化合物とを反応させて、式(7):

    Figure JPOXMLDOC01-appb-I000007
    (式中、R12、R13および*は、それぞれ上記と同じ意味を表す。)
    で表される光学活性な化合物を得る工程をさらに含む、光学活性な化合物の製造方法。
  17.  式(1’):

    Figure JPOXMLDOC01-appb-I000008
    (式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す。)
    で示される不斉コバルト錯体。
  18.  式(1’):
    Figure JPOXMLDOC01-appb-I000009
    (式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す)
    で示される不斉コバルト錯体とヒドリド還元剤とを反応させて得られるヒドリド錯体。
  19.  式(1’):

    Figure JPOXMLDOC01-appb-I000010
    (式中、Rは、イソプロピル基またはtert-ブチル基を表す。*が付された炭素原子は、不斉炭素原子を表す)
    で示される不斉コバルト錯体とアルキルリチウムとを反応させて得られるアルキル錯体。
PCT/JP2021/025489 2020-07-17 2021-07-06 光学活性な化合物の製造方法 WO2022014414A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112022026601A BR112022026601A2 (pt) 2020-07-17 2021-07-06 Processos para preparação de um composto opticamente ativo, incluindo 1,1,3-trimetil-4-aminoindano, e complexos de cobalto assimétrico, de hidreto e de alquila
CN202180049266.3A CN115836041A (zh) 2020-07-17 2021-07-06 光学活性的化合物的制造方法
EP21842357.2A EP4186882A1 (en) 2020-07-17 2021-07-06 Method for producing optically active compound
JP2022536280A JPWO2022014414A1 (ja) 2020-07-17 2021-07-06
CA3186051A CA3186051A1 (en) 2020-07-17 2021-07-06 Method for producing optically active compound
AU2021308138A AU2021308138A1 (en) 2020-07-17 2021-07-06 Method for producing optically active compound
KR1020237003992A KR20230041010A (ko) 2020-07-17 2021-07-06 광학 활성인 화합물의 제조 방법
US18/005,161 US20230257408A1 (en) 2020-07-17 2021-07-06 Method for producing optically active compound
IL299590A IL299590A (en) 2020-07-17 2021-07-06 A method for producing an optically active compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122762 2020-07-17
JP2020122762 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014414A1 true WO2022014414A1 (ja) 2022-01-20

Family

ID=79554611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025489 WO2022014414A1 (ja) 2020-07-17 2021-07-06 光学活性な化合物の製造方法

Country Status (10)

Country Link
US (1) US20230257408A1 (ja)
EP (1) EP4186882A1 (ja)
JP (1) JPWO2022014414A1 (ja)
KR (1) KR20230041010A (ja)
CN (1) CN115836041A (ja)
AU (1) AU2021308138A1 (ja)
BR (1) BR112022026601A2 (ja)
CA (1) CA3186051A1 (ja)
IL (1) IL299590A (ja)
WO (1) WO2022014414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773263A (zh) * 2022-05-16 2022-07-22 江苏百康德医药科技有限公司 (r)-2,2,4-三甲基-1,2,3,4-四氢喹啉的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215921A (ja) 1993-10-22 1995-08-15 Shell Internatl Res Maatschappij Bv 有害生物防除剤および中間体の製造方法
WO2011162397A1 (en) 2010-06-24 2011-12-29 Sumitomo Chemical Company, Limited Plant disease control composition and method of controlling plant disease
WO2013086397A1 (en) * 2011-12-08 2013-06-13 Array Biopharma Inc. Urea compounds as gka activators
WO2015118793A1 (ja) 2014-02-07 2015-08-13 住友化学株式会社 (r)-1,1,3-トリメチル-4-アミノインダンの製造方法
WO2015141564A1 (ja) 2014-03-18 2015-09-24 住友化学株式会社 光学活性な化合物の製造方法
JP2018039757A (ja) * 2016-09-08 2018-03-15 日産化学工業株式会社 イミダゾール誘導体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215921A (ja) 1993-10-22 1995-08-15 Shell Internatl Res Maatschappij Bv 有害生物防除剤および中間体の製造方法
WO2011162397A1 (en) 2010-06-24 2011-12-29 Sumitomo Chemical Company, Limited Plant disease control composition and method of controlling plant disease
JP2012025735A (ja) * 2010-06-24 2012-02-09 Sumitomo Chemical Co Ltd 植物病害防除組成物及び植物病害防除方法
WO2013086397A1 (en) * 2011-12-08 2013-06-13 Array Biopharma Inc. Urea compounds as gka activators
WO2015118793A1 (ja) 2014-02-07 2015-08-13 住友化学株式会社 (r)-1,1,3-トリメチル-4-アミノインダンの製造方法
WO2015141564A1 (ja) 2014-03-18 2015-09-24 住友化学株式会社 光学活性な化合物の製造方法
JP2018039757A (ja) * 2016-09-08 2018-03-15 日産化学工業株式会社 イミダゾール誘導体の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 55, 2016, pages 10839
APPLIED CATALYSIS A: GENERAL, vol. 492, 2015, pages 252 - 261
GUO JUN, LU ZHAN: "Highly Chemo-, Regio-, and Stereoselective Cobalt-Catalyzed Markovnikov Hydrosilylation of Alkynes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, ¬VERLAG CHEMIE| :, vol. 55, no. 36, 26 August 2016 (2016-08-26), pages 10835 - 10838, XP055899787, ISSN: 1433-7851, DOI: 10.1002/anie.201605501 *
J. AMER. CHEM. SOC., vol. 134, 2012, pages 4561 - 4564
J. CHEM. SOC. (C, 1966, pages 514
TETRAHEDRON LETTERS, vol. 45, 2004, pages 8988
ZUO ZIQING, YANG JI, HUANG ZHENG: "Cobalt-Catalyzed Alkyne Hydrosilylation and Sequential Vinylsilane Hydroboration with Markovnikov Selectivity", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, no. 36, 26 August 2016 (2016-08-26), pages 10839 - 10843, XP055899789, ISSN: 1433-7851, DOI: 10.1002/anie.201605615 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773263A (zh) * 2022-05-16 2022-07-22 江苏百康德医药科技有限公司 (r)-2,2,4-三甲基-1,2,3,4-四氢喹啉的制备方法
CN114773263B (zh) * 2022-05-16 2023-09-05 江苏百康德医药科技有限公司 (r)-2,2,4-三甲基-1,2,3,4-四氢喹啉的制备方法

Also Published As

Publication number Publication date
KR20230041010A (ko) 2023-03-23
CN115836041A (zh) 2023-03-21
US20230257408A1 (en) 2023-08-17
EP4186882A1 (en) 2023-05-31
JPWO2022014414A1 (ja) 2022-01-20
IL299590A (en) 2023-03-01
BR112022026601A2 (pt) 2023-01-24
AU2021308138A1 (en) 2023-02-23
CA3186051A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP6948419B2 (ja) クロマノン誘導体の新規な製造方法
WO2004099149A1 (ja) 2-クロロ-5-フルオロ-3-置換ピリジンまたはその塩の製造方法
WO2015118793A1 (ja) (r)-1,1,3-トリメチル-4-アミノインダンの製造方法
WO2022014414A1 (ja) 光学活性な化合物の製造方法
CN117550960A (zh) 用于制备1-(3,5-二氯-4-氟-苯基)-2,2,2-三氟-乙酮的方法
CN114901644A (zh) 制备右美托咪定的方法
CA2516465A1 (en) Chemical process for the preparation of intermediates to obtain n-formyl hydroxylamine compounds
WO2016133217A1 (ja) 光学活性オキシインドール化合物の製造方法及びそれに触媒として用いられるトリアゾリウム塩
JP4667593B2 (ja) 2−アルキル−2−アダマンチル(メタ)アクリレート類の製造法
JP5569938B2 (ja) ピロリジン誘導体及びその製造方法
JP4258658B2 (ja) アセチレン化合物の製造方法
WO2013011999A1 (ja) 光学活性2-メチルプロリン誘導体の製造法
JP2008115178A (ja) ジフェニルアラニン−Ni(II)錯体の製造方法
AU2007330711B2 (en) Method for the synthesis of N-[3-[(2-methoxyphenyl)sulfanyl]-2- methylpropyl]-3,4-dihydro-2H-1,5-benzoxathiepin-3-amine
WO2022014413A1 (ja) 光学活性な1,1,3-トリメチル-4-アミノインダンの製造方法
WO2001060795A1 (fr) Procedes pour preparer des derives d'aminoacides a activite optique
JP2010018531A (ja) 3−ベンジルオキシベンゼンチオールの製造方法
CN117616014A (zh) 异恶唑啉羧酸衍生物的制备方法
US7528276B2 (en) Process for preparing the intermediate compounds for PPAR α ligands
JP4968602B2 (ja) ベンズアミド誘導体の製造方法
CN113185376A (zh) 一种(z)-3-甲硫基-2-溴丙烯酸酯化合物的合成方法
JP2000355592A (ja) 3−メルカプト−1−(1,3−チアゾリン−2−イル)アゼチジンの製造法
JP2004250340A (ja) 4−ヒドラジノテトラヒドロピラン化合物又はその酸塩の製法
JP2005194227A (ja) 光学活性3,3,3−トリフルオロ−2−ヒドロキシプロピオン酸誘導体の製造方法
CN106278968A (zh) 一种合成硫代氨基酸衍生物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 299590

Country of ref document: IL

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022026601

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022536280

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3186051

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 112022026601

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221226

ENP Entry into the national phase

Ref document number: 20237003992

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021308138

Country of ref document: AU

Date of ref document: 20210706

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021842357

Country of ref document: EP

Effective date: 20230217