WO2022014210A1 - Resin film and method for manufacturing resin film - Google Patents

Resin film and method for manufacturing resin film Download PDF

Info

Publication number
WO2022014210A1
WO2022014210A1 PCT/JP2021/021946 JP2021021946W WO2022014210A1 WO 2022014210 A1 WO2022014210 A1 WO 2022014210A1 JP 2021021946 W JP2021021946 W JP 2021021946W WO 2022014210 A1 WO2022014210 A1 WO 2022014210A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
resin
temperature
range
solvent
Prior art date
Application number
PCT/JP2021/021946
Other languages
French (fr)
Japanese (ja)
Inventor
春彦 成澤
直樹 渡辺
洋行 涌井
治美 米虫
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020227026647A priority Critical patent/KR20230040304A/en
Priority to CN202180036467.XA priority patent/CN115667379A/en
Priority to JP2021556850A priority patent/JPWO2022014210A1/ja
Publication of WO2022014210A1 publication Critical patent/WO2022014210A1/en
Priority to JP2023118624A priority patent/JP2023139144A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a resin film and a method for manufacturing a resin film. More specifically, it has excellent heat resistance, maintains a low linear expansion coefficient even in a high temperature region, has a high tensile elastic modulus, has a small ratio of the linear expansion coefficient and the tensile elastic modulus in the TD direction to the MD direction of the resin film, and is a resin.
  • the present invention relates to a resin film having good physical properties and isomorphism of the film and excellent transparency, and a method for producing the resin film.
  • the resin film is industrially manufactured by forming a film of an organic polymer resin material into a film, and the film forming method is a melt film forming method in which an organic polymer resin is melted and then extruded from a slit-shaped die.
  • the film forming method is a melt film forming method in which an organic polymer resin is melted and then extruded from a slit-shaped die.
  • the organic polymer resin materials the polyimide resin and the polyamide-imide resin, which are particularly excellent in heat resistance, are insoluble or melt at a very high temperature, so that a resin film is generally obtained by solution film formation.
  • Patent Document 2 A method for suppressing variation in expansion coefficient, that is, dimensional change is described (Patent Document 2).
  • Patent Document 3 when a polyimide film that causes a remarkable decrease in elastic modulus above the glass transition temperature is manufactured, both ends of the film are fixed and conveyed without slack according to the width of the film that changes due to shrinkage and expansion in the heating step.
  • a manufacturing method for reducing the anisotropy of the linear expansion coefficient in the MD direction (traveling direction) and the TD direction (width direction) of the film is described.
  • a resin film used as a substitute for a glass substrate is required to have a high tensile elastic modulus, low CTE, heat resistance and chemical resistance.
  • Polyimide as a resin suitable for such a resin film, polyamide-imide, and polyamic acid as a precursor of polyimide exhibit heat resistance by containing a large amount of rigid molecular chains with low mobility and having a high molecular weight. In addition, it has a wide distribution in molecular weight as a result of increasing the molecular weight.
  • the films that are industrially continuously produced from a resin solution by coating and drying are described in the MD direction (traveling direction) and the TD direction (width direction) in order to be transported to a heating furnace by roll-to-roll.
  • Such process- and morphological anisotropy affects the formation of domains having different higher-order structures as described above, and the orientation direction, degree of orientation, and entanglement of molecules in either the width direction or the traveling direction. Is biased, causing variations in dimensional changes and anisotropy of physical properties.
  • Patent Document 1 can reduce the horizontal unevenness in the longitudinal direction and suppress the anisotropy of the physical properties caused by the difference in thickness, but the orientation direction, the degree of orientation and the entanglement of the molecules inside the film are biased. The anisotropy of the physical properties is not suppressed. Further, in Patent Document 2, the heat shrinkage rate in the longitudinal direction and the width direction of the film is set to 0.05% or less by drying under the condition that the drying temperature unevenness in the width direction is 20 ° C. or less.
  • the ratio of the maximum value of the heat shrinkage in the width direction to the length is 0.33 at the maximum, and the anisotropy of the heat shrinkage in the MD direction (longitudinal direction) and the TD direction (width direction) is not suppressed. ..
  • the film is intentionally contracted in the width direction in the first half step in accordance with the step of sequentially passing through a furnace having a gradually higher temperature, and the film is loosened in the second half step. It is expanded in the width direction in stages and manufactured without slack to reduce the anisotropy in the width direction and the traveling direction of the film.
  • the MD (flow direction) direction and the TD (width direction) of the polyimide film are used.
  • the ratio of the linear expansion coefficient in the) direction is 0.96, and further reduction of anisotropy is an issue.
  • polyimide has excellent heat resistance, a low coefficient of linear expansion and a high tensile elastic modulus, but has a rigid molecular chain having a high molecular weight, a wide molecular weight distribution and low mobility. Since domains with different higher-order structures that reflect the direction, degree of orientation, and entanglement are formed, a low coefficient of linear expansion is maintained even in the high temperature region, and the ratio of the coefficient of linear expansion and the coefficient of tensile modulus in the MD and TD directions of the resin film. It was a problem to obtain a resin film having a small size and good physical properties and anisotropy.
  • the present invention has the following configuration.
  • the temperature (A) at which the temperature-dependent curve of tan ⁇ , which is the value obtained by dividing the loss elastic modulus by the storage elastic modulus, peaks is in the range of 250 to 500 ° C., and the temperature-dependent curve of tan ⁇ becomes the peak.
  • the temperature (A) and the linear expansion coefficient variation point temperature (B) are in the relationship of the following equation (40 + 0.8 ⁇ A) ⁇ B ⁇ A (2)
  • the weight average molecular weight of the resin which is the raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin is 1. In the range of 0.0 to 5.0
  • the resin film further satisfies (3) to (4).
  • (3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction is in the range of -5 ppm / ° C. to +55 ppm / ° C., and the ratio of the linear expansion coefficient in the MD direction to the TD direction is (4)
  • the tensile modulus in both the MD direction and the TD direction is in the range of 2 to 20 GPa in the range of 0.97 to 1.03, and the ratio of the tensile modulus in the TD direction to the MD direction is 0.97. In the range of ⁇ 1.03
  • the resin film preferably has a yellow index of 10 or less, a light transmittance of 70% or more at a wavelength of 400 nm, and a total light transmittance of 85% or more.
  • Step A to prepare a resin film laminate containing a solvent by applying a resin solution on a support and drying it.
  • Step B in which the support is peeled off from the laminate to obtain a resin film containing a solvent.
  • a step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent is included.
  • a method for producing the resin film which comprises performing at least a part of the step C by microwave heating.
  • the resin solution contains at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide, and a solvent having a dipole moment in the range of 3.0 to 6.0 D and dissolving the resin. Is preferable.
  • the present invention even when a resin solution consisting of polyimide, polyamideimide, which has a high molecular weight, a wide molecular weight distribution, and a large number of rigid molecular chains with low mobility, and polyamic acid, which is a precursor of the polyimide, is applied and dried, it is heat resistant. It has excellent properties, maintains a low linear expansion coefficient even in the high temperature region, has a high tensile elastic modulus, has a small ratio of the linear expansion coefficient and tensile elastic modulus in the MD direction and the TD direction of the resin film, and has good physical properties and isotropic properties. A resin film having excellent transparency can be obtained.
  • the resin film of the present invention is a film that satisfies the following (1) and (2).
  • the temperature (A) at which the temperature-dependent curve of tan ⁇ , which is the value obtained by dividing the loss elastic modulus by the storage elastic modulus, peaks is in the range of 250 to 500 ° C., and the temperature-dependent curve of tan ⁇ becomes the peak.
  • the temperature and the linear expansion coefficient variation point temperature (B) have the relationship of the following equation. (40 + 0.8 ⁇ A) ⁇ B ⁇ A
  • the temperature-dependent curve of tan ⁇ with respect to temperature is an index of change in the viscoelasticity of the resin due to the temperature change, and when the temperature where the temperature-dependent curve of tan ⁇ exceeds the peak temperature, the viscosity of the resin increases remarkably and the strength decreases. Therefore, the temperature at which the temperature-dependent curve of tan ⁇ peaks is in the range of 250 to 500 ° C. from the viewpoint of heat resistance required for replacing glass substrates used in mobile phones, digital cameras, display devices and other various electronic devices. It is necessary, preferably in the range of 260 to 480 ° C, and more preferably in the range of 270 to 460 ° C.
  • the method for measuring the temperature at which the temperature-dependent curve of tan ⁇ of the resin film peaks is the method described in Examples.
  • the resin film expands and contracts due to temperature changes, and the coefficient of linear expansion is an index of that change. Will be higher. This specific temperature is called the coefficient of linear expansion inflection temperature.
  • the resin film of the present invention is preferably obtained by applying a resin solution and drying it.
  • a resin solution is applied and dried to obtain a resin film
  • a denser high-order structure that reflects the orientation direction, degree of orientation, and entanglement of the molecules that are formed earlier as the solvent is removed is formed later.
  • the resin has a higher molecular weight, a wider molecular weight distribution, and more rigid molecular chains with low mobility, the density of the higher-order structure of each domain is significantly different.
  • the temperature at which the temperature-dependent curve of tan ⁇ peaks and the temperature at the turning point of the linear expansion coefficient are both the temperature at which the temperature-dependent curve of tan ⁇ peaks, but the temperature at which the temperature-dependent curve of tan ⁇ peaks was formed at the stage of resin film fabrication. While the linear expansion coefficient reflects the average physical property change of the high-order structure with different sparse and dense, the linear expansion coefficient depends on the temperature of tan ⁇ to reflect the physical property change of the sparse high-order structure formed at the stage of resin film production.
  • the linear expansion coefficient variation point temperature (B) is always lower than the temperature (A) at which the curve peaks (B ⁇ A).
  • the linear expansion coefficient inflection temperature (B) is higher, specifically, tan ⁇ . It is preferable to satisfy the formula (40 + 0.8 ⁇ A) ⁇ B with respect to the temperature (A) at which the temperature-dependent curve of the above peaks.
  • the method for measuring the linear expansion coefficient inflection temperature of the resin film is as described in Examples.
  • the weight average molecular weight of the resin which is the raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin is 1. It is in the range of 0 to 5.0.
  • the weight average molecular weight of the resin which is the raw material of the resin film of the present invention is in the range of 50,000 to 500,000, more preferably 80,000 to 400,000, still more preferably 100,000 to 300,000. More preferably, it is 120,000 to 200,000. If the weight average molecular weight is equal to or higher than the above lower limit, the high tensile elastic modulus, flexibility, and impact resistance required for a glass substrate substitute can be satisfied. Further, if the weight average molecular weight is not more than the above upper limit, the above formula can be easily satisfied. Further, it is preferable that the weight average molecular weight of the resin in the resin solution is within the above range.
  • the molecular weight distribution which is the value obtained by dividing the weight average molecular weight of the resin which is the raw material of the resin film of the present invention by the number average molecular weight, is in the range of 1.0 to 5.0, and more preferably 1.5 to 4.5. , More preferably 2.0 to 4.0. If the molecular weight distribution is at least the above lower limit, the cost of resin purification can be reduced, and if the molecular weight distribution is at least the above upper limit, the above formula can be easily satisfied.
  • the method for measuring the weight average molecular weight and the molecular weight distribution of the resin which is the raw material of the resin film is as described in Examples.
  • the resin film of the present invention further satisfies the following (3) to (4).
  • the average coefficient of linear expansion measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction of the resin film in the present invention is preferably ⁇ 5 ppm / ° C. to + 55 ppm / ° C. It is more preferably -4 ppm / ° C to + 45 ppm / ° C, and even more preferably -3 ppm / ° C to + 35 ppm / ° C.
  • the coefficient of linear expansion is within the above range, the difference in the coefficient of linear expansion from that of the functional element can be kept small, and it is possible to prevent the resin film and the functional element from peeling off even when subjected to a process of applying heat, and workability is achieved. Excellent for.
  • the ratio of the linear expansion coefficient of the resin film in the present invention to the MD direction in the TD direction is preferably in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, and even more preferably 0.98 to 1.02.
  • the resin film can be used in the processing process with the functional element without distinguishing between the MD direction and the TD direction, and the workability and the yield can be improved. Can be improved.
  • the method for measuring the coefficient of linear expansion of the resin film is as described in Examples.
  • the tensile elastic modulus in both the MD direction and the TD direction is in the range of 2 to 20 GPa, and the ratio of the tensile elastic modulus in the TD direction to the MD direction is in the range of 0.97 to 1.03.
  • the tensile elastic modulus of the resin film of the present invention is preferably in the range of 2 to 20 GPa in both the MD direction and the TD direction. It is more preferably 2.5 to 15 GPa, still more preferably 3 to 10 GPa.
  • the tensile elastic modulus is equal to or higher than the above lower limit, it is possible to prevent the resin film and the functional element from peeling off, and the handleability is excellent. Further, if the tensile elastic modulus is not more than the above upper limit, the resin film can be used as a flexible film.
  • the ratio of the tensile elastic modulus of the resin film in the present invention to the MD direction in the TD direction is preferably in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, and even more preferably 0.98 to 1.02.
  • the resin film can be used in the processing process with the functional element without distinguishing between the MD direction and the TD direction, and workability and yield are improved. Can be done.
  • the method for measuring the tensile elastic modulus of the resin film is as described in Examples.
  • the yellowness index (yellow index) is preferably 10 or less, more preferably 7 or less, and further. It is preferably 5 or less, and even more preferably 3 or less.
  • the lower limit of the yellowness of the resin film is not particularly limited, but it is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more for use as a flexible electronic device. be.
  • the method for measuring the yellowness index (yellow index) of the resin film is as described in Examples.
  • the light transmittance at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more. It is more preferably 75% or more, and even more preferably 80% or more.
  • the upper limit of the light transmittance of the resin film at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less for use as a flexible electronic device. Is.
  • the method for measuring the light transmittance of the resin film at a wavelength of 400 nm is the method described in Examples.
  • the total light transmittance is preferably 85% or more, more preferably 86% or more, and further preferably. Is 87% or more, and even more preferably 88% or more.
  • the upper limit of the total light transmittance of the resin film is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less for use as a flexible electronic device. ..
  • the method for measuring the total light transmittance of the resin film is as described in Examples.
  • the resin film of the present invention is preferably obtained by applying and drying a resin solution in order to reach a temperature at which the desired temperature-dependent curve of tan ⁇ reaches its peak.
  • a resin solution it is preferable to use a resin solution containing at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide.
  • the resin solution can be obtained by any of the following production methods.
  • the polyamic acid solution can be obtained by stirring and / or mixing diamines and tetracarboxylic acids in a solvent and increasing the molecular weight while forming an amide bond by a condensation reaction.
  • the polyimide solution is obtained as a first method by heating and stirring and / or mixing diamines and tetracarboxylic acids in a solvent, and increasing the molecular weight while forming an imide bond in one step by a dehydration ring closure reaction. Can be done.
  • an imidization accelerator and an imidizing agent are added, and while stirring and / or mixing, an imide bond is generated in two steps by a dehydration ring closure reaction. It can be obtained by increasing the molecular weight.
  • the polyamide-imide solution can be obtained by heating and stirring and / or mixing diisocyanates and tricarboxylic acids in a solvent, and increasing the molecular weight while forming amide bonds and imide bonds in one step by a decarbonation reaction.
  • Dicarboxylic acids can be used as the copolymerization component as long as the characteristics of the resin solution and the resin film are not impaired when the above-mentioned polyamic acid, polyimide, and polyamide-imide are made into high molecular weight.
  • the resin solution used in the present invention is a resin solid obtained by pouring the resin solution obtained above into a poor solvent to precipitate a resin component, washing, filtering and drying, or by casting and drying the resin solution. It can also be obtained by dissolving the obtained resin solid in a soluble solvent again.
  • tetracarboxylic acids examples include aromatic tetracarboxylic acids (including their acid anhydrides) and aliphatic tetracarboxylic acids (including their acid anhydrides) usually used for polyimide synthesis and polyamideimide synthesis.
  • Alicyclic tetracarboxylic acids including its acid anhydrides
  • aromatic tricarboxylic acids including its acid anhydrides
  • aliphatic tricarboxylic acids including its acid anhydrides
  • alicyclic tricarboxylic acids including its acids
  • aromatic dicarboxylic acids aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like
  • aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclics are more preferable from the viewpoint of light transmission.
  • Formula tetracarboxylic acids are more preferred.
  • the tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. ) Is good.
  • Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.
  • dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal.
  • Acid dianhydride is preferred.
  • the aromatic tetracarboxylic acids may be used alone or in combination of two or more. When heat resistance is important, the aromatic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. It is 80% by mass or more.
  • alicyclic tetracarboxylic acids examples include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanth
  • dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic are preferable.
  • Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. These may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. Is 80% by mass or more.
  • tricarboxylic acids examples include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid.
  • An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite.
  • Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned.
  • monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid.
  • Hydrogen additives oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid acidates thereof.
  • an esterified product or the like can be mentioned.
  • aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable.
  • the dicarboxylic acids may be used alone or in combination of two or more.
  • the diamines or diisocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and alicyclic diamines usually used for polyimide synthesis and polyamide-imide synthesis.
  • Aromatic diamines, aliphatic diamines, alicyclic diamines and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance.
  • Diamines and diisocyanates may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4, 4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Phenyl]
  • Benzene and the like can be mentioned.
  • the aromatic diamine having the benzoxazole structure is not particularly limited, and for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo.
  • aromatic diamines may be used alone or in combination of two or more.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • Cyclohexane 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable.
  • the alicyclic diamines may be used alone or in combination of two or more.
  • diisocyanates examples include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, di
  • Didimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexanediisocyanate are preferable.
  • the diisocyanates may be used alone or in combination of two or more.
  • the solvent used in the resin solution of the present invention has a dipole moment in the range of 3.0 to 6.0 D and dissolves at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide. Is preferable.
  • the dipole moment is within the above range, the uniform heating effect of microwave heating used in the solvent removing step of the resin film described later is excellent, and it becomes easy to improve the physical properties of the obtained resin film.
  • N, N-dimethylformamide (dipolar moment: 3.86D), N, N-dimethylacetamide (DMAc) (dipolar moment: 3.72D), N- Methyl-2-pyrrolidone (NMP) (dipolar moment: 4.09D), N-methyl- ⁇ -caprolactum (dipolar moment: 4.23D), dimethyl sulfoxide (dipolar moment: 3.96D), dimethylsulfone ( Bipolar moment: 4.47D), Sulfolane (bipolar moment: 4.68D), 1,3-dimethyl-2-imidazolidinone (dipolar moment: 4.07D), 1,3-dimethyl-2-pyrimidinone (Dipolar moment: 4.17D), 3-Methyl-2-oxazolidone (dipolar moment: 4.10D), hexamethylphosphoramide (dipolar moment: 5.54D), ⁇ -butyrolactone (GBL) (bipolar moment: 3.86D), N, N-dimethylace
  • toluene dipole moment: 0.36D
  • xylene dipole moment: 0.00 to 0.64D
  • the value of the dipole moment when two or more kinds of solvents are mixed is a weighted average value of each value.
  • Fine particles may be added to the resin solution of the present invention as long as the characteristics of the resin film are not impaired.
  • the fine particles may be inorganic fine particles or organic fine particles, and the inorganic fine particles include, for example, silicon nitride, silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, and calcium sulfate. And so on.
  • the organic fine particles include polyamide-based resin, polyimide-based resin, benzoguanamine-based resin, and melamine-based resin, and these fine particles may be used in combination.
  • the resin solid content concentration of the resin solution of the present invention is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass.
  • the resin solid content concentration is at least the above lower limit, it is preferable from the viewpoint of obtaining the film thickness required for the resin film, and when it is at least the above upper limit, the solution flow is such that the physical properties of the resin film are not impaired. It is preferable from the viewpoint of obtaining sex.
  • the resin film in the present invention is preferably a resin film obtained by the method for producing a resin film described later. Specifically, it is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamide-imide film, and more preferably a polyimide film.
  • the lower limit of the thickness of the resin film in the present invention is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 7 ⁇ m or more, from the viewpoint of the strength and handleability required for the resin film.
  • the upper limit of the thickness of the resin film is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 100 ⁇ m or less from the viewpoint of uniformly removing the solvent.
  • the preferred method for producing the resin film of the present invention is Step A to prepare a resin film laminate containing a solvent by applying and drying the resin solution on a support. Step B of peeling the support from the resin film laminate containing the solvent to obtain a resin film containing the solvent. A step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent is included. It is characterized in that at least a part of the step C is performed by microwave heating.
  • Step A is a step of applying a resin solution on a support and drying the resin film laminate (hereinafter, also simply referred to as a laminate) containing a solvent.
  • the laminate is a product in which a dried product of the resin solution is laminated on the support.
  • the support used in the present invention examples include a resin film base material, a stainless steel belt base material, a glass base material, and the like.
  • the resin film base material it is preferable to use a resin film base material that does not swell or elute in the solvent contained in the resin solution.
  • a resin film base material that does not swell or elute in the solvent contained in the resin solution.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polyolefin film
  • COP Cycloolefin-based
  • Examples of the method of applying the resin solution on the support include a die coating method, a comma coating method, a blade coating method, a roll coating method, a knife coating method, a bar coating method, and the like, and two of these methods are used. You may combine the methods.
  • the comma coat method, the die coat method, or a combination thereof is preferable from the viewpoint of productivity.
  • the solvent content of the resin film containing the solvent after drying is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 7 to 30% by mass.
  • the solvent content is equal to or higher than the above lower limit, the difference in the solvent content and the polymer higher-order structure between the resin film surface in contact with the support and the opposite surface is small, and the physical property anisotropy in the thickness direction of the resin film becomes small.
  • the amount is reduced, the curl of the resin film is suppressed, and the value is not more than the above upper limit, the deformation of the resin film after peeling from the support is suppressed, and handling becomes easy.
  • Step B is a step of peeling the support from the laminated body to obtain a resin film containing a solvent.
  • the method of peeling the resin film containing the solvent from the support is not particularly limited, but a method of winding from the end with tweezers or the like, a cut is made in the laminate, and an adhesive tape is attached to one side of the cut portion. After that, a method of winding from the tape portion, a method of vacuum-adsorbing one side of the cut portion of the resin film and then winding from that portion, and the like can be mentioned.
  • Step C is a step of removing the solvent from the resin film containing the solvent, or performing a dehydration ring closure reaction while removing the solvent, and at least a part of the step C is performed by microwave heating.
  • Microwave heating used in the solvent removal step of the resin film containing the solvent after peeling from the support is based on vibrating the dipoles of the molecules contained in the heated object by microwave as the heating principle. Therefore, the absorption efficiency of microwaves depends on the magnitude of the dipole moment and the ease with which the numerator moves following the period of the microwaves. Therefore, in order to efficiently uniformly heat and remove the solvent from the resin film containing the solvent by using microwaves, a solvent having the above-mentioned dipole moment value is specified.
  • the frequency of the microwave heating device used in the present invention it is preferable to select a frequency at which the molecule of the solvent having the above-mentioned dipole moment value easily moves.
  • a heating device having a frequency of 2,450 MHz is common due to the restrictions imposed by the Radio Law and the restrictions on microwave electron tubes.
  • 915 MHz can also be used as long as it does not interfere with other communications.
  • the microwave intensity is appropriately selected in consideration of the conditions such as foaming, citron skin, and waviness on the surface of the resin film.
  • the resin film is uniformly heated and dried in the solvent removal step, and the difference in sparseness and density of the higher-order structure formed. Is reduced, and it becomes easy to achieve the formula (40 + 0.8 ⁇ A) ⁇ B ⁇ A. Further, the isotropic properties of the obtained resin film can be improved, and the ratio of the linear expansion coefficient of the resin film in the TD direction to the MD direction and the ratio of the tensile elasticity to the MD direction in the TD direction are kept within a preferable range. Becomes easier.
  • a method by blowing air drying, hot air drying, infrared heating drying, etc. can be used in combination with microwave heating, and two of these methods may be combined.
  • the temperature rise profile in the solvent removal step using the above heating method preferably has an initial temperature in the range of 50 to 200 ° C., and when it is at least the lower limit of the specified range, temperature variation in the drying furnace can be suppressed. It is easy, and when the initial temperature is not more than the upper limit of the specified range, it becomes easy to suppress the foaming of the resin film and the surface of the resin film due to the rapid heating of the solvent, and the surface of the resin film and the resin film. The difference in solvent content and polymer higher-order structure from the inside is reduced, and it becomes easy to achieve the formula (40 + 0.8 ⁇ A) ⁇ B ⁇ A.
  • the temperature rise profile in the solvent removing step using the above heating method preferably has a final temperature in the range of 300 to 500 ° C., and when it is at least the lower limit of the specified range, the amount of residual solvent in the resin film is suppressed.
  • the final temperature is not more than the upper limit of the designated range, it becomes easy to suppress the thermal deterioration of the resin film.
  • the temperature rise profile in the solvent removal step using the above heating method is to raise the temperature at a temperature rising rate of 5 to 60 ° C./min, or to raise the temperature in steps of 2 or more stages, or both. It is preferable to raise the temperature by a combined method.
  • the temperature rise rate is at least the lower limit of the specified range
  • the working time in the solvent removing step can be shortened, and when it is at least the upper limit of the above specified range, the solvent is rapidly heated and the resin film is foamed. It becomes easier to suppress the surface of the resin film, and the difference in solvent content and polymer higher-order structure between the surface of the resin film and the inside of the resin film is reduced, and the formula (40 + 0.8 ⁇ A) ⁇ B ⁇ A. Will be easier to achieve.
  • the number of steps is preferably 2 to 10 times, and the rate of temperature rise between each step is preferably 10 to 100 ° C./min.
  • the number of steps is equal to or greater than the lower limit of the specified range, it is easy to suppress foaming of the resin film and the surface of the resin film due to rapid heating of the solvent, and it is easy to suppress the foaming of the resin film and the surface of the resin film. Differences in solvent content and higher-order polymer structure are reduced, and it becomes easier to achieve the formula (40 + 0.8 ⁇ A) ⁇ B ⁇ A. Further, when the number of steps is not more than the upper limit of the designated range, the work efficiency is good.
  • the total drying time in the solvent removing step is 5 to 100 minutes.
  • the total drying time is at least the lower limit of the specified range, it becomes easy to suppress the foaming of the resin film and the surface of the surface of the resin film due to the rapid heating of the solvent, and when it is at least the upper limit, the productivity is improved. It becomes easy to suppress the thermal deterioration of the resin film.
  • the resin film can be further stretched.
  • the stretching ratio in such a stretching operation is preferably 1.5 to 4.0 times in the MD (long) direction and 1.4 to 3.0 times in the TD (short) direction.
  • the ratio of the draw ratio in the TD direction (MD / TD) is preferably more than 1.0.
  • the solvent content of the resin film after the solvent removal step is preferably 0.01 to 5.0% by mass, more preferably 0.02 to 4.0% by mass, and further preferably 0.03 to 3. It is in the range of 0% by mass.
  • the storage elastic modulus (E'), the loss elastic modulus (E "), and the loss elastic modulus are the storage elastic moduli at three points of the sample in the flow direction (MD direction) and the width direction (TD direction) of the resin film, respectively, under the following conditions.
  • the temperature-dependent curve of tan ⁇ ( E ”/ E'), which is the value divided by, was obtained, the peak temperature was obtained, and the average value in the flow direction (MD direction) and the width direction (TD direction) was calculated.
  • ⁇ Thickness of resin film> The measurement was performed using a micrometer (Millitron 1245D manufactured by Fine Wolf Co., Ltd.).
  • CTE Cost of linear expansion
  • MD direction flow direction
  • TD direction width direction
  • the expansion / contraction rate / temperature was measured in, and this measurement was performed up to 200 ° C., and the average value of all the measured values was calculated as CTE.
  • ⁇ Tension elastic modulus of resin film The resin film was cut into strips of 100 mm ⁇ 10 mm in the flow direction (MD direction) and the width direction (TD direction), respectively, and used as test pieces. The test piece was cut out from the central portion in the width direction. Under the following conditions, the tensile elastic modulus was measured for each of the three samples in the MD direction and the TD direction, and the average value of all the measured values was obtained.
  • ⁇ 400 nm light transmittance of resin film The light transmittance of the resin film at a wavelength of 400 nm was measured using a spectrophotometer (“U-2001” manufactured by Hitachi, Ltd.), and the obtained value was converted to a thickness of 20 ⁇ m according to Lambert-Beer's law. The value obtained was taken as the 400 nm light transmittance of the resin film. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • TT Total light transmittance of resin film> The total light transmittance (TT) of the resin film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • a mass portion of biphenyltetracarboxylic dianhydride (BPDA) was added over about 10 minutes, and the polymerization reaction was carried out by continuing stirring for 6 hours while adjusting the temperature so that the temperature was in the temperature range of 20 to 40 ° C.
  • a viscous polyamic acid solution was obtained.
  • 410 parts by mass of DMAc was added to the obtained polyamic acid solution to dilute it, and then 25.83 parts by mass of isoquinoline was added as an imidization accelerator, and the polyamic acid solution was stirred at 30 to 40 ° C.
  • the reduced viscosity of the obtained polyimide powder was 2.1 dl / g.
  • 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of DMAc to obtain a polyimide solution B having a solid content of 20 parts by mass.
  • Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
  • Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
  • the temperature was raised to 180 ° C., and while toluene was distilled off, heating imidization was performed at 180 ° C. for 3 hours to obtain a polyimide solution.
  • 2500 parts by mass of the obtained polyimide solution was transferred to a reaction vessel equipped with a stirrer and a stirring blade, and the temperature was maintained at 15 to 25 ° C. while stirring at a speed of 120 rpm, and 50,000 parts by mass of acetone was added thereto. It was dropped at a rate of 10 g / min.
  • turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed.
  • Polyimide film production example 1 (Examples 1 to 5)]
  • the polyamic acid solution A was applied to a mirror-finished endless continuous belt made of stainless steel, which was a film-making support, using a die coater (coating width 1240 mm), and dried at 90 to 115 ° C. for 10 minutes.
  • a polyamic acid film (containing 9% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
  • the final pin sheet spacing of the obtained green film is 1140 m by pin tenter. Both ends of the film are grasped so as to be m, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, heated at 170 ° C.
  • the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 1B, 1C, 1D, and 1E.
  • Table 2 shows the characteristic evaluation results of the obtained resin film.
  • the polyamic acid solution A which is a film-making support, has a region surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, and a peak density (Spd) of 20 / square ⁇ m or less.
  • a polyester film having no coat layer on the surface was coated with a comma coater (coating width 1240 mm) and dried at 90 to 115 ° C. for 10 minutes.
  • a polyamic acid film (containing 10% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
  • the obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, and from 170 ° C to 350 ° C.
  • the temperature was raised by heating at a heating rate of 15 ° C./min.
  • a microwave of 40 kW of 2,450 MHz was guided to the microwave heating zone.
  • the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 2A shown in Table 2.
  • the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 2B, 2C, 2D, and 2E.
  • Table 2 shows the characteristic evaluation results of the obtained resin film.
  • Polyimide film production example 3 (Comparative Examples 1 to 5)]
  • the polyamic acid solution A was applied to a mirror-finished endless continuous belt made of stainless steel, which was a film-making support, using a die coater (coating width 1240 mm), and dried at 90 to 115 ° C. for 10 minutes.
  • a polyamic acid film (containing 9% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
  • the obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a hot air circulation device, and the temperature rise rate is 15 ° C. from 170 ° C.
  • the polyamic acid solution A which is a film-making support, has a region surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, and a peak density (Spd) of 20 / square ⁇ m or less.
  • a polyester film having no coat layer on the surface was coated with a comma coater (coating width 1240 mm) and dried at 90 to 115 ° C. for 10 minutes.
  • a polyamic acid film (containing 10% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
  • the obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, and from 170 ° C to 350 ° C.
  • the temperature was raised by heating at a heating rate of 70 ° C./min, and heat treatment was performed at 350 ° C. for 4 minutes.
  • a microwave of 50 kW of 2,450 MHz was guided to the microwave heating zone.
  • the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 4A shown in Table 3.
  • the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 4B, 4C, 4D, and 4E.
  • Table 3 shows the characteristic evaluation results of the obtained resin film.
  • the resin film of the present invention has excellent heat resistance and transparency, maintains a low coefficient of linear expansion even in a high temperature region, has a high coefficient of tensile elasticity, and linear expansion of the resin film in the MD direction and the TD direction. Since the ratio of coefficient and tensile modulus is small and the physical properties are good in isotropic properties, it is extremely useful for the front plate of image display devices such as touch panels and displays, and around electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a resin film that has excellent heat resistance, has a linear coefficient of expansion that is low up to a high-temperature region, has a high tensile modulus of elasticity, has a low ratio in terms of the linear coefficients of expansion in the MD direction and the TD direction of the resin film and the tensile modulus of elasticity, and has satisfactory isotropy in terms of the properties thereof. The resin film satisfies items (1)-(2) below. (1) The temperature (A) at which a temperature dependence curve of tan δ, which is a value where the loss elastic modulus has been divided by the storage modulus of elasticity, reaches a peak is within the range of 250 to 500°C, and the temperature (A) at which the temperature dependence curve of tan δ reaches the peak and the linear coefficient of expansion inflection temperature (B) are related as indicated in the following formula: (40+0.8×A)≤B<A; and (2) the weight average molecular weight of a resin constituting a feedstock of the resin film is within the range of 50,000 to 500,000, and a molecular weight distribution thereof, which is a value where the weight average molecular weight has been divided by the number average molecular weight of the resin, is within the range of 1.0 to 5.0.

Description

樹脂フィルム及び樹脂フィルムの製造方法Resin film and method for manufacturing resin film
 本発明は、樹脂フィルムと樹脂フィルムの製造方法に関する。より詳細には、耐熱性に優れ、高温領域まで低い線膨張係数を保ち、高い引張弾性率を有し、樹脂フィルムのMD方向に対するTD方向の線膨張係数および引張弾性率の比が小さく、樹脂フィルムの物性等方性が良好な透明性に優れた樹脂フィルムと樹脂フィルムの製造方法に関する。 The present invention relates to a resin film and a method for manufacturing a resin film. More specifically, it has excellent heat resistance, maintains a low linear expansion coefficient even in a high temperature region, has a high tensile elastic modulus, has a small ratio of the linear expansion coefficient and the tensile elastic modulus in the TD direction to the MD direction of the resin film, and is a resin. The present invention relates to a resin film having good physical properties and isomorphism of the film and excellent transparency, and a method for producing the resin film.
 近年、高機能化する携帯電話やデジタルカメラ、ディスプレイ機器その他各種電子機器類の小型化、軽量化、利便性の進展に伴い、従来から利用されてきた硬く衝撃に弱いガラス基板に代わり、耐熱性、低い線膨張係数、高い引張弾性率、柔軟性、耐衝撃性、透明性、に優れた樹脂フィルム基板材料が期待されている。 In recent years, with the progress of miniaturization, weight reduction, and convenience of mobile phones, digital cameras, display devices, and other various electronic devices that have become more sophisticated, heat resistance has been replaced with the hard and impact-sensitive glass substrate that has been used in the past. A resin film substrate material having excellent low linear expansion coefficient, high tensile elastic modulus, flexibility, impact resistance, and transparency is expected.
 樹脂フィルムは有機高分子樹脂材料をフィルム状に製膜加工することによって工業的に製造され、製膜方法としては有機高分子樹脂を溶融した後にスリット状のダイから押し出す溶融製膜法、有機高分子樹脂溶液を支持体に均一に塗工し溶剤を乾燥揮発させる溶液製膜法等がある。有機高分子樹脂材料の中でも特に耐熱性に優れるポリイミド樹脂、ポリアミドイミド樹脂は、不融乃至非常に高温で溶融するため、溶液製膜により樹脂フィルムを得ることが一般的である。 The resin film is industrially manufactured by forming a film of an organic polymer resin material into a film, and the film forming method is a melt film forming method in which an organic polymer resin is melted and then extruded from a slit-shaped die. There is a solution film forming method in which a molecular resin solution is uniformly applied to a support and the solvent is dried and volatilized. Among the organic polymer resin materials, the polyimide resin and the polyamide-imide resin, which are particularly excellent in heat resistance, are insoluble or melt at a very high temperature, so that a resin film is generally obtained by solution film formation.
 このような塗工し溶剤を乾燥揮発させる溶液製膜方法では、塗工条件や乾燥条件によって厚みムラや配向ムラが生じることがあり、例えば特許文献1では支持体回転速度等の塗工条件を見直すことで長手方向の横段ムラを低減した提案がある。 In such a solution film forming method in which the solvent is dried and volatilized, uneven thickness and uneven orientation may occur depending on the coating conditions and drying conditions. For example, in Patent Document 1, the coating conditions such as the support rotation speed are set. There is a proposal to reduce the horizontal unevenness in the longitudinal direction by reviewing it.
 また、フィルムのたるみのバラツキを抑えるために、たるみと、異方性指数、主軸配向係数、熱収縮率、乾燥温度とに相関があることを見出し、幅方向の乾燥温度ムラを抑えて、線膨張係数すなわち寸法変化のバラツキを抑制する方法が記載されている(特許文献2)。 In addition, in order to suppress the variation in the sagging of the film, we found that there is a correlation between the sagging and the anisotropy index, the spindle alignment coefficient, the coefficient of thermal expansion, and the drying temperature, and suppressed the drying temperature unevenness in the width direction to suppress the line. A method for suppressing variation in expansion coefficient, that is, dimensional change is described (Patent Document 2).
 特許文献3では、ガラス転移温度以上で顕著な弾性率低下を起こすポリイミドフィルムを製造する際に、加熱工程で収縮と膨張により変化するフィルムの幅に合わせて、フィルムの両端を固定し弛み無く搬送することにより、フィルムのMD方向(進行方向)とTD方向(幅方向)の線膨張係数の異方性を小さくする製造方法が記載されている。 In Patent Document 3, when a polyimide film that causes a remarkable decrease in elastic modulus above the glass transition temperature is manufactured, both ends of the film are fixed and conveyed without slack according to the width of the film that changes due to shrinkage and expansion in the heating step. A manufacturing method for reducing the anisotropy of the linear expansion coefficient in the MD direction (traveling direction) and the TD direction (width direction) of the film is described.
特開2013-203838号公報Japanese Unexamined Patent Publication No. 2013-203838 特開2018-70842号公報Japanese Unexamined Patent Publication No. 2018-70842 特開2000-290401号公報Japanese Unexamined Patent Publication No. 2000-290401
 電極やディスプレイ素子など機能素子を表面に直性形成するために、ガラス基板代替として用いられる樹脂フィルムには高い引張弾性率と低いCTEおよび耐熱性や耐薬品性が求められる。そのような樹脂フィルムに好適な樹脂としてのポリイミド、ポリアミドイミド、及びポリイミドの前駆体となるポリアミド酸は、モビリティの低い剛直な分子鎖を多く含み高い分子量を有することで耐熱性を発現しており、また、高分子量化する際に結果として分子量に広い分布を有している。 In order to form functional elements such as electrodes and display elements in a straightforward manner on the surface, a resin film used as a substitute for a glass substrate is required to have a high tensile elastic modulus, low CTE, heat resistance and chemical resistance. Polyimide as a resin suitable for such a resin film, polyamide-imide, and polyamic acid as a precursor of polyimide exhibit heat resistance by containing a large amount of rigid molecular chains with low mobility and having a high molecular weight. In addition, it has a wide distribution in molecular weight as a result of increasing the molecular weight.
 この様な樹脂溶液を塗布、乾燥する時に、高分子量で分子量分布が広くモビリティの低い剛直な分子鎖を多く含む場合、溶剤が除去されるに従って先に形成される分子の配向方向、配向度や絡み合いを反映したより密な高次構造と、後から形成される分子の配向方向、配向度や絡み合いを反映したより疎な高次構造が異なることになり、それぞれのドメインが形成される。 When such a resin solution is applied and dried, if it contains many rigid molecular chains with high molecular weight, wide molecular weight distribution and low mobility, the orientation direction and degree of orientation of the molecules formed earlier as the solvent is removed The denser higher-order structure that reflects the entanglement and the sparser higher-order structure that reflects the orientation direction, degree of orientation, and entanglement of the molecules that will be formed later will be different, and each domain will be formed.
 樹脂溶液から塗布乾燥によりフィルムを工業的に連続で製造する場合、ロールツーロールで加熱炉に搬送するために、連続製造されるフィルムにはMD方向(進行方向)とTD方向(幅方向)といった工程的・形状的な異方性を有する。この様な工程的・形状的な異方性は、先に述べた異なった高次構造を有するドメイン形成に影響を与え、幅方向又は進行方向のいずれかに分子の配向方向、配向度や絡み合いが偏り、寸法変化のバラツキや物性の異方性を生ずる。 When films are industrially continuously produced from a resin solution by coating and drying, the films that are continuously produced are described in the MD direction (traveling direction) and the TD direction (width direction) in order to be transported to a heating furnace by roll-to-roll. Has process and shape anisotropy. Such process- and morphological anisotropy affects the formation of domains having different higher-order structures as described above, and the orientation direction, degree of orientation, and entanglement of molecules in either the width direction or the traveling direction. Is biased, causing variations in dimensional changes and anisotropy of physical properties.
特許文献1の方法では長手方向の横段ムラを低減し、厚みの差異に起因した物性の異方性を抑えることは出来ているが、フィルム内部の分子の配向方向、配向度や絡み合いの偏りによる物性の異方性までは抑えられていない。また、特許文献2では、幅方向の乾燥温度ムラが20℃ 以下となる条件下で乾燥を行うことにより、フィルムの長手方向と幅方向における熱収縮率を0.05%以下としているが、実施例中では熱収縮率最大値の長手方向に対する幅方向の比率が最大0.33であり、熱収縮率のMD方向(長手方向)とTD方向(幅方向)の異方性は抑えられていない。 The method of Patent Document 1 can reduce the horizontal unevenness in the longitudinal direction and suppress the anisotropy of the physical properties caused by the difference in thickness, but the orientation direction, the degree of orientation and the entanglement of the molecules inside the film are biased. The anisotropy of the physical properties is not suppressed. Further, in Patent Document 2, the heat shrinkage rate in the longitudinal direction and the width direction of the film is set to 0.05% or less by drying under the condition that the drying temperature unevenness in the width direction is 20 ° C. or less. In the example, the ratio of the maximum value of the heat shrinkage in the width direction to the length is 0.33 at the maximum, and the anisotropy of the heat shrinkage in the MD direction (longitudinal direction) and the TD direction (width direction) is not suppressed. ..
 特許文献3のポリイミドフィルムの製造方法では、徐々に高い温度の炉を順次通過させる工程に合わせて、前半の工程でフィルムを幅方向に故意に収縮させて、後半の工程でフィルムの弛みが生じる段階で幅方向に拡げて、弛み無く製造してフィルムの幅方向と進行方向の異方性を低減しているが、実施例中ではポリイミドフィルムのMD(流れ方向)方向と、TD(幅方向)方向の線膨張係数の比は0.96であり、さらなる異方性の低減が課題となる。 In the method for producing a polyimide film of Patent Document 3, the film is intentionally contracted in the width direction in the first half step in accordance with the step of sequentially passing through a furnace having a gradually higher temperature, and the film is loosened in the second half step. It is expanded in the width direction in stages and manufactured without slack to reduce the anisotropy in the width direction and the traveling direction of the film. However, in the examples, the MD (flow direction) direction and the TD (width direction) of the polyimide film are used. The ratio of the linear expansion coefficient in the) direction is 0.96, and further reduction of anisotropy is an issue.
 この様に、ポリイミドは耐熱性に優れ、低い線膨張係数と高い引張弾性率を有する反面、高分子量で分子量分布が広くモビリティの低い剛直な分子鎖を有するために、溶剤乾燥に伴い分子の配向方向、配向度や絡み合いを反映した高次構造が異なるドメインが形成されることから、高温領域まで低い線膨張係数を保ち、樹脂フィルムのMD方向およびTD方向の線膨張係数および引張弾性率の比が小さく、物性等方性が良好な樹脂フィルムを得ることが課題であった。 As described above, polyimide has excellent heat resistance, a low coefficient of linear expansion and a high tensile elastic modulus, but has a rigid molecular chain having a high molecular weight, a wide molecular weight distribution and low mobility. Since domains with different higher-order structures that reflect the direction, degree of orientation, and entanglement are formed, a low coefficient of linear expansion is maintained even in the high temperature region, and the ratio of the coefficient of linear expansion and the coefficient of tensile modulus in the MD and TD directions of the resin film. It was a problem to obtain a resin film having a small size and good physical properties and anisotropy.
 本発明者等は、上記課題を解決するために鋭意検討した結果、かかる課題を解決できることを見出し本発明に到達した。すなわち本発明は、以下の構成を有するものである。 As a result of diligent studies to solve the above problems, the present inventors have found that such problems can be solved and arrived at the present invention. That is, the present invention has the following configuration.
 下記(1)~(2)を満足する樹脂フィルム。
(1)損失弾性率を貯蔵弾性率で除した値であるtanδの温度依存曲線がピークとなる温度(A)が250~500℃の範囲内にあり、前記tanδの温度依存曲線がピークとなる温度(A)と線膨張係数変曲点温度(B)が下記式の関係にある
                (40+0.8×A) ≦ B < A
(2)前記樹脂フィルムの原料である樹脂の重量平均分子量が50,000~500,000の範囲内にあり、前記重量平均分子量を前記樹脂の数平均分子量で除した値である分子量分布が1.0~5.0の範囲内にある
A resin film that satisfies the following (1) and (2).
(1) The temperature (A) at which the temperature-dependent curve of tan δ, which is the value obtained by dividing the loss elastic modulus by the storage elastic modulus, peaks is in the range of 250 to 500 ° C., and the temperature-dependent curve of tan δ becomes the peak. The temperature (A) and the linear expansion coefficient variation point temperature (B) are in the relationship of the following equation (40 + 0.8 × A) ≦ B <A
(2) The weight average molecular weight of the resin which is the raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin is 1. In the range of 0.0 to 5.0
 前記樹脂フィルムは、さらに(3)~(4)を満足することが好ましい。
(3)MD方向およびTD方向の両方の35~200℃の範囲で測定した線膨張係数が-5ppm/℃~+55ppm/℃の範囲にあり、前記線膨張係数のMD方向に対するTD方向の比が0.97~1.03の範囲にある
(4)MD方向およびTD方向の両方の引張弾性率が2~20GPaの範囲にあり、前記引張弾性率のMD方向に対するTD方向の比が0.97~1.03の範囲にある
It is preferable that the resin film further satisfies (3) to (4).
(3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction is in the range of -5 ppm / ° C. to +55 ppm / ° C., and the ratio of the linear expansion coefficient in the MD direction to the TD direction is (4) The tensile modulus in both the MD direction and the TD direction is in the range of 2 to 20 GPa in the range of 0.97 to 1.03, and the ratio of the tensile modulus in the TD direction to the MD direction is 0.97. In the range of ~ 1.03
 前記樹脂フィルムは、イエローインデックスが10以下、波長400nmにおける光線透過率が70%以上、全光線透過率が85%以上であることが好ましい。 The resin film preferably has a yellow index of 10 or less, a light transmittance of 70% or more at a wavelength of 400 nm, and a total light transmittance of 85% or more.
 樹脂溶液を支持体上に塗布、乾燥して溶媒を含有する樹脂フィルム積層体を作製する工程A、
 前記積層体から前記支持体を剥離して溶媒を含有する樹脂フィルムを得る工程B、
 前記溶媒を含有する樹脂フィルムから、溶媒を除去、又は溶媒を除去しながら脱水閉環反応する工程Cを含み、
 前記工程Cの少なくとも一部をマイクロ波加熱により行うことを特徴とする前記樹脂フィルムの製造方法。
Step A to prepare a resin film laminate containing a solvent by applying a resin solution on a support and drying it.
Step B, in which the support is peeled off from the laminate to obtain a resin film containing a solvent.
A step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent is included.
A method for producing the resin film, which comprises performing at least a part of the step C by microwave heating.
 前記樹脂溶液は、ポリアミド酸、ポリイミド、およびポリアミドイミドからなる群から選ばれる少なくとも1種の樹脂と、双極子モーメントが3.0~6.0Dの範囲にあり前記樹脂を溶解する溶媒を含有することが好ましい。 The resin solution contains at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide, and a solvent having a dipole moment in the range of 3.0 to 6.0 D and dissolving the resin. Is preferable.
 本発明によれば、高分子量で分子量分布が広くモビリティの低い剛直な分子鎖を多く含むポリイミド、ポリアミドイミド、及びポリイミドの前駆体となるポリアミド酸からなる樹脂溶液を塗布乾燥した場合においても、耐熱性に優れ、高温領域まで低い線膨張係数を保ち、高い引張弾性率を有し、樹脂フィルムのMD方向およびTD方向の線膨張係数および引張弾性率の比が小さく、物性等方性が良好な透明性に優れた樹脂フィルムを得ることが出来る。 According to the present invention, even when a resin solution consisting of polyimide, polyamideimide, which has a high molecular weight, a wide molecular weight distribution, and a large number of rigid molecular chains with low mobility, and polyamic acid, which is a precursor of the polyimide, is applied and dried, it is heat resistant. It has excellent properties, maintains a low linear expansion coefficient even in the high temperature region, has a high tensile elastic modulus, has a small ratio of the linear expansion coefficient and tensile elastic modulus in the MD direction and the TD direction of the resin film, and has good physical properties and isotropic properties. A resin film having excellent transparency can be obtained.
 以下、本発明の実施形態の樹脂フィルム及び樹脂フィルムの製造方法について説明する。本発明の樹脂フィルムは下記(1)~(2)を満足するフィルムである。 Hereinafter, the resin film of the embodiment of the present invention and the method for producing the resin film will be described. The resin film of the present invention is a film that satisfies the following (1) and (2).
 (1)損失弾性率を貯蔵弾性率で除した値であるtanδの温度依存曲線がピークとなる温度(A)が250~500℃の範囲内にあり、前記tanδの温度依存曲線がピークとなる温度と線膨張係数変曲点温度(B)が下記式の関係にある。
                   (40+0.8×A) ≦ B < A
(1) The temperature (A) at which the temperature-dependent curve of tan δ, which is the value obtained by dividing the loss elastic modulus by the storage elastic modulus, peaks is in the range of 250 to 500 ° C., and the temperature-dependent curve of tan δ becomes the peak. The temperature and the linear expansion coefficient variation point temperature (B) have the relationship of the following equation.
(40 + 0.8 × A) ≦ B <A
 温度に対するtanδの温度依存曲線は温度変化による樹脂の粘弾性が変化する指標であり、tanδの温度依存曲線がピークとなる温度を超えると、樹脂の粘性が顕著に増加し強度が低下する。そのため、携帯電話やデジタルカメラ、ディスプレイ機器その他各種電子機器類に用いられるガラス基板代替で求められる耐熱性の点から、tanδの温度依存曲線がピークとなる温度が250~500℃の範囲内にあることが必要であり、好ましくは260~480℃の範囲内、より好ましくは270~460℃の範囲内にある。前記樹脂フィルムのtanδの温度依存曲線がピークとなる温度の測定方法は、実施例に記載の方法による。 The temperature-dependent curve of tan δ with respect to temperature is an index of change in the viscoelasticity of the resin due to the temperature change, and when the temperature where the temperature-dependent curve of tan δ exceeds the peak temperature, the viscosity of the resin increases remarkably and the strength decreases. Therefore, the temperature at which the temperature-dependent curve of tan δ peaks is in the range of 250 to 500 ° C. from the viewpoint of heat resistance required for replacing glass substrates used in mobile phones, digital cameras, display devices and other various electronic devices. It is necessary, preferably in the range of 260 to 480 ° C, and more preferably in the range of 270 to 460 ° C. The method for measuring the temperature at which the temperature-dependent curve of tan δ of the resin film peaks is the method described in Examples.
 樹脂フィルムは温度変化により膨張や収縮し線膨張係数はその変化の指標であり、樹脂フィルムの線膨張係数は測定温度領域に対して常に一定ではなく、樹脂フィルムに応じた特定温度で線膨張係数が高くなる。この特定温度を線膨張係数変曲点温度と呼ぶ。 The resin film expands and contracts due to temperature changes, and the coefficient of linear expansion is an index of that change. Will be higher. This specific temperature is called the coefficient of linear expansion inflection temperature.
 本発明の樹脂フィルムは、樹脂溶液を塗布、乾燥することにより得られるものであることが好ましい。樹脂溶液を塗布、乾燥して樹脂フィルムを得る際に、溶剤が除去されるに従って先に形成される分子の配向方向、配向度や絡み合いを反映したより密な高次構造と、後から形成される分子の配向方向、配向度や絡み合いを反映したより疎な高次構造が生じ、それぞれのドメインが形成される。この時に樹脂がより高分子量で分子量分布が広くモビリティの低い剛直な分子鎖をより多く含む場合、それぞれのドメインの高次構造の疎密がより大きく異なる。 The resin film of the present invention is preferably obtained by applying a resin solution and drying it. When the resin solution is applied and dried to obtain a resin film, a denser high-order structure that reflects the orientation direction, degree of orientation, and entanglement of the molecules that are formed earlier as the solvent is removed is formed later. A sparser higher-order structure that reflects the orientation direction, degree of orientation, and entanglement of the molecules is generated, and each domain is formed. At this time, if the resin has a higher molecular weight, a wider molecular weight distribution, and more rigid molecular chains with low mobility, the density of the higher-order structure of each domain is significantly different.
 tanδの温度依存曲線がピークとなる温度と線膨張係数変曲点温度はいずれも物性変曲点温度であるが、tanδの温度依存曲線がピークとなる温度は樹脂フィルム作製の段階で形成された疎密の異なる高次構造の平均の物性変化を反映するのに対して、線膨張係数は樹脂フィルム作成の段階で形成された疎な高次構造の物性変化を反映するために、tanδの温度依存曲線がピークとなる温度(A)よりも線膨張係数変曲点温度(B)は常に低くなる(B < A)。また、tanδの温度依存曲線がピークとなる温度から線膨張係数変曲点温度を差し引いた値はtanδの温度依存曲線がピークとなる温度が高いほど大きくなる傾向にある。ガラス基板代替で求められる低い線膨張係数と基板加工工程での高温時にも低い線膨張係数を保つために、線膨張係数変曲点温度(B)はより高い方が好ましく具体的には、tanδの温度依存曲線がピークとなる温度(A)に対して、式 (40+0.8×A) ≦ B を満たすことが好ましい。前記樹脂フィルムの線膨張係数変曲点温度の測定方法は、実施例に記載の方法による。 The temperature at which the temperature-dependent curve of tan δ peaks and the temperature at the turning point of the linear expansion coefficient are both the temperature at which the temperature-dependent curve of tan δ peaks, but the temperature at which the temperature-dependent curve of tan δ peaks was formed at the stage of resin film fabrication. While the linear expansion coefficient reflects the average physical property change of the high-order structure with different sparse and dense, the linear expansion coefficient depends on the temperature of tan δ to reflect the physical property change of the sparse high-order structure formed at the stage of resin film production. The linear expansion coefficient variation point temperature (B) is always lower than the temperature (A) at which the curve peaks (B <A). Further, the value obtained by subtracting the linear expansion coefficient inflection point temperature from the temperature at which the temperature-dependent curve of tan δ peaks tends to increase as the temperature at which the temperature-dependent curve of tan δ peaks increases. In order to maintain the low coefficient of linear expansion required by replacing the glass substrate and the low coefficient of linear expansion even at high temperatures in the substrate processing process, it is preferable that the linear expansion coefficient inflection temperature (B) is higher, specifically, tan δ. It is preferable to satisfy the formula (40 + 0.8 × A) ≦ B with respect to the temperature (A) at which the temperature-dependent curve of the above peaks. The method for measuring the linear expansion coefficient inflection temperature of the resin film is as described in Examples.
 (2)樹脂フィルムの原料である樹脂の重量平均分子量が50,000~500,000の範囲内にあり、前記重量平均分子量を前記樹脂の数平均分子量で除した値である分子量分布が1.0~5.0の範囲内にある。 (2) The weight average molecular weight of the resin which is the raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin is 1. It is in the range of 0 to 5.0.
 本発明の樹脂フィルムの原料である樹脂の重量平均分子量は50,000~500,000の範囲内であり、より好ましくは80,000~400,000、さらに好ましくは100,000~300,000、ことさらに好ましくは120,000~200,000である。重量平均分子量が上記の下限以上であればガラス基板代替で求められる高い引張弾性率、柔軟性、耐衝撃性を満たすことが出来る。また、重量平均分子量が上記の上限以下であれば上記式を満たすことが容易となる。また、樹脂溶液中の樹脂の重量平均分子量が上記範囲内であることが好ましい。 The weight average molecular weight of the resin which is the raw material of the resin film of the present invention is in the range of 50,000 to 500,000, more preferably 80,000 to 400,000, still more preferably 100,000 to 300,000. More preferably, it is 120,000 to 200,000. If the weight average molecular weight is equal to or higher than the above lower limit, the high tensile elastic modulus, flexibility, and impact resistance required for a glass substrate substitute can be satisfied. Further, if the weight average molecular weight is not more than the above upper limit, the above formula can be easily satisfied. Further, it is preferable that the weight average molecular weight of the resin in the resin solution is within the above range.
 本発明の樹脂フィルムの原料である樹脂の重量平均分子量を数平均分子量で除した値である分子量分布は1.0~5.0の範囲内であり、より好ましくは1.5~4.5、さらに好ましくは2.0~4.0である。分子量分布が上記の下限以上であれば、樹脂精製のコストを低減することが出来、分子量分布が上記の上限以下であれば上記式を満たすことが容易となる。前記樹脂フィルムの原料である樹脂の重量平均分子量および分子量分布の測定方法は、実施例に記載の方法による。 The molecular weight distribution, which is the value obtained by dividing the weight average molecular weight of the resin which is the raw material of the resin film of the present invention by the number average molecular weight, is in the range of 1.0 to 5.0, and more preferably 1.5 to 4.5. , More preferably 2.0 to 4.0. If the molecular weight distribution is at least the above lower limit, the cost of resin purification can be reduced, and if the molecular weight distribution is at least the above upper limit, the above formula can be easily satisfied. The method for measuring the weight average molecular weight and the molecular weight distribution of the resin which is the raw material of the resin film is as described in Examples.
 本発明の樹脂フィルムはさらに下記(3)~(4)を満足することが好ましい。 It is preferable that the resin film of the present invention further satisfies the following (3) to (4).
 (3)MD方向およびTD方向の両方の35~200℃の範囲で測定した線膨張係数が-5ppm/℃~+55ppm/℃の範囲にあり、前記線膨張係数のMD方向に対するTD方向の比が0.97~1.03の範囲にある。 (3) The coefficient of linear expansion measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction is in the range of -5 ppm / ° C. to +55 ppm / ° C., and the ratio of the coefficient of linear expansion in the MD direction to the TD direction is It is in the range of 0.97 to 1.03.
 本発明における樹脂フィルムのMD方向およびTD方向の両方の35~200℃の範囲で測定した平均の線膨張係数は-5ppm/℃~+55ppm/℃であることが好ましい。より好ましくは-4ppm/℃~+45ppm/℃であり、さらに好ましくは-3ppm/℃~+35ppm/℃である。線膨張係数が上記範囲内であると、機能素子との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても樹脂フィルムと機能素子とが剥がれることを回避でき、加工性に優れる。 The average coefficient of linear expansion measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction of the resin film in the present invention is preferably −5 ppm / ° C. to + 55 ppm / ° C. It is more preferably -4 ppm / ° C to + 45 ppm / ° C, and even more preferably -3 ppm / ° C to + 35 ppm / ° C. When the coefficient of linear expansion is within the above range, the difference in the coefficient of linear expansion from that of the functional element can be kept small, and it is possible to prevent the resin film and the functional element from peeling off even when subjected to a process of applying heat, and workability is achieved. Excellent for.
 本発明における樹脂フィルムの線膨張係数のMD方向に対するTD方向の比は0.97~1.03の範囲であることが好ましい。より好ましくは0.975~1.025、さらに好ましくは0.98~1.02である。この線膨張係数のMD方向に対するTD方向の比が上記範囲内にあると、樹脂フィルムのMD方向、TD方向を区別することなく機能素子との加工プロセスに供することができ、作業性や歩留まりを向上することが出来る。前記樹脂フィルムの線膨張係数の測定方法は、実施例に記載の方法による。 The ratio of the linear expansion coefficient of the resin film in the present invention to the MD direction in the TD direction is preferably in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, and even more preferably 0.98 to 1.02. When the ratio of the linear expansion coefficient in the TD direction to the MD direction is within the above range, the resin film can be used in the processing process with the functional element without distinguishing between the MD direction and the TD direction, and the workability and the yield can be improved. Can be improved. The method for measuring the coefficient of linear expansion of the resin film is as described in Examples.
 (4)MD方向およびTD方向の両方の引張弾性率が2~20GPaの範囲にあり、前記引張弾性率のMD方向に対するTD方向の比が0.97~1.03の範囲にある。 (4) The tensile elastic modulus in both the MD direction and the TD direction is in the range of 2 to 20 GPa, and the ratio of the tensile elastic modulus in the TD direction to the MD direction is in the range of 0.97 to 1.03.
 本発明の樹脂フィルムの引張弾性率はMD方向およびTD方向の両方の引張弾性率が2~20GPaの範囲であることが好ましい。より好ましくは2.5~15GPa、さらに好ましくは3~10GPaである。引張弾性率が上記の下限以上であれば、樹脂フィルムと機能素子が剥がれることを回避でき、取り扱い性に優れる。また、引張弾性率が上記の上限以下であれば、樹脂フィルムをフレキシブルなフィルムとして使用できる。 The tensile elastic modulus of the resin film of the present invention is preferably in the range of 2 to 20 GPa in both the MD direction and the TD direction. It is more preferably 2.5 to 15 GPa, still more preferably 3 to 10 GPa. When the tensile elastic modulus is equal to or higher than the above lower limit, it is possible to prevent the resin film and the functional element from peeling off, and the handleability is excellent. Further, if the tensile elastic modulus is not more than the above upper limit, the resin film can be used as a flexible film.
 本発明における樹脂フィルムの引張弾性率のMD方向に対するTD方向の比が0.97~1.03の範囲にあることが好ましい。より好ましくは0.975~1.025、さらに好ましくは0.98~1.02である。引張弾性率のMD方向に対するTD方向の比が上記範囲内にあると、樹脂フィルムのMD方向、TD方向を区別することなく機能素子との加工プロセスに供することができ、作業性や歩留まりを向上することが出来る。前記樹脂フィルムの引張弾性率の測定方法は、実施例に記載の方法による。 The ratio of the tensile elastic modulus of the resin film in the present invention to the MD direction in the TD direction is preferably in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, and even more preferably 0.98 to 1.02. When the ratio of the tensile elastic modulus in the TD direction to the MD direction is within the above range, the resin film can be used in the processing process with the functional element without distinguishing between the MD direction and the TD direction, and workability and yield are improved. Can be done. The method for measuring the tensile elastic modulus of the resin film is as described in Examples.
 本発明の樹脂フィルムは主にタッチパネルやディスプレイ等の画像表示装置の前面板、電極周辺に用いられることから、黄色度指数(イエローインデックス)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記樹脂フィルムの黄色度の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。前記樹脂フィルムの黄色度指数(イエローインデックス)の測定方法は、実施例に記載の方法による。 Since the resin film of the present invention is mainly used for the front plate of an image display device such as a touch panel or a display, and around electrodes, the yellowness index (yellow index) is preferably 10 or less, more preferably 7 or less, and further. It is preferably 5 or less, and even more preferably 3 or less. The lower limit of the yellowness of the resin film is not particularly limited, but it is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more for use as a flexible electronic device. be. The method for measuring the yellowness index (yellow index) of the resin film is as described in Examples.
 本発明の樹脂フィルムは主にタッチパネルやディスプレイ等の画像表示装置の前面板、電極周辺に用いられることから、波長400nmにおける光線透過率は70%以上が好ましく、より好ましくは72%以上であり、さらに好ましくは75%以上であり、より一層好ましくは80%以上である。前記樹脂フィルムの波長400nmの光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには99%以下であることが好ましく、より好ましくは98%以下であり、さらに好ましくは97%以下である。前記樹脂フィルムの波長400nmにおける光線透過率の測定方法は、実施例に記載の方法による。 Since the resin film of the present invention is mainly used for the front plate of an image display device such as a touch panel or a display, and around electrodes, the light transmittance at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more. It is more preferably 75% or more, and even more preferably 80% or more. The upper limit of the light transmittance of the resin film at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less for use as a flexible electronic device. Is. The method for measuring the light transmittance of the resin film at a wavelength of 400 nm is the method described in Examples.
 本発明の樹脂フィルムは主にタッチパネルやディスプレイ等の画像表示装置の前面板、電極周辺に用いられることから、全光線透過率は85%以上が好ましく、より好ましくは86%以上であり、さらに好ましくは87%以上であり、より一層好ましくは88%以上である。前記樹脂フィルムの全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには99%以下であることが好ましく、より好ましくは98%以下であり、さらに好ましくは97%以下である。前記樹脂フィルムの全光線透過率の測定方法は、実施例に記載の方法による。 Since the resin film of the present invention is mainly used for the front plate of an image display device such as a touch panel or a display, and the periphery of electrodes, the total light transmittance is preferably 85% or more, more preferably 86% or more, and further preferably. Is 87% or more, and even more preferably 88% or more. The upper limit of the total light transmittance of the resin film is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less for use as a flexible electronic device. .. The method for measuring the total light transmittance of the resin film is as described in Examples.
 本発明の樹脂フィルムは、所望のtanδの温度依存曲線がピークとなる温度を達するために、樹脂溶液を塗布、乾燥することにより得られるものであることが好ましい。樹脂溶液としてポリアミド酸、ポリイミド、およびポリアミドイミドからなる群から選ばれる少なくとも1種の樹脂を含有する樹脂溶液を用いることが好ましい。樹脂溶液は以下のいずれかの製造方法により得ることが出来る。 The resin film of the present invention is preferably obtained by applying and drying a resin solution in order to reach a temperature at which the desired temperature-dependent curve of tan δ reaches its peak. As the resin solution, it is preferable to use a resin solution containing at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide. The resin solution can be obtained by any of the following production methods.
 ポリアミド酸溶液は、ジアミン類とテトラカルボン酸類を溶媒中で攪拌および/または混合し、縮合反応によりアミド結合を生成しながら高分子量化することによって得ることが出来る。 The polyamic acid solution can be obtained by stirring and / or mixing diamines and tetracarboxylic acids in a solvent and increasing the molecular weight while forming an amide bond by a condensation reaction.
 ポリイミド溶液は、1つ目の方法として、ジアミン類とテトラカルボン酸類を溶媒中で加熱攪拌および/または混合しながら、脱水閉環反応により一段階でイミド結合を生成しながら高分子量化することによって得ることが出来る。また、2つ目の方法として前述のポリアミド酸溶液を得た後にイミド化促進剤およびイミド化剤を添加し、攪拌および/または混合しながら、脱水閉環反応により二段階でイミド結合を生成しながら高分子量化することによって得ることが出来る。 The polyimide solution is obtained as a first method by heating and stirring and / or mixing diamines and tetracarboxylic acids in a solvent, and increasing the molecular weight while forming an imide bond in one step by a dehydration ring closure reaction. Can be done. In addition, as a second method, after obtaining the above-mentioned polyamic acid solution, an imidization accelerator and an imidizing agent are added, and while stirring and / or mixing, an imide bond is generated in two steps by a dehydration ring closure reaction. It can be obtained by increasing the molecular weight.
 ポリアミドイミド溶液は、ジイソシアネート類とトリカルボン酸類を溶媒中で加熱攪拌および/または混合しながら、脱炭酸反応により一段階でアミド結合及びイミド結合を生成しながら高分子量化することによって得ることが出来る。 The polyamide-imide solution can be obtained by heating and stirring and / or mixing diisocyanates and tricarboxylic acids in a solvent, and increasing the molecular weight while forming amide bonds and imide bonds in one step by a decarbonation reaction.
 上記のポリアミド酸、ポリイミド、およびポリアミドイミドを高分子量化する際に、樹脂溶液及び樹脂フィルムの特性を損なわない範囲で、ジカルボン酸類を共重合成分として用いることが出来る。 Dicarboxylic acids can be used as the copolymerization component as long as the characteristics of the resin solution and the resin film are not impaired when the above-mentioned polyamic acid, polyimide, and polyamide-imide are made into high molecular weight.
 本発明で用いる樹脂溶液は、上記で得た樹脂溶液を貧溶媒に流下して樹脂分を析出させ洗浄・濾過・乾燥することによって得られる樹脂固形物や、樹脂溶液を流延乾燥することによって得られる樹脂固形物を、再び可溶性溶媒に溶解することによっても得ることが出来る。 The resin solution used in the present invention is a resin solid obtained by pouring the resin solution obtained above into a poor solvent to precipitate a resin component, washing, filtering and drying, or by casting and drying the resin solution. It can also be obtained by dissolving the obtained resin solid in a soluble solvent again.
 前記テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類としては、ポリイミド合成、ポリアミドイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環式テトラカルボン酸類(その酸無水物を含む)、芳香族トリカルボン酸類(その酸無水物を含む)、脂肪族トリカルボン酸類(その酸無水物を含む)、脂環式トリカルボン酸類(その酸無水物を含む)、芳香族ジカルボン類、脂肪族ジカルボン酸類、脂環式ジカルボン酸類等を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環式テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環式テトラカルボン酸類がより好ましい。テトラカルボン酸類が酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Examples of the tetracarboxylic acids, tricarboxylic acids and dicarboxylic acids include aromatic tetracarboxylic acids (including their acid anhydrides) and aliphatic tetracarboxylic acids (including their acid anhydrides) usually used for polyimide synthesis and polyamideimide synthesis. , Alicyclic tetracarboxylic acids (including its acid anhydrides), aromatic tricarboxylic acids (including its acid anhydrides), aliphatic tricarboxylic acids (including its acid anhydrides), alicyclic tricarboxylic acids (including its acids) (Including anhydrides), aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclics are more preferable from the viewpoint of light transmission. Formula tetracarboxylic acids are more preferred. When the tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. ) Is good. Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.
 本発明における無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、3,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、2,2’-ジフェノキシ-4,4’,5,5’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上、なおさらに好ましくは80質量%以上である。 Examples of the aromatic tetracarboxylic acids for obtaining a highly colorless and transparent polyimide in the present invention include 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid, 4,4'-oxydiphthalic acid, and 3,4. '-Oxydiphthalic acid, bis (1,3-dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis (1,3-dioxo-1,3-dihydro-2- Benzofuran-5-yl) benzene-1,4-dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis ( Benzene-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-) 2-Benzofuran-1,1-diyl) bis (toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran) -1,1-diyl) bis (1,4-xylene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3) -Dihydro-2-benzofuran-1,1-diyl) bis (4-isopropyl-toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3) -Oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (naphthalen-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'- (3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) Bis (benzene-1,4-diyloxy)] Dibenzene-1,2-dicarboxylic acid, 4,4'-benzophenonetetra Carboxylic acid, 4,4'-[(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic Acid, 4,4'-[(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (1,4-xylene-2,5-diyloxy)] dibenzene-1, 2-Dicarboxylic acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (4-isopropyl-toluene-2,5) -Diyloxy)] Dibenzene-1,2-Dika Lubonic acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (naphthalen-1,4-diyloxy)] dibenzene- 1,2-Dicarboxylic acid, 3,3', 4,4'-diphenylsulfonetetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetra Carvous acid, 2,2', 3,3'-biphenyltetracarboxylic acid, 2,2'-diphenoxy-4,4', 5,5'-biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[ Spiro (xanthen-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] diphthalic acid, 4,4'-[spiro (xanthen-9,9'-fluoren) -3,6-diylbis (oxycarbonyl) Carbonyl)] Tetracarboxylic acids such as diphthalic acid and acid anhydrides thereof. Among these, dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal. Acid dianhydride is preferred. The aromatic tetracarboxylic acids may be used alone or in combination of two or more. When heat resistance is important, the aromatic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. It is 80% by mass or more.
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上、なおさらに好ましくは80質量%以上である。 Examples of the alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, decahydronaphthalene-2 , 3,6,7-Tetracarboxylic Acid, Decahydro-1,4: 5,8-Dimethanonaphthalene-2,3,6,7-Tetracarboxylic Acid, Decahydro-1,4-Etano-5,8-Metano Naphthalene-2,3,6,7-tetracarboxylic acid, norbornan-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetra Carboxylic acid (also known as "norbornan-2-spiri-2'-cyclopentanone-5'-spiro-2"-norbornan-5,5 ", 6,6" -tetracarboxylic acid "), methylnorbornan- 2-Spiro-α-Cyclopentanone-α'-Spiro-2''-(methylnorbornan) -5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclohexanone- α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid (also known as "norbornan-2-spiriro-2'-cyclohexanone-6'-spiro-2"-norbornan -5,5'', 6,6''-tetracarboxylic acid "), Methylnorbornan-2-spiro-α-cyclohexanone-α'-spiro-2''- (methylnorbornan) -5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclopropanol-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan -2-Spiro-α-Cyclobutanone-α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cycloheptanone-α' -Spiro-2 '' -Norbornan-5,5'', 6,6''-Tetracarboxylic acid, Norbornan-2-spiro-α-cyclooctanone-α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclononanon-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2 -Spiro-α-cyclodecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cycloundecanone-α'-spiro -2''-Norbornan-5,5'', 6,6''-Tetracarboxylic acid, Norbornan-2-spiro-α-cyclododecanone-α'-Spiro-2''-norbornan-5,5' ', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid , Norbornan-2-spiro-α-cyclotetradecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclo Pentadecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α- (methylcyclopentanone) -α'-spiro -2''-Norbornan-5,5'', 6,6''-Tetracarboxylic acid, Norbornan-2-spiro-α- (methylcyclohexanone) -α'-Spiro-2''-norbornan-5,5 '', 6,6''-Tetracarboxylic acids such as tetracarboxylic acids and acid anhydrides thereof. Among these, dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic are preferable. Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. These may be used alone or in combination of two or more. When transparency is important, the alicyclic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. Is 80% by mass or more.
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid. An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite. Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned. Among these, monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of the dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid. Hydrogen additives, oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid acidates thereof. Alternatively, an esterified product or the like can be mentioned. Of these, aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable. The dicarboxylic acids may be used alone or in combination of two or more.
 本発明における無色透明性の高いポリイミドを得るためのジアミン類或いはジイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミンが好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びジイソシアネート類は、単独で用いてもよいし二種以上を併用してもよい。 The diamines or diisocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and alicyclic diamines usually used for polyimide synthesis and polyamide-imide synthesis. , Aromatic diamines, aliphatic diamines, alicyclic diamines and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. Diamines and diisocyanates may be used alone or in combination of two or more.
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン、9,10-ビス(4-アミノフェニル)アデニン、2,4-ビス(4-アミノフェニル)シクロブタン-1,3-ジカルボン酸ジメチル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of aromatic diamines include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4, 4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3 -Hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N- (4-aminophenyl) benzamide, 3,3' -Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-trifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylsulfide, 3,4' -Diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1, 2-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] Propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane , 2,2-Bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophenoxy) phenyl] ) Phenyl] butane, 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- ( 4-Aminophenoxy) Phenyl] Butane, 2- [4- (4-Aminophenoxy) Phenyl] -2- [4- (4-Aminophenoxy) -3-Methylphenyl] Propane, 2,2-Bis [4- (4-Aminophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2 , 2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3 3-Hexafluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'- Bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfoxide , Bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1,3-bis [4 -(4-Aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 4,4 '-Bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) phenyl] propane, 3,4'-Diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-amino) Phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1 , 2-bis [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4'-bis [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-Amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] sulfone, 1,4-bis [4- (4- (4- (4- (4-) Aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4- (4- (4-) Amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluorophenoxy) -α, α-dimethylbenzyl] benzene, 1,3 -Bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-cyanophenoxy) -α, α-dimethylbenzyl ] Benzene, 3,3'-diamino-4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone , 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3, 3'-Diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone , 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5) -Phenoxybenzoyl) benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino) -4-Bifenoxybenzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [4- (4-Amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, 4,4'-[9H-fluoren-9,9-diyl] bisaniline (also known as "9,9-bis (4-aminophenyl)" ) Fluorene "), Spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthen-9,9'-fluorene) -2,6 -Diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl)] bisaniline, 9,10-bis (4-aminophenyl) Adenine, 2,4-bis (4-aminophenyl) cyclobutane-1,3-dicarboxylate dimethyl, and some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine are halogen atoms and have 1 to 3 carbon atoms. Alkyl group or alkoxyl group, cyano group, or aromatic group substituted with a halogenated alkyl group or alkoxyl group having 1 to 3 carbon atoms in which a part or all of the hydrogen atom of the alkyl group or the alkoxyl group is substituted with a halogen atom. Benzene and the like can be mentioned. The aromatic diamine having the benzoxazole structure is not particularly limited, and for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo. Oxazole, 5-amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2 , 2'-p-phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazole) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diamino Diphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole , 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] -D: 4,5-d'] bisoxazole, 2,6- (3,3'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3) , 3'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole and the like. Among these, in particular, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4-amino-N- (4-aminophenyl) benzamide, 4,4'-diaminodiphenyl sulfone, 3,3 '-Diaminobenzophenone is preferred. The aromatic diamines may be used alone or in combination of two or more.
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl. Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine). Among these, 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable. The alicyclic diamines may be used alone or in combination of two or more.
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’ -ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of the diisocyanates include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfon-4,4'-diisocyanate, tolylen-2,4-diisocyanate, Trilen-2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-(2,2 bis (4-phenoxyphenyl) propane) diisocyanate, 3, 3'-or 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-or 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4, Aromatic diisocyanates such as 4'-diisocyanate, 3,3'-diethoxybiphenyl-4,4'-diisocyanate, and diisocyanates hydrogenated with any of these (eg, isophorone diisocyanate, 1,4-cyclohexanediisocyanate, etc.). 1,3-Cyclohexanediisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate) and the like. Among these, diphenylmethane-4,4'-diisocyanate, tolylen-2,4-diisocyanate, tolylen-2,6-diisocyanate, 3,3'-in terms of low moisture absorption, dimensional stability, price and polymerizable property. Didimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexanediisocyanate are preferable. The diisocyanates may be used alone or in combination of two or more.
 本発明の樹脂溶液に用いられる溶媒は、双極子モーメントが3.0~6.0Dの範囲にあり、ポリアミド酸、ポリイミド、およびポリアミドイミドからなる群から選ばれる少なくとも1種の樹脂を溶解する溶媒であるであることが好ましい。双極子モーメントが上記範囲内であると、後述する樹脂フィルムの溶媒除去工程において用いられるマイクロ波加熱の均一加熱効果に優れ、得られる樹脂フィルムの物性等方性を向上させることが容易となる。 The solvent used in the resin solution of the present invention has a dipole moment in the range of 3.0 to 6.0 D and dissolves at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide. Is preferable. When the dipole moment is within the above range, the uniform heating effect of microwave heating used in the solvent removing step of the resin film described later is excellent, and it becomes easy to improve the physical properties of the obtained resin film.
 本発明の樹脂溶液に用いられる溶媒として、例えば、N,N-ジメチルホルムアミド(双極子モーメント:3.86D)、N,N-ジメチルアセトアミド(DMAc)(双極子モーメント:3.72D)、N-メチル-2-ピロリドン(NMP)(双極子モーメント:4.09D)、N-メチル-ε-カプロラクタム(双極子モーメント:4.23D)、ジメチルスルホキシド(双極子モーメント:3.96D)、ジメチルスルホン(双極子モーメント:4.47D)、スルホラン(双極子モーメント:4.68D)、1,3-ジメチル-2-イミダゾリジノン(双極子モーメント:4.07D)、1,3-ジメチル-2-ピリミジノン(双極子モーメント:4.17D)、3-メチル-2-オキサゾリドン(双極子モーメント:4.10D)、ヘキサメチルホスホルアミド(双極子モーメント:5.54D)、γ-ブチロラクトン(GBL)(双極子モーメント:4.27D)などがあり、これらは単独で使用しても、2種以上を併用してもよい。またこれらの溶媒と併せて、トルエン(双極子モーメント:0.36D)、キシレン(双極子モーメント:0.00~0.64D)などの貧溶媒を、樹脂固形分が析出せずマイクロ波加熱の均一加熱効果を損なわない程度に使用してもよい。また、2種類以上の溶媒を混合する場合の双極子モーメントの値は、それぞれの値の加重平均値とする。 As the solvent used in the resin solution of the present invention, for example, N, N-dimethylformamide (dipolar moment: 3.86D), N, N-dimethylacetamide (DMAc) (dipolar moment: 3.72D), N- Methyl-2-pyrrolidone (NMP) (dipolar moment: 4.09D), N-methyl-ε-caprolactum (dipolar moment: 4.23D), dimethyl sulfoxide (dipolar moment: 3.96D), dimethylsulfone ( Bipolar moment: 4.47D), Sulfolane (bipolar moment: 4.68D), 1,3-dimethyl-2-imidazolidinone (dipolar moment: 4.07D), 1,3-dimethyl-2-pyrimidinone (Dipolar moment: 4.17D), 3-Methyl-2-oxazolidone (dipolar moment: 4.10D), hexamethylphosphoramide (dipolar moment: 5.54D), γ-butyrolactone (GBL) (bipolar) There are child moments: 4.27D), etc., which may be used alone or in combination of two or more. In addition to these solvents, poor solvents such as toluene (dipole moment: 0.36D) and xylene (dipole moment: 0.00 to 0.64D) are used for microwave heating without precipitation of resin solids. It may be used to the extent that the uniform heating effect is not impaired. Further, the value of the dipole moment when two or more kinds of solvents are mixed is a weighted average value of each value.
 本発明の樹脂溶液には樹脂フィルムの特性を損なわない範囲で、微粒子を添加しても良い。微粒子としては無機微粒子でも有機微粒子でも良く、無機微粒子としては、例えば窒化ケイ素、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化錫、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウムなどが挙げられる。また、有機微粒子としては、例えばポリアミド系樹脂、ポリイミド系樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂などが挙げられ、これらの微粒子は複合して用いても良い。 Fine particles may be added to the resin solution of the present invention as long as the characteristics of the resin film are not impaired. The fine particles may be inorganic fine particles or organic fine particles, and the inorganic fine particles include, for example, silicon nitride, silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, and calcium sulfate. And so on. Examples of the organic fine particles include polyamide-based resin, polyimide-based resin, benzoguanamine-based resin, and melamine-based resin, and these fine particles may be used in combination.
 本発明の樹脂溶液の樹脂固形分濃度は、5~40質量%であることが好ましく、より好ましくは7~35質量%、さらに好ましくは10~30質量%である。樹脂固形分濃度が上記の下限以上であると、樹脂フィルムに必要とされる膜厚を得る観点から好ましく、上記の上限以下であると、樹脂フィルムの物性等方性を損なわない程度の溶液流動性を得る観点から好ましい。 The resin solid content concentration of the resin solution of the present invention is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, and further preferably 10 to 30% by mass. When the resin solid content concentration is at least the above lower limit, it is preferable from the viewpoint of obtaining the film thickness required for the resin film, and when it is at least the above upper limit, the solution flow is such that the physical properties of the resin film are not impaired. It is preferable from the viewpoint of obtaining sex.
 本発明における樹脂フィルムは後述する樹脂フィルムの製造方法によって得られる樹脂フィルムであることが好ましい。具体的には、主鎖にイミド結合を有する高分子フィルムであり、好ましくはポリイミドフィルム、またはポリアミドイミドフィルムであり、より好ましくはポリイミドフィルムである。 The resin film in the present invention is preferably a resin film obtained by the method for producing a resin film described later. Specifically, it is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamide-imide film, and more preferably a polyimide film.
 本発明における樹脂フィルムの厚さの下限は、樹脂フィルムに必要とされる強度やハンドリング性の観点から、3μm以上が好ましく、より好ましくは5μm以上であり、さらに好ましくは7μm以上である。前記樹脂フィルムの厚さの上限は、均一に溶媒を除去する観点から、250μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは100μm以下である。 The lower limit of the thickness of the resin film in the present invention is preferably 3 μm or more, more preferably 5 μm or more, still more preferably 7 μm or more, from the viewpoint of the strength and handleability required for the resin film. The upper limit of the thickness of the resin film is preferably 250 μm or less, more preferably 150 μm or less, and further preferably 100 μm or less from the viewpoint of uniformly removing the solvent.
 本発明の樹脂フィルムの好ましい製造方法は、
 前記樹脂溶液を支持体上に塗布・乾燥して溶媒を含有する樹脂フィルム積層体を作製する工程A、
 前記溶媒を含有する樹脂フィルム積層体から前記支持体を剥離して溶媒を含有する樹脂フィルムを得る工程B、
 前記溶媒を含有する樹脂フィルムから、溶媒を除去、又は溶媒を除去しながら脱水閉環反応する工程Cを含み、
 前記工程Cの少なくとも一部をマイクロ波加熱によって行うことを特徴とする。
The preferred method for producing the resin film of the present invention is
Step A to prepare a resin film laminate containing a solvent by applying and drying the resin solution on a support.
Step B of peeling the support from the resin film laminate containing the solvent to obtain a resin film containing the solvent.
A step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent is included.
It is characterized in that at least a part of the step C is performed by microwave heating.
 工程Aについて説明する。工程Aは、樹脂溶液を支持体上に塗布・乾燥して溶媒を含有する樹脂フィルム積層体(以下、単に積層体ともいう。)を作製する工程である。前記積層体は、前記支持体に前記樹脂溶液の乾燥物が積層されたものである。 Process A will be explained. Step A is a step of applying a resin solution on a support and drying the resin film laminate (hereinafter, also simply referred to as a laminate) containing a solvent. The laminate is a product in which a dried product of the resin solution is laminated on the support.
 本発明で用いられる支持体としては、例えば、樹脂フィルム基材、ステンレス鋼ベルト基材、ガラス基材等が挙げられる。樹脂フィルム基材としては、樹脂溶液に含まれる溶媒に膨潤、溶出しない樹脂フィルム基材を用いることが好ましく、例えばポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリオレフィン系(PP)フィルム、シクロオレフィン系(COP)フィルム等が挙げられる。また、溶媒を含有する樹脂フィルムを支持体から剥離するために、易剥離性を有する支持体を用いることが好ましい。 Examples of the support used in the present invention include a resin film base material, a stainless steel belt base material, a glass base material, and the like. As the resin film base material, it is preferable to use a resin film base material that does not swell or elute in the solvent contained in the resin solution. For example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyolefin film (PP) film. , Cycloolefin-based (COP) film and the like. Further, in order to peel off the resin film containing the solvent from the support, it is preferable to use a support having easy peelability.
 支持体上に樹脂溶液を塗布する方法としては、ダイコート法、コンマコート法、ブレードコート法、ロールコート法、ナイフコート法、バーコート法、による方法等が挙げられ、これらのうちから2種の方法を組み合わせても良い。コンマコート法、ダイコート法、あるいはこれらの組み合わせであれば生産性の観点から好ましい。 Examples of the method of applying the resin solution on the support include a die coating method, a comma coating method, a blade coating method, a roll coating method, a knife coating method, a bar coating method, and the like, and two of these methods are used. You may combine the methods. The comma coat method, the die coat method, or a combination thereof is preferable from the viewpoint of productivity.
 支持体上で樹脂溶液を乾燥する方法としては、送風乾燥、熱風乾燥、赤外線加熱乾燥、支持体からの伝熱加熱乾燥による方法等が挙げられ、これらのうちから2種の方法を組み合わせても良い。乾燥した後の溶媒を含有する樹脂フィルムの溶媒含有量としては、3~50質量%であることが好ましく、より好ましくは5~40質量%、さらに好ましくは7~30質量%である。溶媒含有量が上記の下限以上であると、支持体に接した樹脂フィルム面と反対面との溶媒含有量や高分子高次構造の差が少なく、樹脂フィルムの厚み方向における物性異方性が少なくなり、樹脂フィルムのカールが抑えられ、上記の上限以下であると、支持体から剥離した後の樹脂フィルムの変形が抑制され、ハンドリングが容易となる。 Examples of the method for drying the resin solution on the support include blower drying, hot air drying, infrared heat drying, heat transfer heat drying from the support, and the like, and even if two of these methods are combined. good. The solvent content of the resin film containing the solvent after drying is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 7 to 30% by mass. When the solvent content is equal to or higher than the above lower limit, the difference in the solvent content and the polymer higher-order structure between the resin film surface in contact with the support and the opposite surface is small, and the physical property anisotropy in the thickness direction of the resin film becomes small. When the amount is reduced, the curl of the resin film is suppressed, and the value is not more than the above upper limit, the deformation of the resin film after peeling from the support is suppressed, and handling becomes easy.
 工程Bについて説明する。工程Bは、前記積層体から前記支持体を剥離して溶媒を含有する樹脂フィルムを得る工程である、 Process B will be explained. Step B is a step of peeling the support from the laminated body to obtain a resin film containing a solvent.
 前記溶媒を含有する樹脂フィルムを前記支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、積層体に切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、樹脂フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が挙げられる。 The method of peeling the resin film containing the solvent from the support is not particularly limited, but a method of winding from the end with tweezers or the like, a cut is made in the laminate, and an adhesive tape is attached to one side of the cut portion. After that, a method of winding from the tape portion, a method of vacuum-adsorbing one side of the cut portion of the resin film and then winding from that portion, and the like can be mentioned.
 工程Cについて説明する。工程Cは、前記溶媒を含有する樹脂フィルムから、溶媒を除去、又は溶媒を除去しながら脱水閉環反応する工程であり、工程Cの少なくとも一部をマイクロ波加熱に行う。 Process C will be explained. Step C is a step of removing the solvent from the resin film containing the solvent, or performing a dehydration ring closure reaction while removing the solvent, and at least a part of the step C is performed by microwave heating.
 支持体から剥離した後、溶媒を含有する樹脂フィルムの溶媒除去工程で用いるマイクロ波加熱は、その加熱原理として被加熱体に含まれる分子の双極子をマイクロ波により振動させることに基づいている。従って、マイクロ波の吸収効率は双極子モーメントの大きさと分子がマイクロ波の周期に追随して運動するし易さに依存する。そこで溶媒を含有する樹脂フィルムからマイクロ波を用いて効率的に溶媒を均一加熱し除去するため、前述した双極子モーメントの値を有する溶媒を指定している。 Microwave heating used in the solvent removal step of the resin film containing the solvent after peeling from the support is based on vibrating the dipoles of the molecules contained in the heated object by microwave as the heating principle. Therefore, the absorption efficiency of microwaves depends on the magnitude of the dipole moment and the ease with which the numerator moves following the period of the microwaves. Therefore, in order to efficiently uniformly heat and remove the solvent from the resin film containing the solvent by using microwaves, a solvent having the above-mentioned dipole moment value is specified.
 本発明において用いられるマイクロ波加熱装置の周波数は、前述した双極子モーメントの値を有する溶媒の分子が運動しやすい周波数を選ぶことが好ましい。しかしながら、一般には電波法による制約や、マイクロ波電子管の制約により、2,450MHzの周波数の加熱装置が一般的である。但し、他の通信などの妨害を与えなければ、915MHzも用いることができる。本発明においては、かかる事情から周波数2,450MHzおよび915MHzを選ぶことがさらに好ましい。また、マイクロ波の強度は、樹脂フィルム表面の発泡、柚肌、波打ちのなどの状態を勘案して適宜選択される。 As the frequency of the microwave heating device used in the present invention, it is preferable to select a frequency at which the molecule of the solvent having the above-mentioned dipole moment value easily moves. However, in general, a heating device having a frequency of 2,450 MHz is common due to the restrictions imposed by the Radio Law and the restrictions on microwave electron tubes. However, 915 MHz can also be used as long as it does not interfere with other communications. In the present invention, it is more preferable to select frequencies of 2,450 MHz and 915 MHz from such circumstances. Further, the microwave intensity is appropriately selected in consideration of the conditions such as foaming, citron skin, and waviness on the surface of the resin film.
 指定した双極子モーメントの値を有する溶媒を含有する樹脂溶液を使い、マイクロ波加熱を用いることで、溶媒除去工程で樹脂フィルムが均一に加熱乾燥されて、形成される高次構造の疎密の差異が低減し、式(40+0.8×A) ≦ B < A を達成することが容易となる。さらに得られる樹脂フィルムの物性等方性を向上させることが出来、樹脂フィルムの線膨張係数のMD方向に対するTD方向の比および、引張弾性率のMD方向に対するTD方向の比を好ましい範囲に収めることが容易となる。 By using a resin solution containing a solvent having a specified dipole moment value and using microwave heating, the resin film is uniformly heated and dried in the solvent removal step, and the difference in sparseness and density of the higher-order structure formed. Is reduced, and it becomes easy to achieve the formula (40 + 0.8 × A) ≤ B <A. Further, the isotropic properties of the obtained resin film can be improved, and the ratio of the linear expansion coefficient of the resin film in the TD direction to the MD direction and the ratio of the tensile elasticity to the MD direction in the TD direction are kept within a preferable range. Becomes easier.
 本発明ではマイクロ波加熱に併用して、送風乾燥、熱風乾燥、赤外線加熱乾燥による方法等を用いることが出来、これらのうちから2種の方法を組み合わせても良い。 In the present invention, a method by blowing air drying, hot air drying, infrared heating drying, etc. can be used in combination with microwave heating, and two of these methods may be combined.
 上記の加熱方法を用いた溶媒除去工程における昇温プロファイルは、初期温度が50~200℃の範囲であることが好ましく、指定範囲の下限以上であると、乾燥炉内の温度バラツキを抑えることが容易であり、初期温度が指定範囲の上限以下であると、溶媒が急激に加熱されることによる樹脂フィルムの発泡や表面の柚子肌等を抑えることが容易となり、また、樹脂フィルム表面と樹脂フィルム内部との溶媒含有量や高分子高次構造の差が少なくなり、式(40+0.8×A) ≦ B < A を達成することが容易となる。 The temperature rise profile in the solvent removal step using the above heating method preferably has an initial temperature in the range of 50 to 200 ° C., and when it is at least the lower limit of the specified range, temperature variation in the drying furnace can be suppressed. It is easy, and when the initial temperature is not more than the upper limit of the specified range, it becomes easy to suppress the foaming of the resin film and the surface of the resin film due to the rapid heating of the solvent, and the surface of the resin film and the resin film. The difference in solvent content and polymer higher-order structure from the inside is reduced, and it becomes easy to achieve the formula (40 + 0.8 × A) ≤ B <A.
 上記の加熱方法を用いた溶媒除去工程における昇温プロファイルは、最終温度が300~500℃の範囲であることが好ましく、指定範囲の下限以上であると、樹脂フィルム中の残留溶媒量を抑えることが容易となり、最終温度が指定範囲の上限以下であると、樹脂フィルムの熱劣化を抑えることが容易となる。 The temperature rise profile in the solvent removing step using the above heating method preferably has a final temperature in the range of 300 to 500 ° C., and when it is at least the lower limit of the specified range, the amount of residual solvent in the resin film is suppressed. When the final temperature is not more than the upper limit of the designated range, it becomes easy to suppress the thermal deterioration of the resin film.
 上記の加熱方法を用いた溶媒除去工程における昇温プロファイルは、昇温速度が5~60℃/分で昇温するか、段数が2以上のステップ状に昇温するか、いずれか又は両方を組み合わせた方法で昇温することが好ましい。昇温速度が指定範囲の下限以上であると溶媒除去工程での作業時間を短縮することが出来、上記指定範囲の上限以下であると、溶媒が急激に加熱されることによる樹脂フィルムの発泡や表面の柚子肌等を抑えることが容易となり、また、樹脂フィルム表面と樹脂フィルム内部との溶媒含有量や高分子高次構造の差が少なくなり、式(40+0.8×A) ≦ B < A を達成することが容易となる。 The temperature rise profile in the solvent removal step using the above heating method is to raise the temperature at a temperature rising rate of 5 to 60 ° C./min, or to raise the temperature in steps of 2 or more stages, or both. It is preferable to raise the temperature by a combined method. When the temperature rise rate is at least the lower limit of the specified range, the working time in the solvent removing step can be shortened, and when it is at least the upper limit of the above specified range, the solvent is rapidly heated and the resin film is foamed. It becomes easier to suppress the surface of the resin film, and the difference in solvent content and polymer higher-order structure between the surface of the resin film and the inside of the resin film is reduced, and the formula (40 + 0.8 × A) ≤ B <A. Will be easier to achieve.
 ステップ状に昇温する場合は、ステップ数は2~10回であることが好ましく、各ステップ間の昇温速度は10~100℃/分であることが好ましい。ステップ数が指定範囲の下限以上であると、溶媒が急激に加熱されることによる樹脂フィルムの発泡や表面の柚子肌等を抑えることが容易であり、また、樹脂フィルム表面と樹脂フィルム内部との溶媒含有量や高分子高次構造の差が少なくなり、式(40+0.8×A) ≦ B < A を達成することが容易となる。また、ステップ数が指定範囲の上限以下であると、作業効率が良好となる。 When the temperature is raised in steps, the number of steps is preferably 2 to 10 times, and the rate of temperature rise between each step is preferably 10 to 100 ° C./min. When the number of steps is equal to or greater than the lower limit of the specified range, it is easy to suppress foaming of the resin film and the surface of the resin film due to rapid heating of the solvent, and it is easy to suppress the foaming of the resin film and the surface of the resin film. Differences in solvent content and higher-order polymer structure are reduced, and it becomes easier to achieve the formula (40 + 0.8 × A) ≦ B <A. Further, when the number of steps is not more than the upper limit of the designated range, the work efficiency is good.
 溶媒除去工程における総乾燥時間は5~100分となるように、上記初期温度、最終温度、昇温速度、ステップ数を決めることが好ましい。総乾燥時間が指定範囲の下限以上であると、溶媒が急激に加熱されることによる樹脂フィルムの発泡や表面の柚子肌等を抑えることが容易となり、上限以下であると、生産性が向上し樹脂フィルムの熱劣化を抑えることが容易となる。 It is preferable to determine the initial temperature, final temperature, heating rate, and number of steps so that the total drying time in the solvent removing step is 5 to 100 minutes. When the total drying time is at least the lower limit of the specified range, it becomes easy to suppress the foaming of the resin film and the surface of the surface of the resin film due to the rapid heating of the solvent, and when it is at least the upper limit, the productivity is improved. It becomes easy to suppress the thermal deterioration of the resin film.
 本発明における溶媒除去工程では、さらに樹脂フィルムに延伸を行うことが出来る。かかる延伸操作における延伸倍率は、MD(長尺)方向に1.5~4.0倍、TD(短尺)方向に1.4~3.0倍であることが好ましく、MD方向の延伸倍率とTD方向の延伸倍率の比率(MD/TD)は、1.0を超えることが好ましい。延伸条件を上記範囲内にすることで、樹脂フィルムのMD方向およびTD方向の両方の35~200℃の範囲で測定した平均の線膨張係数および、MD方向およびTD方向の両方の引張弾性率を好ましい範囲に収めることが容易となる。 In the solvent removing step of the present invention, the resin film can be further stretched. The stretching ratio in such a stretching operation is preferably 1.5 to 4.0 times in the MD (long) direction and 1.4 to 3.0 times in the TD (short) direction. The ratio of the draw ratio in the TD direction (MD / TD) is preferably more than 1.0. By setting the stretching conditions within the above range, the average linear expansion coefficient measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction of the resin film and the tensile elastic modulus in both the MD direction and the TD direction can be obtained. It becomes easy to keep it in a preferable range.
 溶媒除去工程後の樹脂フィルムの溶媒含有量は、0.01~5.0質量%であることが好ましく、より好ましくは0.02~4.0質量%、さらに好ましくは0.03~3.0質量%の範囲である。溶媒含有量を上記の下限値以上とすることにより、過剰な高温処理による樹脂フィルムの熱劣化が抑えられ、上限以下とすることにより、線膨張係数および引張弾性率を好ましい範囲に収めることが容易となる。 The solvent content of the resin film after the solvent removal step is preferably 0.01 to 5.0% by mass, more preferably 0.02 to 4.0% by mass, and further preferably 0.03 to 3. It is in the range of 0% by mass. By setting the solvent content to the above lower limit value or more, thermal deterioration of the resin film due to excessive high temperature treatment is suppressed, and by setting the solvent content to the upper limit or less, it is easy to keep the linear expansion coefficient and the tensile elastic modulus within a preferable range. It becomes.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
 なお実施例、比較例における各測定値は、特に断りのない限り以下の方法で測定した。 The measured values in Examples and Comparative Examples were measured by the following methods unless otherwise specified.
<樹脂フィルムのtanδの温度依存曲線ピーク温度>
 樹脂フィルムの流れ方向(MD方向)および幅方向(TD方向)それぞれサンプル3点において、下記条件にて貯蔵弾性率(E‘)、損失弾性率(E“)、および損失弾性率を貯蔵弾性率で除した値であるtanδ(=E”/E’)の温度依存曲線を得てピーク温度を求め、流れ方向(MD方向)および幅方向(TD方向)の平均値を算出した。
  機器名       : TAインスツルメンツ社製 DMA Q800
  試料長さ      : 15-20mm
  試料幅       : 4mm
  昇温開始温度    : 25℃
  昇温終了温度    : 500℃
  昇温速度      : 5℃/min
  測定周波数     : 10Hz
<Temperature-dependent curve peak temperature of tan δ of resin film>
The storage elastic modulus (E'), the loss elastic modulus (E "), and the loss elastic modulus are the storage elastic moduli at three points of the sample in the flow direction (MD direction) and the width direction (TD direction) of the resin film, respectively, under the following conditions. The temperature-dependent curve of tan δ (= E ”/ E'), which is the value divided by, was obtained, the peak temperature was obtained, and the average value in the flow direction (MD direction) and the width direction (TD direction) was calculated.
Device name: DMA Q800 manufactured by TA Instruments
Sample length: 15-20 mm
Sample width: 4 mm
Temperature rise start temperature: 25 ° C
Temperature rise end temperature: 500 ° C
Temperature rise rate: 5 ° C / min
Measurement frequency: 10Hz
<樹脂フィルムの線膨張係数変曲点温度>
 樹脂フィルムの流れ方向(MD方向)および幅方向(TD方向)それぞれサンプル3点において、下記条件にて伸縮率を測定し2回目の昇温時の伸縮率変曲点となる温度を読み取り、流れ方向(MD方向)および幅方向(TD方向)の平均値を算出した。
  機器名       : ブルカー AXS社製 TMA-4000SA
  試料長さ      : 15mm
  試料幅       : 2mm
  チャック間距離   : 10mm
  荷重        : 5gf
  1回目昇温開始温度 : 25℃
  1回目昇温終了温度 : 200℃
  1回目昇温速度   : 20℃/min
  降温速度      : 5℃/min
  2回目昇温開始温度 : 30℃
  2回目昇温終了温度 : 500℃
  2回目昇温速度   : 10℃/min
  雰囲気       : アルゴン
<Linear expansion coefficient inflection temperature of resin film>
At three sample points in the flow direction (MD direction) and width direction (TD direction) of the resin film, the expansion / contraction rate is measured under the following conditions, and the temperature that becomes the expansion / contraction rate inflection point at the time of the second temperature rise is read and flowed. The average value in the direction (MD direction) and the width direction (TD direction) was calculated.
Device name: Bruker AXS TMA-4000SA
Sample length: 15 mm
Sample width: 2 mm
Distance between chucks: 10 mm
Load: 5gf
First temperature rise start temperature: 25 ° C
First temperature rise end temperature: 200 ° C
First temperature rise rate: 20 ° C / min
Temperature down rate: 5 ° C / min
Second temperature rise start temperature: 30 ° C
Second temperature rise end temperature: 500 ° C
Second temperature rise rate: 10 ° C / min
Atmosphere: Argon
<樹脂の重量平均分子量、数平均分子量および分子量分布>
 樹脂サンプルを8mg秤量し8mlの溶媒に浸漬し、3時間攪拌し樹脂溶液を得た。下記条件にて樹脂溶液をゲル浸透クロマトグラフィー(GPC)分析し、標準ポリスチレン換算で重量平均分子量、数平均分子量および分子量分布を算出した。
  機器名       : 東ソー社製 HLC-8420GPC
  カラム       : TSKgel SuperAWH-H×2
  溶媒        : DMAc(30mMの臭化リチウム添加)
  流速        : 0.3ml/min
  濃度        : 0.1%
  注入量       : 10μl
  温度        : 40℃
  検出器       : RI
<Weight average molecular weight, number average molecular weight and molecular weight distribution of resin>
A resin sample of 8 mg was weighed, immersed in 8 ml of solvent, and stirred for 3 hours to obtain a resin solution. The resin solution was analyzed by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight, the number average molecular weight and the molecular weight distribution were calculated in terms of standard polystyrene.
Device name: Tosoh HLC-8420GPC
Column: TSKgel SuperAWH-H x 2
Solvent: DMAc (added 30 mM lithium bromide)
Flow velocity: 0.3 ml / min
Concentration: 0.1%
Injection amount: 10 μl
Temperature: 40 ° C
Detector: RI
 <樹脂フィルムの厚さ>
 マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
<Thickness of resin film>
The measurement was performed using a micrometer (Millitron 1245D manufactured by Fine Wolf Co., Ltd.).
<樹脂フィルムの線膨張係数(CTE)>
 樹脂フィルムの流れ方向(MD方向)および幅方向(TD方向)それぞれサンプル3点において、下記条件にて伸縮率を測定し、35℃~50℃、50℃~65℃のように15℃の間隔での伸縮率/温度を測定し、この測定を200℃まで行い、全測定値の平均値をCTEとして算出した。
  機器名       : MACサイエンス社製TMA4000S
  試料長さ      : 20mm
  試料幅       : 2mm
  昇温開始温度    : 25℃
  昇温終了温度    : 400℃
  昇温速度      : 5℃/min
  雰囲気       : アルゴン
<Coefficient of linear expansion (CTE) of resin film>
The expansion and contraction rate was measured at three points in each of the flow direction (MD direction) and width direction (TD direction) of the resin film under the following conditions, and the intervals were 15 ° C. such as 35 ° C. to 50 ° C. and 50 ° C. to 65 ° C. The expansion / contraction rate / temperature was measured in, and this measurement was performed up to 200 ° C., and the average value of all the measured values was calculated as CTE.
Device name: TMA4000S manufactured by MAC Science
Sample length: 20 mm
Sample width: 2 mm
Temperature rise start temperature: 25 ° C
Temperature rise end temperature: 400 ° C
Temperature rise rate: 5 ° C / min
Atmosphere: Argon
<樹脂フィルムの引張弾性率>
 樹脂フィルムの流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。試験片は、幅方向中央部分から切り出した。下記条件にて、MD方向、TD方向それぞれサンプル3点について、引張弾性率を測定し、全測定値の平均値を求めた。
  機器名       : 島津製作所製オートグラフ(R)AG-5000A
  チャック間距離   : 40mm
  温度        : 25℃
  引張速度      : 50mm/min
<Tension elastic modulus of resin film>
The resin film was cut into strips of 100 mm × 10 mm in the flow direction (MD direction) and the width direction (TD direction), respectively, and used as test pieces. The test piece was cut out from the central portion in the width direction. Under the following conditions, the tensile elastic modulus was measured for each of the three samples in the MD direction and the TD direction, and the average value of all the measured values was obtained.
Device name: Shimadzu Autograph (R) AG-5000A
Distance between chucks: 40 mm
Temperature: 25 ° C
Tensile speed: 50 mm / min
<樹脂フィルムの黄色度指数(イエローインデックス、YI)>
 カラーメーター(ZE6000、日本電色社製)およびC2光源を使用して、ASTM D1925に準じて樹脂フィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。尚、同様の測定を3回行い、その算術平均値を採用した。
  YI=100×(1.28X-1.06Z)/Y
<Yellowness index of resin film (Yellow index, YI)>
Using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, the tristimulus value XYZ value of the resin film was measured according to ASTM D1925, and the yellowness index (YI) was calculated by the following formula. The same measurement was performed three times, and the arithmetic mean value was adopted.
YI = 100 × (1.28X-1.06Z) / Y
<樹脂フィルムの400nm光線透過率>
 分光光度計(日立製作所製「U-2001」)を用いて波長400nmにおける樹脂フィルムの光線透過率を測定し、得られた値をランベルト・ベールの法則に従うものとして20μmの厚みに換算し、得られた値を樹脂フィルムの400nm光線透過率とした。尚、同様の測定を3回行い、その算術平均値を採用した。
<400 nm light transmittance of resin film>
The light transmittance of the resin film at a wavelength of 400 nm was measured using a spectrophotometer (“U-2001” manufactured by Hitachi, Ltd.), and the obtained value was converted to a thickness of 20 μm according to Lambert-Beer's law. The value obtained was taken as the 400 nm light transmittance of the resin film. The same measurement was performed three times, and the arithmetic mean value was adopted.
<樹脂フィルムの全光線透過率(TT)>
 HAZEMETER(NDH5000、日本電色社製)を用いて樹脂フィルムの全光線透過率(TT)を測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Total light transmittance (TT) of resin film>
The total light transmittance (TT) of the resin film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
〔合成例1(ポリアミド酸溶液Aの調製)〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に窒素雰囲気下、1470.8質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、775.6質量部の4,4’-オキシジフタル酸(ODPA)、3202.4質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、21795質量部のN,N-ジメチルアセトアミド(DMAc)を仕込んで溶解させた後、室温で24時間攪拌し、固形分17.2質量部となる還元粘度4.5dl/gのポリアミド酸溶液Aを得た。得られた樹脂溶液中の樹脂の重量平均分子量、数平均分子量および分子量分布の測定結果を表1に示す。
[Synthesis Example 1 (Preparation of Polyamic Acid Solution A)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer and a stirring rod with nitrogen, 1470.8 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride was placed in the reaction vessel under a nitrogen atmosphere. Material (CBDA), 775.6 parts by mass 4,4'-oxydiphthalic acid (ODPA), 3202.4 parts by mass 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB), 21795 mass A part of N, N-dimethylacetamide (DMAc) was charged and dissolved, and then the mixture was stirred at room temperature for 24 hours to obtain a polyamic acid solution A having a reduction viscosity of 4.5 dl / g and having a solid content of 17.2 parts by mass. .. Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
〔合成例2(ポリイミド溶液Bの調製)〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に窒素雰囲気下、551質量部のN,N-ジメチルアセトアミド(DMAc)と64.1質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)とを入れて攪拌し、TFMBをDMAc中に溶解させた。次いで、反応容器内を攪拌しながら、窒素気流下で、44.4質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、及び、29.4質量部のビフェニルテトラカルボン酸二無水物(BPDA)を10分程度かけて投入し、そのまま温度が20~40℃の温度範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。
 次に、得られたポリアミド酸溶液に410質量部のDMAcを加えて希釈した後、イミド化促進剤として25.83質量部のイソキノリンを加えて、ポリアミド酸溶液を攪拌しながら30~40℃の温度範囲に保ち、そこにイミド化剤として、122.5質量部の無水酢酸を約10分間かけてゆっくりと滴下しながら投入し、その後、更に液温を30~40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
 次に、得られたイミド化剤、及び、イミド化促進剤を含むポリイミド溶液1000質量部を、攪拌装置と攪拌翼を備えた反応容器に移し変え、120rpmの速度で攪拌しながら15~25℃の温度に保ち、そこに1500質量部のメタノールを10g/分の速度で滴下させた。約800質量部のメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500質量部全量のメタノールを投入し、ポリイミドの析出を完了させた。続いて、反応容器の内容物を、吸引濾過装置により濾別し、更に1000質量部のメタノールを用いて洗浄・濾別した。その後、濾別したポリイミド粉体50質量部を局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させ、更に260℃で2時間乾燥させて、残りの揮発成分を除去して、ポリイミド粉体を得た。得られたポリイミド粉体の還元粘度は2.1dl/gであった。次に、得られたポリイミド粉体42質量部を168質量部のDMAcに溶解させて、固形分20質量部となるポリイミド溶液Bを得た。得られた樹脂溶液中の樹脂の重量平均分子量、数平均分子量および分子量分布の測定結果を表1に示す。
[Synthesis Example 2 (Preparation of Polyimide Solution B)]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod, 551 parts by mass of N, N-dimethylacetamide (DMAc) and 64.1 parts by mass were placed in the reaction vessel under a nitrogen atmosphere. 2,2'-Ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was added and stirred, and TFMB was dissolved in DMAc. Next, 44.4 parts by mass of 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid dianhydride (6FDA) and 29.4 parts by mass while stirring in the reaction vessel. A mass portion of biphenyltetracarboxylic dianhydride (BPDA) was added over about 10 minutes, and the polymerization reaction was carried out by continuing stirring for 6 hours while adjusting the temperature so that the temperature was in the temperature range of 20 to 40 ° C. A viscous polyamic acid solution was obtained.
Next, 410 parts by mass of DMAc was added to the obtained polyamic acid solution to dilute it, and then 25.83 parts by mass of isoquinoline was added as an imidization accelerator, and the polyamic acid solution was stirred at 30 to 40 ° C. Keep the temperature range, and add 122.5 parts by mass of acetic anhydride as an imidizing agent while slowly dropping it over about 10 minutes, and then keep the solution temperature at 30-40 ° C and stir for 12 hours. The chemical imidization reaction was continuously carried out to obtain a polyimide solution.
Next, 1000 parts by mass of the obtained polyimide solution containing the imidizing agent and the imidization accelerator was transferred to a reaction vessel equipped with a stirring device and a stirring blade, and the temperature was 15 to 25 ° C. while stirring at a speed of 120 rpm. The temperature was maintained at the above, and 1500 parts by mass of methanol was added dropwise at a rate of 10 g / min. When about 800 parts by mass of methanol was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, 1500 parts by mass of methanol was added to complete the precipitation of polyimide. Subsequently, the contents of the reaction vessel were filtered off by a suction filtration device, and further washed and filtered using 1000 parts by mass of methanol. Then, 50 parts by mass of the filtered polyimide powder was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device, and further dried at 260 ° C. for 2 hours to remove the remaining volatile components. , Polyimide powder was obtained. The reduced viscosity of the obtained polyimide powder was 2.1 dl / g. Next, 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of DMAc to obtain a polyimide solution B having a solid content of 20 parts by mass. Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
〔合成例3(ポリイミド溶液Cの調整)〕
 窒素導入管、ディーン・スターク装置、還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、124.15質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、124.15質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、750質量部のガンマブチロラクトン(GBL)を加えた。続いて248.18質量部の4,4’-オキシジフタル酸無二水物(ODPA)、58.8質量部のビフェニルテトラカルボン酸二無水物(BPDA)、335質量部のGBL、390質量部のトルエンを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し固形分が20質量部となるようにGBLを1149質量部加え、還元粘度0.6dl/gのポリイミド溶液Cを得た。得られた樹脂溶液中の樹脂の重量平均分子量、数平均分子量および分子量分布の測定結果を表1に示す。
[Synthesis Example 3 (Preparation of Polyimide Solution C)]
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean-Stark apparatus, a reflux tube, a thermometer, and a stir bar, 124.15 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 124.15 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS), and 750 parts by mass of gamma butyrolactone (GBL) were added. Subsequently, 248.18 parts by mass of 4,4'-oxydiphthalic acid hydride (ODPA), 58.8 parts by mass of biphenyltetracarboxylic acid dianhydride (BPDA), 335 parts by mass of GBL, and 390 parts by mass of After adding toluene at room temperature, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated and refluxed at 160 ° C. for 1 hour to carry out imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature, and 1149 parts by mass of GBL was added so that the solid content was 20 parts by mass to obtain a polyimide solution C having a reduction viscosity of 0.6 dl / g. Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
〔合成例4(ポリイミド溶液Dの調整)〕
 窒素導入管、ディーン・スターク装置、還流管、温度計、攪拌棒を備えた反応容器に窒素ガスを導入しながら、384.38質量部のノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、348.45質量部の9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、36.00質量部のトリエチルアミン、1465質量部のN-メチル-2-ピロリドン(NMP)、1465質量部のガンマブチロラクトン(GBL)、360質量部のトルエンを室温で加えた後、内温180℃まで昇温し、トルエンを留去しながら180℃で3時間加熱イミド化を行って、ポリイミド溶液を得た。
 次に、得られたポリイミド溶液2500質量部を攪拌装置と攪拌翼を備えた反応容器に移し変え、120rpmの速度で攪拌しながら15~25℃の温度に保ち、そこに50000質量部のアセトンを10g/分の速度で滴下させた。約2500質量部を投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き、残りの2500質量部のアセトンを投入し、ポリイミドの析出を完了させた。続いて、反応容器の内容物を、吸引濾過装置により濾別し、更に2000質量部のメタノールを用いて洗浄・濾別した。その後、濾別したポリイミド粉体300質量部を局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させ、更に260℃で2時間乾燥させて、残りの揮発成分を除去して、ポリイミド粉体を得た。得られたポリイミド粉体の還元粘度は0.7dl/gであった。次に、得られたポリイミド粉体42質量部を168質量部のNMPに溶解させて、固形分20質量部となる還元粘度0.7dl/gのポリイミド溶液Dを得た。得られた樹脂溶液中の樹脂の重量平均分子量、数平均分子量および分子量分布の測定結果を表1に示す。
[Synthesis Example 4 (Preparation of Polyimide Solution D)]
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark device, a reflux tube, a thermometer, and a stirring rod, 384.38 parts by mass of norbornane-2-spiro-α-cyclopentanone-α'-Spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid dianhydride (CpODA), 348.45 parts by mass of 9,9-bis (4-aminophenyl) fluorene ( BAFL), 36.00 parts by mass of triethylamine, 1465 parts by mass of N-methyl-2-pyrrolidone (NMP), 1465 parts by mass of gamma butyrolactone (GBL), 360 parts by mass of toluene, and then the internal temperature. The temperature was raised to 180 ° C., and while toluene was distilled off, heating imidization was performed at 180 ° C. for 3 hours to obtain a polyimide solution.
Next, 2500 parts by mass of the obtained polyimide solution was transferred to a reaction vessel equipped with a stirrer and a stirring blade, and the temperature was maintained at 15 to 25 ° C. while stirring at a speed of 120 rpm, and 50,000 parts by mass of acetone was added thereto. It was dropped at a rate of 10 g / min. When about 2500 parts by mass was added, turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed. Subsequently, the remaining 2500 parts by mass of acetone was added to complete the precipitation of the polyimide. Subsequently, the contents of the reaction vessel were filtered off by a suction filtration device, and further washed and filtered using 2000 parts by mass of methanol. Then, 300 parts by mass of the filtered polyimide powder was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device, and further dried at 260 ° C. for 2 hours to remove the remaining volatile components. , Polyimide powder was obtained. The reduced viscosity of the obtained polyimide powder was 0.7 dl / g. Next, 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of NMP to obtain a polyimide solution D having a reduced viscosity of 0.7 dl / g having a solid content of 20 parts by mass. Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
〔合成例5(ポリアミド酸溶液Eの調製)〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に窒素雰囲気下、196.1質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、227.3質量部の4-アミノ-N-(4-アミノフェニル)ベンズアミド(DABAN)、及び、1694質量部のN,N-ジメチルアセトアミド(DMAc)を仕込んで溶解させた後、室温で24時間攪拌し、固形分20質量部となる還元粘度4.5dl/gのポリアミド酸溶液Eを得た。得られた樹脂溶液中の樹脂の重量平均分子量、数平均分子量および分子量分布の測定結果を表1に示す。
[Synthesis Example 5 (Preparation of Polyamic Acid Solution E)]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod, 196.1 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride was placed in the reaction vessel under a nitrogen atmosphere. After charging and dissolving 227.3 parts by mass of 4-amino-N- (4-aminophenyl) benzamide (DABAN) and 1694 parts by mass of N, N-dimethylacetamide (DMAc). , Stirred at room temperature for 24 hours to obtain a polyamic acid solution E having a reduction viscosity of 4.5 dl / g having a solid content of 20 parts by mass. Table 1 shows the measurement results of the weight average molecular weight, the number average molecular weight and the molecular weight distribution of the resin in the obtained resin solution.
〔ポリイミドフィルムの作製例1(実施例1~5)〕
 ポリアミド酸溶液Aを、ダイコーターを用いて、フィルム作製支持体である鏡面仕上げしたステンレススチール製の無端連続ベルト上に塗布し(塗工幅1240mm)、90~115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルム(残留溶媒を9質量%含む)を支持体から剥離して両端をカットし、グリーンフィルムを得た。
得られたグリーンフィルムをピンテンターによって、最終ピンシート間隔が1140m
mとなるようにフィルム両端部を把持させ、マイクロ波加熱ゾーンと熱風循環装置を備えた連続加熱炉に挿入し、1段目170℃で1分間加熱、次いで昇温速度60℃/minで230℃まで昇温し、2段目230℃で1分間、次いで昇温速度60℃/minで350℃まで昇温し、3段目350℃で5分間として熱処理を施した。この時に2,450MHzのマイクロ波50kWをマイクロ波加熱ゾーンに導いた。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、表2に示す樹脂フィルム1Aを得た。以下同様にポリアミド酸溶液Aを他の樹脂溶液B、C、D、Eに変え、また支持体への塗布厚さを変えて、樹脂フィルム1B、1C、1D、1Eを得た。得られた樹脂フィルムの特性評価結果を表2に示す。
[Polyimide film production example 1 (Examples 1 to 5)]
The polyamic acid solution A was applied to a mirror-finished endless continuous belt made of stainless steel, which was a film-making support, using a die coater (coating width 1240 mm), and dried at 90 to 115 ° C. for 10 minutes. A polyamic acid film (containing 9% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
The final pin sheet spacing of the obtained green film is 1140 m by pin tenter.
Both ends of the film are grasped so as to be m, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, heated at 170 ° C. for 1 minute in the first stage, and then 230 at a heating rate of 60 ° C./min. The temperature was raised to ° C. in the second stage at 230 ° C. for 1 minute, then the temperature was raised to 350 ° C. at a heating rate of 60 ° C./min, and the heat treatment was performed in the third stage at 350 ° C. for 5 minutes. At this time, a microwave of 50 kW of 2,450 MHz was guided to the microwave heating zone. Then, the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 1A shown in Table 2. Similarly, the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 1B, 1C, 1D, and 1E. Table 2 shows the characteristic evaluation results of the obtained resin film.
〔ポリイミドフィルムの作製例2(実施例6~10)〕
 ポリアミド酸溶液Aを、フィルム作製支持体であるところの、領域表面粗さ(Sa)が1nm、最大突起高さ(Sp)が7nm、山頂点密度(Spd)が20/平方μm以下であり、表面にコート層を有しないポリエステルフイルムにコンマコーターを用いて、塗布し(塗工幅1240mm)、90~115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルム(残留溶媒を10質量%含む)を支持体から剥離して両端をカットし、グリーンフィルムを得た。得られたグリーンフィルムをピンテンターによって、最終ピンシート間隔が1140mmとなるようにフィルム両端部を把持させ、マイクロ波加熱ゾーンと熱風循環装置を備えた連続加熱炉に挿入し、170℃から350℃まで昇温速度15℃/minで加熱昇温した。この時に2,450MHzのマイクロ波40kWをマイクロ波加熱ゾーンに導いた。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、表2に示す樹脂フィルム2Aを得た。以下同様にポリアミド酸溶液Aを他の樹脂溶液B、C、D、Eに変え、また支持体への塗布厚さを変えて、樹脂フィルム2B、2C、2D、2Eを得た。得られた樹脂フィルムの特性評価結果を表2に示す。
[Producing Example 2 of Polyimide Film (Examples 6 to 10)]
The polyamic acid solution A, which is a film-making support, has a region surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, and a peak density (Spd) of 20 / square μm or less. A polyester film having no coat layer on the surface was coated with a comma coater (coating width 1240 mm) and dried at 90 to 115 ° C. for 10 minutes. A polyamic acid film (containing 10% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film. The obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, and from 170 ° C to 350 ° C. The temperature was raised by heating at a heating rate of 15 ° C./min. At this time, a microwave of 40 kW of 2,450 MHz was guided to the microwave heating zone. Then, the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 2A shown in Table 2. Similarly, the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 2B, 2C, 2D, and 2E. Table 2 shows the characteristic evaluation results of the obtained resin film.
〔ポリイミドフィルムの作製例3(比較例1~5)〕
 ポリアミド酸溶液Aを、ダイコーターを用いて、フィルム作製支持体である鏡面仕上げしたステンレススチール製の無端連続ベルト上に塗布し(塗工幅1240mm)、90~115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルム(残留溶媒を9質量%含む)を支持体から剥離して両端をカットし、グリーンフィルムを得た。
 得られたグリーンフィルムをピンテンターによって、最終ピンシート間隔が1140mmとなるようにフィルム両端部を把持させ、熱風循環装置を備えた連続加熱炉に挿入し、170℃から350℃まで昇温速度15℃/minで加熱昇温した。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、表3に示す樹脂フィルム3Aを得た。以下同様にポリアミド酸溶液Aを他の樹脂溶液B、C、D、Eに変え、また支持体への塗布厚さを変えて、樹脂フィルム3B、3C、3D、3Eを得た。得られた樹脂フィルムの特性評価結果を表3に示す。
[Polyimide film production example 3 (Comparative Examples 1 to 5)]
The polyamic acid solution A was applied to a mirror-finished endless continuous belt made of stainless steel, which was a film-making support, using a die coater (coating width 1240 mm), and dried at 90 to 115 ° C. for 10 minutes. A polyamic acid film (containing 9% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film.
The obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a hot air circulation device, and the temperature rise rate is 15 ° C. from 170 ° C. to 350 ° C. The temperature was raised by heating at / min. Then, the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 3A shown in Table 3. Similarly, the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 3B, 3C, 3D, and 3E. Table 3 shows the characteristic evaluation results of the obtained resin film.
〔ポリイミドフィルムの作製例4(比較例6~10)〕
 ポリアミド酸溶液Aを、フィルム作製支持体であるところの、領域表面粗さ(Sa)が1nm、最大突起高さ(Sp)が7nm、山頂点密度(Spd)が20/平方μm以下であり、表面にコート層を有しないポリエステルフイルムにコンマコーターを用いて、塗布し(塗工幅1240mm)、90~115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルム(残留溶媒を10質量%含む)を支持体から剥離して両端をカットし、グリーンフィルムを得た。得られたグリーンフィルムをピンテンターによって、最終ピンシート間隔が1140mmとなるようにフィルム両端部を把持させ、マイクロ波加熱ゾーンと熱風循環装置を備えた連続加熱炉に挿入し、170℃から350℃まで昇温速度70℃/minで加熱昇温し、350℃で4分間熱処理を施した。この時に2,450MHzのマイクロ波50kWをマイクロ波加熱ゾーンに導いた。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、表3に示す樹脂フィルム4Aを得た。以下同様にポリアミド酸溶液Aを他の樹脂溶液B、C、D、Eに変え、また支持体への塗布厚さを変えて、樹脂フィルム4B、4C、4D、4Eを得た。得られた樹脂フィルムの特性評価結果を表3に示す。
[Polyimide film production example 4 (Comparative Examples 6 to 10)]
The polyamic acid solution A, which is a film-making support, has a region surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, and a peak density (Spd) of 20 / square μm or less. A polyester film having no coat layer on the surface was coated with a comma coater (coating width 1240 mm) and dried at 90 to 115 ° C. for 10 minutes. A polyamic acid film (containing 10% by mass of residual solvent) that became self-supporting after drying was peeled off from the support and both ends were cut to obtain a green film. The obtained green film is gripped at both ends of the film by a pin tenter so that the final pin sheet spacing is 1140 mm, inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulation device, and from 170 ° C to 350 ° C. The temperature was raised by heating at a heating rate of 70 ° C./min, and heat treatment was performed at 350 ° C. for 4 minutes. At this time, a microwave of 50 kW of 2,450 MHz was guided to the microwave heating zone. Then, the film was cooled to room temperature in 2 minutes, and the portions of both ends of the film having poor flatness were cut off with a slitter and wound into a roll to obtain the resin film 4A shown in Table 3. Similarly, the polyamic acid solution A was changed to other resin solutions B, C, D, and E, and the coating thickness on the support was changed to obtain resin films 4B, 4C, 4D, and 4E. Table 3 shows the characteristic evaluation results of the obtained resin film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上述べてきたように、本発明の樹脂フィルムは耐熱性と透明性に優れ、高温領域まで低い線膨張係数を保ち、高い引張弾性率を有し、樹脂フィルムのMD方向およびTD方向の線膨張係数および引張弾性率の比が小さく物性等方性が良好なため、タッチパネルやディスプレイ等の画像表示装置の前面板、電極周辺に極めて有用である。

 
As described above, the resin film of the present invention has excellent heat resistance and transparency, maintains a low coefficient of linear expansion even in a high temperature region, has a high coefficient of tensile elasticity, and linear expansion of the resin film in the MD direction and the TD direction. Since the ratio of coefficient and tensile modulus is small and the physical properties are good in isotropic properties, it is extremely useful for the front plate of image display devices such as touch panels and displays, and around electrodes.

Claims (5)

  1.  下記(1)~(2)を満足する樹脂フィルム。
    (1)損失弾性率を貯蔵弾性率で除した値であるtanδの温度依存曲線がピークとなる温度(A)が250~500℃の範囲内にあり、前記tanδの温度依存曲線がピークとなる温度(A)と線膨張係数変曲点温度(B)が下記式の関係にある
                    (40+0.8×A) ≦ B < A
    (2)前記樹脂フィルムの原料である樹脂の重量平均分子量が50,000~500,000の範囲内にあり、前記重量平均分子量を前記樹脂の数平均分子量で除した値である分子量分布が1.0~5.0の範囲内にある
    A resin film that satisfies the following (1) and (2).
    (1) The temperature (A) at which the temperature-dependent curve of tan δ, which is the value obtained by dividing the loss elastic modulus by the storage elastic modulus, peaks is in the range of 250 to 500 ° C., and the temperature-dependent curve of tan δ becomes the peak. The temperature (A) and the linear expansion coefficient variation point temperature (B) are in the relationship of the following equation (40 + 0.8 × A) ≦ B <A
    (2) The weight average molecular weight of the resin which is the raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin is 1. In the range of 0.0 to 5.0
  2.  さらに(3)~(4)を満足する請求項1に記載の樹脂フィルム。
    (3)MD方向およびTD方向の両方の35~200℃の範囲で測定した線膨張係数が-5ppm/℃~+55ppm/℃の範囲にあり、前記線膨張係数のMD方向に対するTD方向の比が0.97~1.03の範囲にある
    (4)MD方向およびTD方向の両方の引張弾性率が2~20GPaの範囲にあり、前記引張弾性率のMD方向に対するTD方向の比が0.97~1.03の範囲にある
    The resin film according to claim 1, further satisfying (3) to (4).
    (3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both the MD direction and the TD direction is in the range of -5 ppm / ° C. to +55 ppm / ° C., and the ratio of the linear expansion coefficient in the MD direction to the TD direction is (4) The tensile modulus in both the MD direction and the TD direction is in the range of 2 to 20 GPa in the range of 0.97 to 1.03, and the ratio of the tensile modulus in the TD direction to the MD direction is 0.97. In the range of ~ 1.03
  3.  イエローインデックスが10以下、波長400nmにおける光線透過率が70%以上、全光線透過率が85%以上であることを特徴とする請求項1または2に記載の樹脂フィルム。 The resin film according to claim 1 or 2, wherein the yellow index is 10 or less, the light transmittance at a wavelength of 400 nm is 70% or more, and the total light transmittance is 85% or more.
  4.  樹脂溶液を支持体上に塗布、乾燥して溶媒を含有する樹脂フィルム積層体を作製する工程A、
     前記積層体から前記支持体を剥離して溶媒を含有する樹脂フィルムを得る工程B、
     前記溶媒を含有する樹脂フィルムから、溶媒を除去、又は溶媒を除去しながら脱水閉環反応する工程Cを含み、
     前記工程Cの少なくとも一部をマイクロ波加熱により行うことを特徴とする請求項1~3のいずれかに記載の樹脂フィルムの製造方法。
    Step A to prepare a resin film laminate containing a solvent by applying a resin solution on a support and drying it.
    Step B, in which the support is peeled off from the laminate to obtain a resin film containing a solvent.
    A step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent is included.
    The method for producing a resin film according to any one of claims 1 to 3, wherein at least a part of the step C is performed by microwave heating.
  5.  前記樹脂溶液が、ポリアミド酸、ポリイミド、およびポリアミドイミドからなる群から選ばれる少なくとも1種の樹脂と、双極子モーメントが3.0~6.0Dの範囲にあり前記樹脂を溶解する溶媒を含有する、請求項4に記載の樹脂フィルムの製造方法。
     
     

     
    The resin solution contains at least one resin selected from the group consisting of polyamic acid, polyimide, and polyamide-imide, and a solvent having a dipole moment in the range of 3.0 to 6.0 D and dissolving the resin. , The method for producing a resin film according to claim 4.



PCT/JP2021/021946 2020-07-15 2021-06-09 Resin film and method for manufacturing resin film WO2022014210A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227026647A KR20230040304A (en) 2020-07-15 2021-06-09 Resin film and manufacturing method of resin film
CN202180036467.XA CN115667379A (en) 2020-07-15 2021-06-09 Resin film and method for producing resin film
JP2021556850A JPWO2022014210A1 (en) 2020-07-15 2021-06-09
JP2023118624A JP2023139144A (en) 2020-07-15 2023-07-20 Resin film and method for manufacturing resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020121442 2020-07-15
JP2020-121442 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014210A1 true WO2022014210A1 (en) 2022-01-20

Family

ID=79555181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021946 WO2022014210A1 (en) 2020-07-15 2021-06-09 Resin film and method for manufacturing resin film

Country Status (5)

Country Link
JP (2) JPWO2022014210A1 (en)
KR (1) KR20230040304A (en)
CN (1) CN115667379A (en)
TW (1) TW202206520A (en)
WO (1) WO2022014210A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109832A1 (en) * 2005-04-12 2006-10-19 Kaneka Corporation Polyimide film
JP2014133887A (en) * 2012-12-14 2014-07-24 Mitsubishi Chemicals Corp Polyimide resin composition
JP2015209487A (en) * 2014-04-25 2015-11-24 日本ゼオン株式会社 Polyimide, laminated film, phase difference film, and method of producing laminated film
CN106832279A (en) * 2017-02-21 2017-06-13 北京化工大学 A kind of method that utilization microwave radiation technology imidization prepares Kapton or fiber
JP2018156829A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Transparent polyimide film for flexible display front plate, method for manufacturing the same, and organic electroluminescence display
JP2019011452A (en) * 2017-07-03 2019-01-24 Jxtgエネルギー株式会社 Polyimide film and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805558B2 (en) 1999-04-08 2006-08-02 株式会社カネカ Method for producing polyimide film
JP5955603B2 (en) 2012-03-28 2016-07-20 東レ・デュポン株式会社 Polyimide film and method for producing polyimide film
KR20180070842A (en) 2016-12-19 2018-06-27 주식회사 새론테크 Peak power detection and alarm system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109832A1 (en) * 2005-04-12 2006-10-19 Kaneka Corporation Polyimide film
JP2014133887A (en) * 2012-12-14 2014-07-24 Mitsubishi Chemicals Corp Polyimide resin composition
JP2015209487A (en) * 2014-04-25 2015-11-24 日本ゼオン株式会社 Polyimide, laminated film, phase difference film, and method of producing laminated film
CN106832279A (en) * 2017-02-21 2017-06-13 北京化工大学 A kind of method that utilization microwave radiation technology imidization prepares Kapton or fiber
JP2018156829A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Transparent polyimide film for flexible display front plate, method for manufacturing the same, and organic electroluminescence display
JP2019011452A (en) * 2017-07-03 2019-01-24 Jxtgエネルギー株式会社 Polyimide film and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
JP7419447B2 (en) 2021-08-20 2024-01-22 エスケーマイクロワークス 株式会社 Polyamide-imide film, method for producing the same, and cover window and display device containing the same

Also Published As

Publication number Publication date
TW202206520A (en) 2022-02-16
CN115667379A (en) 2023-01-31
JP2023139144A (en) 2023-10-03
JPWO2022014210A1 (en) 2022-01-20
KR20230040304A (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP2006206825A (en) Aromatic polyimide resin precursor and aromatic polyimide resin
JP2023139144A (en) Resin film and method for manufacturing resin film
CN116137837A (en) Polyimide film and method for producing same
JP7268791B2 (en) laminate
JP7287536B2 (en) Polyimide film and its manufacturing method
WO2022004852A1 (en) Resin film and production method thereof
JP6980919B2 (en) Method for producing polyamic acid, polyamic acid, polyimide resin, and polyimide film produced from this.
JP2012051995A (en) Polyimide film and method for manufacturing the same
JP7103534B2 (en) Polyimide film and its manufacturing method
WO2020196103A1 (en) Production method for colorless transparent resin film
CN116133854A (en) Polyimide film and method for producing same
WO2021192789A1 (en) Laminate
WO2021256298A1 (en) Colorless multilayer polyimide film, multilayer body and method for producing flexible electronic device
WO2022102450A1 (en) Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method
JP2023177342A (en) Film manufacturing method
JP2022068709A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, as well as production method of polyimide film
JP2022018375A (en) Resin solution, flexible electronic device and method for manufacturing the same
JP2023001599A (en) laminate
JP2008044977A (en) Polyimide film and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021556850

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842704

Country of ref document: EP

Kind code of ref document: A1