WO2022102450A1 - Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method - Google Patents

Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method Download PDF

Info

Publication number
WO2022102450A1
WO2022102450A1 PCT/JP2021/040229 JP2021040229W WO2022102450A1 WO 2022102450 A1 WO2022102450 A1 WO 2022102450A1 JP 2021040229 W JP2021040229 W JP 2021040229W WO 2022102450 A1 WO2022102450 A1 WO 2022102450A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polyimide
mass
solution
Prior art date
Application number
PCT/JP2021/040229
Other languages
French (fr)
Japanese (ja)
Inventor
伝一朗 水口
哲雄 奧山
洋行 涌井
誠 中村
直樹 渡辺
治美 米虫
郷司 前田
正幸 横山
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022524706A priority Critical patent/JPWO2022102450A1/ja
Publication of WO2022102450A1 publication Critical patent/WO2022102450A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polyimide film that is colorless and has a low coefficient of linear expansion and good mechanical properties, a laminate of the polyimide film and an inorganic substrate, and a method for manufacturing a flexible electronic device via the laminate.
  • Polyimide film has excellent heat resistance and good mechanical properties, and is widely used in the electric and electronic fields as a flexible material.
  • a general polyimide film is colored yellowish brown, it cannot be applied to a part such as a display device that requires light transmission.
  • display devices are becoming thinner and lighter, and further flexibility is required. Therefore, attempts are being made to replace the substrate material from a glass substrate with a flexible polymer film substrate, but the colored polyimide film is a substrate material for a liquid crystal display that displays by turning on / off light transmission. It cannot be used as a peripheral circuit such as a TAB or COF on which a drive circuit of a display device is mounted, or can be applied only to a small part such as the back side of a reflection type display system or a self-luminous display device.
  • Patent Document 4 a method of heat treatment while spraying a gas having an oxygen content has been proposed (Patent Document 4), but the manufacturing cost is high in an environment where the oxygen concentration is less than 18%, and industrial production is not possible. It's extremely difficult.
  • Patent Documents 5 and 6 Attempts have also been made to obtain a white heat-resistant film by blending a colorless filler (white pigment) with a colorless transparent polyimide.
  • Semi-alicyclic or full-alicyclic polyimides can obtain colorless transparency by increasing the number of monomer components having an alicyclic structure, but become hard and brittle and the elongation at break decreases, making it difficult to produce as a film. Become.
  • an aromatic monomer or a monomer having an amide bond in the molecule is introduced, the toughness is increased, the mechanical properties of the film are improved, but the color is easily colored and the colorless transparency is lowered.
  • a filler (“inorganic component)” whose refractive index is close to that of the resin component, heat resistance and colorless transparency are improved, the coefficient of linear expansion is further lowered, and processing suitability is improved, but the resin physical properties become hard and brittle.
  • a white heat-resistant film can be obtained by introducing a filler made of a substance having a large difference in refractive index from the polyimide resin, but it is also sufficient to obtain high whiteness and hiding power.
  • the amount is mixed, the film becomes brittle and it becomes difficult to produce it industrially. That is, there is a trade-off relationship between practical properties such as heat resistance and mechanical properties and colorlessness (transparency or whiteness), and it has been extremely difficult to produce a colorless transparent polyimide film that satisfies all of them.
  • the present inventors tried to realize a well-balanced polyimide film by combining a plurality of polyimide resins.
  • a combination of resins of a plurality of components is blended, blended, or copolymerized, it is not always possible to obtain a result in which only the good points of each component are combined, but rather the drawbacks are synergistically expressed. There are many cases of doing so.
  • the present inventors have found that the advantages of each component can be fully brought out by combining polyimide resins to form a film so as to form a specific structure.
  • the present invention has the following configuration.
  • a multilayer polyimide film having a thickness of 3 ⁇ m or more and 120 ⁇ m or less, a yellow index of 5 or less, and containing at least two layers, a layer (a) and a layer (b).
  • the layer (c) a layer containing a polyimide composition having an inorganic filler content of 0.3% by mass or less.
  • [5] The multilayer polyimide film according to any one of [1] to [4] above, wherein the linear expansion coefficient is 50 ppm / ° C. or less.
  • the coefficient of static friction between the surface of the layer (a) and the inner surface of the polyethylene terephthalate film (PET film) "Cosmo Shine (registered trademark) A4100" manufactured by Toyobo Co., Ltd. is 1.50 or less [1].
  • a method for manufacturing a flexible electronic device which comprises forming an electronic device on the multilayer polyimide film surface of the laminate according to the above [9], and then peeling it from an inorganic substrate.
  • the present invention may further include the following configurations.
  • [11] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1. 2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
  • 3 A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
  • [12] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1. 2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1. 3: A step of heating all layers to obtain a laminate having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
  • [14] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
  • the present invention may further include the following configurations.
  • [15] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
  • 2 A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
  • 3 (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
  • 4 A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
  • the method for producing a multilayer polyimide film according to any one of [1] to [8], which comprises at least.
  • [16] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
  • 2 A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
  • 3 (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
  • the present invention may further include the following configurations.
  • [19] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
  • 2 A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 within 100 seconds after the coating film a1 is produced to obtain the coating film a1b1.
  • 3 A step of applying (c) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1b1 within 100 seconds after producing the coating film a1b1 to obtain the coating film a1b1c1.
  • 2 A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 within 100 seconds after the coating film a1 is produced to obtain the coating film a1b1.
  • 4 A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
  • 5 A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
  • the method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
  • [21] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
  • 2 A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
  • 3 (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
  • [22] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1. 2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass. 3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1. 4: A step of drying the coating film a2b1 to obtain a coating film a2b2 having a residual solvent amount of 5 to 40% by mass based on the total layer.
  • the present invention may further include the following configurations.
  • [23] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1. 2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
  • 3 A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
  • the method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
  • [26] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1. 2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
  • 3 A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
  • the present invention may further include the following configurations.
  • [27] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
  • 2 A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
  • 3 (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
  • the method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
  • [30] 1 (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
  • 2 A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
  • 3 (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
  • a method for producing a multilayer polyimide film which comprises repeating 1 and 2 in the above [11] to [30] to form an odd-numbered layer of 5 or more layers.
  • the total thickness of the (a) layer is 1% or more, preferably 2% or more, more preferably 4% or more, preferably 25% or less, preferably the total thickness of the film.
  • (a) A polyimide solution or a polyimide precursor solution for forming a layer, and (b) a polyimide solution or a polyimide precursor solution for forming a layer are simultaneously applied onto a temporary support, and then the entire layer is heated.
  • the multilayer polyimide film according to any one of [1] to [8], [22], and [23], which comprises at least a step of obtaining a laminate having a residual solvent amount of 0.5% by mass or less based on the total layer.
  • Production method [35] (a) A polyimide solution or a polyimide precursor solution for forming a layer, and (b) a polyimide solution or a polyimide precursor solution for forming a layer are simultaneously applied onto a temporary support, and then the entire layer is heated. After obtaining a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on the total layer, the film is peeled off from the temporary support to form a self-supporting film, and then both ends of the self-supporting film.
  • the method for producing a multilayer polyimide film according to. [36] (a) a polyimide solution or a polyimide precursor solution for forming a layer, (b) a polyimide solution or a polyimide precursor solution for forming a layer, and (c) a polyimide solution or a polyimide precursor solution for forming a layer.
  • the polyimide composition of the layer (b) in the present invention has a low CTE by containing an inorganic filler. Further, when an inorganic filler having a large difference in refractive index from the resin is used, a highly concealed white film is obtained. However, the polyimide composition in which the inorganic filler is added to a level where the CTE is lowered by 5 ppm / ° C. or more as compared with the resin to which the inorganic filler is not added, and the polyimide composition in which the inorganic filler is added to a level having sufficient concealing property are brittle. It can be extremely difficult to produce as an industrial production level, that is, a long continuous film.
  • the polyimide composition of the (a) layer which has a low content of the inorganic filler, is more preferably combined with the polyimide composition of the (c) layer to form a multilayer, the outer layer has less inorganic filler, and the inner layer has more inorganic filler.
  • a transition layer having a slanted composition can be formed between the applied layers. ..
  • the transition layer is formed by repeating coating of each component and drying until it loses fluidity and becomes semi-solid, and after forming the necessary layer, it is dried by final heating. It can also be formed in the step of obtaining a solid film by performing a chemical reaction as needed. Since polyimide is chemically stable, for example, a second polyimide solution or a polyimide precursor solution having a different composition (or the same chemical composition may be used) is applied onto the first polyimide composition layer and dried by heating.
  • the multilayer polyimide film of the present invention has a thickness of 3 ⁇ m or more and 120 ⁇ m or less. It is preferably 4 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 8 ⁇ m or more because the mechanical properties are good. Further, it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 60 ⁇ m or less because the transparency becomes good.
  • the multilayer polyimide film of the present invention has a yellow index of 5 or less. It is preferably 4 or less, more preferably 3.5 or less, and further preferably 3 or less because the transparency is good. Since the lower the yellow index is, the lower limit is not particularly limited, but industrially, it may be 0.1 or more, and 0.2 or more may be used.
  • the multilayer polyimide film of the present invention preferably has a coefficient of linear expansion of 50 ppm / ° C. or less. It is more preferably 45 ppm / ° C. or lower, and even more preferably 40 ppm / ° C. or lower.
  • the lower limit is not particularly limited, but industrially, 1 ppm / ° C. or higher is sufficient, and 5 ppm / ° C. or higher may be used.
  • the multilayer polyimide film of the present invention preferably has a total light transmittance of 86% or more. It is preferably 87% or more, more preferably 88% or more, and further preferably 89% or more because the transparency becomes good.
  • the upper limit is not particularly limited, but industrially, it may be 99% or less, and may be 98% or less.
  • polyimide compositions are used.
  • One polyimide composition contains at least a polyimide resin and an inorganic filler, and the other polyimide composition contains a polyimide resin, and the inclusion of the inorganic filler is optional.
  • the polyimide solution or polyimide precursor solution in the present invention contains at least a polyimide resin or a polyimide precursor and a solvent. Further, when forming a layer to which the inorganic filler is added, a solution in which the inorganic filler is dispersed in advance is used.
  • the polyimide resin (hereinafter, also simply referred to as polyimide) is a polymer generally obtained by a depolymerization reaction of a tetracarboxylic acid anhydride and a diamine.
  • a shrinkage of a tetracarboxylic acid anhydride containing 70% by mass or more of an alicyclic tetracarboxylic acid anhydride and a diamine containing 70% by mass or more of a diamine having an amide bond in the molecule Shrinkage of a polyimide obtained by polymerization or a tetracarboxylic acid anhydride containing 70% by mass or more of an alicyclic tetracarboxylic acid anhydride and a diamine containing 70% by mass or more of a diamine having a trifluoromethyl group in the molecule.
  • the polyimide obtained by polymerization can be exemplified.
  • the polyimide preferably used in the present invention is obtained from a tetracarboxylic acid anhydride containing 70% by mass or more of an aromatic tetracarboxylic acid anhydride and a diamine containing at least 70% by mass of a diamine having a sulfur atom in the molecule.
  • An example can be exemplified of the polyimide obtained by the condensation polymerization with the diamine.
  • Examples of the alicyclic tetracarboxylic acid anhydride in the present invention include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid and 1,2,3,4-cyclohexane.
  • Tetracarboxylic acid 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6 -Tetracarboxylic acid, bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetra Carboxylic acid, tetrahydroanthracene-2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, Decahydronaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4: 5,8-dimethanonaphthalene-2,3,6,7-te
  • dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic acid are preferable.
  • Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. These may be used alone or in combination of two or more.
  • aromatic tetracarboxylic acid anhydride in the present invention examples include 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid, 4,4'-oxydiphthalic acid, and bis (1,3-dioxo-1,3).
  • tricarboxylic acid and dicarboxylic acid may be used in addition to tetracarboxylic acid anhydride.
  • tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid.
  • An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimeric acid, ethylene glycol bistrimericte, propylene glycol bistrimerite, 1,4-butanediol bistrimerite and polyethylene glycol bistrimerite.
  • monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid.
  • Hydrogen additives oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid acidates thereof.
  • an esterified product or the like can be mentioned.
  • aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable.
  • the dicarboxylic acids may be used alone or in combination of two or more.
  • aromatic diamines and alicyclic amines can be mainly used.
  • aromatic diamines include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis.
  • a part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, the carbon number 1 may be substituted.
  • a part or all of the hydrogen atom of the alkyl group or the alkoxyl group of ⁇ 3 may be substituted with a halogen atom.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • inorganic filler used in the polyimide composition in the present invention electrically insulating inorganic fine particles are preferable. Further, fine particles made of an inorganic substance having a coefficient of linear expansion of 0 to 15 ppm / ° C. are preferable. More preferably, the fine particles are made of an inorganic substance having a linear expansion coefficient of 1 to 14 ppm / ° C., and more preferably, the fine particles are made of an inorganic substance having a linear expansion coefficient of 2 to 13 ppm / ° C.
  • metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, tin oxide, titanium oxide and calcium oxide
  • metal fluorides such as calcium fluoride
  • metal sulfides such as zinc sulfide
  • Metallic sulfates such as calcium sulfate and barium sulfate
  • phosphates such as calcium phosphate
  • fine particles such as basic zinc molybdate, zinc basic calcium molybdate, molybdenum white, and nitrate.
  • aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, tin oxide, rutile-type titanium oxide, calcium fluoride, barium sulfate or calcium phosphate are preferable.
  • an inorganic filler made of a substance having a high refractive index preferably an inorganic filler made of a substance having a refractive index of 1.98 or more at a wavelength of 550 nm at 25 ° C.
  • the refractive index is more preferably 1.99 or more, still more preferably 2.00 or more.
  • the lower limit of the refractive index of such an inorganic filler is not particularly limited, but is preferably 4 or less, and more preferably 3 or less.
  • the total light transmittance of the film is increased, preferably 80% or more, and further. It can be preferably increased to 85% or more, and a so-called colorless and transparent film can be obtained. Since the colorless transparency is further improved, the refractive index is more preferably 1.42 or more and 1.97 or less, and further preferably 1.44 or more and 1.96 or less.
  • the lower limit of the average diameter of the particles of the inorganic filler used in the present invention is preferably 10 nm, more preferably 20 nm, and even more preferably 50 nm.
  • the upper limit is preferably 5 ⁇ m, more preferably 1.5 ⁇ m, and even more preferably 0.3 ⁇ m.
  • the multilayer polyimide film of the present invention contains at least two layers, a layer (a) and a layer (b).
  • the layer (a) may or may not contain an inorganic filler, and when it is contained, the content of the inorganic filler needs to be less than 0.05% by mass. It is preferably 0.04% by mass or less, and more preferably 0.03% by mass or less.
  • the layer (b) must contain an inorganic filler, and the content of the inorganic filler is 1% by mass or more and 35% by mass or less. It is preferably 3% by mass or more and 32% by mass or less, and more preferably 6% by mass or more and 28% by mass or less.
  • the structure is such that the layer (b), which has a high content of inorganic filler and has a low coefficient of linear expansion but tends to be brittle, is reinforced with a layer (a) having a high content of inorganic filler and high toughness.
  • the polyimide composition contained in the layer (a) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 100% by mass. Is.
  • the polyimide composition contained in the layer (b) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 100. It is mass%.
  • the ratio ((b) / (a)) of the inorganic filler content of the (a) layer to the inorganic filler content of the (b) layer shall be more than 20. Is more preferable, more preferably 100 or more, still more preferably 500 or more, still more preferably 1000 or more, and particularly preferably 1250 or more. Further, it is preferably 10000 or less, more preferably 8000 or less, further preferably 5000 or less, and particularly preferably 3000 or less.
  • the multilayer polyimide film has a three-layer structure of (a) / (b) / (a). Warpage of the film can be suppressed by making the film symmetrical in the thickness direction as a three-layer structure.
  • the structure of the multilayer polyimide film can be further made into a three-layer structure of (a) / (b) / (c).
  • This configuration is basically a structure in which a layer (b) having a high content of an inorganic filler is sandwiched between a layer (a) and a layer (c) having a low content of an inorganic filler, but the inorganic filler of the layer (c) is sandwiched between the layers.
  • the content is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, still more preferably substantially 0% by mass, so that the surface of one side of the outer layer of the multilayer film is highly smooth. Surface can be realized.
  • the ratio of the inorganic filler content of the (a) to the inorganic filler content of the layer (b) ((b) / (a)) is As described above.
  • the ratio of the inorganic filler content of the (a) to the inorganic filler content of the layer (c) ((c) / (a)) is 1. It is preferably less than, more preferably 0.5 or less, still more preferably 0.2 or less, still more preferably 0.1 or less, and particularly preferably 0.
  • the inorganic filler added to the layer (a), the layer (b), and the layer (c) may be the same inorganic filler or different inorganic fillers.
  • an inorganic filler having a uniform particle size for the outer layer (a) to (c) and using a highly transparent inorganic filler for the inner layer (b) protrusions on the film surface are used. It is possible to realize a film having a uniform color and high colorless transparency as a whole film. It was
  • the polyimide resin used for the layer (a), the layer (b), and the layer (c) may all be a polyimide resin having the same chemical composition, or may be a different polyimide resin.
  • the inner layer (b) is made of a polyimide resin having a high CTE control effect by adding an inorganic filler
  • the outer layers (a) and (c) are made of a highly tough polyimide resin. A well-balanced film can be obtained.
  • the number of layers may be increased so as to have four or more layers, preferably an odd number of layers.
  • the five-layer structure of (b) layer / (c) layer / (b) layer / (c) layer, (c) layer / (b) layer / (a) layer / (b) layer / (c) layer is mentioned.
  • the fourth resin layer (d), the fifth resin layer (e), and the like may be inserted into any layer as long as the effects of the present invention are not impaired. Further, in order to cope with the fact that the roles required for both sides of the film differ depending on the application such as manufacturing a device on one side, the composition and surface roughness of both sides may be changed.
  • the total thickness of the layer (a) and the layer (c) is preferably 34% or less, and further 26% or less of the total thickness of the film. It is preferable that the composition is 13% or less, more preferably 7% or less.
  • the total thickness of the layer (a) and the layer (c) is preferably 1% or more, more preferably 2% or more, and further. It is preferably 4% or more.
  • a transition layer whose composition continuously changes from the polyimide of the (a) layer to the polyimide of the (b) layer exists between the (a) layer and the (b) layer.
  • the upper limit of the thickness of the transition layer is preferably 8% or less, or 3 ⁇ m or less, more preferably 3% or less, or 1 ⁇ m or less of the total thickness of the film.
  • the thickness of the transition layer is the thickness of the region where the polyimide of the (a) layer and the polyimide of the (b) layer are mixed and the composition is inclined from one to the other, and the thickness of the (a) layer of the mixed layer.
  • the polyimide composition ratio (mass ratio) of the polyimide / (b) layer is in the range of 5/95 to 95/5.
  • the thickness of the transition layer can be measured by cutting the film diagonally in the thickness direction and observing the composition distribution of the polyimide. The same applies to the transition layer between the layer (b) and the layer (c).
  • the multilayer polyimide film of the present invention can be laminated with an inorganic substrate to form a laminated body.
  • the inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance.
  • a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used.
  • the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
  • a flexible electronic device can be manufactured by forming an electronic device on the surface of the multilayer polyimide film of the laminate of the present invention and then peeling it from the inorganic substrate.
  • the manufacturing method for obtaining the multilayer polyimide film of the present invention will be described below.
  • the two-layer polyimide film is placed on a long and flexible temporary support.
  • the polyimide solution or the polyimide precursor solution for (a) layer formation or (c) layer formation may be applied once again after the above 1 and 2, and the process is repeated. By repeating the coating, a more multi-layered film can be obtained.
  • 1 (a) Step of applying polyimide solution or polyimide precursor solution for layer formation, 2: A step of drying the layer (a) so that the amount of residual solvent is 5 to 40% by mass. 3: A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution onto the (a) layer. 4: Next, a step of heating over a time of preferably 5 minutes or more and 60 minutes or less until the average residual solvent amount of all layers becomes 0.5% by mass or less. Can be produced via. Further, the process of 4 is divided into two stages and divided into two.
  • the polyimide solution or the polyimide precursor solution for (a) layer formation or (c) layer formation may be applied once again after the above 1 and 2, and the application may be repeated. By doing so, a multi-layered film can be obtained.
  • the application of the polyimide solution or the polyimide precursor solution is performed at a temperature of 10 ° C. or higher and 40 ° C. or lower, preferably 15 ° C. or higher and 35 ° C. or lower, and a humidity of 10% RH or higher and 55% RH or lower, preferably 20% RH or higher. It is preferably carried out on a long and flexible temporary support in the atmosphere of 50% RH or in an inert gas.
  • the first layer to be applied can be applied using a comma coater, a bar coater, a slit coater, or the like, and the second and subsequent layers can be applied by a die coater, a curtain coater, a spray coater, or the like. .. It is also possible to apply these plurality of layers substantially at the same time by using a multilayer die.
  • the environment for applying the solution is preferably in the atmosphere or in an inert gas.
  • the inert gas may be interpreted as a gas having a substantially low oxygen concentration, and nitrogen or carbon dioxide may be used from an economical point of view.
  • the temperature in the coating environment affects the viscosity of the coating liquids, and when the two types of coating liquids are overlapped, the two types of coating liquids are mixed with each other at the interface to form a transition layer. Affects.
  • the viscosity of the polyimide solution or the polyimide precursor solution of the present invention is preferably adjusted to an appropriate viscosity range especially in the non-contact coating method after the second layer, and such a temperature range is in the mixture of the two-layer interface. Also contributes to properly maintaining the fluidity in the viscosity range.
  • the viscosity 1 of the polyimide solution or the polyimide precursor solution to be applied is immediately before. It is preferable that the viscosity is not significantly higher than the viscosity 2 of the polyimide solution or the polyimide precursor solution applied to. Specifically, the ratio of the viscosity represented by viscosity 1 / viscosity 2 is preferably 1.5 or less, more preferably 1.0 or less, and further preferably 0.8 or less. .. If it is higher than this, the lower coated surface may be dragged in the coating process, which may cause an abnormality in appearance.
  • the value of the viscosity 2 measured at 25 ° C. using an E-type viscometer is preferably 20 Pa ⁇ s or more, and more preferably 50 Pa ⁇ s or more. If it is lower than this, it may cause an abnormal appearance when the solution is overcoated on the upper surface due to the high fluidity.
  • the viscosity of the polyimide solution or the polyimide precursor solution is preferably 300 Pa ⁇ s or less, and more preferably 200 Pa ⁇ s or less, from the viewpoint of handleability.
  • the solvents used in polyimide solutions or polyimide precursor solutions are hygroscopic, and when the solvent absorbs moisture and the water content of the solvent increases, the solubility of the resin component decreases, and the dissolved component precipitates in the solution, resulting in a solution. May cause a sharp increase in viscosity. If such a situation occurs after coating, the internal structure of the film may become inhomogeneous, resulting in void-like defects and impairing mechanical properties.
  • the temporary support used in the present invention glass, a metal plate, a metal belt, a metal drum, a polymer film, a metal foil, or the like can be used.
  • a film such as polyethylene terephthalate, polyethylene naphthalate, or polyimide can be used as the temporary support. It is one of the preferable embodiments to perform a mold release treatment on the surface of the temporary support.
  • the surface roughness of the temporary support may be adjusted by performing surface treatment.
  • the surface treatment method plasma treatment, corona discharge treatment, wet blast treatment, chemical treatment and the like can be used. After the surface treatment, a mold release treatment may be further performed.
  • the polyimide solution or the polyimide precursor solution it is preferable to apply the polyimide solution or the polyimide precursor solution to the temporary support, dry the coating film until the residual solvent amount is 5 to 40% by mass, and then apply the next layer. Drying to a residual solvent amount of 40% by mass is a sufficiently dry state in which the applied coating liquid loses its fluidity and reaches a semi-solid. When the amount of residual solvent in the coating film reaches 5% by mass or less, when the next solution is applied, the re-swelling of the previously dried coating film becomes inhomogeneous, and the boundary between two adjacent layers may be disturbed. There is.
  • the solvent of the coating liquid can be uniformly diffused and transferred at the boundary surface, and a transition layer having an appropriate thickness is formed by microscopic flow mixing.
  • heat treatment is performed to promote drying and, if necessary, a chemical reaction.
  • a polyimide solution it may be simply dried in the sense of removing the solvent, but when a polyimide precursor solution is used, both drying and a chemical reaction are required.
  • the polyimide precursor is preferably in the form of polyamic acid or polyisoimide. A dehydration condensation reaction is required to convert polyamic acid to polyimide.
  • the dehydration condensation reaction can be carried out only by heating, but an imidization catalyst can also be allowed to act if necessary. Even in the case of polyisoimide, conversion from an isoimide bond to an imide bond can be performed by heating. It is also possible to use an appropriate catalyst in combination.
  • the amount of residual solvent in the final multilayer polyimide film is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.08% by mass as an average value of all layers of the film. It is as follows.
  • the heating time is preferably 5 minutes or more and 60 minutes or less, more preferably 6 minutes or more and 50 minutes or less, and further preferably 7 minutes or more and 30 minutes or less.
  • the solvent can be removed, the necessary chemical reaction can be completed, the transition layer can be controlled to an appropriate thickness, and the colorless transparency, mechanical properties, especially the elongation at break can be achieved. Can be kept high. If the heating time is short, the formation of the transition layer is delayed, and if the heating time is longer than necessary, the film coloring may become stronger and the breaking elongation of the film may decrease.
  • the applied solution dries or undergoes a chemical reaction by heating and is self-supporting and can be peeled off from the temporary support, it may be peeled off from the temporary support during the heating step. More specifically, until the residual solvent amount of the entire film layer reaches the range of 5% by mass or more and 40% by mass, preferably 5 minutes or more and 45 minutes or less, more preferably 6 minutes or more and 30 minutes or less, still more preferably 7. After heating for a time of 1 minute or more and 20 minutes or less, the self-supporting film is peeled off from the temporary support, and both ends of the self-supporting film are clipped or pierced into a pin to grip the film.
  • the residual solvent amount of all layers is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, still more preferably 0.08% by mass or less. Therefore, a step of obtaining a multilayer polyimide film can be adopted.
  • a step of obtaining a multilayer polyimide film can be adopted.
  • the self-supporting film may be stretched.
  • the stretching may be in either the longitudinal direction of the film (MD direction) or the width direction (TD) of the film, or both.
  • Stretching in the longitudinal direction of the film can be performed by using the speed difference of the transport roll or the difference in speed between the transport roll and the speed after gripping both ends.
  • Stretching in the film width direction can be performed by widening the gripped clip or pin. Stretching and heating may be performed at the same time.
  • the draw ratio can be arbitrarily selected from 1.00 times to 2.5 times.
  • a polyimide that is difficult to stretch by itself and a polyimide that can be stretched can be combined to enable the polyimide to be stretched to a composition that is difficult to stretch, that is, easily broken by stretching.
  • Mechanical properties can be improved. Since the volume of polyimide becomes smaller during film formation due to drying or dehydration condensation, the stretching effect is exhibited even when both ends are gripped at equal intervals (stretching ratio is 1.00 times).
  • ⁇ Measurement of thickness of multilayer polyimide film> The thicknesses of the multilayer polyimide films A to F were measured using a micrometer (Millitron 1245D manufactured by Fine Wolf Co., Ltd.).
  • the multilayer polyimide film was cut into strips of 100 mm ⁇ 10 mm in the flow direction (MD direction) and the width direction (TD direction) at the time of coating, and used as test pieces.
  • Tensile tester manufactured by Shimadzu, Autograph (R) model name AG-5000A
  • the tensile elastic modulus and tensile strength are obtained in each of the MD and TD directions under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm.
  • the elongation at break were obtained, and the average value of the measured values in the MD direction and the TD direction was obtained.
  • CTE Coefficient of linear expansion
  • ⁇ Transition layer thickness> The diagonally cut surface of the film is prepared by SAICAS DN-20S type (Daipla Wintes), and then the obliquely cut surface is microscopically ATR using germanium crystal (incident angle 30 °) by microscopic IR Cary 620 FTIR (Agilent).
  • the spectrum was obtained by the method, and the increase / decrease of the characteristic peaks of each of the (a) layer and (b) layer and the slope of the composition were obtained in terms of mass ratio from the calibration line obtained in advance, and (a) layer composition / ( b)
  • the thickness in the range of 5/95 mass ratio to 95/5 mass ratio of the layer composition was determined as the transition layer thickness.
  • ⁇ Haze> The haze of the film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • Total light transmittance The total light transmittance (TT) of the film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • ⁇ Film warp> A film cut into a square having a size of 100 mm ⁇ 100 mm is used as a test piece, and the test piece is allowed to stand on a flat surface at room temperature so as to be concave, and the distances from the flat surface at the four corners (h1rt, h2rt, h3rt, h4rt: unit mm). ) was measured, and the average value was taken as the amount of warpage (mm).
  • ⁇ 10-point average roughness Rz> The surface roughness was measured by using a scanning probe microscope E-Sweep (manufactured by SII) and observing the surface morphology in DFM mode.
  • the cantilever used was DF20 (supplied by SII).
  • the first point is a point at a distance of 1 cm from the end of the test piece (100 mm ⁇ 100 mm) of the film, and the interval is 1/20 of the film width in the direction perpendicular to the film transport direction from the first point. 10 points were selected in the above, and 5 ⁇ m squares of each of the selected points were observed.
  • the number of X data and the number of Y data were 512 (number of integrations), respectively.
  • a polyamic acid solution Caa having a solid content of 25% by mass and a reduction viscosity of 1.10 dl / g was obtained.
  • 204 parts by mass of DMAc was added to the obtained polyamic acid solution Caa to dilute the polyamic acid concentration to 15% by mass, and then 1.3 parts by mass of isoquinoline was added as an imidization accelerator.
  • 12.25 parts by mass of acetic anhydride was slowly added dropwise as an imidizing agent.
  • stirring was continued for 24 hours and a chemical imidization reaction was carried out to obtain a polyimide solution Cpi.
  • the polyimide solution and the polyamic acid solution (polyimide precursor solution) obtained in the production example were formed into a film by the following method, and the optical properties and mechanical properties were measured.
  • the results are shown in Table 1.
  • a polyimide solution or a polyamic acid solution was applied to the center of a glass plate having a side of 30 cm, approximately 20 cm square, using a bar coater so that the final thickness was 25 ⁇ 2 ⁇ m, and dry nitrogen was gently poured. It was heated at 100 ° C. for 30 minutes in an inert oven, and after confirming that the residual solvent content of the coating film was 40% by mass or less, it was heated at 300 ° C. for 20 minutes in a muffle furnace substituted with dry nitrogen. Then, it is taken out from the muffle furnace, the end of the dry coating film (film) is raised with a utility knife, and it is carefully peeled from the glass to obtain a film.
  • Example 1 Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed. Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 1: Calcium fluoride particles with an average particle diameter of 0.2 ⁇ m manufactured by Stella Chemifa Co., Ltd.
  • the polyamic acid solution A in which 2 was dispersed was applied onto a temporary support film 2 (see Table 2) using a comma coater so that the final film thickness was 1 ⁇ m, and the first layer was formed. Subsequently, after 10 seconds, the inorganic filler No.
  • the polyimide solution C in which 1 was dispersed was applied on the first layer previously applied by a die coater so that the final film thickness was 23 ⁇ m to form the second layer. Furthermore, 10 seconds after the second layer was applied by the die coater, the same inorganic filler No. as the first layer was applied.
  • the polyamic acid solution A in which 2 was dispersed was applied so that the final film thickness was 1 ⁇ m, and the third layer was formed.
  • this coating method is referred to as "sequential wet / wet method”.
  • this coating method was dried in a continuous drying oven at 110 ° C. for 10 minutes to obtain a self-supporting film having a residual solvent amount of 31% by mass.
  • the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break and is unnecessary.
  • the pin sheet spacing was adjusted so as not to cause sagging, and the film was conveyed, and heated at 200 ° C. for 3 minutes, 250 ° C.
  • Examples 2 to 38 Comparative Examples 1 to 11
  • a film was produced and evaluated in the same manner as in Example 1 by combining the polyamic acid solution or polyimide solution shown in Table 1, the temporary support shown in Table 2, and the inorganic filler shown in Table 3. The results are shown in Tables 4-11.
  • a die coat was used in the case of a single layer in the comparative example. It can be seen that Comparative Example 1 and Comparative Example 2 have a higher CTE than Example 3.
  • the film was not slippery, and it was difficult to suppress the winding wrinkles when the film was wound 14 m. Therefore, the film was cut and a roll having a width of 580 mm and a length of 14 m was recovered.
  • Examples 1 to 8 and 12 to 16 relatively high light transmittance is obtained, and the haze indicating turbidity of the film is also low, however, in Examples 9 to 11 using an inorganic filler having a high refractive index. Has increased haze and decreased light transmittance. However, the yellow index is kept low, indicating that these films have a high degree of whiteness. That is, these are also films that are not transparent but are highly colorless.
  • Examples 17 to 22 are cases where the same polyimide resin component is used for the (a) layer, the (b) layer, and the (c) layer, and the inorganic filler content of each layer is changed.
  • Comparative Examples 3 to 8 are films produced so that only the layer (b) has the same film thickness, corresponding to Examples 17 to 22.
  • the CET was lower than that of the films of the same resin composition produced on the laboratory scale without the addition of the inorganic filler shown in Table 1, indicating the effect of the addition of the inorganic filler. ing.
  • Comparative Examples 3 to 8 without the layers (a) and (c) the film was broken when the self-supporting film was peeled from the temporary support base material, so that the film could be gripped by a pin. I could't do it, and I could't get a film that was good enough for evaluation.
  • the transition layer thickness could not be measured because the resin composition of each layer was the same.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed. Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3.
  • Silica particle Seahoster (registered trademark) S150 having an average particle diameter of 1.5 ⁇ m manufactured by Nippon Catalyst Co., Ltd. is first dispersed in DMAC with an attritor, and then 25% by mass with respect to the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
  • the inorganic filler No In the atmosphere air-conditioned to 25 ° C. and 45% RH, the inorganic filler No.
  • the polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2) as a temporary support so that the final film thickness was 3 ⁇ m. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 18% by mass, and the temporary support was wound into a roll.
  • This semi-dry film is called GF (green film).
  • the obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the inorganic filler No.
  • the polyimide solution C in which 3 was dispersed was applied with a die coater so that the final film thickness was 19 ⁇ m, and then dried at 110 ° C. for 10 minutes. After drying, the amount of residual solvent is 23% by mass, and the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and gripped by inserting the film end into the pin. Then, the film is conveyed by adjusting the pin sheet spacing so that the film does not break and unnecessary slack does not occur, and the final heating is 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes.
  • Example 23 shows a large warp, which is due to the film being asymmetric in the thickness direction.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution B obtained in Production Example 2.
  • 2 A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution F obtained in Production Example 6.
  • Silica particle Seahoster (registered trademark) S150 having an average particle diameter of 1.5 ⁇ m manufactured by Nippon Catalyst Co., Ltd. is first dispersed in DMAC with an attritor, and then 25% by mass with respect to the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
  • the film 2 was coated with a three-layer co-extruded T-type die under the combinations and conditions shown in Table 9. That is, the order is the inorganic filler-containing polyamic acid solution B, the inorganic filler-containing polyamic acid solution F, and the inorganic filler-free polyamic acid solution B.
  • Example 1 First, the multilayer polyimide film (actual 25) obtained in Example 25 was cut into a rectangle having a size of 360 mm ⁇ 460 mm. Next, a UV / O 3 irradiator (SKR1102N-03 manufactured by LAN Technical) was used as the film surface treatment, and the layer (a) was irradiated with UV / O 3 for 3 minutes. At this time, the distance between the UV / O3 lamp and the film was set to 30 mm.
  • a UV / O 3 irradiator SSR1102N-03 manufactured by LAN Technical
  • the glass substrate coated with the silane coupling agent is set on a roll laminator equipped with a silicone rubber roller, and first, 500 ml of pure water is dropped on the surface coated with the silane coupling agent with a dropper so as to spread over the entire substrate.
  • the surface-treated surface of the surface-treated multilayer polyimide film (actual 25) is laminated so as to face the silane coupling agent-coated surface of the glass substrate, that is, the surface wetted with pure water, and from one side of the glass substrate.
  • a temporary laminate was obtained by laminating the glass substrate and the polyimide film under pressure while sequentially extruding pure water between the polyimide film and the glass substrate with a rotating roll.
  • the laminator used was a laminator with an effective roll width of 650 mm manufactured by MCK, and the bonding conditions were air source pressure: 0.5 MPa, laminating speed: 50 mm / sec, roll temperature: 22 ° C, environmental temperature 22 ° C, humidity. It was 55% RH.
  • the obtained temporary laminate was heat-treated in a clean oven at 200 ° C. for 10 minutes to obtain a laminate composed of a multilayer polyimide film and a glass substrate.
  • a tungsten film (thickness 75 nm) was formed on the polyimide film surface of the obtained laminate by the following steps, and a silicon oxide film (thickness 150 nm) was laminated and formed as an insulating film without being exposed to the atmosphere.
  • a silicon oxide nitride film (thickness 100 nm) to be a base insulating film was formed by a plasma CVD method, and an amorphous silicon film (thickness 54 nm) was laminated and formed without being exposed to the atmosphere.
  • a TFT element was manufactured using the obtained amorphous silicon film.
  • the amorphous silicon thin film is patterned to form a silicon region having a predetermined shape, and a gate insulating film is formed, a gate electrode is formed, a source region or a drain region is formed by doping the active region, and an interlayer insulating film is formed.
  • the source electrode and the drain electrode were formed, and the activation treatment was performed to prepare an array of P-channel TFTs.
  • the polyimide film part is burnt off with a UV-YAG laser along the inside of the TFT array about 0.5 mm, and peeled off from the end of the cut by using a thin razor-shaped blade to scoop up the flexible A3 size TFT. Obtained an array.
  • the peeling was possible with a very small force, and it was possible to peel without damaging the TFT.
  • the obtained flexible TFT array did not show any deterioration in performance even when wound around a round bar having a diameter of 5 mm, and maintained good
  • Example 29 to 32 Comparative Examples 10 to 11
  • a film was produced and evaluated in the same manner as in Example 1 by combining the polyamic acid solution or polyimide solution shown in Table 10 with the inorganic filler shown in Table 10. The results are shown in Table 10. In the case of a single layer in the comparative example, a die coat was used.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1.
  • 2 A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3.
  • 1 Calcium fluoride particles with an average particle diameter of 0.2 ⁇ m manufactured by Stella Chemifa Co., Ltd.
  • the film was produced in an air-conditioned atmosphere at 25 ° C. and 45% RH using a roll-to-roll comma coater, a plurality of die coaters, a continuous drying furnace, and a heat treatment furnace.
  • the inorganic filler No. The polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2) as a temporary support using a comma coater so that the final film thickness was 1 ⁇ m, and the first layer was formed.
  • the inorganic filler No The polyimide solution C in which 1 was dispersed was applied on the first layer previously applied by a die coater so that the final film thickness was 23 ⁇ m to form the second layer. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 22% by mass, and the temporary support was wound into a roll. This semi-dry film is called GF (green film). The obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the same inorganic filler No.
  • the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break and is unnecessary.
  • the pin sheet spacing was adjusted so as not to cause sagging, and the film was conveyed, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 33) having a width of 580 mm and a length of 100 m.
  • Table 11 shows the evaluation results of the obtained film (actual 33).
  • Example 34 Similarly, a film was produced and evaluated in the same manner as in Example 31 by combining the polyamic acid solution or polyimide solution shown in Table 11, the temporary support shown in Table 2, and the inorganic filler shown in Table 3.
  • Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed. Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 1: Calcium fluoride particles with an average particle diameter of 0.2 ⁇ m manufactured by Stella Chemifa Co., Ltd. are first dispersed in DMAC with an attritor, and then added so as to be 20% by mass based on the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
  • the inorganic filler No In the atmosphere air-conditioned to 25 ° C. and 45% RH, the inorganic filler No.
  • the polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2), which is a temporary support, so that the final film thickness was 1 ⁇ m. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 18% by mass, and the temporary support was wound into a roll.
  • This semi-dry film is called GF (green film).
  • the obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the inorganic filler No.
  • the amount of residual solvent is 23% by mass, and the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and gripped by inserting the film end into the pin. Then, the film is conveyed by adjusting the pin sheet spacing so that the film does not break and unnecessary slack does not occur, and the final heating is 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes. The film was heated under the above conditions, and the required imidization reaction was allowed to proceed with drying.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 36) having a width of 510 mm and a length of 100 m.
  • Table 11 shows the evaluation results of the obtained film (actual 36).
  • films (actual 37) and (actual 38) were obtained by setting the conditions shown in Table 11.
  • the results of the same evaluation are shown in Table 11. All of them showed relatively low CTE and high transparency, and there was no particular problem in terms of mechanical strength from the viewpoint of handleability.
  • the multilayer polyimide film of the present invention has better optical properties and mechanical properties as compared with the case where polyimides having different compositions are individually filmed. Further, according to the production method of the present invention, it is possible to form a transition layer having a specific thickness and a composition gradient between layers having different compositions divided into multiple layers and sharing functions, thereby forming a well-balanced film. Is possible.
  • the multilayer polyimide film of the present invention has excellent optical properties, colorless transparency, excellent mechanical properties, and exhibits a relatively low CTE. Therefore, the film is attached to a rigid inorganic substrate such as glass on a flat surface.
  • a flexible electronic device can be produced by processing various electronic devices on the film after combining them and finally peeling them from the inorganic substrate.

Abstract

The present invention provides a colorless polyimide film which has a high tensile strength at break and a high tensile modulus of elasticity, while having a high elongation at break and a low linear expansion coefficient. This multilayer film uses a polyimide, to which less than 0.05 mass% of an inorganic filler is added, as an outer layer (a), and a polyimide, to which 1-35 mass% of an inorganic filler is added, as an inner layer (b). This multilayer polyimide film is obtained by applying a polyimide solution or polyimide precursor solution for forming the layer (a) to a provisional support, drying the solution until the solvent content reaches 5-40 mass%, subsequently applying a polyimide solution or polyimide precursor solution for forming the layer (b) to the provisional support, repeating the application in the same manner as necessary, and finally carrying out a heat treatment. A white film is obtained if an inorganic filler having a high refractive index is used for the inner layer, while a colorless transparent film is obtained if an inorganic filler having a refractive index that is close to the refractive index of a polyimide resin is used.

Description

無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法Manufacturing method of colorless multilayer polyimide film, laminate, flexible electronic device
 本発明は、無色であり、かつ低い線膨張係数と良好な機械特性を有するポリイミドフィルム、さらにそのポリイミドフィルムと無機基板との積層体、さらに積層体を経由したフレキシブル電子デバイスの製造方法に関する。 The present invention relates to a polyimide film that is colorless and has a low coefficient of linear expansion and good mechanical properties, a laminate of the polyimide film and an inorganic substrate, and a method for manufacturing a flexible electronic device via the laminate.
 ポリイミドフィルムは優れた耐熱性、良好な機械特性を有し、なおかつフレキシブルな素材として電気および電子分野にて広く使用されている。しかしながら、一般のポリイミドフィルムは黄褐色に着色しているため、表示装置などの光透過が必要な部分に適用することはできない。
 一方で表示装置は薄型化、軽量化が進み、さらにフレキシブル化が求められてきている。そのため基板材料をガラス基板からフレキシブルな高分子フィルム基板に代えようという試みが進められているが、着色しているポリイミドフィルムは、光線透過をON/OFFすることによって表示を行う液晶ディスプレイの基板材料としては使用できず、表示装置の駆動回路が搭載されるTAB,COFなどの周辺回路や、反射型表示方式ないし自発光型表示装置における背面側など、ごく一部にしか適用することができない。
Polyimide film has excellent heat resistance and good mechanical properties, and is widely used in the electric and electronic fields as a flexible material. However, since a general polyimide film is colored yellowish brown, it cannot be applied to a part such as a display device that requires light transmission.
On the other hand, display devices are becoming thinner and lighter, and further flexibility is required. Therefore, attempts are being made to replace the substrate material from a glass substrate with a flexible polymer film substrate, but the colored polyimide film is a substrate material for a liquid crystal display that displays by turning on / off light transmission. It cannot be used as a peripheral circuit such as a TAB or COF on which a drive circuit of a display device is mounted, or can be applied only to a small part such as the back side of a reflection type display system or a self-luminous display device.
 かかる背景から、無色透明のポリイミドフィルムの開発が進められている。代表的な例としてフッ素化ポリイミド樹脂や半脂環型もしくは全脂環型ポリイミド樹脂などを用いた無色透明ポリイミドフィルムを開発する試みがある(特許文献1~3)。これらのフィルムは着色が少なく、かつ透明性を有しているが、着色しているポリイミドフィルムほどには機械特性があがらず、また工業的生産、ならびに高温に暴露される用途を想定した場合、熱分解ないし酸化反応などが生じるため必ずしも無色性、透明性を保持できるとは限らない。この観点より、酸素含有量を規定した気体を噴きつけながら加熱処理する方法が提案されているが(特許文献4)、酸素濃度18%未満となる環境ではその製造コストが高く、工業的生産は極めて困難である。 Against this background, the development of colorless and transparent polyimide films is underway. As a typical example, there is an attempt to develop a colorless transparent polyimide film using a fluorinated polyimide resin, a semi-lipid ring type or a full alicyclic polyimide resin (Patent Documents 1 to 3). These films are less colored and more transparent, but do not have as mechanical properties as colored polyimide films, and are intended for industrial production and high temperature exposure applications. Since thermal decomposition or oxidation reaction occurs, it is not always possible to maintain colorlessness and transparency. From this point of view, a method of heat treatment while spraying a gas having an oxygen content has been proposed (Patent Document 4), but the manufacturing cost is high in an environment where the oxygen concentration is less than 18%, and industrial production is not possible. It's extremely difficult.
 また無色透明ポリイミドに無色のフィラー(白色顔料)を配合して、白色の耐熱フィルムとする試みがなされている(特許文献5、6)。 Attempts have also been made to obtain a white heat-resistant film by blending a colorless filler (white pigment) with a colorless transparent polyimide (Patent Documents 5 and 6).
特開平11-106508号公報Japanese Unexamined Patent Publication No. 11-106508 特開2002-146021号公報Japanese Unexamined Patent Publication No. 2002-146021 特開2002-348374号公報Japanese Unexamined Patent Publication No. 2002-348374 WO2008/146637号公報WO2008 / 146637A Gazette 特開2008-169237号公報Japanese Unexamined Patent Publication No. 2008-169237 特開2010-031258号公報Japanese Unexamined Patent Publication No. 2010-031258
 半脂環型もしくは全脂環型のポリイミドは、脂環族構造を有する単量体成分を増やすと、無色透明性は得られるが、硬脆くなり破断伸度が落ちてフィルムとしての生産は難しくなる。一方、芳香族系の単量体や、分子内にアミド結合を有する単量体を導入すれば、靭性が上がり、フィルムの機械特性は改善されるが着色しやすくなり無色透明性は低下する。樹脂成分と屈折率が近いフィラー(「無機成分)を導入することで耐熱性と無色透明性は改善され、さらに線膨張係数を下がり、加工適性は改善されるが、樹脂物性としては硬脆くなり、機械特性は低下する。ポリイミド樹脂との屈折率差が大きな物質からなるフィラーを導入することで白色の耐熱フィルムを得ることができるが、同様に高い白色度、隠蔽性を得るために十分な量を配合するとフィルムが脆くなり工業的に生産することは難しくなる。
 すなわち耐熱性、機械特性などの実用特性と、無色性(透明性ないし白色性)はトレードオフの関係にあり、すべてを満足させる無色の透明ポリイミドフィルムを製造することは非常に困難であった。
Semi-alicyclic or full-alicyclic polyimides can obtain colorless transparency by increasing the number of monomer components having an alicyclic structure, but become hard and brittle and the elongation at break decreases, making it difficult to produce as a film. Become. On the other hand, if an aromatic monomer or a monomer having an amide bond in the molecule is introduced, the toughness is increased, the mechanical properties of the film are improved, but the color is easily colored and the colorless transparency is lowered. By introducing a filler (“inorganic component)” whose refractive index is close to that of the resin component, heat resistance and colorless transparency are improved, the coefficient of linear expansion is further lowered, and processing suitability is improved, but the resin physical properties become hard and brittle. A white heat-resistant film can be obtained by introducing a filler made of a substance having a large difference in refractive index from the polyimide resin, but it is also sufficient to obtain high whiteness and hiding power. When the amount is mixed, the film becomes brittle and it becomes difficult to produce it industrially.
That is, there is a trade-off relationship between practical properties such as heat resistance and mechanical properties and colorlessness (transparency or whiteness), and it has been extremely difficult to produce a colorless transparent polyimide film that satisfies all of them.
 本発明者らは、複数のポリイミド樹脂を組み合わせることでバランスの取れたポリイミドフィルムの実現を試みた。一般に複数成分の樹脂を組み合わせて配合、ブレンド、あるいは共重合した場合には、必ずしもそれぞれの成分の良い点のみが組み合わされた結果を得ることができるとは限らず、むしろ欠点が相乗されて発現するケースが少なくない。しかしながら本発明者らは鋭意研究を続けた結果、特定の構造を形成するようにポリイミド樹脂を組み合わせてフィルム化することで、それぞれの成分の長所を十分に引き出すことができることを見出し、さらにその技術を用いてフレキシブル電子デバイスを既存の製造装置を転用して製造可能な製造方法を見出し本発明に到達した。 The present inventors tried to realize a well-balanced polyimide film by combining a plurality of polyimide resins. In general, when a combination of resins of a plurality of components is blended, blended, or copolymerized, it is not always possible to obtain a result in which only the good points of each component are combined, but rather the drawbacks are synergistically expressed. There are many cases of doing so. However, as a result of diligent research, the present inventors have found that the advantages of each component can be fully brought out by combining polyimide resins to form a film so as to form a specific structure. We have found a manufacturing method capable of manufacturing a flexible electronic device by diverting an existing manufacturing apparatus, and arrived at the present invention.
 すなわち本発明は以下の構成である。
[1]  厚さ3μm以上120μm以下、イエローインデックスが5以下であり、少なくとも(a)層と(b)層の2層を含むことを特徴とする多層ポリイミドフィルム。
 (a)層:無機フィラーの含有量が0.05質量%未満であるポリイミド組成物を含有する層、
 (b)層:無機フィラーの含有量が1質量%以上35質量%以下であるポリイミド組成物含有する層 
[2] 前記多層ポリイミドフィルムの構成が(a)/(b)/(a)の三層構造である[1]に記載の多層ポリイミドフィルム。
[3] 前記多層ポリイミドフィルムの構成が(a)/(b)/(c)の三層構造である[1]に記載の多層ポリイミドフィルム。なおここに、(c)層:無機フィラーの含有量が0.3質量%以下のポリイミド組成物を含有する層である。
[4] 全ての層のポリイミドの化学構造が同じであることを特徴とする前記[1]~[3]のいずれかに記載の多層ポリイミドフィルム。
[5] 線膨張係数が50ppm/℃以下であることを特徴とする前記[1]~[4]のいずれかに記載の多層ポリイミドフィルム。
[6] 全光線透過率が80%以上であることを特徴とする[1]~[5]のいずれかに記載の多層ポリイミドフィルム。
[7] (a)層の面と東洋紡(株)製ポリエチレンテレフタレートフィルム(PETフィルム)「コスモシャイン(登録商標)A4100」の巻内面との間の静摩擦係数が1.50以下である[1]~[6]のいずれかに記載の多層ポリイミドフィルム。
[8] (a)層の面の10点平均粗さRzが15nm以上である[1]~[7]のいずれかに記載の多層ポリイミドフィルム。
[9] 前記[1]~[8]のいずれかに記載の多層ポリイミドフィルムと無機基板を含む積層体。
[10] 前記[9]に記載の積層体の多層ポリイミドフィルム面に電子デバイスを形成し、次いで無機基板から剥離することを特徴とするフレキシブル電子デバイスの製造方法。
That is, the present invention has the following configuration.
[1] A multilayer polyimide film having a thickness of 3 μm or more and 120 μm or less, a yellow index of 5 or less, and containing at least two layers, a layer (a) and a layer (b).
(A) Layer: A layer containing a polyimide composition having an inorganic filler content of less than 0.05% by mass.
(B) Layer: A layer containing a polyimide composition having an inorganic filler content of 1% by mass or more and 35% by mass or less.
[2] The multilayer polyimide film according to [1], wherein the multilayer polyimide film has a three-layer structure of (a) / (b) / (a).
[3] The multilayer polyimide film according to [1], wherein the multilayer polyimide film has a three-layer structure of (a) / (b) / (c). Here, the layer (c): a layer containing a polyimide composition having an inorganic filler content of 0.3% by mass or less.
[4] The multilayer polyimide film according to any one of [1] to [3] above, wherein the polyimides of all layers have the same chemical structure.
[5] The multilayer polyimide film according to any one of [1] to [4] above, wherein the linear expansion coefficient is 50 ppm / ° C. or less.
[6] The multilayer polyimide film according to any one of [1] to [5], which has a total light transmittance of 80% or more.
[7] The coefficient of static friction between the surface of the layer (a) and the inner surface of the polyethylene terephthalate film (PET film) "Cosmo Shine (registered trademark) A4100" manufactured by Toyobo Co., Ltd. is 1.50 or less [1]. The multilayer polyimide film according to any one of [6].
[8] The multilayer polyimide film according to any one of [1] to [7], wherein the 10-point average roughness Rz of the surface of the layer (a) is 15 nm or more.
[9] A laminate containing the multilayer polyimide film according to any one of [1] to [8] and an inorganic substrate.
[10] A method for manufacturing a flexible electronic device, which comprises forming an electronic device on the multilayer polyimide film surface of the laminate according to the above [9], and then peeling it from an inorganic substrate.
 本発明ではさらに以下の構成を含んでも良い。
[11]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[12]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
4:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[13]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:塗膜a1b1作製後100秒以内に、(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1b1に塗布し、塗膜a1b1a1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[14]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:塗膜a1b1作製後100秒以内に、(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1b1に塗布し、塗膜a1b1a1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
5:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
The present invention may further include the following configurations.
[11] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] to [8], which comprises at least.
[12] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a laminate having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
4: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] to [8], which comprises at least.
[13] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of applying (a) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1b1 within 100 seconds after producing the coating film a1b1 to obtain the coating film a1b1a1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[14] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of applying (a) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1b1 within 100 seconds after producing the coating film a1b1 to obtain the coating film a1b1a1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
5: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
 本発明ではさらに以下の構成を含んでも良い。
[15]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[16]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
5:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[17]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1を乾燥させ、全層基準の残溶剤量が5~40質量%である塗膜a2b2を得る工程、
5:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b2に塗布し、塗膜a2b2a1を得る工程、
6:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[18]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1を乾燥させ、全層基準の残溶剤量が5~40質量%である塗膜a2b2を得る工程、
5:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b2に塗布し、塗膜a2b2a1を得る工程、
6:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
7:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
The present invention may further include the following configurations.
[15] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] to [8], which comprises at least.
[16] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
5: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] to [8], which comprises at least.
[17] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of drying the coating film a2b1 to obtain a coating film a2b2 having a residual solvent amount of 5 to 40% by mass based on all layers.
5: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b2 to obtain the coating film a2b2a1.
6: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[18] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of drying the coating film a2b1 to obtain a coating film a2b2 having a residual solvent amount of 5 to 40% by mass based on all layers.
5: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b2 to obtain the coating film a2b2a1.
6: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
7: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
 本発明ではさらに以下の構成を含んでも良い。
[19]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:塗膜a1b1作製後100秒以内に、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1b1に塗布し、塗膜a1b1c1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[20]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:塗膜a1b1作製後100秒以内に、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1b1に塗布し、塗膜a1b1c1を得る工程、
4:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
5:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[21]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1を乾燥させ、全層基準の残溶剤量が5~40質量%である塗膜a2b2を得る工程、
5:(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b2に塗布し、塗膜a2b2c1を得る工程、
6:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[22]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体上に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1を乾燥させ、全層基準の残溶剤量が5~40質量%である塗膜a2b2を得る工程、
5:(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b2に塗布し、塗膜a2b2c1を得る工程、
6:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
7:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
The present invention may further include the following configurations.
[19] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 within 100 seconds after the coating film a1 is produced to obtain the coating film a1b1.
3: A step of applying (c) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1b1 within 100 seconds after producing the coating film a1b1 to obtain the coating film a1b1c1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[20] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 within 100 seconds after the coating film a1 is produced to obtain the coating film a1b1.
3: A step of applying (c) a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1b1 within 100 seconds after producing the coating film a1b1 to obtain the coating film a1b1c1.
4: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
5: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[21] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of drying the coating film a2b1 to obtain a coating film a2b2 having a residual solvent amount of 5 to 40% by mass based on the total layer.
5: (c) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b2 to obtain the coating film a2b2c1.
6: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[22] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution onto a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: A step of drying the coating film a2b1 to obtain a coating film a2b2 having a residual solvent amount of 5 to 40% by mass based on the total layer.
5: (c) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b2 to obtain the coating film a2b2c1.
6: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
7: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
 本発明ではさらに以下の構成を含んでも良い。
[23]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である塗膜(a1b1)2を得る工程、
4:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜(a1b1)2に塗布し、塗膜(a1b1)2a1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[24]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である塗膜(a1b1)2を得る工程、
4:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜(a1b1)2に塗布し、塗膜(a1b1)2a1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
6:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[25]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である塗膜(a1b1)2を得る工程、
4:(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜(a1b1)2に塗布し、塗膜(a1b1)2c1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[3]~[8]ののいずれかに記載の多層ポリイミドフィルムの製造方法。
[26]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1作製後100秒以内に、(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a1に塗布し、塗膜a1b1を得る工程、
3:全層を加熱し、全層基準の残溶剤量が5質量%以上40質量%である塗膜(a1b1)2を得る工程、
4:(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜(a1b1)2に塗布し、塗膜(a1b1)2c1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
6:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[3]~[8]ののいずれかに記載の多層ポリイミドフィルムの製造方法。
The present invention may further include the following configurations.
[23] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
4: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film (a1b1) 2 to obtain the coating film (a1b1) 2a1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[24] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
4: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film (a1b1) 2 to obtain the coating film (a1b1) 2a1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
6: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[25] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
4: (c) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film (a1b1) 2 to obtain the coating film (a1b1) 2c1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[26] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: Within 100 seconds after the coating film a1 is produced, (b) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a1 to obtain a coating film a1b1.
3: A step of heating all layers to obtain a coating film (a1b1) 2 having a residual solvent amount of 5% by mass or more and 40% by mass based on all layers.
4: (c) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film (a1b1) 2 to obtain the coating film (a1b1) 2c1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
6: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
 本発明ではさらに以下の構成を含んでも良い。
[27]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1作製後100秒以内に、(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b1に塗布し、塗膜a2b1a1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[28]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1作製後100秒以内に、(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b1に塗布し、塗膜a2b1a1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
6:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[2]、[4]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[29]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1作製後100秒以内に、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b1に塗布し、塗膜a2b1c1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[30]1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を仮支持体に塗布し、塗膜a1を得る工程、
2:塗膜a1を乾燥させ、残溶剤量が5~40質量%である塗膜a2を得る工程、
3:(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2に塗布し、塗膜a2b1を得る工程、
4:塗膜a2b1作製後100秒以内に、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗膜a2b1に塗布し、塗膜a2b1c1を得る工程、
5:全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
6:前記自己支持性のあるフィルムの両端を把持し、さらに加熱し、全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、
を少なくとも含む[1]、[3]~[8]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[31] 前記[11]~[30]における1と2を繰り返して5層以上の奇数層とすることを特徴とする多層ポリイミドフィルムの製造方法。
[32] (a)層の厚さがフィルム総厚さの25%以下であることを特徴とする[1]~[6]に記載の多層ポリイミドフィルム。ただし(a)層が複数ある場合には(a)層の厚さの総計がフィルム総厚さの1%以上、好ましくは2%以上、さらに好ましくは4%以上であり、25%以下、好ましくは13%以下、さらに好ましくは7%以下であることを特徴とする[1]~[6]に記載の多層ポリイミドフィルム。
[33] (a)層の厚さと(c)層の厚さの合計がフィルム総厚さの25%以下であることを特徴とする[3]~[6]に記載の多層ポリイミドフィルム。
[34] (a)層形成用のポリイミド溶液またはポリイミド前駆体溶液、および(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を、仮支持体上に同時に塗布した後、全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程を少なくとも含む[1]~[8]、[22]、[23]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[35] (a)層形成用のポリイミド溶液またはポリイミド前駆体溶液、および(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液を、仮支持体上に同時に塗布した後、全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムとした後に、自己支持性のあるフィルムの両端を把持して加熱し、さらに全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、を少なくとも含む[1]~[8]、[32]、[33]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[36] (a)層形成用のポリイミド溶液またはポリイミド前駆体溶液、および(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を、仮支持体上に同時に塗布した後、全層を加熱し、全層基準の残溶剤量が0.5質量%以下である積層体を得る工程を少なくとも含む[3]~[8]、[32]、[33]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[37] (a)層形成用のポリイミド溶液またはポリイミド前駆体溶液、および(b)層形成用のポリイミド溶液またはポリイミド前駆体溶液、(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を、仮支持体上に同時に塗布した後、全層を加熱し、全層基準の残溶剤量が8質量%以上40質量%である積層体を得た後、仮支持体から剥離し、自己支持性のあるフィルムとした後に、自己支持性のあるフィルムの両端を把持して加熱し、さらに全層基準の残溶剤量が0.5質量%以下であるフィルムを得る工程、を少なくとも含む[3]~[8]、[32]、[33]のいずれかに記載の多層ポリイミドフィルムの製造方法。
[38] 仮支持体のポリイミド溶液またはポリイミド前駆体溶液が接する面の10点平均粗さRzが20nm以上である[11]~[37]のいずれかに記載の多層ポリイミドフィルムの製造方法。
The present invention may further include the following configurations.
[27] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: Within 100 seconds after the coating film a2b1 is produced, (a) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b1 to obtain a coating film a2b1a1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[28] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: Within 100 seconds after the coating film a2b1 is produced, (a) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b1 to obtain a coating film a2b1a1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
6: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1], [2], [4] to [8], which comprises at least.
[29] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: Within 100 seconds after the coating film a2b1 is produced, (c) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b1 to obtain a coating film a2b1c1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[30] 1: (a) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to a temporary support to obtain a coating film a1.
2: A step of drying the coating film a1 to obtain a coating film a2 having a residual solvent amount of 5 to 40% by mass.
3: (b) A step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2 to obtain the coating film a2b1.
4: Within 100 seconds after the coating film a2b1 is produced, (c) a step of applying a polyimide solution for forming a layer or a polyimide precursor solution to the coating film a2b1 to obtain a coating film a2b1c1.
5: A step of heating all layers to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on all layers, and then peeling from the temporary support to obtain a self-supporting film.
6: A step of grasping both ends of the self-supporting film and further heating to obtain a film having a residual solvent amount of 0.5% by mass or less based on all layers.
The method for producing a multilayer polyimide film according to any one of [1] and [3] to [8], which comprises at least.
[31] A method for producing a multilayer polyimide film, which comprises repeating 1 and 2 in the above [11] to [30] to form an odd-numbered layer of 5 or more layers.
[32] The multilayer polyimide film according to [1] to [6], wherein the thickness of the layer (a) is 25% or less of the total thickness of the film. However, when there are a plurality of (a) layers, the total thickness of the (a) layer is 1% or more, preferably 2% or more, more preferably 4% or more, preferably 25% or less, preferably the total thickness of the film. The multilayer polyimide film according to [1] to [6], wherein is 13% or less, more preferably 7% or less.
[33] The multilayer polyimide film according to [3] to [6], wherein the total of the thickness of the layer (a) and the thickness of the layer (c) is 25% or less of the total thickness of the film.
[34] (a) A polyimide solution or a polyimide precursor solution for forming a layer, and (b) a polyimide solution or a polyimide precursor solution for forming a layer are simultaneously applied onto a temporary support, and then the entire layer is heated. The multilayer polyimide film according to any one of [1] to [8], [22], and [23], which comprises at least a step of obtaining a laminate having a residual solvent amount of 0.5% by mass or less based on the total layer. Production method.
[35] (a) A polyimide solution or a polyimide precursor solution for forming a layer, and (b) a polyimide solution or a polyimide precursor solution for forming a layer are simultaneously applied onto a temporary support, and then the entire layer is heated. After obtaining a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on the total layer, the film is peeled off from the temporary support to form a self-supporting film, and then both ends of the self-supporting film. Any one of [1] to [8], [32], and [33], which comprises at least a step of grasping and heating the film to obtain a film having a residual solvent amount of 0.5% by mass or less based on the total layer. The method for producing a multilayer polyimide film according to.
[36] (a) a polyimide solution or a polyimide precursor solution for forming a layer, (b) a polyimide solution or a polyimide precursor solution for forming a layer, and (c) a polyimide solution or a polyimide precursor solution for forming a layer. [3] to [8], [32], which include at least a step of simultaneously applying on the temporary support and then heating the entire layer to obtain a laminate having a residual solvent amount of 0.5% by mass or less based on the total layer. ], The method for producing a multilayer polyimide film according to any one of [33].
[37] (a) a polyimide solution or a polyimide precursor solution for forming a layer, (b) a polyimide solution or a polyimide precursor solution for forming a layer, and (c) a polyimide solution or a polyimide precursor solution for forming a layer. After being applied onto the temporary support at the same time, all layers are heated to obtain a laminate having a residual solvent amount of 8% by mass or more and 40% by mass based on the total layer, and then peeled off from the temporary support to have self-supporting property. At least a step of grasping and heating both ends of the self-supporting film to obtain a film having a residual solvent amount of 0.5% by mass or less based on the total layer is included [3]. The method for producing a multilayer polyimide film according to any one of [8], [32], and [33].
[38] The method for producing a multilayer polyimide film according to any one of [11] to [37], wherein the 10-point average roughness Rz of the surface of the temporary support in contact with the polyimide solution or the polyimide precursor solution is 20 nm or more.
 本発明における(b)層のポリイミド組成物は、無機フィラーを含有することにより低CTEである。さらに樹脂との屈折率差が大きな無機フィラーを用いた場合には高隠蔽な白色フィルムとなる。しかしながら、無機フィラー未添加の樹脂に比較してCTEが5ppm/℃以上低下するレベルに無機フィラーを添加したポリイミド組成物や、十分な隠蔽性を有するレベルに無機フィラーを添加したポリイミド組成物は脆くなる傾向が強く、工業生産レベル、すなわち長尺の連続フィルムとして製造することが極めて困難となることがある。
 本発明では、無機フィラーの含有量が少ない(a)層のポリイミド組成物、さらに好ましくは(c)層のポリイミド組成物と組み合わせて多層化し、外層の無機フィラーを少なく、内層の無機フィラーを多くすることでフィルム物性の全体バランスをとりつつ、工業生産レベルで製造可能な透明耐熱フィルムを実現している。
 ポリイミドフィルムはポリイミド溶液ないしポリイミド前駆体の溶液を支持体に塗布し、乾燥させ、必要に応じて化学反応を行わせて得られる。
 本発明では複数の成分の溶液を、一成分ごとに先に塗布した層が乾燥する前に次の層を塗布することにより、塗布された層間に組成が傾斜した遷移層を形成することができる。かかる遷移層は、一成分ごとに塗布と、流動性を喪失して半固体化するに至るまでの乾燥とを繰り返して多層構造を形成し、必要な層を形成した後に最終的な加熱により乾燥および必要に応じて化学反応を行い、固体のフィルムを得る工程でも形成することができる。ポリイミドは化学的に安定であるため、例えば第一のポリイミド組成物層上に異なる組成(あるいは同じ化学組成でもよいが)の第二のポリイミドの溶液ないしポリイミド前駆体溶液を塗布して加熱乾燥ないし触媒作用等により固体のポリイミド被膜を得たとしても、第一のポリイミド層と第二のポリイミド層の間に化学的な結合が生じないために、界面の接着強度が弱く、層間で剥離しやすいフィルムしか得ることができない。
 しかしながら、本発明の様に、先に塗布した層(第一のポリイミド組成物層)が未乾燥の状態、ないし半乾燥の状態で、第二のポリイミド組成物層を塗布する操作を繰り返せば、先に塗布された部分の溶剤濃度は低く、後から塗布された部分の溶剤濃度は高いため、濃度勾配により境界面を跨いだ溶剤の拡散が生じ、同時に溶解しているポリイミドも溶媒に追随して移動しようとする。そのため境界面近傍において微視的な流動混合が生じ、化学組成が傾斜した極薄い遷移層が形成される。かかる遷移層が物性の異なる層と層の間に生じる応力などのミスマッチを緩衝すると同時に層間の強い接合強度を発現させ、安定した特性バランスの良い多層フィルムを得ることができる。
The polyimide composition of the layer (b) in the present invention has a low CTE by containing an inorganic filler. Further, when an inorganic filler having a large difference in refractive index from the resin is used, a highly concealed white film is obtained. However, the polyimide composition in which the inorganic filler is added to a level where the CTE is lowered by 5 ppm / ° C. or more as compared with the resin to which the inorganic filler is not added, and the polyimide composition in which the inorganic filler is added to a level having sufficient concealing property are brittle. It can be extremely difficult to produce as an industrial production level, that is, a long continuous film.
In the present invention, the polyimide composition of the (a) layer, which has a low content of the inorganic filler, is more preferably combined with the polyimide composition of the (c) layer to form a multilayer, the outer layer has less inorganic filler, and the inner layer has more inorganic filler. By doing so, we have realized a transparent heat-resistant film that can be manufactured at the industrial production level while maintaining the overall balance of film physical characteristics.
The polyimide film is obtained by applying a polyimide solution or a solution of a polyimide precursor to a support, drying it, and subjecting it to a chemical reaction as necessary.
In the present invention, by applying a solution of a plurality of components to the next layer before the previously applied layer for each component dries, a transition layer having a slanted composition can be formed between the applied layers. .. The transition layer is formed by repeating coating of each component and drying until it loses fluidity and becomes semi-solid, and after forming the necessary layer, it is dried by final heating. It can also be formed in the step of obtaining a solid film by performing a chemical reaction as needed. Since polyimide is chemically stable, for example, a second polyimide solution or a polyimide precursor solution having a different composition (or the same chemical composition may be used) is applied onto the first polyimide composition layer and dried by heating. Even if a solid polyimide film is obtained by catalytic action or the like, since no chemical bond is formed between the first polyimide layer and the second polyimide layer, the adhesive strength at the interface is weak and the layers are easily peeled off. Only film can be obtained.
However, if the operation of applying the second polyimide composition layer is repeated while the previously applied layer (first polyimide composition layer) is undried or semi-dried as in the present invention, Since the solvent concentration of the previously applied part is low and the solvent concentration of the later applied part is high, the solvent diffuses across the boundary surface due to the concentration gradient, and the polyimide dissolved at the same time follows the solvent. Try to move. Therefore, microscopic flow mixing occurs in the vicinity of the boundary surface, and an ultrathin transition layer having an inclined chemical composition is formed. Such a transition layer cushions mismatches such as stress generated between layers having different physical properties, and at the same time develops strong bonding strength between layers, so that a stable multilayer film with a good balance of characteristics can be obtained.
 本発明の多層ポリイミドフィルムは、厚さ3μm以上120μm以下である。機械特性が良好となることから好ましくは4μm以上であり、より好ましくは5μm以上であり、さらに好ましくは8μm以上である。また、透明性が良好となることから100μm以下であることが好ましく、より好ましくは80μm以下であり、さらに好ましくは60μm以下である。 The multilayer polyimide film of the present invention has a thickness of 3 μm or more and 120 μm or less. It is preferably 4 μm or more, more preferably 5 μm or more, and further preferably 8 μm or more because the mechanical properties are good. Further, it is preferably 100 μm or less, more preferably 80 μm or less, and further preferably 60 μm or less because the transparency becomes good.
 本発明の多層ポリイミドフィルムは、イエローインデックスが5以下である。透明性が良好となることから好ましくは4以下であり、より好ましくは3.5以下であり、さらに好ましくは3以下である。イエローインデックスは低い方が良いため下限は特に限定されないが、工業的には0.1以上であれば良く、0.2以上であっても差し支えない。 The multilayer polyimide film of the present invention has a yellow index of 5 or less. It is preferably 4 or less, more preferably 3.5 or less, and further preferably 3 or less because the transparency is good. Since the lower the yellow index is, the lower limit is not particularly limited, but industrially, it may be 0.1 or more, and 0.2 or more may be used.
 本発明の多層ポリイミドフィルムは、線膨張係数が50ppm/℃以下であることが好ましい。より好ましくは45ppm/℃以下であり、さらに好ましくは40ppm/℃以下である。下限は特に限定されないが、工業的には、1ppm/℃以上であれば十分であり、5ppm/℃以上でも差し支えない。 The multilayer polyimide film of the present invention preferably has a coefficient of linear expansion of 50 ppm / ° C. or less. It is more preferably 45 ppm / ° C. or lower, and even more preferably 40 ppm / ° C. or lower. The lower limit is not particularly limited, but industrially, 1 ppm / ° C. or higher is sufficient, and 5 ppm / ° C. or higher may be used.
 本発明の多層ポリイミドフィルムは、全光線透過率が86%以上であることが好ましい。透明性が良好となることから好ましくは87%以上であり、より好ましくは88%以上であり、さらに好ましくは89%以上である。上限は特に限定されないが、工業的には99%以下であれば良く、98%以下であっても差し支えない。 The multilayer polyimide film of the present invention preferably has a total light transmittance of 86% or more. It is preferably 87% or more, more preferably 88% or more, and further preferably 89% or more because the transparency becomes good. The upper limit is not particularly limited, but industrially, it may be 99% or less, and may be 98% or less.
 本発明では少なくとも二種類のポリイミド組成物を用いる。
 一方のポリイミド組成物は少なくともポリイミド樹脂と無機フィラーを含有し、他方のポリイミド組成物はポリイミド樹脂を含み、無機フィラーの含有は任意である。
 本発明におけるポリイミド溶液ないしポリイミド前駆体溶液は、少なくともポリイミド樹脂ないしポリイミド前駆体と溶剤を含有する。さらに無機フィラーが添加された層を形成する場合には、あらかじめ無機フィラーを分散した溶液を用いる。
 ポリイミド樹脂(以下、単にポリイミドとも記す)とは一般にテトラカルボン酸無水物とジアミンとの縮重合反応により得られる高分子である。
In the present invention, at least two kinds of polyimide compositions are used.
One polyimide composition contains at least a polyimide resin and an inorganic filler, and the other polyimide composition contains a polyimide resin, and the inclusion of the inorganic filler is optional.
The polyimide solution or polyimide precursor solution in the present invention contains at least a polyimide resin or a polyimide precursor and a solvent. Further, when forming a layer to which the inorganic filler is added, a solution in which the inorganic filler is dispersed in advance is used.
The polyimide resin (hereinafter, also simply referred to as polyimide) is a polymer generally obtained by a depolymerization reaction of a tetracarboxylic acid anhydride and a diamine.
 本発明で好ましく用いられるポリイミドとして、脂環族テトラカルボン酸無水物を70質量%以上含有するテトラカルボン酸無水物と、分子内にアミド結合を有するジアミンを70質量%以上含有するジアミンとの縮重合により得られるポリイミド、または脂環族テトラカルボン酸無水物を70質量%以上含有するテトラカルボン酸無水物と、トリフルオロメチル基を分子内に有するジアミンを70質量%以上含有するジアミンとの縮重合により得られるポリイミドを例示できる。
 また本発明で好ましく用いられるポリイミドとして、芳香族テトラカルボン酸無水物を70質量%以上含有するテトラカルボン酸無水物と、少なくとも分子内にイオウ原子を有するジアミンを70質量%以上含有するジアミンから得られるポリイミド、または、少なくともトリフルオロメチル基を分子内に含有するテトラカルボン酸を30質量%以上含有するテトラカルボン酸無水物と、少なくともトリフルオロメチル基を分子内に有するジアミンを70質量%以上含有するジアミンとの縮重合により得られるポリイミドを例示できる。
As the polyimide preferably used in the present invention, a shrinkage of a tetracarboxylic acid anhydride containing 70% by mass or more of an alicyclic tetracarboxylic acid anhydride and a diamine containing 70% by mass or more of a diamine having an amide bond in the molecule. Shrinkage of a polyimide obtained by polymerization or a tetracarboxylic acid anhydride containing 70% by mass or more of an alicyclic tetracarboxylic acid anhydride and a diamine containing 70% by mass or more of a diamine having a trifluoromethyl group in the molecule. The polyimide obtained by polymerization can be exemplified.
Further, as the polyimide preferably used in the present invention, it is obtained from a tetracarboxylic acid anhydride containing 70% by mass or more of an aromatic tetracarboxylic acid anhydride and a diamine containing at least 70% by mass of a diamine having a sulfur atom in the molecule. Polyimide, or a tetracarboxylic acid anhydride containing at least 30% by mass of a tetracarboxylic acid containing a trifluoromethyl group in the molecule, and 70% by mass or more of a diamine having at least a trifluoromethyl group in the molecule. An example can be exemplified of the polyimide obtained by the condensation polymerization with the diamine.
 本発明における脂環族テトラカルボン酸無水物としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。 Examples of the alicyclic tetracarboxylic acid anhydride in the present invention include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid and 1,2,3,4-cyclohexane. Tetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6 -Tetracarboxylic acid, bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetra Carboxylic acid, tetrahydroanthracene-2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, Decahydronaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4: 5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4-ethano- 5,8-methanonaphthalene-2,3,6,7-tetracarboxylic acid, norbornan-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornan-5,5'',6 6''-Tetracarboxylic acid (also known as "norbornan-2-spiriro-2'-cyclopentanone-5'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid" ), Methylnorbornan-2-spiro-α-cyclopentanone-α'-spiro-2''-(methylnorbornan) -5,5'',6,6''-tetracarboxylic acid, norbornan-2-spiro -Α-Cyclohexanone-α'-Spiro-2''-Norbornane-5,5'', 6,6''-Tetracarboxylic acid (also known as "norbornan-2-spiriro-2'-cyclohexanone-6'-spiro-" 2''-norbornan-5,5'', 6,6''-tetracarboxylic acid "), methylnorbornan-2-spiro-α-cyclohexanone-α'-spiro-2''-(methylnorbornan) -5 , 5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclopropanol-α'-spiro-2''-norbornan-5,5'', 6,6''- Tetracarboxylic acid, norbornan-2-spiro-α-cyclobutanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclo Heptanone -Α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclooctanone-α'-spiro-2''-norbornan -5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclononanonone-α'-spiro-2''-norbornan-5,5'', 6,6''- Tetracarboxylic acid, norbornan-2-spiro-α-cyclodecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclo Undecanone-α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclododecanone-α'-spiro-2'' -Norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornan-5,5'', 6, 6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclotetradecanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan- 2-Spiro-α-Cyclopentadecanone-α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α- (methylcyclopenta) Non) -α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α- (methylcyclohexanone) -α'-spiro-2' Examples thereof include tetracarboxylic acids such as'-norbornan-5,5'', 6,6''-tetracarboxylic acid, and acid anhydrides thereof. Among these, dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic acid are preferable. Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred. These may be used alone or in combination of two or more.
 本発明における芳香族テトラカルボン酸無水物としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Examples of the aromatic tetracarboxylic acid anhydride in the present invention include 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid, 4,4'-oxydiphthalic acid, and bis (1,3-dioxo-1,3). -Dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis (1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl) benzene-1,4-dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (benzene-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid Acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (toluene-2, 5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (1,4-xylene-2) , 5-Diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (4) -Isopropyl-toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1) -Diyl) bis (naphthalene-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-1,1-dioxide) -3,3-diyl) bis (benzene-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3H-2,1-) Benzoxathiol-1,1-dioxide-3,3-diyl) bis (toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[(3H-2,1-benz) Oxathiol-1,1-dioxide-3,3-diyl) bis (1,4-xylene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'- (3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) Bis (4-isopropyl-toluene-2,5-diyloxy)] Dibenzene-1,2-dicarboxylic acid, 4,4 '-[4,4'-(3H-2,1-benzoxati) All-1,1-dioxide-3,3-diyl) bis (naphthalen-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 3 , 3', 4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3 ', 4'-biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] diphthalic acid, 4,4'- [Spiro (xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl)] Tetracarboxylic acids such as diphthalic acid and acid anhydrides thereof can be mentioned. The aromatic tetracarboxylic acids may be used alone or in combination of two or more.
 本発明では、テトラカルボン酸無水物に加えてトリカルボン酸、ジカルボンサン酸を用いても良い。
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。
In the present invention, tricarboxylic acid and dicarboxylic acid may be used in addition to tetracarboxylic acid anhydride.
Examples of the tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid. An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimeric acid, ethylene glycol bistrimericte, propylene glycol bistrimerite, 1,4-butanediol bistrimerite and polyethylene glycol bistrimerite. Glycol bistrimerictes and their monoanhydrides, esterified products and the like. Among these, monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of the dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid. Hydrogen additives, oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid acidates thereof. Alternatively, an esterified product or the like can be mentioned. Of these, aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable. The dicarboxylic acids may be used alone or in combination of two or more.
 本発明における分子内にアミド結合を有するジアミンとしては、芳香族ジアミン、脂環族アミンを主に用いることができる。
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。
As the diamine having an amide bond in the molecule in the present invention, aromatic diamines and alicyclic amines can be mainly used.
Examples of aromatic diamines include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'- Bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N- (4-aminophenyl) benzamide, 3,3'-diaminodiphenyl ether , 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-trifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfur, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4 '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-Aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1 , 3-Bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophenoxy) phenyl] butane , 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- (4-aminophenoxy) ) Phenyl] butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] propane, 2,2-bis [4- (4-amino) Phenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-Aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-) Aminophenoxy) Biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [4 -(4-Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1,3-bis [4- (4- (4- (4-) Aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 4,4'-bis [ (3-Aminophenoxy) Benzene] Benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) phenyl] propane, 3,4' -Diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] Methan, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2-bi Su [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4'-bis [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4 '-Bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-Amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] sulfone, 1,4-bis [4- (4-aminophenoxy) Phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6) -Trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluorophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [ 4- (4-Amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3'-diamino-4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3, 3'-Diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3 '-Diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3,3'- Diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1, 3-Bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoyl) Xybenzoyl) benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino-) 4-Bifenoxybenzoyl) Benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [ 4- (4-Amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, 4,4'-[9H-fluoren-9,9-diyl] bisaniline (also known as "9,9-bis (4-aminophenyl)) Fluorene "), Spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthen-9,9'-fluorene) -2,6- Diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl)] bisaniline, 5-amino-2- (p-aminophenyl) Benzeneoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5-amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2, 2'-p-phenylenebis (5-aminobenzoxazole), 2,2'-p-phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazolo) -4- (6-aminobenzoxol) Oxazolo) Benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole, 2,6- (3,4-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2, 6- (3,4'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole, 2,6- (3,3'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,3-'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole and the like can be mentioned. Further, a part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, the carbon number 1 may be substituted. A part or all of the hydrogen atom of the alkyl group or the alkoxyl group of ~ 3 may be substituted with a halogen atom.
 脂環族ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)、9,10-ビス(4-アミノフェニル)アデニン、2,4-ビス(4-アミノフェニル)シクロブタン-1,3-ジカルボン酸ジメチル、等が挙げられる。 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl. Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-Diamino-2-tert-butylcyclohexane, 4,4'-methylenebis (2,6-dimethylcyclohexylamine), 9,10-bis (4-aminophenyl) adenine, 2,4-bis (4-) Aminophenyl) cyclobutane-1,3-dimethyl dicarboxylate, and the like can be mentioned.
 本発明においてポリイミド組成物に用いられる無機フィラーとしては、電気絶縁性の無機物の微粒子が好ましい。また線膨張係数が0~15ppm/℃の無機物からなる微粒子が好ましい。より好ましくは線膨張係数が1~14ppm/℃の無機物からなる微粒子であり、さらに好ましくは2~13ppm/℃の無機物からなる微粒子である。具体的には酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム、酸化スズ、酸化チタン、酸化カルシウムなどの金属酸化物、フッ化カルシウムなどの金属フッ化物、硫化亜鉛などの金属硫化物、硫酸カルシウム、硫酸バリウムなどの金属硫酸塩、リン酸カルシウムなどのリン酸塩、塩基性モリブデン酸亜鉛、塩基性モリブデン酸カルシウム亜鉛、モリブデンホワイト、硝酸塩などの微粒子を用いることができる。中でも酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム、酸化スズ、ルチル型酸化チタン、フッ化カルシウム、硫酸バリウムまたはリン酸カルシウムが好ましい。 As the inorganic filler used in the polyimide composition in the present invention, electrically insulating inorganic fine particles are preferable. Further, fine particles made of an inorganic substance having a coefficient of linear expansion of 0 to 15 ppm / ° C. are preferable. More preferably, the fine particles are made of an inorganic substance having a linear expansion coefficient of 1 to 14 ppm / ° C., and more preferably, the fine particles are made of an inorganic substance having a linear expansion coefficient of 2 to 13 ppm / ° C. Specifically, metal oxides such as aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, tin oxide, titanium oxide and calcium oxide, metal fluorides such as calcium fluoride, and metal sulfides such as zinc sulfide, Metallic sulfates such as calcium sulfate and barium sulfate, phosphates such as calcium phosphate, and fine particles such as basic zinc molybdate, zinc basic calcium molybdate, molybdenum white, and nitrate can be used. Of these, aluminum oxide, silicon oxide, magnesium oxide, zinc oxide, zirconium oxide, tin oxide, rutile-type titanium oxide, calcium fluoride, barium sulfate or calcium phosphate are preferable.
 本発明では屈折率の高い物質からなる無機フィラー、好ましくは波長550nmの25℃における屈折率が1.98以上の物質からなる無機フィラーを用いると、非常に白色度の高いフィルムを得ることができる。白色度がより向上することから、より好ましい屈折率は1.99以上であり、さらに好ましくは2.00以上である。このような無機フィラー屈折率の下限は特に限定されないが、4以下が好ましく、より好ましくは3以下である。
 また、本発明では、波長550nm、25℃における屈折率が1.4以上1.98未満の物質からなる無機フィラーを用いることで、フィルムの全光線透過率を高く、好ましくは80%以上、さらに好ましくは85%以上に高めることができ、いわゆる無色透明のフィルムを得ることができる。無色透明性がより向上することから、より好ましい屈折率は1.42以上1.97以下であり、さらに好ましくは1.44以上1.96以下である。さらにポリイミド樹脂と無機フィラーの屈折率の差を0.1以内とすることでヘイズ値が5以下のフィルムを得ることができる。
 本発明で用いられる無機フィラーの粒子の平均径の下限は10nmであることが好ましく、より好ましくは20nmであり、さらに好ましくは50nmである。また上限は5μmであることが好ましく、より好ましくは1.5μmであり、さらに好ましくは0.3μmである。所定範囲の無機フィラーを用いることにより、平面性の良いフィルムを得ることができる。また0.3μm以下の粒子を用いた場合には特に光透過性の良いフィルムを得ることができる。
In the present invention, an inorganic filler made of a substance having a high refractive index, preferably an inorganic filler made of a substance having a refractive index of 1.98 or more at a wavelength of 550 nm at 25 ° C., can be used to obtain a film having a very high whiteness. .. Since the whiteness is further improved, the refractive index is more preferably 1.99 or more, still more preferably 2.00 or more. The lower limit of the refractive index of such an inorganic filler is not particularly limited, but is preferably 4 or less, and more preferably 3 or less.
Further, in the present invention, by using an inorganic filler made of a substance having a refractive index of 1.4 or more and less than 1.98 at a wavelength of 550 nm and 25 ° C., the total light transmittance of the film is increased, preferably 80% or more, and further. It can be preferably increased to 85% or more, and a so-called colorless and transparent film can be obtained. Since the colorless transparency is further improved, the refractive index is more preferably 1.42 or more and 1.97 or less, and further preferably 1.44 or more and 1.96 or less. Further, by setting the difference in refractive index between the polyimide resin and the inorganic filler to 0.1 or less, a film having a haze value of 5 or less can be obtained.
The lower limit of the average diameter of the particles of the inorganic filler used in the present invention is preferably 10 nm, more preferably 20 nm, and even more preferably 50 nm. The upper limit is preferably 5 μm, more preferably 1.5 μm, and even more preferably 0.3 μm. By using an inorganic filler in a predetermined range, a film having good flatness can be obtained. Further, when particles of 0.3 μm or less are used, a film having particularly good light transmission can be obtained.
 本発明の多層ポリイミドフィルムは少なくとも(a)層と(b)層の2層を含む。(a)層は無機フィラーを含有しても含有しなくても良く、含有する場合の無機フィラーの含有量は0.05質量%未満であることが必要である。好ましくは0.04質量%以下であり、より好ましくは0.03質量%以下である。
 (b)層は無機フィラーの含有が必須であり、無機フィラーの含有量は1質量%以上35質量%以下である。好ましくは3質量%以上32質量%以下であり、なお好ましくは6質量%以上28質量%以下である。すなわち、無機フィラー含有量が多く、線膨張係数は低いが脆くなりがちな(b)層を、無機フィラー含有量が抑えられ靭性の高い(a)層で補強する構造である。
 前記(a)層に含有する前記ポリイミド組成物は、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは100質量%である。また、前記(b)層に含有する前記ポリイミド組成物は、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは100質量%である。
 (a)層に無機フィラーを含有する場合の、(a)層の無機フィラー含有量と(b)層の無機フィラー含有量の比率((b)/(a))は、20超であることが好ましく、より好ましくは100以上であり、さらに好ましくは500以上であり、よりさらに好ましくは1000以上であり、特に好ましくは1250以上である。また10000以下であることが好ましく、より好ましくは8000以下であり、さらに好ましくは5000以下であり、特に好ましくは3000以下である。
The multilayer polyimide film of the present invention contains at least two layers, a layer (a) and a layer (b). The layer (a) may or may not contain an inorganic filler, and when it is contained, the content of the inorganic filler needs to be less than 0.05% by mass. It is preferably 0.04% by mass or less, and more preferably 0.03% by mass or less.
The layer (b) must contain an inorganic filler, and the content of the inorganic filler is 1% by mass or more and 35% by mass or less. It is preferably 3% by mass or more and 32% by mass or less, and more preferably 6% by mass or more and 28% by mass or less. That is, the structure is such that the layer (b), which has a high content of inorganic filler and has a low coefficient of linear expansion but tends to be brittle, is reinforced with a layer (a) having a high content of inorganic filler and high toughness.
The polyimide composition contained in the layer (a) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 100% by mass. Is. The polyimide composition contained in the layer (b) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 100. It is mass%.
When the layer (a) contains an inorganic filler, the ratio ((b) / (a)) of the inorganic filler content of the (a) layer to the inorganic filler content of the (b) layer shall be more than 20. Is more preferable, more preferably 100 or more, still more preferably 500 or more, still more preferably 1000 or more, and particularly preferably 1250 or more. Further, it is preferably 10000 or less, more preferably 8000 or less, further preferably 5000 or less, and particularly preferably 3000 or less.
 本発明では多層ポリイミドフィルムを(a)/(b)/(a)の三層構造とすることが好ましい。三層構造として厚さ方向に対称化することでフィルムの反りを抑制することができる。
 本発明ではさらに多層ポリイミドフィルムの構成を(a)/(b)/(c)の三層構造とすることができる。本構成は、基本的には無機フィラー含有量が多い(b)層を、無機フィラー含有量の少ない(a)層と(c)層で挟んだ構造であるが、(c)層の無機フィラー含有量を0.3質量%以下とすることが好ましく、より好ましくは0.1質量%以下、なお好ましくは実質的に0質量%とすることで、多層フィルムの外層の片側の表面に高平滑な表面を実現することができる。
 (a)/(b)/(a)の三層構造の場合も、(a)の無機フィラー含有量と(b)層の無機フィラー含有量の比率((b)/(a))は、前記の通りである。
 (a)/(b)/(c)の三層構造の場合、(a)の無機フィラー含有量と(c)層の無機フィラー含有量の比率((c)/(a))は、1未満であることが好ましく、より好ましくは0.5以下であり、さらに好ましくは0.2以下であり、よりさらに好ましくは0.1以下であり、特に好ましくは0である。
In the present invention, it is preferable that the multilayer polyimide film has a three-layer structure of (a) / (b) / (a). Warpage of the film can be suppressed by making the film symmetrical in the thickness direction as a three-layer structure.
In the present invention, the structure of the multilayer polyimide film can be further made into a three-layer structure of (a) / (b) / (c). This configuration is basically a structure in which a layer (b) having a high content of an inorganic filler is sandwiched between a layer (a) and a layer (c) having a low content of an inorganic filler, but the inorganic filler of the layer (c) is sandwiched between the layers. The content is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, still more preferably substantially 0% by mass, so that the surface of one side of the outer layer of the multilayer film is highly smooth. Surface can be realized.
Even in the case of the three-layer structure of (a) / (b) / (a), the ratio of the inorganic filler content of the (a) to the inorganic filler content of the layer (b) ((b) / (a)) is As described above.
In the case of the three-layer structure of (a) / (b) / (c), the ratio of the inorganic filler content of the (a) to the inorganic filler content of the layer (c) ((c) / (a)) is 1. It is preferably less than, more preferably 0.5 or less, still more preferably 0.2 or less, still more preferably 0.1 or less, and particularly preferably 0.
 なお、(a)層、(b)層、(c)層に添加される無機フィラーは同じ無機フィラーでも良く、異なる無機フィラーでも良い。例えば外層である(a)層ないし(c)層には、粒子径が揃った無機フィラーを用い、内層である(b)層には透明性の良い無機フィラーを用いることで、フィルム表面の突起が均質で、なおかつフィルム全体として無色透明性の高いフィルムを実現することができる。  The inorganic filler added to the layer (a), the layer (b), and the layer (c) may be the same inorganic filler or different inorganic fillers. For example, by using an inorganic filler having a uniform particle size for the outer layer (a) to (c) and using a highly transparent inorganic filler for the inner layer (b), protrusions on the film surface are used. It is possible to realize a film having a uniform color and high colorless transparency as a whole film. It was
 また、(a)層、(b)層、(c)層に用いられるポリイミド樹脂はすべて同じ化学組成のポリイミド樹脂でもよく、また異なるポリイミド樹脂でもよい。例えば、内層である(b)層には、無機フィラー添加によりCTE制御効果の高いポリイミド樹脂を用い、外層である(a)層、(c)層には高靭性なポリイミド樹脂を用いることで全体のバランスがとれたフィルムを得ることができる。 Further, the polyimide resin used for the layer (a), the layer (b), and the layer (c) may all be a polyimide resin having the same chemical composition, or may be a different polyimide resin. For example, the inner layer (b) is made of a polyimide resin having a high CTE control effect by adding an inorganic filler, and the outer layers (a) and (c) are made of a highly tough polyimide resin. A well-balanced film can be obtained.
 本発明では、例えば、(a)層または(c)層/(b)層/(a)層または(c)層/(b)層/(a)層または(c)層という構成の様に、4層以上、好ましくは奇数層となるように高多層化してもよい。具体的には、(a)層/(b)層/(a)層/(b)層、(a)層/(b)層/(c)層/(b)層、(c)層/(b)層/(a)層/(b)層の4層構成や、(a)層/(b)層/(a)層/(b)層/(a)層、(a)層/(b)層/(a)層/(b)層/(c)層、(a)層/(b)層/(c)層/(b)層/(a)層、(a)層/(b)層/(c)層/(b)層/(c)層、(c)層/(b)層/(a)層/(b)層/(c)層の5層構成が挙げられる。さらに本発明の効果を損なわない範囲で第4の樹脂層(d)、第5の樹脂層(e)層等を任意の層に挿入しても良い。また、片面にデバイスを作製するなどの用途によって、フィルムの両面に求められる役割が違うことに対応するため、両面の組成や表面粗さを変える構成となってよい。
 本発明では(a)層、または(c)層がある場合は(a)層と(c)層の厚さの合計がフィルム総厚さの34%以下であることが好ましく、さらに26%以下が好ましく、さらに13%以下、さらに好ましくは7%以下となるように構成することが好ましい。(a)層および(c)層がある場合は(a)層と(c)層の合計の厚さはフィルム総厚さの1%以上であることが好ましく、より好ましくは2%以上、さらに好ましくは4%以上である。(a)層および(c)層の厚さをこの範囲に収めることにより、外層の持つ強靭性と内層の持つ光学特性、低CTE性などがバランスしたフィルムを得ることができる。
In the present invention, for example, as in the configuration of (a) layer or (c) layer / (b) layer / (a) layer or (c) layer / (b) layer / (a) layer or (c) layer. The number of layers may be increased so as to have four or more layers, preferably an odd number of layers. Specifically, (a) layer / (b) layer / (a) layer / (b) layer, (a) layer / (b) layer / (c) layer / (b) layer, (c) layer / (B) layer / (a) layer / (b) layer, (a) layer / (b) layer / (a) layer / (b) layer / (a) layer, (a) layer / (B) layer / (a) layer / (b) layer / (c) layer, (a) layer / (b) layer / (c) layer / (b) layer / (a) layer, (a) layer / The five-layer structure of (b) layer / (c) layer / (b) layer / (c) layer, (c) layer / (b) layer / (a) layer / (b) layer / (c) layer is mentioned. Will be. Further, the fourth resin layer (d), the fifth resin layer (e), and the like may be inserted into any layer as long as the effects of the present invention are not impaired. Further, in order to cope with the fact that the roles required for both sides of the film differ depending on the application such as manufacturing a device on one side, the composition and surface roughness of both sides may be changed.
In the present invention, if there is a layer (a) or a layer (c), the total thickness of the layer (a) and the layer (c) is preferably 34% or less, and further 26% or less of the total thickness of the film. It is preferable that the composition is 13% or less, more preferably 7% or less. When there are a layer (a) and a layer (c), the total thickness of the layer (a) and the layer (c) is preferably 1% or more, more preferably 2% or more, and further. It is preferably 4% or more. By keeping the thickness of the layer (a) and the layer (c) within this range, it is possible to obtain a film in which the toughness of the outer layer, the optical characteristics of the inner layer, the low CTE property, etc. are balanced.
 本発明では、(a)層と(b)層の間に、(a)層のポリイミドから(b)層のポリイミドへと組成が連続的に変化する遷移層が存在することが好ましい。遷移層の厚さの上限はフィルム総厚さの8%以下、または3μm以下であることが好ましく、より好ましくは3%以下、または1μm以下である。
 なお、遷移層の厚さとは(a)層のポリイミドと(b)層のポリイミドが混じり合って組成が片方からもう片方に傾斜してゆく領域の厚さであり、混合層の(a)層のポリイミド/(b)層のポリイミドの構成比(質量比)が5/95~95/5の範囲を言う。 遷移層の厚さは、フィルムを厚さ方向に斜め切断し、ポリイミドの組成分布を見ることにより測定することができる。(b)層と(c)層との間の遷移層も同様である。
In the present invention, it is preferable that a transition layer whose composition continuously changes from the polyimide of the (a) layer to the polyimide of the (b) layer exists between the (a) layer and the (b) layer. The upper limit of the thickness of the transition layer is preferably 8% or less, or 3 μm or less, more preferably 3% or less, or 1 μm or less of the total thickness of the film.
The thickness of the transition layer is the thickness of the region where the polyimide of the (a) layer and the polyimide of the (b) layer are mixed and the composition is inclined from one to the other, and the thickness of the (a) layer of the mixed layer. The polyimide composition ratio (mass ratio) of the polyimide / (b) layer is in the range of 5/95 to 95/5. The thickness of the transition layer can be measured by cutting the film diagonally in the thickness direction and observing the composition distribution of the polyimide. The same applies to the transition layer between the layer (b) and the layer (c).
 本発明の多層ポリイミドフィルムは無機基板と積層させて積層体を作製することができる。前記無機基板としては無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。 The multilayer polyimide film of the present invention can be laminated with an inorganic substrate to form a laminated body. The inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance. For example, a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used. Examples of the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
 本発明の積層体の多層ポリイミドフィルム面に電子デバイスを形成し、次いで無機基板から剥離することでフレキシブル電子デバイスを製造することができる。 A flexible electronic device can be manufactured by forming an electronic device on the surface of the multilayer polyimide film of the laminate of the present invention and then peeling it from the inorganic substrate.
 以下に本発明の多層ポリイミドフィルムを得るための製造方法について説明する。本発明の多層ポリイミドフィルムのうち、2層構成のポリイミドフィルムは、長尺でフレキシブルな仮支持体上に、
 1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗布する工程、
 2:前記塗布後に100秒以内に(b)層生成用のポリイミド溶液またはポリイミド前駆体溶液を塗布する工程、
 3:次いで全層の平均値残溶剤量が0.5質量%以下となるまで、好ましくは5分以上60分以下の時間をかけて加熱する工程、
を経て作製することができる。
 さらに、3の工程を二段階に分けて、 二つに分けて
 3’:全層の残溶剤量が8質量%以上40質量%となるまで、5分以上45分以下の時間をかけて加熱した後に仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
 4:前記自己支持性のあるフィルムの両端を把持し、さらに全層の残溶剤量が0.5質量%以下となるまで加熱する工程、
 としても良い。自己支持性のあるフィルムの段階で仮支持体から剥離することにより、乾燥並びに化学反応によって生成する副生物をすみやかにフィルムから排出することが可能となり、さらに表裏の物性差、構造差を小さくすることができる。
The manufacturing method for obtaining the multilayer polyimide film of the present invention will be described below. Of the multilayer polyimide films of the present invention, the two-layer polyimide film is placed on a long and flexible temporary support.
1: (a) Step of applying polyimide solution or polyimide precursor solution for layer formation,
2: Step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution within 100 seconds after the application.
3: Next, a step of heating over a time of preferably 5 minutes or more and 60 minutes or less until the average residual solvent amount of all layers becomes 0.5% by mass or less.
Can be produced via.
Further, the process of 3 is divided into two stages and divided into two. 3': Heating is performed over a period of 5 minutes or more and 45 minutes or less until the residual solvent amount of all layers becomes 8% by mass or more and 40% by mass or less. After that, the process of peeling from the temporary support to obtain a self-supporting film,
4: A step of grasping both ends of the self-supporting film and further heating until the residual solvent amount of all layers becomes 0.5% by mass or less.
May be. By peeling from the temporary support at the stage of self-supporting film, by-products generated by drying and chemical reaction can be quickly discharged from the film, and the difference in physical properties and structure on the front and back can be reduced. be able to.
 また、3層以上のフィルムとする場合には、前記1および2の後にもう一度(a)層形成用または(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗布すればよく、さらに繰り返して塗布を重ねることで、さらに多層のフィルムを得ることができる。 Further, in the case of forming a film having three or more layers, the polyimide solution or the polyimide precursor solution for (a) layer formation or (c) layer formation may be applied once again after the above 1 and 2, and the process is repeated. By repeating the coating, a more multi-layered film can be obtained.
 本発明では別のフィルム化方法として、長尺でフレキシブルな仮支持体上に、
 1:(a)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗布する工程、
 2:(a)層の残溶剤量が5~40質量%となるように乾燥させる工程、
 3:(b)層生成用のポリイミド溶液またはポリイミド前駆体溶液を(a)層の上に塗布する工程、
 4:次いで全層の平均値残溶剤量が0.5質量%以下となるまで、好ましくは5分以上60分以下の時間をかけて加熱する工程、
を経て作製することができる。
 さらに、4の工程を二段階に分けて、 二つに分けて
 4’:全層の残溶剤量が8質量%以上40質量%となるまで、5分以上45分以下の時間をかけて加熱した後に仮支持体から剥離し、自己支持性のあるフィルムを得る工程、
 5:前記自己支持性のあるフィルムの両端を把持し、さらに全層の残溶剤量が0.5質量%以下となるまで加熱する工程、
 としても良い。自己支持性のあるフィルムの段階で仮支持体から剥離することにより、乾燥並びに化学反応によって生成する副生物をすみやかにフィルムから排出することが可能となり、さらに表裏の物性差、構造差を小さくすることができる。
In the present invention, as another film forming method, on a long and flexible temporary support,
1: (a) Step of applying polyimide solution or polyimide precursor solution for layer formation,
2: A step of drying the layer (a) so that the amount of residual solvent is 5 to 40% by mass.
3: A step of applying (b) a polyimide solution for forming a layer or a polyimide precursor solution onto the (a) layer.
4: Next, a step of heating over a time of preferably 5 minutes or more and 60 minutes or less until the average residual solvent amount of all layers becomes 0.5% by mass or less.
Can be produced via.
Further, the process of 4 is divided into two stages and divided into two. 4': Heating is performed over a period of 5 minutes or more and 45 minutes or less until the residual solvent amount of all layers becomes 8% by mass or more and 40% by mass or less. After that, the process of peeling from the temporary support to obtain a self-supporting film,
5: A step of grasping both ends of the self-supporting film and further heating until the residual solvent amount of all layers becomes 0.5% by mass or less.
May be. By peeling from the temporary support at the stage of self-supporting film, by-products generated by drying and chemical reaction can be quickly discharged from the film, and the difference in physical properties and structure on the front and back can be reduced. be able to.
 また、3層以上のフィルムとする場合には、前記1および2の後にもう一度(a)層形成用ないし(c)層形成用のポリイミド溶液またはポリイミド前駆体溶液を塗布すればよく、繰り返して塗布することでさらに多層のフィルムを得ることができる。 Further, in the case of forming a film having three or more layers, the polyimide solution or the polyimide precursor solution for (a) layer formation or (c) layer formation may be applied once again after the above 1 and 2, and the application may be repeated. By doing so, a multi-layered film can be obtained.
 本発明では、ポリイミド溶液またはポリイミド前駆体溶液の塗布を、温度が10℃以上40℃以下、好ましくは15℃以上35℃以下、湿度が10%RH以上55%RH以下、好ましくは20%RH以上50%RHの大気中または不活性気体中にて、長尺でフレキシブルな仮支持体上に行うことが好ましい。塗布方法としては、最初に塗布される層は、コンマコーター、バーコーター、スリットコーターなどを用いて塗布可能であり、二層目以後はダイコーター、カーテンコーター、スプレーコーターなどで塗布することができる。また多層ダイを用いることにより、これら複数の層を事実上同時に塗布することも可能である。 In the present invention, the application of the polyimide solution or the polyimide precursor solution is performed at a temperature of 10 ° C. or higher and 40 ° C. or lower, preferably 15 ° C. or higher and 35 ° C. or lower, and a humidity of 10% RH or higher and 55% RH or lower, preferably 20% RH or higher. It is preferably carried out on a long and flexible temporary support in the atmosphere of 50% RH or in an inert gas. As a coating method, the first layer to be applied can be applied using a comma coater, a bar coater, a slit coater, or the like, and the second and subsequent layers can be applied by a die coater, a curtain coater, a spray coater, or the like. .. It is also possible to apply these plurality of layers substantially at the same time by using a multilayer die.
 溶液を塗布する環境は大気中ないし不活性気体中であることが好ましい。不活性気体とは、実質的には酸素濃度が低い気体と解釈してよく、経済的な観点から窒素、ないし二酸化炭素を用いればよい。 The environment for applying the solution is preferably in the atmosphere or in an inert gas. The inert gas may be interpreted as a gas having a substantially low oxygen concentration, and nitrogen or carbon dioxide may be used from an economical point of view.
 塗布環境における温度は、塗液の粘性に影響し、二種の塗液が重ねられた際に界面において二種の塗液が互いに混ざりあって遷移層を形成する際の遷移層厚さの形成に影響する。本発明のポリイミド溶液ないしポリイミド前駆体溶液の粘度は、特に二層目以後の非接触式の塗布法において適切な粘度範囲に調整されることが好ましく、かかる温度域が二層界面の混ざりあいにおいても該粘度範囲の流動性を適切に保つことに寄与する。 The temperature in the coating environment affects the viscosity of the coating liquids, and when the two types of coating liquids are overlapped, the two types of coating liquids are mixed with each other at the interface to form a transition layer. Affects. The viscosity of the polyimide solution or the polyimide precursor solution of the present invention is preferably adjusted to an appropriate viscosity range especially in the non-contact coating method after the second layer, and such a temperature range is in the mixture of the two-layer interface. Also contributes to properly maintaining the fluidity in the viscosity range.
 ポリイミド溶液またはポリイミド前駆体溶液を塗布した後、その上に100秒以内に次層のポリイミド溶液またはポリイミド前駆体溶液を塗布する場合、塗布されるポリイミド溶液ないしポリイミド前駆体溶液の粘度1は、直前に塗布されたポリイミド溶液ないしポリイミド前駆体溶液の粘度2よりも著しく高くないことが好ましい。具体的には、粘度1/粘度2で表される粘度の比が、1.5以下であることが好ましく、1.0以下であることがより好ましく、0.8以下であることが更に好ましい。これより高いと塗布工程で下の塗布面を引きずってしまい、外観異常の原因となる場合がある。
 加えて、上記外観異常を防ぐため、粘度2はE型粘度計を用いて25℃で測定した値が、20Pa・s以上であることが好ましく、50Pa・s以上であることがより好ましい。これより低いと流動性の高さから、上面に溶液を重ね塗りした際の外観異常の原因となる場合がある。
ポリイミド溶液またはポリイミド前駆体溶液の粘度は、ハンドリング性の観点から300Pa・s以下であることが好ましく、200Pa・s以下であることがより好ましい。
When the next layer of polyimide solution or polyimide precursor solution is applied on the polyimide solution or polyimide precursor solution within 100 seconds after the polyimide solution or polyimide precursor solution is applied, the viscosity 1 of the polyimide solution or the polyimide precursor solution to be applied is immediately before. It is preferable that the viscosity is not significantly higher than the viscosity 2 of the polyimide solution or the polyimide precursor solution applied to. Specifically, the ratio of the viscosity represented by viscosity 1 / viscosity 2 is preferably 1.5 or less, more preferably 1.0 or less, and further preferably 0.8 or less. .. If it is higher than this, the lower coated surface may be dragged in the coating process, which may cause an abnormality in appearance.
In addition, in order to prevent the appearance abnormality, the value of the viscosity 2 measured at 25 ° C. using an E-type viscometer is preferably 20 Pa · s or more, and more preferably 50 Pa · s or more. If it is lower than this, it may cause an abnormal appearance when the solution is overcoated on the upper surface due to the high fluidity.
The viscosity of the polyimide solution or the polyimide precursor solution is preferably 300 Pa · s or less, and more preferably 200 Pa · s or less, from the viewpoint of handleability.
 ポリイミド溶液、ないしポリイミド前駆体溶液に使用される溶剤の多くは吸湿性があり、溶剤が吸湿して溶剤の含水率があがると樹脂成分の溶解度が下がり、溶解成分が溶液内に析出し、溶液粘度の急激な上昇を生じる場合がある。塗布された後に、かかる状況が生じると、フィルム内部構造が不均質となり、ボイド状の欠点が生じて機械特性が阻害される場合がある。本発明では塗布環境の湿度を所定範囲に収めること、ならびに塗布完了後100秒以内に加熱乾燥工程に入ることが好ましい。 Most of the solvents used in polyimide solutions or polyimide precursor solutions are hygroscopic, and when the solvent absorbs moisture and the water content of the solvent increases, the solubility of the resin component decreases, and the dissolved component precipitates in the solution, resulting in a solution. May cause a sharp increase in viscosity. If such a situation occurs after coating, the internal structure of the film may become inhomogeneous, resulting in void-like defects and impairing mechanical properties. In the present invention, it is preferable to keep the humidity of the coating environment within a predetermined range and to start the heating and drying step within 100 seconds after the completion of coating.
 本発明で用いられる仮支持体上としては、ガラス、金属板、金属ベルト、金属ドラム、高分子フィルム、金属箔などを用いることができる。本発明では長尺でフレキシブルな仮支持体を用いることが好ましく、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドなどのフィルムを仮支持体として用いることができる。仮支持体表面に離型処理を施すことは好ましい態様のひとつである。 As the temporary support used in the present invention, glass, a metal plate, a metal belt, a metal drum, a polymer film, a metal foil, or the like can be used. In the present invention, it is preferable to use a long and flexible temporary support, and a film such as polyethylene terephthalate, polyethylene naphthalate, or polyimide can be used as the temporary support. It is one of the preferable embodiments to perform a mold release treatment on the surface of the temporary support.
 仮支持体は表面処理を行うことで表面粗さを調整してもよい。表面処理方法は、プラズマ処理、コロナ放電処理、ウェットブラスト処理、化学処理などを用いることができる。表面処理後、更に離型処理を施してもよい。 The surface roughness of the temporary support may be adjusted by performing surface treatment. As the surface treatment method, plasma treatment, corona discharge treatment, wet blast treatment, chemical treatment and the like can be used. After the surface treatment, a mold release treatment may be further performed.
 本発明では、ポリイミド溶液ないしポリイミド前駆体溶液を仮支持体に塗布し、塗膜の残溶剤量が5~40質量%となるまで乾燥させたうえで、次の層を塗布することが好ましい。残溶剤量40質量%まで乾燥させることは、塗布された塗液が流動性を失って半固体に達するに十分な乾燥状態である。
 塗膜残溶剤量が5質量%以下に達すると、次の溶液が塗布された場合に、先の既乾燥塗膜の再膨潤が不均質となり、隣り合う二層の境界が乱れる場合が生じることがある。よって残溶剤量5~40質量%の範囲が、境界面での塗液の溶剤の拡散移動が均一に行え、微視的な流動混合により適切な厚さの遷移層が形成される。
 本発明では、全ての層が塗布された後、加熱処理により乾燥及び必要に応じて化学反応を促進させる。ポリイミド溶液を用いた場合には、溶媒除去という意味合いで単に乾燥すればよいが、ポリイミド前駆体溶液を用いた場合には乾燥と、化学反応の両方が必要となる。ここにポリイミド前駆体とは好ましくはポリアミド酸ないしポリイソイミドの形態である。ポリアミド酸をポリイミドに転化させるには脱水縮合反応が必要である。脱水縮合反応は加熱のみでも可能であるが、必要に応じてイミド化触媒を作用させることもできる。ポリイソイミドの場合にも加熱によりイソイミド結合からイミド結合への転化をさせることができる。また適度な触媒を併用することも可能である。
 最終的な多層ポリイミドフィルムの残溶剤量は、フィルム全層の平均値として 残溶剤量が好ましくは0.5質量%以下、より好ましくは0.2質量%以下、さらに好ましくは0.08質量%以下である。加熱時間は、好ましくは5分以上60分以下、より好ましくは6分以上50分以下、さらに好ましくは7分以上30分以下の時間が好ましい。加熱時間を所定範囲に収めることにより、溶媒の除去、必要な化学反応を完結できるとともに、適切な厚さに遷移層を制御することができ、かつ無色透明性、機械特性、特には破断伸度を高く保つことができる。加熱時間が短い場合には遷移層の形成が遅れ、また加熱時間が必要以上に長いとフィルム着色が強くなり、かつフィルムの破断伸度が低下する場合がある。
In the present invention, it is preferable to apply the polyimide solution or the polyimide precursor solution to the temporary support, dry the coating film until the residual solvent amount is 5 to 40% by mass, and then apply the next layer. Drying to a residual solvent amount of 40% by mass is a sufficiently dry state in which the applied coating liquid loses its fluidity and reaches a semi-solid.
When the amount of residual solvent in the coating film reaches 5% by mass or less, when the next solution is applied, the re-swelling of the previously dried coating film becomes inhomogeneous, and the boundary between two adjacent layers may be disturbed. There is. Therefore, in the range of the residual solvent amount of 5 to 40% by mass, the solvent of the coating liquid can be uniformly diffused and transferred at the boundary surface, and a transition layer having an appropriate thickness is formed by microscopic flow mixing.
In the present invention, after all the layers have been applied, heat treatment is performed to promote drying and, if necessary, a chemical reaction. When a polyimide solution is used, it may be simply dried in the sense of removing the solvent, but when a polyimide precursor solution is used, both drying and a chemical reaction are required. Here, the polyimide precursor is preferably in the form of polyamic acid or polyisoimide. A dehydration condensation reaction is required to convert polyamic acid to polyimide. The dehydration condensation reaction can be carried out only by heating, but an imidization catalyst can also be allowed to act if necessary. Even in the case of polyisoimide, conversion from an isoimide bond to an imide bond can be performed by heating. It is also possible to use an appropriate catalyst in combination.
The amount of residual solvent in the final multilayer polyimide film is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.08% by mass as an average value of all layers of the film. It is as follows. The heating time is preferably 5 minutes or more and 60 minutes or less, more preferably 6 minutes or more and 50 minutes or less, and further preferably 7 minutes or more and 30 minutes or less. By keeping the heating time within a predetermined range, the solvent can be removed, the necessary chemical reaction can be completed, the transition layer can be controlled to an appropriate thickness, and the colorless transparency, mechanical properties, especially the elongation at break can be achieved. Can be kept high. If the heating time is short, the formation of the transition layer is delayed, and if the heating time is longer than necessary, the film coloring may become stronger and the breaking elongation of the film may decrease.
 本発明では、塗布された溶液が加熱により乾燥ないし化学反応を生じ自己支持性で仮支持体から剥離可能であれば、加熱工程の途中で仮支持体から剥離してもよい。
 より具体的には、全フィルム層の残溶剤量が5質量%以上40質量%の範囲に達するまで、好ましくは5分以上45分以下、より好ましくは6分以上30分以下、さらに好ましくは7分以上20分以下の時間をかけて加熱した後に仮支持体から自己支持性のあるフィルムを剥離し、さらに前記自己支持性のあるフィルムの両端をクリップで挟む、あるいはピンに突き刺して把持し、加熱環境内を搬送して、さらに全層の残溶剤量が好ましくは0.5質量%以下、より好ましくは0.2質量%以下、さらに好ましくは0.08質量%以下となるまで加熱することにより多層ポリイミドフィルムを得る工程を採用することができる。
 加熱工程途中で仮支持体から自己支持性フィルムを剥離し、さらに加熱を継続することにより、溶媒の蒸発、ポリアミド酸が脱水閉環してポリイミドに転化する際に生じる水をフィルムの両面から速やかに排出することができ、表裏の物性差の小さいフィルムを得ることができる。
In the present invention, if the applied solution dries or undergoes a chemical reaction by heating and is self-supporting and can be peeled off from the temporary support, it may be peeled off from the temporary support during the heating step.
More specifically, until the residual solvent amount of the entire film layer reaches the range of 5% by mass or more and 40% by mass, preferably 5 minutes or more and 45 minutes or less, more preferably 6 minutes or more and 30 minutes or less, still more preferably 7. After heating for a time of 1 minute or more and 20 minutes or less, the self-supporting film is peeled off from the temporary support, and both ends of the self-supporting film are clipped or pierced into a pin to grip the film. It is conveyed in a heating environment and further heated until the residual solvent amount of all layers is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, still more preferably 0.08% by mass or less. Therefore, a step of obtaining a multilayer polyimide film can be adopted.
By peeling off the self-supporting film from the temporary support during the heating process and continuing heating, water generated when the solvent evaporates and the polyamic acid dehydrates and closes and is converted to polyimide can be quickly discharged from both sides of the film. It can be discharged, and a film having a small difference in physical properties between the front and back can be obtained.
 本発明では、前記自己支持性フィルムを、延伸してもよい。延伸はフィルム長手方向(MD方向)フィルムの幅方向(TD)のいずれでも良く、両方でも良い。フィルム長手方向の延伸は搬送ロールの速度差あるいは搬送ロールと、両端を把持した後の速度の差を使って行うことができる。フィルム幅方向の延伸は把持したクリプないしピン間を広げることにより行うことができる。延伸と加熱は同時に行っても良い。延伸倍率は1.00倍~2.5倍の間で任意に選ぶことができる。本発明において、フィルムを多層構造とすることで、単独では延伸しにくいポリイミドと、延伸可能なポリイミドを組み合わせることにより、延伸しにくい、すなわち延伸により破断の生じやすい組成にポリイミドも延伸が可能となり、機械物性を向上させることができる。
 なおポリイミドは、乾燥ないし脱水縮合によりフィルム化途中で体積が小さくなるため、両端を等間隔で把持している状態(延伸倍率が1.00倍)であっても延伸効果が発現する。
In the present invention, the self-supporting film may be stretched. The stretching may be in either the longitudinal direction of the film (MD direction) or the width direction (TD) of the film, or both. Stretching in the longitudinal direction of the film can be performed by using the speed difference of the transport roll or the difference in speed between the transport roll and the speed after gripping both ends. Stretching in the film width direction can be performed by widening the gripped clip or pin. Stretching and heating may be performed at the same time. The draw ratio can be arbitrarily selected from 1.00 times to 2.5 times. In the present invention, by forming the film into a multilayer structure, a polyimide that is difficult to stretch by itself and a polyimide that can be stretched can be combined to enable the polyimide to be stretched to a composition that is difficult to stretch, that is, easily broken by stretching. Mechanical properties can be improved.
Since the volume of polyimide becomes smaller during film formation due to drying or dehydration condensation, the stretching effect is exhibited even when both ends are gripped at equal intervals (stretching ratio is 1.00 times).
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、製造例、実施例中の各物性値などは以下の方法で測定した。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. The physical property values in the production examples and the examples were measured by the following methods.
<多層ポリイミドフィルムの厚さ測定>
 多層ポリイミドフィルムA~Fの厚さを、マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
<Measurement of thickness of multilayer polyimide film>
The thicknesses of the multilayer polyimide films A to F were measured using a micrometer (Millitron 1245D manufactured by Fine Wolf Co., Ltd.).
<引張弾性率、引張強度(破断強度)、および、破断伸度>
 多層ポリイミドフィルムを、塗布時の流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。引張試験機(島津製作所製、オートグラフ(R) 機種名AG-5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度及び破断伸度を求め、MD方向とTD方向の測定値の平均値を求めた。
<Tension modulus, tensile strength (breaking strength), and breaking elongation>
The multilayer polyimide film was cut into strips of 100 mm × 10 mm in the flow direction (MD direction) and the width direction (TD direction) at the time of coating, and used as test pieces. Tensile tester (manufactured by Shimadzu, Autograph (R) model name AG-5000A) is used, and the tensile elastic modulus and tensile strength are obtained in each of the MD and TD directions under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm. And the elongation at break were obtained, and the average value of the measured values in the MD direction and the TD direction was obtained.
<線膨張係数(CTE)>
 多層ポリイミドフィルムを、塗布時の流れ方向(MD方向)および幅方向(TD方向)において、下記条件にて伸縮率を測定し、30℃~45℃、45℃~60℃のように15℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出し、さらにMD方向とTD方向の測定値の平均値を求めた。
  機器名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 300℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
<Coefficient of linear expansion (CTE)>
The stretch ratio of the multilayer polyimide film was measured under the following conditions in the flow direction (MD direction) and width direction (TD direction) at the time of coating, and the temperature was 15 ° C. such as 30 ° C. to 45 ° C. and 45 ° C. to 60 ° C. The expansion / contraction rate / temperature at intervals was measured, this measurement was performed up to 300 ° C., the average value of all the measured values was calculated as CTE, and the average value of the measured values in the MD direction and the TD direction was obtained.
Device name; TMA4000S manufactured by MAC Science
Sample length; 20 mm
Sample width; 2 mm
Temperature rise start temperature; 25 ° C
Temperature rise end temperature; 300 ° C
Temperature rise rate; 5 ° C / min
Atmosphere; Argon
<遷移層厚さ>
 SAICAS DN-20S型(ダイプラ・ウィンテス社)によってフィルムの斜め切削面を作製し、次いでこの斜め切削面を顕微IRCary 620 FTIR (Agilent社)によって、ゲルマニウム結晶(入射角30°)を用いた顕微ATR法でスペクトルを求め、(a)層、(b)層各々の特徴的なピークの増減と、あらかじめ求めておいた検量線から組成の傾斜を質量比換算で求め、(a)層組成/(b)層組成の比が5/95質量比~95/5質量比の範囲の厚さを遷移層厚さとして求めた。
<Transition layer thickness>
The diagonally cut surface of the film is prepared by SAICAS DN-20S type (Daipla Wintes), and then the obliquely cut surface is microscopically ATR using germanium crystal (incident angle 30 °) by microscopic IR Cary 620 FTIR (Agilent). The spectrum was obtained by the method, and the increase / decrease of the characteristic peaks of each of the (a) layer and (b) layer and the slope of the composition were obtained in terms of mass ratio from the calibration line obtained in advance, and (a) layer composition / ( b) The thickness in the range of 5/95 mass ratio to 95/5 mass ratio of the layer composition was determined as the transition layer thickness.
<ヘイズ>
 HAZEMETER(NDH5000、日本電色社製)を用いてフィルムのヘイズを測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Haze>
The haze of the film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
<全光線透過率>
 HAZEMETER(NDH5000、日本電色社製)を用いてフィルムの全光線透過率(TT)を測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
<Total light transmittance>
The total light transmittance (TT) of the film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
<イエローインデックス>
 カラーメーター(ZE6000、日本電色社製)およびC2光源を使用して、ASTM D1925に準じてフィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。尚、同様の測定を3回行い、その算術平均値を採用した。
 YI=100×(1.28X-1.06Z)/Y
<Yellow index>
Using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, the tristimulus value XYZ value of the film was measured according to ASTM D1925, and the yellowness index (YI) was calculated by the following formula. The same measurement was performed three times, and the arithmetic mean value was adopted.
YI = 100 × (1.28X-1.06Z) / Y
<フィルムの反り>
 100mm×100mmのサイズの正方形に裁断したフィルムを試験片とし、室温で平面上に試験片を凹状となるように静置し、四隅の平面からの距離(h1rt、h2rt、h3rt、h4rt:単位mm)を測定し、その平均値を反り量(mm)とした。
<Film warp>
A film cut into a square having a size of 100 mm × 100 mm is used as a test piece, and the test piece is allowed to stand on a flat surface at room temperature so as to be concave, and the distances from the flat surface at the four corners (h1rt, h2rt, h3rt, h4rt: unit mm). ) Was measured, and the average value was taken as the amount of warpage (mm).
<静摩擦係数>
 JIS K-7125に準拠し、引張試験機(A&D社製テンシロンRTG-1210)を用い、23℃・65%RH環境下で、フィルムの(a)層の面とポリエチレンテレフタレートフィルム(PETフィルム)『コスモシャイン(登録商標)A4100(東洋紡株式会社製、表面処理なし、表2中フィルム1)』の巻内面とを接合させた場合の静摩擦係数を求めた。なお、上側のフィルムを巻きつけたスレッド(錘)の重量は、1.5kgであり、スレッドの底面積の大きさは、39.7mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
<Stiction coefficient>
In accordance with JIS K-7125, using a tensile tester (Tencilon RTG-1210 manufactured by A & D), the surface of the (a) layer of the film and the polyethylene terephthalate film (PET film) under a 23 ° C. 65% RH environment, " The static friction coefficient when the film was joined to the inner surface of the winding of Cosmo Shine (registered trademark) A4100 (manufactured by Toyobo Co., Ltd., no surface treatment, film 1 in Table 2) was determined. The weight of the thread (weight) around which the upper film was wound was 1.5 kg, and the size of the bottom area of the thread was 39.7 mm 2 . The tensile speed at the time of friction measurement is 200 mm / min. Met.
<10点平均粗さRz>
 表面粗さの測定は走査型プローブ顕微鏡E-Sweep(SII社製)を用い、DFMモードにより表面形態観察を実施した。カンチレバーはDF20(SII社より供給)を使用した。前記フィルムの試験片(100mm×100mm)端部から1cmの距離の点を第1点とし、前記第1点からフィルム搬送方向に対し直角の方向に、フィルム幅の1/20の長さの間隔で10箇所を選択し、前記選択した各点の5μm四方を観察した。Xデータ数及びYデータ数はそれぞれ512(積算回数)とした。得られたデータは傾斜補正を実施した後、付属のソフトウエアで10点平均粗さ(Rz)を算出した。傾斜補正は付属のソフトウエアによる二次傾斜補正(Auto2)を使用した。
<10-point average roughness Rz>
The surface roughness was measured by using a scanning probe microscope E-Sweep (manufactured by SII) and observing the surface morphology in DFM mode. The cantilever used was DF20 (supplied by SII). The first point is a point at a distance of 1 cm from the end of the test piece (100 mm × 100 mm) of the film, and the interval is 1/20 of the film width in the direction perpendicular to the film transport direction from the first point. 10 points were selected in the above, and 5 μm squares of each of the selected points were observed. The number of X data and the number of Y data were 512 (number of integrations), respectively. After performing tilt correction on the obtained data, a 10-point average roughness (Rz) was calculated using the attached software. For the tilt correction, the secondary tilt correction (Auto2) by the attached software was used.
〔製造例1 ポリアミド酸(PAA)溶液Aの製造〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.73質量部の4,4’-ジアミノベンズアニリド(DABAN)を、201.1質量部のN,N-ジメチルアセトアミド(DMAc)に加えて溶解させ、次いで、19.32質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、NV(固形分)10質量%、還元粘度3.10dl/gのポリアミド酸溶液Aを得た。
[Production Example 1 Production of Polyamic Acid (PAA) Solution A]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.73 parts by mass of 4,4'-diaminobenzanilide (DABAN) was added to 21.1 parts by mass of N, N-. It is dissolved by adding it to dimethylacetamide (DMAc), and then 19.32 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid anilides (CBDA) is added separately as a solid, and then 24 at room temperature. Stir for hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution A having an NV (solid content) of 10% by mass and a reduction viscosity of 3.10 dl / g.
〔製造例2 ポリアミド酸(PAA)溶液Bの製造〕
  窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)を、279.9質量部のN,N-ジメチルアセトアミド(DMAc)に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)及び15.51質量部の4,4’-オキシジフタル酸二無水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分17質量%、還元粘度3.60dl/gのポリアミド酸溶液Bを得た。
[Production Example 2 Production of Polyamic Acid (PAA) Solution B]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 32.02 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was added to 279. Dissolve in 9 parts by weight of N, N-dimethylacetamide (DMAc), then 9.81 parts by weight of 1,2,3,4-cyclobutanetetracarboxylic acid anhydrate (CBDA) and 15.51 parts by weight. 4,4'-Oxydiphthalic acid dianhydride (ODPA) was added separately in solid form, and then stirred at room temperature for 24 hours. Then, a polyamic acid solution B having a solid content of 17% by mass and a reducing viscosity of 3.60 dl / g was obtained.
〔製造例3 ポリイミド(PI)溶液Cの製造〕  
 窒素導入管、ディーン・スターク管及び還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、230質量部のN,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させ、次いで、44.42質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分25質量%、還元粘度1.10dl/gのポリアミド酸溶液Caaを得た。
 次に、得られたポリアミド酸溶液CaaにDMAc204質量部を加えてポリアミド酸の濃度が15質量%になるように希釈した後、イミド化促進剤としてイソキノリン1.3質量部を加えた。次いで、ポリアミド酸溶液Caaを攪拌しながら、イミド化剤として無水酢酸12.25質量部をゆっくりと滴下した。その後、24時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液Cpiを得た。
 次に、得られたポリイミド溶液Cpi 100質量部を攪拌装置と攪拌機を備えた反応容器に移し替え、攪拌しながらメタノール150質量部をゆっくりと滴下させたところ、粉体状の固体の析出が確認された。
 その後、反応容器の内容物である粉末を脱水濾過し、さらにメタノールを用いて洗浄した後に50℃で24時間真空乾燥した後、260℃で更に5時間加熱し、ポリイミド粉体Cpdを得た。得られたポリイミド粉体Cpd20質量部を80質量部のDMAcに溶解させてポリイミド溶液Cを得た。
[Production Example 3 Production of Polyimide (PI) Solution C]
32.02 parts by mass of 2,2'-ditrifluoromethyl-4,4'while introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a recirculation tube, a thermometer, and a stirring rod. -Diaminobiphenyl (TFMB), 230 parts by weight N, N-dimethylacetamide (DMAc) was added to completely dissolve, followed by 44.42 parts by weight of 4,4'-(2,2-hexafluoroisopropylidene). ) Diphthalic acid dianhydride (6FDA) was added in portions as a solid, and then stirred at room temperature for 24 hours. Then, a polyamic acid solution Caa having a solid content of 25% by mass and a reduction viscosity of 1.10 dl / g was obtained.
Next, 204 parts by mass of DMAc was added to the obtained polyamic acid solution Caa to dilute the polyamic acid concentration to 15% by mass, and then 1.3 parts by mass of isoquinoline was added as an imidization accelerator. Then, while stirring the polyamic acid solution Caa, 12.25 parts by mass of acetic anhydride was slowly added dropwise as an imidizing agent. Then, stirring was continued for 24 hours and a chemical imidization reaction was carried out to obtain a polyimide solution Cpi.
Next, 100 parts by mass of the obtained polyimide solution Cpi was transferred to a reaction vessel equipped with a stirrer and a stirrer, and 150 parts by mass of methanol was slowly dropped while stirring, and precipitation of a powdery solid was confirmed. Was done.
Then, the powder contained in the reaction vessel was dehydrated and filtered, washed with methanol, vacuum dried at 50 ° C. for 24 hours, and then heated at 260 ° C. for another 5 hours to obtain a polyimide powder Cpd. 20 parts by mass of the obtained polyimide powder Cpd was dissolved in 80 parts by mass of DMAc to obtain a polyimide solution C.
〔製造例4 ポリイミド(PI)溶液Dの製造〕  
 窒素導入管、ディーン・スターク管及び還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、120.5質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、51.6質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、500質量部のガンマブチロラクトン(GBL)を加えた。続いて217.1質量部の4,4’-オキシジフタル酸無二水物(ODPA)、223質量部のGBL、260質量部のトルエンを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、固形分が20質量%濃度となるようにGBLを加え、ポリイミド溶液Dを得た。
[Production Example 4 Production of Polyimide (PI) Solution D]
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a recirculation tube, a thermometer, and a stirring rod, 120.5 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 51.6 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS) and 500 parts by mass of gamma butyrolactone (GBL) were added. Subsequently, 217.1 parts by mass of 4,4'-oxydiphthalic acid unihydrate (ODPA), 223 parts by mass of GBL, and 260 parts by mass of toluene were added at room temperature, and then the temperature was raised to 160 ° C. The mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature, GBL was added so that the solid content had a concentration of 20% by mass, and a polyimide solution D was obtained.
〔製造例5 ポリイミド(PI)溶液Eの製造〕
 窒素導入管、還流管、攪拌棒を備えた反応容器に窒素雰囲気下、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)161質量部とN-メチルー2-ピロリドン1090質量部を混合攪拌して溶解させた後、1,2,4,5-シクロヘキサンテトラカルボン酸ニ無水物(CHDA)112質量部を室温にて固体のまま分割添加し、室温下12時間攪拌した。次に共沸溶媒としてキシレン400質量部を添加して180℃に昇温して3時間反応を行い、共沸してくる生成水を分離した。水の流出が終わったことを確認し、1時間かけて190℃に昇温しながらキシレンを除去することでポリイミド溶液Eを得た。
[Production Example 5 Production of Polyimide (PI) Solution E]
161 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) and 1090 parts by mass of N-methyl-2-pyrrolidone in a reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod under a nitrogen atmosphere. After mixing and stirring the parts to dissolve, 112 parts by mass of 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (CHDA) was added separately at room temperature as a solid, and the mixture was stirred at room temperature for 12 hours. Next, 400 parts by mass of xylene was added as an azeotropic solvent, the temperature was raised to 180 ° C., and the reaction was carried out for 3 hours to separate the azeotropic generated water. After confirming that the outflow of water was completed, xylene was removed while raising the temperature to 190 ° C. over 1 hour to obtain a polyimide solution E.
〔製造例6 ポリアミド酸(PAA)溶液Fの製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、11.36質量部の4,4’-ジアミノベンズアニリド(DABAN)、および16.01質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)を、201.1質量部のN,N-ジメチルアセトアミド(DMAc)を加え完全に溶解させた。次いで、19.32質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、NV(固形分)10質量%、還元粘度3.10dl/gのポリアミド酸溶液Fを得た。
[Production Example 6 Production of Polyamic Acid (PAA) Solution F)]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 11.36 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 16.01 parts by mass of 2,2'. -Ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was completely dissolved by adding 21.1 parts by mass of N, N-dimethylacetamide (DMAc). Then, 19.32 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid unihydrate (CBDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution F having an NV (solid content) of 10% by mass and a reduction viscosity of 3.10 dl / g.
〔製造例7(ポリアミド酸溶液Gの製造)〕 
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.0質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、252.1質量部のN,N-ジメチルアセトアミド(DMAc)を加え完全に溶解させ、次いで、22.0質量部の3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分(NV)11質量%、還元粘度3.5dl/gのポリアミド酸溶液Gを得た。
[Production Example 7 (Production of Polyamic Acid Solution G)]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.0 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 252.1 parts by mass of N. , N-Dimethylacetamide (DMAc) was added and completely dissolved, and then 22.0 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately in solid form. Then, the mixture was stirred at room temperature for 24 hours. Then, a polyamic acid solution G having a solid content (NV) of 11% by mass and a reduction viscosity of 3.5 dl / g was obtained.
〔製造例8(ポリアミド酸溶液H製造)〕 
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、25.6質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、305.6質量部のN,N-ジメチルアセトアミド(DMAc)を加え完全に溶解させた。次いで、9.42質量部の3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物(BPDA)、7.45質量部の4,4’-オキシジフタル酸無水物(ODPA)、4.71質量部の1,2,3,4,-シクロブタンテトラカルボン酸無水物(CBDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分(NV)11質量%、還元粘度3.5dl/gのポリアミド酸溶液H得た。
[Production Example 8 (Production of Polyamic Acid Solution H)]
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 25.6 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 305.6 parts by mass of N. , N-Dimethylacetamide (DMAc) was added and completely dissolved. Next, 9.42 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid anhydride (BPDA), 7.45 parts by mass of 4,4'-oxydiphthalic acid anhydride (ODPA), 4. 71 parts by mass of 1,2,3,4, -cyclobutanetetracarboxylic acid anhydride (CBDA) was added in portions as a solid, and then stirred at room temperature for 24 hours. Then, a polyamic acid solution H having a solid content (NV) of 11% by mass and a reduction viscosity of 3.5 dl / g was obtained.
 製造例にて得られたポリイミド溶液、ポリアミド酸溶液(ポリイミド前駆体溶液)を以下の方法でフィルム化し、光学特性、機械特性を測定した。結果を表1に示す。
(単独で物性測定のためのフィルムを得る方法)
 ポリイミド溶液またはポリアミド酸溶液を、一辺30cmのガラス板の中央部、おおむね20cm四方のエリアにバーコーターを用いて、最終厚さが25±2μmとなるように塗布し、ドライ窒素を静かに流したイナートオーブンにて100℃で30分間加熱し、塗膜の残溶剤量が40質量%以下であることを確認した後に、ドライ窒素で置換したマッフル炉にて300℃にて20分間加熱した。次いでマッフル炉から取り出し、乾燥塗膜(フィルム)の端をカッターナイフで起こし、慎重にガラスから剥離してフィルムを得る。
The polyimide solution and the polyamic acid solution (polyimide precursor solution) obtained in the production example were formed into a film by the following method, and the optical properties and mechanical properties were measured. The results are shown in Table 1.
(How to obtain a film for measuring physical properties by itself)
A polyimide solution or a polyamic acid solution was applied to the center of a glass plate having a side of 30 cm, approximately 20 cm square, using a bar coater so that the final thickness was 25 ± 2 μm, and dry nitrogen was gently poured. It was heated at 100 ° C. for 30 minutes in an inert oven, and after confirming that the residual solvent content of the coating film was 40% by mass or less, it was heated at 300 ° C. for 20 minutes in a muffle furnace substituted with dry nitrogen. Then, it is taken out from the muffle furnace, the end of the dry coating film (film) is raised with a utility knife, and it is carefully peeled from the glass to obtain a film.
(実施例1) 
 製造例1で得られたポリアミド酸溶液Aに、表3に示す無機フィラーNo.2:コロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)をシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量に対して0.02質量%になるように加え均一に分散させた。
 製造例3で得られたポリイミド溶液Cに、表3に示す無機フィラーNo.1:ステラケミファ株式会社製の平均粒子径0.2μmのフッ化カルシウム粒子を、まずアトライターにてDMACに分散後、ポリイミド溶液中のポリマー固形分総量に対して20質量%となるように加え均一に混合攪拌し分散させた。作製した各無機フィラー含有溶液はDMAcを加えて希釈することで粘度を調整した。
 フィルムの製造を、25℃45%RHに空調された大気中にて、ロールトゥロール式のコンマコーター、複数のダイコーターと連続式乾燥炉と熱処理炉を備えた装置を用いて行った。
 まず、前記無機フィラーNo.2を分散したポリアミド酸溶液Aを、仮支持体であるフィルム2(表2参照)上に最終膜厚が1μmとなるようコンマコーターを用いて塗布し一層目とした。続いて10秒後に前記無機フィラーNo.1を分散したポリイミド溶液Cを、先に塗布した一層目の上に最終膜厚が23μmとなるようダイコーターによって塗布し二層目とした。さらにダイコーターにより二層目塗布の10秒後に一層目と同じ無機フィラーNo.2を分散したポリアミド酸溶液Aを最終膜厚が1μmとなるように塗布し、3層目とした。(以後、この塗布方法を「逐次wet/wet法」と呼ぶ。
 3層目を塗布後、連続式乾燥炉にて110℃にて10分間乾燥し、残溶剤量31質量%の自己支持性フィルムを得た。該自己支持性フィルムを支持体としてきたフィルム2から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅580mm、長さ100mのフィルム(実1)のロールを得た。
 得られたフィルム(実1)の評価結果を表4に示す。
(Example 1)
Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 1: Calcium fluoride particles with an average particle diameter of 0.2 μm manufactured by Stella Chemifa Co., Ltd. are first dispersed in DMAC with an attritor, and then added so as to be 20% by mass based on the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse. The viscosity of each prepared inorganic filler-containing solution was adjusted by adding DMAc and diluting it.
The film was produced in an air-conditioned atmosphere at 25 ° C. and 45% RH using a roll-to-roll comma coater, a plurality of die coaters, a continuous drying furnace, and a heat treatment furnace.
First, the inorganic filler No. The polyamic acid solution A in which 2 was dispersed was applied onto a temporary support film 2 (see Table 2) using a comma coater so that the final film thickness was 1 μm, and the first layer was formed. Subsequently, after 10 seconds, the inorganic filler No. The polyimide solution C in which 1 was dispersed was applied on the first layer previously applied by a die coater so that the final film thickness was 23 μm to form the second layer. Furthermore, 10 seconds after the second layer was applied by the die coater, the same inorganic filler No. as the first layer was applied. The polyamic acid solution A in which 2 was dispersed was applied so that the final film thickness was 1 μm, and the third layer was formed. (Hereinafter, this coating method is referred to as "sequential wet / wet method".
After applying the third layer, it was dried in a continuous drying oven at 110 ° C. for 10 minutes to obtain a self-supporting film having a residual solvent amount of 31% by mass. The self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break and is unnecessary. The pin sheet spacing was adjusted so as not to cause sagging, and the film was conveyed, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 1) having a width of 580 mm and a length of 100 m.
Table 4 shows the evaluation results of the obtained film (actual 1).
(実施例2~38)(比較例1~11)
 以下同様に、表1に示すポリアミド酸溶液または、ポリイミド溶液と、表2に示す仮支持体と、表3に示す無機フィラーを組み合わせて実施例1と同様にフィルムを製造し評価した。結果を表4~11に示す。なお、比較例で単層の場合にはダイコートを用いた。
 比較例1、比較例2は実施例3に比較するとCTEが高いことが解る。加えて、比較例1はフィルムの滑りが悪く、14m巻き取った時点で巻取りシワの抑制が困難な状態になったため、フィルムを切断し幅580mm、長さ14mのロールを回収した。
(Examples 2 to 38) (Comparative Examples 1 to 11)
Similarly, a film was produced and evaluated in the same manner as in Example 1 by combining the polyamic acid solution or polyimide solution shown in Table 1, the temporary support shown in Table 2, and the inorganic filler shown in Table 3. The results are shown in Tables 4-11. In the case of a single layer in the comparative example, a die coat was used.
It can be seen that Comparative Example 1 and Comparative Example 2 have a higher CTE than Example 3. In addition, in Comparative Example 1, the film was not slippery, and it was difficult to suppress the winding wrinkles when the film was wound 14 m. Therefore, the film was cut and a roll having a width of 580 mm and a length of 14 m was recovered.
 実施例1~8、12~16においては、比較的高い光線透過率が得られており、フィルムの濁りを表すヘイズも低い、しかしながら、高屈折率の無機フィラーを用いた実施例9~11においてはヘイズが上昇し、光線透過率が低下している。しかしながらイエローインデックスは低く抑えられており、これらのフィルムが高い白色度を有することが示されている。すなわち、これらも透明では無いが、無色性が高いフィルムである。 In Examples 1 to 8 and 12 to 16, relatively high light transmittance is obtained, and the haze indicating turbidity of the film is also low, however, in Examples 9 to 11 using an inorganic filler having a high refractive index. Has increased haze and decreased light transmittance. However, the yellow index is kept low, indicating that these films have a high degree of whiteness. That is, these are also films that are not transparent but are highly colorless.
 実施例17~22は、(a)層、(b)層、(c)層のポリイミド樹脂成分に同じものを用い、各層の無機フィラー含有量を変えた場合である。比較例3~8は、実施例17~22に対応して、(b)層のみを同じフィルム厚となるようにして製造したフィルムである。実施例17~22では、表1に示された無機フィラー無添加でかつ実験室スケールで作製された各々同じ樹脂組成のフィルムに比較すると低いCETを示しており、無機フィラー添加の効果が示されている。しかしながら(a)層、(c)層を伴なっていない比較例3から比較例8に関しては、仮支持基材から自己支持性フィルムを剥離する際にフィルム破断が生じたため、ピンによるフィルム把持を行うことができず、評価に足るフィルムを得ることはできなかった。なお、実施例17~22においては各層の樹脂組成が同じであるため遷移層厚さを測定することはできなかった。 Examples 17 to 22 are cases where the same polyimide resin component is used for the (a) layer, the (b) layer, and the (c) layer, and the inorganic filler content of each layer is changed. Comparative Examples 3 to 8 are films produced so that only the layer (b) has the same film thickness, corresponding to Examples 17 to 22. In Examples 17 to 22, the CET was lower than that of the films of the same resin composition produced on the laboratory scale without the addition of the inorganic filler shown in Table 1, indicating the effect of the addition of the inorganic filler. ing. However, in Comparative Examples 3 to 8 without the layers (a) and (c), the film was broken when the self-supporting film was peeled from the temporary support base material, so that the film could be gripped by a pin. I couldn't do it, and I couldn't get a film that was good enough for evaluation. In Examples 17 to 22, the transition layer thickness could not be measured because the resin composition of each layer was the same.
(実施例23~25)
 製造例1で得られたポリアミド酸溶液Aに、表3に示す無機フィラーNo.2:コロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)をシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量に対して0.02質量%になるように加え均一に分散させた。
 製造例3で得られたポリイミド溶液Cに、表3に示す無機フィラーNo.3:日本触媒株式会社製の平均粒子径1.5μmのシリカ粒子シーホスター(登録商標)S150を、まずアトライターにてDMACに分散後、ポリイミド溶液中のポリマー固形分総量に対して25質量%となるように加え、均一に混合攪拌し分散させた。
(Examples 23 to 25)
Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 3: Silica particle Seahoster (registered trademark) S150 having an average particle diameter of 1.5 μm manufactured by Nippon Catalyst Co., Ltd. is first dispersed in DMAC with an attritor, and then 25% by mass with respect to the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
 25℃45%RHに空調された大気中にて、ロールトゥロール式のコンマコーターと複数のダイコーター、連続式乾燥炉、連続式熱処理炉を備えた装置を用いて、前記無機フィラーNo.2を分散したポリアミド酸溶液Aを、仮支持体であるフィルム2(表2参照)の無滑材面上に最終膜厚が3μmとなるよう塗布した。次いで連続式の乾燥機により、一次加熱として、110℃5分間加熱し、残溶剤量が18質量%の半乾燥被膜とし、仮支持体ごとロール状に巻き取った。この半乾燥被膜をGF(グリーンフィルムと呼ぶ)。
 得られたロールを再び前述の装置にセットし、仮支持体とともに前記半乾燥被膜を巻き出し、半乾燥被膜上に、前記無機フィラーNo.3を分散したポリイミド溶液Cを最終膜厚が19μmとなるようダイコーターで塗布した後に110℃にて10分間乾燥した。乾燥後残溶剤量23質量%となり、自己支持性を得たフィルムを支持体としてきたフィルム2から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、最終加熱として、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、乾燥とともに必要なイミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅510mm、長さ100mのフィルム(実23)のロールを得た。得られたフィルム(実23)の評価結果を表9に示す。なおこの塗布方法を「wet/GF法」と呼ぶ。
In the atmosphere air-conditioned to 25 ° C. and 45% RH, the inorganic filler No. The polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2) as a temporary support so that the final film thickness was 3 μm. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 18% by mass, and the temporary support was wound into a roll. This semi-dry film is called GF (green film).
The obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the inorganic filler No. 1 was placed on the semi-dried film. The polyimide solution C in which 3 was dispersed was applied with a die coater so that the final film thickness was 19 μm, and then dried at 110 ° C. for 10 minutes. After drying, the amount of residual solvent is 23% by mass, and the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and gripped by inserting the film end into the pin. Then, the film is conveyed by adjusting the pin sheet spacing so that the film does not break and unnecessary slack does not occur, and the final heating is 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes. The film was heated under the above conditions, and the required imidization reaction was allowed to proceed with drying. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 23) having a width of 510 mm and a length of 100 m. Table 9 shows the evaluation results of the obtained film (actual 23). This coating method is called "wet / GF method".
 以下、表9に示す条件設定により、フィルム(実24)~(実25)を得た。同様に評価した結果を表9に示す。いずれも、比較的低いCTEと高い透明性を示し、機械強度についてもハンドリング性の観点から特に問題はみられなかった。なお実施例23のみ大きな反りを示しているが、これは厚さ方向に非対称なフィルムに所以する。 Below, the films (actual 24) to (actual 25) were obtained by setting the conditions shown in Table 9. The results of the same evaluation are shown in Table 9. All of them showed relatively low CTE and high transparency, and there was no particular problem in terms of mechanical strength from the viewpoint of handleability. It should be noted that only Example 23 shows a large warp, which is due to the film being asymmetric in the thickness direction.
(実施例26~28)
 製造例2で得られたポリアミド酸溶液Bに、表3に示す無機フィラーNo.2:コロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)をシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量に対して0.02質量%になるように加え均一に分散させた。
 製造例6で得られたポリイミド溶液Fに、表3に示す無機フィラーNo.3:日本触媒株式会社製の平均粒子径1.5μmのシリカ粒子シーホスター(登録商標)S150を、まずアトライターにてDMACに分散後、ポリイミド溶液中のポリマー固形分総量に対して25質量%となるように加え、均一に混合攪拌し分散させた。
 表9に示す組み合わせと条件にて、フィルム2に3層共押し出しT型ダイを用いてコーティングした。すなわち無機フィラー含有ポリアミド酸溶液B、無機フィラー含有ポリアミド酸溶液F、無機フィラーを含有しないポリアミド酸溶液Bの順である。以後は表9に示した条件に従って、加熱を行い、端部をスリットしてロール状に巻きあげて、幅1100mm長さ250mのフィルム(実26)を得た。さらに同様に塗布厚さとライン速度調整により熱処理時間を調整し、多層フィルム実27、実28を得た。評価結果を表9に示す。いずれも低いCTE、と高い透明性、無色性、さらに良好な機械特性を示している。
(Examples 26 to 28)
Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution B obtained in Production Example 2. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution F obtained in Production Example 6. 3: Silica particle Seahoster (registered trademark) S150 having an average particle diameter of 1.5 μm manufactured by Nippon Catalyst Co., Ltd. is first dispersed in DMAC with an attritor, and then 25% by mass with respect to the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
The film 2 was coated with a three-layer co-extruded T-type die under the combinations and conditions shown in Table 9. That is, the order is the inorganic filler-containing polyamic acid solution B, the inorganic filler-containing polyamic acid solution F, and the inorganic filler-free polyamic acid solution B. After that, heating was performed according to the conditions shown in Table 9, and the end was slit and rolled into a roll to obtain a film (actual 26) having a width of 1100 mm and a length of 250 m. Further, similarly, the heat treatment time was adjusted by adjusting the coating thickness and the line speed to obtain multilayer films 27 and 28. The evaluation results are shown in Table 9. Both show low CTE, high transparency, colorlessness and good mechanical properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(応用実施例1)
 まず、実施例25で得た多層ポリイミドフィルム(実25)を360mm×460mmの長方形に切り出した。 次に、フィルム表面処理として UV/O照射器(LANテクニカル製SKR1102N-03)を用い、(a)層側にUV/Oの照射を3分間行った。この時UV/Oランプとフィルムとの距離は30mmとした。
 ディスプレイ用ガラス(370mm×470mm、厚さ0.7mmのガラス基板:日本電気硝子社製OA10G)にシランカップリング剤として3-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-903)をスプレーコーターにて塗布した。なおガラス基板は、純水洗浄、乾燥後にUV/O照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。
 次いで、シランカップリング剤を塗布したガラス基板を、シリコーンゴムローラーを装備したロールラミネータにセットし、まずシランカップリング剤塗布面にスポイトで500mlの純水を基板全体に広がるように滴下し、基板を濡らした。
 前記表面処理を行った多層ポリイミドフィルム(実25)の表面処理面を、ガラス基板のシランカップリング剤塗布面、すなわち純水で濡らした面に対向するように重ね、ガラス基板の一方の一辺から順次回転ロールでポリイミドフィルムとガラス基板間の純水を押し出しながら加圧してガラス基板とポリイミドフィルムをラミネートして仮積層体を得た。使用したラミネータは、MCK社製の有効ロール幅650mmのラミネータであり、貼合条件は、エアー元圧力:0.5MPa、ラミネート速度:50mm/秒、ロール温度:22℃、環境温度22度、湿度55%RHであった。
 得られた仮積層体を、クリーンオーブンにて200℃10分間加熱処理し、多層ポリイミドフィルムとガラス基板からなる積層体を得た。
(Application Example 1)
First, the multilayer polyimide film (actual 25) obtained in Example 25 was cut into a rectangle having a size of 360 mm × 460 mm. Next, a UV / O 3 irradiator (SKR1102N-03 manufactured by LAN Technical) was used as the film surface treatment, and the layer (a) was irradiated with UV / O 3 for 3 minutes. At this time, the distance between the UV / O3 lamp and the film was set to 30 mm.
Spray 3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent on display glass (glass substrate of 370 mm x 470 mm, thickness 0.7 mm: OA10G manufactured by Nippon Electric Glass Co., Ltd.). It was applied with a coater. The glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N- 03 manufactured by LAN Technical) for 1 minute to dry wash.
Next, the glass substrate coated with the silane coupling agent is set on a roll laminator equipped with a silicone rubber roller, and first, 500 ml of pure water is dropped on the surface coated with the silane coupling agent with a dropper so as to spread over the entire substrate. Wet.
The surface-treated surface of the surface-treated multilayer polyimide film (actual 25) is laminated so as to face the silane coupling agent-coated surface of the glass substrate, that is, the surface wetted with pure water, and from one side of the glass substrate. A temporary laminate was obtained by laminating the glass substrate and the polyimide film under pressure while sequentially extruding pure water between the polyimide film and the glass substrate with a rotating roll. The laminator used was a laminator with an effective roll width of 650 mm manufactured by MCK, and the bonding conditions were air source pressure: 0.5 MPa, laminating speed: 50 mm / sec, roll temperature: 22 ° C, environmental temperature 22 ° C, humidity. It was 55% RH.
The obtained temporary laminate was heat-treated in a clean oven at 200 ° C. for 10 minutes to obtain a laminate composed of a multilayer polyimide film and a glass substrate.
 得られた積層体のポリイミドフィルム面に、以下の工程によりタングステン膜(膜厚75nm)を形成し、さらに大気にふれることなく、絶縁膜として酸化シリコン膜(膜厚150nm)を積層形成した。次いで、プラズマCVD法で下地絶縁膜となる酸化窒化シリコン膜(膜厚100nm)を形成し、さらに大気にふれることなく、アモルファスシリコン膜(膜厚54nm)を積層形成した。 A tungsten film (thickness 75 nm) was formed on the polyimide film surface of the obtained laminate by the following steps, and a silicon oxide film (thickness 150 nm) was laminated and formed as an insulating film without being exposed to the atmosphere. Next, a silicon oxide nitride film (thickness 100 nm) to be a base insulating film was formed by a plasma CVD method, and an amorphous silicon film (thickness 54 nm) was laminated and formed without being exposed to the atmosphere.
 得られたアモルファスシリコン膜を用いてTFT素子を作製した。まず、アモルファスシリコン薄膜をパターニングを行って所定の形状のシリコン領域を形成し、適宜、ゲート絶縁膜の形成、ゲート電極の形成、活性領域へのドーピングによるソース領域またはドレイン領域の形成、層間絶縁膜の形成、ソース電極およびドレイン電極の形成、活性化処理を行い、PチャンネルTFTのアレイを作製した。
 TFTアレイ外周の0.5mm程度内側に沿ってUV-YAGレーザーにてポリイミドフィルム部を焼き切り、切れ目の端部から薄いカミソリ状の刃を用いてすくい上げるように剥離を行い、フレキシブルなA3サイズのTFTアレイを得た。剥離は極微力で可能であり、TFTにダメージを与えること無く剥離することが可能であった。得られたフレキシブルTFTアレイは5mmφの丸棒に巻き付けても性能劣化は見られず、良好な特性を維持した。
A TFT element was manufactured using the obtained amorphous silicon film. First, the amorphous silicon thin film is patterned to form a silicon region having a predetermined shape, and a gate insulating film is formed, a gate electrode is formed, a source region or a drain region is formed by doping the active region, and an interlayer insulating film is formed. , The source electrode and the drain electrode were formed, and the activation treatment was performed to prepare an array of P-channel TFTs.
The polyimide film part is burnt off with a UV-YAG laser along the inside of the TFT array about 0.5 mm, and peeled off from the end of the cut by using a thin razor-shaped blade to scoop up the flexible A3 size TFT. Obtained an array. The peeling was possible with a very small force, and it was possible to peel without damaging the TFT. The obtained flexible TFT array did not show any deterioration in performance even when wound around a round bar having a diameter of 5 mm, and maintained good characteristics.
(実施例29~32)(比較例10~11)
 表10に示すポリアミド酸溶液または、ポリイミド溶液と、表10に示す無機フィラーを組み合わせて実施例1と同様にフィルムを製造し評価した。結果を表10に示す。なお、比較例で単層の場合にはダイコートを用いた。
(Examples 29 to 32) (Comparative Examples 10 to 11)
A film was produced and evaluated in the same manner as in Example 1 by combining the polyamic acid solution or polyimide solution shown in Table 10 with the inorganic filler shown in Table 10. The results are shown in Table 10. In the case of a single layer in the comparative example, a die coat was used.
(実施例33) 
 製造例1で得られたポリアミド酸溶液Aに、表3に示す無機フィラーNo.2:コロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)をシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量に対して0.02質量%になるように加え均一に分散させた。
 製造例3で得られたポリイミド溶液Cに、表3に示す無機フィラーNo.1:ステラケミファ株式会社製の平均粒子径0.2μmのフッ化カルシウム粒子を、まずアトライターにてDMACに分散後、ポリイミド溶液中のポリマー固形分総量に対して20質量%となるように加え均一に混合攪拌し分散させた。
 フィルムの製造を、25℃45%RHに空調された大気中にて、ロールトゥロール式のコンマコーター、複数のダイコーターと連続式乾燥炉と熱処理炉を備えた装置を用いて行った。
 まず、前記無機フィラーNo.2を分散したポリアミド酸溶液Aを、仮支持体であるフィルム2(表2参照)の無滑材面上に最終膜厚が1μmとなるようコンマコーターを用いて塗布し一層目とした。続いて10秒後に前記無機フィラーNo.1を分散したポリイミド溶液Cを、先に塗布した一層目の上に最終膜厚が23μmとなるようダイコーターによって塗布し二層目とした。次いで連続式の乾燥機により、一次加熱として、110℃5分間加熱し、残溶剤量が22質量%の半乾燥被膜とし、仮支持体ごとロール状に巻き取った。この半乾燥被膜をGF(グリーンフィルムと呼ぶ)。
 得られたロールを再び前述の装置にセットし、仮支持体とともに前記半乾燥被膜を巻き出し、半乾燥被膜上に、ダイコーターにより一層目と同じ無機フィラーNo.2を分散したポリアミド酸溶液Aを最終膜厚が1μmとなるように塗布し、3層目とした。(以後、この塗布方法を「wet/GF(wet/wet)法」と呼ぶ。
 3層目を塗布後、連続式乾燥炉にて110℃にて10分間乾燥し、残溶剤量18質量%の自己支持性フィルムを得た。該自己支持性フィルムを支持体としてきたフィルム2から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅580mm、長さ100mのフィルム(実33)のロールを得た。
 得られたフィルム(実33)の評価結果を表11に示す。
(Example 33)
Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 1: Calcium fluoride particles with an average particle diameter of 0.2 μm manufactured by Stella Chemifa Co., Ltd. are first dispersed in DMAC with an attritor, and then added so as to be 20% by mass based on the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
The film was produced in an air-conditioned atmosphere at 25 ° C. and 45% RH using a roll-to-roll comma coater, a plurality of die coaters, a continuous drying furnace, and a heat treatment furnace.
First, the inorganic filler No. The polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2) as a temporary support using a comma coater so that the final film thickness was 1 μm, and the first layer was formed. Subsequently, after 10 seconds, the inorganic filler No. The polyimide solution C in which 1 was dispersed was applied on the first layer previously applied by a die coater so that the final film thickness was 23 μm to form the second layer. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 22% by mass, and the temporary support was wound into a roll. This semi-dry film is called GF (green film).
The obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the same inorganic filler No. 1 as the first layer was applied on the semi-dried film by a die coater. The polyamic acid solution A in which 2 was dispersed was applied so that the final film thickness was 1 μm, and the third layer was formed. (Hereinafter, this coating method is referred to as "wet / GF (wet / wet) method".
After applying the third layer, it was dried in a continuous drying oven at 110 ° C. for 10 minutes to obtain a self-supporting film having a residual solvent amount of 18% by mass. The self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break and is unnecessary. The pin sheet spacing was adjusted so as not to cause sagging, and the film was conveyed, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 33) having a width of 580 mm and a length of 100 m.
Table 11 shows the evaluation results of the obtained film (actual 33).
(実施例34、35)
 以下同様に、表11に示すポリアミド酸溶液または、ポリイミド溶液と、表2に示す仮支持体と、表3に示す無機フィラーを組み合わせて実施例31と同様にフィルムを製造し評価した。
(Examples 34 and 35)
Similarly, a film was produced and evaluated in the same manner as in Example 31 by combining the polyamic acid solution or polyimide solution shown in Table 11, the temporary support shown in Table 2, and the inorganic filler shown in Table 3.
(実施例36)
 製造例1で得られたポリアミド酸溶液Aに、表3に示す無機フィラーNo.2:コロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)をシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量に対して0.02質量%になるように加え均一に分散させた。
 製造例3で得られたポリイミド溶液Cに、表3に示す無機フィラーNo.1:ステラケミファ株式会社製の平均粒子径0.2μmのフッ化カルシウム粒子を、まずアトライターにてDMACに分散後、ポリイミド溶液中のポリマー固形分総量に対して20質量%となるように加え均一に混合攪拌し分散させた。
(Example 36)
Inorganic filler No. 2 shown in Table 3 was added to the polyamic acid solution A obtained in Production Example 1. 2: A dispersion obtained by dispersing colloidal silica in dimethylacetamide (Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC-ST-ZL") with silica (lubricant) relative to the total amount of polymer solids in the polyamic acid solution. It was added so as to be 0.02% by mass and uniformly dispersed.
Inorganic filler No. 2 shown in Table 3 was added to the polyimide solution C obtained in Production Example 3. 1: Calcium fluoride particles with an average particle diameter of 0.2 μm manufactured by Stella Chemifa Co., Ltd. are first dispersed in DMAC with an attritor, and then added so as to be 20% by mass based on the total amount of polymer solids in the polyimide solution. The mixture was uniformly mixed and stirred to disperse.
 25℃45%RHに空調された大気中にて、ロールトゥロール式のコンマコーターと複数のダイコーター、連続式乾燥炉、連続式熱処理炉を備えた装置を用いて、前記無機フィラーNo.2を分散したポリアミド酸溶液Aを、仮支持体であるフィルム2(表2参照、)の無滑材面上に最終膜厚が1μmとなるよう塗布した。次いで連続式の乾燥機により、一次加熱として、110℃5分間加熱し、残溶剤量が18質量%の半乾燥被膜とし、仮支持体ごとロール状に巻き取った。この半乾燥被膜をGF(グリーンフィルムと呼ぶ)。
 得られたロールを再び前述の装置にセットし、仮支持体とともに前記半乾燥被膜を巻き出し、半乾燥被膜上に、前記無機フィラーNo.1を分散したポリイミド溶液Cを最終膜厚が23μmとなるようダイコーターで塗布した。ダイコーターにより二層目塗布の10秒後に一層目と同じ無機フィラーNo.2を分散したポリアミド酸溶液Aを最終膜厚が1μmとなるように塗布し、3層目とした。(以後、この塗布方法を「wet/wet/GF法」と呼ぶ。
3層目を塗布後、連続式の乾燥機にて110℃にて10分間乾燥した。乾燥後残溶剤量23質量%となり、自己支持性を得たフィルムを支持体としてきたフィルム2から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、最終加熱として、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、乾燥とともに必要なイミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅510mm、長さ100mのフィルム(実36)のロールを得た。得られたフィルム(実36)の評価結果を表11に示す。
In the atmosphere air-conditioned to 25 ° C. and 45% RH, the inorganic filler No. The polyamic acid solution A in which 2 was dispersed was applied onto the non-slip material surface of the film 2 (see Table 2), which is a temporary support, so that the final film thickness was 1 μm. Then, it was heated at 110 ° C. for 5 minutes as primary heating by a continuous dryer to form a semi-dry film having a residual solvent amount of 18% by mass, and the temporary support was wound into a roll. This semi-dry film is called GF (green film).
The obtained roll was set again in the above-mentioned apparatus, the semi-dried film was unwound together with the temporary support, and the inorganic filler No. 1 was placed on the semi-dried film. The polyimide solution C in which 1 was dispersed was applied with a die coater so that the final film thickness was 23 μm. 10 seconds after the second layer was applied by the die coater, the same inorganic filler No. as the first layer was applied. The polyamic acid solution A in which 2 was dispersed was applied so that the final film thickness was 1 μm, and the third layer was formed. (Hereinafter, this coating method is referred to as "wet / wet / GF method".
After applying the third layer, it was dried at 110 ° C. for 10 minutes in a continuous dryer. After drying, the amount of residual solvent is 23% by mass, and the self-supporting film is peeled off from the film 2 that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and gripped by inserting the film end into the pin. Then, the film is conveyed by adjusting the pin sheet spacing so that the film does not break and unnecessary slack does not occur, and the final heating is 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes. The film was heated under the above conditions, and the required imidization reaction was allowed to proceed with drying. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a roll of a film (actual 36) having a width of 510 mm and a length of 100 m. Table 11 shows the evaluation results of the obtained film (actual 36).
 以下、表11に示す条件設定により、フィルム(実37)、(実38)を得た。同様に評価した結果を表11に示す。いずれも、比較的低いCTEと高い透明性を示し、機械強度についてもハンドリング性の観点から特に問題はみられなかった。 Hereinafter, films (actual 37) and (actual 38) were obtained by setting the conditions shown in Table 11. The results of the same evaluation are shown in Table 11. All of them showed relatively low CTE and high transparency, and there was no particular problem in terms of mechanical strength from the viewpoint of handleability.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以上述べてきたように、本発明の多層ポリイミドフィルムは、異なる組成のポリイミドを、それぞれを単独でフィルム化した場合に比較して良好な光学特性と機械特性を有することが示された。また本発明の製造方法によれば、多層に分かれて機能分担した異なる組成の層間に特定の厚さの組成傾斜した遷移層を形成することができ、それ故にバランスの取れたフィルムを形成することが可能となる。
 本発明の多層ポリイミドフィルムは優れた光学特性、無色透明性を有し、かつ機械特性にすぐれ、比較的低いCTEを示すため、該フィルムをガラスなどの平面上でかつ剛性のある無機基板に貼り合わせたのちにフィルム上に各種電子デバイス加工を行い、最終的に無機基板から剥離することで、フレキシブルな電子デバイスを作製することができる。
 

 
As described above, it has been shown that the multilayer polyimide film of the present invention has better optical properties and mechanical properties as compared with the case where polyimides having different compositions are individually filmed. Further, according to the production method of the present invention, it is possible to form a transition layer having a specific thickness and a composition gradient between layers having different compositions divided into multiple layers and sharing functions, thereby forming a well-balanced film. Is possible.
The multilayer polyimide film of the present invention has excellent optical properties, colorless transparency, excellent mechanical properties, and exhibits a relatively low CTE. Therefore, the film is attached to a rigid inorganic substrate such as glass on a flat surface. A flexible electronic device can be produced by processing various electronic devices on the film after combining them and finally peeling them from the inorganic substrate.


Claims (10)

  1.  厚さ3μm以上120μm以下、イエローインデックスが5以下であり、少なくとも(a)層と(b)層の2層を含むことを特徴とする多層ポリイミドフィルム。
     (a)層:無機フィラーの含有量が0.05質量%未満であるポリイミド組成物を含有する層、
     (b)層:無機フィラーの含有量が1質量%以上35質量%以下であるポリイミド組成物を含有する層
    A multilayer polyimide film having a thickness of 3 μm or more and 120 μm or less, a yellow index of 5 or less, and containing at least two layers, a layer (a) and a layer (b).
    (A) Layer: A layer containing a polyimide composition having an inorganic filler content of less than 0.05% by mass.
    (B) Layer: A layer containing a polyimide composition having an inorganic filler content of 1% by mass or more and 35% by mass or less.
  2.  前記多層ポリイミドフィルムの積層構成が(a)/(b)/(a)の三層構造である請求項1に記載の多層ポリイミドフィルム。 The multilayer polyimide film according to claim 1, wherein the multilayer structure of the multilayer polyimide film has a three-layer structure of (a) / (b) / (a).
  3.  前記多層ポリイミドフィルムの積層構成が(a)/(b)/(c)の三層構造である請求項1に記載の多層ポリイミドフィルム。
    ここに、(c)層:無機フィラーの含有量が0.3質量%以下のポリイミド組成物を含有する層である。
    The multilayer polyimide film according to claim 1, wherein the multilayer structure of the multilayer polyimide film is a three-layer structure of (a) / (b) / (c).
    Here, the layer (c): a layer containing a polyimide composition having an inorganic filler content of 0.3% by mass or less.
  4.  全ての層のポリイミドの化学構造が同じであることを特徴とする請求項1~3のいずれかに記載の多層ポリイミドフィルム。 The multilayer polyimide film according to any one of claims 1 to 3, wherein the polyimides of all layers have the same chemical structure.
  5.  線膨張係数が50ppm/℃以下であることを特徴とする請求項1~4のいずれかに記載の多層ポリイミドフィルム。 The multilayer polyimide film according to any one of claims 1 to 4, wherein the linear expansion coefficient is 50 ppm / ° C. or less.
  6.  全光線透過率が80%以上であることを特徴とする請求項1~5のいずれかに記載の多層ポリイミドフィルム。 The multilayer polyimide film according to any one of claims 1 to 5, wherein the total light transmittance is 80% or more.
  7.  前記(a)層の面と東洋紡(株)製ポリエチレンテレフタレートフィルム「コスモシャイン(登録商標)A4100」の巻内面との間の静摩擦係数が1.50以下である請求項1~6のいずれかに記載の多層ポリイミドフィルム。 Any of claims 1 to 6 in which the coefficient of static friction between the surface of the layer (a) and the inner surface of the polyethylene terephthalate film "Cosmo Shine (registered trademark) A4100" manufactured by Toyobo Co., Ltd. is 1.50 or less. The multilayer polyimide film described.
  8.  前記(a)層の面の10点平均粗さRzが15nm以上である請求項1~7に記載の多層ポリイミドフィルム。 The multilayer polyimide film according to claims 1 to 7, wherein the 10-point average roughness Rz of the surface of the layer (a) is 15 nm or more.
  9.  請求項1~8のいずれかに記載の多層ポリイミドフィルムと無機基板を含む積層体。 A laminate containing the multilayer polyimide film according to any one of claims 1 to 8 and an inorganic substrate.
  10.  請求項9に記載の積層体の多層ポリイミドフィルム面に電子デバイスを形成し、次いで無機基板から剥離することを特徴とするフレキシブル電子デバイスの製造方法。
     
     

     
    A method for manufacturing a flexible electronic device, which comprises forming an electronic device on the surface of a multilayer polyimide film of the laminate according to claim 9, and then peeling the electronic device from the inorganic substrate.



PCT/JP2021/040229 2020-11-10 2021-11-01 Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method WO2022102450A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524706A JPWO2022102450A1 (en) 2020-11-10 2021-11-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187366 2020-11-10
JP2020-187366 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102450A1 true WO2022102450A1 (en) 2022-05-19

Family

ID=81602197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040229 WO2022102450A1 (en) 2020-11-10 2021-11-01 Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2022102450A1 (en)
TW (1) TW202222932A (en)
WO (1) WO2022102450A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297038A (en) * 1987-05-29 1988-12-05 Ube Ind Ltd Manufacture of aromatic polyimide film
JPH0528458A (en) * 1991-07-23 1993-02-05 Ube Ind Ltd Base film for recording medium and production thereof
JPH08230124A (en) * 1995-02-23 1996-09-10 Toray Ind Inc Laminated film roll
JPH11106650A (en) * 1997-09-11 1999-04-20 E I Du Pont De Nemours & Co Flexible polyimide film of high dielectric constant and its production
JP2008044230A (en) * 2006-08-16 2008-02-28 Toyobo Co Ltd Multilayered polyimide film and its forming method
WO2009019968A1 (en) * 2007-08-03 2009-02-12 Kaneka Corporation Multilayer polyimide film, laminate and metal-clad laminate
US20100035066A1 (en) * 2008-08-11 2010-02-11 Industrial Technology Research Institute Double-sided metal clad laminate and fabrication method thereof
JP2010208312A (en) * 2009-02-13 2010-09-24 Toyobo Co Ltd Multilayer polyimide film
WO2014051050A1 (en) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 Polyimide resin composition
JP2015110332A (en) * 2013-12-05 2015-06-18 達邁科技股▲分▼有限公司 Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
JP2015199360A (en) * 2008-08-27 2015-11-12 東洋紡株式会社 Slippery multilayer polyimide film roll
JP2017170728A (en) * 2016-03-23 2017-09-28 東洋紡株式会社 Polymer composite film
JP2018500211A (en) * 2014-12-10 2018-01-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
WO2018186262A1 (en) * 2017-04-06 2018-10-11 大日本印刷株式会社 Polyimide film, laminate, and surface material for display
JP2020125485A (en) * 2017-02-01 2020-08-20 住友化学株式会社 Polyimide film

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297038A (en) * 1987-05-29 1988-12-05 Ube Ind Ltd Manufacture of aromatic polyimide film
JPH0528458A (en) * 1991-07-23 1993-02-05 Ube Ind Ltd Base film for recording medium and production thereof
JPH08230124A (en) * 1995-02-23 1996-09-10 Toray Ind Inc Laminated film roll
JPH11106650A (en) * 1997-09-11 1999-04-20 E I Du Pont De Nemours & Co Flexible polyimide film of high dielectric constant and its production
JP2008044230A (en) * 2006-08-16 2008-02-28 Toyobo Co Ltd Multilayered polyimide film and its forming method
WO2009019968A1 (en) * 2007-08-03 2009-02-12 Kaneka Corporation Multilayer polyimide film, laminate and metal-clad laminate
US20100035066A1 (en) * 2008-08-11 2010-02-11 Industrial Technology Research Institute Double-sided metal clad laminate and fabrication method thereof
JP2015199360A (en) * 2008-08-27 2015-11-12 東洋紡株式会社 Slippery multilayer polyimide film roll
JP2010208312A (en) * 2009-02-13 2010-09-24 Toyobo Co Ltd Multilayer polyimide film
WO2014051050A1 (en) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 Polyimide resin composition
JP2015110332A (en) * 2013-12-05 2015-06-18 達邁科技股▲分▼有限公司 Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
JP2018500211A (en) * 2014-12-10 2018-01-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Multilayer film
JP2017170728A (en) * 2016-03-23 2017-09-28 東洋紡株式会社 Polymer composite film
JP2020125485A (en) * 2017-02-01 2020-08-20 住友化学株式会社 Polyimide film
WO2018186262A1 (en) * 2017-04-06 2018-10-11 大日本印刷株式会社 Polyimide film, laminate, and surface material for display

Also Published As

Publication number Publication date
TW202222932A (en) 2022-06-16
JPWO2022102450A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP6874759B2 (en) Polyimide film and its manufacturing method
JP2008230018A (en) Method of manufacturing transparent polyimide film
WO2022102451A1 (en) Polyimide film and production method therefor
TW201922866A (en) Manufacturing method of resin film and resin film with minimal scratches
JP7287536B2 (en) Polyimide film and its manufacturing method
WO2022004852A1 (en) Resin film and production method thereof
WO2022102450A1 (en) Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method
JP7287535B2 (en) Polyimide film and its manufacturing method
WO2021256298A1 (en) Colorless multilayer polyimide film, multilayer body and method for producing flexible electronic device
KR20230030640A (en) Laminate of inorganic substrate and cured polyamic acid
WO2022014210A1 (en) Resin film and method for manufacturing resin film
WO2022118629A1 (en) Polymer production method, polymer film manufacturing method employing said method, and laminate manufacturing method
WO2022102449A1 (en) Polyimide film and production method therefor
JP7476698B2 (en) Polyimide film, polyimide film/inorganic substrate laminate, flexible electronic device
TW201927872A (en) Manufacturing method of resin film
WO2021241574A1 (en) Laminate including transparent film with high heat resistance
JP2022018374A (en) Polyimide film, laminate of polyimide film and inorganic substrate, and flexible electronic device
JP2022018375A (en) Resin solution, flexible electronic device and method for manufacturing the same
WO2023249053A1 (en) Method for producing film
WO2022239494A1 (en) Method of producing resin film, and uncut film
WO2021241571A1 (en) Layered product including high temperature-resistant transparent film
JP7378949B2 (en) Manufacturing method of polyimide film
WO2023157839A1 (en) Laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524706

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891697

Country of ref document: EP

Kind code of ref document: A1