WO2021241571A1 - Layered product including high temperature-resistant transparent film - Google Patents

Layered product including high temperature-resistant transparent film Download PDF

Info

Publication number
WO2021241571A1
WO2021241571A1 PCT/JP2021/019787 JP2021019787W WO2021241571A1 WO 2021241571 A1 WO2021241571 A1 WO 2021241571A1 JP 2021019787 W JP2021019787 W JP 2021019787W WO 2021241571 A1 WO2021241571 A1 WO 2021241571A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
high heat
heat resistant
transparent high
polyimide
Prior art date
Application number
PCT/JP2021/019787
Other languages
French (fr)
Japanese (ja)
Inventor
哲雄 奧山
誠 中村
伝一朗 水口
治美 米虫
洋行 涌井
桂也 ▲徳▼田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022526577A priority Critical patent/JPWO2021241571A1/ja
Priority to US17/996,199 priority patent/US20230211584A1/en
Priority to KR1020227039208A priority patent/KR20220165774A/en
Priority to CN202180034486.9A priority patent/CN115551714A/en
Priority to EP21813330.4A priority patent/EP4159440A1/en
Publication of WO2021241571A1 publication Critical patent/WO2021241571A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B2037/0092Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding in which absence of adhesives is explicitly presented as an advantage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a laminate containing a highly heat resistant film.
  • Such a sheet is supposed to be used by being attached to a curved surface such as a body, for example. Further, it is expected to be used for an electronic device having a bent portion and an electronic device that can be wound. If these sheets are transparent, various uses are promising mainly for display applications, and they are being actively studied.
  • Patent Document 1 describes a polyimide film for a supporting base material that can be made thin, lightweight, and flexible, has no problems of cracking or peeling due to thermal stress, and is used for manufacturing an organic EL device having excellent dimensional stability and the like. Is disclosed. A polyimide or a resin solution of a polyimide precursor is applied onto the base substrate so that the thickness of the polyimide film is 50 ⁇ m or less, the heat treatment is completed to form the polyimide film on the base substrate, and the polyimide film is formed from the base substrate.
  • a method for manufacturing a polyimide film for a display device support base material which has a transmittance of 80% or more in the wavelength region of 440 nm to 780 nm and a transmittance of 80% or less at 400 nm.
  • Patent Document 2 describes a polyimide film, a glass plate, and a ceramic plate having a higher level of heat resistance and flexibility as a laminate having a silane coupling layer between an inorganic layer and a polyimide film layer.
  • a laminate with excellent heat resistance and insulation, in which a silicon wafer and a kind of inorganic layer selected from metal are laminated, is extremely significant when used for making electronic devices, optical functional components, electronic components, etc. There is.
  • the circuit board manufacturing method as described in Patent Document 1 it is necessary to irradiate the entire bottom surface of the polyimide film with laser light through the base substrate, which is inferior in productivity.
  • the area is large, high precision is required for laser processing, which is not suitable for mass production.
  • these smears become particles and cause damage to the device or break the wiring.
  • the laminate described in Patent Document 2 has a strong 180-degree peel strength between the inorganic layer and the polyimide film of 1 N / cm or more, and a device is formed on the polyimide film layer, and then the device-formed polyimide film is machined. It was difficult to peel it off.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is that after forming a device on a transparent high heat resistant film, it is very easy to separate the transparent high heat resistant film from the inorganic substrate. It is an object of the present invention to provide a method for manufacturing a device conjugate, which is easy to manufacture a film with an electronic device and can be mass-produced.
  • the present invention also provides a laminate of a transparent high heat resistant film and an inorganic substrate for manufacturing the device.
  • the present inventors have diligently studied the manufacture of devices on transparent high heat resistant films. As a result, they have found that if the following components are adopted, the device on the transparent high heat resistant film can be easily manufactured and mass-produced, and the present invention has been completed. That is, the laminated body according to the present invention has the following structure.
  • the transparent high heat resistant film has a laminated structure of two or more layers, and is adjacent to the first transparent high heat resistant film layer that comes into contact with the inorganic substrate and the first transparent high heat resistant film layer that does not come into contact with the inorganic substrate. It is preferable that the thickness of the mixture with the second transparent high heat resistant film layer is more than 800 nm and 5 ⁇ m or less.
  • the transparent high heat resistant film has a laminated structure of two or more layers, and the CTE of the first transparent high heat resistant film layer alone in contact with the inorganic substrate is 20 ppm / K or less.
  • the transparent high heat resistant film has a laminated structure of two or more layers, and the first transparent high heat resistant film layer in contact with the inorganic substrate is transparent polyimide.
  • the transparent high heat resistant film has a laminated structure of two or more layers, and at least one layer of the second transparent high heat resistant film layer that does not come into contact with the inorganic substrate is transparent polyimide.
  • the transparent high heat resistant film has a laminated structure of two or more layers, and the first transparent high heat resistant film layer in contact with the inorganic substrate contains the structure of the formula 1 and / or the structure of the formula 2.
  • the long side of the inorganic substrate is 300 mm or more.
  • a method for manufacturing a film with an electronic device in which an electronic device is formed on the transparent high heat resistant film of the laminated body and then peeled off from an inorganic substrate.
  • the present invention since it is very easy to peel off the transparent high heat resistant film and the inorganic substrate after forming the device, it is easy to manufacture a film with an electronic device, and a method for manufacturing a device conjugate capable of mass production. Can be provided. Further, it is possible to provide a laminate of the transparent high heat resistant film and an inorganic substrate, and the laminate has a small amount of warpage during heating.
  • the transparent high heat resistant film is preferably a film having a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 400 ° C. or higher.
  • the glass transition temperature is preferably 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher.
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • the total light transmittance is 75% or more. It is more preferably 80% or more, further preferably 85% or more, further preferably 87% or more, and particularly preferably 88% or more.
  • the upper limit of the total light transmittance of the transparent high heat resistant film is not particularly limited, but is preferably 98% or less, more preferably 97 for use as a film with an electronic device (hereinafter, also referred to as a flexible electronic device). % Or less.
  • the transparent high heat resistant film includes polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin); polyethylene. , Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-aromatic polyesters); copolymerized (meth) acrylates typified by polymethylmethacrylate; polycarbonate.
  • polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin)
  • polyethylene Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-ar
  • films such as polybenzothiazole; polybenzoimidazole; cyclic polyimide; and liquid crystal polymers. Further, examples thereof include those reinforced with glass filler, glass fiber and the like. However, since the polymer film is premised on being used in a process involving a heat treatment of 250 ° C.
  • the polymer films exemplified are limited to those that can be actually applied.
  • a film using a so-called super engineering plastic is preferable, and more specifically, an aromatic polyimide film, an alicyclic polyimide film, an aromatic amide film, an aromatic amide imide film, and an amide.
  • examples thereof include imide film, aromatic benzoxazole film, aromatic benzothiazole film, aromatic benzoimidazole film, cyclic polyolefin, liquid crystal polymer and the like.
  • a polyimide-based resin film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • the green film is a polyamic acid film containing a solvent and having self-supporting properties.
  • the solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate. Since the method of applying a polyamic acid solution to form a film has a wide range of material selections, it is easy to study in order to find a material preferable for easy peeling, but it is necessary to control the imidization reaction. On the other hand, a film-forming film that does not involve an imidization reaction has an advantage that it is easy to form a film, so it is necessary to use them properly.
  • the polyimide film in the present invention is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamide-imide film, and more preferably a polyimide film.
  • a polyamide film is also preferable.
  • a polyimide film is green by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for producing a polyimide film and drying it. It is obtained by subjecting a green film to a high-temperature heat treatment on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction.
  • a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for producing a polyimide film and drying it. It is obtained by subjecting a green film to a high-temperature heat treatment on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction.
  • a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
  • a polyamide-imide film is prepared by applying a polyamide-imide solution obtained by reacting diisocyanates and tricarboxylics in a solvent to a support for producing a polyamide-imide film and drying the mixture, for example, by mass of 1 to 50 mass.
  • the polyamide-imide film containing 1 to 50% by mass of the solvent is treated at a high temperature and dried on the support for producing the polyamide-imide or in a state of being peeled off from the support. Obtained at.
  • a polyamide film contains a polyamide solution obtained by reacting diamines and dicarboxylic acids in a solvent, applied to a support for producing a polyamide film, dried, and contained, for example, 1 to 50% by mass of a solvent. It is obtained by treating a polyamide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyamide or in a state of being peeled off from the support.
  • tetracarboxylic acids examples include aromatic tetracarboxylic acids (including acid anhydrides thereof) and aliphatic tetracarboxylic acids (acid anhydrides thereof) usually used for polyimide synthesis, polyamideimide synthesis and polyamide synthesis.
  • aromatic tetracarboxylic acids including its acid anhydride
  • aromatic tricarboxylic acids including its acid anhydride
  • aliphatic tricarboxylic acids including its acid anhydride
  • alicyclic tricarboxylic acids including its acid anhydride
  • aromatic dicarboxylic acids aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like can be used.
  • aromatic tetracarboxylic acid anhydrides and aliphatic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic type from the viewpoint of light transmission.
  • Tetracarboxylic acids are more preferred.
  • the tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. ) Is good.
  • Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.
  • a dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal.
  • Acid dianhydride is preferred.
  • the aromatic tetracarboxylic acids may be used alone or in combination of two or more.
  • the copolymerization amount of the aromatic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when heat resistance is important. The above is more preferably 80% by mass or more.
  • alicyclic tetracarboxylic acids examples include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanth
  • dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-cyclohexanetetracarboxylic.
  • Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic hydride is even more preferred. These may be used alone or in combination of two or more.
  • the copolymerization amount of the alicyclic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when transparency is important. % Or more, and even more preferably 80% by mass or more.
  • tricarboxylic acids examples include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid.
  • An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite.
  • Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned.
  • monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid.
  • Hydrogen additives oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and their acid salts.
  • an esterified product or the like can be mentioned.
  • aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid are particularly preferable.
  • the dicarboxylic acids may be used alone or in combination of two or more.
  • the diamines or isocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and fats usually used for polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis. Cyclic diamines, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. Diamines and isocyanates may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'- Bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,
  • a part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, the carbon number 1 may be substituted.
  • a part or all of the hydrogen atom of the alkyl group or the alkoxyl group of ⁇ 3 may be substituted with a halogen atom.
  • the aromatic diamine having the benzoxazole structure is not particularly limited, and for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo.
  • aromatic diamines may be used alone or in combination of two or more.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • Cyclohexane 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable.
  • the alicyclic diamines may be used alone or in combination of two or more.
  • diisocyanates examples include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, diphen
  • Dimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethanediisocyanate and 1,4-cyclohexanediisocyanate are preferable.
  • the diisocyanates may be used alone or in combination of two or more.
  • the transparent high heat-resistant film of the present invention may have a single-layer structure or a laminated structure of two or more layers. From the viewpoint of the physical strength of the transparent high heat-resistant film and the ease of peeling from the inorganic substrate, it is preferable to have a laminated structure of two or more layers, and a laminated structure of three or more layers may be used. Note that, In the present specification, the physical characteristics (yellowness index, total light transmittance, haze, etc.) when the transparent high heat resistant film has two or more layers are the values of the entire transparent high heat resistant film unless otherwise specified. ..
  • the yellowness index (hereinafter, also referred to as “yellow index” or “YI”) of the transparent high heat resistant film in the present invention is preferably 10 or less, more preferably 7 or less, still more preferably 5 or less, and further. It is preferably 3 or less.
  • the lower limit of the yellowness index of the transparent high heat resistant film is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0. 3 or more.
  • the light transmittance of the transparent high heat resistant film in the present invention at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, further preferably 75% or more, still more preferably 80% or more.
  • the upper limit of the light transmittance of the transparent high heat resistant film at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97 for use as a flexible electronic device. % Or less.
  • the total light transmittance of the transparent high heat resistant film in the present invention is preferably 75% or more, more preferably 85% or more, further preferably 87% or more, and even more preferably 88% or more.
  • the upper limit of the total light transmittance of the transparent high heat resistant film is not particularly limited, but is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device.
  • the haze of the transparent high heat resistant film in the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, and even more preferably 0.3 or less.
  • the thickness direction retardation (Rth) of the transparent high heat resistant film in the present invention is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and even more preferably 100 nm or less.
  • the lower limit of Rth of the transparent high heat resistant film is not particularly limited, but is preferably 0.1 nm or more, and more preferably 0.5 nm or more for use as a flexible electronic device.
  • the thickness of the transparent high heat resistant film in the present invention is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, further preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the transparent high heat resistant film is not particularly limited, but it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 90 ⁇ m or less for use as a flexible electronic device. If it is too thin, it will be difficult to produce and transport the film, and if it is too thick, it will be difficult to transport the film.
  • the colorless and transparent polyimide film exhibiting the coefficient of linear expansion (CTE) of the present invention can also be realized by stretching in the film forming process of the polyimide film.
  • a polyimide solution is applied to a support for producing a polyimide film, dried to form a polyimide film containing 1 to 50% by mass of a solvent, and further peeled off on or from the support for producing a polyimide film.
  • a polyimide film containing 1 to 50% by mass of solvent in the state of being in the state, 1.5 to 4.0 times in the MD direction and 1.4 to 3.0 times in the TD direction. It can be realized by stretching to.
  • thermoplastic polymer film is used as a support for producing a polyimide film, and the thermoplastic polymer film and the polyimide film are stretched at the same time, and then the stretched polyimide film is peeled off from the thermoplastic polymer film.
  • the average coefficient of linear expansion (CTE) between 30 ° C. and 300 ° C. of the transparent high heat resistant film is preferably 50 ppm / K or less. It is more preferably 45 ppm / K or less, further preferably 40 ppm / K or less, still more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, it is preferably -5 ppm / K or more, more preferably -3 ppm / K or more, and further preferably 1 ppm / K or more.
  • the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the transparent high heat resistant film and the inorganic substrate are peeled off or peeled off even when subjected to a heat application process. , It is possible to avoid warping together with the support.
  • CTE is a factor that represents reversible expansion and contraction with respect to temperature.
  • the CTE of the transparent high heat resistant film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the transparent high heat resistant film.
  • the method for measuring CTE of the transparent high heat resistant film is as described in Examples.
  • the transparent high heat resistant film can contain a filler.
  • the filler is not particularly limited, and examples thereof include silica, carbon, and ceramic, and silica is preferable. These fillers may be used alone or in combination of two or more.
  • the average particle size of the filler is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and particularly preferably 30 nm or more. Further, it is preferably 1 ⁇ m or less, more preferably 500 nm or less, still more preferably 100 nm or less.
  • the filler content in the transparent high heat resistant film is preferable to adjust the filler content in the transparent high heat resistant film according to the average particle size of the filler.
  • the particle size of the filler is 30 nm or more, it is preferably 0.01 to 5% by mass, more preferably 0.02 to 3% by mass, still more preferably 0.05 to 2% by mass, and particularly. It is preferably 0.1 to 1% by mass.
  • the average particle size is less than 30 nm, it is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, still more preferably 5 to 30% by mass, and particularly preferably 10 to 20% by mass. It is mass%.
  • the slipperiness of the surface of the transparent high heat resistant film can be kept high without impairing the transparency of the transparent high heat resistant film, and the CTE and Rth of the transparent high heat resistant film are kept low. be able to.
  • the method for adding the filler in the transparent high heat-resistant film is not particularly limited, but is powder when or after the above-mentioned polyamic acid (polyimide precursor) solution, polyimide solution, polyamide-imide solution, or polyamide solution is prepared.
  • examples thereof include a method of adding in the form of a filler / solvent (slurry), and a method of adding in a slurry is particularly preferable.
  • the slurry is not particularly limited, but is a slurry in which silica having an average particle diameter of 10 nm is dispersed in N, N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC).
  • the transparent high heat resistant film has a laminated structure of two or more layers, if the difference in CTE of each layer is different, it causes warpage, which is not preferable. Therefore, the CTE difference between the first transparent high heat resistant film layer in contact with the inorganic substrate and the second transparent high heat resistant film layer adjacent to the first transparent high heat resistant film without contacting the inorganic substrate is preferable. It is 40 ppm / K or less, It is more preferably 30 ppm / K or less, and even more preferably 15 ppm / K or less. In particular, it is preferable that the thickest layer of the second transparent high heat resistant film is within the above range. Further, it is preferable that the transparent high heat resistant film has a symmetrical structure in the film thickness direction because warpage is unlikely to occur.
  • the CTE of the first transparent high heat resistant film alone is preferably 20 ppm / K or less. Since the CTE difference from the inorganic substrate is small, it is more preferably 15 ppm / K or less, and further preferably 10 ppm / K or less. Although the lower limit is not limited, it is preferably ⁇ 10 ppm / K or higher, more preferably ⁇ 5 ppm / K or higher, and even more preferably 1 ppm / K or higher for use as a flexible electronic device.
  • the CTE of the first transparent high heat resistant film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the transparent high heat resistant film, and the measuring method is as described in Examples.
  • the first transparent high heat resistant film is transparent polyimide.
  • the second transparent high heat resistant film further has a plurality of laminated configurations, it is preferable that at least one layer of the second transparent high heat resistant film is transparent polyimide, and among the second transparent high heat resistant films, It is more preferable that the thickest layer is transparent polyimide. More preferably, all layers of the second transparent high heat resistant polyimide are transparent polyimide.
  • the first transparent high heat resistant film layer in contact with the inorganic substrate preferably contains a polyimide having the structure of the following formula 1 and / or the following formula 2.
  • the total amount of the polyimides having the structures of the formulas 1 and 2 is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass. % Or more, particularly preferably 95% by mass or more, and 100% by mass or more may be used.
  • the first transparent high heat resistant film can express excellent CTE. Further, when the mixture between the transparent and highly heat-resistant film layers is large, or when the structure is close to a symmetrical structure in the film thickness direction, the warp of the laminated body becomes good.
  • the heat shrinkage of the transparent high heat resistant film between 30 ° C. and 500 ° C. is preferably ⁇ 0.9%, more preferably ⁇ 0.6%.
  • the heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
  • the tensile breaking strength of the transparent high heat resistant film is preferably 60 MPa or more, more preferably 120 MPa or more, and further preferably 240 MPa or more.
  • the upper limit of the tensile breaking strength is not particularly limited, but is practically less than about 1000 MPa.
  • the tensile breaking strength of the transparent high heat resistant film refers to the average value of the tensile breaking strength in the flow direction (MD direction) and the tensile breaking strength in the width direction (TD direction) of the transparent high heat resistant film.
  • the method for measuring the tensile breaking strength of the transparent high heat resistant film is as described in Examples.
  • the tensile elongation at break of the transparent high heat resistant film is preferably 1% or more, more preferably 5% or more, and further preferably 20% or more. When the tensile elongation at break is 1% or more, the handleability is excellent.
  • the tensile elongation at break of the transparent high heat resistant film refers to the average value of the tensile elongation at break in the flow direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the transparent high heat resistant film.
  • the method for measuring the tensile elongation at break of the transparent high heat resistant film is the method described in Examples.
  • the tensile elastic modulus of the transparent high heat resistant film is preferably 2 GPa or more, more preferably 3 GPa or more, and further preferably 4 GPa or more.
  • the transparent high heat-resistant film is less stretched and deformed when peeled from the inorganic substrate, and is excellent in handleability.
  • the tensile elastic modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and further preferably 10 GPa or less.
  • the transparent high heat resistant film can be used as a flexible film.
  • the tensile elastic modulus of the transparent high heat resistant film refers to the average value of the tensile elastic modulus in the flow direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the high heat resistant film.
  • the method for measuring the tensile elastic modulus of the transparent high heat-resistant film is as described in Examples.
  • the thickness unevenness of the transparent high heat resistant film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness spot exceeds 20%, it tends to be difficult to apply to a narrow part.
  • the thickness unevenness of the transparent high heat-resistant film can be obtained by, for example, randomly extracting about 10 positions from the film to be measured with a contact-type film thickness meter, measuring the film thickness, and calculating based on the following formula. can.
  • Film thickness spots (%) 100 x (maximum film thickness-minimum film thickness) ⁇ average film thickness
  • the transparent high heat resistant film is preferably obtained in the form of being wound as a long transparent high heat resistant film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and is a roll wound around a winding core.
  • the one in the form of a transparent high heat resistant film is more preferable.
  • the transparent high heat resistant film is wound in a roll shape, it is easy to transport the transparent high heat resistant film in the form of a rolled transparent high heat resistant film.
  • a lubricant (particle) having a particle diameter of about 10 to 1000 nm is added to the transparent high heat resistant film in an amount of about 0.03 to 3% by mass. It is preferable that the film is contained to provide fine irregularities on the surface of the transparent high heat-resistant film to ensure slipperiness.
  • the transparent high heat resistant film having a laminated structure of two or more layers in particular, the first transparent high heat resistant film layer in contact with the inorganic substrate and the second transparent high heat resistant film adjacent to the first transparent high heat resistant film layer. It is desirable that there is a mixture at the interface with the film layer (hereinafter, also simply referred to as "second transparent high heat resistant film layer"). If the thickness of the mixture is small, the transparent high heat resistant film depends on the physical properties of each layer. The thickness of the mixture is preferably more than 800 nm, more preferably 1000 nm or more, and particularly preferably 2000 nm or more, because it causes warpage and easily peels off between layers.
  • the upper limit is caused by the limitation of the film thickness. Industrially, there is no problem if it is 5 ⁇ m or less, and preferably 3 ⁇ m or less.
  • the means for forming the layer having a large amount of mixing is not particularly limited, but preferably, two layers of the first transparent high heat resistant film layer and the second transparent high heat resistant film layer are applied simultaneously or sequentially (hereinafter, "" It is also called “simultaneous / sequential coating") to produce a film integrated by solution film formation while diffusing the solutions.
  • the mixed layer becomes a mixture layer regardless of whether the heating process is in the middle stage or after completion. It will be less than when it is applied simultaneously and sequentially.
  • the mixture will be mixed as compared with the case of simultaneous and successive application. Often there are few layers, but the mixing itself is promoted. Further, even when heated (dried) halfway, for example, if a solvent is applied on the second layer to promote the diffusion of the solvent, the number of mixed layers is often smaller than that in the case of simultaneous / successive application. However, the mixing itself is promoted.
  • a material (resin) having different physical properties as a two-layer film, it is possible to produce a film having various characteristics. Further, by laminating in a symmetrical structure in the thickness direction (for example, a first transparent high heat resistant film layer / a second transparent high heat resistant film layer / a first transparent high heat resistant film layer), the balance of CTE of the entire film is balanced. It is possible to obtain a film that is good and less likely to warp. Further, it is conceivable to make one of the layers a layer having absorption in the ultraviolet or infrared rays to give characteristics to the spectral characteristics, or to control the incident emission of light by layers having different refractive indexes.
  • simultaneous coating with a T-die capable of simultaneously ejecting two layers, sequential coating in which one layer is applied and then the next layer is applied, and one layer is applied and then dried.
  • a method of applying the next layer after advancing the process the method of applying the next layer after finishing the film formation of one layer, or the multi-layering by heat laminating by inserting a thermoplastic layer.
  • the thickness of the first transparent high heat resistant film is preferably 0.1 ⁇ m or more. It is more preferably 0.4 ⁇ m or more, further preferably 1 ⁇ m or more, still more preferably 2 ⁇ m or more, and particularly preferably 3 ⁇ m or more because it is less susceptible to the influence of mixing. Further, from the viewpoint of thinning the entire transparent high heat resistant film, it is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and further preferably 5 ⁇ m or less.
  • the inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance.
  • a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used.
  • the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pylex (registered trademark)), borosilicate glass (non-alkali), and the like. Includes borosilicate glass (microsheet), aluminosilicate glass and the like.
  • the semiconductor wafer is not particularly limited, but is limited to silicon wafer, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphorus-arsenide-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, and the like. Wafers such as LT, LN, ZnO (zinc oxide), CdTe (cadmium telluride), and ZnSe (zinc selenide) can be mentioned. Among them, the wafer preferably used is a silicon wafer, and particularly preferably a mirror-polished silicon wafer having a size of 8 inches or more.
  • the metal includes single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as inconel, monel, mnemonic, carbon copper, Fe—Ni-based invar alloy, and superinvar alloy. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer.
  • the metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to a high heat resistant film, no diffusion, and good chemical resistance and heat resistance.
  • Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
  • the ceramic plates in the present invention include Al 2 O 3 , Mullite, AlN, SiC, crystallized glass, Cordierite, Spodumene, Pb-BSG + CaZrO3 + Al 2 O 3 , Crystallized glass + Al 2 O 3 , Crystallized Ca-BSG, BSG + Quartz, BSG +. Quartz, BSG + Al2O3, Pb- BSG + Al 2 O 3, Glass-ceramic, include foundation for ceramics such as Zerodur material.
  • the flat portion of the inorganic substrate is sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is coarser than this, the peel strength between the transparent high heat resistant film layer and the inorganic substrate may be insufficient.
  • the thickness of the inorganic substrate is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, still more preferably 1.3 mm or less, from the viewpoint of handleability.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.07 mm or more, more preferably 0.15 mm or more, still more preferably 0.3 mm or more. If it is too thin, it will be easily damaged and difficult to handle. If it is too thick, it will be heavy and difficult to handle.
  • the laminated body of the present invention is obtained by laminating the transparent high heat resistant film and the inorganic substrate substantially without using an adhesive.
  • the transparent high heat resistant film has a laminated structure of two or more layers
  • the second transparent high heat resistant film may further have a plurality of laminated configurations.
  • both ends thereof are inorganic substrates (for example, inorganic substrate / first transparent high heat resistant film / second transparent high heat resistant film / first transparent high heat resistant film / inorganic substrate). It doesn't matter. In this case, the transparent high heat resistant film and the inorganic substrate at both ends substantially do not use an adhesive.
  • the shape of the laminated body is not particularly limited, and may be square or rectangular. It is preferably rectangular, and the length of the long side is preferably 300 mm or more, more preferably 500 mm or more, and further preferably 1000 mm or more.
  • the upper limit is not particularly limited, but it is desirable to replace the industrially used substrate of size and material. If it is 20000 mm or less, it is sufficient, and 10,000 mm or less may be sufficient.
  • the laminate of the present invention has a warp amount of 400 ⁇ m or less when heated at 300 ° C. Since the heat resistance is good, it is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the lower limit of the amount of warpage is not particularly limited, but industrially, 5 ⁇ m or more is sufficient, and 10 ⁇ m or more may be sufficient.
  • the adhesive layer referred to in the present invention refers to a layer having a Si (silicon) component of less than 10% by mass (less than 10% by mass).
  • substantially not used (not intervening) means that the thickness of the adhesive layer interposed between the inorganic substrate and the transparent high heat resistant film is preferably 0.4 ⁇ m or less, more preferably 0.1 ⁇ m. It is less than or equal to, more preferably 0.05 ⁇ m or less, particularly preferably 0.03 ⁇ m or less, and most preferably 0 ⁇ m.
  • the laminate it is preferable to have a layer of a silane coupling agent between the transparent high heat resistant film and the inorganic substrate.
  • the silane coupling agent refers to a compound containing 10% by mass or more of a Si (silicon) component.
  • the structure has an alkoxy group. Moreover, it is desirable that it does not contain a methyl group.
  • the silane coupling agent layer By using the silane coupling agent layer, the intermediate layer between the transparent high heat resistant film and the inorganic substrate can be thinned, so there is little degassing component during heating, it is difficult to elute even in the wet process, and even if elution occurs, it remains in a trace amount. The effect comes out.
  • the silane coupling agent preferably contains a large amount of silicon oxide component because the heat resistance is improved, and particularly preferably one having heat resistance at a temperature of about 400 ° C.
  • the thickness of the silane coupling agent layer is preferably less than 0.2 ⁇ m.
  • the range used as a flexible electronic device is preferably 100 nm or less (0.1 ⁇ m or less), more preferably 50 nm or less, and further preferably 10 nm.
  • the silane coupling agent in the present invention is not particularly limited, but one having an amino group or an epoxy group is preferable.
  • Specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (amino).
  • the peel strength between the transparent high heat resistant film and the inorganic substrate needs to be 0.3 N / cm or less. This makes it very easy to separate the transparent high heat resistant film from the inorganic substrate after the device is formed on the transparent high heat resistant film. Therefore, it is possible to manufacture a device conjugate capable of mass production, and it becomes easy to manufacture a flexible electronic device.
  • the peel strength is preferably 0.25 N / cm or less, more preferably 0.2 N / cm or less, still more preferably 0.15 N / cm or less, and particularly preferably 0.12 N / cm or less. Is. Further, it is preferably 0.03 N / cm or more.
  • the peel strength is a value of a laminated body after the transparent high heat resistant film and the inorganic substrate are bonded and then heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere (initial peel strength). Further, it is preferable that the peel strength is within the above range even after the laminated body at the time of the initial peel strength measurement is further heat-treated at 300 ° C. for 1 hour in a nitrogen atmosphere (peeling strength after heat treatment at 300 ° C.).
  • the laminate of the present invention can be produced, for example, by the following procedure. At least one surface of the inorganic substrate is treated with a silane coupling agent in advance, and the surface treated with the silane coupling agent and the transparent high heat resistant film are laminated to obtain a laminated body in which both are laminated by pressure. Further, even if at least one surface of the transparent high heat resistant film is treated with a silane coupling agent in advance, the surface treated with the silane coupling agent and the inorganic substrate are overlapped, and both are laminated by pressure, a laminate can be obtained. can. When the transparent high heat resistant film has a laminated structure of two or more layers, it is preferable to superimpose the first transparent high heat resistant film on the inorganic substrate.
  • Examples of the pressurizing method include normal pressing or laminating in the atmosphere or pressing or laminating in vacuum, but in order to obtain stable peel strength over the entire surface, a large-sized laminate (for example, for example). Laminating in the air is desirable for (more than 200 mm). On the other hand, if it is a laminated body having a small size of about 200 mm or less, pressing in vacuum is preferable. As for the degree of vacuum, a vacuum using a normal oil rotary pump is sufficient, and a vacuum of about 10 Torr or less is sufficient. The preferred pressure is 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is high, the substrate may be damaged, and if the pressure is low, some parts may not adhere to each other. A high temperature of 90 ° C to 300 ° C, more preferably 100 ° C to 250 ° C may damage the film, and a low temperature may weaken the adhesion.
  • a flexible electronic device can be easily manufactured by using existing equipment and processes for manufacturing electronic devices.
  • a flexible electronic device can be manufactured by forming an electronic device on a transparent high heat resistant film of a laminated body and peeling the transparent high heat resistant film together with the laminated body.
  • the electronic device refers to a wiring board having a single-sided, double-sided, or multi-layered structure for electrical wiring, an electronic circuit including an active element such as a transistor and a diode, and a passive device such as a resistor, a capacitor, and an inductor, and others.
  • Sensor elements that sense pressure, temperature, light, humidity, etc., biosensor elements, light emitting elements, liquid crystal displays, electrophoretic displays, self-luminous displays and other image display elements, wireless and wired communication elements, arithmetic elements, storage elements, MEMS element, solar cell, thin film, etc.
  • the interposer function which is an electrode that penetrates the polyimide, is also included in this wiring board.
  • the step of producing a through electrode after peeling off the inorganic substrate is largely omitted.
  • a known method may be used to create the through hole. For example, a transparent high heat resistant film is pierced with a through hole by a UV nanolaser. Then, for example, by applying a conventional method used for a through hole in a double-sided printed wiring board or a via hole in a multi-layer printed wiring board, the through hole is filled with a conductive metal, and a wiring pattern with a metal as required is added. Is formed.
  • the transparent high heat resistant film it may be attached to the inorganic substrate after opening the through electrode as described above.
  • a through electrode may be manufactured after the inorganic substrate and the transparent high heat resistant film are bonded together. It is possible to penetrate the transparent high heat resistant film and metallize it, but it is also possible to make a hole from one side of the transparent high heat resistant film and metallize it without penetrating the surface on the other side.
  • a device is formed on a transparent high heat resistant film of a laminate produced by the above method, and then the transparent high heat resistant film is peeled off from the inorganic substrate.
  • the method of peeling the transparent high heat resistant film with the device from the inorganic substrate is not particularly limited, but the method of winding from the end with a tweezers or the like, making a cut in the transparent high heat resistant film, and attaching an adhesive tape to one side of the cut portion.
  • a method of winding from the tape portion after the film is formed, a method of vacuum-adsorbing one side of the cut portion of the transparent high heat-resistant film and then winding from that portion, and the like can be adopted. If the cut portion of the transparent high heat-resistant film bends with a small curvature during peeling, stress will be applied to the device at that portion and the device may be destroyed.
  • a method of making a cut in the transparent high heat resistant film a method of cutting the transparent high heat resistant film with a cutting tool such as a cutting tool, a method of cutting the transparent high heat resistant film by relatively scanning a laser and a laminate, and a method of cutting the transparent high heat resistant film.
  • a method of cutting a transparent high heat-resistant film by relatively scanning a water jet and a laminate and a method of cutting a transparent high heat-resistant film while cutting a little to the glass layer with a semiconductor chip dicing device.
  • a method of cutting a transparent high heat-resistant film while cutting a little to the glass layer with a semiconductor chip dicing device Not limited.
  • the flexible electronic device to be peeled off is the backplane of the display device
  • a polyamic acid solution (1) having a solid content of 25% by mass and a reduction end of 1.10 dl / g was obtained.
  • 204 g of DMAc was added to the obtained polyamic acid solution to dilute the polyamic acid concentration to 15% by mass, and then 1.3 g of isoquinoline was added as an imidization accelerator.
  • 12.25 g (1.20 mol) of acetic anhydride was slowly added dropwise as an imidizing agent.
  • Lubricants were added to make the total amount of polymer solids in the polyamic acid solution 0.4% by mass) and completely dissolved, and then 9.81 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid.
  • CBDA dianhydride
  • ODPA 4,4'-oxydiphthalic acid dianhydride
  • the mixture was stirred at room temperature for 24 hours.
  • TFMB // CBDA / OPDA) in a molar ratio 1.00 // 0.50 / 0.50).
  • Lubricants were added to make the total amount of polymer solids in the polyamic acid solution 0.4% by mass) and completely dissolved, and then 19.61 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride
  • BPDA 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride
  • ODPA 4,4'-oxydiphthalic acid dianhydride
  • the polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A1 having a width of 450 mm.
  • the polyimide solution 1 obtained in Production Example 1 is applied onto the dried product of the polyamic acid solution 4.
  • DMAc N, N-dimethylacetamide
  • the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break.
  • the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A2 having a width of 450 mm.
  • the polyethylene terephthalate film A4100 is separated from the polyethylene terephthalate film A4100 by peeling off the polyimide tape, passing it through a pin tenter having a pin sheet on which pins are arranged, and grasping the film by inserting it into the pins so that the film does not break.
  • the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed with the imidization reaction. ..
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film A3 having a width of 400 mm.
  • the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break.
  • the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A4 having a width of 450 mm.
  • the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break.
  • the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film D1 having a width of 450 mm.
  • the polyimide film F was obtained by changing the polyimide solution 1 to the polyamic acid solution 3 and operating in the same manner as in Production Example 1 except that the coating thickness was adjusted so that the final film thickness of the polyamic acid solution 4 was 7 ⁇ m. ..
  • the polyimide film G was obtained by changing the polyimide solution 1 to the polyamic acid solution 6 and operating in the same manner as in Production Example 1 except that the coating thickness was adjusted so that the final film thickness of the polyamic acid solution 4 was 7 ⁇ m. ..
  • the film is pulled out, N, N-dimethylacetamide (DMAc) is spray-coated, and then the polyimide amide solution 7 obtained in Production Example 7 is subjected to polyamic acid. It was applied onto the dried product of Solution 4 so that the final film thickness was 20 ⁇ m. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break.
  • DMAc N, N-dimethylacetamide
  • the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film H2 having a width of 450 mm.
  • the polyimide solution 1 obtained in Production Example 1 was applied onto the dried product of the polyamic acid solution 8 so that the final film thickness was 15 ⁇ m. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C.
  • a polyimide film R having a width of 450 mm and a width of 500 m.
  • the polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a polyimide film T having a width of 450 mm and a width of 500 m.
  • the polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. Adjust the pin sheet spacing so that unnecessary slack does not occur, and transport the film under the conditions of 200 ° C for 3 minutes, 250 ° C for 3 minutes, 300 ° C for 3 minutes, and 350 ° C for 3 minutes. Then, the imidization reaction was allowed to proceed.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film U having a width of 450 mm.
  • CTE Linear expansion coefficient of polyimide film>
  • the stretch ratio of the polyimide films A to Z was measured in the flow direction (MD direction) and the width direction (TD direction) under the following conditions, and the intervals were 15 ° C. such as 30 ° C. to 45 ° C. and 45 ° C. to 60 ° C.
  • the expansion / contraction rate / temperature was measured in, and this measurement was performed up to 300 ° C., and the average value of all the measured values was calculated as CTE.
  • Tables 1 and 2 The results are shown in Tables 1 and 2.
  • ⁇ Polyimide film thickness direction phase difference (Rth)> The refractive index nx in the X-axis direction, the refractive index ny in the Y-axis direction, and the refractive index nz in the Z-axis direction of the polyimide films A to Z are measured by an optical material inspection device (model RETS-100) manufactured by Otsuka Electronics Co., Ltd. It was measured with light at room temperature (20 to 25 ° C.) and a wavelength of 550 nm. After detecting the optical axis and correcting the phase advance and slow phase, the retardation measurement method was measured by the rotary photon method.
  • the X-axis and the Y-axis indicate the refractive index (nx) in the direction having the largest refractive index in the plane direction of the film and the refractive index (ny) in the vertical direction in the Nx direction in the plane direction of the film.
  • Rth was calculated from the refractive index nx in the X-axis direction, the refractive index ny in the Y-axis direction, the refractive index nz in the Z-axis direction, and the film thickness (d) based on the following equations. The results are shown in Tables 1 and 2.
  • Rth (nm)
  • FIG. 1 is a schematic view of an experimental device for applying a silane coupling agent to a glass substrate.
  • Glass substrate 1 (OA11G glass (manufactured by NEG) having a thickness of 0.7 mm cut into a size of 100 mm ⁇ 100 mm) was used.
  • the glass substrate 1 used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N-03 manufactured by LAN Technical) for 1 minute to dry wash.
  • a polyimide film A1 (70 mm ⁇ 70 mm size) was laminated on the silane coupling agent layer to obtain a laminated body.
  • the bonded surface is a polyimide surface made of the polyamic acid solution 4.
  • a laminator manufactured by MCK was used for bonding, and the bonding conditions were compressed air pressure: 0.6 MPa, temperature: 22 ° C., humidity: 55% RH, and laminating speed: 50 mm / sec. The results of measuring this laminated body are as shown in Table 3.
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that the method for applying the silane coupling agent and the inorganic substrate were changed to the following.
  • a Si wafer substrate (dummy grade 8-inch wafer) cut into a size of 100 mm ⁇ 100 mm was installed in a spin coater (MSC-500S manufactured by Japan Create Co., Ltd.).
  • MSC-500S manufactured by Japan Create Co., Ltd.
  • IPA isopropyl alcohol
  • the 1% IPA solution was dropped onto the glass and rotated at 2000 rpm to shake off and dry the silane coupling agent diluted solution. The rotation was stopped 30 seconds after the dropping. As a result, a silane coupling agent layer was formed on the glass substrate.
  • the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
  • Example 3 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
  • Example 4 In Example 1, the glass substrate 1 was put into the apparatus of FIG. 1 for SCA coating, but after the film A1 was tape-fixed to the glass substrate 1 in the apparatus of FIG. 1 and the SCA was applied to the film A1.
  • the laminate was formed in the same manner as in Example 1 except that it was peeled off from the glass substrate 1 and the SCA coated surface was brought into contact with the glass side of the glass substrate 1 different from the glass used at this time and pasted. Obtained.
  • the glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N-03 manufactured by LAN Technical) for 1 minute to dry wash. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4.
  • Table 3 As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
  • Example 5 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A4. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
  • Example 6 The laminated surface was obtained in the same manner as in Example 2 except that the transparent high heat resistant film to be used was changed from film A1 to film B and the inorganic substrate was changed from Si wafer to glass 1. It is a polyimide surface made of a polyamic acid solution 5. As a result of measuring this laminated body, the substrate to be used and the coating method are as shown in Table 3.
  • Example 7 The transparent high heat resistant film used was changed from film A1 to film D1, and the substrate was changed from glass substrate 1 to glass substrate 2 (730 ⁇ 920 mm). Therefore, a laminate was obtained in the same manner as in Example 5 except that the silane coupling agent was applied and the laminator was changed to a large device. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
  • Example 8 A laminated body was obtained in the same manner as in Example 4 except that the transparent high heat resistant film used was changed from film A2 to film D1. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 9 A laminated body was obtained in the same manner as in Example 4 except that the transparent high heat resistant film used was changed from film A2 to film D2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 10 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film E. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 5. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 11 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film F. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 12 Except for changing the transparent high heat resistant film to be used from film A1 to film D1 and changing the substrate from glass substrate 1 to a Si wafer substrate (dummy grade 8-inch wafer) cut to a size of 100 mm x 100 mm.
  • a laminate was obtained in the same manner as in Example 1.
  • the bonded surface is a polyimide surface made of the polyamic acid solution 4.
  • the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 13 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film H1. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 14 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film H2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
  • Example 15 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to R. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
  • Example 16 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to S. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
  • Example 17 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to T. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
  • Example 18 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to U. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
  • Example 19 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to V. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
  • Example 20 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to W. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
  • Example 21 A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to Z. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 12. The results of measuring this laminated body are as shown in Table 5.
  • Circuit production example 1 Each film obtained above was slit into a roll size having a width of 50 cm, and plasma-treated under the following conditions in a continuous vacuum apparatus having a winding / winding portion from the roll.
  • the plasma treatment conditions were a frequency of 13.56 MHz, an output of 150 W, and a gas pressure of 0.7 Pa in oxygen gas, the temperature at the time of treatment was 25 ° C., and the treatment time was 5 minutes.
  • the thickness was increased at a rate of 10 ⁇ / sec by an RF sputtering method under an argon atmosphere.
  • a 120 ⁇ nickel-chromium alloy coating (underlayer) was formed, then copper was deposited at a rate of 150 ⁇ / sec to form a 0.25 ⁇ m thick copper thin film and wound in vacuum. In this way, a single-sided metallized film was obtained. A non-penetrating hole was made on the metal layer side of this film by adjusting the time with a nanolaser having a wavelength of 355 nm. Using a roll-to-roll vertical continuous electroplating device, the obtained film containing non-through holes with a single-sided metal thin film was used, and a thick copper plating layer with a thickness of 3 ⁇ m (thickness) was used. An additional layer) was formed to obtain the desired metallized polyimide film.
  • the obtained metallized polyimide film was slit to a width of 48 mm to form a sprocket hole, and then electroless plating was performed, and then double-sided through-hole plating was performed so as to have a maximum thickness of 6 ⁇ m.
  • a photoresist: FR-200 manufactured by Shipley Co., Ltd. was applied and dried, and then closely exposed with a glass photomask, and further developed with a 1.2 mass% KOH aqueous solution.
  • an etching line of cupric chloride containing HCl and hydrogen peroxide was etched at a spray pressure of 40 ° C. and 2 kgf / cm2 to prepare a transparent heat-resistant film with an electrode for connecting between films.
  • a laminate with the inorganic substrate was produced in the same manner as in the examples.
  • Example 1 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A3. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • Example 2 A laminated body was obtained in the same manner as in Example 6 except that the transparent high heat resistant film used was changed from film A1 to film C. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 2. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • Example 3 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film I. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 2. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • Example 4 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film J. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 1. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • Example 5 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film L. At this time, the bonded surface is the surface of the polyimide surface made of the polyamic acid solution 2 that was in contact with the PET film when the film was produced. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • Example 6 A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film Q. At this time, the bonded surface is the surface of the polyimide surface made of the polyamic acid solution 7 that was in contact with the PET film when the film was produced. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
  • the laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere. Then, the 90 ° initial peel strength between the inorganic substrate (glass substrate or silicon wafer) and the polyimide film was measured. The results are shown in Tables 2 to 6.
  • the measurement conditions for the 90 ° initial peel strength are as follows. Peel the film at a 90 ° angle to the inorganic substrate. Measure 5 times and use the average value as the measured value. Measuring device; Shimadzu Autograph AG-IS Measurement temperature; room temperature (25 ° C) Peeling speed; 100 mm / min Atmosphere; Atmosphere measurement sample width; 2.5 cm
  • ⁇ Haze of polyimide film> The haze of the polyimide film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted. The results are shown in Tables 2-6.
  • TT total light transmittance of polyimide film
  • HAZEMETER Nippon Denshoku Co., Ltd.
  • a D65 lamp was used as the light source.
  • the same measurement was performed three times, and the arithmetic mean value was adopted.
  • Tables 2-6 The results are shown in Tables 2-6.
  • the warp ( ⁇ m) of the laminated body of the transparent high heat-resistant film and the inorganic substrate means the degree of deformation in the thickness direction with respect to the surface direction of the laminated body before and after the following predetermined heat treatment, and specifically.
  • a 100 mm ⁇ 100 mm test piece was placed on a platen at room temperature so that the test piece was concave, and the distances from the four corner planes (h1rt, h2rt, h3rt, h4rt: unit).
  • the average value of (mm) is taken as the original amount of warpage (mm), and after heat treatment at 300 ° C.
  • the test piece is allowed to stand on a flat surface so as to be concave, and the distances from the flat surface at the four corners (h1, h2). , H3, h4: unit mm) was defined as the warp amount (mm), and the difference from the original warp amount was defined as the warp amount at 300 ° C.
  • the measured value shall be the average value of 10 points. However, even if there is not enough laminate to sample 10 points, measurement is performed with 3 or more sheets. Specifically, it is calculated by the following equation.

Abstract

Provided is a layered product that uses a high temperature-resistant transparent film having sufficient heat resistance, and that is capable of being mechanically released from an inorganic substrate after various processes are performed on the inorganic substrate since the adhesive strength between the high temperature-resistant transparent film and the inorganic substrate is appropriately weak, and that is less warped along with the inorganic substrate. In this layered product, no adhesive is used between the high temperature-resistant transparent film and the inorganic substrate, the release strength between the high temperature-resistant transparent film and the inorganic substrate is at most 0.3 N/cm, and the warpage amount of the layered product when heated at 300°C is at most 400 μm.

Description

透明高耐熱フィルムを含む積層体Laminated body containing transparent high heat resistant film
 本発明は、高耐熱フィルムを含む積層体に関する。 The present invention relates to a laminate containing a highly heat resistant film.
 近年、複数のデバイスが間隔を置いて搭載されたシートであって、フレキシブル性と伸縮性とを兼ね備えたものの需要が高まっている。このようなシートは、例えば、身体のような曲面に装着して使用することが想定されている。また、折り曲げ部を有する電子機器や、巻き取ることが可能な電子機器に使用することが想定されている。これらのシートが透明であるとディスプレイ用途を中心に多様な使用法が有望であり、盛んに検討されている。 In recent years, there has been an increasing demand for seats with multiple devices mounted at intervals, which have both flexibility and elasticity. Such a sheet is supposed to be used by being attached to a curved surface such as a body, for example. Further, it is expected to be used for an electronic device having a bent portion and an electronic device that can be wound. If these sheets are transparent, various uses are promising mainly for display applications, and they are being actively studied.
 特許文献1には、薄型・軽量・フレキシブル化が可能であって、熱応力によるクラックや剥離の問題がなく、寸法安定性等に優れた有機EL装置を製造するにあたって用いる支持基材用ポリイミドフィルムを製造する方法が開示されている。ベース基板上に、ポリイミド又はポリイミド前駆体の樹脂溶液をポリイミドフィルムの厚みが50μm以下になるように塗布し、加熱処理を完了させてベース基板上にポリイミドフィルムを形成して、ベース基板からポリイミドフィルムを分離する表示装置支持基材用ポリイミドフィルムの製造方法であって、ポリイミドフィルムは、440nmから780nmの波長領域での透過率が80%以上であると共に、400nmでの透過率が80%以下であり、ポリイミドフィルムとベース基板とを分離するために、ベース基板を通してポリイミドフィルムの底面にレーザー光を照射して表示装置支持基材用ポリイミドフィルムを製造する方法である。 Patent Document 1 describes a polyimide film for a supporting base material that can be made thin, lightweight, and flexible, has no problems of cracking or peeling due to thermal stress, and is used for manufacturing an organic EL device having excellent dimensional stability and the like. Is disclosed. A polyimide or a resin solution of a polyimide precursor is applied onto the base substrate so that the thickness of the polyimide film is 50 μm or less, the heat treatment is completed to form the polyimide film on the base substrate, and the polyimide film is formed from the base substrate. A method for manufacturing a polyimide film for a display device support base material, which has a transmittance of 80% or more in the wavelength region of 440 nm to 780 nm and a transmittance of 80% or less at 400 nm. There is a method of producing a polyimide film for a display device support base material by irradiating the bottom surface of the polyimide film with laser light through the base substrate in order to separate the polyimide film and the base substrate.
 また、特許文献2には、無機層とポリイミドフィルム層との間にシランカップリング層を有する積層体として、耐熱性、フレキシブル性をより高いレベルで具備したポリイミドのフィルムとガラス板、セラミック板、シリコンウエハ、金属から選ばれた一種の無機層とが積層された耐熱性と絶縁性に優れた積層体とが、電子デバイス、光学機能部品、電子部品作成などに使用される際に極めて有意であるとしている。 Further, Patent Document 2 describes a polyimide film, a glass plate, and a ceramic plate having a higher level of heat resistance and flexibility as a laminate having a silane coupling layer between an inorganic layer and a polyimide film layer. A laminate with excellent heat resistance and insulation, in which a silicon wafer and a kind of inorganic layer selected from metal are laminated, is extremely significant when used for making electronic devices, optical functional components, electronic components, etc. There is.
特開2018-132768号公報Japanese Unexamined Patent Publication No. 2018-132768 特許5304490号Patent No. 5304490
 しかしながら、特許文献1に記載されているような回路基板の製造方法では、ベース基板を通して、ポリイミドフィルムの底面全面にレーザー光を照射する必要があり、生産性に劣る。特に、大面積になると、レーザー加工に高度の精度が必要となり、大量生産には向かない。また、レーザー加工に伴いスミヤが発生するため、このスミヤはパーティクルとなりデバイスに障害を発生させたり、配線を断線させる原因ともなる。また、特許文献2に記載の積層体は、無機層とポリイミドフィルムとの180度剥離強度が1N/cm以上と強く、ポリイミドフィルム層上にデバイスを形成し、その後に当該デバイス形成ポリイミドフィルムを機械的に剥がすことが困難であった。 However, in the circuit board manufacturing method as described in Patent Document 1, it is necessary to irradiate the entire bottom surface of the polyimide film with laser light through the base substrate, which is inferior in productivity. In particular, when the area is large, high precision is required for laser processing, which is not suitable for mass production. In addition, since smears are generated during laser processing, these smears become particles and cause damage to the device or break the wiring. Further, the laminate described in Patent Document 2 has a strong 180-degree peel strength between the inorganic layer and the polyimide film of 1 N / cm or more, and a device is formed on the polyimide film layer, and then the device-formed polyimide film is machined. It was difficult to peel it off.
 本発明は上述した課題に鑑みてなされたものであり、その目的は、透明高耐熱フィルム上にデバイスを形成した後、当該透明高耐熱フィルムと無機基板との剥離が非常に容易であるため、電子デバイス付きフィルムの製造が容易であり、大量生産が可能なデバイス連
結体の製造方法を提供することにある。また、本発明は、当該デバイス作製のための、透明高耐熱性フィルムと無機基板の積層体を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object thereof is that after forming a device on a transparent high heat resistant film, it is very easy to separate the transparent high heat resistant film from the inorganic substrate. It is an object of the present invention to provide a method for manufacturing a device conjugate, which is easy to manufacture a film with an electronic device and can be mass-produced. The present invention also provides a laminate of a transparent high heat resistant film and an inorganic substrate for manufacturing the device.
 本発明者らは、透明高耐熱フィルム上のデバイスの製造について鋭意検討を行った。その結果、下記構成物を採用すれば、透明高耐熱フィルム上のデバイスの製造が容易であり、大量生産が可能であることを見出し、本発明を完成するに至った。すなわち、本発明に係る積層体は以下の構成からなる。 The present inventors have diligently studied the manufacture of devices on transparent high heat resistant films. As a result, they have found that if the following components are adopted, the device on the transparent high heat resistant film can be easily manufactured and mass-produced, and the present invention has been completed. That is, the laminated body according to the present invention has the following structure.
 透明高耐熱フィルムと無機基板との接着剤を実質的に使わない積層体において、
 前記透明高耐熱フィルムと前記無機基板との剥離強度が0.3N/cm以下であり、前記積層体の300℃加熱時の反り量が400μm以下である積層体。
In a laminate that substantially does not use an adhesive between a transparent high heat resistant film and an inorganic substrate,
A laminate in which the peel strength between the transparent high heat resistant film and the inorganic substrate is 0.3 N / cm or less, and the amount of warpage of the laminate when heated at 300 ° C. is 400 μm or less.
 前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層と、無機基板には接触せずに前記第1の透明高耐熱フィルム層と隣接する第2の透明高耐熱フィルム層との界面の混じり合いの厚さが800nm超5μm以下であることが好ましい。 The transparent high heat resistant film has a laminated structure of two or more layers, and is adjacent to the first transparent high heat resistant film layer that comes into contact with the inorganic substrate and the first transparent high heat resistant film layer that does not come into contact with the inorganic substrate. It is preferable that the thickness of the mixture with the second transparent high heat resistant film layer is more than 800 nm and 5 μm or less.
 前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層単独でのCTEが20ppm/K以下であることが好ましい。 It is preferable that the transparent high heat resistant film has a laminated structure of two or more layers, and the CTE of the first transparent high heat resistant film layer alone in contact with the inorganic substrate is 20 ppm / K or less.
 前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層が透明ポリイミドであることが好ましい。 It is preferable that the transparent high heat resistant film has a laminated structure of two or more layers, and the first transparent high heat resistant film layer in contact with the inorganic substrate is transparent polyimide.
 前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触しない第2の透明高耐熱フィルム層の少なくとも1層が透明ポリイミドであることが好ましい。 It is preferable that the transparent high heat resistant film has a laminated structure of two or more layers, and at least one layer of the second transparent high heat resistant film layer that does not come into contact with the inorganic substrate is transparent polyimide.
 前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層が式1の構造および/または式2の構造を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
It is preferable that the transparent high heat resistant film has a laminated structure of two or more layers, and the first transparent high heat resistant film layer in contact with the inorganic substrate contains the structure of the formula 1 and / or the structure of the formula 2.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 前記無機基板の長辺300mm以上であることが好ましい。 It is preferable that the long side of the inorganic substrate is 300 mm or more.
 前記積層体の透明高耐熱フィルム上に電子デバイスを形成し、次いで無機基板から剥離する電子デバイス付きフィルムの製造方法。 A method for manufacturing a film with an electronic device, in which an electronic device is formed on the transparent high heat resistant film of the laminated body and then peeled off from an inorganic substrate.
 本発明によれば、デバイス形成後の透明高耐熱フィルムと無機基板との剥離が非常に容易であるため、電子デバイス付きフィルムの製造が容易であり、大量生産が可能なデバイス連結体の製造方法を提供することができる。また、当該透明高耐熱フィルムと無機基板との積層体を提供することができ、さらに前記積層体は加熱時の反り量も小さい。 According to the present invention, since it is very easy to peel off the transparent high heat resistant film and the inorganic substrate after forming the device, it is easy to manufacture a film with an electronic device, and a method for manufacturing a device conjugate capable of mass production. Can be provided. Further, it is possible to provide a laminate of the transparent high heat resistant film and an inorganic substrate, and the laminate has a small amount of warpage during heating.
本特許に係るシランカップリング剤塗布方法を説明するための模式図である。It is a schematic diagram for demonstrating the silane coupling agent application method which concerns on this patent. 本特許に係る電子デバイス付きフィルムの製造方法を説明するための模式的断面図例である。It is a schematic cross-sectional view example for demonstrating the manufacturing method of the film with an electronic device which concerns on this patent. 本特許に係る電子デバイス付きフィルムの製造方法を説明するための別の模式的断面図例である。It is another schematic cross-sectional view example for demonstrating the manufacturing method of the film with an electronic device which concerns on this patent. 本特許に係る透明高耐熱フィルムと無機基板の積層体の反りの測定を説明するための模式的断面図例である。It is a schematic cross-sectional view example for demonstrating the measurement of the warp of the laminated body of a transparent high heat resistant film and an inorganic substrate which concerns on this patent.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 <透明高耐熱フィルム>
 本明細書において、透明高耐熱フィルムとは、好ましくは融点が250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上のフィルムである。また、ガラス転移温度が200℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上の高分子によって作られているフィルムである。以下、煩雑さを避けるために単に高分子とも称する。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を超える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断して良い。
<Transparent high heat resistant film>
In the present specification, the transparent high heat resistant film is preferably a film having a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 400 ° C. or higher. Further, the glass transition temperature is preferably 200 ° C. or higher, more preferably 320 ° C. or higher, and further preferably 380 ° C. or higher. Hereinafter, it is also simply referred to as a polymer in order to avoid complication. In the present specification, the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it may be determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
 また、透明性としては、全光線透過率が75%以上のものであることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。前記透明高耐熱フィルムの全光線透過率の上限は特に制限されないが、電子デバイス付きフィルム(以下、フレキシブル電子デバイスともいう。)として用いるためには98%以下であることが好ましく、より好ましくは97%以下である。 Further, as the transparency, it is preferable that the total light transmittance is 75% or more. It is more preferably 80% or more, further preferably 85% or more, further preferably 87% or more, and particularly preferably 88% or more. The upper limit of the total light transmittance of the transparent high heat resistant film is not particularly limited, but is preferably 98% or less, more preferably 97 for use as a film with an electronic device (hereinafter, also referred to as a flexible electronic device). % Or less.
 前記透明高耐熱フィルム(以下、単に高分子フィルムとも称する)としては、ポリイミド、ポリアミドイミド、ポリエーテルイミド、フッ素化ポリイミドといったポリイミド系樹脂(例えば、芳香族ポリイミド樹脂、脂環族ポリイミド樹脂);ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートといった共重合ポリエステル(例えば、全芳香族ポリエステル、半芳香族ポリエステル);ポリメチルメタクリレートに代表される共重合(メタ)アクリレート;ポリカーボネート;ポリアミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;酢酸セルロース;硝酸セルロース;芳香族ポリアミド;ポリ塩化ビニル;ポリフェノール;ポリアリレート;ポリアセタール;変性ポリフェニレンエーテル;ポリフェニレンスルフィド;ポリフェニレンオキシド;ポリスチレン;ポリベンゾオキサゾール;ポリベンゾチアゾール;ポリベンゾイミダゾール;環状ポリオレフィン;液晶ポリマー等のフィルムを例示できる。またこれらを、ガラスフィラー、ガラス繊維などで補強したものが例示できる。
 ただし、前記高分子フィルムは、250℃以上の熱処理を伴うプロセスに用いられるこ
とが前提であるため、例示された高分子フィルムの中から実際に適用できる物は限られる。前記高分子フィルムのなかでも好ましくは、所謂スーパーエンジニアリングプラスチックを用いたフィルムであり、より具体的には、芳香族ポリイミドフィルム、脂環族ポリイミドフィルム、芳香族アミドフィルム、芳香族アミドイミドフィルム、アミドイミドフィルム、芳香族ベンゾオキサゾールフィルム、芳香族ベンゾチアゾールフィルム、芳香族ベンゾイミダゾールフィルム、環状ポリオレフィン、液晶ポリマー、等が挙げられる。
The transparent high heat resistant film (hereinafter, also simply referred to as a polymer film) includes polyimide resins such as polyimide, polyamideimide, polyetherimide, and fluorinated polyimide (for example, aromatic polyimide resin and alicyclic polyimide resin); polyethylene. , Polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate and other copolymerized polyesters (eg, fully aromatic polyesters, semi-aromatic polyesters); copolymerized (meth) acrylates typified by polymethylmethacrylate; polycarbonate. Polyimide; Polysulphon; Polyethersulphon; Polyetherketone; Cellulose acetate; Cellulite nitrate; Aromatic polyamide; Polyvinyl chloride; Polyphenol; Polyallylate; Polyacetal; Modified polyphenylene ether; Polyphenylene sulfide; Polyphenylene oxide; Polystyrene; Polybenzoxazole Examples thereof include films such as polybenzothiazole; polybenzoimidazole; cyclic polyimide; and liquid crystal polymers. Further, examples thereof include those reinforced with glass filler, glass fiber and the like.
However, since the polymer film is premised on being used in a process involving a heat treatment of 250 ° C. or higher, the polymer films exemplified are limited to those that can be actually applied. Among the polymer films, a film using a so-called super engineering plastic is preferable, and more specifically, an aromatic polyimide film, an alicyclic polyimide film, an aromatic amide film, an aromatic amide imide film, and an amide. Examples thereof include imide film, aromatic benzoxazole film, aromatic benzothiazole film, aromatic benzoimidazole film, cyclic polyolefin, liquid crystal polymer and the like.
 以下に前記高分子フィルムの一例であるポリイミド系樹脂フィルム(ポリイミドフィルムと称する場合もある)についての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。ここで、グリーンフィルムとは、溶媒を含有し、自己支持性を有するポリアミド酸のフィルムである。グリーンフィルムの溶媒含有量は、自己支持性を有していれば特に限定されないが、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、よりさらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、80質量%以下であることが好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下であり、特に好ましくは50質量%以下である。 The details of the polyimide resin film (sometimes referred to as a polyimide film), which is an example of the polymer film, will be described below. Generally, a polyimide-based resin film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried. (Also referred to as "precursor film" or "polyamic acid film"), and further, the green film is heat-treated at high temperature on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction. can get. Here, the green film is a polyamic acid film containing a solvent and having self-supporting properties. The solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液を塗布してフィルムを作る方法では材料選択の幅が広いため、易剥離に好ましい材料を見つけるためには検討しやすい反面、イミド化反応の制御の必要がある。これに対して、イミド化反応を伴わないフィルム製膜では、製膜がしやすい利点があるため、適宜使い分けることが必要となる。 The application of the polyamic acid (polyimide precursor) solution is, for example, application of a conventionally known solution such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Means can be used as appropriate. Since the method of applying a polyamic acid solution to form a film has a wide range of material selections, it is easy to study in order to find a material preferable for easy peeling, but it is necessary to control the imidization reaction. On the other hand, a film-forming film that does not involve an imidization reaction has an advantage that it is easy to form a film, so it is necessary to use them properly.
 本発明におけるポリイミドフィルムは、主鎖にイミド結合を有する高分子のフィルムであり、好ましくはポリイミドフィルム、ポリアミドイミドフィルムであり、より好ましくはポリイミドフィルムである。また、ポリアミドフィルムも好ましい。 The polyimide film in the present invention is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamide-imide film, and more preferably a polyimide film. A polyamide film is also preferable.
 一般的に、ポリイミドフィルムは、前述の通り、溶媒中でジアミン類とテトラカルボン酸類を反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることで得られる。また、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。 Generally, as described above, a polyimide film is green by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for producing a polyimide film and drying it. It is obtained by subjecting a green film to a high-temperature heat treatment on a support for producing a polyimide film or in a state of being peeled off from the support to carry out a dehydration ring closure reaction. As another method, a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
 また、一般的に、ポリアミドイミドフィルムは、溶媒中でジイソシアネート類とトリカルボン類とを反応させて得られるポリアミドイミド溶液を、ポリアミドイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリアミドイミドフィルムとなし、さらにポリアミドイミド作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミドイミドフィルムを高温処理して乾燥させる
ことで得られる。
Further, in general, a polyamide-imide film is prepared by applying a polyamide-imide solution obtained by reacting diisocyanates and tricarboxylics in a solvent to a support for producing a polyamide-imide film and drying the mixture, for example, by mass of 1 to 50 mass. The polyamide-imide film containing 1 to 50% by mass of the solvent is treated at a high temperature and dried on the support for producing the polyamide-imide or in a state of being peeled off from the support. Obtained at.
 また、一般的に、ポリアミドフィルムは、溶媒中でジアミン類とジカルボン酸類とを反応させて得られるポリアミド溶液をポリアミドフィルム作製用支持体に塗布、乾燥して例えば1~50質量%の溶媒を含むポリアミドフィルムとなし、さらにポリアミド作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミドフィルムを高温処理して乾燥させることで得られる。 Further, in general, a polyamide film contains a polyamide solution obtained by reacting diamines and dicarboxylic acids in a solvent, applied to a support for producing a polyamide film, dried, and contained, for example, 1 to 50% by mass of a solvent. It is obtained by treating a polyamide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyamide or in a state of being peeled off from the support.
 前記テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類としては、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環式テトラカルボン酸類(その酸無水物を含む)、芳香族トリカルボン酸類(その酸無水物を含む)、脂肪族トリカルボン酸類(その酸無水物を含む)、脂環式トリカルボン酸類(その酸無水物を含む)、芳香族ジカルボン類、脂肪族ジカルボン酸類、脂環式ジカルボン酸類等を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂肪族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環式テトラカルボン酸類がより好ましい。テトラカルボン酸類が酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Examples of the tetracarboxylic acids, tricarboxylic acids and dicarboxylic acids include aromatic tetracarboxylic acids (including acid anhydrides thereof) and aliphatic tetracarboxylic acids (acid anhydrides thereof) usually used for polyimide synthesis, polyamideimide synthesis and polyamide synthesis. (Including), alicyclic tetracarboxylic acids (including its acid anhydride), aromatic tricarboxylic acids (including its acid anhydride), aliphatic tricarboxylic acids (including its acid anhydride), alicyclic tricarboxylic acids. (Including the acid anhydride thereof), aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like can be used. Among them, aromatic tetracarboxylic acid anhydrides and aliphatic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic type from the viewpoint of light transmission. Tetracarboxylic acids are more preferred. When the tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. ) Is good. Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.
 本発明における無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノン
テトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、2,2’-ジフェノキシ-4,4’,5,5’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。芳香族テトラカルボン酸類の共重合量は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上である。
Examples of the aromatic tetracarboxylic acids for obtaining a highly colorless and transparent polyimide in the present invention include 4,4'-(2,2-hexafluoroisopropyridene) diphthalic acid, 4,4'-oxydiphthalic acid, and bis (1). , 3-Dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis (1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl) benzene- 1,4-dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (benzene-1,4-diyloxy) ] Dibenzene-1,2-dicarboxylic acid, 3,3', 4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-) Diyl) bis (toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) bis (1,4-Xylene-2,5-diyloxy)] Dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1) , 1-diyl) bis (4-isopropyl-toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro) -2-benzofuran-1,1-diyl) bis (naphthalen-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3H-2,1-benz) Oxathiol-1,1-dioxide-3,3-diyl) bis (benzene-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-benzophenonetetracarboxylic acid, 4,4'- [(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (toluene-2,5-diyloxy)] dibenzene-1,2-dicarboxylic acid, 4,4'-[ (3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) Bis (1,4-xylene-2,5-diyloxy)] Dibenzene-1,2-dicarboxylic acid, 4,4 '-[4,4'-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (4-isopropyl-toluene-2,5-diyloxy)] dibenzene-1, 2-Dicarboxylic acid, 4,4'-[4,4' -(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl) bis (naphthalen-1,4-diyloxy)] dibenzene-1,2-dicarboxylic acid, 3,3', 4 , 4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid, 3,3', 4,4'- Biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetracarboxylic acid, 2,2', 3,3'-biphenyltetracarboxylic acid, 2,2'-diphenoxy-4,4', 5,5 '-Biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[Spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] diphthalic acid, 4,4'-[Spiro ( Examples thereof include tetracarboxylic acids such as xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl)] diphthalic acid, and acid anhydrides thereof. Among these, a dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal. Acid dianhydride is preferred. The aromatic tetracarboxylic acids may be used alone or in combination of two or more. The copolymerization amount of the aromatic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when heat resistance is important. The above is more preferably 80% by mass or more.
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-
テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。脂環式テトラカルボン酸類の共重合量は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上である。
Examples of the alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, decahydronaphthalene-2 , 3,6,7-Tetracarboxylic Acid, Decahydro-1,4: 5,8-Dimethanonaphthalene-2,3,6,7-Tetracarboxylic Acid, Decahydro-1,4-Etano-5,8-Metano Naphthalene-2,3,6,7-tetracarboxylic acid, norbornan-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetra Carboxylic acid (also known as "norbornan-2-spiri-2'-cyclopentanone-5'-spiro-2"-norbornan-5,5 ", 6,6" -tetracarboxylic acid "), methylnorbornan- 2-Spiro-α-Cyclopentanone-α'-Spiro-2''-(methylnorbornan) -5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclohexanone- α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid (also known as "norbornan-2-spiriro-2'-cyclohexanone-6'-spiro-2"-norbornan -5,5'', 6,6''-tetracarboxylic acid "), Methylnorbornan-2-spiro-α-cyclohexanone-α'-spiro-2''- (methylnorbornan) -5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cyclopropanol-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan -2-Spiro-α-Cyclobutanone-α'-Spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid, norbornan-2-spiro-α-cycloheptanone-α'-Spiro-2''-Norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclooctanone-α'-spiro-2''-norbornane-5,5'', 6 , 6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclononanon-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2- Spiro-α-cyclodecanone-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cycloundecanone-α'-spiro- 2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclododecanone-α'-spiro-2''-norbornane-5,5'' , 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornane-5,5'', 6,6''-
Tetracarboxylic acid, norbornane-2-spiro-α-cyclotetradecanone-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro- α-Cyclopentadecanone-α'-Spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro-α- (methylcyclopentanone) -α '-Spyro-2''-Norbornane-5,5'', 6,6''-Tetracarboxylic acid, Norbornane-2-Spyro-α- (methylcyclohexanone) -α'-Norbornane-2''-Norbornane- Examples thereof include tetracarboxylic acids such as 5,5'', 6,6''-tetracarboxylic acid, and their acid anhydrides. Among these, dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,3,4-cyclohexanetetracarboxylic. Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic hydride is even more preferred. These may be used alone or in combination of two or more. The copolymerization amount of the alicyclic tetracarboxylic acids is preferably, for example, 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass, when transparency is important. % Or more, and even more preferably 80% by mass or more.
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid. An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite. Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned. Among these, monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of the dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid. Hydrogen additives, oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and their acid salts. Alternatively, an esterified product or the like can be mentioned. Among these, aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid are particularly preferable. The dicarboxylic acids may be used alone or in combination of two or more.
 本発明における無色透明性の高いポリイミドを得るためのジアミン類或いはイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミン類が好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びイソシアネート類は、単独で用いてもよいし二種以上を併用してもよい。 The diamines or isocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and fats usually used for polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis. Cyclic diamines, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. Diamines and isocyanates may be used alone or in combination of two or more.
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェ
ニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノ
キシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミ
ノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。
Examples of aromatic diamines include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'- Bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone , 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N- (4-aminophenyl) benzamide, 3,3'-diaminodiphenyl ether , 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-trifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylsulfide, 3,4'-diaminodiphenyl Sulfur, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4 '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis [4- (4-aminophenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-Aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1 , 3-Bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1,3-bis [4- (4-aminophenoxy) phenyl] butane , 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] butane, 2,3-bis [4- (4-aminophenoxy) ) Phenyl] butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl] propane, 2,2-bis [4- (4-amino) Phenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-Aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoro Propane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-) Aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [4 -(4-Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 1,3-bis [4- (4- (4-) Aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 4,4'-bis [ (3-Aminophenoxy) benzoyl] benzene, 1,1-bis [4- (3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) phenyl] propane, 3,4' -Diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] Methan, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane, 1,2-bi Su [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4'-bis [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4 '-Bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4'-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4'-bis [4- (4-Amino-α, α-dimethylbenzyl) phenoxy] diphenyl sulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl] sulfone, 1,4-bis [4- (4-aminophenoxy) Phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6) -Trifluoromethylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-fluorophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [ 4- (4-Amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3'-diamino-4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3, 3'-Diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3 '-Diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3,3'- Diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1, 3-Bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoyl) Xybenzoyl) benzene, 1,4-bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,4-bis (3-amino-) 4-Bifenoxybenzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-5-biphenoxybenzoyl) benzene, 2,6-bis [ 4- (4-Amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, 4,4'-[9H-fluorene-9,9-diyl] bisaniline (also known as "9,9-bis (4-aminophenyl)) Fluorene "), Spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthen-9,9'-fluorene) -2,6- Examples thereof include diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl)] bisaniline and the like. Further, a part or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, the carbon number 1 may be substituted. A part or all of the hydrogen atom of the alkyl group or the alkoxyl group of ~ 3 may be substituted with a halogen atom. The aromatic diamine having the benzoxazole structure is not particularly limited, and for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo. Oxazole, 5-amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2 , 2'-p-phenylenebis (6-aminobenzoxazole), 1- (5-aminobenzoxazole) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diamino Diphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (4,4-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole , 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] -D: 4,5-d'] bisoxazole, 2,6- (3,3'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3) , 3'-diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole and the like. Among these, in particular, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4-amino-N- (4-aminophenyl) benzamide, 4,4'-diaminodiphenyl sulfone, 3,3 '-Diaminobenzophenone is preferred. The aromatic diamines may be used alone or in combination of two or more.
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl. Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine). Among these, 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable. The alicyclic diamines may be used alone or in combination of two or more.
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’ -ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of diisocyanates include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylen-2,4-diisocyanate, Trilen-2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, naphthalene-2,6-diisocyanis, 4,4'-(2,2 bis (4-phenoxyphenyl) propane) diisocyanate, 3, 3'-or 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'-or 2,2'-diethylbiphenyl-4,4'-diisocyanis, 3,3'-dimethoxybiphenyl-4, Aromatic diisocyanes such as 4'-diisethylene, 3,3'-diethoxybiphenyl-4,4'-diisocyanis, and diisocyanates obtained by hydrogenating any of these (for example, isophorone diisocyanate, 1,4-cyclohexanediisocyanis, etc.) 1,3-Cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate) and the like. Among these, diphenylmethane-4,4'-diisocyanate, tolylen-2,4-diisocyanate, tolylen-2,6-diisocyanate, 3,3'-in terms of low hygroscopicity, dimensional stability, price and polymerizability. Dimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethanediisocyanate and 1,4-cyclohexanediisocyanate are preferable. The diisocyanates may be used alone or in combination of two or more.
 本発明の透明高耐熱フィルムは、単層構成であっても構わないし、2層以上の積層構成であっても構わない。透明高耐熱フィルムの物理的強度や無機基板との易剥離性から、2層以上の積層構成であることが好ましく、3層以上の積層構成でも差し支えない。なお、
本明細書では、透明高耐熱フィルムが2層以上の積層構成の場合の物性(黄色度指数、全光線透過率、ヘイズ等)は、特に断りのない限り、透明高耐熱フィルム全体の値をいう。
The transparent high heat-resistant film of the present invention may have a single-layer structure or a laminated structure of two or more layers. From the viewpoint of the physical strength of the transparent high heat-resistant film and the ease of peeling from the inorganic substrate, it is preferable to have a laminated structure of two or more layers, and a laminated structure of three or more layers may be used. note that,
In the present specification, the physical characteristics (yellowness index, total light transmittance, haze, etc.) when the transparent high heat resistant film has two or more layers are the values of the entire transparent high heat resistant film unless otherwise specified. ..
 本発明における透明高耐熱フィルムの黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記透明高耐熱フィルムの黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。 The yellowness index (hereinafter, also referred to as “yellow index” or “YI”) of the transparent high heat resistant film in the present invention is preferably 10 or less, more preferably 7 or less, still more preferably 5 or less, and further. It is preferably 3 or less. The lower limit of the yellowness index of the transparent high heat resistant film is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0. 3 or more.
 本発明における透明高耐熱フィルムの波長400nmにおける光線透過率は70%以上が好ましく、より好ましくは72%以上であり、さらに好ましくは75%以上であり、より一層好ましくは80%以上である。前記透明高耐熱フィルムの波長400nmの光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには99%以下であることが好ましく、より好ましくは98%以下であり、さらに好ましくは97%以下である。 The light transmittance of the transparent high heat resistant film in the present invention at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, further preferably 75% or more, still more preferably 80% or more. The upper limit of the light transmittance of the transparent high heat resistant film at a wavelength of 400 nm is not particularly limited, but is preferably 99% or less, more preferably 98% or less, still more preferably 97 for use as a flexible electronic device. % Or less.
 本発明における透明高耐熱フィルムの全光線透過率は75%以上が好ましく、より好ましくは85%以上であり、さらに好ましくは87%以上であり、より一層好ましくは88%以上である。前記透明高耐熱フィルムの全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。 The total light transmittance of the transparent high heat resistant film in the present invention is preferably 75% or more, more preferably 85% or more, further preferably 87% or more, and even more preferably 88% or more. The upper limit of the total light transmittance of the transparent high heat resistant film is not particularly limited, but is preferably 98% or less, more preferably 97% or less for use as a flexible electronic device.
 本発明における透明高耐熱フィルムのヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。 The haze of the transparent high heat resistant film in the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, and even more preferably 0.3 or less.
 本発明における透明高耐熱フィルムの厚さ方向位相差(Rth)は500nm以下が好ましく、より好ましくは300nm以下であり、さらに好ましくは200nm以下であり、より一層好ましくは100nm以下である。前記透明高耐熱フィルムのRthの下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1nm以上であることが好ましく、より好ましくは0.5nm以上である。 The thickness direction retardation (Rth) of the transparent high heat resistant film in the present invention is preferably 500 nm or less, more preferably 300 nm or less, still more preferably 200 nm or less, and even more preferably 100 nm or less. The lower limit of Rth of the transparent high heat resistant film is not particularly limited, but is preferably 0.1 nm or more, and more preferably 0.5 nm or more for use as a flexible electronic device.
 本発明における透明高耐熱フィルムの厚さは5μm以上が好ましく、より好ましくは8μm以上であり、さらに好ましくは15μm以上であり、より一層好ましくは20μm以上である。前記透明高耐熱フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには200μm以下であることが好ましく、より好ましくは150μm以下であり、さらに好ましくは90μm以下である。薄すぎるとフィルム作製、搬送が困難であり、厚すぎるとロール搬送などが困難となってくる。
 なお、本発明の線膨張係数(CTE)を示す無色透明性の高いポリイミドフィルムは、ポリイミドフィルムの成膜過程において、延伸を行うことでも実現することができる。かかる延伸操作は、ポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、もしくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させる過程において、MD方向に1.5倍から4.0倍に、TD方向に1.4倍から3.0倍に延伸することによって実現できる。この際にポリイミドフィルム作製用支持体に未延伸の熱可塑性高分子フィルムを用い、熱可塑性高分子フィルムとポリイミドフィルムを同時に延伸した後に熱可塑性高分子フィルムから延伸後のポリイミドフィルムを剥離することにより、特にMD方向の延伸時にポリイミドフィルムに入る傷を防止することができ、より高品位な無色透明性の高いポリイミドフィルムを得
ることができる。
The thickness of the transparent high heat resistant film in the present invention is preferably 5 μm or more, more preferably 8 μm or more, further preferably 15 μm or more, and even more preferably 20 μm or more. The upper limit of the thickness of the transparent high heat resistant film is not particularly limited, but it is preferably 200 μm or less, more preferably 150 μm or less, and further preferably 90 μm or less for use as a flexible electronic device. If it is too thin, it will be difficult to produce and transport the film, and if it is too thick, it will be difficult to transport the film.
The colorless and transparent polyimide film exhibiting the coefficient of linear expansion (CTE) of the present invention can also be realized by stretching in the film forming process of the polyimide film. In such a stretching operation, a polyimide solution is applied to a support for producing a polyimide film, dried to form a polyimide film containing 1 to 50% by mass of a solvent, and further peeled off on or from the support for producing a polyimide film. In the process of high-temperature treatment and drying of a polyimide film containing 1 to 50% by mass of solvent in the state of being in the state, 1.5 to 4.0 times in the MD direction and 1.4 to 3.0 times in the TD direction. It can be realized by stretching to. At this time, an unstretched thermoplastic polymer film is used as a support for producing a polyimide film, and the thermoplastic polymer film and the polyimide film are stretched at the same time, and then the stretched polyimide film is peeled off from the thermoplastic polymer film. In particular, it is possible to prevent scratches entering the polyimide film during stretching in the MD direction, and it is possible to obtain a high-quality, colorless and transparent polyimide film.
 前記透明高耐熱フィルムの30℃から300℃の間の平均の線膨張係数(CTE)は、50ppm/K以下であることが好ましい。より好ましくは45ppm/K以下であり、さらに好ましくは40ppm/K以下であり、より好ましくは30ppm/K以下であり、特に好ましくは20ppm/K以下である。また-5ppm/K以上であることが好ましく、より好ましくは-3ppm/K以上であり、さらに好ましくは1ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても透明高耐熱フィルムと無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記透明高耐熱フィルムのCTEとは、透明高耐熱フィルムの流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。前記透明高耐熱フィルムのCTEの測定方法は、実施例に記載の方法による。 The average coefficient of linear expansion (CTE) between 30 ° C. and 300 ° C. of the transparent high heat resistant film is preferably 50 ppm / K or less. It is more preferably 45 ppm / K or less, further preferably 40 ppm / K or less, still more preferably 30 ppm / K or less, and particularly preferably 20 ppm / K or less. Further, it is preferably -5 ppm / K or more, more preferably -3 ppm / K or more, and further preferably 1 ppm / K or more. When the CTE is within the above range, the difference in the coefficient of linear expansion from that of a general support (inorganic substrate) can be kept small, and the transparent high heat resistant film and the inorganic substrate are peeled off or peeled off even when subjected to a heat application process. , It is possible to avoid warping together with the support. Here, CTE is a factor that represents reversible expansion and contraction with respect to temperature. The CTE of the transparent high heat resistant film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the transparent high heat resistant film. The method for measuring CTE of the transparent high heat resistant film is as described in Examples.
 前記透明高耐熱フィルムには、フィラーを含有することができる。フィラーとしては、特に限定されず、シリカ、カーボン、セラミック等が挙げられ、中でもシリカであることが好ましい。これらフィラーを単独で使用しても良いし、2種類以上を併用してもよい。フィラーを添加することで、透明高耐熱フィルム表面に突起が付与され、これによって透明高耐熱フィルム表面の滑り性が高くなる。また、フィラーを添加することで、透明高耐熱フィルムのCTE及びRthを低く抑えることもできる。フィラーの平均粒子径は1nm以上であることが好ましく、より好ましくは5nm以上であり、さらに好ましくは10nm以上であり、特に好ましくは30nm以上である。また、1μm以下であることが好ましく、より好ましくは500nm以下であり、さらに好ましくは100nm以下である。 The transparent high heat resistant film can contain a filler. The filler is not particularly limited, and examples thereof include silica, carbon, and ceramic, and silica is preferable. These fillers may be used alone or in combination of two or more. By adding the filler, protrusions are imparted to the surface of the transparent high heat resistant film, thereby increasing the slipperiness of the transparent high heat resistant film surface. Further, by adding a filler, the CTE and Rth of the transparent high heat resistant film can be suppressed to a low level. The average particle size of the filler is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and particularly preferably 30 nm or more. Further, it is preferably 1 μm or less, more preferably 500 nm or less, still more preferably 100 nm or less.
 透明高耐熱フィルムにおけるフィラーの含有量は、フィラーの平均粒子径に応じて調整することが好ましい。フィラーの粒子径が30nm以上の場合は、好ましくは0.01~5質量%であり、より好ましくは0.02~3質量%であり、さらに好ましくは0.05~2質量%であり、特に好ましくは0.1~1質量%である。一方、平均粒子径が30nm未満の場合は、好ましくは1~50質量%であり、より好ましくは3~40質量%であり、さらに好ましくは5~30質量%であり、特に好ましくは10~20質量%である。含有量を上記範囲で調整することで、透明高耐熱フィルムの透明性を損ねることなく、透明高耐熱フィルム表面の滑り性を高く保つことができ、さらに透明高耐熱フィルムのCTE及びRthを低く抑えることができる。 It is preferable to adjust the filler content in the transparent high heat resistant film according to the average particle size of the filler. When the particle size of the filler is 30 nm or more, it is preferably 0.01 to 5% by mass, more preferably 0.02 to 3% by mass, still more preferably 0.05 to 2% by mass, and particularly. It is preferably 0.1 to 1% by mass. On the other hand, when the average particle size is less than 30 nm, it is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, still more preferably 5 to 30% by mass, and particularly preferably 10 to 20% by mass. It is mass%. By adjusting the content within the above range, the slipperiness of the surface of the transparent high heat resistant film can be kept high without impairing the transparency of the transparent high heat resistant film, and the CTE and Rth of the transparent high heat resistant film are kept low. be able to.
 透明高耐熱フィルムにおけるフィラーを添加する方法としては、特に限定されないが、前述のポリアミド酸(ポリイミド前駆体)溶液、ポリイミド溶液、ポリアミドイミド溶液、ポリアミド溶液を作製する際、或いは作製した後に、粉体で添加する方法、フィラー/溶媒の形態(スラリー)で添加する方法などが挙げられ、中でも特に、スラリーで添加する方法が好ましい。スラリーとしては特に限定されないが、平均粒子径10nmのシリカが20質量%の濃度でN,N-ジメチルアセトアミド(DMAC)に分散されたスラリー(例えば、日産化学工業製「スノーテックス(登録商標)DMAC-ST」や、平均粒子径80nmのシリカが20質量%の濃度でN,N-ジメチルアセトアミド(DMAC)に分散されたスラリー(例えば、日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)などが挙げられる。 The method for adding the filler in the transparent high heat-resistant film is not particularly limited, but is powder when or after the above-mentioned polyamic acid (polyimide precursor) solution, polyimide solution, polyamide-imide solution, or polyamide solution is prepared. Examples thereof include a method of adding in the form of a filler / solvent (slurry), and a method of adding in a slurry is particularly preferable. The slurry is not particularly limited, but is a slurry in which silica having an average particle diameter of 10 nm is dispersed in N, N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, Nissan Chemical Industries, Ltd. "Snowtex (registered trademark) DMAC). -ST "or a slurry in which silica having an average particle diameter of 80 nm is dispersed in N, N-dimethylacetamide (DMAC) at a concentration of 20% by mass (for example, Nissan Chemical Industries, Ltd." Snowtex (registered trademark) DMAC-ST- ZL ") and the like.
 また、透明高耐熱フィルムが2層以上の積層構成を有する場合、各層単独のCTEの差が異なると反りの原因となるため、好ましくない。そのため無機基板と接触する第1の透明高耐熱フィルム層と、前記無機基板と接触せずに前記第1の透明高耐熱フィルムと隣接する第2の透明高耐熱フィルム層のCTE差は好ましくは、40ppm/K以下であり、
より好ましくは、30ppm/K以下であり、さらに好ましくは、15ppm/K以下である。特に、前記第2の透明高耐熱フィルムのうち、最も膜厚の厚い層が前記範囲内であることが好ましい。また、透明高耐熱フィルムは膜厚方向に対称構造になっていると、反りが発生しにくく好ましい。
Further, when the transparent high heat resistant film has a laminated structure of two or more layers, if the difference in CTE of each layer is different, it causes warpage, which is not preferable. Therefore, the CTE difference between the first transparent high heat resistant film layer in contact with the inorganic substrate and the second transparent high heat resistant film layer adjacent to the first transparent high heat resistant film without contacting the inorganic substrate is preferable. It is 40 ppm / K or less,
It is more preferably 30 ppm / K or less, and even more preferably 15 ppm / K or less. In particular, it is preferable that the thickest layer of the second transparent high heat resistant film is within the above range. Further, it is preferable that the transparent high heat resistant film has a symmetrical structure in the film thickness direction because warpage is unlikely to occur.
 前記第1の透明高耐熱フィルム単独のCTEは20ppm/K以下であることが好ましい。無機基板とのCTE差が小さくなることから、より好ましくは15ppm/K以下であり、さらに好ましくは10ppm/K以下である。また下限は限定されないが、フレキシブル電子デバイスとして用いるためには-10ppm/K以上であることが好ましく、より好ましくは-5ppm/K以上であり、さらに好ましくは1ppm/K以上である。第1の透明高耐熱フィルムのCTEは、透明高耐熱フィルムの流れ方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指し、測定方法は実施例に記載の方法による。 The CTE of the first transparent high heat resistant film alone is preferably 20 ppm / K or less. Since the CTE difference from the inorganic substrate is small, it is more preferably 15 ppm / K or less, and further preferably 10 ppm / K or less. Although the lower limit is not limited, it is preferably −10 ppm / K or higher, more preferably −5 ppm / K or higher, and even more preferably 1 ppm / K or higher for use as a flexible electronic device. The CTE of the first transparent high heat resistant film refers to the average value of the CTE in the flow direction (MD direction) and the CTE in the width direction (TD direction) of the transparent high heat resistant film, and the measuring method is as described in Examples.
 前記第1の透明高耐熱フィルムが透明ポリイミドであることが好ましい。また、前記第2の透明高耐熱フィルムが、さらに複数の積層構成を有する場合、第2の透明高耐熱フィルムの少なくとも1層が透明ポリイミドであることが好ましく、第2の透明高耐熱フィルムうち、最も膜厚の厚い層が透明ポリイミドであることがより好ましい。さらに好ましくは第2の透明高耐熱ポリイミドの全層が透明ポリイミドである。 It is preferable that the first transparent high heat resistant film is transparent polyimide. When the second transparent high heat resistant film further has a plurality of laminated configurations, it is preferable that at least one layer of the second transparent high heat resistant film is transparent polyimide, and among the second transparent high heat resistant films, It is more preferable that the thickest layer is transparent polyimide. More preferably, all layers of the second transparent high heat resistant polyimide are transparent polyimide.
 前記無機基板と接触する第1の透明高耐熱フィルム層は、下記式1および/または下記式2の構造を有するポリイミドを含有することが好ましい。第1の透明高耐熱フィルム層のうち、式1および式2の構造を有するポリイミドの合計量が70質量%以上であることが好ましく、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、100質量%以上であっても差し支えない。式1および/または式2の構造を有するポリイミドを前記範囲内で含有することで、第1の透明高耐熱フィルムが優れたCTEを発現することができる。また、透明高耐熱フィルム層間の混じり合いが大きい場合、あるいは膜厚方向に対称構造に近づけることにより積層体の反りも良好となる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
The first transparent high heat resistant film layer in contact with the inorganic substrate preferably contains a polyimide having the structure of the following formula 1 and / or the following formula 2. Among the first transparent high heat resistant film layers, the total amount of the polyimides having the structures of the formulas 1 and 2 is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass. % Or more, particularly preferably 95% by mass or more, and 100% by mass or more may be used. By containing the polyimide having the structure of the formula 1 and / or the formula 2 within the above range, the first transparent high heat resistant film can express excellent CTE. Further, when the mixture between the transparent and highly heat-resistant film layers is large, or when the structure is close to a symmetrical structure in the film thickness direction, the warp of the laminated body becomes good.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 前記透明高耐熱フィルムの30℃から500℃の間の熱収縮率は、±0.9%であることが好ましく、さらに好ましくは±0.6%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。 The heat shrinkage of the transparent high heat resistant film between 30 ° C. and 500 ° C. is preferably ± 0.9%, more preferably ± 0.6%. The heat shrinkage rate is a factor that represents irreversible expansion and contraction with respect to temperature.
 前記透明高耐熱フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは120MPa以上であり、さらに好ましくは240MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記透明高耐熱フィルムが破断してしまうことを防止することができる。なお、前記透明高耐熱フィルムの引張破断強度とは、透明高耐熱フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。前記透明高耐熱フィルムの引張破断強度の測定方法は、実施例に記載の方法による。なおキャスティングアプリケーターを用いてガラス基板上に塗布してから作製した場合にもキャスティングアプリケーター塗布に平行方向と垂直方向の直交する2方向をそれぞれ(MD方向)、(TD方向)とした。以下引張破断伸度、引張弾性率も同様である。 The tensile breaking strength of the transparent high heat resistant film is preferably 60 MPa or more, more preferably 120 MPa or more, and further preferably 240 MPa or more. The upper limit of the tensile breaking strength is not particularly limited, but is practically less than about 1000 MPa. When the tensile breaking strength is 60 MPa or more, it is possible to prevent the transparent high heat resistant film from breaking when peeled from the inorganic substrate. The tensile breaking strength of the transparent high heat resistant film refers to the average value of the tensile breaking strength in the flow direction (MD direction) and the tensile breaking strength in the width direction (TD direction) of the transparent high heat resistant film. The method for measuring the tensile breaking strength of the transparent high heat resistant film is as described in Examples. Even when the glass substrate was coated with the casting applicator and then manufactured, the two directions orthogonal to the casting applicator application were defined as (MD direction) and (TD direction), respectively. Hereinafter, the tensile elongation at break and the tensile elastic modulus are also the same.
 前記透明高耐熱フィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは20%以上である。前記引張破断伸度が、1%以上であると、取り扱い性に優れる。なお、前記透明高耐熱フィルムの引張破断伸度とは、透明高耐熱フィルムの流れ方向(MD方向)の引張破断伸度及び幅方向(TD方向)の引張破断伸度の平均値を指す。前記透明高耐熱フィルムの引張破断伸度の測定方法は、実施例に記載の方法による。 The tensile elongation at break of the transparent high heat resistant film is preferably 1% or more, more preferably 5% or more, and further preferably 20% or more. When the tensile elongation at break is 1% or more, the handleability is excellent. The tensile elongation at break of the transparent high heat resistant film refers to the average value of the tensile elongation at break in the flow direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the transparent high heat resistant film. The method for measuring the tensile elongation at break of the transparent high heat resistant film is the method described in Examples.
 前記透明高耐熱フィルムの引張弾性率は、2GPa以上が好ましく、より好ましくは3GPa以上であり、さらに好ましくは4GPa以上である。前記引張弾性率が、3GPa以上であると、無機基板から剥離する際の前記透明高耐熱フィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは12GPa以下であり、さらに好ましくは10GPa以下である。前記引張弾性率が、20GPa以下であると、前記透明高耐熱フィルムをフレキシブルなフィルムとして使用できる。なお、前記透明高耐熱フィルムの引張弾性率とは、高耐熱フィルムの流れ方向(MD方向)の引張弾性率及び幅方向(TD方向)の引張弾性率の平均値を指す。前記透明高耐熱フィルムの引張弾性率の測定方法は、実施例に記載の方法による。 The tensile elastic modulus of the transparent high heat resistant film is preferably 2 GPa or more, more preferably 3 GPa or more, and further preferably 4 GPa or more. When the tensile elastic modulus is 3 GPa or more, the transparent high heat-resistant film is less stretched and deformed when peeled from the inorganic substrate, and is excellent in handleability. The tensile elastic modulus is preferably 20 GPa or less, more preferably 12 GPa or less, and further preferably 10 GPa or less. When the tensile elastic modulus is 20 GPa or less, the transparent high heat resistant film can be used as a flexible film. The tensile elastic modulus of the transparent high heat resistant film refers to the average value of the tensile elastic modulus in the flow direction (MD direction) and the tensile elastic modulus in the width direction (TD direction) of the high heat resistant film. The method for measuring the tensile elastic modulus of the transparent high heat-resistant film is as described in Examples.
 前記透明高耐熱フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下であり、さらに好ましくは7%以下であり、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、透明高耐熱フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the transparent high heat resistant film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, and particularly preferably 4% or less. When the thickness spot exceeds 20%, it tends to be difficult to apply to a narrow part. The thickness unevenness of the transparent high heat-resistant film can be obtained by, for example, randomly extracting about 10 positions from the film to be measured with a contact-type film thickness meter, measuring the film thickness, and calculating based on the following formula. can.
Film thickness spots (%)
= 100 x (maximum film thickness-minimum film thickness) ÷ average film thickness
 前記透明高耐熱フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺透明高耐熱フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状透明高耐熱フィルムの形態のものがより好ましい。前記透明高耐熱フィルムがロール状に巻かれていると、ロール状に巻かれた透明高耐熱フィルムという形態での輸送が容易となる。 The transparent high heat resistant film is preferably obtained in the form of being wound as a long transparent high heat resistant film having a width of 300 mm or more and a length of 10 m or more at the time of its manufacture, and is a roll wound around a winding core. The one in the form of a transparent high heat resistant film is more preferable. When the transparent high heat resistant film is wound in a roll shape, it is easy to transport the transparent high heat resistant film in the form of a rolled transparent high heat resistant film.
 前記透明高耐熱フィルムにおいては、ハンドリング性および生産性を確保する為、透明高耐熱フィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.03~3質量%程度、添加・含有させて、透明高耐熱フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。 In the transparent high heat resistant film, in order to ensure handleability and productivity, a lubricant (particle) having a particle diameter of about 10 to 1000 nm is added to the transparent high heat resistant film in an amount of about 0.03 to 3% by mass. It is preferable that the film is contained to provide fine irregularities on the surface of the transparent high heat-resistant film to ensure slipperiness.
 前記2層以上の積層構成の透明高耐熱フィルムにおいては、特に前記無機基板と接触する第1の透明高耐熱フィルム層と、前記第1の透明高耐熱フィルム層と隣接する第2の透
明高耐熱フィルム層(以下、単に「第2の透明高耐熱フィルム層)ともいう。)との界面で混じり合いがあることが望ましい。混じり合いの厚みが小さいと透明高耐熱フィルムが各層の物性の違いにより、反りを生じたり、層間で剥がれやすくなることから、混じり合いの厚さは800nm超であることが好ましく、より好ましくは1000nm以上であり、特に好ましくは2000nm以上である。混じり合いの厚みが大きすぎると、総厚みを厚くする必要があり 混じり合いが透明高耐熱フィルムの最表面に生じる可能性があり、薄膜化し難くなることがある。上限はフィルム厚さの制限によって生じる。特に限定されないが、工業的には、5μm以下であれば問題なく、望ましくは3μm以下である。
In the transparent high heat resistant film having a laminated structure of two or more layers, in particular, the first transparent high heat resistant film layer in contact with the inorganic substrate and the second transparent high heat resistant film adjacent to the first transparent high heat resistant film layer. It is desirable that there is a mixture at the interface with the film layer (hereinafter, also simply referred to as "second transparent high heat resistant film layer"). If the thickness of the mixture is small, the transparent high heat resistant film depends on the physical properties of each layer. The thickness of the mixture is preferably more than 800 nm, more preferably 1000 nm or more, and particularly preferably 2000 nm or more, because it causes warpage and easily peels off between layers. If it is too much, it is necessary to increase the total thickness, and mixing may occur on the outermost surface of the transparent high heat resistant film, which may make it difficult to thin the film. The upper limit is caused by the limitation of the film thickness. Industrially, there is no problem if it is 5 μm or less, and preferably 3 μm or less.
 混じり合いの多い層を形成する手段は特に限定されないが、好ましくは第1の透明高耐熱フィルム層と、第2の透明高耐熱フィルム層との2層を同時あるいは遂次に塗布(以下、「同時・逐次塗布」ともいう。)し溶液同士の拡散をさせながら、溶液製膜で一体化したフィルムを作製することである。第一の層を加熱(乾燥)したのちに次の層(第二の層)を作製(塗布)すると、加熱工程が途中段階であっても、完了後であっても、混じり合い層は、同時・遂次塗布した場合に比べて、少なくなる。しかし、途中まで加熱(乾燥)した場合でも、例えば、第二の層に溶剤を多く含んだ溶液を塗布したまま、溶剤の拡散する時間を待つと、同時・遂次塗布した場合よりは混じり合い層が少ない場合が多いが、混じり合い自体は促進される。また、途中まで加熱(乾燥)した場合でも、例えば、第二の層上に溶剤を塗布して、溶剤の拡散を促進すると、同時・遂次塗布した場合よりは混じり合い層は少ない場合が多いが、混じり合い自体は促進される。 The means for forming the layer having a large amount of mixing is not particularly limited, but preferably, two layers of the first transparent high heat resistant film layer and the second transparent high heat resistant film layer are applied simultaneously or sequentially (hereinafter, "" It is also called "simultaneous / sequential coating") to produce a film integrated by solution film formation while diffusing the solutions. When the next layer (second layer) is prepared (applied) after heating (drying) the first layer, the mixed layer becomes a mixture layer regardless of whether the heating process is in the middle stage or after completion. It will be less than when it is applied simultaneously and sequentially. However, even if it is heated (dried) halfway, for example, if a solution containing a large amount of solvent is applied to the second layer and the time for the solvent to diffuse is waited, the mixture will be mixed as compared with the case of simultaneous and successive application. Often there are few layers, but the mixing itself is promoted. Further, even when heated (dried) halfway, for example, if a solvent is applied on the second layer to promote the diffusion of the solvent, the number of mixed layers is often smaller than that in the case of simultaneous / successive application. However, the mixing itself is promoted.
 物性の異なる材料(樹脂)を2層構成のフィルムとすることで、さまざまな特性を併せ持つフィルムを作製することもできる。さらに、厚み方向に対称構造に積層(例えば、第1の透明高耐熱フィルム層/第2の透明高耐熱フィルム層/第1の透明高耐熱フィルム層)させることで、フィルム全体のCTEのバランスが良好となり、反りの発生しにくいフィルムとすることができる。また、いずれか一層を紫外や赤外に吸収を持つ層とすることで、分光特性に特徴を持たせることや、屈折率の異なる層によって光の入射出射を制御することなどが考えられる。 By using a material (resin) having different physical properties as a two-layer film, it is possible to produce a film having various characteristics. Further, by laminating in a symmetrical structure in the thickness direction (for example, a first transparent high heat resistant film layer / a second transparent high heat resistant film layer / a first transparent high heat resistant film layer), the balance of CTE of the entire film is balanced. It is possible to obtain a film that is good and less likely to warp. Further, it is conceivable to make one of the layers a layer having absorption in the ultraviolet or infrared rays to give characteristics to the spectral characteristics, or to control the incident emission of light by layers having different refractive indexes.
 2層以上の層構成のフィルムを作製する手段として、2層同時吐出可能なTダイによる同時塗工、1層塗布したのちに次の層を塗布する逐次塗工、1層塗布したのちに乾燥を進めてから次の層を塗工する方法、1層のフィルム化を終えてから次の層を塗工する方法、あるいは熱可塑性の層を入れることによる、加熱ラミネートでの多層化など様々な方法が考えられるが、本特許では、既存の様々な塗布方法、多層化手法を適宜取り入れることができる。 As a means for producing a film having two or more layers, simultaneous coating with a T-die capable of simultaneously ejecting two layers, sequential coating in which one layer is applied and then the next layer is applied, and one layer is applied and then dried. There are various methods such as the method of applying the next layer after advancing the process, the method of applying the next layer after finishing the film formation of one layer, or the multi-layering by heat laminating by inserting a thermoplastic layer. Although a method can be considered, in this patent, various existing coating methods and multi-layering methods can be appropriately adopted.
 前記第1の透明高耐熱フィルムの厚さは0.1μm以上が好ましい。混じり合いの影響を受けにくくなることから、より好ましくは0.4μm以上であり、さらに好ましくは1μm以上であり、よりさらに好ましくは2μm以上であり、特に好ましくは3μm以上である。また、透明高耐熱フィルム全体の薄膜化の観点から、10μm以下であることが好ましく、より好ましくは8μm以下であり、さらに好ましくは5μm以下である。 The thickness of the first transparent high heat resistant film is preferably 0.1 μm or more. It is more preferably 0.4 μm or more, further preferably 1 μm or more, still more preferably 2 μm or more, and particularly preferably 3 μm or more because it is less susceptible to the influence of mixing. Further, from the viewpoint of thinning the entire transparent high heat resistant film, it is preferably 10 μm or less, more preferably 8 μm or less, and further preferably 5 μm or less.
<無機基板>
 前記無機基板としては無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
<Inorganic substrate>
The inorganic substrate may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance. For example, a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramic plates are used. Examples of the semiconductor wafer and the composite of the metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガ
ラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10、OA11G」、SCHOTT社製の「AF32」などが望ましい。
Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pylex (registered trademark)), borosilicate glass (non-alkali), and the like. Includes borosilicate glass (microsheet), aluminosilicate glass and the like. Among these, those having a coefficient of linear expansion of 5 ppm / K or less are desirable, and if it is a commercially available product, "Corning (registered trademark) 7059" or "Corning (registered trademark) 1737" manufactured by Corning Inc., which is a glass for liquid crystal display, "EAGLE", "AN100" manufactured by Asahi Glass, "OA10, OA11G" manufactured by Nippon Electric Glass, "AF32" manufactured by SCHOTT, etc. are desirable.
 前記半導体ウエハとしては、特に限定されないが、シリコンウエハ、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。なかでも、好ましく用いられるウエハはシリコンウエハであり、特に好ましくは8インチ以上のサイズの鏡面研磨シリコンウエハである。 The semiconductor wafer is not particularly limited, but is limited to silicon wafer, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, nitrogen-phosphorus-arsenide-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, and the like. Wafers such as LT, LN, ZnO (zinc oxide), CdTe (cadmium telluride), and ZnSe (zinc selenide) can be mentioned. Among them, the wafer preferably used is a silicon wafer, and particularly preferably a mirror-polished silicon wafer having a size of 8 inches or more.
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体の線膨張係数(CTE)が低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、高耐熱フィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、Cr、Ni、TiN、Mo含有Cuなどが好適な例として挙げられる。 The metal includes single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as inconel, monel, mnemonic, carbon copper, Fe—Ni-based invar alloy, and superinvar alloy. Further, a multilayer metal plate formed by adding another metal layer or a ceramic layer to these metals is also included. In this case, if the overall coefficient of linear expansion (CTE) with the additional layer is low, Cu, Al, or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has properties such as strong adhesion to a high heat resistant film, no diffusion, and good chemical resistance and heat resistance. Although not, Cr, Ni, TiN, Mo-containing Cu and the like are preferable examples.
 本発明におけるセラミック板としては、Al、Mullite、AlN、SiC、結晶化ガラス、Cordierite、Spodumene、Pb-BSG+CaZrO3+Al2O3、Crystallized glass+Al2O3、 Crystallized Ca-BSG, BSG+Quartz、BSG+ Quartz,  BSG+ Al2O3、 Pb-BSG+Al2O3、 Glass-ceramic、ゼロデュア材などの基盤用セラミックスが含まれる。 The ceramic plates in the present invention include Al 2 O 3 , Mullite, AlN, SiC, crystallized glass, Cordierite, Spodumene, Pb-BSG + CaZrO3 + Al 2 O 3 , Crystallized glass + Al 2 O 3 , Crystallized Ca-BSG, BSG + Quartz, BSG +. Quartz, BSG + Al2O3, Pb- BSG + Al 2 O 3, Glass-ceramic, include foundation for ceramics such as Zerodur material.
 前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、透明高耐熱フィルム層と無機基板との剥離強度が不充分となる場合がある。
 前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.07mm以上、より好ましくは0.15mm以上、さらに好ましくは0.3mm以上である。薄すぎると破損しやすくハンドリングが困難となる。また厚すぎると重くなりハンドリングが困難となる。
It is desirable that the flat portion of the inorganic substrate is sufficiently flat. Specifically, the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and further preferably 5 nm or less. If it is coarser than this, the peel strength between the transparent high heat resistant film layer and the inorganic substrate may be insufficient.
The thickness of the inorganic substrate is not particularly limited, but is preferably 10 mm or less, more preferably 3 mm or less, still more preferably 1.3 mm or less, from the viewpoint of handleability. The lower limit of the thickness is not particularly limited, but is preferably 0.07 mm or more, more preferably 0.15 mm or more, still more preferably 0.3 mm or more. If it is too thin, it will be easily damaged and difficult to handle. If it is too thick, it will be heavy and difficult to handle.
 <積層体>
 本発明の積層体は、前記透明高耐熱フィルムと前記無機基板とを接着剤を実質的に使わないで積層したものである。透明高耐熱フィルムが2層以上の積層構成を有する場合は、無機基板と接触する前記第1の透明高耐熱フィルムと、前記無機基板には接触せずに前記第1の透明高耐熱フィルム層と隣接する第2の透明高耐熱フィルム層を含有するものであることが好ましい。前記第2の透明高耐熱フィルムは、さらに複数の積層構成を有していても良い。また、積層体の厚み方向において、両端部が無機基板となる構成(例えば、無機基板/第1の透明高耐熱フィルム/第2の透明高耐熱フィルム/第1の透明高耐熱フィルム/無機基板)であっても差し支えない。この場合、両端部における透明高耐熱フィルムと無機基板は実質的に接着剤を使用しない。
<Laminated body>
The laminated body of the present invention is obtained by laminating the transparent high heat resistant film and the inorganic substrate substantially without using an adhesive. When the transparent high heat resistant film has a laminated structure of two or more layers, the first transparent high heat resistant film that comes into contact with the inorganic substrate and the first transparent high heat resistant film layer that does not come into contact with the inorganic substrate. It preferably contains an adjacent second transparent high heat resistant film layer. The second transparent high heat resistant film may further have a plurality of laminated configurations. Further, in the thickness direction of the laminate, both ends thereof are inorganic substrates (for example, inorganic substrate / first transparent high heat resistant film / second transparent high heat resistant film / first transparent high heat resistant film / inorganic substrate). It doesn't matter. In this case, the transparent high heat resistant film and the inorganic substrate at both ends substantially do not use an adhesive.
 積層体の形状は、特に限定されず、正方形であっても長方形であっても差し支えない。好ましくは長方形であり、長辺の長さが300mm以上であることが好ましく、より好ましくは500mm以上であり、さらに好ましくは1000mm以上である。上限は特に限定されないが、工業的に使用されている、サイズ、材質の基板を置き換えられることが望ましい。20000mm以下であれば十分であり、10000mm以下でも差し支えない。 The shape of the laminated body is not particularly limited, and may be square or rectangular. It is preferably rectangular, and the length of the long side is preferably 300 mm or more, more preferably 500 mm or more, and further preferably 1000 mm or more. The upper limit is not particularly limited, but it is desirable to replace the industrially used substrate of size and material. If it is 20000 mm or less, it is sufficient, and 10,000 mm or less may be sufficient.
 本発明の積層体は300℃加熱時の反り量が400μm以下である。耐熱性が良好となるため、好ましくは300μm以下であり、より好ましくは200μm以下である。反り量の下限は特に限定されないが、工業的には5μm以上であれば十分であり、10μm以上であっても差し支えない。 The laminate of the present invention has a warp amount of 400 μm or less when heated at 300 ° C. Since the heat resistance is good, it is preferably 300 μm or less, and more preferably 200 μm or less. The lower limit of the amount of warpage is not particularly limited, but industrially, 5 μm or more is sufficient, and 10 μm or more may be sufficient.
 <接着剤>
 本発明の無機基板と透明高耐熱フィルムの間には実質的に接着剤層が介在しない。ここで本発明でいう接着剤層とはSi(ケイ素)の成分を質量比で10%未満(10質量%未満)のものをさす。また、実質的に使用しない(介在しない)とは、無機基板と透明高耐熱フィルムの間に介在する接着剤層の厚さが、0.4μm以下であることが好ましく、より好ましくは0.1μm以下であり、さらに好ましくは0.05μm以下であり、特に好ましくは0.03μm以下であり、最も好ましくは0μmである。
<Adhesive>
Substantially no adhesive layer is interposed between the inorganic substrate of the present invention and the transparent high heat resistant film. Here, the adhesive layer referred to in the present invention refers to a layer having a Si (silicon) component of less than 10% by mass (less than 10% by mass). Further, "substantially not used (not intervening)" means that the thickness of the adhesive layer interposed between the inorganic substrate and the transparent high heat resistant film is preferably 0.4 μm or less, more preferably 0.1 μm. It is less than or equal to, more preferably 0.05 μm or less, particularly preferably 0.03 μm or less, and most preferably 0 μm.
 <シランカップリング剤(SCA)>
 積層体において、透明高耐熱フィルムと無機基板との間にシランカップリング剤の層を有することが好ましい。本発明において、シランカップリング剤とは、Si(ケイ素)の成分を10質量%以上含有する化合物をいう。さらに構造中にアルコキシ基を有するものであることが好ましい。また、メチル基が入っていないことが望ましい。シランカップリング剤層を用いることで透明高耐熱フィルムと無機基板との中間層を薄くできるので加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果が出る。シランカップリング剤は、耐熱性が向上するため酸化ケイ素成分を多く含むもの好ましく、特に400℃程度の温度での耐熱性を有するものであることが好ましい。シランカップリング剤層の厚さは0.2μm未満であることが好ましい。フレキシブル電子デバイスとして使用する範囲としては、100nm以下(0.1μm以下)が好ましく、より望ましくは50nm以下であり、更に望ましくは10nmである。通常に作製すると、0.10μm以下程度となる。また、極力シランカップリング剤が少ないことを望むプロセスでは、5nm以下でも使用可能である。1nm以下では、剥離強度が低下或は、部分的に付かない部分が出るおそれがあるため、1nm以上であることが望ましい。
<Silane Coupling Agent (SCA)>
In the laminate, it is preferable to have a layer of a silane coupling agent between the transparent high heat resistant film and the inorganic substrate. In the present invention, the silane coupling agent refers to a compound containing 10% by mass or more of a Si (silicon) component. Further, it is preferable that the structure has an alkoxy group. Moreover, it is desirable that it does not contain a methyl group. By using the silane coupling agent layer, the intermediate layer between the transparent high heat resistant film and the inorganic substrate can be thinned, so there is little degassing component during heating, it is difficult to elute even in the wet process, and even if elution occurs, it remains in a trace amount. The effect comes out. The silane coupling agent preferably contains a large amount of silicon oxide component because the heat resistance is improved, and particularly preferably one having heat resistance at a temperature of about 400 ° C. The thickness of the silane coupling agent layer is preferably less than 0.2 μm. The range used as a flexible electronic device is preferably 100 nm or less (0.1 μm or less), more preferably 50 nm or less, and further preferably 10 nm. When normally produced, it is about 0.10 μm or less. Further, in a process in which it is desired to use as little silane coupling agent as possible, it can be used even at 5 nm or less. If it is 1 nm or less, the peel strength may decrease or some parts may not be attached, so that it is preferably 1 nm or more.
 本発明におけるシランカップリング剤は、特に限定されるものではないが、アミノ基或はエポキシ基を持ったものが、好ましい。シランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシ
ラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3- トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。このうち好ましいものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで耐熱性を要求する場合、Siとアミノ基などの間を芳香族でつないだものが望ましい。
The silane coupling agent in the present invention is not particularly limited, but one having an amino group or an epoxy group is preferable. Specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2- (amino). Ethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-Epoxycyclohexyl) Ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilanevinyl trichlorsilane, vinyl Trimethoxysilane, vinyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxy Propyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-Chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isoxapropyltriethoxysilane, tris- (3-trimethoxysilyl) Propyl) isocyanurate, chloromethylphenetyltrimethoxysilane, chloromethyltrimethoxysilane and the like. Of these, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl)-are preferred. 3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3, 4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, amino Examples thereof include phenetyltrimethoxysilane and aminophenylaminomethylphenetyltrimethoxysilane. When heat resistance is required in the process, it is desirable to connect Si and an amino group with an aromatic.
 透明高耐熱フィルムと前記無機基板との剥離強度は0.3N/cm以下であることが必要である。これにより、透明高耐熱フィルム上にデバイスを形成した後、当該透明高耐熱フィルムと無機基板との剥離が非常に容易となる。そのため、大量生産が可能なデバイス連結体を製造することができ、フレキシブル電子デバイスの製造が容易となる。前記剥離強度は、0.25N/cm以下であることが好ましく、より好ましくは0.2N/cm以下であり、さらに好ましくは0.15N/cm以下であり、特に好ましくは0.12N/cm以下である。また、0.03N/cm以上であることが好ましい。透明高耐熱フィルム上にデバイスを形成する際に積層体が剥離しなくなることから、より好ましくは0.06N/cm以上であり、さらに好ましくは0.08N/cm以上であり、特に好ましくは0.1N/cm以上である。前記剥離強度は、透明高耐熱フィルムと前記無機基板を貼り合わせた後、大気雰囲気下で100℃10分間熱処理した後の積層体の値である(初期剥離強度)。また、前記初期剥離強度測定時の積層体をさらに窒素雰囲気下で300℃1時間熱処理した後の積層体でも剥離強度が前記範囲内であることが好ましい(300℃加熱処理後剥離強度)。 The peel strength between the transparent high heat resistant film and the inorganic substrate needs to be 0.3 N / cm or less. This makes it very easy to separate the transparent high heat resistant film from the inorganic substrate after the device is formed on the transparent high heat resistant film. Therefore, it is possible to manufacture a device conjugate capable of mass production, and it becomes easy to manufacture a flexible electronic device. The peel strength is preferably 0.25 N / cm or less, more preferably 0.2 N / cm or less, still more preferably 0.15 N / cm or less, and particularly preferably 0.12 N / cm or less. Is. Further, it is preferably 0.03 N / cm or more. Since the laminate does not peel off when the device is formed on the transparent high heat resistant film, it is more preferably 0.06 N / cm or more, further preferably 0.08 N / cm or more, and particularly preferably 0. It is 1 N / cm or more. The peel strength is a value of a laminated body after the transparent high heat resistant film and the inorganic substrate are bonded and then heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere (initial peel strength). Further, it is preferable that the peel strength is within the above range even after the laminated body at the time of the initial peel strength measurement is further heat-treated at 300 ° C. for 1 hour in a nitrogen atmosphere (peeling strength after heat treatment at 300 ° C.).
 本発明の積層体は、例えば、以下の手順で作製することができる。あらかじめ無機基板の少なくとも一面をシランカップリング剤処理し、シランカップリング剤処理された面と、透明高耐熱フィルムとを重ね合わせ、両者を加圧によって積層する積層体を得ることができる。また、あらかじめ透明高耐熱フィルムの少なくとも一面をシランカップリング剤処理し、シランカップリング剤処理された面と、無機基板とを重ね合わせ、両者を加圧によって積層しても積層体を得ることができる。また、透明高耐熱フィルムが2層以上の積層構成を有する場合は、第1の透明高耐熱フィルムを無機基板に重ね合わせることが好ましい。加圧方法としては、大気中での通常のプレス或はラミネートあるいは真空中でのプレス或はラミネートが挙げられるが、全面の安定した剥離強度を得る為には、大きなサイズの積層体(例えば、200mm超)では大気中でのラミネートが望ましい。これに対して200mm以下程度の小サイズの積層体であれば真空中でのプレスが好ましい。真空度は通常の油回転ポンプによる真空で充分であり、10Torr以下程度あれば充分である。好ましい圧力としては、1MPaから20MPaであり、更に好ましくは3MPaから10MPaである。圧力が高いと、基板を破損するおそれがあり、圧力が低いと、密着しない
部分が出る場合がある。好ましい温度としては90℃から300℃、更に好ましくは100℃から250℃で温度が高いと、フィルムにダメージを与え、温度が低いと、密着力が弱いことがある。
The laminate of the present invention can be produced, for example, by the following procedure. At least one surface of the inorganic substrate is treated with a silane coupling agent in advance, and the surface treated with the silane coupling agent and the transparent high heat resistant film are laminated to obtain a laminated body in which both are laminated by pressure. Further, even if at least one surface of the transparent high heat resistant film is treated with a silane coupling agent in advance, the surface treated with the silane coupling agent and the inorganic substrate are overlapped, and both are laminated by pressure, a laminate can be obtained. can. When the transparent high heat resistant film has a laminated structure of two or more layers, it is preferable to superimpose the first transparent high heat resistant film on the inorganic substrate. Examples of the pressurizing method include normal pressing or laminating in the atmosphere or pressing or laminating in vacuum, but in order to obtain stable peel strength over the entire surface, a large-sized laminate (for example, for example). Laminating in the air is desirable for (more than 200 mm). On the other hand, if it is a laminated body having a small size of about 200 mm or less, pressing in vacuum is preferable. As for the degree of vacuum, a vacuum using a normal oil rotary pump is sufficient, and a vacuum of about 10 Torr or less is sufficient. The preferred pressure is 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is high, the substrate may be damaged, and if the pressure is low, some parts may not adhere to each other. A high temperature of 90 ° C to 300 ° C, more preferably 100 ° C to 250 ° C may damage the film, and a low temperature may weaken the adhesion.
<電子デバイス付きフィルム(フレキシブル電子デバイス)の作製>
 前記積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いてフレキシブル電子デバイスを容易に作製することができる。具体的には、積層体の透明高耐熱フィルム上に電子デバイスを形成し、積層体から透明高耐熱フィルムごと剥離することで、フレキシブル電子デバイスを作製することができる。
 本明細書において電子デバイスとは、電気配線を担う片面、両面、あるいは多層構造を有する配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、バイオセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどをいう。
<Manufacturing of film with electronic device (flexible electronic device)>
When the laminate is used, a flexible electronic device can be easily manufactured by using existing equipment and processes for manufacturing electronic devices. Specifically, a flexible electronic device can be manufactured by forming an electronic device on a transparent high heat resistant film of a laminated body and peeling the transparent high heat resistant film together with the laminated body.
In the present specification, the electronic device refers to a wiring board having a single-sided, double-sided, or multi-layered structure for electrical wiring, an electronic circuit including an active element such as a transistor and a diode, and a passive device such as a resistor, a capacitor, and an inductor, and others. Sensor elements that sense pressure, temperature, light, humidity, etc., biosensor elements, light emitting elements, liquid crystal displays, electrophoretic displays, self-luminous displays and other image display elements, wireless and wired communication elements, arithmetic elements, storage elements, MEMS element, solar cell, thin film, etc.
 また、この配線基板の中にポリイミドを貫通する電極である、インターポーザ―機能も含まれる。概略貫通させることにより、のちに無機基板を剥がしたのちに貫通電極を作製する工程は大幅に省略される。貫通孔の作製には既知の手法を使えばよい。例えば透明高耐熱フィルムに、UVナノレーザーにより貫通孔が穿かれる。次いで、たとえば両面プリント配線板のスルーホール、ないしは多層プリント配線板におけるヴィアホールに用いられる定法を応用することにより前記貫通孔に導電性の金属が満たされ、加えて必要に応じた金属による配線パターンが形成される、といった手法がある。透明高耐熱フィルムでは上記のように貫通電極をあけたのちに無機基板に貼り合わせる事もあり得る。無機基板と透明高耐熱フィルムを貼り合わせたのちに貫通電極を作製する場合もあり得る。透明高耐熱フィルムを貫通させてそこを金属化することもあり得るが、透明高耐熱フィルムの片側から孔を開け反対側の表面に貫通しない状態でそこを金属化することもあり得る。 In addition, the interposer function, which is an electrode that penetrates the polyimide, is also included in this wiring board. By roughly penetrating, the step of producing a through electrode after peeling off the inorganic substrate is largely omitted. A known method may be used to create the through hole. For example, a transparent high heat resistant film is pierced with a through hole by a UV nanolaser. Then, for example, by applying a conventional method used for a through hole in a double-sided printed wiring board or a via hole in a multi-layer printed wiring board, the through hole is filled with a conductive metal, and a wiring pattern with a metal as required is added. Is formed. In the transparent high heat resistant film, it may be attached to the inorganic substrate after opening the through electrode as described above. In some cases, a through electrode may be manufactured after the inorganic substrate and the transparent high heat resistant film are bonded together. It is possible to penetrate the transparent high heat resistant film and metallize it, but it is also possible to make a hole from one side of the transparent high heat resistant film and metallize it without penetrating the surface on the other side.
 本明細書におけるフレキシブル電子デバイスの製造方法では、上述した方法で作製された積層体の透明高耐熱フィルム上にデバイスを形成した後、該透明高耐熱フィルムを前記無機基板から剥離する。 In the method for manufacturing a flexible electronic device in the present specification, a device is formed on a transparent high heat resistant film of a laminate produced by the above method, and then the transparent high heat resistant film is peeled off from the inorganic substrate.
<デバイス付き透明高耐熱フィルムの無機基板からの剥離>
 デバイス付きの透明高耐熱フィルムを無機基板から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、透明高耐熱フィルムに切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、透明高耐熱フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、透明高耐熱フィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊するおそれがあるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。
 前記透明高耐熱フィルムに切り込みを入れる方法としては、刃物などの切削具によって透明高耐熱フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより透明高耐熱フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより透明高耐熱フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ透明高耐熱フィルムを切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
 また、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
<Peeling of transparent high heat resistant film with device from inorganic substrate>
The method of peeling the transparent high heat resistant film with the device from the inorganic substrate is not particularly limited, but the method of winding from the end with a tweezers or the like, making a cut in the transparent high heat resistant film, and attaching an adhesive tape to one side of the cut portion. A method of winding from the tape portion after the film is formed, a method of vacuum-adsorbing one side of the cut portion of the transparent high heat-resistant film and then winding from that portion, and the like can be adopted. If the cut portion of the transparent high heat-resistant film bends with a small curvature during peeling, stress will be applied to the device at that portion and the device may be destroyed. Therefore, peel it off with the curvature as large as possible. Is desirable. For example, it is desirable to wind it while winding it on a roll having a large curvature, or to use a machine having a structure in which the roll having a large curvature is located at the peeling portion.
As a method of making a cut in the transparent high heat resistant film, a method of cutting the transparent high heat resistant film with a cutting tool such as a cutting tool, a method of cutting the transparent high heat resistant film by relatively scanning a laser and a laminate, and a method of cutting the transparent high heat resistant film. There are a method of cutting a transparent high heat-resistant film by relatively scanning a water jet and a laminate, and a method of cutting a transparent high heat-resistant film while cutting a little to the glass layer with a semiconductor chip dicing device. Not limited. For example, in adopting the above-mentioned method, it is also possible to appropriately adopt a method such as superimposing ultrasonic waves on the cutting tool or adding a reciprocating motion or a vertical motion to improve the cutting performance.
Further, it is also useful to attach another reinforcing base material to the part to be peeled off in advance and peel off the entire reinforcing base material. When the flexible electronic device to be peeled off is the backplane of the display device, it is also possible to attach the front plane of the display device in advance, integrate it on an inorganic substrate, and then peel off both at the same time to obtain a flexible display device. be.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
〔製造例1(ポリイミド溶液1の製造)〕
 窒素導入管、ディーン・スターク管及び還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、230質量部のN,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させ、次いで、44.42質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分25質量%、還元エンド1.10dl/gのポリアミド酸溶液(1)を得た。
 次に、得られたポリアミド酸溶液にDMAc204gを加えてポリアミド酸の濃度が15質量%になるように希釈した後、イミド化促進剤としてイソキノリン1.3gを加えた。次いで、ポリアミド酸溶液を攪拌しながら、イミド化剤として無水酢酸12.25g(1.20mol)をゆっくりと滴下した。その後、24時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た(TFMB/6FDAのモル比=1.00/1.00)。
 次に、得られたポリイミド溶液100質量部を攪拌装置と攪拌機を備えたセパラブルフラスコに移し替え、120rpmの速度で攪拌した。次いで、そこにメタノール150質量部をゆっくりと滴下させたところ、粉体状のポリイミドの析出が確認された。
 その後、セパラブルフラスコの内容物を吸引濾過にて濾別し、メタノールを用いて、洗浄した。濾別したポリイミド粉体を乾燥機を用いて、50℃で24時間乾燥させた後、260℃で更に5時間乾燥させ、目的とするポリイミド粉体を得た。
 得られたポリイミド粉体20質量部を80質量部のDMAcに溶解させて、滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリイミド溶液中のポリマー固形分総量にて1.4質量%)になるように加え均一なポリイミド溶液1を得た。
[Production Example 1 (Production of Polyimide Solution 1)]
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean-Stark tube and a reflux tube, a thermometer, and a stirring rod, 32.02 parts by mass of 2,2'-ditrifluoromethyl-4,4' -Diaminobiphenyl (TFMB), 230 parts by mass of N, N-dimethylacetamide (DMAc) was added to completely dissolve, followed by 44.42 parts by mass of 4,4'-(2,2-hexafluoroisopropylidene). ) Diphthalic acid dianhydride (6FDA) was added in portions as a solid, and then stirred at room temperature for 24 hours. Then, a polyamic acid solution (1) having a solid content of 25% by mass and a reduction end of 1.10 dl / g was obtained.
Next, 204 g of DMAc was added to the obtained polyamic acid solution to dilute the polyamic acid concentration to 15% by mass, and then 1.3 g of isoquinoline was added as an imidization accelerator. Then, while stirring the polyamic acid solution, 12.25 g (1.20 mol) of acetic anhydride was slowly added dropwise as an imidizing agent. Then, stirring was continued for 24 hours and a chemical imidization reaction was carried out to obtain a polyimide solution (molar ratio of TFMB / 6FDA = 1.00 / 1.00).
Next, 100 parts by mass of the obtained polyimide solution was transferred to a separable flask equipped with a stirrer and a stirrer, and the mixture was stirred at a speed of 120 rpm. Then, when 150 parts by mass of methanol was slowly added dropwise thereto, precipitation of powdery polyimide was confirmed.
Then, the contents of the separable flask were filtered off by suction filtration and washed with methanol. The polyimide powder separated by filtration was dried at 50 ° C. for 24 hours using a dryer, and then dried at 260 ° C. for another 5 hours to obtain the desired polyimide powder.
A dispersion obtained by dissolving 20 parts by mass of the obtained polyimide powder in 80 parts by mass of DMAc and dispersing colloidal silica as a lubricant in dimethylacetamide (Nissan Chemical Industry Co., Ltd. "Snowtex (registered trademark) DMAC-ST-" ZL ”) and silica (lubricant) were added so that the total amount of polymer solids in the polyimide solution was 1.4% by mass) to obtain a uniform polyimide solution 1.
〔製造例2(ポリアミド酸溶液2の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、279.9質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)及び15.51質量部の4,4’-オキシジフタル酸二無水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分17質量%、還元粘度3.60dl/gのポリアミド酸溶液2を得た(TFMB//CBDA/OPDA)のモル比=1.00//0.50/0.50)。
[Production Example 2 (Production of Polyamic Acid Solution 2)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 32.02 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) 279.9 Silica (DMAC-ST-ZL, manufactured by Nissan Chemical Industries, Ltd.) is a dispersion of N, N-dimethylacetamide (DMAc) by mass and colloidal silica dispersed in dimethylacetamide as a lubricant. Lubricants) were added to make the total amount of polymer solids in the polyamic acid solution 0.4% by mass) and completely dissolved, and then 9.81 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid. After adding the dianhydride (CBDA) and 15.51 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) in solid form, the mixture was stirred at room temperature for 24 hours. Then, a polyamic acid solution 2 having a solid content of 17% by mass and a reducing viscosity of 3.60 dl / g was obtained (TFMB // CBDA / OPDA) in a molar ratio = 1.00 // 0.50 / 0.50).
〔製造例3(ポリアミド酸溶液3の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、19.86質量部
の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、4.97質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、103.7質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加えて完全に溶解させ、次いで、31.02質量部の4,4’-オキシジフタル酸二無水物(ODPA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分35質量%、還元粘度0.70dl/gのポリアミド酸溶液3を得た(4,4’-DDS/3,3’-DDS/ODPAのモル比=0.80/0.20//1.00)。
[Production Example 3 (Production of Polyamic Acid Solution 3)]
After replacing the inside of the reaction vessel equipped with the nitrogen introduction tube, the reflux tube and the stirring rod with nitrogen, 19.86 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4'-DDS), 4.97 parts by mass. A dispersion consisting of 3,3'-diaminodiphenyl sulfone (3,3'-DDS), 103.7 parts by mass of N, N-dimethylacetamide (DMAc) and colloidal silica as a lubricant dispersed in dimethylacetamide (Nissan Kagaku). Add industrial "Snowtex (registered trademark) DMAC-ST-ZL") so that silica (lubricant) becomes 0.4% by mass of the total amount of polymer solids in the polyamic acid solution) and completely dissolve. Then, 31.02 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) was added separately in a solid state, and then the mixture was stirred at room temperature for 24 hours. Then, a polyamic acid solution 3 having a solid content of 35% by mass and a reduction viscosity of 0.70 dl / g was obtained (molar ratio of 4,4'-DDS / 3,3'-DDS / ODPA = 0.80 / 0.20. // 1.00).
〔製造例4(ポリアミド酸溶液4の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.73質量部の4,4’-ジアミノベンズアニリド(DABAN)、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させ、次いで、19.32質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、NV(固形分)10質量%、還元粘度3.10dl/gのポリアミド酸溶液4を得た(DABAN/CBDAのモル比=1.00/0.985)。
[Production Example 4 (Production of Polyamic Acid Solution 4)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 22.73 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 21.1 parts by mass of N, N-dimethyl Acetamide (DMAc) and a dispersion obtained by dispersing colloidal silica as a lubricant in dimethylacetamide (“Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) are mixed with silica (lubricant) in a polyamic acid solution. The total amount of the polymer solid content is 0.4% by mass), and the mixture is completely dissolved. Then, 19.32 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid dianilides (CBDA) is added as a solid. After the addition was carried out in portions as it was, the mixture was stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 4 having an NV (solid content) of 10% by mass and a reduction viscosity of 3.10 dl / g (DABAN / CBDA molar ratio = 1.00 /. 0.985).
〔製造例5(ポリアミド酸溶液5の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、252.1質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させ、次いで、19.61質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAcを加え希釈し、NV11%、還元粘度3.50dl/gのポリアミド酸溶液 5を得た(TFMB/CBDAのモル比=1.00/1.00)。
[Production Example 5 (Production of Polyamic Acid Solution 5)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 32.02 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB), 252.1 Silica (DMAC-ST-ZL, manufactured by Nissan Chemical Industries, Ltd.) is a dispersion of N, N-dimethylacetamide (DMAc) by mass and colloidal silica dispersed in dimethylacetamide as a lubricant. Lubricants) were added to make the total amount of polymer solids in the polyamic acid solution 0.4% by mass) and completely dissolved, and then 19.61 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid. The dianhydride (CBDA) was added in portions as a solid, and then stirred at room temperature for 24 hours. Then, 165.7 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 5 having an NV of 11% and a reduction viscosity of 3.50 dl / g (TFMB / CBDA molar ratio = 1.00 / 1.00).
〔製造例6(ポリアミド酸溶液6の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器に窒素雰囲気下、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)16.1質量部とN-メチル-2-ピロリドン109質量部と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加えを仕込んで溶解させた後、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)11.2質量部を室温にて固体のまま分割添加し、室温下12時間攪拌した。次に共沸溶媒としてキシレン40.0質量部を添加して180℃に昇温して3時間反応を行い、共沸してくる生成水を分離した。水の流出が終わったことを確認し、1時間かけて190℃に昇温しながらキシレンを除去することでポリアミド酸溶液6を得た(TFMB/HPMDAのモル比=1.00/1.00)。
[Production Example 6 (Production of Polyamic Acid Solution 6)]
In a reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, in a nitrogen atmosphere, 16.1 part by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) and N-methyl-2- 109 parts by mass of pyrrolidone and a dispersion (“Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in dimethylacetamide as a lubricant are mixed with silica (lubricant) in a polyamic acid solution. Addition was added so as to have a total polymer solid content of 0.4% by mass) and dissolved, and then 11.2 parts by mass of 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (HPMDA) was added at room temperature. The mixture was added in portions as a solid, and stirred at room temperature for 12 hours. Next, 40.0 parts by mass of xylene was added as an azeotropic solvent, the temperature was raised to 180 ° C., and the reaction was carried out for 3 hours to separate the azeotropic generated water. After confirming that the outflow of water was completed, xylene was removed while raising the temperature to 190 ° C. over 1 hour to obtain a polyamic acid solution 6 (molar ratio of TFMB / HPMDA = 1.00 / 1.00). ).
〔製造例7(ポリアミドイミド溶液7の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器にシクロヘキサントリカルボン酸無水物
(H-TMA)17.8質量部、テレフタル酸(TPA)1.7質量部、o-トリジンジイソシナネート(TODI)26.4質量部、トリエチレンジアミン0.15質量部と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え、N-メチル-2-ピロリドン150質量部に溶解した後、窒素気流下、攪拌しながら、80~150℃で8時間反応させることにより、透明で粘調なポリアミドイミド溶液7を得た。得られたポリアミドイミドの対数粘度は0.8dl/gであった(H-TMA/TPA//TODIのモル比=0.90/0.10/1.00)。
[Production Example 7 (Production of Polyamide-imide Solution 7)]
17.8 parts by mass of cyclohexanetricarboxylic acid anhydride (H-TMA), 1.7 parts by mass of terephthalic acid (TPA), o-trizine diisocinate (o-trizine diisocinate) in a reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod. TODI) 26.4 parts by mass, triethylenediamine 0.15 parts by mass, and a dispersion obtained by dispersing colloidal silica as a lubricant in dimethylacetamide (Nissan Chemical Industry Co., Ltd. "Snowtex (registered trademark) DMAC-ST-ZL"). Is added so that silica (lubricant) becomes 0.4% by mass based on the total amount of polymer solids in the polyamic acid solution), dissolved in 150 parts by mass of N-methyl-2-pyrrolidone, and then stirred under a nitrogen stream. However, the reaction was carried out at 80 to 150 ° C. for 8 hours to obtain a transparent and viscous polyamideimide solution 7. The logarithmic viscosity of the obtained polyamide-imide was 0.8 dl / g (molar ratio of H-TMA / TPA // TODI = 0.90 / 0.10 / 1.00).
〔製造例8(ポリアミド酸溶液8の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.0質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、252.1質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させ、次いで、22.0質量部の3,3‘,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAcを加え希釈し、固形分(NV)11質量%、還元粘度3.5dl/gのポリアミド酸溶液8を得た(TFMB/BPDAのモル比=0.075/0.069)。
[Production Example 8 (Production of Polyamic Acid Solution 8)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 22.0 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 252.1 parts by mass of N , N-dimethylacetamide (DMAc) and a dispersion (“Snowtex (registered trademark) DMAC-ST-ZL" manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in dimethylacetamide as a lubricant, and silica (lubricant) is polyamide. Add so that the total amount of polymer solids in the acid solution is 0.4% by mass) and completely dissolve, then 22.0 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride. After adding the substance (BPDA) in a solid state, the mixture was stirred at room temperature for 24 hours. Then, 165.7 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 8 having a solid content (NV) of 11% by mass and a reduction viscosity of 3.5 dl / g (TFMB / BPDA molar ratio = 0.075 /). 0.069).
〔製造例9(ポリアミド酸溶液9製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.00質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、252.1質量部のN,N-ジメチルアセトアミド(DMAc)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させ、次いで、11.01質量部の3,3‘,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、10.98質量部の4,4’―オキシジフタル酸二無水物(ODPA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAcを加え希釈し、固形分(NV)11質量%、還元粘度3.5dl/gのポリアミド酸溶液9を得た(TFMB/ODPA/BPDAのモル比=0.068/0.035/0.037)。
[Production Example 9 (Production of Polyamic Acid Solution 9)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 22.00 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 252.1 parts by mass of N. , N-Dimethylacetamide (DMAc) and a dispersion (“Snowtex (registered trademark) DMAC-ST-ZL" manufactured by Nissan Chemical Industries, Ltd.) obtained by dispersing colloidal silica as a lubricant in dimethylacetamide, and silica (lubricant) is polyamide. Add the total amount of polymer solids in the acid solution to 0.4% by mass) and dissolve completely, then 11.01 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride. A substance (BPDA), 10.98 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) was added in portions as a solid, and then stirred at room temperature for 24 hours. Then, 165.7 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 9 having a solid content (NV) of 11% by mass and a reduction viscosity of 3.5 dl / g (molar ratio of TFMB / ODPA / BPDA = 0. 068 / 0.035 / 0.037).
〔製造例10(ポリアミド酸溶液10の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、33.36質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、336・31質量部のN-メチル-2-ピロリドン(NMP)を加え完全に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、11.34質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、4.85質量部の4,4’-オキシジフタル酸二無水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分15質量%、還元粘度3.50dl/gのポリアミド酸溶液10(TFMB//CBDA/BPDA/ODPAのモル比=1.00//0.48/0.37/0.15)を得た。
[Production Example 10 (Production of Polyamic Acid Solution 10)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 33.36 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB), 336.31 By weight of N-methyl-2-pyrrolidone (NMP) was added and completely dissolved, followed by 9.81 parts by weight of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) 11.34. Parts of 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4.85 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) are added separately in solid form. After that, the mixture was stirred at room temperature for 24 hours. Then, the polyamic acid solution 10 having a solid content of 15% by mass and a reducing viscosity of 3.50 dl / g (molar ratio of TFMB // CBDA / BPDA / ODPA = 1.00 // 0.48 / 0.37 / 0.15). Got
〔製造例11(ポリアミド酸溶液11の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、33.36質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)、270.37質量部のN-メチル-2-ピロリドン(NMP)とコロイダルシリカをジメチルアセトアミドに
分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST」)とをシリカがポリアミド酸溶液中のポリマー固形分総量にて0.14質量%になるように加え完全に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、11.34質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、4.85質量部の4,4’-オキシジフタル酸二無水物(ODPA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、165.7質量部のDMAcを加え希釈し、固形分18質量%、還元粘度2.7dl/gのポリアミド酸溶液11(TFMB//CBDA/BPDA/ODPAのモル比=1.00//0.48/0.37/0.15)を得た。
[Production Example 11 (Production of Polyamic Acid Solution 11)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 33.36 parts by mass of 2,2'-bis (trifluoromethyl) benzidine (TFMB) and 270.37 parts by mass of N. -Methyl-2-pyrrolidone (NMP) and a dispersion obtained by dispersing colloidal silica in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST" manufactured by Nissan Chemical Industries, Ltd.) are mixed with silica as a polymer solid in a polyamic acid solution. Add to 0.14% by mass in total and completely dissolve, then 9.81 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA), 11.34% by mass. After partial addition of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) and 4.85 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) in solid form. , Stirred at room temperature for 24 hours. Then, 165.7 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 11 (TFMB // CBDA / BPDA / ODPA molar ratio = 1.00 //) having a solid content of 18% by mass and a reduction viscosity of 2.7 dl / g. 0.48 / 0.37 / 0.15) was obtained.
〔製造例12(ポリアミド酸溶液12の製造)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、33.36質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、336.31質量部のN-メチル-2-ピロリドン(NMP)と滑剤としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とをシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.3質量%になるように加え完全に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、11.34質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、4.85質量部の4,4’-オキシジフタル酸二無水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、固形分15質量%、還元粘度3.50dl/gのポリアミド酸溶液12(TFMB//CBDA/BPDA/ODPAのモル比=1.00//0.48/0.37/0.15)を得た。
[Production Example 12 (Production of Polyamic Acid Solution 12)]
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod with nitrogen, 33.36 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB), 366.31 Silica with N-methyl-2-pyrrolidone (NMP) by mass and a dispersion (“Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) in which colloidal silica is dispersed in dimethylacetamide as a lubricant. (Sluice) was added so that the total amount of polymer solids in the polyamic acid solution was 0.3% by mass and completely dissolved, and then 9.81 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic acid was added. Dianoxide (CBDA), 11.34 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA), 4.85 parts by mass of 4,4'-oxydiphthalic acid dianhydride (ODPA) was added separately in solid form, and then stirred at room temperature for 24 hours. Then, the polyamic acid solution 12 having a solid content of 15% by mass and a reducing viscosity of 3.50 dl / g (molar ratio of TFMB // CBDA / BPDA / ODPA = 1.00 // 0.48 / 0.37 / 0.15). Got
〔作製例1〕(ポリイミドフィルムA1の作製)
 製造例4で得たポリアミド酸溶液4を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が8μmとなるよう塗布し、続いて製造例1で得たポリイミド溶液1をポリアミド酸溶液4の上に最終膜厚が20μmとなるようダイコーターによって塗布した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100フィルムから剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムA1を500m得た。
[Production Example 1] (Production of polyimide film A1)
The polyamic acid solution 4 obtained in Production Example 4 was applied to a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 8 μm, followed by Production Example. The polyimide solution 1 obtained in 1 was applied onto the polyamic acid solution 4 with a die coater so that the final film thickness was 20 μm. This was dried at 110 ° C. for 10 minutes. The polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A1 having a width of 450 mm.
〔作製例2〕(ポリイミドフィルムA2の作製)
 製造例4で得たポリアミド酸溶液4を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が8μmとなるよう塗布した。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。これを巻き取ったのちにコンマコーター側にセットしなおしてN,N-ジメチルアセトアミド(DMAc)をスプレー塗布して、続いて製造例1で得たポリイミド溶液1をポリアミド酸溶液4の乾燥物上に最終膜厚が20μmとなるよう塗布した。これを100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性
が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムA2を500m得た。
[Production Example 2] (Production of polyimide film A2)
The polyamic acid solution 4 obtained in Production Example 4 was applied to a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 8 μm. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After winding this, it is set again on the comma coater side and spray-coated with N, N-dimethylacetamide (DMAc), and then the polyimide solution 1 obtained in Production Example 1 is applied onto the dried product of the polyamic acid solution 4. Was applied so that the final film thickness was 20 μm. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A2 having a width of 450 mm.
〔作製例3〕(ポリイミドフィルムA3の作製)
 ポリイミドフィルムA2の一部をポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上にポリイミド製の粘着テープにて開始端を仮固定しておき、その上に製造例4で得たポリアミド酸溶液4を、ダイコーターを用いて最終膜厚が8μmとなるよう塗布した。この時、ポリイミドフィルムA2のポリアミド酸溶液4側がポリエチレンテレフタレート製フィルムA4100と接して、ポリイミド溶液1側に塗布を行った。これを90℃にて10分間乾燥した。乾燥後にポリエチレンテレフタレート製フィルムA4100とは、ポリイミドテープを剥がして分離して、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅400mmのポリイミドフィルムA3を200m得た。
[Production Example 3] (Production of polyimide film A3)
A part of the polyimide film A2 was temporarily fixed on the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) with an adhesive tape made of polyimide, and the start end was temporarily fixed on the start end, which was obtained in Production Example 4. The polyamic acid solution 4 was applied using a die coater so that the final film thickness was 8 μm. At this time, the polyamic acid solution 4 side of the polyimide film A2 was in contact with the polyethylene terephthalate film A4100, and the polyimide film A2 was coated on the polyimide solution 1 side. This was dried at 90 ° C. for 10 minutes. After drying, the polyethylene terephthalate film A4100 is separated from the polyethylene terephthalate film A4100 by peeling off the polyimide tape, passing it through a pin tenter having a pin sheet on which pins are arranged, and grasping the film by inserting it into the pins so that the film does not break. In addition, the pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed with the imidization reaction. .. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 200 m of a polyimide film A3 having a width of 400 mm.
〔作製例4〕(ポリイミドフィルムA4の作製)
 製造例4で得たポリアミド酸溶液4を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が8μmとなるよう塗布した。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。これを巻き取ったのちにコンマコーター側にセットしなおして続いて製造例1で得たポリイミド溶液1をポリアミド酸溶液4の乾燥物上に最終膜厚が20μmとなるよう塗布した。これを熱風炉に入れるまでの距離を延ばすことで、熱風炉に入れるまでの時間を1分余分に取った。これを100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムA4を500m得た。
[Production Example 4] (Production of polyimide film A4)
The polyamic acid solution 4 obtained in Production Example 4 was applied to a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 8 μm. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After winding this, it was set again on the comma coater side, and subsequently, the polyimide solution 1 obtained in Production Example 1 was applied onto the dried product of the polyamic acid solution 4 so that the final film thickness was 20 μm. By extending the distance to put this in the hot air furnace, it took an extra minute to put it in the hot air furnace. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film A4 having a width of 450 mm.
〔作製例5〕(ポリイミドフィルムBの作製)
 製造例4で得たポリイミド溶液4を、製造例5で得たポリアミド酸溶液5に変更したこと以外は作製例1のポリイミドフィルムA1と同じ操作とし、ポリイミドフィルムBを得た。
[Production Example 5] (Production of Polyimide Film B)
The polyimide film B was obtained in the same operation as the polyimide film A1 of the production example 1 except that the polyimide solution 4 obtained in the production example 4 was changed to the polyamic acid solution 5 obtained in the production example 5.
〔作製例6〕(ポリイミドフィルムCの作製)
 製造例4で得たポリイミド溶液4を、製造例2で得たポリアミド酸溶液2に変更したこと以外は作製例1のポリイミドフィルムA1と同じ操作とし、ポリイミドフィルムCを得た。
[Production Example 6] (Production of Polyimide Film C)
The polyimide film C was obtained by the same operation as the polyimide film A1 of the production example 1 except that the polyimide solution 4 obtained in the production example 4 was changed to the polyamic acid solution 2 obtained in the production example 2.
〔作製例7〕(ポリイミドフィルムD1の作製)
 製造例4で得たポリイミド溶液4を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上にコンマコーターを用いて最終膜厚が8μmとなるよう調整してコーティングした。続いて製造例1で得たポリイミド溶液1をポリアミド酸溶液4の乾燥物上に最終膜厚が20μmとなるよう塗布した。続いてコンマコーターを用いて最終膜厚が8μmとなるよう調整して製造例4で得たポリイミド溶液4をコーティン
グした。これを90~100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムD1を500m得た。
[Production Example 7] (Production of polyimide film D1)
The polyimide solution 4 obtained in Production Example 4 was coated on a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 8 μm using a comma coater. Subsequently, the polyimide solution 1 obtained in Production Example 1 was applied onto the dried product of the polyamic acid solution 4 so that the final film thickness was 20 μm. Subsequently, the polyimide solution 4 obtained in Production Example 4 was coated by adjusting the final film thickness to 8 μm using a comma coater. This was dried at 90 to 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film D1 having a width of 450 mm.
〔作製例8〕(ポリイミドフィルムD2の作製)
 ポリイミド溶液1の最終膜厚が12μmとなるように、ポリイミド溶液4の最終膜厚が2μmとなるように塗布厚を調整したこと以外は作製例7(ポリイミドフィルムD1)と同じ操作として、ポリイミドフィルムD2を得た。
[Production Example 8] (Production of polyimide film D2)
The operation is the same as that of Production Example 7 (polyimide film D1) except that the coating thickness is adjusted so that the final film thickness of the polyimide solution 1 is 12 μm and the final film thickness of the polyimide solution 4 is 2 μm. I got D2.
〔作製例9〕(ポリイミドフィルムEの作製)
 ポリイミド溶液1をポリアミド酸溶液2に変更し、ポリアミド酸溶液4をポリアミド酸溶液5に変更したこと以外は作製例1と同じように操作し、ポリイミドフィルムEを得た。
[Manufacturing Example 9] (Manufacturing of Polyimide Film E)
The operation was carried out in the same manner as in Production Example 1 except that the polyimide solution 1 was changed to the polyamic acid solution 2 and the polyamic acid solution 4 was changed to the polyamic acid solution 5, to obtain a polyimide film E.
〔作製例10〕(ポリイミドフィルムFの作製)
 ポリイミド溶液1をポリアミド酸溶液3に変更し、ポリアミド酸溶液4の最終膜厚が7μmとなるように塗布厚を調整したこと以外は作製例1と同じように操作し、ポリイミドフィルムFを得た。
[Production Example 10] (Production of Polyimide Film F)
The polyimide film F was obtained by changing the polyimide solution 1 to the polyamic acid solution 3 and operating in the same manner as in Production Example 1 except that the coating thickness was adjusted so that the final film thickness of the polyamic acid solution 4 was 7 μm. ..
〔作製例11〕(ポリイミドフィルムGの作製)
 ポリイミド溶液1をポリアミド酸溶液6に変更し、ポリアミド酸溶液4の最終膜厚が7μmとなるように塗布厚を調整したこと以外は作製例1と同じように操作し、ポリイミドフィルムGを得た。
[Production Example 11] (Production of Polyimide Film G)
The polyimide film G was obtained by changing the polyimide solution 1 to the polyamic acid solution 6 and operating in the same manner as in Production Example 1 except that the coating thickness was adjusted so that the final film thickness of the polyamic acid solution 4 was 7 μm. ..
〔作製例12〕(ポリイミドフィルムH1の作製)
 ポリイミド溶液1をポリアミド酸溶液7に変更し、ポリアミド酸溶液4の最終膜厚が7μmとなるように塗布厚を調整したこと以外は作製例1と同じように操作し、ポリイミドフィルムH1を得た。
[Production Example 12] (Production of polyimide film H1)
The polyimide film H1 was obtained by changing the polyimide solution 1 to the polyamic acid solution 7 and operating in the same manner as in Production Example 1 except that the coating thickness was adjusted so that the final film thickness of the polyamic acid solution 4 was 7 μm. ..
〔作製例13〕(ポリイミドフィルムH2の作製)
 製造例4で得たポリアミド酸溶液4を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が5μmとなるよう塗布した。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。これを巻き取ったのちにコンマコーター側にセットしなおしてフィルムを引き出して、N,N-ジメチルアセトアミド(DMAc)をスプレー塗布して、続いて製造例7で得たポリイミドアミド溶液7をポリアミド酸溶液4の乾燥物上に最終膜厚が20μmとなるよう塗布した。これを100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムH2を500m得た。
[Production Example 13] (Production of polyimide film H2)
The polyamic acid solution 4 obtained in Production Example 4 was applied to a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) using a comma coater so that the final film thickness was 5 μm. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After winding this, it is set again on the comma coater side, the film is pulled out, N, N-dimethylacetamide (DMAc) is spray-coated, and then the polyimide amide solution 7 obtained in Production Example 7 is subjected to polyamic acid. It was applied onto the dried product of Solution 4 so that the final film thickness was 20 μm. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film H2 having a width of 450 mm.
〔作製例14〕(ポリイミドフィルムIの作製)
 ポリイミド溶液1をポリアミイミド溶液7に変更したこと以外は作製例2(ポリイミドフィルムA2)と同じように操作し、ポリイミドフィルムIを得た。
[Production Example 14] (Production of Polyimide Film I)
The same operation as in Production Example 2 (polyimide film A2) was performed except that the polyimide solution 1 was changed to the polyamiimide solution 7, to obtain a polyimide film I.
〔作製例15〕(ポリイミドフィルムJの作製)
 ポリアミド酸溶液1をポリアミド酸溶液6に変更したこと以外は作製例1(ポリイミドフィルムA1)と同じように操作し、ポリイミドフィルムGを得た。
[Production Example 15] (Production of Polyimide Film J)
A polyimide film G was obtained by operating in the same manner as in Production Example 1 (polyimide film A1) except that the polyamic acid solution 1 was changed to the polyamic acid solution 6.
〔作製例16〕(ポリイミドフィルムKの作製)
 製造例1で得たポリイミド溶液1を、キャスティングアプリケーターを用いてガラス基板上に塗布し、窒素雰囲気下で室温から300℃まで加熱して1時間300℃をキープして熱的にイミド化を行い、ポリイミドフィルム/ガラス積層体を得た。次いで得られた積層体を水に浸漬した後に剥離し、乾燥させて膜厚20μmのポリイミドフィルムKを得た。
[Production Example 16] (Production of Polyimide Film K)
The polyimide solution 1 obtained in Production Example 1 is applied onto a glass substrate using a casting applicator, heated from room temperature to 300 ° C. under a nitrogen atmosphere, kept at 300 ° C. for 1 hour, and thermally imidized. , A polyimide film / glass laminate was obtained. Then, the obtained laminate was immersed in water and then peeled off and dried to obtain a polyimide film K having a film thickness of 20 μm.
〔作製例17から22〕(ポリイミドフィルムLからQの作製)
 製造例1で得たポリイミド溶液1をそれぞれ表2記載のとおり、製造例2~7のポリアミド酸溶液2~6およびポリアミドイミド溶液7に変更したこと以外はポリイミドフィルムJと同じ操作として、ポリイミドフィルムLからQを得た。
[Production Examples 17 to 22] (Production of Q from polyimide film L)
As shown in Table 2, the polyimide solution 1 obtained in Production Example 1 was changed to the polyamic acid solutions 2 to 6 and the polyamide-imide solution 7 of Production Examples 2 to 7, and the operation was the same as that of the polyimide film J. I got Q from L.
〔作製例23〕(ポリイミドフィルムRの作製)
 製造例8で得たポリアミド酸溶液8を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上にコンマコーターを用いて最終膜厚が0.5μmとなるよう調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。これを巻き取ったのちにコンマコーター側にセットしなおして続いて製造例1で得たポリイミド溶液1をポリアミド酸溶液8の乾燥物上に最終膜厚が15μmとなるよう塗布した。これを100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムRを500m得た。
[Production Example 23] (Production of Polyimide Film R)
The polyamic acid solution 8 obtained in Production Example 8 was coated on a non-slip material surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 0.5 μm using a comma coater. .. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After winding this, it was set again on the comma coater side, and subsequently, the polyimide solution 1 obtained in Production Example 1 was applied onto the dried product of the polyamic acid solution 8 so that the final film thickness was 15 μm. This was dried at 100 ° C. for 10 minutes. After drying, the self-supporting polyamic acid film is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the end of the film is inserted into the pins to grip the film so that the film does not break. The pin sheet spacing was adjusted so as not to cause unnecessary slack, and the film was transported, and heated at 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes to proceed the imidization reaction. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a polyimide film R having a width of 450 mm and a width of 500 m.
〔作製例24〕(ポリイミドフィルムSの作製)
 ポリアミド酸溶液8をポリアミド酸溶液9に変更した以外は作製例23と同様にしてポリイミドフィルムSを得た。
[Production Example 24] (Production of Polyimide Film S)
A polyimide film S was obtained in the same manner as in Production Example 23 except that the polyamic acid solution 8 was changed to the polyamic acid solution 9.
〔作製例25〕(ポリイミドフィルムTの作製)
 製造例3で得たポリアミド酸溶液3を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が20μmとなるよう塗布し、続いて製造例4で得たポリアミド酸溶液4をポリアミド酸溶液3の上に最終膜厚が8μmとなるようダイコーターによって塗布した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100フィルムから剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムTを500m得た。
[Production Example 25] (Production of Polyimide Film T)
The polyamic acid solution 3 obtained in Production Example 3 was applied to the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyo Spinning Co., Ltd.) using a comma coater so that the final film thickness was 20 μm, and then Production Example. The polyamic acid solution 4 obtained in 4 was applied onto the polyamic acid solution 3 by a die coater so that the final film thickness was 8 μm. This was dried at 110 ° C. for 10 minutes. The polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain a polyimide film T having a width of 450 mm and a width of 500 m.
〔作製例26〕(ポリイミドフィルムUの作製)
 製造例4で得たポリアミド酸溶液4を、コンマコーターを用いてポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑材面上に最終膜厚が4μmとなるよう塗布し、続いて製造例10で得たポリアミド酸溶液10をポリアミド酸溶液4の上に最終膜厚が17μmとなるようダイコーターによって塗布した。これを110℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルムを支持体としてきたA4100フィルムから剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で3分、350℃で3分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムUを500m得た。
[Production Example 26] (Production of Polyimide Film U)
The polyamic acid solution 4 obtained in Production Example 4 was applied to the non-slip material surface of the polyethylene terephthalate film A4100 (manufactured by Toyo Spinning Co., Ltd.) using a comma coater so that the final film thickness was 4 μm, and then Production Example. The polyamic acid solution 10 obtained in No. 10 was applied onto the polyamic acid solution 4 by a die coater so that the final film thickness was 17 μm. This was dried at 110 ° C. for 10 minutes. The polyamic acid film that has obtained self-support after drying is peeled off from the A4100 film that has been used as a support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. Adjust the pin sheet spacing so that unnecessary slack does not occur, and transport the film under the conditions of 200 ° C for 3 minutes, 250 ° C for 3 minutes, 300 ° C for 3 minutes, and 350 ° C for 3 minutes. Then, the imidization reaction was allowed to proceed. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film U having a width of 450 mm.
〔作製例27〕(ポリイミドフィルムVの作製)
 ポリアミド酸溶液10をポリアミド酸溶液11に変更した以外は作製例26と同様にしてポリイミドフィルムVを得た。
[Manufacturing Example 27] (Manufacturing of Polyimide Film V)
A polyimide film V was obtained in the same manner as in Production Example 26 except that the polyamic acid solution 10 was changed to the polyamic acid solution 11.
〔作製例28〕(ポリイミドフィルムWの作製)
 ポリアミド酸溶液4をポリアミド酸溶液8、ポリアミド酸溶液10をポリアミド酸溶液11、イミド化反応の加熱条件を200℃で3分、250℃で3分、300℃で6分に変更した以外は作製例26と同様にしてポリイミドフィルムWを得た。
[Production Example 28] (Production of Polyimide Film W)
Made except that the polyamic acid solution 4 was changed to the polyamic acid solution 8, the polyamic acid solution 10 was changed to the polyamic acid solution 11, and the heating conditions for the imidization reaction were changed to 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes. A polyimide film W was obtained in the same manner as in Example 26.
〔作製例29〕(ポリイミドフィルムXの作製)
 製造例10で得たポリアミド酸溶液10を、キャスティングアプリケーターを用いてガラス基板上に塗布し、窒素雰囲気下で室温から300℃まで加熱して1時間300℃をキープして熱的にイミド化を行い、ポリイミドフィルム/ガラス積層体を得た。次いで得られた積層体を水に浸漬した後に剥離し、乾燥させて膜厚15μmのポリイミドフィルムXを得た。
[Production Example 29] (Production of Polyimide Film X)
The polyamic acid solution 10 obtained in Production Example 10 is applied onto a glass substrate using a casting applicator, heated from room temperature to 300 ° C. under a nitrogen atmosphere, and kept at 300 ° C. for 1 hour for thermal imidization. This was performed to obtain a polyimide film / glass laminate. Then, the obtained laminate was immersed in water and then peeled off and dried to obtain a polyimide film X having a film thickness of 15 μm.
〔作製例30〕(ポリイミドフィルムYの作製)
 ポリアミド酸溶液10をポリアミド酸溶液11に変更した以外は製造例29と同様にして膜厚15μmのポリイミドフィルムYを得た。
[Production Example 30] (Production of Polyimide Film Y)
A polyimide film Y having a thickness of 15 μm was obtained in the same manner as in Production Example 29 except that the polyamic acid solution 10 was changed to the polyamic acid solution 11.
〔作製例31〕(ポリイミドフィルムZの作製)
 ポリアミド酸溶液4をポリアミド酸溶液12に変更した以外は作製例26と同様にしてポリイミドフィルムZを得た。
[Production Example 31] (Production of Polyimide Film Z)
Polyimide film Z was obtained in the same manner as in Production Example 26 except that the polyamic acid solution 4 was changed to the polyamic acid solution 12.
<ポリイミドフィルムの厚さ測定>
 ポリイミドフィルムA~Zの厚さを、マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。結果を表1、2に示す。
<Measurement of polyimide film thickness>
The thicknesses of the polyimide films A to Z were measured using a micrometer (Millitron 1245D manufactured by Fine Wolf Co., Ltd.). The results are shown in Tables 1 and 2.
<ポリイミドフィルムの引張弾性率、引張破断強度、及び、引張破断伸度>
 ポリイミドフィルムA~Zを、流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。引張試験機(島津製作所製、オートグラフ(R) 機種名AG-5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度及び引張破断伸度を測定した。結果を表1、2に示す。
<Tension elastic modulus, tensile breaking strength, and tensile breaking elongation of polyimide film>
The polyimide films A to Z were cut into strips of 100 mm × 10 mm in the flow direction (MD direction) and the width direction (TD direction), respectively, and used as test pieces. Using a tensile tester (manufactured by Shimadzu Corporation, Autograph (R) model name AG-5000A), the tensile elastic modulus and tensile fracture in each of the MD and TD directions under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm. The strength and tensile modulus at break were measured. The results are shown in Tables 1 and 2.
<ポリイミドフィルムの線膨張係数(CTE)>
 ポリイミドフィルムA~Zを、流れ方向(MD方向)および幅方向(TD方向)において、下記条件にて伸縮率を測定し、30℃~45℃、45℃~60℃のように15℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出した。結果を表1、2に示す。
  機器名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 300℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
<Linear expansion coefficient (CTE) of polyimide film>
The stretch ratio of the polyimide films A to Z was measured in the flow direction (MD direction) and the width direction (TD direction) under the following conditions, and the intervals were 15 ° C. such as 30 ° C. to 45 ° C. and 45 ° C. to 60 ° C. The expansion / contraction rate / temperature was measured in, and this measurement was performed up to 300 ° C., and the average value of all the measured values was calculated as CTE. The results are shown in Tables 1 and 2.
Device name; TMA4000S manufactured by MAC Science
Sample length; 20 mm
Sample width; 2 mm
Temperature rise start temperature; 25 ° C
Temperature rise end temperature; 300 ° C
Temperature rise rate; 5 ° C / min
Atmosphere; Argon
<ポリイミドフィルムの厚さ方向位相差(Rth)>
 ポリイミドフィルムA~ZのX軸方向の屈折率nxとY軸方向の屈折率nyと、Z軸方向の屈折率nzとを、大塚電子社製光学材料検査装置(型式RETS-100)にて、室温(20~25℃)、波長550nmの光で測定した。光軸を検出して、進相遅相補正をかけたうえで、リターデーション測定方法は回転検光子法により測定した。ここでX軸、Y軸は、フィルムの面方向で最も屈折率が大きい方向の屈折率(nx)、フィルムの面方向でNx方向の垂直方向の屈折率(ny)を示す。そして、X軸方向の屈折率nx、Y軸方向の屈折率ny、およびZ軸方向の屈折率nzとフィルムの厚さ(d)から、以下の式に基づき、Rthを算出した。結果を表1、2に示す。
 Rth(nm)=|[nz-(nx+ny)/2]×d|
<Polyimide film thickness direction phase difference (Rth)>
The refractive index nx in the X-axis direction, the refractive index ny in the Y-axis direction, and the refractive index nz in the Z-axis direction of the polyimide films A to Z are measured by an optical material inspection device (model RETS-100) manufactured by Otsuka Electronics Co., Ltd. It was measured with light at room temperature (20 to 25 ° C.) and a wavelength of 550 nm. After detecting the optical axis and correcting the phase advance and slow phase, the retardation measurement method was measured by the rotary photon method. Here, the X-axis and the Y-axis indicate the refractive index (nx) in the direction having the largest refractive index in the plane direction of the film and the refractive index (ny) in the vertical direction in the Nx direction in the plane direction of the film. Then, Rth was calculated from the refractive index nx in the X-axis direction, the refractive index ny in the Y-axis direction, the refractive index nz in the Z-axis direction, and the film thickness (d) based on the following equations. The results are shown in Tables 1 and 2.
Rth (nm) = | [nz- (nx + ny) / 2] x d |
<ポリイミドフィルムの熱収縮>
 前記のポリイミドフィルムの線膨張係数(CTE)の測定時に300℃昇温後に80℃まで降温して、最初の昇温中の100℃の時の長さと降温中の100℃の時の長さの比の百分率を熱収縮率として算出した。結果を表1、2に示す。
<Heat shrinkage of polyimide film>
When measuring the coefficient of linear expansion (CTE) of the polyimide film, the temperature was lowered to 80 ° C after raising the temperature by 300 ° C, and the length at 100 ° C during the initial temperature rise and the length at 100 ° C during the temperature lowering. The percentage of the ratio was calculated as the coefficient of thermal shrinkage. The results are shown in Tables 1 and 2.
<層間混じり合い測定>
 層間の混じり合いは、SAICAS DN-20S型(ダイプラ・ウィンテス社)によってポリイミドフィルムの斜め切削面を作製する。次いでこの斜め切削面を顕微IRCary 620 FTIR (Agilent社)によって、ゲルマニウム結晶(入射角30°)を用いた顕微ATR法で測定した。これによって、測定した結果は表1、2に示す。
<Measurement of mixture between layers>
For mixing between layers, a diagonally cut surface of a polyimide film is prepared by SAICAS DN-20S type (Dipla Wintes). Next, this oblique cutting surface was measured by a microscopic IRCary 620 FTIR (Agilent) by a microscopic ATR method using a germanium crystal (incident angle 30 °). The measurement results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (実施例1)
 ガラス基板へのシランカップリング剤の塗布方法は、図1に示す実験装置を用いて行った。図1は、ガラス基板にシランカップリング剤を塗布する実験装置の模式図である。ガラス基板1(100mm×100mmサイズに切断した、厚さ0.7mmのOA11Gガ
ラス(NEG社製))を使用した。なおガラス基板1は、純水洗浄、乾燥後にUV/O3照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。容量1Lの薬液タンクの中に3-アミノプロピルトリメトキシシラン(シランカップリング剤 信越化学KBM903)150gを入れて、この外側の湯煎を41℃と温めた。そして出てくる蒸気をクリーンドライエアとともにチャンバーに送った。ガス流量は25L/min、基板温度は38℃とした。クリーンドライエアの温度は23℃、湿度は1.2%RHであった。排気は負圧の排気口に接続したため、チャンバーは10Pa程度の負圧となっていることを差圧計によって確認している。得られた積層体の使用基板やSCA塗布方法、SCA塗布時間は、表3に示す通りである。
 次に、前記シランカップリング剤層上に、ポリイミドフィルムA1(70mm×70mmサイズ)を貼り合わせ、積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。貼り合わせには、MCK社製ラミネーターを用い、貼合条件は、圧縮空気の圧力:0.6MPa、温度:22℃、湿度:55%RH、ラミネート速度:50mm/secとした。この積層体を測定した結果は、表3に示す通りである。
(Example 1)
The method of applying the silane coupling agent to the glass substrate was carried out using the experimental apparatus shown in FIG. FIG. 1 is a schematic view of an experimental device for applying a silane coupling agent to a glass substrate. Glass substrate 1 (OA11G glass (manufactured by NEG) having a thickness of 0.7 mm cut into a size of 100 mm × 100 mm) was used. The glass substrate 1 used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N-03 manufactured by LAN Technical) for 1 minute to dry wash. 150 g of 3-aminopropyltrimethoxysilane (silane coupling agent Shin-Etsu Chemical KBM903) was placed in a 1 L capacity chemical tank, and the outer water bath was heated to 41 ° C. Then, the steam that came out was sent to the chamber together with clean dry air. The gas flow rate was 25 L / min and the substrate temperature was 38 ° C. The temperature of the clean dry air was 23 ° C. and the humidity was 1.2% RH. Since the exhaust is connected to the negative pressure exhaust port, it is confirmed by the differential pressure gauge that the chamber has a negative pressure of about 10 Pa. The substrate used, the SCA coating method, and the SCA coating time of the obtained laminate are as shown in Table 3.
Next, a polyimide film A1 (70 mm × 70 mm size) was laminated on the silane coupling agent layer to obtain a laminated body. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. A laminator manufactured by MCK was used for bonding, and the bonding conditions were compressed air pressure: 0.6 MPa, temperature: 22 ° C., humidity: 55% RH, and laminating speed: 50 mm / sec. The results of measuring this laminated body are as shown in Table 3.
(実施例2)
 シランカップリング剤の塗布方法と無機基板を以下に変えた以外は実施例1と同じようにして積層体を得た。この塗布方法は、Siウエハ基板(ダミーグレードの8インチウェーハ)を100mm×100mmサイズに切断したものをスピンコーター(ジャパンクリエイト社製、MSC-500S)に設置した。前記ガラス基板1にイソプロピルアルコール(IPA)を滴下させてから、500rpmにて回転させてガラス基板全面に広げ、乾燥させた後、シランカップリング剤3-アミノプロピルトリメトキシシラン(信越化学KBM903)の1%IPA溶液をガラス上に滴下して、2000rpmにて回転させることで、シランカップリング剤希釈液の振り切りと乾燥を行った。滴下後30秒後に回転を停止させた。以上により、ガラス基板にシランカップリング剤層を形成した。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表3に示す通りである。
(Example 2)
A laminate was obtained in the same manner as in Example 1 except that the method for applying the silane coupling agent and the inorganic substrate were changed to the following. In this coating method, a Si wafer substrate (dummy grade 8-inch wafer) cut into a size of 100 mm × 100 mm was installed in a spin coater (MSC-500S manufactured by Japan Create Co., Ltd.). After dropping isopropyl alcohol (IPA) onto the glass substrate 1, rotate it at 500 rpm to spread it over the entire surface of the glass substrate, dry it, and then use a silane coupling agent 3-aminopropyltrimethoxysilane (Shinetsu Kagaku KBM903). The 1% IPA solution was dropped onto the glass and rotated at 2000 rpm to shake off and dry the silane coupling agent diluted solution. The rotation was stopped 30 seconds after the dropping. As a result, a silane coupling agent layer was formed on the glass substrate. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
 (実施例3)
 使用する透明高耐熱フィルムをフィルムA1からフィルムA2に変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表3に示す通りである。
(Example 3)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
 (実施例4)
 SCA塗布のため、実施例1ではガラス基板1を図1の装置に入れたが、ガラス基板1にフィルムA1をテープ固定したものを図1の装置に入れてフィルムA1にSCAを塗布したのちにガラス基板1から剥がして、SCA塗布面をこの時使ったガラスとは別のガラス基板1のガラス側に接触させて、貼り付けを行ったこと以外は実施例1と同じようにして積層体を得た。なおガラス基板は、純水洗浄、乾燥後にUV/O3照射器(LANテクニカル製SKR1102N-03)で1分間照射してドライ洗浄したものを用いた。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表3に示す通りである。
(Example 4)
In Example 1, the glass substrate 1 was put into the apparatus of FIG. 1 for SCA coating, but after the film A1 was tape-fixed to the glass substrate 1 in the apparatus of FIG. 1 and the SCA was applied to the film A1. The laminate was formed in the same manner as in Example 1 except that it was peeled off from the glass substrate 1 and the SCA coated surface was brought into contact with the glass side of the glass substrate 1 different from the glass used at this time and pasted. Obtained. The glass substrate used was washed with pure water, dried, and then irradiated with a UV / O3 irradiator (SKR1102N-03 manufactured by LAN Technical) for 1 minute to dry wash. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
 (実施例5)
 使用する透明高耐熱フィルムをフィルムA1からフィルムA4に変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表3に示す通りである。
(Example 5)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A4. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
 (実施例6)
 使用する透明高耐熱フィルムをフィルムA1からフィルムBに変更して、無機基板をSiウエハからガラス1に変えたこと以外は実施例2と同じようにして積層体を得たこの時貼り合わせ面はポリアミド酸溶液5からできたポリイミド面である。この積層体を測定した結果、使用基板や塗布方法は表3に示す通りである。
(Example 6)
The laminated surface was obtained in the same manner as in Example 2 except that the transparent high heat resistant film to be used was changed from film A1 to film B and the inorganic substrate was changed from Si wafer to glass 1. It is a polyimide surface made of a polyamic acid solution 5. As a result of measuring this laminated body, the substrate to be used and the coating method are as shown in Table 3.
 (実施例7)
 使用する透明高耐熱フィルムをフィルムA1からフィルムD1に変更して、基板をガラス基板1からガラス基板2(730×920mm)に変更した。このため、シランカップリング剤の塗布、ラミネーターを大型の装置に変えた以外は実施例5と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表3に示す通りである。
(Example 7)
The transparent high heat resistant film used was changed from film A1 to film D1, and the substrate was changed from glass substrate 1 to glass substrate 2 (730 × 920 mm). Therefore, a laminate was obtained in the same manner as in Example 5 except that the silane coupling agent was applied and the laminator was changed to a large device. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 3.
 (実施例8)
 使用する透明高耐熱フィルムをフィルムA2からフィルムD1に変更したこと以外は実施例4と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 8)
A laminated body was obtained in the same manner as in Example 4 except that the transparent high heat resistant film used was changed from film A2 to film D1. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例9)
 使用する透明高耐熱フィルムをフィルムA2からフィルムD2に変更したこと以外は実施例4と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 9)
A laminated body was obtained in the same manner as in Example 4 except that the transparent high heat resistant film used was changed from film A2 to film D2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例10)
 使用する透明高耐熱フィルムをフィルムA1からフィルムEに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液5からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 10)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film E. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 5. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例11)
 使用する透明高耐熱フィルムをフィルムA1からフィルムFに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 11)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film F. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例12)
 使用する透明高耐熱フィルムをフィルムA1からフィルムD1に変更して、基板をガラス基板1からSiウエハ基板(ダミーグレードの8インチウェーハ)を100mm×100mmサイズに切断したものに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 12)
Except for changing the transparent high heat resistant film to be used from film A1 to film D1 and changing the substrate from glass substrate 1 to a Si wafer substrate (dummy grade 8-inch wafer) cut to a size of 100 mm x 100 mm. A laminate was obtained in the same manner as in Example 1. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例13)
 使用する透明高耐熱フィルムをフィルムA1からフィルムH1に変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 13)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film H1. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例14)
 使用する透明高耐熱フィルムをフィルムA1からフィルムH2に変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表4に示す通りである。
(Example 14)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film H2. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 4.
 (実施例15)
 使用するフィルムをA1からRに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液8からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 15)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to R. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
 (実施例16)
 使用するフィルムをA1からSに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液8からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 16)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to S. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
 (実施例17)
 使用するフィルムをA1からTに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 17)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to T. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
 (実施例18)
 使用するフィルムをA1からUに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 18)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to U. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
 (実施例19)
 使用するフィルムをA1からVに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 19)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to V. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. The results of measuring this laminated body are as shown in Table 5.
(実施例20)
 使用するフィルムをA1からWに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液8からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 20)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to W. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 8. The results of measuring this laminated body are as shown in Table 5.
(実施例21)
 使用するフィルムをA1からZに変更した以外は実施例1と同様にして積層体を得た。この時貼り合わせ面はポリアミド酸溶液12からできたポリイミド面である。この積層体を測定した結果は表5に示す通りである。
(Example 21)
A laminated body was obtained in the same manner as in Example 1 except that the film used was changed from A1 to Z. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 12. The results of measuring this laminated body are as shown in Table 5.
(回路作製例1)
 上記で得られた各フィルムを50cm幅のロールサイズにスリットし、ロールからの巻き出し/巻き取り部を有する連続式の真空装置にて以下の条件でプラズマ処理した。
 プラズマ処理条件は酸素ガス中で、周波数13.56MHz、出力150W、ガス圧0.7Paの条件であり、処理時の温度は25℃、処理時間は5分間であった。次いで、周波数13.56MHz、出力500W、ガス圧0.7Paの条件、ニッケル-クロム(15質量%)合金のターゲットを用い、アルゴン雰囲気下にてRFスパッタ法により、10Å/秒のレートで厚さ120Åのニッケル-クロム合金被膜(下地層)を形成し、次いで
、150Å/秒のレートで銅を蒸着し、厚さ0.25μmの銅薄膜を形成させて真空中にて巻き取った。こうして片面金属化フィルムとした。このフィルムの金属層側に波長355nmのナノレーザーによって時間を調節して、貫通しない穴をあけた。
 得られた片面金属薄膜付き非貫通孔を含んだフィルムをロールトゥロール方式の縦型の連続式電気めっき装置を用い、硫酸銅めっき浴をもちいて、厚さ3μmの厚付け銅めっき層(厚付け層)を形成し、目的とする金属化ポリイミドフィルムを得た。得られた金属化ポリイミドフィルムを、幅48mmにスリットし、スプロケット孔を形成した後、無電解メッキ後に最大厚み6μmとなるように両面スルーホールめっきを行った。その後、フォトレジスト:FR-200、シプレー社製を塗布・乾燥後にガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClと過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、フィルム間接続用電極付き透明耐熱性フィルムを作製した。こののちに、実施例と同様にして、無機基板との積層体を作製した。
(Circuit production example 1)
Each film obtained above was slit into a roll size having a width of 50 cm, and plasma-treated under the following conditions in a continuous vacuum apparatus having a winding / winding portion from the roll.
The plasma treatment conditions were a frequency of 13.56 MHz, an output of 150 W, and a gas pressure of 0.7 Pa in oxygen gas, the temperature at the time of treatment was 25 ° C., and the treatment time was 5 minutes. Next, using a nickel-chromium (15% by mass) alloy target under the conditions of a frequency of 13.56 MHz, an output of 500 W, and a gas pressure of 0.7 Pa, the thickness was increased at a rate of 10 Å / sec by an RF sputtering method under an argon atmosphere. A 120 Å nickel-chromium alloy coating (underlayer) was formed, then copper was deposited at a rate of 150 Å / sec to form a 0.25 μm thick copper thin film and wound in vacuum. In this way, a single-sided metallized film was obtained. A non-penetrating hole was made on the metal layer side of this film by adjusting the time with a nanolaser having a wavelength of 355 nm.
Using a roll-to-roll vertical continuous electroplating device, the obtained film containing non-through holes with a single-sided metal thin film was used, and a thick copper plating layer with a thickness of 3 μm (thickness) was used. An additional layer) was formed to obtain the desired metallized polyimide film. The obtained metallized polyimide film was slit to a width of 48 mm to form a sprocket hole, and then electroless plating was performed, and then double-sided through-hole plating was performed so as to have a maximum thickness of 6 μm. Then, a photoresist: FR-200 manufactured by Shipley Co., Ltd. was applied and dried, and then closely exposed with a glass photomask, and further developed with a 1.2 mass% KOH aqueous solution. Next, an etching line of cupric chloride containing HCl and hydrogen peroxide was etched at a spray pressure of 40 ° C. and 2 kgf / cm2 to prepare a transparent heat-resistant film with an electrode for connecting between films. After that, a laminate with the inorganic substrate was produced in the same manner as in the examples.
(比較例1)
 使用する透明高耐熱フィルムをフィルムA1からフィルムA3に変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液4からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである。
(Comparative Example 1)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film A3. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 4. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
(比較例2)
 使用する透明高耐熱フィルムをフィルムA1からフィルムCに変更したこと以外は実施例6と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液2からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである。
(Comparative Example 2)
A laminated body was obtained in the same manner as in Example 6 except that the transparent high heat resistant film used was changed from film A1 to film C. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 2. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
(比較例3)
 使用する透明高耐熱フィルムをフィルムA1からフィルムIに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液2からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである。
(Comparative Example 3)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film I. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 2. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
(比較例4)
 使用する透明高耐熱フィルムをフィルムA1からフィルムJに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液1からできたポリイミド面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである。
(Comparative Example 4)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film J. At this time, the bonded surface is a polyimide surface made of the polyamic acid solution 1. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
(比較例5)
 使用する透明高耐熱フィルムをフィルムA1からフィルムLに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液2からできたポリイミド面のうちのフィルム作製時にPETフィルムと接していた面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである。
(Comparative Example 5)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film L. At this time, the bonded surface is the surface of the polyimide surface made of the polyamic acid solution 2 that was in contact with the PET film when the film was produced. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
(比較例6)
 使用する透明高耐熱フィルムをフィルムA1からフィルムQに変更したこと以外は実施例1と同じようにして積層体を得た。この時貼り合わせ面はポリアミド酸溶液7からできたポリイミド面のうちのフィルム作製時にPETフィルムと接していた面である。この積層体を測定した結果、使用基板やSCA塗布方法、SCA塗布時間は表6に示す通りである
(Comparative Example 6)
A laminated body was obtained in the same manner as in Example 1 except that the transparent high heat resistant film used was changed from film A1 to film Q. At this time, the bonded surface is the surface of the polyimide surface made of the polyamic acid solution 7 that was in contact with the PET film when the film was produced. As a result of measuring this laminated body, the substrate used, the SCA coating method, and the SCA coating time are as shown in Table 6.
<90°初期剥離強度の測定>
 上記積層体の作製で得られた積層体を、大気雰囲気下、100℃10分間熱処理した。その後、無機基板(ガラス基板、又は、シリコンウエハ)とポリイミドフィルムとの間の90°初期剥離強度を測定した。結果を表2~表6に示す。
 90°初期剥離強度の測定条件は、下記の通りである。
 無機基板に対してフィルムを90°の角度で引き剥がす。
 5回測定を行い、平均値を測定値とする。
 測定装置    ; 島津製作所社製 オートグラフAG-IS
 測定温度    ; 室温(25℃)
 剥離速度    ; 100mm/min 
 雰囲気     ; 大気
 測定サンプル幅 ; 2.5cm
<Measurement of 90 ° initial peel strength>
The laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere. Then, the 90 ° initial peel strength between the inorganic substrate (glass substrate or silicon wafer) and the polyimide film was measured. The results are shown in Tables 2 to 6.
The measurement conditions for the 90 ° initial peel strength are as follows.
Peel the film at a 90 ° angle to the inorganic substrate.
Measure 5 times and use the average value as the measured value.
Measuring device; Shimadzu Autograph AG-IS
Measurement temperature; room temperature (25 ° C)
Peeling speed; 100 mm / min
Atmosphere; Atmosphere measurement sample width; 2.5 cm
<300℃1時間加熱した後の90°剥離強度の測定>
 上記積層体の作製で得られた積層体を、大気雰囲気下、100℃10分熱処理した。さらに、窒素雰囲気下で300℃1時間加熱した。その後、無機基板とポリイミドフィルムとの間の90°剥離強度を測定した。結果を表2~表6に示す。300℃1時間加熱した後の90°剥離強度の測定条件は、90°初期剥離強度と同様とした。
<Measurement of 90 ° peel strength after heating at 300 ° C for 1 hour>
The laminate obtained by producing the above laminate was heat-treated at 100 ° C. for 10 minutes in an atmospheric atmosphere. Further, it was heated at 300 ° C. for 1 hour in a nitrogen atmosphere. Then, the 90 ° peel strength between the inorganic substrate and the polyimide film was measured. The results are shown in Tables 2 to 6. The measurement conditions for the 90 ° peel strength after heating at 300 ° C. for 1 hour were the same as those for the 90 ° initial peel strength.
<ポリイミドフィルムのヘイズ>
 HAZEMETER(NDH5000、日本電色社製)を用いてポリイミドフィルムのヘイズを測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
結果を表2~6に示す。
<Haze of polyimide film>
The haze of the polyimide film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
The results are shown in Tables 2-6.
<ポリイミドフィルムの全光線透過率>
 HAZEMETER(NDH5000、日本電色社製)を用いてポリイミドフィルムの全光線透過率(TT)を測定した。光源としてはD65ランプを使用した。尚、同様の測定を3回行い、その算術平均値を採用した。
結果を表2~6に示す。
<Total light transmittance of polyimide film>
The total light transmittance (TT) of the polyimide film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). A D65 lamp was used as the light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
The results are shown in Tables 2-6.
<ポリイミドフィルムの色>
 イエローインデックスを測定した。カラーメーター(ZE6000、日本電色社製)およびC2光源を使用して、ASTM D1925に準じてポリイミドフィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。尚、同様の測定を3回行い、その算術平均値を採用した。
 YI=100×(1.28X-1.06Z)/Y
結果を表2~4に示す。
<Color of polyimide film>
The yellow index was measured. Using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, the tristimulus value XYZ value of the polyimide film was measured according to ASTM D1925, and the yellowness index (YI) was calculated by the following formula. The same measurement was performed three times, and the arithmetic mean value was adopted.
YI = 100 × (1.28X-1.06Z) / Y
The results are shown in Tables 2-4.
<透明高耐熱フィルムと無機基板との積層体の反り>
 透明高耐熱フィルムと無機基板との積層体の反り(μm)とは、下記の所定の熱処理を行った前後の積層体の面方向に対する厚さ方向への変形度合を意味し、具体的には、図4に示すように、100mm×100mmの試験片を、室温で定盤上に試験片を凹状となるように静置し、四隅の平面からの距離(h1rt、h2rt、h3rt、h4rt:単位mm)の平均値を元の反り量(mm)とし、300℃で1時間加熱処理した後に、平面上に試験片を凹状となるように静置し、四隅の平面からの距離(h1、h2、h3、h4:単位mm)の平均値を反り量(mm)とし、これの元の反り量からの差を300℃での反り量とした。測定値は10点の平均値とする。
 但し、10点のサンプリングをするに十分な積層体がない場合も、3枚以上で測定する。 具体的には、次式によって算出される。
   元の反り量(μm)=(h1rt+h2rt+h3rt+h4rt)/4
   反り量(μm)=(h1+h2+h3+h4)/4
   300℃の反り量(μm)=反り量-元の反り量
結果を表2~6に示す。
<Warp of laminated body of transparent high heat resistant film and inorganic substrate>
The warp (μm) of the laminated body of the transparent high heat-resistant film and the inorganic substrate means the degree of deformation in the thickness direction with respect to the surface direction of the laminated body before and after the following predetermined heat treatment, and specifically. As shown in FIG. 4, a 100 mm × 100 mm test piece was placed on a platen at room temperature so that the test piece was concave, and the distances from the four corner planes (h1rt, h2rt, h3rt, h4rt: unit). The average value of (mm) is taken as the original amount of warpage (mm), and after heat treatment at 300 ° C. for 1 hour, the test piece is allowed to stand on a flat surface so as to be concave, and the distances from the flat surface at the four corners (h1, h2). , H3, h4: unit mm) was defined as the warp amount (mm), and the difference from the original warp amount was defined as the warp amount at 300 ° C. The measured value shall be the average value of 10 points.
However, even if there is not enough laminate to sample 10 points, measurement is performed with 3 or more sheets. Specifically, it is calculated by the following equation.
Original warp amount (μm) = (h1rt + h2rt + h3rt + h4rt) / 4
Warpage amount (μm) = (h1 + h2 + h3 + h4) / 4
Warpage amount (μm) at 300 ° C. = Warp amount-Original warp amount The results are shown in Tables 2-6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 1  フローメーター
 2  ガス導入口
 3  薬液タンク(シランカップリング剤槽)
 4  温水槽(湯煎)
 5  ヒーター
 6  処理室(チャンバー)
 7  基材
 8  排気口
 11 第1の透明高耐熱フィルム層
 12 第2の透明高耐熱フィルム層
 13 シランカップリング剤層
 14 無機基板
 15 電子デバイス
 16 電子デバイス付きフィルム
 17 積層体
 18 定盤
 
 
1 Flow meter 2 Gas inlet 3 Chemical tank (silane coupling agent tank)
4 Hot water tank (water bath)
5 Heater 6 Processing chamber (chamber)
7 Base material 8 Exhaust port 11 First transparent high heat resistant film layer 12 Second transparent high heat resistant film layer 13 Silane coupling agent layer 14 Inorganic substrate 15 Electronic device 16 Film with electronic device 17 Surface plate 18 Surface plate

Claims (8)

  1.  透明高耐熱フィルムと無機基板との接着剤を実質的に使わない積層体において、
     前記透明高耐熱フィルムと前記無機基板との剥離強度が0.3N/cm以下であり、前記積層体の300℃加熱時の反り量が400μm以下である積層体。
    In a laminate that substantially does not use an adhesive between a transparent high heat resistant film and an inorganic substrate,
    A laminate in which the peel strength between the transparent high heat resistant film and the inorganic substrate is 0.3 N / cm or less, and the amount of warpage of the laminate when heated at 300 ° C. is 400 μm or less.
  2.  前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層と、無機基板には接触せずに前記第1の透明高耐熱フィルム層と隣接する第2の透明高耐熱フィルム層との界面の混じり合いの厚さが800nm超5μm以下であることを特徴とする請求項1記載の積層体。 The transparent high heat resistant film has a laminated structure of two or more layers, and is adjacent to the first transparent high heat resistant film layer that comes into contact with the inorganic substrate and the first transparent high heat resistant film layer that does not come into contact with the inorganic substrate. The laminate according to claim 1, wherein the thickness of the mixture with the second transparent high heat-resistant film layer is more than 800 nm and 5 μm or less.
  3.  前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層単独でのCTEが20ppm/K以下であることを特徴とする請求項1または2に記載の積層体。 Claim 1 or 2 is characterized in that the transparent high heat resistant film has a laminated structure of two or more layers, and the CTE of the first transparent high heat resistant film layer alone in contact with the inorganic substrate is 20 ppm / K or less. The laminate described in.
  4.  前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層が透明ポリイミドであることを特徴とする請求項1~3のいずれかに記載の積層体。 The invention according to any one of claims 1 to 3, wherein the transparent high heat resistant film has a laminated structure of two or more layers, and the first transparent high heat resistant film layer in contact with the inorganic substrate is a transparent polyimide. Laminated body.
  5.  前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触しない第2の透明高耐熱フィルム層の少なくとも1層が透明ポリイミドであることを特徴とする請求項1~4のいずれかに記載の積層体。 Any of claims 1 to 4, wherein the transparent high heat resistant film has a laminated structure of two or more layers, and at least one layer of the second transparent high heat resistant film layer that does not come into contact with the inorganic substrate is transparent polyimide. The laminate described in Crab.
  6.  前記透明高耐熱フィルムが2層以上の積層構成であり、前記無機基板と接触する第1の透明高耐熱フィルム層が式1の構造および/または式2の構造を含有する請求項1~5のいずれかに記載の積層体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    2. The laminate described in any one.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  7.  前記無機基板の長辺が300mm以上である請求項1~6のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the long side of the inorganic substrate is 300 mm or more.
  8.  請求項1~7のいずれかに記載の積層体の透明高耐熱フィルム上に電子デバイスを形成し、次いで無機基板から剥離する電子デバイス付きフィルムの製造方法。
     
     
     
    A method for producing a film with an electronic device, wherein an electronic device is formed on the transparent high heat resistant film of the laminate according to any one of claims 1 to 7, and then the electronic device is peeled off from the inorganic substrate.


PCT/JP2021/019787 2020-05-29 2021-05-25 Layered product including high temperature-resistant transparent film WO2021241571A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022526577A JPWO2021241571A1 (en) 2020-05-29 2021-05-25
US17/996,199 US20230211584A1 (en) 2020-05-29 2021-05-25 Layered product including high temperature-resistant transparent film
KR1020227039208A KR20220165774A (en) 2020-05-29 2021-05-25 Laminate containing a transparent high heat-resistant film
CN202180034486.9A CN115551714A (en) 2020-05-29 2021-05-25 Laminate comprising transparent highly heat-resistant film
EP21813330.4A EP4159440A1 (en) 2020-05-29 2021-05-25 Layered product including high temperature-resistant transparent film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020094846 2020-05-29
JP2020-094846 2020-05-29
JP2020186387 2020-11-09
JP2020-186387 2020-11-09

Publications (1)

Publication Number Publication Date
WO2021241571A1 true WO2021241571A1 (en) 2021-12-02

Family

ID=78744064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019787 WO2021241571A1 (en) 2020-05-29 2021-05-25 Layered product including high temperature-resistant transparent film

Country Status (7)

Country Link
US (1) US20230211584A1 (en)
EP (1) EP4159440A1 (en)
JP (1) JPWO2021241571A1 (en)
KR (1) KR20220165774A (en)
CN (1) CN115551714A (en)
TW (1) TW202144175A (en)
WO (1) WO2021241571A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR200E (en)
JP2010283262A (en) * 2009-06-08 2010-12-16 Toyobo Co Ltd Lamination body and manufacturing method thereof
WO2012050072A1 (en) * 2010-10-13 2012-04-19 東洋紡績株式会社 Polyimide film, method for manufacturing same, and method for manufacturing layered product
WO2012141293A2 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, production method for same, and method of creating device structure using laminate
JP5304490B2 (en) 2009-07-02 2013-10-02 東洋紡株式会社 Laminated body and method for producing the same
JP2013226784A (en) * 2012-03-27 2013-11-07 Toyobo Co Ltd Laminate, method for manufacturing the same, and method for manufacturing device structure body using the same
WO2015012339A1 (en) * 2013-07-24 2015-01-29 ユニチカ株式会社 Laminate, method for processing same, and method for manufacturing flexible device
WO2015182419A1 (en) * 2014-05-24 2015-12-03 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, polyimide film, and production method for laminate
JP2018132768A (en) 2012-06-19 2018-08-23 新日鉄住金化学株式会社 Manufacturing method for display device support substrate polyimide film
WO2019131294A1 (en) * 2017-12-26 2019-07-04 株式会社カネカ Polyamide acid composition and method for producing same, polyimide film, laminate and method for producing same, and flexible device
KR102013534B1 (en) * 2018-12-24 2019-08-22 에스케이씨코오롱피아이 주식회사 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same
KR102097431B1 (en) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 Polyimide and method for preparing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534490B2 (en) 1973-06-04 1978-02-17
JP7013875B2 (en) * 2018-01-04 2022-02-01 東洋紡株式会社 Laminated body, manufacturing method of laminated body, manufacturing method of flexible electronic device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR200E (en)
JP2010283262A (en) * 2009-06-08 2010-12-16 Toyobo Co Ltd Lamination body and manufacturing method thereof
JP5304490B2 (en) 2009-07-02 2013-10-02 東洋紡株式会社 Laminated body and method for producing the same
WO2012050072A1 (en) * 2010-10-13 2012-04-19 東洋紡績株式会社 Polyimide film, method for manufacturing same, and method for manufacturing layered product
WO2012141293A2 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, production method for same, and method of creating device structure using laminate
JP2013226784A (en) * 2012-03-27 2013-11-07 Toyobo Co Ltd Laminate, method for manufacturing the same, and method for manufacturing device structure body using the same
JP2018132768A (en) 2012-06-19 2018-08-23 新日鉄住金化学株式会社 Manufacturing method for display device support substrate polyimide film
WO2015012339A1 (en) * 2013-07-24 2015-01-29 ユニチカ株式会社 Laminate, method for processing same, and method for manufacturing flexible device
WO2015182419A1 (en) * 2014-05-24 2015-12-03 株式会社カネカ Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, polyimide film, and production method for laminate
WO2019131294A1 (en) * 2017-12-26 2019-07-04 株式会社カネカ Polyamide acid composition and method for producing same, polyimide film, laminate and method for producing same, and flexible device
KR102013534B1 (en) * 2018-12-24 2019-08-22 에스케이씨코오롱피아이 주식회사 Polyamic Acid Composition for Display Substrate and Method for Manufacturing Display Substrate by Using the Same
KR102097431B1 (en) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 Polyimide and method for preparing the same

Also Published As

Publication number Publication date
JPWO2021241571A1 (en) 2021-12-02
KR20220165774A (en) 2022-12-15
CN115551714A (en) 2022-12-30
EP4159440A1 (en) 2023-04-05
US20230211584A1 (en) 2023-07-06
TW202144175A (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2022070617A1 (en) Layered body including inorganic substrate and polyamic acid cured product
WO2021241571A1 (en) Layered product including high temperature-resistant transparent film
WO2021241570A1 (en) Multilayer body comprising highly heat-resistant transparent film
WO2021241574A1 (en) Laminate including transparent film with high heat resistance
WO2023021899A1 (en) Transparent heat-resistant laminated film
WO2022018994A1 (en) Multilayer body and method for producing flexible device
WO2023286685A1 (en) Laminate of inorganic substrate and heat-resistant polymer film
WO2023286686A1 (en) Multilayer body of inorganic substrate and transparent heat-resistant polymer film
WO2022113415A1 (en) Laminate
WO2023286429A1 (en) Method for manufacturing circuit board, circuit board precursor with release film, and circuit board precursor with inorganic substrate
KR20240046166A (en) Transparent high heat-resistant laminated film
WO2023058408A1 (en) Laminate equipped with protective-film-release-assisting tape
WO2022270325A1 (en) Laminate
WO2023189719A1 (en) Laminate and method for producing laminate
WO2024009853A1 (en) Layered product and method for producing layered product
TW202327872A (en) Protective film-equipped laminate of inorganic substrate and heat-resistant polymer film
WO2021070719A1 (en) Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526577

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039208

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813330

Country of ref document: EP

Effective date: 20230102