WO2023189719A1 - Laminate and method for producing laminate - Google Patents

Laminate and method for producing laminate Download PDF

Info

Publication number
WO2023189719A1
WO2023189719A1 PCT/JP2023/010563 JP2023010563W WO2023189719A1 WO 2023189719 A1 WO2023189719 A1 WO 2023189719A1 JP 2023010563 W JP2023010563 W JP 2023010563W WO 2023189719 A1 WO2023189719 A1 WO 2023189719A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coupling agent
silane coupling
bis
less
Prior art date
Application number
PCT/JP2023/010563
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 市村
啓介 松尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2024511819A priority Critical patent/JPWO2023189719A1/ja
Publication of WO2023189719A1 publication Critical patent/WO2023189719A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a laminate and a method for manufacturing a laminate.
  • Methods for producing a laminate in which functional elements are formed on the polymer film include (1) a method of laminating a metal layer on a resin film via an adhesive or a pressure-sensitive adhesive; (2) a method of laminating a metal layer on a resin film; (3) A method of applying a varnish for forming a resin film on a polymer film or metal layer, drying it, and then laminating it with a metal layer or polymer film; (4) (5) A method of forming a conductive material on a resin film by screen printing or sputtering is known. Furthermore, when producing a multilayered product having three or more layers, various combinations of the above-mentioned methods are used.
  • the laminate is often exposed to high temperatures.
  • heating to about 450°C may be necessary for dehydrogenation
  • temperatures of about 200 to 300°C may be applied to the film.
  • the laminate when used for heater applications or power semiconductor applications, it will be exposed to temperatures of about 150 to 500° C. for a long time. Therefore, the polymer film constituting the laminate is required to have heat resistance, but as a practical matter, there are only a limited number of polymer films that can withstand practical use in such a high temperature range.
  • the inorganic substrate is removed before or during device formation. It is intended to prevent the inorganic substrate from peeling off from the polyimide film, and to easily peel the inorganic substrate from the polyimide film after device formation.
  • a silane coupling agent layer a layer containing a silane coupling agent
  • the laminate produced by coating an aqueous silane coupling agent solution has When heated at high temperatures, there was a problem in that the adhesive strength may partially decrease. Additionally, the present inventors have discovered that the same problem occurs not only in the case of a laminate of an inorganic substrate and a heat-resistant polymer film, but also when two substrates are bonded together via a silane coupling agent layer. Ta.
  • an object of the present invention is to provide a laminate that has sufficient adhesive strength even after being heated at high temperatures.
  • Another object of the present invention is to provide a method for manufacturing the laminate.
  • the present inventors conducted extensive research. As a result, if the number of circular floats after heating has not increased significantly compared to before heating, and the average diameter of circular floats after heating has not increased significantly compared to before heating. discovered that the adhesive strength did not decrease significantly even after heating, and completed the present invention.
  • the laminate according to the present invention is A laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order,
  • A1 the number of circular floats with a diameter of 0.5 mm or more before heating per area of 2,500 cm 2
  • B1 the number of circular floats with a diameter of 0.5 mm or more after heating at 200 ° C for 1 hour
  • [B1] ⁇ [A1] When the average diameter of the A1 floats is A2, and the average diameter of the B1 floats is B2, [B2] ⁇ [A2] is satisfied,
  • the number of B1 is 20 or less, It is characterized in that the B2 is 4.0 mm or less.
  • the first substrate is a heat-resistant polymer film
  • the second substrate is a metal substrate.
  • the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate
  • a functional element is attached on the heat-resistant polymer film. It becomes possible to form electronic devices such as Furthermore, by forming a circuit on the metal substrate itself by etching or the like, it becomes possible to use it for heater applications such as flexible heaters. Further, a laminate in which a heat-resistant polymer film and a metal substrate are bonded together can be used for power semiconductor applications.
  • the silane coupling agent constituting the silane coupling agent layer has an amino group.
  • the silane coupling agent has an amino group, it will bond to the reactive groups on the first substrate and the second substrate when organic materials are used as the first substrate and the second substrate. As a result, the adhesive strength between the first substrate and the second substrate can be increased. Furthermore, the stability of the silane coupling agent in an aqueous solution is also improved.
  • the method for manufacturing a laminate according to the present invention includes: Step A of preparing a first substrate and a second substrate; Step B of preparing a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol% or less relative to the silane coupling agent; Step C of supplying the mixed solution onto the first substrate and/or the second substrate, and The method is characterized by including a step D of bonding the first substrate and the second substrate together after the mixed solution is supplied.
  • the content of alcohol in the mixed solution is 1 mol % or less based on the silane coupling agent. Therefore, when the first substrate and the second substrate are bonded together after the mixed solution has been supplied, the amount of alcohol trapped in the laminate is small. As a result, the amount of floating can be reduced. As a result, the adhesive strength of the obtained laminate does not decrease significantly even after heating. This point will be explained in detail.
  • the present inventors have discovered that the amount of floating can be suitably reduced by setting the alcohol content in the mixed solution to 1 mol % or less relative to the silane coupling agent. Specifically, the present inventors discovered the following. When a silane coupling agent is hydrolyzed, a silanol group is generated.
  • the silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate.
  • a reactive group eg, OH group
  • alcohol is produced as a by-product.
  • hydrolysis of the silane coupling agent proceeds to some extent, and by-product alcohol is trapped within the laminate. was.
  • the present inventors have discovered that this alcohol is the cause of floating.
  • the present inventors previously hydrolyzed the silane coupling agent to some extent before bonding the first substrate and the second substrate, and prepared a solution containing the silane coupling agent (silane coupling agent).
  • the step B includes a step of removing alcohol from a liquid containing a silane coupling agent, water, and alcohol.
  • the silane coupling agent in the mixed liquid is:
  • Y is the total ratio of Si having the following T1 structure, the following T2 structure, and the following T3 structure
  • X/Y is 81 or more.
  • Z is a divalent alkyl chain represented by C n H 2n
  • W is a monovalent alkyl chain represented by C m H 2m+1 . It is an alkyl group or a hydrogen atom (where n is an integer of 1 or more and 10 or less, and m is an integer of 1 or more and 10 or less).
  • the hydrolysis of the silane coupling agent has progressed to some extent, resulting in an oligomer state and silanol groups also being generated.
  • the silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. As a result, the amount of floating can be further reduced.
  • the present invention it is possible to provide a laminate in which the adhesive strength does not partially decrease significantly even after high-temperature heating. Furthermore, a method for manufacturing the laminate can be provided.
  • the laminate according to this embodiment is A laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order,
  • A1 the number of circular floats with a diameter of 0.5 mm or more before heating per area of 2,500 cm 2
  • B1 the number of circular floats with a diameter of 0.5 mm or more after heating at 200 ° C for 1 hour
  • [B1] ⁇ [A1] When the average diameter of the A1 floats is A2, and the average diameter of the B1 floats is B2, [B2] ⁇ [A2] is satisfied,
  • the number of B1 is 20 or less, Said B2 is 4.0 mm or less.
  • "per 2,500 cm2 area” means "per 50 cm x 50 cm square.”
  • the number of B1 is 20 or less, and the number of B2 is 4.0 mm or less, for example, when forming a silane coupling agent layer, as described later. This can be achieved by appropriately adjusting a mixed solution of.
  • [A1] is preferably 10 or less, more preferably 9 or less, even more preferably 5 or less. [A1] is preferably smaller, but may be, for example, 0 or more, or 1 or more.
  • [B1] is preferably 15 or less, more preferably 7 or less. [B1] is preferably smaller, but may be, for example, 0 or more, or 1 or more.
  • [A2] is preferably 2.0 mm or less, more preferably 1.0 mm or less. [A2] is preferably smaller, for example, 0.5 mm or more.
  • [B2] is preferably 4.0 mm or less, more preferably 2.0 mm or less. [B2] is preferably smaller, for example, 0.5 mm or more.
  • [B1]/[A1] is preferably 1.5 or less, and [B2]/[A2] is preferably 2.0 or less.
  • the above [B1]/[A1] and the above [B2]/[A2] can be achieved, for example, by appropriately adjusting the mixed solution when forming the silane coupling agent layer, as described below. I can do it.
  • [B1]/[A1] is preferably 1.5 or less, more preferably 1.2 or less.
  • [B1]/[A1] is preferably smaller, and is, for example, 1 or more.
  • [B2]/[A2] is preferably 1.8 or less, more preferably 1.5 or less.
  • [B2]/[A2] is preferably smaller, and is, for example, 1 or more.
  • Examples of the first substrate include a heat-resistant polymer film and an inorganic substrate.
  • Examples of the second substrate include a heat-resistant polymer film and an inorganic substrate. The combination of the first substrate and the second substrate is not particularly limited.
  • both the first substrate and the second substrate may be inorganic substrates, and (b) the first substrate may be an inorganic substrate. Both the substrate and the second substrate may be heat-resistant polymer films, and (c) one of the first substrate and the second substrate is an inorganic substrate, and the other is a heat-resistant polymer film. It may be.
  • the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate.
  • the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate
  • a functional element is attached on the heat-resistant polymer film. It becomes possible to form electronic devices such as Furthermore, by forming a circuit on the metal substrate itself by etching or the like, it becomes possible to use it for heater applications such as flexible heaters. Further, a laminate in which a heat-resistant polymer film and a metal substrate are bonded together can be used for power semiconductor applications.
  • the silane coupling agent layer according to the present embodiment is formed by supplying a mixed solution containing a silane coupling agent and water onto the first substrate and/or the second substrate.
  • the content of alcohol in the mixed solution is preferably 1 mol % or less based on the silane coupling agent.
  • a silane coupling agent is hydrolyzed, a silanol group is generated.
  • the silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate.
  • a reactive group eg, OH group
  • the silane coupling agent is first hydrolyzed to some extent, and a liquid containing the silane coupling agent (a silane coupling agent layer is formed) is used. Alcohol is removed from the solution in advance. This can reduce the amount of alcohol trapped within the laminate.
  • a mixed solution from which alcohol has been removed in advance may be used as the mixed solution.
  • the content of alcohol in the mixed solution is 1 mol% or less with respect to the silane coupling agent, [B1] ⁇ [A1], [B2] ⁇ [A2], the number of B1 is 20 or less, and It is easy to achieve the above B2 of 4.0 mm or less. Further, when the content of alcohol in the mixed solution is 1 mol % or less with respect to the silane coupling agent, "the [B1]/[A1] is 1.5 or less" and “the [B2] / [A2] is 2.0 or less” is easy to achieve.
  • the alcohol content in the mixed solution is more preferably 0.8 mol% or less, still more preferably 0.5 mol% or less.
  • the content of alcohol in the mixed solution is preferably as low as possible, and is, for example, 0.1 mol% or more, 0.2 mol% or more.
  • the thickness of the silane coupling agent layer is preferably less than 1.0 ⁇ m. Furthermore, in processes where it is desired to use as little silane coupling agent as possible, it is possible to use a silane coupling agent with a wavelength of 500 nm or less.
  • the thickness of the silane coupling agent layer is preferably 1 nm or more from the viewpoint of adhesive strength.
  • the thickness of the silane coupling agent layer depends on the concentration of the mixed solution, the amount supplied onto the substrates (first substrate, second substrate), and the attachment of the substrates (first substrate, second substrate). It can be adjusted by the pressure at the time of fitting.
  • the silane coupling agent contained in the mixed liquid is not particularly limited, it is preferable that the silane coupling agent is hydrolyzed to some extent and has a large proportion of oligomers.
  • the silane coupling agent in a monomer state before hydrolysis preferably has an amino group or an epoxy group. Specific examples of the silane coupling agent in a monomer state before hydrolysis include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane.
  • the silane coupling agent When heat resistance is required in a process, it is desirable to use an aromatic link between Si and an amino group.
  • the silane coupling agent has an amino group, it bonds with the reactive groups on the first substrate and the second substrate when organic materials are used as the first substrate and the second substrate. As a result, the adhesive strength between the first substrate and the second substrate can be increased.
  • the polymer film preferably has a glass transition temperature of 115°C or higher, more preferably 130°C or higher, still more preferably 145°C or higher.
  • the polymer film include amorphous polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyamideimide, polyetherimide, polybenzoxazole, polyimidebenzoxazole, polyethylene naphthalate, and silicone resin. , fluororesin, liquid crystal polymer, and the like.
  • the polymer film it is particularly preferable to use a polymer film having imide bonds.
  • polymer films having imide bonds include films of polyimide, polyamideimide, polyetherimide, polyimide benzoxazole, bismaleimide triazine, and the like.
  • polyimide resin films are produced by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for polyimide film production, and drying it to form a green film (hereinafter referred to as green film). (also referred to as a "polyamic acid film”), and is obtained by further heat-treating the green film at a high temperature on a support for producing a polyimide film or in a state peeled from the support to perform a dehydration ring-closing reaction.
  • a polyamic acid polyimide precursor
  • the polyamic acid (polyimide precursor) solution can be applied using conventionally known solutions such as spin coating, doctor blade, applicator, comma coater, screen printing, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Any means may be used as appropriate.
  • the diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines, etc. commonly used in polyimide synthesis can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferred. When aromatic diamines having a benzoxazole structure are used, it becomes possible to exhibit not only high heat resistance but also high elastic modulus, low heat shrinkability, and low coefficient of linear expansion. Diamines may be used alone or in combination of two or more.
  • the aromatic diamines having a benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, 5-amino-2-(p-aminophenyl)benzoxazole, -Amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2'-p-phenylenebis(5-aminobenzoxazole), 2,2' -p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4'-diaminodiphenyl)benzo [1,2-d:5,4-d']bisoxazole, 2,6-(4,
  • aromatic diamines other than the above-mentioned aromatic diamines having a benzoxazole structure include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl) )-2-propyl]benzene (bisaniline), 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4 '-Bis(4-aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl ] Sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(3-aminophenoxy)phenyl
  • aliphatic diamines examples include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, and 1,8-diaminootane.
  • alicyclic diamines examples include 1,4-diaminocyclohexane and 4,4'-methylenebis(2,6-dimethylcyclohexylamine).
  • the total amount of diamines other than aromatic diamines (aliphatic diamines and alicyclic diamines) is preferably 20% by mass or less of the total diamines, more preferably 10% by mass or less, and even more preferably 5% by mass or less. It is. In other words, aromatic diamines preferably account for 80% by mass or more of the total diamines, more preferably 90% by mass or more, still more preferably 95% by mass or more.
  • Tetracarboxylic acids constituting polyamic acids include aromatic tetracarboxylic acids (including their acid anhydrides), aliphatic tetracarboxylic acids (including their acid anhydrides), and alicyclic tetracarboxylic acids that are commonly used in polyimide synthesis. Acids (including their acid anhydrides) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good. Tetracarboxylic acids may be used alone or in combination of two or more.
  • aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably are acid anhydrides thereof.
  • aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, , 3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis[4-(3,4-dianhydride) Examples include carboxyphenoxy)phenyl]propanoic anhydride.
  • the amount of aromatic tetracarboxylic acids is preferably 80% by mass or more of the total tetracarboxylic acids, more preferably 90%
  • alicyclic tetracarboxylic acids include alicyclic tetracarboxylic acids such as cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, and 3,3',4,4'-bicyclohexyltetracarboxylic acid.
  • Examples include carboxylic acids and their acid anhydrides.
  • dianhydrides having two anhydride structures for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3',4,4 '-bicyclohexyltetracarboxylic dianhydride, etc. are preferred.
  • the alicyclic tetracarboxylic acids may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic acids preferably account for 80% by mass or more of the total tetracarboxylic acids, more preferably 90% by mass or more, still more preferably 95% by mass or more.
  • the polyimide film may be a transparent polyimide film.
  • a colorless and transparent polyimide which is an example of the polymer film, will be explained. Hereinafter, to avoid complexity, it will also be simply referred to as transparent polyimide.
  • the total light transmittance is 75% or more. It is more preferably 80% or more, still more preferably 85% or more, even more preferably 87% or more, particularly preferably 88% or more.
  • the upper limit of the total light transmittance of the transparent polyimide is not particularly limited, but for use as a flexible electronic device, it is preferably 98% or less, more preferably 97% or less.
  • the colorless transparent polyimide in the present invention is preferably a polyimide having a total light transmittance of 75% or more.
  • Aromatic tetracarboxylic acids for obtaining colorless and highly transparent polyimide include 4,4'-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4'-oxydiphthalic acid, and bis(1,3- dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4 -dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene- 1,2-dicarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benz
  • Examples include tetracarboxylic acids and their acid anhydrides.
  • dianhydrides having two acid anhydride structures are preferred, particularly 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride, 4,4'-oxydiphthalic dianhydride, Acid dianhydrides are preferred.
  • the aromatic tetracarboxylic acids may be used alone or in combination of two or more kinds.
  • the amount of copolymerized aromatic tetracarboxylic acids is preferably 50% by mass or more of the total tetracarboxylic acids, more preferably 60% by mass or more, and still more preferably 70% by mass.
  • the content is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
  • alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, 1 , 2,4,5-cyclohexanetetracarboxylic acid, 3,3',4,4'-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6-tetracarboxylic acid, Bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2
  • dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,3,4-cyclohexanetetracarboxylic dianhydride.
  • Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride is even more preferred. Note that these may be used alone or in combination of two or more.
  • the amount of copolymerized alicyclic tetracarboxylic acids is, for example, preferably 50% by mass or more of the total tetracarboxylic acids, more preferably 60% by mass or more, and even more preferably 70% by mass. % or more, still more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may even be 100% by mass.
  • tricarboxylic acids examples include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3',4'-tricarboxylic acid, and diphenylsulfone-3,3',4'-tricarboxylic acid.
  • acids, or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid, alkylenes such as ethylene glycol bis trimellitate, propylene glycol bis trimellitate, 1,4-butanediol bis trimellitate, and polyethylene glycol bis trimellitate.
  • examples include glycol bistrimelitate, and monoanhydrides and esterified products thereof. Among these, monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. Incidentally, these may be used alone or in combination.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above-mentioned aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid.
  • examples include esterified products.
  • aromatic dicarboxylic acids and hydrogenated products thereof are preferred, with terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid being particularly preferred.
  • dicarboxylic acids may be used alone or in combination.
  • Diamines or isocyanates for obtaining colorless and highly transparent polyimides are not particularly limited, and include aromatic diamines, aliphatic diamines, and alicyclic diamines commonly used in polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis.
  • diisocyanates, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, etc. can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. Further, when aromatic diamines having a benzoxazole structure are used, it becomes possible to exhibit high elastic modulus, low thermal shrinkage, and low coefficient of linear expansion as well as high heat resistance. Diamines and isocyanates may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-Amino-2-trifluoromethylphenoxy)benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,
  • some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, Part or all of the hydrogen atoms of the alkyl group or alkoxyl group of ⁇ 3 may be substituted with a halogen atom.
  • aromatic diamines having the benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, Oxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2'-p-phenylenebis(5-aminobenzoxazole), 2 , 2'-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4'-diamino) diphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo[1,
  • aromatic diamines may be used alone or in combination.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis(2,6-dimethylcyclohexylamine).
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferred, and 1,4-diaminocyclohexane is more preferred.
  • the alicyclic diamines may be used alone or in combination.
  • diisocyanates examples include diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3' - or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2 '-or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, dipheny
  • the diisocyanates may be used alone or in combination.
  • the polymer film is preferably a polyimide film.
  • the polymer film is a polyimide film, it has excellent heat resistance.
  • the thickness of the polymer film is preferably 3 ⁇ m or more, more preferably 7 ⁇ m or more, still more preferably 14 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the upper limit of the thickness of the polymer film is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 250 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • the average coefficient of linear expansion (CTE) between 30°C and 250°C of the polymer film is preferably 50 ppm/K or less. It is more preferably 45 ppm/K or less, still more preferably 40 ppm/K or less, even more preferably 30 ppm/K or less, particularly preferably 20 ppm/K or less. Further, it is preferably -5 ppm/K or more, more preferably -3 ppm/K or more, and even more preferably 1 ppm/K or more.
  • CTE is a factor representing reversible expansion and contraction with respect to temperature.
  • the CTE of the polymer film refers to the average value of the CTE in the coating direction (MD direction) and the CTE in the width direction (TD direction) of polyamic acid.
  • yellowness index (hereinafter also referred to as "yellow index” or “YI”) is preferably 10 or less, more preferably 7 or less, and even more preferably 5. or less, and even more preferably 3 or less.
  • the lower limit of the yellowness index of the transparent polyimide is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. It is.
  • the haze is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, even more preferably 0.3 or less.
  • the lower limit is not particularly limited, but industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
  • the heat shrinkage rate of the polymer film between 30° C. and 500° C. is preferably ⁇ 0.9% or less, more preferably ⁇ 0.6% or less.
  • Thermal contraction rate is a factor representing irreversible expansion and contraction with respect to temperature.
  • the tensile strength at break of the polymer film is preferably 60 MPa or more, more preferably 80 MPa or more, and still more preferably 100 MPa or more.
  • the upper limit of the tensile strength at break is not particularly limited, but is practically less than about 1000 MPa.
  • the tensile strength at break is 60 MPa or more, it is possible to prevent the polymer film from breaking when peeled from the inorganic substrate.
  • the tensile strength at break of the polymer film refers to the average value of the tensile strength at break in the machine direction (MD direction) and the tensile strength at break in the width direction (TD direction) of the polymer film.
  • the tensile elongation at break of the polymer film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 1% or more, handling properties are excellent. Note that the tensile elongation at break of the polymer film refers to the average value of the tensile elongation at break in the machine direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the polymer film.
  • the tensile modulus of the polymer film is preferably 2.5 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more.
  • the tensile modulus is preferably 20 GPa or less, more preferably 15 GPa or less, still more preferably 12 GPa or less.
  • the polymer film can be used as a flexible film. Note that the tensile modulus of the polymer film refers to the average value of the tensile modulus in the machine direction (MD direction) and the tensile modulus in the width direction (TD direction) of the polymer film.
  • the thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, particularly preferably 4% or less. If the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow areas.
  • the polymer film is preferably obtained in the form of a long polymer film with a width of 300 mm or more and a length of 10 m or more at the time of manufacture. More preferably, it is in the form of a molecular film.
  • the polymer film When the polymer film is wound into a roll, it becomes easy to transport the heat-resistant polymer film in the form of a roll. Furthermore, it is also possible to produce a laminate using a roll-to-roll process.
  • a glass plate As the inorganic substrate, a glass plate, a semiconductor wafer, a metal plate, a ceramic plate, etc. can be used.
  • the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (alkali-free), Includes borosilicate glass (microsheet), aluminosilicate glass, etc.
  • Examples of the semiconductor wafer include silicon wafer, germanium, silicon-germanium, gallium-arsenide, aluminum-gallium-indium, nitrogen-phosphorus-arsenic-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, LT, LN, and ZnO. (zinc oxide), CdTe (cadmium tellurium), ZnSe (zinc selenide), and the like.
  • the metal plate may be a single element metal such as W, Mo, Pt, Fe, Ni, or Au, or an alloy such as Inconel, Monel, Nimonic, carbon copper, Fe-Ni based Invar alloy, Super Invar alloy, or various stainless steels. included.
  • nonwoven fabrics made of these metals may also be used.
  • a metal plate in the present invention it is preferable to use various types of stainless steel.
  • multilayer metal plates formed by adding other metal layers and ceramic layers to these metals are also included.
  • the ceramic plate a single or composite sintered body of alumina, magnesia, calcia, silicon nitride, boron nitride, aluminum nitride, beryllium oxide, etc. can be used.
  • a ceramic substrate it is preferable to use a ceramic substrate whose surface is smoothed by glass glazing treatment.
  • These inorganic substrates may also be rolled up as long products with a width of 300 mm or more and a length of 10 m or more. Wrapping in a roll not only facilitates transportation, but also allows for the production of laminates using a roll-to-roll process.
  • the thickness of the inorganic substrate is not particularly limited, but from the viewpoint of handleability, the thickness is preferably 10 mm or less, more preferably 3 mm, and even more preferably 1.3 mm or less.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.005 mm or more, more preferably 0.01 mm or more, and still more preferably 0.02 mm or more.
  • the laminate of this embodiment preferably has a 90° peel strength (adhesive strength) of 0.2 N/cm or more, more preferably 0.5 N/cm or more, even more preferably It is 1.0 N/cm or more. If the 90° peel strength after heating is 0.2 N/cm or more, it will not be possible to unintended results when a device is formed on the first substrate (for example, a polymer film) or when each substrate is processed by etching or the like. It is possible to prevent the second substrate (for example, an inorganic substrate) from peeling off. Further, the 90° peel strength of the laminate after heating at 200° C.
  • the 90° peel strength after heating is 10 N/cm or less, more preferably 8 N/cm or less, and still more preferably 6 N/cm or less. If the 90° peel strength after heating is 10 N/cm or less, when you want to peel off the second substrate (for example, an inorganic substrate) after forming a device on the first substrate (for example, a polymer film), It becomes possible to peel off easily.
  • the laminate of this embodiment preferably has a 90° peel strength (adhesive strength) of 0.1 N/cm or more before heating, more preferably 0.2 N/cm or more, and still more preferably 0.3 N/cm. That's all.
  • the 90° peel strength before heating is 0.1 N/cm or more, it is possible to prevent the first substrate and the second substrate from peeling off.
  • the 90° peel strength of the laminate before heating is preferably 6 N/cm or less, more preferably 4 N/cm or less, and even more preferably 2 N/cm or less.
  • the 90° peel strength before heating is 6 N/cm or less, it becomes possible to easily peel off when desired to peel off after heating.
  • the 90° peel strength before heating is the value of the laminate after bonding the first substrate and the second substrate together and then heat-treating them at 110°C for 60 minutes in the air (initial peel strength). Strength).
  • the 90° peel strength after heating is the value of the laminate after further heat treating the laminate at 200°C for 1 hour when measuring the 90° peel strength before heating (peel strength after 200°C heat treatment). ).
  • the method for manufacturing a laminate includes: Step A of preparing a first substrate and a second substrate; Step B of preparing a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol% or less relative to the silane coupling agent; Step C of supplying the mixed solution onto the first substrate and/or the second substrate, and The method includes a step D of bonding the first substrate and the second substrate together after the mixed solution is supplied.
  • step A In the method for manufacturing the laminate, first, a first substrate and a second substrate are prepared (step A). Since the first substrate and the second substrate have already been explained in the section regarding the laminate, their explanation will be omitted here.
  • a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol % or less relative to the silane coupling agent is prepared (Step B).
  • the alcohol content in the silane coupling agent solution can be measured by 1 H-NMR.
  • the ratio of the integral value of the peak derived from the alkyl chain in the silane coupling agent and the peak derived from alcohol was determined, and the ratio was determined as the alcohol content (mol %) with respect to the silane coupling agent.
  • step B first, a silane coupling agent and water are mixed and stirred until the hydrolysis reaction is completed.
  • the stirring time is within the range of 1 hour or more and 5 hours or less at room temperature.
  • the concentration of the silane coupling agent in the mixed solution is preferably 17 wt% or more and 80 wt% or less.
  • alcohol is removed from the liquid containing the silane coupling agent, water, and alcohol.
  • An example of a method for removing alcohol from a liquid containing a silane coupling agent, water, and alcohol is fractional distillation.
  • alcohol can be removed from a liquid containing a silane coupling agent, water, and alcohol using an evaporator or the like.
  • a mixed solution that contains a silane coupling agent and water and has an alcohol content of 1 mol % or less based on the silane coupling agent.
  • Step B in the present invention is not limited to the above example.
  • the mixed solution containing the silane coupling agent and water may be a mixed solution from which alcohol has been removed in advance.
  • the silane coupling agent in the mixed solution is: 29
  • the total ratio of Si having the following T2 structure and the following T3 structure calculated from the integral value of the spectrum obtained by Si-NMR measurement is X, the following T0 structure, and the following T1
  • Y is the total ratio of Si having the following T2 structure and the following T3 structure
  • X/Y is 81 or more.
  • Z is a divalent alkyl chain represented by C n H 2n
  • W is a monovalent alkyl chain represented by C m H 2m+1 . It is an alkyl group or a hydrogen atom (where n is an integer of 1 or more and 10 or less, and m is an integer of 1 or more and 10 or less).
  • the n is preferably 1 or more, more preferably 2 or more.
  • the n is preferably 6 or less, more preferably 4 or less.
  • the m is preferably 1 or more, more preferably 2 or more.
  • the m is preferably 6 or less, more preferably 4 or less.
  • the hydrolysis of the silane coupling agent has progressed to some extent, resulting in an oligomer state and silanol groups also being generated.
  • the silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. As a result, the amount of floating can be further reduced.
  • the X/Y is more preferably 82 or more, and still more preferably 85 or more.
  • the above X/Y is preferably as large as possible, and is, for example, 99 or less.
  • the above-mentioned X/Y is a value determined by the method described in Examples.
  • the mixed solution is supplied onto the first substrate and/or the second substrate (step C).
  • a method of supplying the mixed solution onto the first substrate and the second substrate conventionally known methods such as dropping or various solution coating methods using a bar coater or the like can be adopted. can.
  • Step D is performed after step C while the mixed solution is in a liquid state.
  • a press method As a bonding method, a press method, a roll laminator method, etc. can be applied.
  • pressure can be applied in a planar or linear manner by pressing, laminating, or roll laminating under atmospheric pressure.
  • the process can also be accelerated by heating during pressurization.
  • pressing or roll lamination in an atmospheric atmosphere is preferred, and a method using rolls (roll lamination, etc.) is particularly preferred because it allows lamination while sequentially extruding excess mixed solution at the adhesive interface from the adhesive surface.
  • the pressure during bonding is preferably 0.2 kgf/cm or more in linear pressure, and more preferably 0.4 kgf/cm or more.
  • the pressure during bonding is preferably 2.0 kgf/cm or less in linear pressure, and more preferably 1.8 kgf/cm or less.
  • heat treatment is performed to advance the reaction of the silane coupling agent and bond the first substrate and the second substrate.
  • the heat treatment may be set as appropriate within a range that allows the first substrate and the second substrate to be properly bonded.
  • the heat treatment is not particularly limited, but may be divided into two stages: aging treatment and reaction treatment.
  • the aging treatment include treatment at a temperature of 25° C. or more and 65° C. or less for 1 hour or more and 48 hours or less.
  • the reaction treatment include treatment at a temperature of 80° C. or more and 110° C. or less for 1 hour or more and 48 hours or less.
  • a laminate in which the first substrate, the silane coupling agent layer, and the second substrate are laminated in this order is obtained.
  • the alcohol content in the mixed solution is 1 mol % or less with respect to the silane coupling agent, the first substrate after being supplied with the mixed solution When the second substrate is bonded together, the amount of alcohol trapped in the laminate is small. As a result, the amount of floating can be reduced. As a result, the adhesive strength of the obtained laminate does not decrease significantly even after heating.
  • the laminate may further include a second silane coupling agent layer and a third substrate.
  • the laminate includes a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate in this order. It may be a laminated body.
  • the first silane coupling agent layer and the second silane coupling agent layer may have the same structure as the "silane coupling agent layer" described above.
  • the composition of the first silane coupling agent layer and the composition of the second silane coupling agent layer may be the same or different.
  • the third substrate include the above-mentioned heat-resistant polymer film and the above-mentioned inorganic substrate.
  • the laminate is a laminate in which a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate are laminated in this order.
  • the float between the first substrate and the second substrate is [B1] ⁇ [A1], [B2] ⁇ [A2]
  • the number of B1 is 20 or less
  • the number of B2 is 4 It is preferable to satisfy .0 mm or less.
  • the laminate may include a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate laminated in this order.
  • the float between the first substrate and the second substrate is such that "[B1]/[A1] is 1.5 or less" and "[B2]/[A2] is 2". .0 or less”, and the float between the second and third substrates satisfies "[B1]/[A1] is 1.5 or less", and "[B2]/[A2] ] is preferably 2.0 or less.
  • the laminate is a laminate in which a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate are laminated in this order.
  • the manufacturing method is not particularly limited.
  • a laminate in which a first substrate, a first silane coupling agent layer, and a second substrate are stacked is prepared, and a third substrate is placed on the second substrate and/or a separately prepared third substrate.
  • a mixed solution containing a silane coupling agent and water may be supplied onto the substrate, and the second substrate and the third substrate may be bonded together after the mixed solution has been supplied.
  • Example 1 ⁇ Preparation of silane coupling agent solution> 6 parts by mass of pure water was added to 20 parts by mass of a silane coupling agent (3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.: KBM-903), and the mixture was stirred at room temperature (25°C) for 3 hours. Thereafter, using an evaporator equipped with a 30° C. water bath, the alcohol generated from the stirred liquid was removed over a period of 1 hour to obtain a silane coupling agent solution 1 (mixed solution).
  • a silane coupling agent 3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.: KBM-903
  • the SUS substrate corresponds to the second substrate of the present invention
  • the polyimide film corresponds to the first substrate of the present invention.
  • the arithmetic mean roughness (Ra) of the surface was measured using a laser microscope manufactured by Keyence Corporation (product name: OPTELICS HYBRID). The measurements were conducted under the following conditions. The surface roughness of the substrate was measured using the center of the substrate as an observation area and the center of the observation area as an evaluation area. Evaluation was performed in one observation area for each sample. The same measurements were made for the substrates of the following examples (excluding glass substrates). Observation area: 300 ⁇ m x 300 ⁇ m Evaluation area: 150 ⁇ m x 150 ⁇ m Observation magnification: 50x
  • Example 2 ⁇ Preparation of silane coupling agent solution> Silane coupling agent solution 2 was obtained in the same manner as in Example 1 except that 20 parts by mass of pure water was added instead of 6 parts by mass of pure water. ⁇ Preparation of laminate> A laminate according to Example 2 was obtained in the same manner as Example 1 except that silane coupling agent solution 2 was used.
  • Example 3 ⁇ Preparation of silane coupling agent solution> Silane coupling agent solution 3 was obtained in the same manner as in Example 1 except that 46 parts by mass of pure water was added instead of 6 parts by mass of pure water. ⁇ Preparation of laminate> A laminate according to Example 3 was obtained in the same manner as Example 1 except that silane coupling agent solution 3 was used.
  • Example 4 ⁇ Preparation of silane coupling agent solution> Example 3 except that 3-aminopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-903 (molecular formula: (C 2 H 5 O) 3 SiC 3 H 6 NH 2 )) was used as the silane coupling agent. In the same manner, silane coupling agent solution 4 was obtained. The reason why the molar ratio of [alcohol]/[silane coupling agent] is different between Example 3 and Example 4 is because the molecular weight of the silane coupling agent is different.
  • ⁇ Preparation of laminate> A laminate according to Example 4 was obtained in the same manner as in Example 1 except that silane coupling agent solution 4 was used.
  • Example 5 ⁇ Preparation of laminate> Instead of the SUS substrate, use a copper substrate (electrolytic copper foil GTS-SD manufactured by Furukawa Electric Co., Ltd., thickness 105 ⁇ m, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 400 nm) A laminate according to Example 5 was obtained in the same manner as Example 3 except that the following was used.
  • a copper substrate electrolytic copper foil GTS-SD manufactured by Furukawa Electric Co., Ltd., thickness 105 ⁇ m, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 400 nm
  • Example 6 ⁇ Preparation of silane coupling agent solution> Silane coupling agent solution 5 was obtained in the same manner as in Example 1 except that 60 parts by mass of pure water was added instead of 6 parts by mass of pure water. ⁇ Preparation of laminate> Instead of the SUS substrate, a glass substrate (thickness 0.7 mm, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 0.2 nm): Nippon Electric Glass Co., Ltd. OA10G) was used, and a silane cup was used. A laminate according to Example 6 was obtained in the same manner as in Example 3 except that silane coupling agent solution 5 was used instead of ring agent solution 3.
  • the arithmetic mean roughness (Ra) of the glass surface was measured using a scanning probe microscope with a surface property evaluation function ("SPA300/nanonavi” manufactured by SII Nano Technology Co., Ltd.). The measurement was performed in DFM mode, the cantilever used was “DF3” or “DF20” made by SII Nanotechnology Co., Ltd., and the scanner was "FS-20A” made by SII Nanotechnology Co., Ltd., and the scanning range was The size was 10 ⁇ m square, and the measurement resolution was 512 ⁇ 512 pixels.
  • Example 7 ⁇ Preparation of laminate> Example 6 was carried out in the same manner as in Example 6, except that a SUS nonwoven fabric (thickness 35 ⁇ m, 520 mm x 520 mm, fiber diameter 5 ⁇ m, basis weight 5.1 g/cm 2 ) was used as the second substrate instead of the SUS substrate. A laminate according to No. 7 was obtained.
  • the alcohol/silane coupling agent ratio in the silane coupling agent solution was measured by 1 H-NMR. 20% by mass of heavy water was added to the silane coupling agent solution. 1 H-NMR measurements were performed immediately after dilution with heavy water.
  • the alcohol content relative to the silane coupling agent is determined by the ratio of the integral value of the peak around 2.6 ppm of CH 2 derived from the silane coupling agent and the peak around 3.2 to 3.5 ppm of CH 3 derived from methanol. The amount (mol%) was determined. Specifically, it was calculated using the following formula.
  • Alcohol content (mol%) with respect to silane coupling agent [(integral value of CH 3 peak derived from methanol/3)]/[(integral value of CH 2 peak in silane coupling agent)/2) ]
  • the alcohol content of the silane coupling agent solution of Example 1 with respect to the silane coupling agent was 0.9 mol %.
  • the ratio was determined using the peak around 1.2 ppm of CH 3 derived from ethanol. The results are shown in Table 1. (Measurement condition) Equipment: Fourier transform nuclear magnetic resonance apparatus (Bruker Japan Co., Ltd.
  • the laminate used for floating measurement before heating was heated in air at 200° C. for 1 hour.
  • the number of floats (the number of bubbles) having a diameter of 0.5 mm or more was visually counted in the heated laminate, and the number was designated as B1.
  • the diameters of the B1 floats were measured using a digital microscope (model name: VHX-970F, manufactured by Keyence Corporation), and the average thereof was taken as B2 mm.
  • the size of the laminate was smaller than 2,500 cm 2 , the entire surface of the laminate was measured and the floats were counted, and then the number was recalculated based on 2,500 cm 2 .
  • A1, A2, B1, and B2 are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order, wherein: [B1] ≥ [A1] is satisfied when A1 is the number of circular floats having a diameter of 0.5 mm or more prior to heating per area of 2,500 cm2 and B1 is the number of circular floats having a diameter of 0.5 mm or more after heating at 200°C for one hour; [B2] ≥ [A2] is satisfied when A2 is the average diameter of A1 floats and B2 is the average diameter of B1 floats; B1 is 20 or fewer; and B2 is 4.0 mm or less.

Description

積層体、及び、積層体の製造方法Laminated body and method for manufacturing the laminated body
 本発明は、積層体、及び、積層体の製造方法に関する。 The present invention relates to a laminate and a method for manufacturing a laminate.
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。 In recent years, with the aim of making functional elements such as semiconductor elements, MEMS elements, and display elements lighter, smaller, thinner, and more flexible, technological development has been actively conducted to form these elements on polymer films. In other words, the base materials for electronic components such as information and communication equipment (broadcasting equipment, mobile radio, portable communication equipment, etc.), radar, high-speed information processing equipment, etc. have traditionally been heat-resistant and capable of handling signals of information and communication equipment. Ceramic, which can handle high frequency bands (reaching the GHz band), has been used, but ceramics are not flexible and are difficult to make thin, so they have the disadvantage of limiting the fields in which they can be applied. A polymer film is used as the substrate.
 前記高分子フィルム上に機能素子を形成した積層体の製造方法としては、(1)樹脂フィルム上に接着剤または粘着剤を介して金属層を積層する方法、(2)樹脂フィルム上に金属層を載せた後、加熱加圧し積層する方法、(3)高分子フィルムまたは金属層上に樹脂フィルム形成用のワニスを塗布、乾燥させた後、金属層または高分子フィルムと積層する方法、(4)金属層に樹脂フィルム形成用の樹脂粉末を配置し、圧縮成形する方法、(5)樹脂フィルム上にスクリーン印刷やスパッタ法にて導電性材料を形成する方法などが知られている。また、3層以上多層の積層体を製造する場合は前記の方法などを種々組合せて行われる。 Methods for producing a laminate in which functional elements are formed on the polymer film include (1) a method of laminating a metal layer on a resin film via an adhesive or a pressure-sensitive adhesive; (2) a method of laminating a metal layer on a resin film; (3) A method of applying a varnish for forming a resin film on a polymer film or metal layer, drying it, and then laminating it with a metal layer or polymer film; (4) (5) A method of forming a conductive material on a resin film by screen printing or sputtering is known. Furthermore, when producing a multilayered product having three or more layers, various combinations of the above-mentioned methods are used.
 一方、前記積層体を形成するプロセスにおいては、前記積層体は高温に曝されることが多い。例えば、低温ポリシリコン薄膜トランジスタの作製においては脱水素化のために450℃程度の加熱が必要になる場合があり、水素化アモルファスシリコン薄膜の作製においては200~300℃程度の温度がフィルムに加わる場合がある。さらに、ヒーター用途やパワー半導体用途で該積層体を用いる場合にも150~500℃程度の温度に長時間曝されることになる。したがって、積層体を構成する高分子フィルムには耐熱性が求められるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、金属層への高分子フィルムの貼り合わせには前記のように粘着剤や接着剤を用いることが考えられるが、その際の高分子フィルムと金属層との接合面(すなわち貼り合せ用の接着剤や粘着剤)にも耐熱性が求められる。しかし、通常の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有しておらず、プロセス中または実使用中に高分子フィルムの剥がれ(すなわち剥離強度の低下)、ブリスターの発生、炭化物の発生などの不具合が起き、適用できない。特に、長期間高温に曝された、もしくは長期間高温で使用した場合は顕著に剥離強度が低下してしまい、製品として使えなくなるといった問題がある。 On the other hand, in the process of forming the laminate, the laminate is often exposed to high temperatures. For example, in the production of low-temperature polysilicon thin film transistors, heating to about 450°C may be necessary for dehydrogenation, and in the production of hydrogenated amorphous silicon thin films, temperatures of about 200 to 300°C may be applied to the film. There is. Furthermore, when the laminate is used for heater applications or power semiconductor applications, it will be exposed to temperatures of about 150 to 500° C. for a long time. Therefore, the polymer film constituting the laminate is required to have heat resistance, but as a practical matter, there are only a limited number of polymer films that can withstand practical use in such a high temperature range. In addition, it is conceivable to use a pressure-sensitive adhesive or adhesive as described above to bond the polymer film to the metal layer, but in this case, the bonding surface between the polymer film and the metal layer (i.e., the bonding surface for bonding) Heat resistance is also required for adhesives and adhesives. However, ordinary adhesives and pressure-sensitive adhesives for bonding do not have sufficient heat resistance, and during the process or actual use, the polymer film may peel off (i.e., a decrease in peel strength), blisters may form, and carbide may form. It cannot be applied due to problems such as the occurrence of In particular, when exposed to high temperatures for a long period of time or used at high temperatures for a long period of time, there is a problem that the peel strength decreases significantly and the product becomes unusable.
 このような事情に鑑み、フレキシブルな基板上に機能素子を形成した、いわゆるフレキシブル電子デバイスを製造するための、高分子フィルムと無機基板との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、シランカップリング剤を介して無機基板に貼り合わせた積層体が提案されている(例えば、特許文献1参照)。 In view of these circumstances, we have developed a laminate of a polymer film and an inorganic substrate that has excellent heat resistance, is strong, and can be made into a thin film for manufacturing so-called flexible electronic devices in which functional elements are formed on a flexible substrate. A laminate in which a polyimide film is bonded to an inorganic substrate via a silane coupling agent has been proposed (for example, see Patent Document 1).
特開2021-2622号公報JP 2021-2622 Publication
 上述した積層体では、無機基板と耐熱高分子フィルムとの間にシランカップリング剤を含む層(以下、シランカップリング剤層ともいう)を介在させることにより、デバイス形成前や形成中に無機基板がポリイミドフィルムから剥がれてしまうことを防止するとともに、デバイス形成後には、容易に無機基板をポリイミドフィルムから剥離することを意図している。 In the above-mentioned laminate, by interposing a layer containing a silane coupling agent (hereinafter also referred to as a silane coupling agent layer) between the inorganic substrate and the heat-resistant polymer film, the inorganic substrate is removed before or during device formation. It is intended to prevent the inorganic substrate from peeling off from the polyimide film, and to easily peel the inorganic substrate from the polyimide film after device formation.
 しかしながら、無機基板と耐熱高分子フィルムとの間にシランカップリング剤層を介在させた積層体を用いた場合であっても、シランカップリング剤水溶液を塗工することにより作製した積層体では、高温で加熱すると、部分的に接着強度が低下する場合があるといった問題があった。
 また、本発明者らは、無機基板と耐熱高分子フィルムとの積層体に限らず、シランカップリング剤層を介して、2つの基板を接着させた場合にも同様の問題が生ずることを見出した。
However, even when using a laminate in which a silane coupling agent layer is interposed between an inorganic substrate and a heat-resistant polymer film, the laminate produced by coating an aqueous silane coupling agent solution has When heated at high temperatures, there was a problem in that the adhesive strength may partially decrease.
Additionally, the present inventors have discovered that the same problem occurs not only in the case of a laminate of an inorganic substrate and a heat-resistant polymer film, but also when two substrates are bonded together via a silane coupling agent layer. Ta.
 本発明は、上述した課題に鑑みてなされたものである。すなわち、本発明の目的は、高温加熱後も接着強度が充分である積層体を提供することにある。また、当該積層体の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems. That is, an object of the present invention is to provide a laminate that has sufficient adhesive strength even after being heated at high temperatures. Another object of the present invention is to provide a method for manufacturing the laminate.
 本発明者らはかかる状況に鑑み、鋭意研究を行った。その結果、加熱後の円形の浮きの数が加熱前と比較して大きく増加しておらず、且つ、加熱後の円形の浮きの直径の平均が加熱前と比較して大きく増加していなければ、加熱後も接着強度が大きく低下しないことを見出し、本発明を完成するに至った。 In view of this situation, the present inventors conducted extensive research. As a result, if the number of circular floats after heating has not increased significantly compared to before heating, and the average diameter of circular floats after heating has not increased significantly compared to before heating. discovered that the adhesive strength did not decrease significantly even after heating, and completed the present invention.
 すなわち、本発明に係る積層体は、
 第1の基板と、シランカップリング剤層と、第2の基板とがこの順で積層された積層体であって、
 面積2,500cm当たりの、加熱前の直径0.5mm以上の円形の浮きの個数をA1とし、200℃、1時間加熱後の直径0.5mm以上の円形の浮きの個数をB1としたとき、[B1]≧[A1]を満たし、
 前記A1個の浮きの直径の平均をA2、前記B1個の浮きの直径の平均をB2としたとき、[B2]≧[A2]を満たし、
 前記B1が20個以下であり、
 前記B2が4.0mm以下であることを特徴とする。
That is, the laminate according to the present invention is
A laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order,
When the number of circular floats with a diameter of 0.5 mm or more before heating per area of 2,500 cm 2 is A1, and the number of circular floats with a diameter of 0.5 mm or more after heating at 200 ° C for 1 hour is B1. , [B1]≧[A1],
When the average diameter of the A1 floats is A2, and the average diameter of the B1 floats is B2, [B2]≧[A2] is satisfied,
The number of B1 is 20 or less,
It is characterized in that the B2 is 4.0 mm or less.
 [B1]≧[A1]を満たし、前記B1が20個以下であるため、加熱前と比較して加熱後の浮きの個数は大きく増加していないといえる。また、[B2]≧[A2]を満たし、前記B2が4.0mm以下であるため、加熱前と比較して加熱後の浮きの直径は大きく増加していないといえる。
 このように、前記構成によれば、加熱前と比較して加熱後の浮きの個数が大きく増加しておらず、且つ、加熱前と比較して加熱後の浮きの直径が大きく増加していないため、加熱後も接着面積が確保されている。従って、加熱後も接着強度が大きく低下しない。
Since [B1]≧[A1] is satisfied and B1 is 20 or less, it can be said that the number of floats after heating has not increased significantly compared to before heating. Furthermore, since [B2]≧[A2] is satisfied and B2 is 4.0 mm or less, it can be said that the diameter of the float after heating has not increased significantly compared to before heating.
Thus, according to the above configuration, the number of floats after heating does not increase significantly compared to before heating, and the diameter of the floats after heating does not increase significantly compared to before heating. Therefore, the adhesive area is secured even after heating. Therefore, the adhesive strength does not decrease significantly even after heating.
 前記構成においては、前記第1の基板が耐熱高分子フィルムであり、
 前記第2の基板が金属基板であることが好ましい。
In the configuration, the first substrate is a heat-resistant polymer film,
Preferably, the second substrate is a metal substrate.
 前記第1の基板が耐熱高分子フィルムであり、前記第2の基板が金属基板であると、例えば、金属基板上に耐熱高分子フィルムが接着された状態で、耐熱高分子フィルム上に機能素子等の電子デバイスを形成することが可能となる。また、金属基板自体をエッチング等で回路に形成することでフレキシブルヒーター等のヒーター用途に用いることも可能となる。また、耐熱高分子フィルムと金属基板とが貼り合わされた積層体は、パワー半導体用途に用いることができる。 When the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate, for example, with the heat-resistant polymer film adhered to the metal substrate, a functional element is attached on the heat-resistant polymer film. It becomes possible to form electronic devices such as Furthermore, by forming a circuit on the metal substrate itself by etching or the like, it becomes possible to use it for heater applications such as flexible heaters. Further, a laminate in which a heat-resistant polymer film and a metal substrate are bonded together can be used for power semiconductor applications.
 前記構成において、前記シランカップリング剤層を構成するシランカップリング剤がアミノ基を有することが好ましい。 In the above structure, it is preferable that the silane coupling agent constituting the silane coupling agent layer has an amino group.
 前記シランカップリング剤がアミノ基を有すると、前記第1の基板、前記第2の基板として有機材料を用いた場合に、第1の基板上、第2の基板上の反応基と結合する。その結果、第1の基板と第2の基板との接着強度を高くすることができる。また、シランカップリング剤を水溶液にした時の安定性も向上する。 If the silane coupling agent has an amino group, it will bond to the reactive groups on the first substrate and the second substrate when organic materials are used as the first substrate and the second substrate. As a result, the adhesive strength between the first substrate and the second substrate can be increased. Furthermore, the stability of the silane coupling agent in an aqueous solution is also improved.
 また、本発明に係る積層体の製造方法は、
 第1の基板、及び、第2の基板を準備する工程A、
 シランカップリング剤と水とを含み、且つ、アルコールの含有量がシランカップリング剤に対して1モル%以下である混合溶液を準備する工程B、
 前記混合溶液を前記第1の基板上及び/又は前記第2の基板上に供給する工程C、及び、
 前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせる工程Dを含むことを特徴とする。
Further, the method for manufacturing a laminate according to the present invention includes:
Step A of preparing a first substrate and a second substrate;
Step B of preparing a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol% or less relative to the silane coupling agent;
Step C of supplying the mixed solution onto the first substrate and/or the second substrate, and
The method is characterized by including a step D of bonding the first substrate and the second substrate together after the mixed solution is supplied.
 前記構成によれば、前記混合溶液中のアルコールの含有量がシランカップリング剤に対して1モル%以下である。従って、前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせると、積層体内に閉じ込められるアルコール量は少ない。その結果、前記浮きの量を減らすことができる。その結果、得られる積層体は、加熱後も接着強度が大きく低下しない。
 この点につき、具体的に説明する。
 本発明者らは、前記混合溶液中のアルコールの含有量をシランカップリング剤に対して1モル%以下にすると、前記浮きの量を好適に減らすことができることを見出した。
 具体的に、本発明者らは、以下を見出した。
 シランカップリング剤は、加水分解されるとシラノール基が生成される。シラノール基は、第1の基板上及び/又は第2の基板上の反応基(例えば、OH基)と結合することとなる。ここで、シランカップリング剤は、加水分解され、シラノール基が生成される際には、副生成物としてアルコールが生成する。
 従来、積層体の製造においては、第1の基板と第2の基板とを接着した後も、シランカップリング剤の加水分解がある程度進行し、副生成したアルコールが積層体内に閉じ込められることとなっていた。そして、本発明者らは、このアルコールが浮きを生じさせる原因となっていることを発見した。
 さらに、本発明者らは、第1の基板と第2の基板とを接着する前に、シランカップリング剤をある程度、先に加水分解させておき、シランカップリング剤を含む液(シランカップリング剤層を形成するための溶液)から予めアルコールを取り除いておくことにより、積層体内に閉じ込められるアルコールの量を減らせることを見出した。
 以上より、前記混合溶液中のアルコールの含有量をシランカップリング剤に対して1モル%以下にすると、前記浮きの量を好適に減らすことができる。
 このことは、実施例の結果からも明らかである。
According to the configuration, the content of alcohol in the mixed solution is 1 mol % or less based on the silane coupling agent. Therefore, when the first substrate and the second substrate are bonded together after the mixed solution has been supplied, the amount of alcohol trapped in the laminate is small. As a result, the amount of floating can be reduced. As a result, the adhesive strength of the obtained laminate does not decrease significantly even after heating.
This point will be explained in detail.
The present inventors have discovered that the amount of floating can be suitably reduced by setting the alcohol content in the mixed solution to 1 mol % or less relative to the silane coupling agent.
Specifically, the present inventors discovered the following.
When a silane coupling agent is hydrolyzed, a silanol group is generated. The silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. Here, when the silane coupling agent is hydrolyzed to produce silanol groups, alcohol is produced as a by-product.
Conventionally, in the production of laminates, even after the first substrate and the second substrate are bonded, hydrolysis of the silane coupling agent proceeds to some extent, and by-product alcohol is trapped within the laminate. was. The present inventors have discovered that this alcohol is the cause of floating.
Furthermore, the present inventors previously hydrolyzed the silane coupling agent to some extent before bonding the first substrate and the second substrate, and prepared a solution containing the silane coupling agent (silane coupling agent). It has been found that by removing alcohol in advance from the solution (for forming the agent layer), the amount of alcohol trapped within the laminate can be reduced.
From the above, when the content of alcohol in the mixed solution is set to 1 mol % or less with respect to the silane coupling agent, the amount of floating can be suitably reduced.
This is also clear from the results of Examples.
 前記構成において、前記工程Bは、シランカップリング剤と水とアルコールとを含む液からアルコールを取り除く工程を含むことが好ましい。 In the above configuration, it is preferable that the step B includes a step of removing alcohol from a liquid containing a silane coupling agent, water, and alcohol.
 シランカップリング剤と水とアルコールとを含む液からアルコールを取り除く工程を実施することにより、アルコールの含有量がシランカップリング剤に対して1モル%以下の混合溶液を好適に得ることができる。 By carrying out the step of removing alcohol from a liquid containing a silane coupling agent, water, and alcohol, a mixed solution in which the alcohol content is 1 mol % or less relative to the silane coupling agent can be suitably obtained.
 前記構成において、前記混合液中のシランカップリング剤は、29Si-NMR測定にて得られるスペクトルの積分値から算出される下記T2構造及び下記T3構造を有するSiの合計比率をX、下記T0構造、下記T1構造、下記T2構造及び下記T3構造を有するSiの合計比率をYとしたとき、X/Yが81以上であることが好ましい。
 ただし、下記T0構造、下記T1構造、下記T2構造及び下記T3構造において、ZはC2nで表される2価のアルキル鎖であり、WはC2m+1で表される1価のアルキル基又は水素原子である(ただし、nは、1以上10以下の整数であり、mは、1以上10以下の整数である)。
In the above configuration, the silane coupling agent in the mixed liquid is: When Y is the total ratio of Si having the following T1 structure, the following T2 structure, and the following T3 structure, it is preferable that X/Y is 81 or more.
However, in the following T0 structure, the following T1 structure, the following T2 structure, and the following T3 structure, Z is a divalent alkyl chain represented by C n H 2n , and W is a monovalent alkyl chain represented by C m H 2m+1 . It is an alkyl group or a hydrogen atom (where n is an integer of 1 or more and 10 or less, and m is an integer of 1 or more and 10 or less).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記X/Yが81以上であると、シランカップリング剤の加水分解がある程度進行し、オリゴマー状態となっているとともに、シラノール基も生成されている。シラノール基は、第1の基板上及び/又は第2の基板上の反応基(例えば、OH基)と結合することとなる。その結果、前記浮きの量をさらに減らすことができる。 When the X/Y is 81 or more, the hydrolysis of the silane coupling agent has progressed to some extent, resulting in an oligomer state and silanol groups also being generated. The silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. As a result, the amount of floating can be further reduced.
 本発明によれば、高温加熱後も部分的に接着強度が大きく低下しない積層体を提供することができる。また、当該積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a laminate in which the adhesive strength does not partially decrease significantly even after high-temperature heating. Furthermore, a method for manufacturing the laminate can be provided.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
<積層体>
 本実施形態に係る積層体は、
 第1の基板と、シランカップリング剤層と、第2の基板とがこの順で積層された積層体であって、
 面積2,500cm当たりの、加熱前の直径0.5mm以上の円形の浮きの個数をA1とし、200℃、1時間加熱後の直径0.5mm以上の円形の浮きの個数をB1としたとき、[B1]≧[A1]を満たし、
 前記A1個の浮きの直径の平均をA2、前記B1個の浮きの直径の平均をB2としたとき、[B2]≧[A2]を満たし、
 前記B1が20個以下であり、
 前記B2が4.0mm以下である。
 本明細書において、「面積2,500cm当たりの」とは、「50cm×50cmの正方形当たりの」を意味する。
<Laminated body>
The laminate according to this embodiment is
A laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order,
When the number of circular floats with a diameter of 0.5 mm or more before heating per area of 2,500 cm 2 is A1, and the number of circular floats with a diameter of 0.5 mm or more after heating at 200 ° C for 1 hour is B1. , [B1]≧[A1],
When the average diameter of the A1 floats is A2, and the average diameter of the B1 floats is B2, [B2]≧[A2] is satisfied,
The number of B1 is 20 or less,
Said B2 is 4.0 mm or less.
As used herein, "per 2,500 cm2 area" means "per 50 cm x 50 cm square."
 [B1]≧[A1]を満たし、前記B1が20個以下であるため、加熱前と比較して加熱後の浮きの個数は大きく増加していないといえる。また、[B2]≧[A2]を満たし、前記B2が4.0mm以下であるため、加熱前と比較して加熱後の浮きの直径は大きく増加していないといえる。
 このように、前記積層体によれば、加熱前と比較して加熱後の浮きの個数が大きく増加しておらず、且つ、加熱前と比較して加熱後の浮きの直径が大きく増加していないため、加熱後も接着面積が確保されている。従って、加熱後も接着強度が大きく低下しない。
Since [B1]≧[A1] is satisfied and B1 is 20 or less, it can be said that the number of floats after heating has not increased significantly compared to before heating. Furthermore, since [B2]≧[A2] is satisfied and B2 is 4.0 mm or less, it can be said that the diameter of the float after heating has not increased significantly compared to before heating.
Thus, according to the laminate, the number of floats after heating does not increase significantly compared to before heating, and the diameter of the floats after heating increases significantly compared to before heating. Therefore, the adhesive area is secured even after heating. Therefore, the adhesive strength does not decrease significantly even after heating.
 [B1]≧[A1]、[B2]≧[A2]、前記B1が20個以下、及び、前記B2が4.0mm以下は、例えば、後述するように、シランカップリング剤層を形成する際の混合溶液を適切に調整することにより達成することができる。 [B1]≧[A1], [B2]≧[A2], the number of B1 is 20 or less, and the number of B2 is 4.0 mm or less, for example, when forming a silane coupling agent layer, as described later. This can be achieved by appropriately adjusting a mixed solution of.
 前記[A1]は、好ましくは10個以下、より好ましくは9個以下、さらに好ましくは5個以下である。前記[A1]は、小さい方が好ましいが、例えば、0個以上、1個以上でも差し支えない。 [A1] is preferably 10 or less, more preferably 9 or less, even more preferably 5 or less. [A1] is preferably smaller, but may be, for example, 0 or more, or 1 or more.
 前記[B1]は、好ましくは15個以下、より好ましくは7個以下である。前記[B1]は、小さい方が好ましいが、例えば、0個以上、1個以上でも差し支えない。 The above [B1] is preferably 15 or less, more preferably 7 or less. [B1] is preferably smaller, but may be, for example, 0 or more, or 1 or more.
 前記[A2]は、好ましくは2.0mm以下、より好ましくは1.0mm以下である。前記[A2]は、小さい方が好ましいが、例えば、0.5mm以上等である。 The above [A2] is preferably 2.0 mm or less, more preferably 1.0 mm or less. [A2] is preferably smaller, for example, 0.5 mm or more.
 前記[B2]は、好ましくは4.0mm以下、より好ましくは2.0mm以下である。前記[B2]は、小さい方が好ましいが、例えば、0.5mm以上等である。 The above [B2] is preferably 4.0 mm or less, more preferably 2.0 mm or less. [B2] is preferably smaller, for example, 0.5 mm or more.
 前記積層体は、[B1]/[A1]が1.5以下であり、[B2]/[A2]が2.0以下であることが好ましい。 In the laminate, [B1]/[A1] is preferably 1.5 or less, and [B2]/[A2] is preferably 2.0 or less.
 前記[B1]/[A1]が1.5以下であると、加熱前と比較して加熱後の浮きの個数は大きく増加していないといえる。また、前記[B2]/[A2]が2.0以下であると、加熱前と比較して加熱後の浮きの直径は大きく増加していないといえる。 When the above [B1]/[A1] is 1.5 or less, it can be said that the number of floats after heating does not increase significantly compared to before heating. Moreover, when the above-mentioned [B2]/[A2] is 2.0 or less, it can be said that the diameter of the float after heating does not increase significantly compared to before heating.
 前記[B1]/[A1]、及び、前記[B2]/[A2]は、例えば、後述するように、シランカップリング剤層を形成する際の混合溶液を適切に調整することにより達成することができる。 The above [B1]/[A1] and the above [B2]/[A2] can be achieved, for example, by appropriately adjusting the mixed solution when forming the silane coupling agent layer, as described below. I can do it.
 前記[B1]/[A1]は、好ましくは1.5以下、より好ましくは1.2以下である。前記[B1]/[A1]は、小さい方が好ましいが、例えば、1以上である。 The above [B1]/[A1] is preferably 1.5 or less, more preferably 1.2 or less. [B1]/[A1] is preferably smaller, and is, for example, 1 or more.
 前記[B2]/[A2]は、好ましくは1.8以下、より好ましくは1.5以下である。前記[B2]/[A2]は、小さい方が好ましいが、例えば、1以上である。 The above [B2]/[A2] is preferably 1.8 or less, more preferably 1.5 or less. [B2]/[A2] is preferably smaller, and is, for example, 1 or more.
 前記第1の基板としては、耐熱高分子フィルム、無機基板が挙げられる。前記第2の基板としては、耐熱高分子フィルム、無機基板が挙げられる。前記第1の基板と前記第2の基板との組み合わせは特に限定されない。 Examples of the first substrate include a heat-resistant polymer film and an inorganic substrate. Examples of the second substrate include a heat-resistant polymer film and an inorganic substrate. The combination of the first substrate and the second substrate is not particularly limited.
 前記第1の基板と前記第2の基板との組合せとしては、(a)前記第1の基板と前記第2の基板との両方が無機基板であってもよく、(b)前記第1の基板と前記第2の基板との両方が耐熱高分子フィルムであってもよく、(c)前記第1の基板と前記第2の基板との一方が無機基板であり、他方が耐熱高分子フィルムであってもよい。
 前記第1の基板と前記第2の基板との組合せとしては、なかでも、前記第1の基板が耐熱高分子フィルムであり、前記第2の基板が金属基板であることが好ましい。前記第1の基板が耐熱高分子フィルムであり、前記第2の基板が金属基板であると、例えば、金属基板上に耐熱高分子フィルムが接着された状態で、耐熱高分子フィルム上に機能素子等の電子デバイスを形成することが可能となる。また、金属基板自体をエッチング等で回路に形成することでフレキシブルヒーター等のヒーター用途に用いることも可能となる。また、耐熱高分子フィルムと金属基板とが貼り合わされた積層体は、パワー半導体用途に用いることができる。
As a combination of the first substrate and the second substrate, (a) both the first substrate and the second substrate may be inorganic substrates, and (b) the first substrate may be an inorganic substrate. Both the substrate and the second substrate may be heat-resistant polymer films, and (c) one of the first substrate and the second substrate is an inorganic substrate, and the other is a heat-resistant polymer film. It may be.
Among the combinations of the first substrate and the second substrate, it is particularly preferable that the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate. When the first substrate is a heat-resistant polymer film and the second substrate is a metal substrate, for example, with the heat-resistant polymer film adhered to the metal substrate, a functional element is attached on the heat-resistant polymer film. It becomes possible to form electronic devices such as Furthermore, by forming a circuit on the metal substrate itself by etching or the like, it becomes possible to use it for heater applications such as flexible heaters. Further, a laminate in which a heat-resistant polymer film and a metal substrate are bonded together can be used for power semiconductor applications.
 <シランカップリング剤層>
 本実施形態に係るシランカップリング剤層は、特に限定されないが、シランカップリング剤と水とを含む混合溶液を前記第1の基板上及び/又は前記第2の基板上に供給されることにより形成された層であり、前記混合溶液中のアルコールの含有量がシランカップリング剤に対して1モル%以下であることが好ましい。
 シランカップリング剤は、加水分解されるとシラノール基が生成される。シラノール基は、第1の基板上及び/又は第2の基板上の反応基(例えば、OH基)と結合することとなる。ここで、シランカップリング剤は、加水分解され、シラノール基が生成される際には、副生成物としてアルコールが生成する。
 従来、積層体の製造においては、第1の基板と第2の基板とを接着した後も、シランカップリング剤の加水分解がある程度進行し、副生成したアルコールが積層体内に閉じ込められることとなっていた。そして、本発明者らは、このアルコールが浮きを生じさせる原因となっていることを見出した。
 本実施形態では、第1の基板と第2の基板とを接着する前に、シランカップリング剤をある程度、先に加水分解させておき、シランカップリング剤を含む液(シランカップリング剤層を形成するための溶液)から予めアルコールを取り除いておく。これにより、積層体内に閉じ込められるアルコールの量を減らすことができる。
 なお、他の実施形態として、前記混合溶液として、予めアルコールが取り除かれた混合溶液を用いることとしてもよい。
 前記混合溶液中のアルコールの含有量がシランカップリング剤に対して1モル%以下であると、[B1]≧[A1]、[B2]≧[A2]、前記B1が20個以下、及び、前記B2が4.0mm以下を達成しやすい。
 また、前記混合溶液中のアルコールの含有量がシランカップリング剤に対して1モル%以下であると、「前記[B1]/[A1]が1.5以下」、及び、「前記[B2]/[A2]が2.0以下」を達成しやすい。
 前記混合溶液中のアルコールの含有量は、より好ましくは0.8モル%以下、さらに好ましくは0.5モル%以下である。前記混合溶液中のアルコールの含有量は、少ないほど好ましいが、例えば、0.1モル%以上、0.2モル%以上等である。
<Silane coupling agent layer>
Although not particularly limited, the silane coupling agent layer according to the present embodiment is formed by supplying a mixed solution containing a silane coupling agent and water onto the first substrate and/or the second substrate. The content of alcohol in the mixed solution is preferably 1 mol % or less based on the silane coupling agent.
When a silane coupling agent is hydrolyzed, a silanol group is generated. The silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. Here, when the silane coupling agent is hydrolyzed to produce silanol groups, alcohol is produced as a by-product.
Conventionally, in the production of laminates, even after the first substrate and the second substrate are bonded, hydrolysis of the silane coupling agent proceeds to some extent, and by-product alcohol is trapped within the laminate. was. The present inventors have discovered that this alcohol is the cause of floating.
In this embodiment, before bonding the first substrate and the second substrate, the silane coupling agent is first hydrolyzed to some extent, and a liquid containing the silane coupling agent (a silane coupling agent layer is formed) is used. Alcohol is removed from the solution in advance. This can reduce the amount of alcohol trapped within the laminate.
In addition, as another embodiment, a mixed solution from which alcohol has been removed in advance may be used as the mixed solution.
When the content of alcohol in the mixed solution is 1 mol% or less with respect to the silane coupling agent, [B1]≧[A1], [B2]≧[A2], the number of B1 is 20 or less, and It is easy to achieve the above B2 of 4.0 mm or less.
Further, when the content of alcohol in the mixed solution is 1 mol % or less with respect to the silane coupling agent, "the [B1]/[A1] is 1.5 or less" and "the [B2] / [A2] is 2.0 or less” is easy to achieve.
The alcohol content in the mixed solution is more preferably 0.8 mol% or less, still more preferably 0.5 mol% or less. The content of alcohol in the mixed solution is preferably as low as possible, and is, for example, 0.1 mol% or more, 0.2 mol% or more.
 前記シランカップリング剤層の厚さは、1.0μm未満であることが好ましい。また、極力シランカップリング剤が少ないことを望むプロセスでは、500nm以下でも使用可能である。前記シランカップリング剤層の厚さは、接着強度の観点から、1nm以上であることが望ましい。前記シランカップリング剤層の厚さは、前記混合溶液の濃度、基板(第1の基板、第2の基板)上への供給量、及び、基板(第1の基板、第2の基板)貼り合わせ時の圧力によって調整することができる。 The thickness of the silane coupling agent layer is preferably less than 1.0 μm. Furthermore, in processes where it is desired to use as little silane coupling agent as possible, it is possible to use a silane coupling agent with a wavelength of 500 nm or less. The thickness of the silane coupling agent layer is preferably 1 nm or more from the viewpoint of adhesive strength. The thickness of the silane coupling agent layer depends on the concentration of the mixed solution, the amount supplied onto the substrates (first substrate, second substrate), and the attachment of the substrates (first substrate, second substrate). It can be adjusted by the pressure at the time of fitting.
 前記混合液に含まれる前記シランカップリング剤は、特に限定されるものではないが、ある程度加水分解が進み、オリゴマーとなっている割合が多いことが好ましい。
 加水分解前のモノマー状態の前記シランカップリング剤は、アミノ基或はエポキシ基を持ったものが、好ましい。加水分解前のモノマー状態のシランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。このうち好ましいものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで耐熱性を要求する場合、Siとアミノ基などの間を芳香族でつないだものが望ましい。
 前記シランカップリング剤がアミノ基を有する場合、前記第1の基板、前記第2の基板として有機材料を用いた場合に、第1の基板上、第2の基板上の反応基と結合する。その結果、第1の基板と第2の基板との接着強度を高くすることができる。
Although the silane coupling agent contained in the mixed liquid is not particularly limited, it is preferable that the silane coupling agent is hydrolyzed to some extent and has a large proportion of oligomers.
The silane coupling agent in a monomer state before hydrolysis preferably has an amino group or an epoxy group. Specific examples of the silane coupling agent in a monomer state before hydrolysis include N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane. , N-2-(aminoethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylene) den)propylamine, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltri Ethoxysilane vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy Silane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane Roxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3 -Ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, 3-isocyanatepropyltriethoxysilane, Tris -(3-trimethoxysilylpropyl)isocyanurate, chloromethylphenethyltrimethoxysilane, chloromethyltrimethoxysilane and the like. Among these, preferred are N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)- 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 2-(3, 4-Epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, amino Examples include phenethyltrimethoxysilane, aminophenylaminomethylphenethyltrimethoxysilane, and the like. When heat resistance is required in a process, it is desirable to use an aromatic link between Si and an amino group.
When the silane coupling agent has an amino group, it bonds with the reactive groups on the first substrate and the second substrate when organic materials are used as the first substrate and the second substrate. As a result, the adhesive strength between the first substrate and the second substrate can be increased.
 その他、前記混合液の詳細については、積層体の製造方法の項にて説明する。 Other details of the mixed liquid will be explained in the section on the method for manufacturing the laminate.
<耐熱高分子フィルム(高分子フィルム)>
 前記高分子フィルムは、ガラス転移温度が115℃以上であることが好ましく、より好ましくは130℃以上、さらに好ましくは145℃以上である。
 前記高分子フィルムとしては、非晶ポリアリレート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンゾオキサゾール、ポリイミドベンゾオキサゾール、ポリエチレンナフタレート、シリコーン樹脂、フッ素樹脂、液晶ポリマーなどのフィルムが挙げられる。
 前記高分子フィルムとしては、特に、イミド結合を有する高分子フィルムを用いることが好ましい。イミド結合を有する高分子フィルムとしては、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリイミドベンゾオキサゾール、ビスマレイミドトリアジンなどのフィルムを例示することができる。
<Heat-resistant polymer film (polymer film)>
The polymer film preferably has a glass transition temperature of 115°C or higher, more preferably 130°C or higher, still more preferably 145°C or higher.
Examples of the polymer film include amorphous polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyimide, polyamideimide, polyetherimide, polybenzoxazole, polyimidebenzoxazole, polyethylene naphthalate, and silicone resin. , fluororesin, liquid crystal polymer, and the like.
As the polymer film, it is particularly preferable to use a polymer film having imide bonds. Examples of polymer films having imide bonds include films of polyimide, polyamideimide, polyetherimide, polyimide benzoxazole, bismaleimide triazine, and the like.
 以下に前記高分子フィルムの一例であるポリイミド系樹脂フィルム(ポリイミドフィルムと称する場合もある)についての詳細を説明する。一般にポリイミド系樹脂フィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。 The details of a polyimide resin film (sometimes referred to as a polyimide film), which is an example of the polymer film, will be described below. Generally, polyimide resin films are produced by applying a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent to a support for polyimide film production, and drying it to form a green film (hereinafter referred to as green film). (also referred to as a "polyamic acid film"), and is obtained by further heat-treating the green film at a high temperature on a support for producing a polyimide film or in a state peeled from the support to perform a dehydration ring-closing reaction.
 ポリアミド酸(ポリイミド前駆体)溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。 The polyamic acid (polyimide precursor) solution can be applied using conventionally known solutions such as spin coating, doctor blade, applicator, comma coater, screen printing, slit coating, reverse coating, dip coating, curtain coating, and slit die coating. Any means may be used as appropriate.
 ポリアミック酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。
 耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。
The diamines constituting the polyamic acid are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines, etc. commonly used in polyimide synthesis can be used.
From the viewpoint of heat resistance, aromatic diamines are preferred, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferred. When aromatic diamines having a benzoxazole structure are used, it becomes possible to exhibit not only high heat resistance but also high elastic modulus, low heat shrinkability, and low coefficient of linear expansion. Diamines may be used alone or in combination of two or more.
 ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。 The aromatic diamines having a benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, 5-amino-2-(p-aminophenyl)benzoxazole, -Amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2'-p-phenylenebis(5-aminobenzoxazole), 2,2' -p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4'-diaminodiphenyl)benzo [1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole, 2, 6-(3,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(3,4'-diaminodiphenyl)benzo[1,2-d: 4,5-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(3,3' -diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole and the like.
 上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリン)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、および前記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。 Examples of aromatic diamines other than the above-mentioned aromatic diamines having a benzoxazole structure include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl) )-2-propyl]benzene (bisaniline), 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4 '-Bis(4-aminophenoxy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl ] Sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl ]-1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3'- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylsulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4' -diaminodiphenylsulfoxide, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4, 4'-Diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl]methane, 1,1-bis[ 4-(4-aminophenoxy)phenyl]ethane, 1,2-bis[4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4-(4-aminophenoxy)phenyl]propane, 1, 2-bis[4-(4-aminophenoxy)phenyl]propane, 1,3-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, 1,1-bis[4-(4-aminophenoxy)phenyl]butane, 1,3-bis[4-(4-aminophenoxy)phenyl]butane, 1,4-bis[4-(4-amino) phenoxy)phenyl]butane, 2,2-bis[4-(4-aminophenoxy)phenyl]butane, 2,3-bis[4-(4-aminophenoxy)phenyl]butane, 2-[4-(4- aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3-methylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3-methylphenyl]propane, 2-[ 4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3,5 -dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,4-bis(3-aminophenoxy) Benzene, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-amino) phenoxy)phenyl]ketone, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfoxide, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[ 4-(3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4-aminophenoxy)benzoyl]benzene, 1,3-bis[ 4-(3-aminophenoxy)benzoyl]benzene, 1,4-bis[4-(3-aminophenoxy)benzoyl]benzene, 4,4'-bis[(3-aminophenoxy)benzoyl]benzene, 1,1 -Bis[4-(3-aminophenoxy)phenyl]propane, 1,3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis[3- (3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl]methane, 1,1-bis[4-(3- Aminophenoxy)phenyl]ethane, 1,2-bis[4-(3-aminophenoxy)phenyl]ethane, bis[4-(3-aminophenoxy)phenyl]sulfoxide, 4,4'-bis[3-(4 -aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[3-(3-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy] Benzophenone, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]diphenylsulfone, bis[4-{4-(4-aminophenoxy)phenoxy}phenyl]sulfone, 1,4 -bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3 -bis[4-(4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-fluorophenoxy)-α,α- dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-methylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-cyanophenoxy) )-α,α-dimethylbenzyl]benzene, 3,3'-diamino-4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino- 4,5'-diphenoxybenzophenone, 3,3'-diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'- Diamino-5'-phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5 '-Dibiphenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'- Diamino-5'-biphenoxybenzophenone, 1,3-bis(3-amino-4-phenoxybenzoyl)benzene, 1,4-bis(3-amino-4-phenoxybenzoyl)benzene, 1,3-bis(4 -amino-5-phenoxybenzoyl)benzene, 1,4-bis(4-amino-5-phenoxybenzoyl)benzene, 1,3-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,4-bis (3-amino-4-biphenoxybenzoyl)benzene, 1,3-bis(4-amino-5-biphenoxybenzoyl)benzene, 1,4-bis(4-amino-5-biphenoxybenzoyl)benzene, 2 , 6-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzonitrile, and some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine are halogen atoms, carbon atoms 1 to An aromatic substituted with a halogenated alkyl group or alkoxyl group having 1 to 3 carbon atoms in which some or all of the hydrogen atoms of the alkyl group or alkoxyl group of 3 are substituted with halogen atoms. Examples include group diamines.
 前記脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオタン等が挙げられる。
 前記脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。
 芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, and 1,8-diaminootane.
Examples of the alicyclic diamines include 1,4-diaminocyclohexane and 4,4'-methylenebis(2,6-dimethylcyclohexylamine).
The total amount of diamines other than aromatic diamines (aliphatic diamines and alicyclic diamines) is preferably 20% by mass or less of the total diamines, more preferably 10% by mass or less, and even more preferably 5% by mass or less. It is. In other words, aromatic diamines preferably account for 80% by mass or more of the total diamines, more preferably 90% by mass or more, still more preferably 95% by mass or more.
 ポリアミック酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Tetracarboxylic acids constituting polyamic acids include aromatic tetracarboxylic acids (including their acid anhydrides), aliphatic tetracarboxylic acids (including their acid anhydrides), and alicyclic tetracarboxylic acids that are commonly used in polyimide synthesis. Acids (including their acid anhydrides) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good. Tetracarboxylic acids may be used alone or in combination of two or more.
 芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、4,4'-オキシジフタル酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
 芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
The aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues (that is, those having a structure derived from pyromellitic acid), and more preferably are acid anhydrides thereof. Examples of such aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, , 3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis[4-(3,4-dianhydride) Examples include carboxyphenoxy)phenyl]propanoic anhydride.
When heat resistance is important, the amount of aromatic tetracarboxylic acids is preferably 80% by mass or more of the total tetracarboxylic acids, more preferably 90% by mass or more, still more preferably 95% by mass or more.
 脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
Examples of alicyclic tetracarboxylic acids include alicyclic tetracarboxylic acids such as cyclobutanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, and 3,3',4,4'-bicyclohexyltetracarboxylic acid. Examples include carboxylic acids and their acid anhydrides. Among these, dianhydrides having two anhydride structures (for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3',4,4 '-bicyclohexyltetracarboxylic dianhydride, etc.) are preferred. Note that the alicyclic tetracarboxylic acids may be used alone or in combination of two or more.
When transparency is important, the alicyclic tetracarboxylic acids preferably account for 80% by mass or more of the total tetracarboxylic acids, more preferably 90% by mass or more, still more preferably 95% by mass or more.
 前記ポリイミドフィルムは、透明ポリイミドフィルムであっても良い。 The polyimide film may be a transparent polyimide film.
 前記高分子フィルムの一例である無色透明ポリイミドについて説明する。以下煩雑さを避けるために、単に透明ポリイミドとも記す。透明ポリイミドの透明性としては、全光線透過率が75%以上のものであることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。前記透明ポリイミドの全光線透過率の上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには98%以下であることが好ましく、より好ましくは97%以下である。本発明における無色透明ポリイミドとは、全光線透過率75%以上のポリイミドが好ましい。 A colorless and transparent polyimide, which is an example of the polymer film, will be explained. Hereinafter, to avoid complexity, it will also be simply referred to as transparent polyimide. Regarding the transparency of the transparent polyimide, it is preferable that the total light transmittance is 75% or more. It is more preferably 80% or more, still more preferably 85% or more, even more preferably 87% or more, particularly preferably 88% or more. The upper limit of the total light transmittance of the transparent polyimide is not particularly limited, but for use as a flexible electronic device, it is preferably 98% or less, more preferably 97% or less. The colorless transparent polyimide in the present invention is preferably a polyimide having a total light transmittance of 75% or more.
 無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。芳香族テトラカルボン酸類の共重合量は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。 Aromatic tetracarboxylic acids for obtaining colorless and highly transparent polyimide include 4,4'-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4'-oxydiphthalic acid, and bis(1,3- dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-yl)benzene-1,4 -dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene- 1,2-dicarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis (Toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(1, 4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1- diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2- benzofuran-1,1-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-) 1,1-dioxide-3,3-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-benzophenonetetracarboxylic acid, 4,4'-[(3H -2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[(3H- 2,1-Benzoxathiol-1,1-dioxide-3,3-diyl)bis(1,4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[ 4,4'-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarvone Acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1 , 2-dicarboxylic acid, 3,3',4,4'-benzophenone tetracarboxylic acid, 3,3',4,4'-benzophenone tetracarboxylic acid, 3,3',4,4'-diphenylsulfone tetracarboxylic acid acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[spiro(xanthene-9,9') -fluorene)-2,6-diylbis(oxycarbonyl)]diphthalic acid, 4,4'-[spiro(xanthene-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]diphthalic acid, etc. Examples include tetracarboxylic acids and their acid anhydrides. Among these, dianhydrides having two acid anhydride structures are preferred, particularly 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride, 4,4'-oxydiphthalic dianhydride, Acid dianhydrides are preferred. Incidentally, the aromatic tetracarboxylic acids may be used alone or in combination of two or more kinds. When heat resistance is important, the amount of copolymerized aromatic tetracarboxylic acids is preferably 50% by mass or more of the total tetracarboxylic acids, more preferably 60% by mass or more, and still more preferably 70% by mass. The content is more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may be 100% by mass.
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。脂環式テトラカルボン酸類の共重合量は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上であり、なおさらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、100質量%であっても差し支えない。 Examples of alicyclic tetracarboxylic acids include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, 1 , 2,4,5-cyclohexanetetracarboxylic acid, 3,3',4,4'-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3,5,6-tetracarboxylic acid, Bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene-2,3,6,7-tetracarboxylic acid, decahydronaphthalene-2 , 3,6,7-tetracarboxylic acid, decahydro-1,4:5,8-dimethanonaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4-ethano-5,8-methano Naphthalene-2,3,6,7-tetracarboxylic acid, norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetra Carboxylic acid (also known as "norbornane-2-spiro-2'-cyclopentanone-5'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid"), methylnorbornane- 2-spiro-α-cyclopentanone-α'-spiro-2''-(methylnorbornane)-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclohexanone- α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid (also known as "norbornane-2-spiro-2'-cyclohexanone-6'-spiro-2''-norbornane -5,5'',6,6''-tetracarboxylic acid''), methylnorbornane-2-spiro-α-cyclohexanone-α'-spiro-2''-(methylnorbornane)-5,5'', 6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclopropanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane -2-spiro-α-cyclobutanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cycloheptanone-α' -spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclooctanone-α'-spiro-2''-norbornane-5, 5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclononanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid , norbornane-2-spiro-α-cyclodecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cycloundecanone- α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclododecanone-α'-spiro-2''-norbornane- 5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-cyclotridecanone-α'-spiro-2''-norbornane-5,5'',6,6'' -tetracarboxylic acid, norbornane-2-spiro-α-cyclotetradecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro -α-cyclopentadecanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclopentanone)- α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbornane-2-spiro-α-(methylcyclohexanone)-α'-spiro-2''-norbornane Examples include tetracarboxylic acids such as -5,5'',6,6''-tetracarboxylic acid, and acid anhydrides thereof. Among these, dianhydrides having two acid anhydride structures are preferred, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,3,4-cyclohexanetetracarboxylic dianhydride. Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride is preferred, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride is even more preferred. Note that these may be used alone or in combination of two or more. When emphasis is placed on transparency, the amount of copolymerized alicyclic tetracarboxylic acids is, for example, preferably 50% by mass or more of the total tetracarboxylic acids, more preferably 60% by mass or more, and even more preferably 70% by mass. % or more, still more preferably 80% by mass or more, particularly preferably 90% by mass or more, and may even be 100% by mass.
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of tricarboxylic acids include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3',4'-tricarboxylic acid, and diphenylsulfone-3,3',4'-tricarboxylic acid. acids, or hydrogenated products of the above aromatic tricarboxylic acids such as hexahydrotrimellitic acid, alkylenes such as ethylene glycol bis trimellitate, propylene glycol bis trimellitate, 1,4-butanediol bis trimellitate, and polyethylene glycol bis trimellitate. Examples include glycol bistrimelitate, and monoanhydrides and esterified products thereof. Among these, monoanhydrides having one acid anhydride structure are preferred, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferred. Incidentally, these may be used alone or in combination.
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, or the above-mentioned aromatic dicarboxylic acids such as 1,6-cyclohexanedicarboxylic acid. Hydrogenates of oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 2-methylsuccinic acid, and acid chlorides thereof Alternatively, examples include esterified products. Among these, aromatic dicarboxylic acids and hydrogenated products thereof are preferred, with terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid being particularly preferred. Note that dicarboxylic acids may be used alone or in combination.
 無色透明性の高いポリイミドを得るためのジアミン類或いはイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミン類が好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びイソシアネート類は、単独で用いてもよいし二種以上を併用してもよい。 Diamines or isocyanates for obtaining colorless and highly transparent polyimides are not particularly limited, and include aromatic diamines, aliphatic diamines, and alicyclic diamines commonly used in polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis. diisocyanates, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, etc. can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. Further, when aromatic diamines having a benzoxazole structure are used, it becomes possible to exhibit high elastic modulus, low thermal shrinkage, and low coefficient of linear expansion as well as high heat resistance. Diamines and isocyanates may be used alone or in combination of two or more.
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン等が挙げられる。また、上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基もしくはアルコキシル基、またはシアノ基で置換されても良く、さらに前記炭素数1~3のアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換されても良い。また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of aromatic diamines include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-Amino-2-trifluoromethylphenoxy)benzene, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'- Bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfone , 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoro Propane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 4-amino-N-(4-aminophenyl)benzamide, 3,3'-diaminodiphenyl ether , 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2,2'-trifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfoxide, 3,4'-diaminodiphenylsulfoxide, 4,4'-diaminodiphenylsulfoxide, 3,3'-diaminodiphenylsulfone, 3,4 '-Diamino diphenyl sulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4 '-Diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl]methane, 1,1-bis[4-(4-aminophenoxy)phenyl]ethane, 1,2-bis [4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4-(4-aminophenoxy)phenyl]propane, 1,2-bis[4-(4-aminophenoxy)phenyl]propane, 1 , 3-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 1,1-bis[4-(4-aminophenoxy)phenyl] ]butane, 1,3-bis[4-(4-aminophenoxy)phenyl]butane, 1,4-bis[4-(4-aminophenoxy)phenyl]butane, 2,2-bis[4-(4- aminophenoxy)phenyl]butane, 2,3-bis[4-(4-aminophenoxy)phenyl]butane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy) -3-methylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3-methylphenyl]propane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-( 4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4- aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1, 4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ketone, bis[4-(4-aminophenoxy)phenyl ] Sulfide, bis[4-(4-aminophenoxy)phenyl]sulfoxide, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-( 4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4-aminophenoxy)benzoyl]benzene, 1,3-bis[4-(3-aminophenoxy)benzoyl]benzene, 1,4-bis [4-(3-aminophenoxy)benzoyl]benzene, 4,4'-bis[(3-aminophenoxy)benzoyl]benzene, 1,1-bis[4-(3-aminophenoxy)phenyl]propane, 1, 3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3, 3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl]methane, 1,1-bis[4-(3-aminophenoxy)phenyl]ethane, 1,2-bis[4-(3 -aminophenoxy)phenyl]ethane, bis[4-(3-aminophenoxy)phenyl]sulfoxide, 4,4'-bis[3-(4-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[3- (3-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzophenone, 4,4'-bis[4-(4-amino-α) , α-dimethylbenzyl)phenoxy]diphenylsulfone, bis[4-{4-(4-aminophenoxy)phenoxy}phenyl]sulfone, 1,4-bis[4-(4-aminophenoxy)phenoxy-α,α- dimethylbenzyl]benzene, 1,3-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy) -α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-fluorophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino) -6-methylphenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-cyanophenoxy)-α,α-dimethylbenzyl]benzene, 3,3'-diamino -4,4'-diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3,3'-diamino-4 -phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-diamino-4, 4'-Dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-diamino-4,5'-dibiphenoxybenzophenone, 3,3'-diamino-4-biphenoxy Benzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1,3-bis(3- Amino-4-phenoxybenzoyl)benzene, 1,4-bis(3-amino-4-phenoxybenzoyl)benzene, 1,3-bis(4-amino-5-phenoxybenzoyl)benzene, 1,4-bis(4 -Amino-5-phenoxybenzoyl)benzene, 1,3-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,4-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,3- Bis(4-amino-5-biphenoxybenzoyl)benzene, 1,4-bis(4-amino-5-biphenoxybenzoyl)benzene, 2,6-bis[4-(4-amino-α,α-dimethyl) benzyl)phenoxy]benzonitrile, 4,4'-[9H-fluorene-9,9-diyl]bisaniline (also known as "9,9-bis(4-aminophenyl)fluorene"), spiro(xanthene-9,9' -fluorene)-2,6-diylbis(oxycarbonyl)]bisaniline, 4,4'-[spiro(xanthene-9,9'-fluorene)-2,6-diylbis(oxycarbonyl)]bisaniline, 4,4' -[spiro(xanthene-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]bisaniline and the like. Further, some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine may be substituted with a halogen atom, an alkyl group or alkoxyl group having 1 to 3 carbon atoms, or a cyano group, and further, Part or all of the hydrogen atoms of the alkyl group or alkoxyl group of ~3 may be substituted with a halogen atom. Further, the aromatic diamines having the benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole, 6-amino-2-(p-aminophenyl)benzoxazole, Oxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2'-p-phenylenebis(5-aminobenzoxazole), 2 , 2'-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzoxazolo)-4-(6-aminobenzoxazolo)benzene, 2,6-(4,4'-diamino) diphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole , 2,6-(3,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(3,4'-diaminodiphenyl)benzo[1,2 -d:4,5-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(3 , 3'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole, and the like. Among these, in particular, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4-amino-N-(4-aminophenyl)benzamide, 4,4'-diaminodiphenylsulfone, 3,3 '-Diaminobenzophenone is preferred. Incidentally, the aromatic diamines may be used alone or in combination.
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propyl Cyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis(2,6-dimethylcyclohexylamine). Among these, 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferred, and 1,4-diaminocyclohexane is more preferred. Incidentally, the alicyclic diamines may be used alone or in combination.
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は単独で使用してもよいし複数を組み合わせて使用してもよい。 Examples of diisocyanates include diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3' - or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2 '-or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, benzophenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, Tolylene-2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-(2,2bis(4-phenoxyphenyl)propane) diisocyanate, 3, 3'- or 2,2'-dimethylbiphenyl-4,4'-diisocyanate, 3,3'- or 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4, Aromatic diisocyanates such as 4'-diisocyanate, 3,3'-diethoxybiphenyl-4,4'-diisocyanate, and diisocyanates obtained by hydrogenating any of these (e.g., isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate) and the like. Among these, diphenylmethane-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, 3,3'- Dimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexane diisocyanate are preferred. Note that the diisocyanates may be used alone or in combination.
 本実施形態においては、前記高分子フィルムが、ポリイミドフィルムであることが好ましい。前記高分子フィルムが、ポリイミドフィルムであると、耐熱性に優れる。 In this embodiment, the polymer film is preferably a polyimide film. When the polymer film is a polyimide film, it has excellent heat resistance.
 前記高分子フィルムの厚さは3μm以上が好ましく、より好ましくは7μm以上であり、さらに好ましくは14μm以上であり、より一層好ましくは20μm以上である。前記高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとして用いるためには250μm以下であることが好ましく、より好ましくは100μm以下であり、さらに好ましくは50μm以下である。 The thickness of the polymer film is preferably 3 μm or more, more preferably 7 μm or more, still more preferably 14 μm or more, and even more preferably 20 μm or more. The upper limit of the thickness of the polymer film is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 250 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less.
 前記高分子フィルムの30℃から250℃の間の平均の線膨張係数(CTE)は、50ppm/K以下であることが好ましい。より好ましくは45ppm/K以下であり、さらに好ましくは40ppm/K以下であり、よりさらに好ましくは30ppm/K以下であり、特に好ましくは20ppm/K以下である。また-5ppm/K以上であることが好ましく、より好ましくは-3ppm/K以上であり、さらに好ましくは1ppm/K以上である。CTEが前記範囲であると、一般的な支持体(無機基板)との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供しても高分子フィルムと無機基板とが剥がれるあるいは、支持体ごと反ることを回避できる。ここにCTEとは温度に対して可逆的な伸縮を表すファクターである。なお、前記高分子フィルムのCTEとは、ポリアミック酸の塗工方向(MD方向)のCTE及び幅方向(TD方向)のCTEの平均値を指す。 The average coefficient of linear expansion (CTE) between 30°C and 250°C of the polymer film is preferably 50 ppm/K or less. It is more preferably 45 ppm/K or less, still more preferably 40 ppm/K or less, even more preferably 30 ppm/K or less, particularly preferably 20 ppm/K or less. Further, it is preferably -5 ppm/K or more, more preferably -3 ppm/K or more, and even more preferably 1 ppm/K or more. When the CTE is within the above range, the difference in linear expansion coefficient with a general support (inorganic substrate) can be kept small, and the polymer film and inorganic substrate will not peel off even when subjected to a process of applying heat, or Warping of the entire support can be avoided. Here, CTE is a factor representing reversible expansion and contraction with respect to temperature. Note that the CTE of the polymer film refers to the average value of the CTE in the coating direction (MD direction) and the CTE in the width direction (TD direction) of polyamic acid.
 前記高分子フィルムが、透明ポリイミドフィルムである場合、その黄色度指数(以下、「イエローインデックス」または「YI」ともいう。)は10以下が好ましく、より好ましくは7以下であり、さらに好ましくは5以下であり、より一層好ましくは3以下である。前記透明ポリイミドの黄色度指数の下限は特に制限されないが、フレキシブル電子デバイスとして用いるためには0.1以上であることが好ましく、より好ましくは0.2以上であり、さらに好ましくは0.3以上である。 When the polymer film is a transparent polyimide film, its yellowness index (hereinafter also referred to as "yellow index" or "YI") is preferably 10 or less, more preferably 7 or less, and even more preferably 5. or less, and even more preferably 3 or less. The lower limit of the yellowness index of the transparent polyimide is not particularly limited, but in order to use it as a flexible electronic device, it is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.3 or more. It is.
 前記高分子フィルムが透明ポリイミドフィルムの場合、ヘイズは1.0以下が好ましく、より好ましくは0.8以下であり、さらに好ましくは0.5以下であり、より一層好ましくは0.3以下である。下限は特に限定されないが、工業的には、0.01以上であれば問題なく、0.05以上であっても差し支えない。 When the polymer film is a transparent polyimide film, the haze is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less, even more preferably 0.3 or less. . The lower limit is not particularly limited, but industrially, there is no problem if it is 0.01 or more, and it may be 0.05 or more.
 前記高分子フィルムの30℃から500℃の間の熱収縮率は、±0.9%以下であることが好ましく、さらに好ましくは±0.6以下%である。熱収縮率は温度に対して非可逆的な伸縮を表すファクターである。 The heat shrinkage rate of the polymer film between 30° C. and 500° C. is preferably ±0.9% or less, more preferably ±0.6% or less. Thermal contraction rate is a factor representing irreversible expansion and contraction with respect to temperature.
 前記高分子フィルムの引張破断強度は、60MPa以上が好ましく、より好ましくは80MP以上であり、さらに好ましくは100MPa以上である。引張破断強度の上限は特に制限されないが、事実上1000MPa程度未満である。前記引張破断強度が60MPa以上であると、無機基板から剥離する際に前記高分子フィルムが破断してしまうことを防止することができる。なお、前記高分子フィルムの引張破断強度とは、高分子フィルムの流れ方向(MD方向)の引張破断強度及び幅方向(TD方向)の引張破断強度の平均値を指す。 The tensile strength at break of the polymer film is preferably 60 MPa or more, more preferably 80 MPa or more, and still more preferably 100 MPa or more. The upper limit of the tensile strength at break is not particularly limited, but is practically less than about 1000 MPa. When the tensile strength at break is 60 MPa or more, it is possible to prevent the polymer film from breaking when peeled from the inorganic substrate. Note that the tensile strength at break of the polymer film refers to the average value of the tensile strength at break in the machine direction (MD direction) and the tensile strength at break in the width direction (TD direction) of the polymer film.
 前記高分子フィルムの引張破断伸度は、1%以上が好ましく、より好ましくは5%以上であり、さらに好ましくは10%以上である。前記引張破断伸度が、1%以上であると、取り扱い性に優れる。なお、前記高分子フィルムの引張破断伸度とは、高分子フィルムの流れ方向(MD方向)の引張破断伸度及び幅方向(TD方向)の引張破断伸度の平均値を指す。 The tensile elongation at break of the polymer film is preferably 1% or more, more preferably 5% or more, and still more preferably 10% or more. When the tensile elongation at break is 1% or more, handling properties are excellent. Note that the tensile elongation at break of the polymer film refers to the average value of the tensile elongation at break in the machine direction (MD direction) and the tensile elongation at break in the width direction (TD direction) of the polymer film.
 前記高分子フィルムの引張弾性率は、2.5GPa以上が好ましく、より好ましくは3GPa以上であり、さらに好ましくは4GPa以上である。前記引張弾性率が、2.5GPa以上であると、無機基板から剥離する際の前記高分子フィルムの伸び変形が少なく、取り扱い性に優れる。前記引張弾性率は、20GPa以下が好ましく、より好ましくは15GPa以下であり、さらに好ましくは12GPa以下である。前記引張弾性率が、20GPa以下であると、前記高分子フィルムをフレキシブルなフィルムとして使用できる。なお、前記高分子フィルムの引張弾性率とは、高分子フィルムの流れ方向(MD方向)の引張弾性率及び幅方向(TD方向)の引張弾性率の平均値を指す。 The tensile modulus of the polymer film is preferably 2.5 GPa or more, more preferably 3 GPa or more, and still more preferably 4 GPa or more. When the tensile modulus is 2.5 GPa or more, the polymer film undergoes little elongation deformation when peeled from the inorganic substrate, resulting in excellent handling properties. The tensile modulus is preferably 20 GPa or less, more preferably 15 GPa or less, still more preferably 12 GPa or less. When the tensile modulus is 20 GPa or less, the polymer film can be used as a flexible film. Note that the tensile modulus of the polymer film refers to the average value of the tensile modulus in the machine direction (MD direction) and the tensile modulus in the width direction (TD direction) of the polymer film.
 前記高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the polymer film is preferably 20% or less, more preferably 12% or less, still more preferably 7% or less, particularly preferably 4% or less. If the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow areas. Incidentally, the uneven thickness of the film can be determined based on the following formula by measuring the film thickness by randomly extracting about 10 positions from the film to be measured using, for example, a contact-type film thickness meter.
Film thickness unevenness (%)
= 100 x (maximum film thickness - minimum film thickness) ÷ average film thickness
 前記高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺高分子フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状高分子フィルムの形態のものがより好ましい。前記高分子フィルムがロール状に巻かれていると、ロール状に巻かれた耐熱高分子フィルムという形態での輸送が容易となる。また、ロールトゥロールプロセスを用いた積層体の作製も可能となる。 The polymer film is preferably obtained in the form of a long polymer film with a width of 300 mm or more and a length of 10 m or more at the time of manufacture. More preferably, it is in the form of a molecular film. When the polymer film is wound into a roll, it becomes easy to transport the heat-resistant polymer film in the form of a roll. Furthermore, it is also possible to produce a laminate using a roll-to-roll process.
 前記高分子フィルムにおいては、ハンドリング性および生産性を確保する為、高分子フィルム中に粒子径が10~1000nm程度の滑材(粒子)を、0.01~3質量%程度、添加・含有させて、高分子フィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。 In the polymer film, in order to ensure handling properties and productivity, about 0.01 to 3% by mass of lubricant (particles) with a particle size of about 10 to 1000 nm is added and contained in the polymer film. Therefore, it is preferable to provide fine irregularities on the surface of the polymer film to ensure slipperiness.
<無機基板>
 前記無機基板としては、ガラス板、半導体ウエハ、金属板、セラミック板などを用いることができる。前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、「OA11」、SCHOTT社製の「AF32」などが望ましい。前記半導体ウエハとしては、シリコンウエハ、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などのウエハが挙げられる。前記金属板としてはW、Mo、Pt、Fe、Ni、Auといった単一元素金属や、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金、各種ステンレス鋼といった合金等が含まれる。また、これらの金属からなる不織布を用いても良い。本発明において金属板を用いる場合には各種ステンレス鋼を用いることが好ましい。さらに、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。前記セラミック板としてはアルミナ、マグネシア、カルシア、窒化ケイ素、窒化ホウ素、窒化アルミニウム、酸化ベリリウムなどの単一または複合焼結体を用いることができる。本発明においてセラミック基板を用いる場合には表面をガラスグレーズ処理して平滑化したセラミック基板を用いることが好ましい。これら無機基板に関しても幅が300mm以上、長さが10m以上の長尺品として巻き取られた形態のものを使用しても良い。ロール状に巻かれていると、輸送が容易になるだけでなく、ロールトゥロールプロセスを用いた積層体の作製が可能となる。
<Inorganic substrate>
As the inorganic substrate, a glass plate, a semiconductor wafer, a metal plate, a ceramic plate, etc. can be used. Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (alkali-free), Includes borosilicate glass (microsheet), aluminosilicate glass, etc. Among these, those with a linear expansion coefficient of 5 ppm/K or less are desirable, and commercially available products include "Corning (registered trademark) 7059" and "Corning (registered trademark) 1737" manufactured by Corning Corporation, which are liquid crystal glasses. "EAGLE", "AN100" manufactured by Asahi Glass, "OA10" and "OA11" manufactured by Nippon Electric Glass, "AF32" manufactured by SCHOTT, etc. are preferable. Examples of the semiconductor wafer include silicon wafer, germanium, silicon-germanium, gallium-arsenide, aluminum-gallium-indium, nitrogen-phosphorus-arsenic-antimony, SiC, InP (indium phosphide), InGaAs, GaInNAs, LT, LN, and ZnO. (zinc oxide), CdTe (cadmium tellurium), ZnSe (zinc selenide), and the like. The metal plate may be a single element metal such as W, Mo, Pt, Fe, Ni, or Au, or an alloy such as Inconel, Monel, Nimonic, carbon copper, Fe-Ni based Invar alloy, Super Invar alloy, or various stainless steels. included. Furthermore, nonwoven fabrics made of these metals may also be used. When using a metal plate in the present invention, it is preferable to use various types of stainless steel. Furthermore, multilayer metal plates formed by adding other metal layers and ceramic layers to these metals are also included. As the ceramic plate, a single or composite sintered body of alumina, magnesia, calcia, silicon nitride, boron nitride, aluminum nitride, beryllium oxide, etc. can be used. When a ceramic substrate is used in the present invention, it is preferable to use a ceramic substrate whose surface is smoothed by glass glazing treatment. These inorganic substrates may also be rolled up as long products with a width of 300 mm or more and a length of 10 m or more. Wrapping in a roll not only facilitates transportation, but also allows for the production of laminates using a roll-to-roll process.
 前記無機基板の厚さは特に制限されないが、取扱性の観点より10mm以下の厚さが好ましく、3mm如何より好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.005mm以上、より好ましくは0.01mm以上、さらに好ましくは0.02mm以上である。 The thickness of the inorganic substrate is not particularly limited, but from the viewpoint of handleability, the thickness is preferably 10 mm or less, more preferably 3 mm, and even more preferably 1.3 mm or less. The lower limit of the thickness is not particularly limited, but is preferably 0.005 mm or more, more preferably 0.01 mm or more, and still more preferably 0.02 mm or more.
 本実施形態の積層体は、200℃、1時間加熱後の90°剥離強度(接着強度)が0.2N/cm以上であることが好ましく、より好ましくは0.5N/cm以上、さらに好ましくは1.0N/cm以上である。
 加熱後の90°剥離強度が0.2N/cm以上であると、第1の基板(例えば、高分子フィルム)上にデバイス形成した場合やそれぞれの基板をエッチング等で加工した場合に、意図せずに、第2の基板(例えば、無機基板)が剥離してしまうことを防止できる。
 また、前記積層体は、200℃、1時間加熱後の90°剥離強度が10N/cm以下であることが好ましく、より好ましくは8N/cm以下、さらに好ましくは6N/cm以下である。
 加熱後の90°剥離強度が10N/cm以下であると、第1の基板(例えば、高分子フィルム)上にデバイス形成した後に、第2の基板(例えば、無機基板)を剥離したいときに、容易に剥離することが可能となる。
The laminate of this embodiment preferably has a 90° peel strength (adhesive strength) of 0.2 N/cm or more, more preferably 0.5 N/cm or more, even more preferably It is 1.0 N/cm or more.
If the 90° peel strength after heating is 0.2 N/cm or more, it will not be possible to unintended results when a device is formed on the first substrate (for example, a polymer film) or when each substrate is processed by etching or the like. It is possible to prevent the second substrate (for example, an inorganic substrate) from peeling off.
Further, the 90° peel strength of the laminate after heating at 200° C. for 1 hour is preferably 10 N/cm or less, more preferably 8 N/cm or less, and still more preferably 6 N/cm or less.
If the 90° peel strength after heating is 10 N/cm or less, when you want to peel off the second substrate (for example, an inorganic substrate) after forming a device on the first substrate (for example, a polymer film), It becomes possible to peel off easily.
 本実施形態の積層体は、加熱前の90°剥離強度(接着強度)が0.1N/cm以上であることが好ましく、より好ましくは0.2N/cm以上、さらに好ましくは0.3N/cm以上である。
 加熱前の90°剥離強度が0.1N/cm以上であると、第1の基板と第2の基板とが剥離してしまうことを防止できる。
 また、前記積層体は、加熱前の90°剥離強度が6N/cm以下であることが好ましく、より好ましくは4N/cm以下、さらに好ましくは2N/cm以下である。
 加熱前の90°剥離強度が6N/cm以下であると、加熱後に剥離したいときに、容易に剥離することが可能となる。
The laminate of this embodiment preferably has a 90° peel strength (adhesive strength) of 0.1 N/cm or more before heating, more preferably 0.2 N/cm or more, and still more preferably 0.3 N/cm. That's all.
When the 90° peel strength before heating is 0.1 N/cm or more, it is possible to prevent the first substrate and the second substrate from peeling off.
Further, the 90° peel strength of the laminate before heating is preferably 6 N/cm or less, more preferably 4 N/cm or less, and even more preferably 2 N/cm or less.
When the 90° peel strength before heating is 6 N/cm or less, it becomes possible to easily peel off when desired to peel off after heating.
 なお、加熱前の90°剥離強度とは、第1の基板と第2の基板とを貼り合わせた後、大気雰囲気下で110℃で60分間熱処理した後の積層体の値である(初期剥離強度)。
 また、加熱後の90°剥離強度とは、前記加熱前の90°剥離強度測定時の積層体をさらに200℃、1時間熱処理した後の積層体の値である(200℃加熱処理後剥離強度)。
The 90° peel strength before heating is the value of the laminate after bonding the first substrate and the second substrate together and then heat-treating them at 110°C for 60 minutes in the air (initial peel strength). Strength).
In addition, the 90° peel strength after heating is the value of the laminate after further heat treating the laminate at 200°C for 1 hour when measuring the 90° peel strength before heating (peel strength after 200°C heat treatment). ).
 本実施形態に係る積層体の製造方法は、
 第1の基板、及び、第2の基板を準備する工程A、
 シランカップリング剤と水とを含み、且つ、アルコールの含有量がシランカップリング剤に対して1モル%以下である混合溶液を準備する工程B、
 前記混合溶液を前記第1の基板上及び/又は前記第2の基板上に供給する工程C、及び、
 前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせる工程Dを含む。
The method for manufacturing a laminate according to this embodiment includes:
Step A of preparing a first substrate and a second substrate;
Step B of preparing a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol% or less relative to the silane coupling agent;
Step C of supplying the mixed solution onto the first substrate and/or the second substrate, and
The method includes a step D of bonding the first substrate and the second substrate together after the mixed solution is supplied.
 前記積層体の製造方法では、まず、第1の基板、及び、第2の基板を準備する(工程A)。第1の基板、第2の基板については、積層体の項ですでに説明済みであるからここでの説明は省略する。 In the method for manufacturing the laminate, first, a first substrate and a second substrate are prepared (step A). Since the first substrate and the second substrate have already been explained in the section regarding the laminate, their explanation will be omitted here.
 また、シランカップリング剤と水とを含み、且つ、アルコールの含有量がシランカップリング剤に対して1モル%以下である混合溶液を準備する(工程B)。
 シランカップリング剤溶液中のアルコール含有量はH-NMRにて測定できる。シランカップリング剤中のアルキル鎖に由来するピークとアルコールに由来するピークの積分値の比を求め、シランカップリング剤に対するアルコール含有量(モル%)とした。
Further, a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol % or less relative to the silane coupling agent is prepared (Step B).
The alcohol content in the silane coupling agent solution can be measured by 1 H-NMR. The ratio of the integral value of the peak derived from the alkyl chain in the silane coupling agent and the peak derived from alcohol was determined, and the ratio was determined as the alcohol content (mol %) with respect to the silane coupling agent.
 工程Bにおいては、まず、シランカップリング剤と水とを混合し、加水分解反応が終わるまで攪拌する。通常、攪拌時間は、常温で、1時間以上、5時間以下の範囲内である。混合溶液中のシランカップリング剤濃度としては、17wt%以上、80wt%以下であるが好ましい。前記混合比率で混合溶液を調製することにより、効果的にシランカップリング剤の反応を進めることができる。
 攪拌後、シランカップリング剤と水とアルコールとを含む液からアルコールを取り除く。シランカップリング剤と水とアルコールとを含む液からアルコールを取り除く方法としては、例えば、分留が挙げられる。具体的には、エバポレーター等を用いてシランカップリング剤と水とアルコールとを含む液からアルコールを取り除くことができる。
 以上により、シランカップリング剤と水とを含み、且つ、アルコールの含有量がシランカップリング剤に対して1モル%以下である混合溶液を準備することができる。
In step B, first, a silane coupling agent and water are mixed and stirred until the hydrolysis reaction is completed. Usually, the stirring time is within the range of 1 hour or more and 5 hours or less at room temperature. The concentration of the silane coupling agent in the mixed solution is preferably 17 wt% or more and 80 wt% or less. By preparing a mixed solution at the above mixing ratio, the reaction of the silane coupling agent can proceed effectively.
After stirring, alcohol is removed from the liquid containing the silane coupling agent, water, and alcohol. An example of a method for removing alcohol from a liquid containing a silane coupling agent, water, and alcohol is fractional distillation. Specifically, alcohol can be removed from a liquid containing a silane coupling agent, water, and alcohol using an evaporator or the like.
As described above, it is possible to prepare a mixed solution that contains a silane coupling agent and water and has an alcohol content of 1 mol % or less based on the silane coupling agent.
 ただし、本発明における工程Bは上記例に限定されない。前記工程Bにおいては、シランカップリング剤と水とを含む混合溶液として、予めアルコールが取り除かれた混合溶液を用いることとしてもよい。 However, Step B in the present invention is not limited to the above example. In step B, the mixed solution containing the silane coupling agent and water may be a mixed solution from which alcohol has been removed in advance.
 前記混合液中のシランカップリング剤は、29Si-NMR測定にて得られるスペクトルの積分値から算出される下記T2構造及び下記T3構造を有するSiの合計比率をX、下記T0構造、下記T1構造、下記T2構造及び下記T3構造を有するSiの合計比率をYとしたとき、X/Yが81以上であることが好ましい。
 ただし、下記T0構造、下記T1構造、下記T2構造及び下記T3構造において、ZはC2nで表される2価のアルキル鎖であり、WはC2m+1で表される1価のアルキル基又は水素原子である(ただし、nは、1以上10以下の整数であり、mは、1以上10以下の整数である)。
The silane coupling agent in the mixed solution is: 29 The total ratio of Si having the following T2 structure and the following T3 structure calculated from the integral value of the spectrum obtained by Si-NMR measurement is X, the following T0 structure, and the following T1 When Y is the total ratio of Si having the following T2 structure and the following T3 structure, it is preferable that X/Y is 81 or more.
However, in the following T0 structure, the following T1 structure, the following T2 structure, and the following T3 structure, Z is a divalent alkyl chain represented by C n H 2n , and W is a monovalent alkyl chain represented by C m H 2m+1 . It is an alkyl group or a hydrogen atom (where n is an integer of 1 or more and 10 or less, and m is an integer of 1 or more and 10 or less).
 前記nは、好ましくは1以上、より好ましくは2以上である。前記nは、好ましくは6以下、より好ましくは4以下である。
 前記mは、好ましくは1以上、より好ましくは2以上である。前記mは、好ましくは6以下、より好ましくは4以下である。
The n is preferably 1 or more, more preferably 2 or more. The n is preferably 6 or less, more preferably 4 or less.
The m is preferably 1 or more, more preferably 2 or more. The m is preferably 6 or less, more preferably 4 or less.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記X/Yが81以上であると、シランカップリング剤の加水分解がある程度進行し、オリゴマー状態となっているとともに、シラノール基も生成されている。シラノール基は、第1の基板上及び/又は第2の基板上の反応基(例えば、OH基)と結合することとなる。その結果、前記浮きの量をさらに減らすことができる。 When the X/Y is 81 or more, the hydrolysis of the silane coupling agent has progressed to some extent, resulting in an oligomer state and silanol groups also being generated. The silanol group will bond with a reactive group (eg, OH group) on the first substrate and/or the second substrate. As a result, the amount of floating can be further reduced.
 前記X/Yは、より好ましくは82以上、さらに好ましくは85以上である。前記X/Yは、大きいほど好ましいが、例えば、99以下である。
 前記X/Yは、実施例に記載の方法に求められる値である。
The X/Y is more preferably 82 or more, and still more preferably 85 or more. The above X/Y is preferably as large as possible, and is, for example, 99 or less.
The above-mentioned X/Y is a value determined by the method described in Examples.
 次に、前記混合溶液を前記第1の基板上及び/又は前記第2の基板上に供給する(工程C)。前記混合溶液の前記第1の基板上、前記第2の基板上への供給方法としては、滴下や、バ―コーター等を用いた各種溶液コート法等、の従来公知の方法を採用することができる。 Next, the mixed solution is supplied onto the first substrate and/or the second substrate (step C). As a method of supplying the mixed solution onto the first substrate and the second substrate, conventionally known methods such as dropping or various solution coating methods using a bar coater or the like can be adopted. can.
 次に、前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせる(工程D)。工程Dは、前記工程Cの後、前記混合溶液が液体の状態である間に行う。 Next, the first substrate and the second substrate to which the mixed solution has been supplied are bonded together (Step D). Step D is performed after step C while the mixed solution is in a liquid state.
 貼り合わせ方法としてはプレス法、ロールラミネータ法などを適用することができる。例えば、大気圧雰囲気下で、プレス、ラミネート、ロールラミネートで面状にないし線上に加圧を行うことができる。また加圧の際に加熱することによりプロセスを促進することもできる。本実施形態では、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が接着界面の余分な混合溶液を順次接着面から押し出しながら張り合わせができるため好ましい。 As a bonding method, a press method, a roll laminator method, etc. can be applied. For example, pressure can be applied in a planar or linear manner by pressing, laminating, or roll laminating under atmospheric pressure. The process can also be accelerated by heating during pressurization. In this embodiment, pressing or roll lamination in an atmospheric atmosphere is preferred, and a method using rolls (roll lamination, etc.) is particularly preferred because it allows lamination while sequentially extruding excess mixed solution at the adhesive interface from the adhesive surface.
 貼り合わせ時の圧力としては、線圧で0.2kgf/cm以上であることが好ましく、0.4kgf/cm以上であることがより好ましい。線圧で0.2kgf/cm以上で貼り合わせることで基板同士を良好に密着させることができる。
 さらに、貼り合わせ時の圧力としては、線圧で2.0kgf/cm以下であることが好ましく、1.8kgf/cm以下であることがより好ましい。線圧で2.0kgf/cm以下で貼り合わせることで、基板間のシランカップリング剤溶液量が適切になり、良好な接着強度を得ることができる。
The pressure during bonding is preferably 0.2 kgf/cm or more in linear pressure, and more preferably 0.4 kgf/cm or more. By bonding with a linear pressure of 0.2 kgf/cm or more, the substrates can be brought into good contact with each other.
Furthermore, the pressure during bonding is preferably 2.0 kgf/cm or less in linear pressure, and more preferably 1.8 kgf/cm or less. By bonding at a linear pressure of 2.0 kgf/cm or less, the amount of silane coupling agent solution between the substrates becomes appropriate, and good adhesive strength can be obtained.
 その後、加熱処理を行うことにより、シランカップリング剤の反応を進行させ、第1の基板と第2の基板とを接着する。
 前記加熱処理は、第1の基板と第2の基板とを好適に接着できる範囲で適宜設定すればよい。前記加熱処理は、特に限定されないが、エージング処理と、反応処理との2段階に分けてもよい。
 前記エージング処理としては、温度25℃以上65℃以下で、1時間以上48時間以下の処理が挙げられる。
 前記反応処理としては、温度80℃以上110℃以下で、1時間以上48時間以下の処理が挙げられる。
Thereafter, heat treatment is performed to advance the reaction of the silane coupling agent and bond the first substrate and the second substrate.
The heat treatment may be set as appropriate within a range that allows the first substrate and the second substrate to be properly bonded. The heat treatment is not particularly limited, but may be divided into two stages: aging treatment and reaction treatment.
Examples of the aging treatment include treatment at a temperature of 25° C. or more and 65° C. or less for 1 hour or more and 48 hours or less.
Examples of the reaction treatment include treatment at a temperature of 80° C. or more and 110° C. or less for 1 hour or more and 48 hours or less.
 以上により、第1の基板と、シランカップリング剤層と、第2の基板とがこの順で積層された積層体が得られる。
 前記積層体の製造方法によれば、前記混合溶液中のアルコールの含有量がシランカップリング剤に対して1モル%以下であるため、前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせると、積層体内に閉じ込められるアルコール量は少ない。その結果、前記浮きの量を減らすことができる。その結果、得られる積層体は、加熱後も接着強度が大きく低下しない。
Through the above steps, a laminate in which the first substrate, the silane coupling agent layer, and the second substrate are laminated in this order is obtained.
According to the method for manufacturing the laminate, since the alcohol content in the mixed solution is 1 mol % or less with respect to the silane coupling agent, the first substrate after being supplied with the mixed solution When the second substrate is bonded together, the amount of alcohol trapped in the laminate is small. As a result, the amount of floating can be reduced. As a result, the adhesive strength of the obtained laminate does not decrease significantly even after heating.
 以上、本実施形態に係る積層体の製造方法について説明した。 The method for manufacturing a laminate according to this embodiment has been described above.
 上述した実施形態では、第1の基板と、シランカップリング剤層と、第2の基板とがこの順で積層された積層体について説明した。上記積層体は、さらに、第2のシランカップリング剤層と、第3の基板とを備えていてもよい。具体的には、上記積層体は、第1の基板と、第1のシランカップリング剤層と、第2の基板と、第2のシランカップリング剤層と、第3の基板がこの順で積層された積層体であってもよい。
 前記第1のシランカップリング剤層、前記第2のシランカップリング剤層としては、上記にて説明した「シランカップリング剤層」と同様の構成を採用することができる。前記第1のシランカップリング剤層の組成と前記第2のシランカップリング剤層の組成は、同一であってもよく、異なっていてもよい。前記第3の基板としては、上述した耐熱高分子フィルム、上述した無機基板が挙げられる。
In the embodiment described above, a laminate in which the first substrate, the silane coupling agent layer, and the second substrate are laminated in this order has been described. The laminate may further include a second silane coupling agent layer and a third substrate. Specifically, the laminate includes a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate in this order. It may be a laminated body.
The first silane coupling agent layer and the second silane coupling agent layer may have the same structure as the "silane coupling agent layer" described above. The composition of the first silane coupling agent layer and the composition of the second silane coupling agent layer may be the same or different. Examples of the third substrate include the above-mentioned heat-resistant polymer film and the above-mentioned inorganic substrate.
 前記積層体が、第1の基板と、第1のシランカップリング剤層と、第2の基板と、第2のシランカップリング剤層と、第3の基板がこの順で積層された積層体である場合、第1の基板と第2の基板との間にある浮きが、[B1]≧[A1]、[B2]≧[A2]、前記B1が20個以下、及び、前記B2が4.0mm以下を満たすことが好ましい。 The laminate is a laminate in which a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate are laminated in this order. , the float between the first substrate and the second substrate is [B1]≧[A1], [B2]≧[A2], the number of B1 is 20 or less, and the number of B2 is 4 It is preferable to satisfy .0 mm or less.
 また、前記積層体が、第1の基板と、第1のシランカップリング剤層と、第2の基板と、第2のシランカップリング剤層と、第3の基板がこの順で積層された積層体である場合、第1の基板と第2の基板との間にある浮きが、「[B1]/[A1]が1.5以下」、且つ、「[B2]/[A2]が2.0以下」を満たし、且つ、第2の基板と第3の基板との間にある浮きが、「[B1]/[A1]が1.5以下」、且つ、「[B2]/[A2]が2.0以下」を満たすことが好ましい。 Further, the laminate may include a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate laminated in this order. In the case of a laminate, the float between the first substrate and the second substrate is such that "[B1]/[A1] is 1.5 or less" and "[B2]/[A2] is 2". .0 or less", and the float between the second and third substrates satisfies "[B1]/[A1] is 1.5 or less", and "[B2]/[A2] ] is preferably 2.0 or less.
 前記積層体が、第1の基板と、第1のシランカップリング剤層と、第2の基板と、第2のシランカップリング剤層と、第3の基板がこの順で積層された積層体である場合、その製造方法は特に限定されない。例えば、第1の基板と、第1のシランカップリング剤層と、第2の基板とが積層された積層体を準備し、前記第2の基板上、及び/又は、別途準備した第3の基板上に、シランカップリング剤と水とを含む混合溶液を供給し、前記混合溶液が供給された後の前記第2の基板と前記第3の基板とを貼り合わせればよい。 The laminate is a laminate in which a first substrate, a first silane coupling agent layer, a second substrate, a second silane coupling agent layer, and a third substrate are laminated in this order. In this case, the manufacturing method is not particularly limited. For example, a laminate in which a first substrate, a first silane coupling agent layer, and a second substrate are stacked is prepared, and a third substrate is placed on the second substrate and/or a separately prepared third substrate. A mixed solution containing a silane coupling agent and water may be supplied onto the substrate, and the second substrate and the third substrate may be bonded together after the mixed solution has been supplied.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in detail using Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.
 (実施例1)
<シランカップリング剤溶液の調製>
 シランカップリング剤20質量部(3-アミノプロピルトリメトキシシラン、信越化学工業製:KBM-903)に純水6質量部を加え、室温(25℃)にて3時間攪拌した。その後、30℃の水浴を備えたエバポレーターを用い、1時間かけて、攪拌後の液から生成したアルコールの除去を行い、シランカップリング剤溶液1(混合溶液)を得た。
(Example 1)
<Preparation of silane coupling agent solution>
6 parts by mass of pure water was added to 20 parts by mass of a silane coupling agent (3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.: KBM-903), and the mixture was stirred at room temperature (25°C) for 3 hours. Thereafter, using an evaporator equipped with a 30° C. water bath, the alcohol generated from the stirred liquid was removed over a period of 1 hour to obtain a silane coupling agent solution 1 (mixed solution).
<積層体の作製>
 SUS基板(材質:SUS304、厚み30μm、520mm×520mm、表面の算術平均粗さ(Ra):120nm)上に十分な量のシランカップリング剤溶液1を滴下した。次に、シランカップリング剤溶液1を滴下したSUS基板上にラミネーターを用いて、線圧1.5kgf/cmにてポリイミドフィルム(ゼノマックスジャパン株式会社製、製品名:XENOMAX、厚さ15μm、500mm×500mm)をラミネートした。このラミネートにより、余分なシランカップリング剤溶液1は、押し出された。得られた積層物を、空気中、40℃で12時間、エージング処理を行い、さらに、空気中、110℃で60分熱処理を実施することで実施例1に係る積層体を得た。
 なお、SUS基板は、本発明の第2の基板に相当し、ポリイミドフィルムは、本発明の第1の基板に相当する。
 表面の算術平均粗さ(Ra)は、キーエンス製レーザーマイクロスコープ (製品名:OPTELICS HYBRID)を用いて測定した。測定は以下の条件で行った。基板の中央を観察領域とし、さらに観察領域の中央を評価領域として、基板の表面粗さを測定した。評価は試料1点につき、1つの観察領域で行った。以下の実施例の基板についても同様に測定した(ガラス基板を除く)。
観察領域:300μm×300μm
評価領域:150μm×150μm
観察倍率:50倍
<Preparation of laminate>
A sufficient amount of silane coupling agent solution 1 was dropped onto a SUS substrate (material: SUS304, thickness 30 μm, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 120 nm). Next, a polyimide film (manufactured by XENOMAX Japan Co., Ltd., product name: XENOMAX, thickness 15 μm, 500 mm x500mm) were laminated. Due to this lamination, excess silane coupling agent solution 1 was extruded. The obtained laminate was aged in air at 40° C. for 12 hours, and then heat treated in air at 110° C. for 60 minutes to obtain a laminate according to Example 1.
Note that the SUS substrate corresponds to the second substrate of the present invention, and the polyimide film corresponds to the first substrate of the present invention.
The arithmetic mean roughness (Ra) of the surface was measured using a laser microscope manufactured by Keyence Corporation (product name: OPTELICS HYBRID). The measurements were conducted under the following conditions. The surface roughness of the substrate was measured using the center of the substrate as an observation area and the center of the observation area as an evaluation area. Evaluation was performed in one observation area for each sample. The same measurements were made for the substrates of the following examples (excluding glass substrates).
Observation area: 300μm x 300μm
Evaluation area: 150μm x 150μm
Observation magnification: 50x
 (実施例2)
<シランカップリング剤溶液の調製>
 純水6質量部を加える代わりに、純水20質量部を加えること以外は、実施例1と同様にして、シランカップリング剤溶液2を得た。
<積層体の作製>
 シランカップリング剤溶液2を用いたこと以外は、実施例1と同様にして、実施例2に係る積層体を得た。
(Example 2)
<Preparation of silane coupling agent solution>
Silane coupling agent solution 2 was obtained in the same manner as in Example 1 except that 20 parts by mass of pure water was added instead of 6 parts by mass of pure water.
<Preparation of laminate>
A laminate according to Example 2 was obtained in the same manner as Example 1 except that silane coupling agent solution 2 was used.
 (実施例3)
<シランカップリング剤溶液の調製>
 純水6質量部を加える代わりに、純水46質量部を加えること以外は、実施例1と同様にして、シランカップリング剤溶液3を得た。
<積層体の作製>
 シランカップリング剤溶液3を用いたこと以外は、実施例1と同様にして、実施例3に係る積層体を得た。
(Example 3)
<Preparation of silane coupling agent solution>
Silane coupling agent solution 3 was obtained in the same manner as in Example 1 except that 46 parts by mass of pure water was added instead of 6 parts by mass of pure water.
<Preparation of laminate>
A laminate according to Example 3 was obtained in the same manner as Example 1 except that silane coupling agent solution 3 was used.
 (実施例4)
<シランカップリング剤溶液の調製>
 シランカップリング剤として3-アミノプロピルトリエトキシシラン、信越化学工業製:KBE-903(分子式:(CO)SiCNH))を用いたこと以外は実施例3と同様にして、シランカップリング剤溶液4を得た。なお、実施例3と実施例4とで、[アルコール]/[シランカプリング剤]のモル比が異なるのは、シランカップリング剤の分子量が異なることによる。
<積層体の作製>
 シランカップリング剤溶液4を用いたこと以外は、実施例1と同様にして、実施例4に係る積層体を得た。
(Example 4)
<Preparation of silane coupling agent solution>
Example 3 except that 3-aminopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.: KBE-903 (molecular formula: (C 2 H 5 O) 3 SiC 3 H 6 NH 2 )) was used as the silane coupling agent. In the same manner, silane coupling agent solution 4 was obtained. The reason why the molar ratio of [alcohol]/[silane coupling agent] is different between Example 3 and Example 4 is because the molecular weight of the silane coupling agent is different.
<Preparation of laminate>
A laminate according to Example 4 was obtained in the same manner as in Example 1 except that silane coupling agent solution 4 was used.
 (実施例5)
<積層体の作製>
 SUS基板の代わりに、銅基板(古河電気工業株式会社製電解銅箔GTS-SD、厚み105μm、520mm×520mm、表面の算術平均粗さ(Ra):400nm)
を用いたこと以外は、実施例3と同様にして、実施例5に係る積層体を得た。
(Example 5)
<Preparation of laminate>
Instead of the SUS substrate, use a copper substrate (electrolytic copper foil GTS-SD manufactured by Furukawa Electric Co., Ltd., thickness 105 μm, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 400 nm)
A laminate according to Example 5 was obtained in the same manner as Example 3 except that the following was used.
 (実施例6)
<シランカップリング剤溶液の調製>
 純水6質量部を加える代わりに、純水60質量部を加えること以外は、実施例1と同様にして、シランカップリング剤溶液5を得た。
<積層体の作製>
 SUS基板の代わりに、ガラス基板(厚さ0.7mm、520mm×520mm、表面の算術平均粗さ(Ra):0.2nm):日本電気硝子社製OA10G)を用いたこと、及び、シランカップリング剤溶液3の代わりに、シランカップリング剤溶液5を用いたこと以外は、実施例3と同様にして、実施例6に係る積層体を得た。
 ガラス表面の算術平均粗さ(Ra)は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS-20A」を使用し、走査範囲は10μm四方とし、測定分解能は512×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、測定に伴うノイズが含まれる場合には適宜その他の平坦化処理(例えばフラット処理)を使用し、装置付属のソフトウエアでRa値を算出した。任意の3箇所について計測を行ってRa値を求め、それらの平均値を採用した。
(Example 6)
<Preparation of silane coupling agent solution>
Silane coupling agent solution 5 was obtained in the same manner as in Example 1 except that 60 parts by mass of pure water was added instead of 6 parts by mass of pure water.
<Preparation of laminate>
Instead of the SUS substrate, a glass substrate (thickness 0.7 mm, 520 mm x 520 mm, surface arithmetic mean roughness (Ra): 0.2 nm): Nippon Electric Glass Co., Ltd. OA10G) was used, and a silane cup was used. A laminate according to Example 6 was obtained in the same manner as in Example 3 except that silane coupling agent solution 5 was used instead of ring agent solution 3.
The arithmetic mean roughness (Ra) of the glass surface was measured using a scanning probe microscope with a surface property evaluation function ("SPA300/nanonavi" manufactured by SII Nano Technology Co., Ltd.). The measurement was performed in DFM mode, the cantilever used was "DF3" or "DF20" made by SII Nanotechnology Co., Ltd., and the scanner was "FS-20A" made by SII Nanotechnology Co., Ltd., and the scanning range was The size was 10 μm square, and the measurement resolution was 512×512 pixels. After performing secondary tilt correction on the measurement image using the software included with the device, if noise associated with the measurement is included, use other flattening processing (for example, flat processing) as appropriate, and use the software included with the device to correct the Ra The value was calculated. Measurements were taken at three arbitrary locations to determine the Ra value, and the average value thereof was employed.
 (実施例7)
 <積層体の作製>
 SUS基板の代わりに、第2の基板としてSUS不織布(厚み35μm、520mm×520mm、繊維径5μm、目付5.1g/cm)を用いたこと以外は、実施例6と同様にして、実施例7に係る積層体を得た。
(Example 7)
<Preparation of laminate>
Example 6 was carried out in the same manner as in Example 6, except that a SUS nonwoven fabric (thickness 35 μm, 520 mm x 520 mm, fiber diameter 5 μm, basis weight 5.1 g/cm 2 ) was used as the second substrate instead of the SUS substrate. A laminate according to No. 7 was obtained.
 (比較例1)
<シランカップリング剤溶液の調製>
 純水6質量部を加える代わりに、純水100質量部を加えること以外は、実施例1と同様にして、シランカップリング剤溶液6を得た。
<積層体の作製>
 シランカップリング剤溶液6を用いたこと以外は、実施例1と同様にして、比較例1に係る積層体を得た。
(Comparative example 1)
<Preparation of silane coupling agent solution>
Silane coupling agent solution 6 was obtained in the same manner as in Example 1 except that 100 parts by mass of pure water was added instead of 6 parts by mass of pure water.
<Preparation of laminate>
A laminate according to Comparative Example 1 was obtained in the same manner as in Example 1 except that silane coupling agent solution 6 was used.
 (比較例2)
<シランカップリング剤溶液の調製>
 シランカップリング剤20質量部(3-アミノプロピルトリメトキシシラン、信越化学工業製:KBM-903)に純水46質量部を加え、室温(25℃)にて3時間攪拌し、シランカップリング剤溶液7(混合溶液)を得た。
<積層体の作製>
 シランカップリング剤溶液7を用いたこと以外は、実施例1と同様にして、比較例2に係る積層体を得た。
(Comparative example 2)
<Preparation of silane coupling agent solution>
46 parts by mass of pure water was added to 20 parts by mass of a silane coupling agent (3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-903), and the mixture was stirred at room temperature (25°C) for 3 hours. Solution 7 (mixed solution) was obtained.
<Preparation of laminate>
A laminate according to Comparative Example 2 was obtained in the same manner as in Example 1 except that silane coupling agent solution 7 was used.
(比較例3)
<積層体の作製>
 シランカップリング剤溶液6を用いたこと以外は、実施例7と同様にして、比較例3に係る積層体を得た。
(Comparative example 3)
<Preparation of laminate>
A laminate according to Comparative Example 3 was obtained in the same manner as in Example 7 except that silane coupling agent solution 6 was used.
<シランカップリング剤溶液のアルコール量の測定>
 シランカップリング剤溶液中のアルコール/シランカップリング剤比率はH-NMRにて測定した。
 シランカップリング剤溶液に20質量%の重水を加えた。重水での希釈後すぐにH-NMR測定を実施した。
 シランカップリング剤由来のCHの1つである2.6ppm付近のピークとメタノール由来のCHの3.2~3.5ppm付近のピークの積分値の比により、シランカップリング剤に対するアルコール含有量(モル%)を求めた。
 具体的には下記式で求めた。
 シランカップリング剤に対するアルコールの含有量(モル%)=[(メタノール由来のCHのピークの積分値/3)]/[(シランカップリング剤中のCHのピークの積分値)/2)]
 実施例1のシランカップリング剤溶液の、シランカップリング剤に対するアルコール含有量は0.9モル%であった。
 また、実施例4においてはエタノール由来のCHの1.2ppm付近のピークを用いて比率を求めた。
 結果を表1に示す。
(測定条件)
装置:フーリエ変換核磁気共鳴装置(ブルカージャパン株式会社 AVANCE NEO 600型)
測定溶液:試料液と重水を80/20vol比で混合
H共鳴周波数:600.134MHz
検出パルスのフリップ角:30°
データ取り込み時間:3~4秒
遅延時間:1秒
積算回数:10~40回
測定温度:30℃
<Measurement of alcohol content in silane coupling agent solution>
The alcohol/silane coupling agent ratio in the silane coupling agent solution was measured by 1 H-NMR.
20% by mass of heavy water was added to the silane coupling agent solution. 1 H-NMR measurements were performed immediately after dilution with heavy water.
The alcohol content relative to the silane coupling agent is determined by the ratio of the integral value of the peak around 2.6 ppm of CH 2 derived from the silane coupling agent and the peak around 3.2 to 3.5 ppm of CH 3 derived from methanol. The amount (mol%) was determined.
Specifically, it was calculated using the following formula.
Alcohol content (mol%) with respect to silane coupling agent = [(integral value of CH 3 peak derived from methanol/3)]/[(integral value of CH 2 peak in silane coupling agent)/2) ]
The alcohol content of the silane coupling agent solution of Example 1 with respect to the silane coupling agent was 0.9 mol %.
Furthermore, in Example 4, the ratio was determined using the peak around 1.2 ppm of CH 3 derived from ethanol.
The results are shown in Table 1.
(Measurement condition)
Equipment: Fourier transform nuclear magnetic resonance apparatus (Bruker Japan Co., Ltd. AVANCE NEO 600 model)
Measurement solution: mix sample solution and heavy water at 80/20 vol ratio
1H resonance frequency: 600.134MHz
Detection pulse flip angle: 30°
Data acquisition time: 3-4 seconds Delay time: 1 second Number of integration: 10-40 times Measurement temperature: 30℃
<シランカップリング剤溶液の29Si-NMR測定>
 シランカップリング剤溶液に20質量%の重水を加えた。重水での希釈後すぐに29Si-NMR測定を実施した。
 得られるスペクトルの積分値の比からT0構造を有するSi、T1構造を有するSi、T2構造を有するSi、及び、T3構造を有するSiの含有量(%)を算出した。結果を表1に示す。また、表1には、T0とT1の合計含有量(%)、及び、T2とT3の合計含有量(%)も合わせて示す。なお、T2とT3の合計含有量(%)は、前記X/Yに相当する。
(測定条件)
装置:フーリエ変換核磁気共鳴装置(ブルカージャパン株式会社 AVANCE NEO 600型)
測定溶液:試料液と重水を80/20vol比で混合
29Si共鳴周波数:119.22MHz
検出パルスのフリップ角:90°
データ取り込み時間:2秒
遅延時間:13秒
プロトンデカップリング:インバースゲートデカップル
積算回数:30℃
積算回数:100~500回
< 29 Si-NMR measurement of silane coupling agent solution>
20% by mass of heavy water was added to the silane coupling agent solution. 29 Si-NMR measurements were performed immediately after dilution with heavy water.
The content (%) of Si having a T0 structure, Si having a T1 structure, Si having a T2 structure, and Si having a T3 structure was calculated from the ratio of the integral values of the obtained spectra. The results are shown in Table 1. Table 1 also shows the total content (%) of T0 and T1 and the total content (%) of T2 and T3. Note that the total content (%) of T2 and T3 corresponds to the above-mentioned X/Y.
(Measurement condition)
Equipment: Fourier transform nuclear magnetic resonance apparatus (Bruker Japan Co., Ltd. AVANCE NEO 600 type)
Measurement solution: mix sample solution and heavy water at 80/20 vol ratio
29 Si resonance frequency: 119.22MHz
Detection pulse flip angle: 90°
Data acquisition time: 2 seconds Delay time: 13 seconds Proton decoupling: Inverse gate decoupling accumulation count: 30℃
Accumulation number: 100 to 500 times
<加熱前の浮きの測定>
 実施例、比較例の積層体の幅方向の中央部を中心とし、2,500cm(50cm×50cm)の大きさに切り出した。切り出した積層体を、目視にて直径が0.5mm以上の浮きの個数(気泡の個数)をカウントした。その個数をA1とした。次に、前記A1個の浮きの直径を、デジタルマイクロスコープ(機種名:VHX-970F 株式会社キーエンス製)を用いて測定し、その平均をA2mmとした。
 積層体のサイズが2,500cmよりも小さい場合は積層体の全面を測定し、浮きカウント後に、2,500cm換算の個数に再計算した。
<Measurement of floating before heating>
The laminates of Examples and Comparative Examples were cut out to a size of 2,500 cm 2 (50 cm x 50 cm) centering on the center in the width direction. The number of floats (the number of bubbles) having a diameter of 0.5 mm or more was visually counted from the cut out laminate. The number was set as A1. Next, the diameters of the A1 floats were measured using a digital microscope (model name: VHX-970F, manufactured by Keyence Corporation), and the average diameter was defined as A2 mm.
When the size of the laminate was smaller than 2,500 cm 2 , the entire surface of the laminate was measured, and after float counting, the number was recalculated to the equivalent of 2,500 cm 2 .
<加熱後の浮きの測定>
 加熱前の浮き測定に用いた積層体を空気中、200℃で1時間加熱した。加熱した積層体を、目視にて直径が0.5mm以上の浮きの個数(気泡の個数)をカウントし、その個数をB1とした。次に、前記B1個の浮きの直径を、デジタルマイクロスコープ(機種名:VHX-970F 株式会社キーエンス製)を用いて測定し、その平均をB2mmとした。
 積層体のサイズが2,500cmよりも小さい場合は積層体の全面を測定し浮きをカウント後に、2,500cm換算の個数に再計算した。
<Measurement of floating after heating>
The laminate used for floating measurement before heating was heated in air at 200° C. for 1 hour. The number of floats (the number of bubbles) having a diameter of 0.5 mm or more was visually counted in the heated laminate, and the number was designated as B1. Next, the diameters of the B1 floats were measured using a digital microscope (model name: VHX-970F, manufactured by Keyence Corporation), and the average thereof was taken as B2 mm.
When the size of the laminate was smaller than 2,500 cm 2 , the entire surface of the laminate was measured and the floats were counted, and then the number was recalculated based on 2,500 cm 2 .
 A1、A2、B1、B2を表1に示す。 A1, A2, B1, and B2 are shown in Table 1.
<90度剥離強度>
 実施例、比較例の積層体を200℃、1時間加熱した。その後、90度剥離強度を、JIS K6854-1:1999に規定される90度剥離法に従って測定した。
  装置名     : 島津製作所社製 オートグラフAG-IS
  測定温度    : 室温
  剥離速度    : 100mm/min
  雰囲気     : 大気
  測定サンプル幅 : 10mm
<90 degree peel strength>
The laminates of Examples and Comparative Examples were heated at 200° C. for 1 hour. Thereafter, the 90 degree peel strength was measured according to the 90 degree peel method specified in JIS K6854-1:1999.
Equipment name: Autograph AG-IS manufactured by Shimadzu Corporation
Measurement temperature: room temperature Peeling speed: 100mm/min
Atmosphere: Air Measurement sample width: 10mm
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Claims (8)

  1.  第1の基板と、シランカップリング剤層と、第2の基板とがこの順で積層された積層体であって、
     面積2,500cm当たりの、加熱前の直径0.5mm以上の円形の浮きの個数をA1とし、200℃、1時間加熱後の直径0.5mm以上の円形の浮きの個数をB1としたとき、[B1]≧[A1]を満たし、
     前記A1個の浮きの直径の平均をA2、前記B1個の浮きの直径の平均をB2としたとき、[B2]≧[A2]を満たし、
     前記B1が20個以下であり、
     前記B2が4.0mm以下であることを特徴とする積層体。
    A laminate in which a first substrate, a silane coupling agent layer, and a second substrate are laminated in this order,
    When the number of circular floats with a diameter of 0.5 mm or more before heating per area of 2,500 cm 2 is A1, and the number of circular floats with a diameter of 0.5 mm or more after heating at 200 ° C for 1 hour is B1. , [B1]≧[A1],
    When the average diameter of the A1 floats is A2, and the average diameter of the B1 floats is B2, [B2]≧[A2] is satisfied,
    The number of B1 is 20 or less,
    A laminate characterized in that the B2 is 4.0 mm or less.
  2.  前記第1の基板が耐熱高分子フィルムであり、
     前記第2の基板が金属基板であることを特徴とする請求項1に記載の積層体。
    the first substrate is a heat-resistant polymer film,
    The laminate according to claim 1, wherein the second substrate is a metal substrate.
  3.  前記シランカップリング剤層を構成するシランカップリング剤がアミノ基を有することを特徴とする請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the silane coupling agent constituting the silane coupling agent layer has an amino group.
  4.  前記第1の基板と前記第2の基板との90°初期剥離強度が、0.1N/cm以上6N/cm以下であることを特徴とする請求項1~3のいずれか1に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the 90° initial peel strength between the first substrate and the second substrate is 0.1 N/cm or more and 6 N/cm or less. body.
  5.  200℃で1時間加熱した後の前記第1の基板と前記第2の基板との90°剥離強度が、0.2N/cm以上10N/cm以下であることを特徴とする請求項1~4のいずれか1に記載の積層体。 Claims 1 to 4, wherein a 90° peel strength between the first substrate and the second substrate after heating at 200° C. for 1 hour is 0.2 N/cm or more and 10 N/cm or less. The laminate according to any one of the above.
  6.  第1の基板、及び、第2の基板を準備する工程A、
     シランカップリング剤と水とを含み、且つ、アルコールの含有量がシランカップリング剤に対して1モル%以下である混合溶液を準備する工程B、
     前記混合溶液を前記第1の基板上及び/又は前記第2の基板上に供給する工程C、及び、
     前記混合溶液が供給された後の前記第1の基板と前記第2の基板とを貼り合わせる工程Dを含むことを特徴とする積層体の製造方法。
    Step A of preparing a first substrate and a second substrate;
    Step B of preparing a mixed solution containing a silane coupling agent and water and having an alcohol content of 1 mol% or less relative to the silane coupling agent;
    Step C of supplying the mixed solution onto the first substrate and/or the second substrate, and
    A method for manufacturing a laminate, comprising a step D of bonding the first substrate and the second substrate together after the mixed solution is supplied.
  7.  前記工程Bは、シランカップリング剤と水とアルコールとを含む液からアルコールを取り除く工程を含むことを特徴とする請求項6に記載の積層体の製造方法。 7. The method for manufacturing a laminate according to claim 6, wherein the step B includes a step of removing alcohol from a liquid containing a silane coupling agent, water, and alcohol.
  8.  前記混合液中のシランカップリング剤は、29Si-NMR測定にて得られるスペクトルの積分値から算出される下記T2構造及び下記T3構造を有するSiの合計比率をX、下記T0構造、下記T1構造、下記T2構造及び下記T3構造を有するSiの合計比率をYとしたとき、X/Yが81以上であることを特徴とする請求項6又は7に記載の積層体の製造方法。
     ただし、下記T0構造、下記T1構造、下記T2構造及び下記T3構造において、ZはC2nで表される2価のアルキル鎖であり、WはC2m+1で表される1価のアルキル基又は水素原子である(ただし、nは、1以上10以下の整数であり、mは、1以上10以下の整数である)。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    The silane coupling agent in the mixed solution is: 29 The total ratio of Si having the following T2 structure and the following T3 structure calculated from the integral value of the spectrum obtained by Si-NMR measurement is X, the following T0 structure, and the following T1 8. The method for manufacturing a laminate according to claim 6, wherein X/Y is 81 or more, where Y is the total ratio of Si having the following T2 structure and the following T3 structure.
    However, in the following T0 structure, the following T1 structure, the following T2 structure, and the following T3 structure, Z is a divalent alkyl chain represented by C n H 2n , and W is a monovalent alkyl chain represented by C m H 2m+1 . It is an alkyl group or a hydrogen atom (where n is an integer of 1 or more and 10 or less, and m is an integer of 1 or more and 10 or less).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
PCT/JP2023/010563 2022-03-29 2023-03-17 Laminate and method for producing laminate WO2023189719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024511819A JPWO2023189719A1 (en) 2022-03-29 2023-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052773 2022-03-29
JP2022-052773 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189719A1 true WO2023189719A1 (en) 2023-10-05

Family

ID=88201843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010563 WO2023189719A1 (en) 2022-03-29 2023-03-17 Laminate and method for producing laminate

Country Status (3)

Country Link
JP (1) JPWO2023189719A1 (en)
TW (1) TW202346093A (en)
WO (1) WO2023189719A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201293A (en) * 2001-10-17 2003-07-18 Degussa Ag Aminoalkylalkoxysiloxane-containing mixture, method for producing the same, application of the same, and paint, lacquer and resin containing the same
JP2018126922A (en) * 2017-02-08 2018-08-16 東洋紡株式会社 Laminate
WO2023002920A1 (en) * 2021-07-20 2023-01-26 東洋紡株式会社 Laminate roll
WO2023002919A1 (en) * 2021-07-20 2023-01-26 東洋紡株式会社 Laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201293A (en) * 2001-10-17 2003-07-18 Degussa Ag Aminoalkylalkoxysiloxane-containing mixture, method for producing the same, application of the same, and paint, lacquer and resin containing the same
JP2018126922A (en) * 2017-02-08 2018-08-16 東洋紡株式会社 Laminate
WO2023002920A1 (en) * 2021-07-20 2023-01-26 東洋紡株式会社 Laminate roll
WO2023002919A1 (en) * 2021-07-20 2023-01-26 東洋紡株式会社 Laminate

Also Published As

Publication number Publication date
JPWO2023189719A1 (en) 2023-10-05
TW202346093A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR101319170B1 (en) Laminated body, manufacturing method thereof, and laminated circuit board
WO2021241574A1 (en) Laminate including transparent film with high heat resistance
WO2021241571A1 (en) Layered product including high temperature-resistant transparent film
WO2022070617A1 (en) Layered body including inorganic substrate and polyamic acid cured product
KR20240023496A (en) laminate
WO2023189719A1 (en) Laminate and method for producing laminate
WO2021241570A1 (en) Multilayer body comprising highly heat-resistant transparent film
EP4371767A1 (en) Multilayer body of inorganic substrate and transparent heat-resistant polymer film
WO2022018994A1 (en) Multilayer body and method for producing flexible device
WO2022113415A1 (en) Laminate
EP4371766A1 (en) Laminate of inorganic substrate and heat-resistant polymer film
WO2023058408A1 (en) Laminate equipped with protective-film-release-assisting tape
TW202323379A (en) Transparent heat-resistant laminated film
WO2024009853A1 (en) Layered product and method for producing layered product
WO2021070719A1 (en) Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024511819

Country of ref document: JP