WO2015012339A1 - Laminate, method for processing same, and method for manufacturing flexible device - Google Patents

Laminate, method for processing same, and method for manufacturing flexible device Download PDF

Info

Publication number
WO2015012339A1
WO2015012339A1 PCT/JP2014/069526 JP2014069526W WO2015012339A1 WO 2015012339 A1 WO2015012339 A1 WO 2015012339A1 JP 2014069526 W JP2014069526 W JP 2014069526W WO 2015012339 A1 WO2015012339 A1 WO 2015012339A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
resin layer
inorganic substrate
polyimide resin
laminate
Prior art date
Application number
PCT/JP2014/069526
Other languages
French (fr)
Japanese (ja)
Inventor
朗 繁田
吉田 猛
祐己 山田
達弥 森北
山田 宗紀
寿史朗 江口
雅弘 細田
良彰 越後
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2015528325A priority Critical patent/JP6363077B2/en
Priority to CN201480041568.6A priority patent/CN105408115B/en
Publication of WO2015012339A1 publication Critical patent/WO2015012339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Definitions

  • the present invention relates to a laminate in which a polyimide film is formed on an inorganic substrate, a processing method thereof, and a manufacturing method of a flexible device.
  • the laminate and the treatment method of the present invention are useful, for example, when manufacturing a flexible device or a flexible wiring board in which an electronic element is formed on the surface of a flexible substrate.
  • inorganic materials such as glass substrates.
  • FPD flat panel displays
  • LCD liquid crystal displays
  • PDP plasma display panels
  • OLED organic EL displays
  • electronic paper mainly from inorganic materials such as glass substrates.
  • a substrate in which an electronic element is formed on a substrate (inorganic substrate) is used.
  • the inorganic substrate is rigid and lacks flexibility, there is a problem that it is difficult to be flexible.
  • Patent Documents 1 and 2 and Non-Patent Document 1 a method of irradiating a polyimide interface in contact with a glass substrate with laser light has been proposed (for example, Patent Documents 1 and 2 and Non-Patent Document 1). Also, a method of heating the polyimide interface in contact with the glass substrate with Joule heat without using laser light (Patent Document 3), a method of induction heating (Patent Document 4), and a method of irradiating flash light from a xenon lamp ( A method for peeling is proposed by Patent Document 5) and the like. In such a method, only one layer is in contact with the inorganic substrate at the peeling interface between the inorganic substrate and the polyimide film. However, these methods have a problem that the process is complicated and takes a long time, and the equipment is expensive, which is not only expensive but also difficult to reuse the inorganic substrate.
  • Patent Document 6 proposes a method of improving the peelability of the polyimide laminate by leaving it in pressurized steam for a long time.
  • Patent Document 7 proposes a method of immersing in water in order to improve the peelability of the polyimide laminate.
  • Patent Document 8 a patterned adhesive layer is formed on a glass substrate, a flexible substrate layer such as polyimide is formed on both the adhesive layer surface and the glass plate surface, and then the adhesive layer surface.
  • a method has been proposed in which only the upper flexible substrate layer is separated and then the flexible substrate layer is peeled off from the glass substrate.
  • the present invention solves the above problems, and provides a laminate that has good adhesion between a polyimide film and an inorganic substrate, and can easily and easily peel the polyimide film from the inorganic substrate in a short time. Objective.
  • the adhesion between the polyimide film and the inorganic substrate is good, and even if a gas barrier layer is formed on the polyimide film, the polyimide film can be peeled from the inorganic substrate easily and in a short time.
  • the purpose is to provide a laminate.
  • the adhesion between the polyimide film and the inorganic substrate is good, and even if a member such as an electronic element or wiring is formed on the polyimide film, the polyimide film can be easily and quickly formed. It aims at providing the laminated body which can peel from an inorganic substrate.
  • laminate a laminate in which a polyimide film is formed on an inorganic substrate.
  • the present invention has the following purpose.
  • the polyimide film is a laminated film including a polyimide resin layer A and a polyimide resin layer B, the entire surface of the polyimide resin layer A is in contact with the inorganic substrate, and is on the surface of the polyimide resin layer A.
  • Part of the formed polyimide resin layer B is in contact with the inorganic substrate; (2) The adhesive strength between the polyimide resin layer A and the inorganic substrate is 2 N / cm or less; (3) The adhesive strength between the polyimide resin layer B and the inorganic substrate is more than 2 N / cm; (4) The polyimide resin layer B in contact with the inorganic substrate can be peeled from the inorganic substrate by moisture absorption treatment.
  • the method for treating a laminate wherein the moisture absorption treatment is a treatment in which the laminate is held under an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more and then dehumidified by decompression.
  • the laminate After forming one or more members selected from electronic elements and wiring (hereinafter may be abbreviated as “members such as electronic elements”) on the surface of the polyimide film of the laminate, the laminate is subjected to moisture absorption treatment. By removing the polyimide film provided with the above member from the inorganic substrate, and then cutting and removing the portion of the polyimide resin layer B in contact with the inorganic substrate, a flexible device is obtained. A manufacturing method of a flexible device.
  • the polyimide film of the laminate On the surface of the polyimide film of the laminate, one or more members selected from electronic elements and wirings are formed, and a predetermined portion of the polyimide film provided with the members is cut, the polyimide film After dividing the member formation region portion and the polyimide resin layer B portion in contact with the inorganic substrate, the member formation region portion in the polyimide film is peeled off to obtain a flexible device, and to the inorganic substrate.
  • a method for producing a flexible device wherein the remaining polyimide resin layer B is peeled off from the inorganic substrate by moisture absorption treatment.
  • the method for producing a flexible device wherein the moisture absorption treatment is a treatment of dehumidification by reducing pressure after holding the laminate in an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more.
  • the laminate of the present invention is easily flexible because the polyimide film can be easily peeled off from the inorganic substrate by, for example, moisture absorption treatment, despite the fact that the polyimide film is firmly adhered to the inorganic substrate. Devices and flexible wiring boards can be manufactured. Moreover, even when a gas barrier layer is formed on the surface of the polyimide film, good peelability can be easily obtained by moisture absorption treatment.
  • (A) is the schematic diagram (sectional drawing) of the laminated body of one embodiment which concerns on this invention
  • (B) is the outline when the laminated body of FIG. 1 (A) is seen from upper direction in a figure. It is a sketch.
  • (A) is the schematic diagram (sectional drawing) of the laminated body of one embodiment which concerns on this invention which has a gas barrier layer, (B) looked at the laminated body of FIG. 2 (A) from the upper direction in the figure. It is a schematic sketch at the time.
  • (A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method of manufacturing a flexible substrate by the processing method 1 of a laminated body using the laminated body of FIG. 1 (A). .
  • (A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method to manufacture a flexible substrate by the processing method 1 of a laminated body using the laminated body of FIG. 2 (A).
  • (A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method to manufacture a flexible substrate by the processing method 2 of a laminated body using the laminated body of FIG. 1 (A).
  • (A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method of manufacturing a flexible substrate by the processing method 2 of a laminated body using the laminated body of FIG. 2 (A). .
  • the laminate of the present invention has a flexible substrate layer made of a polyimide film on an inorganic substrate.
  • the inorganic substrate used here is not limited to a glass substrate, a metal substrate such as copper or aluminum, or a ceramic substrate such as alumina, but a glass substrate excellent in light transmittance is preferably used.
  • the glass substrate for example, soda lime glass, borosilicate glass, non-alkali glass or the like can be used, and among these, the non-alkali glass substrate can be preferably used.
  • the thickness of the inorganic substrate is preferably 0.3 to 5.0 mm. If the thickness is less than 0.3 mm, the handling property of the substrate may be lowered. Moreover, productivity may fall when thickness is thicker than 5.0 mm.
  • These inorganic substrates may be subjected to a surface treatment for controlling adhesion to the polyimide film layer, for example, a silane coupler treatment.
  • a laminate 100 of the present invention has a polyimide film 2 laminated on an inorganic substrate 1.
  • the polyimide film 2 is a laminated film including a polyimide resin layer A (21) and a polyimide resin layer B (22), and the entire surface of the polyimide resin layer A (21) is in contact with the inorganic substrate 1.
  • a part of the polyimide resin layer B (22) formed on the surface of the polyimide resin layer A (21) is in contact with the inorganic substrate 1.
  • FIG. 1A is a schematic view (cross-sectional view) of a laminate according to an embodiment of the present invention.
  • FIG. 1B is a schematic sketch when the laminate of FIG. 1A is viewed from above in the drawing.
  • the entire surface of the polyimide resin layer A is in contact with the inorganic substrate, as shown in FIG. 1A, the polyimide resin layer A (21) is in contact with the inorganic substrate 1 over the entire surface. It means that.
  • the polyimide resin layer B (22) is polyimide resin layer A (21).
  • the polyimide resin layer B (22) is formed at the outer edge portion 220 (shaded portion in the drawing) of the inorganic substrate. It means that it is in direct contact with 1.
  • the polyimide resin layer B When the polyimide resin layer B is not formed, and even when the polyimide resin layer B is formed, if a portion thereof is not in contact with the inorganic substrate, the adhesion of the polyimide film to the inorganic substrate 1 is reduced. For this reason, when a member such as an electronic element is formed on the polyimide film before the polyimide film is peeled off from the inorganic substrate, the polyimide film is peeled off and the working efficiency is lowered. When the entire surface of the polyimide resin layer B is in contact with the inorganic substrate, that is, when the polyimide resin layer A is not formed, the peelability of the polyimide film from the inorganic substrate is lowered.
  • the polyimide film portion immediately below the member is sufficiently moisture-absorbing. Therefore, it is difficult to peel the polyimide film from the inorganic substrate.
  • the area of the polyimide resin layer A is the area of the formation region of the polyimide resin layer A on the surface of the inorganic substrate 1 and is equal to the area of the broken line region 211 in FIG.
  • the area of the polyimide resin layer B refers to the area of the polyimide resin layer A and the outer peripheral region 210 of the polyimide resin layer A (21) on which the polyimide resin layer B is directly formed on the surface of the inorganic substrate 1. This is the sum of the area and is equal to the area of the region 22 showing the polyimide resin layer B in FIG.
  • the polyimide resin layer A (21) and the polyimide resin layer B (22) have a square shape, but the polyimide film 2 peeled off in the laminate of the present invention. It may have any shape depending on the application.
  • the polyimide resin layer A and the polyimide resin layer B may have, for example, a circular shape or a rectangular shape.
  • the shape of the polyimide resin layer A and the polyimide resin layer B is usually square or rectangular.
  • the adhesive strength of the polyimide resin layer A to the inorganic substrate is 2 N / cm or less, preferably 1 N / cm or less, and more preferably 0.5 N / cm or less.
  • the adhesive strength of the polyimide resin layer A with the inorganic substrate exceeds 2 N / cm, it is difficult to peel the polyimide film from the inorganic substrate.
  • the lower limit of the adhesive strength between the polyimide resin layer A and the inorganic substrate is not particularly limited, and the lower the better.
  • the adhesive strength of the polyimide resin layer B with the inorganic substrate is more than 2 N / cm, preferably 5 N / cm or more, and more preferably 7 N / cm or more.
  • the polyimide resin layer B can be peeled from the inorganic substrate by moisture absorption treatment. Specifically, after the moisture absorption treatment described later, the polyimide resin layer B can be peeled off by a specific peeling method described later such as a method of peeling off from the end portion by hand.
  • the polyimide resin layer B has the following adhesive strength after the moisture absorption treatment.
  • the adhesive strength of the polyimide resin layer B after the moisture absorption treatment with the inorganic substrate is usually 2 N / cm or less, preferably 1 N / cm or less, and more preferably 0.5 N / cm or less.
  • the polyimide resin layer B Since the polyimide resin layer B is bonded to the inorganic substrate with such a low adhesive strength by the moisture absorption treatment, the polyimide film can be easily peeled from the inorganic substrate. If the adhesive strength of the polyimide resin layer B with the inorganic substrate exceeds 2 N / cm after the moisture absorption treatment, it is difficult to peel the polyimide film from the inorganic substrate.
  • the lower limit value of the adhesive strength after the moisture absorption treatment of the polyimide resin layer B with the inorganic substrate is not particularly limited, and the lower the better.
  • the adhesive strength referred to in the present invention refers to a value measured by performing a 180 ° peel test on the adhesive strength between a polyimide resin layer and an inorganic substrate based on JIS K6854-2.
  • the polyimide resin layer A and the polyimide resin layer B constituting the polyimide film are formed by forming a polyimide resin into a film.
  • the polyimide resin is a resin having an imide bond in the main chain, and specific examples include polyimide, polyamideimide, polyesterimide, etc., but are not limited thereto, and a resin having an imide bond in the main chain. Any resin can be used. These resins are usually used alone, but two or more kinds may be mixed and used.
  • the polyimide resins constituting the polyimide resin layer A and the polyimide resin layer B are independently selected, and any polyimide resin is preferably used alone.
  • the polyimide it is possible to use a precursor type polyimide or a solvent soluble type polyimide which is obtained by thermally curing a polyimide precursor such as polyamic acid dissolved in a solvent, and a precursor type polyimide can be preferably used.
  • the polyimide resin preferably has 50 mol% or more of structural units derived from imide bonds (provided that all the structural units are 100 mol%).
  • polyimide resin Commercially available products may be used as the polyimide resin. That is, for example, “Uimide AR”, “Uimide AH”, “Uimide BH”, “Uimide CR”, “Uimide CH” (all manufactured by Unitika Ltd.) and U varnish A (manufactured by Ube Industries) Polyamic acid type varnish such as “Rika Coat SN-20” (manufactured by Shin Nippon Chemical Co., Ltd.), “Matrimid 5218” (manufactured by Huntsman), etc., dissolved in a solvent, polyimide soluble varnish, Viromax HR-11NN Polyamideimide varnish such as Toyobo Co., Ltd.) can be used.
  • Uimide AR Uimide AH
  • Uimide BH Uimide CR
  • Uimide CH all manufactured by Unitika Ltd.
  • U varnish A manufactured by Ube Industries
  • Polyamic acid type varnish such as “Rika Coat SN-20” (manufactured by Shin
  • the precursor-type polyimide is a polyimide precursor solution obtained by reacting approximately equimolar amounts of tetracarboxylic acid or dianhydride and diamine as raw materials in a solvent, and applying this, drying, thermosetting
  • a polyimide layer can be obtained by (imidization).
  • the reaction temperature at the time of producing this polyimide precursor solution is preferably ⁇ 30 to 60 ° C., more preferably ⁇ 15 to 40 ° C.
  • the order of addition of the monomer and the solvent is not particularly limited, and may be any order.
  • tetracarboxylic acid or dianhydride thereof examples include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3, 3 ', 4,4'-diphenylsulfone tetracarboxylic acid, acid, 3,3', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid, 2,3,6 , 7-naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dica
  • pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid or their dianhydrides are particularly preferably used.
  • diamine examples include p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4 '.
  • p-phenylenediamine, 4,4′-diaminodiphenyl ether, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane are particularly preferably used.
  • the solid content concentration of the polyimide precursor is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass.
  • This polyamic acid solution may be partially imidized.
  • the viscosity of the polyimide precursor solution of the present invention at 25 ° C. is preferably 1 to 150 Pa ⁇ s, more preferably 5 to 100 Pa ⁇ s.
  • the solvent used in the polyimide precursor solution is not limited as long as it is a solvent that dissolves the polyimide precursor, and examples thereof include amide solvents, ether solvents, and water-soluble alcohol solvents.
  • amide solvent examples include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and the like.
  • ether solvents include 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monoethyl ether, tetraethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol Monoethyl ether, tripropylene glycol monomethyl ether, polyethylene Glycol, polypropylene glycol, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether.
  • water-soluble alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, , 4-butadiol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 1,2,6-hexanetriol, di- Acetone alcohol etc. are mentioned.
  • solvents can be used as a mixture of two or more.
  • particularly preferred examples include N, N-dimethylacetamide and N-methyl-2-pyrrolidone as the sole solvent, and examples of the mixed solvent include N, N-dimethylacetamide and N—.
  • examples include combinations of methyl-2-pyrrolidone, N-methyl-2-pyrrolidone and methanol, N-methyl-2-pyrrolidone and 2-methoxyethanol, and the like.
  • polyimide precursor solution A for producing polyimide resin layer A
  • polyimide precursor solution B for producing polyimide resin layer B
  • polyimide solution A and polyimide solution B may be abbreviated as “polyimide solution A” and “polyimide solution B”, respectively.
  • the polyimide solution A is apply
  • the polyimide solution B is apply
  • the solvent it is preferable to remove the solvent until the solid content concentration in the coating film is 50% by mass or more and 90% by mass or less.
  • the adhesiveness of the interface of the polyimide resin layer A and the polyimide resin layer B is ensured, and it can laminate and integrate.
  • Any device can be used for drying, and a hot air dryer is preferable, but infrared heating, electromagnetic induction heating, or the like may be used.
  • a temperature range of 50 to 200 ° C. is suitable for drying.
  • the thermosetting here means the process of converting a polyimide precursor into a polyimide.
  • a temperature range of 300 to 450 ° C. is suitable for thermosetting.
  • a higher fatty acid such as stearic acid or palmitic acid, or a release agent such as an amide or a metal salt thereof may be added to the polyimide precursor solution A. It can. Of these, stearic acid is preferred.
  • stearic acid is preferred.
  • the greater the compounding amount of the release agent the smaller the adhesive strength of the polyimide resin layer.
  • the smaller the compounding amount of the release agent the greater the adhesive strength of the polyimide resin layer.
  • the compounding amount of the release agent in the polyimide precursor solution A is not particularly limited as long as the polyimide resin layer achieves a predetermined adhesive strength, and is usually added in an amount of 0.01 to 2% by mass relative to the polyimide mass. Is more preferable, and 0.1 to 1% by mass is more preferable.
  • the polyimide mass means the total polyimide mass in terms of polyimide contained in the polyimide precursor solution.
  • an adhesion improver described later can be blended in the polyimide precursor solution A.
  • the influence on the adhesive strength by the blending of the adhesion improver is the same as in the polyimide precursor solution B.
  • an adhesion improver such as a silane coupler can be blended in the solution as necessary in order to obtain the adhesive strength.
  • the silane coupler is not limited in its type such as amine, epoxy, and acrylic, but is preferably an amine.
  • the greater the compounding amount of the adhesion improver the greater the adhesive strength of the polyimide resin layer.
  • the smaller the compounding amount of the adhesion improver the smaller the adhesive strength of the polyimide resin layer.
  • the compounding amount of the adhesion improver in the polyimide precursor solution B it is preferable to add 0.05 to 0.5% by mass, more preferably 0.05 to 0.2% by mass, and more preferably to the polyimide mass. Preferably it is 0.1 to 0.2 mass%.
  • the polyimide precursor solutions A and B can be applied continuously or in single wafers.
  • Continuous coating can be carried out using a coating machine such as a die coater, lip coater, comma coater, gravure coater, reverse roll coater.
  • a coating machine such as a die coater, lip coater, comma coater, gravure coater, reverse roll coater.
  • Continuous coating can also be performed using a coating machine such as a bar coater, a doctor blade coater, or a spin coater.
  • a coating machine such as a bar coater, a doctor blade coater, or a spin coater.
  • the coating thickness of the polyimide resin layer A is preferably 0.5 to 10 ⁇ m and more preferably 1 to 5 ⁇ m after thermosetting. Moreover, as the application thickness of the polyimide resin layer B, the thickness after thermosetting is preferably 5 to 200 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • the thickness of the polyimide resin layer B is the thickness of the entire polyimide film including the polyimide resin layer A, and is equal to the thickness of the outer edge portion 220.
  • this gas barrier layer can be provided in the part by which the polyimide-type resin layer A of the surface of the polyimide-type resin layer B is laminated
  • a film made of an inorganic oxide such as silicon oxide, aluminum oxide, silicon carbide, silicon oxycarbide, silicon carbonitride, silicon nitride, or silicon nitride oxide can be used, but a film made of silicon oxide is preferable. That's right.
  • the method for forming these films include known methods such as sputtering, vacuum deposition, thermal CVD, plasma CVD, and photo CVD, but sputtering is preferred.
  • the thickness of the gas barrier layer is preferably 10 to 100 nm, and more preferably 20 to 50 nm.
  • the gas barrier layer 3 is provided on the surface of the polyimide resin layer B at a position (region) overlapping with the position of the polyimide resin layer A in the vertical direction.
  • the gas barrier layer 3 must be provided in the entire overlapping area with the polyimide resin layer A in the vertical direction on the surface of the polyimide resin layer B (22). However, it may be provided in a part of the overlapping area.
  • the overlapping region with the polyimide resin layer A in the vertical direction on the surface of the polyimide resin layer B is a region indicated by reference numeral 211 in FIG.
  • FIG. 2A is a schematic diagram (cross-sectional view) of the laminate of one embodiment according to the present invention in which the gas barrier layer 3 is formed on the surface of the polyimide resin layer B (22) of the laminate of FIG. It is.
  • FIG. 2 (B) is a schematic sketch when the laminate of FIG. 2 (A) is viewed from above in the drawing. 2A and 2B, the same reference numerals as those in FIGS. 1A and 1B denote the same members and regions as in FIG.
  • the area of the polyimide resin layer B exposed to the atmosphere is 10% or more of the entire area of the polyimide resin layer B. Can do. That is, even if a gas barrier layer is provided on the surface of the polyimide resin layer B, a part of the polyimide resin layer B, particularly the outer edge 220, is exposed to the atmosphere, so that peeling by moisture absorption treatment is possible.
  • the area of the polyimide resin layer B exposed to the air is the area obtained by subtracting the surface area of the gas barrier layer from the surface area of the polyimide resin layer B. In FIG. , Equal to the area of the shaded region 220.
  • the entire area of the polyimide resin layer B is equal to the area of the region 22 (square shape) showing the polyimide resin layer B in FIG.
  • the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) in contact with the inorganic substrate is firmly adhered to the inorganic substrate, the adhesion of the polyimide film 2 to the inorganic substrate is improved. It can be secured.
  • the laminate 100 of the present invention can easily peel the polyimide film 2 from the inorganic substrate by the following treatment method (laminate treatment method 1 or 2).
  • the peeled polyimide film 2 is useful as a flexible substrate.
  • the polyimide-type film 2 which peeled can be made into a flexible device by forming members, such as an electronic element, in advance on the polyimide-type film 2 surface of the laminated body 100.
  • the moisture absorption process described below is performed on the laminate 100 of the present invention. Thereafter, the polyimide film 2 is peeled off.
  • a specific peeling method a method of peeling from the end portion by hand, or a method using a mechanical device such as a drive roll or a robot can be employed.
  • the polyimide-type film 2 as a flexible substrate is obtained by cutting and removing the part of the polyimide-type resin layer B (22) which was in contact with the inorganic substrate 1.
  • the portion of the polyimide resin layer B (22) in contact with the inorganic substrate 1 is a single layer portion (outer edge portion 220) in the polyimide resin layer B (22).
  • FIGS. 1A and 1B when using the laminated body 100 shown in FIGS. 1A and 1B, first, after performing a moisture absorption treatment, the polyimide film 2 is peeled off as shown in FIG. 3A. . Next, the polyimide film 2 as a flexible substrate as shown in FIG. 3B is obtained by cutting and removing the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) as an excess portion.
  • 3A and 3B are schematic diagrams (cross-sectional views) of a polyimide film for explaining a method of manufacturing a flexible substrate by the laminate processing method 1 using the laminate of FIG. 1A. It is. 3, the same reference numerals as those in FIG. 1 denote the same members and regions as in FIG.
  • FIGS. 2A and 2B In this method, for example, when the laminate 100 shown in FIGS. 2A and 2B is used, first, after performing a moisture absorption treatment, as shown in FIG. 4A, a polyimide system having a gas barrier layer 3 is used. The film 2 is peeled off. Next, the polyimide film having the gas barrier layer 3 as a flexible substrate as shown in FIG. 4B by cutting and removing the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) as an excess portion. Get 2.
  • 4A and 4B are schematic views (cross-sectional views) of a polyimide film for explaining a method for producing a flexible substrate by the laminate processing method 1 using the laminate of FIG. 2A. It is. 4, the same reference numerals as those in FIG. 2 indicate the same members and regions as in FIG.
  • the outer edge portion 220 is peeled off by moisture absorption treatment, but for example, the outer edge portion 220 can be peeled off by irradiating laser light, infrared light, ultraviolet light, flash light, or the like. Moreover, it can also peel by immersing the laminated body 100 of this invention in water.
  • the polyimide film 2 obtained by previously forming members (not shown) such as electronic elements on the surface of the polyimide film 2 of the laminated body 100 is a flexible device. Useful.
  • a predetermined part of the polyimide film 2 is cut to divide the part to be peeled in the polyimide film and the part including the polyimide resin layer B (22) in contact with the inorganic substrate 1. .
  • the predetermined part of the polyimide film to be cut is a part where the polyimide resin layer A (21) is present immediately below.
  • the polyimide film Cuts 200 are formed along the outer periphery of the resin layer A (21).
  • the cutting method is not particularly limited as long as the cutting 200 reaching the inorganic substrate 1 can be formed. Examples thereof include a method using a commercially available cutter and a method using laser light irradiation.
  • 5A and 5B are schematic diagrams (cross-sectional views) of a polyimide film for explaining a method for producing a flexible substrate by the laminate processing method 2 using the laminate of FIG. 1A. It is. 6A and 6B are schematic diagrams (cross-sectional views) of a polyimide-based film for explaining a method of manufacturing a flexible substrate by the laminate processing method 2 using the laminate of FIG. 2A. It is.
  • the part to be peeled is a part to be peeled thereafter, and specifically, a part 250 corresponding to the polyimide film 2 to be peeled as shown in FIG. 5 (B) and FIG. 6 (B).
  • a member such as an electronic element
  • the part of the polyimide resin layer B (22) in contact with the inorganic substrate 1 is also a single layer part (outer edge part 220) in the polyimide resin layer B (22) in this method.
  • the separation planned region portion 250 is peeled to obtain a flexible substrate. Since the peeling planned region portion 250 is in contact with the inorganic substrate 1 only by the polyimide resin layer A (21), it can be easily peeled by division.
  • a specific peeling method also in this method, it is possible to adopt a method of peeling from the end by hand or a method using a mechanical device such as a drive roll or a robot.
  • the polyimide film 2 (250) obtained by previously forming a member (not shown) such as an electronic element on the surface of the polyimide film 2 of the laminated body 100 is obtained. It is useful as a flexible device.
  • the polyimide resin layer B (outer edge 220) (see FIGS. 5B and 6B) remaining on the inorganic substrate is peeled off from the inorganic substrate by a moisture absorption process described later and removed. be able to.
  • the outer edge portion 220 is peeled off by moisture absorption treatment.
  • the outer edge portion 220 can be peeled off by irradiating laser light, infrared light, ultraviolet light, flash light, or the like. Moreover, it can also peel by being immersed in water.
  • the inorganic substrate from which the outer edge 220 is peeled can be reused.
  • the moisture absorption treatment includes at least a moisture absorption treatment step for holding the laminate in a high temperature and high humidity environment.
  • the moisture absorption conditions are not particularly limited, but the moisture absorption treatment step is preferably performed at a relative humidity of 70% or more, more preferably 80% or more, and a moisture absorption temperature of preferably 70 ° C. or more, more preferably 80 ° C. or more. . Further, pressurized water vapor exceeding 100 ° C. can be used, but it is preferable to perform the moisture absorption treatment step at 100 ° C. or less.
  • the moisture absorption treatment time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 5 hours or longer.
  • the upper limit of the moisture absorption treatment time is not particularly limited as long as the release of the polyimide film 2 is achieved, but the moisture absorption treatment step is usually performed for 20 hours or less, preferably 15 hours or less, more preferably 12 hours or less.
  • a polyimide film having a volume expanded by moisture absorption can be rapidly shrunk by dehumidification.
  • stress is generated in the polyimide film that expands and contracts, and the strength at the interface of the polyimide film in contact with the inorganic substrate that hardly changes in volume due to moisture absorption and desorption is significantly reduced.
  • the polyimide film can be more easily peeled off.
  • This moisture absorption / desorption can be further improved by repeating two or more times.
  • the polyimide film can be easily peeled by performing moisture absorption and desorption one to three times.
  • the decompression conditions are not particularly limited, but preferably the degree of decompression is 100 Torr or less, more preferably 50 Torr or less, more preferably 10 Torr or less, and the temperature is preferably 70 ° C. or more, more preferably 80 ° C. or more. .
  • the temperature during the decompression treatment may be the same as or different from the moisture absorption treatment temperature, but is preferably the same.
  • the decompression time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 5 hours or longer.
  • the upper limit of the reduced pressure treatment time is not particularly limited as long as the release of the polyimide film 2 is promoted, but the reduced pressure treatment step is usually performed for 20 hours or less, preferably 15 hours or less, more preferably 12 hours or less.
  • the polyimide film of the present invention is preferably transparent.
  • the light transmittance at 500 nm, which is an index of transparency, is preferably 70% or more, and more preferably 80% or more.
  • the laminate of the present invention can easily obtain a polyimide-based film from a polyimide laminate by, for example, a simple process of moisture absorption treatment, it is suitable for manufacturing flexible devices and flexible wiring board devices. Can be used.
  • the polyimide film provided with the member is peeled from the inorganic substrate.
  • the polyimide-type film provided with the said member can be obtained easily as a flexible device or a flexible wiring board device.
  • a method for forming a member such as an electronic element a method known in the field of electronic devices using a polyimide film as a flexible substrate can be employed.
  • the method for forming the gas barrier layer is the same as that described above.
  • Reference Example 3 A silane coupler similar to that in Reference Example 2 was added to polyimide solution A-1 in an amount of 0.06% by mass based on the polyimide mass, and mixed uniformly to obtain polyimide solution B-1.
  • Reference Example 4 A silane coupler similar to that in Reference Example 2 was added to the polyimide solution A-1 at 0.1% by mass relative to the polyimide mass, and mixed uniformly to obtain a polyimide solution B-2.
  • Unitika Uimide CR (polyamic acid type polyimide precursor solution obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, and the solvent is NMP The solid concentration was 18% by mass).
  • This solution (polyimide solution B-3) was applied to the surface of a non-alkali glass plate having a thickness of 0.7 mm by a bar coater so that the thickness of the heat-cured film was 30 ⁇ m, and 10 ° C. at 130 ° C.
  • the polyimide precursor film was formed by drying for a minute. Next, the temperature was raised from 100 ° C. to 350 ° C.
  • the laminates L-3, L-4, and L-5 had good adhesion.
  • the laminates L-1, L-2, and L-6 had poor adhesion, that is, good peelability.
  • Laminates L-3, L-4, and L-5 which had good adhesion, were treated for 3 hours under conditions of a relative humidity of 80% and a temperature of 50 ° C. to absorb the polyimide film. Thereafter, a reduced pressure treatment for 10 hours was performed at the same temperature under a reduced pressure of 5 Torr to dehumidify the polyimide that had absorbed moisture. The adhesion strength between layers of the obtained laminate was measured by a 180 ° peel test based on JIS K6854.
  • the laminates L-3, L-4, and L-5 which had good adhesion before the moisture absorption treatment, were subjected to moisture absorption treatment, thereby providing a laminate having good peelability. It can be.
  • Example 1 As shown in FIGS. 1A and 1B, a polyimide solution A-1 as a solution for forming a polyimide layer A (21) is heat-cured on the surface of a non-alkali glass plate 1 having a thickness of 0.7 mm.
  • the film was coated with a bar coater so that the thickness of the film became 3 ⁇ m, and dried at 130 ° C. for 10 minutes to form a polyimide precursor film.
  • the area of the coated surface was about 400 cm 2 (20 cm ⁇ 20 cm).
  • polyimide solution B-1 as a solution for forming polyimide layer B (22) was applied with a bar coater so that the total thickness of the film after thermosetting was 30 ⁇ m, and dried at 130 ° C. for 10 minutes.
  • a polyimide precursor film was formed.
  • heat treatment is carried out at 360 ° C. for 2 hours, and the polyimide precursor is thermally cured and imidized, whereby the polyimide layer is laminated and integrated. Turned into.
  • the area of the application surface of the polyimide layer B (22) is about 576 cm 2 (24 cm ⁇ 24 cm), and the outer edge portion of the polyimide layer B (22) in the outer peripheral region 210 of the polyimide layer A (21) on the glass plate surface. 220 had a width (W) of 2 cm as a single layer, and was in direct contact with the glass substrate 1.
  • a gas barrier layer made of a silicon oxide film having a thickness of 30 nm is formed on a part of the surface of the obtained polyimide laminated film 2 (area: about 400 cm 2 ) by sputtering. 3 was formed to obtain a laminate M-1.
  • the formation region of the gas barrier layer 3 was the entire overlapping region 211 (see FIG. 1B) with the polyimide layer A (21) in the vertical direction on the surface of the polyimide layer B (22).
  • Example 2 A laminate M-2 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to the polyimide solution A-2.
  • Example 3 A laminate M-3 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to the polyimide solution A-3.
  • Example 4 A laminate M-4 was obtained in the same manner as in Example 1 except that the polyimide solution B-1 was changed to the polyimide solution B-2.
  • Example 5 A laminate M-5 was obtained in the same manner as in Example 1 except that the polyimide solution B-1 was changed to the polyimide solution B-3.
  • Example 6 A laminate M-6 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-2 and the polyimide solution B-1 was changed to polyimide solution B-3.
  • Example 7 A laminate M-7 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-3 and the polyimide solution B-1 was changed to polyimide solution B-3.
  • Example 8 A laminate M-8 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-2 and the polyimide solution B-1 was changed to polyimide solution B-2.
  • Example 9 Implemented except that the area of the polyimide layer B application surface was about 484 cm 2 (22 cm ⁇ 22 cm), and the outer edge 220 of the polyimide layer B was a single layer with a width (W) of 1 cm and was in direct contact with the glass substrate.
  • laminate M-9 was obtained.
  • Example 10 Except that the area of the polyimide layer B application surface is about 441 cm 2 (21 cm ⁇ 21 cm), and the outer edge 220 of the polyimide layer B is a single layer with a width (W) of 0.5 cm and is in direct contact with the glass substrate. In the same manner as in Example 1, a laminate M-10 was obtained.
  • a polyimide solution A-1 was applied on the surface of a non-alkali glass plate having a thickness of 0.7 mm by a bar coater so that the thickness of the heat-cured film was 30 ⁇ m, and dried at 130 ° C. for 10 minutes to obtain a polyimide.
  • a precursor film was formed. Here, the area of the coated surface was about 400 cm 2 (20 cm ⁇ 20 cm).
  • the temperature is raised from 100 ° C. to 360 ° C. over 2 hours, then heat treated at 360 ° C. for 2 hours, and the polyimide precursor is thermally cured to imidize to form a polyimide layer A. did.
  • a gas barrier layer made of a silicon oxide film having a thickness of 30 nm was formed on the entire surface (area of about 400 cm 2 ) of the obtained polyimide layer A by sputtering to obtain a laminate N-1.
  • a laminate N-4 was prepared in the same manner as in Example 1 except that the area of the polyimide layer B application surface was about 400 cm 2 (20 cm ⁇ 20 cm), and the polyimide layer B and the polyimide layer A almost overlapped. Obtained.
  • Example 11 In the laminate M-1 obtained in Example 1, cuts 200 are made in the four directions around the formation region of the gas barrier layer 3 (see FIGS. 2A and 2B and FIG. 6A), and the glass substrate 1 is cut.
  • the outer edge 220 of the polyimide layer B (22) in direct contact with the portion of the gas barrier layer 3 formation region was divided.
  • the glass substrate (see FIG. 6B) on which the outer edge 220 of the polyimide layer B (22) remains is treated for 10 hours under the conditions of a relative humidity of 95% and a temperature of 90 ° C. Moisture was absorbed.
  • Example 2 a reduced pressure treatment was performed at the same temperature under a reduced pressure of 5 Torr for 10 hours to dehumidify the polyimide that had absorbed moisture.
  • the polyimide layer B could be easily peeled off by hand.
  • the same operation as in Example 1 was performed using the glass substrate from which the polyimide layer B was peeled off, a laminate similar to that in Example 1 could be obtained.
  • Example 12 A laminate M-12 was obtained in the same manner as in Example 1 except that the gas barrier layer was not formed.
  • a notch 200 is cut in four directions of the overlap region 211 (see FIG. 1B) of the laminate (see FIGS. 1A and 1B and FIG. 5A), and the polyimide is in direct contact with the glass substrate 1
  • the outer edge 220 of the layer B (22) and the overlapping region 211 were divided. When the end of the divided overlapping region 211 was pulled by hand, the overlapping region 211 could be easily peeled off from the glass substrate. Thereafter, the glass substrate (see FIG.
  • Example 13 The glass substrate (see FIG. 5B) on which the outer edge 220 of the polyimide layer B (22) obtained in Example 12 remained was immersed in warm water at 30 ° C. for 10 hours. Then, when it dried at 100 degreeC under normal pressure for 2 hours, the polyimide layer B was able to peel easily by hand.
  • the laminate of the present invention can easily peel the polyimide film from the inorganic substrate by, for example, moisture absorption treatment, despite the fact that the polyimide film is firmly bonded onto the inorganic substrate.
  • This is useful for manufacturing a flexible substrate for electronic devices made of a polyimide film.
  • the laminate of the present invention is flexible because it has good adhesion before moisture absorption treatment and peelability after moisture absorption treatment even when a gas barrier layer is formed on the surface of the polyimide film constituting the laminate. This is useful when manufacturing a flexible device or flexible wiring board in which a member such as an electronic element is formed on a polyimide film as a substrate.
  • Inorganic substrate 2 Polyimide film 21: Polyimide resin layer A (for example, polyimide layer A) 22: Polyimide resin layer B (for example, polyimide layer B) 3: Gas barrier layer 210: Peripheral region 211: Overlapping region with polyimide resin layer A (21) in the vertical direction on the surface of polyimide resin layer B (22) 220: Outer edge

Abstract

 The objective of the present invention is to provide a laminate having good adhesion between a polyimide film and an inorganic substrate, and also allowing easy and quick separation of the polyimide film from the inorganic substrate. The present invention provides a laminate having an inorganic substrate, and a polyimide film formed on the inorganic substrate, wherein the laminate has the following characteristics: (1) the polyimide film is a layered film containing a polyimide resin layer (A) and a polyimide resin layer (B), the entire surface of the polyimide resin layer (A) contacting the inorganic substrate, and a part of the polyimide resin layer (B) formed on the surface of the polyimide resin layer (A) contacting the inorganic substrate; (2) the adhesive strength between the polyimide resin layer (A) and the inorganic substrate is 2N/cm or less; (3) the adhesive strength between the polyimide resin layer (B) and the inorganic substrate exceeds 2N/cm; and (4) the polyimide resin layer (B) contacting the inorganic substrate is hygroscopically treated and made capable of separating from the inorganic substrate.

Description

積層体およびその処理法ならびにフレキシブルデバイスの製造方法LAMINATE, PROCESSING METHOD THEREOF, AND METHOD FOR PRODUCING FLEXIBLE DEVICE
 本発明は、無機基板上にポリイミド系フィルムが形成された積層体およびその処理法ならびにフレキシブルデバイスの製造方法に関するものである。本発明の積層体およびその処理法は、例えば、フレキシブル基板の表面に電子素子を形成したフレキシブルデバイスやフレキシブル配線板を製造する際に有用である。 The present invention relates to a laminate in which a polyimide film is formed on an inorganic substrate, a processing method thereof, and a manufacturing method of a flexible device. The laminate and the treatment method of the present invention are useful, for example, when manufacturing a flexible device or a flexible wiring board in which an electronic element is formed on the surface of a flexible substrate.
 従来、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機ELディスプレイ(OLED)等のフラットパネルディスプレイ(FPD)や、電子ペーパー、等の電子デバイスの分野では、主としてガラス基板等の無機材料からなる基板(無機基板)上に電子素子を形成したものが用いられている。しかしながら、無機基板は剛直であり、しなやかさに欠けるため、フレキシブルになりにくいという問題がある。 Conventionally, in the field of electronic devices such as flat panel displays (FPD) such as liquid crystal displays (LCD), plasma display panels (PDP), organic EL displays (OLED), and electronic paper, mainly from inorganic materials such as glass substrates. A substrate in which an electronic element is formed on a substrate (inorganic substrate) is used. However, since the inorganic substrate is rigid and lacks flexibility, there is a problem that it is difficult to be flexible.
 そこで、フレキシブル性を有しかつ耐熱性を有するポリイミド等の有機高分子材料を基板として用いる方法が提案されている。すなわち、フレキシブル性を有する耐熱性のポリイミド系フィルムを、キャリアとして使用する無機基板上に積層し、このポリイミド系フィルムを電子素子形成のための基板や配線基板として利用する技術が実用化されている。ここで、例えば、無機基板として光透過性に優れたガラス基板を用いると、電子素子を形成する際や配線基板作成の際の検査工程が容易となる上、既存のガラス基板上に電子素子を形成するフレキシブルデバイス生産用の設備がそのまま転用できるという利点を有する。 Therefore, a method of using an organic polymer material such as polyimide having flexibility and heat resistance as a substrate has been proposed. That is, a technology in which a heat-resistant polyimide film having flexibility is laminated on an inorganic substrate used as a carrier, and the polyimide film is used as a substrate for forming an electronic device or a wiring substrate has been put into practical use. . Here, for example, when a glass substrate excellent in light transmittance is used as an inorganic substrate, an inspection process when forming an electronic element or wiring board is facilitated, and an electronic element is placed on an existing glass substrate. There is an advantage that the equipment for producing the flexible device to be formed can be used as it is.
 このようなポリイミド系フィルムが積層された無機基板においては、無機基板をキャリア用の基板として利用するので、ポリイミド系フィルムの表面に電子素子を形成後、最後にポリイミド系フィルムを無機基板から剥離する必要がある。しかしながら、電子素子の形成工程においてポリイミド系フィルムが無機基板から剥落してしまうのを防止する観点から、ポリイミド系フィルムを無機基板に強固に密着させなければならないために、剥離が容易ではない。この剥離を工業的に行う方法として、例えば、ガラス基板に接したポリイミド界面にレーザー光を照射する方法が提案されている(例えば特許文献1、2および非特許文献1)。また、レーザ光を用いずに、ガラス基板に接したポリイミド界面をジュール熱で加熱する方法(特許文献3)、誘導加熱する方法(特許文献4)、キセノンランプからのフラッシュ光を照射する方法(特許文献5)等により、剥離を行う方法が提案されている。このような方法において無機基板とポリイミド系フィルムとの剥離界面では1種の層が無機基板に接触しているだけである。しかしながら、これらの方法は、その工程が複雑で長時間を要し、設備が高価なため高コストであるだけでなく、無機基板の再利用が困難という問題点があった。 In such an inorganic substrate laminated with a polyimide film, since the inorganic substrate is used as a substrate for a carrier, an electronic element is formed on the surface of the polyimide film, and finally the polyimide film is peeled from the inorganic substrate. There is a need. However, from the viewpoint of preventing the polyimide film from being peeled off from the inorganic substrate in the step of forming the electronic element, the polyimide film must be firmly adhered to the inorganic substrate, so that peeling is not easy. As a method for industrially performing this peeling, for example, a method of irradiating a polyimide interface in contact with a glass substrate with laser light has been proposed (for example, Patent Documents 1 and 2 and Non-Patent Document 1). Also, a method of heating the polyimide interface in contact with the glass substrate with Joule heat without using laser light (Patent Document 3), a method of induction heating (Patent Document 4), and a method of irradiating flash light from a xenon lamp ( A method for peeling is proposed by Patent Document 5) and the like. In such a method, only one layer is in contact with the inorganic substrate at the peeling interface between the inorganic substrate and the polyimide film. However, these methods have a problem that the process is complicated and takes a long time, and the equipment is expensive, which is not only expensive but also difficult to reuse the inorganic substrate.
 そこで、前記方法に代わる剥離方法として、特許文献6には加圧水蒸気中に長時間放置することにより、ポリイミド積層体の剥離性を向上させる方法が提案されている。また、特許文献7には、ポリイミド積層体の剥離性を向上させるために、水中に浸漬する方法が提案されている。これらの方法は、ポリイミドフィルム表面からの吸水や吸湿によりポリイミドフィルムが急激に膨張することより生じる応力が、ポリイミドフィルムと無機基板の界面に作用することを利用する。その結果として、この界面での密着性を低減させ剥離性を向上させるものである。このような方法においても無機基板とポリイミド積層体との剥離界面では、やはり1種の層が無機基板に接触しているだけである。さらに、特許文献8には、ガラス基板上に、パターン化された接着層を形成し、その接着層表面とガラス板表面の両方にポリイミド等のフレキシブル基板層を形成し、しかる後、接着層表面上のフレキシブル基板層のみを切り離した後、ガラス基板からフレキシブル基板層を剥離する方法が提案されている。 Therefore, as a peeling method instead of the above method, Patent Document 6 proposes a method of improving the peelability of the polyimide laminate by leaving it in pressurized steam for a long time. Patent Document 7 proposes a method of immersing in water in order to improve the peelability of the polyimide laminate. These methods utilize the fact that the stress generated when the polyimide film rapidly expands due to water absorption or moisture absorption from the polyimide film surface acts on the interface between the polyimide film and the inorganic substrate. As a result, the adhesion at this interface is reduced and the peelability is improved. Even in such a method, at the peeling interface between the inorganic substrate and the polyimide laminate, only one kind of layer is in contact with the inorganic substrate. Furthermore, in Patent Document 8, a patterned adhesive layer is formed on a glass substrate, a flexible substrate layer such as polyimide is formed on both the adhesive layer surface and the glass plate surface, and then the adhesive layer surface. A method has been proposed in which only the upper flexible substrate layer is separated and then the flexible substrate layer is peeled off from the glass substrate.
特表2007-512568号公報Special table 2007-512568 gazette 特開2013-73001号公報JP 2013-73001 A 特開2012-189974号公報JP 2012-189974 A 特開2014-86451号公報JP 2014-86451 A 特開2014-120664号公報JP 2014-120664 A 特開2000-196243号公報JP 2000-196243 A 米国特許第7575983号明細書US Pat. No. 7,759,983 ドイツ公開特許第102012102131A1号明細書German published patent 102012102131A1
 しかしながら、前記吸湿や吸水を利用する方法では、ポリイミド系フィルム表面からの吸湿や吸水を利用するので、例えば、ポリイミド系フィルム表面にガスバリヤ層(水蒸気や酸素の透過を阻止するための層であり、これによりOLED等でポリイミド系フィルム上に形成される電子素子の劣化を防止するための層である)を形成した場合、吸湿や吸水が充分に行われず、充分な剥離性向上の効果が得られないという問題があった。また、特許文献6に開示されているような加圧水蒸気中に長時間放置するような方法では、ポリイミドの加水分解が進行し、フィルムの劣化が起こるという問題があった。また、特許文献8に開示されているようなパターン化された接着層を用いる方法では、工程が複雑となる上、電子素子等の部材を形成する際の密着性と部材形成後のガラス基板からの剥離性を両立させることは困難であった。さらに、ガラス基板から接着層を剥離することが困難であり、ガラス基板を再生利用することが難しかった。 However, in the method using moisture absorption or water absorption, since moisture absorption or water absorption from the polyimide film surface is used, for example, a gas barrier layer (layer for blocking the transmission of water vapor or oxygen on the polyimide film surface, Thus, when an OLED or the like is used to prevent deterioration of an electronic element formed on a polyimide film, moisture absorption and water absorption are not sufficiently performed, and a sufficient peelability improvement effect is obtained. There was no problem. Moreover, in the method of leaving for a long time in the pressurized water vapor | steam as disclosed by patent document 6, there existed a problem that a hydrolysis of a polyimide advanced and film deterioration occurred. Further, in the method using a patterned adhesive layer as disclosed in Patent Document 8, the process is complicated, and the adhesion when forming a member such as an electronic element and the glass substrate after forming the member are reduced. It was difficult to achieve both of the peelability. Furthermore, it is difficult to peel the adhesive layer from the glass substrate, and it is difficult to recycle the glass substrate.
 そこで、本発明は前記課題を解決するものであって、ポリイミド系フィルムと無機基板との密着性が良好であり、容易にかつ短時間でポリイミド系フィルムを無機基板から剥離できる積層体の提供を目的とする。 Therefore, the present invention solves the above problems, and provides a laminate that has good adhesion between a polyimide film and an inorganic substrate, and can easily and easily peel the polyimide film from the inorganic substrate in a short time. Objective.
 本発明はまた、ポリイミド系フィルムと無機基板との密着性が良好であり、かつ、ポリイミド系フィルム上にガスバリア層を形成しても、容易にかつ短時間でポリイミド系フィルムを無機基板から剥離できる積層体の提供を目的とする。 In the present invention, the adhesion between the polyimide film and the inorganic substrate is good, and even if a gas barrier layer is formed on the polyimide film, the polyimide film can be peeled from the inorganic substrate easily and in a short time. The purpose is to provide a laminate.
 本発明はまた、ポリイミド系フィルムと無機基板との密着性が良好であり、かつ、ポリイミド系フィルム上に電子素子、配線等の部材を形成しても、容易にかつ短時間でポリイミド系フィルムを無機基板から剥離できる積層体の提供を目的とする。 In the present invention, the adhesion between the polyimide film and the inorganic substrate is good, and even if a member such as an electronic element or wiring is formed on the polyimide film, the polyimide film can be easily and quickly formed. It aims at providing the laminated body which can peel from an inorganic substrate.
 本発明者らは、前記課題を解決するために鋭意研究した結果、無機基板上にポリイミド系フィルムが形成された積層体(以下「積層体」と略記することがある)を特定の構成とすることにより、前記課題が解決されることを見出し、本発明の完成に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have a specific configuration of a laminate (hereinafter sometimes abbreviated as “laminate”) in which a polyimide film is formed on an inorganic substrate. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
 即ち、本発明は下記を趣旨とするものである。
 無機基板および該無機基板上に形成されたポリイミド系フィルムを有する積層体であって、以下の特徴を有する積層体:
(1)ポリイミド系フィルムがポリイミド系樹脂層Aおよびポリイミド系樹脂層Bを含む積層フィルムであり、ポリイミド系樹脂層Aの全面が前記無機基板に接しており、かつポリイミド系樹脂層Aの表面に形成されたポリイミド系樹脂層Bの一部が前記無機基板に接している;
(2)ポリイミド系樹脂層Aと前記無機基板との接着強度が2N/cm以下である;
(3)ポリイミド系樹脂層Bと前記無機基板との接着強度が2N/cm超である;
(4)前記無機基板に接しているポリイミド系樹脂層Bは、吸湿処理で、前記無機基板から剥離可能となる。
That is, the present invention has the following purpose.
A laminate having an inorganic substrate and a polyimide-based film formed on the inorganic substrate, the laminate having the following characteristics:
(1) The polyimide film is a laminated film including a polyimide resin layer A and a polyimide resin layer B, the entire surface of the polyimide resin layer A is in contact with the inorganic substrate, and is on the surface of the polyimide resin layer A. Part of the formed polyimide resin layer B is in contact with the inorganic substrate;
(2) The adhesive strength between the polyimide resin layer A and the inorganic substrate is 2 N / cm or less;
(3) The adhesive strength between the polyimide resin layer B and the inorganic substrate is more than 2 N / cm;
(4) The polyimide resin layer B in contact with the inorganic substrate can be peeled from the inorganic substrate by moisture absorption treatment.
 無機基板がガラス基板であることを特徴とする前記積層体。 The laminate as described above, wherein the inorganic substrate is a glass substrate.
 ポリイミド系樹脂層Bの表面にガスバリヤ層が形成されていることを特徴とする前記積層体。 The laminate as described above, wherein a gas barrier layer is formed on the surface of the polyimide resin layer B.
 前記積層体を吸湿処理することにより、無機基板からポリイミド系フィルムを剥離することを特徴とする積層体の処理法。 A method for treating a laminate, wherein the laminate is subjected to moisture absorption treatment to peel the polyimide film from the inorganic substrate.
 吸湿処理が、100℃以下の温度および70%以上の相対湿度の環境下で積層体を保持した後、減圧による脱湿を行う処理であることを特徴とする前記積層体の処理法。 The method for treating a laminate, wherein the moisture absorption treatment is a treatment in which the laminate is held under an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more and then dehumidified by decompression.
 前記積層体のポリイミド系フィルムの表面に、電子素子および配線から選択される1以上の部材(以下「電子素子等の部材」と略記することがある)を形成した後、該積層体を吸湿処理することにより、無機基板から、前記部材を備えたポリイミド系フィルムを剥離し、その後、無機基板に接していたポリイミド系樹脂層Bの部分を切断除去することによりフレキシブルデバイスを得ることを特徴とするフレキシブルデバイスの製造方法。 After forming one or more members selected from electronic elements and wiring (hereinafter may be abbreviated as “members such as electronic elements”) on the surface of the polyimide film of the laminate, the laminate is subjected to moisture absorption treatment. By removing the polyimide film provided with the above member from the inorganic substrate, and then cutting and removing the portion of the polyimide resin layer B in contact with the inorganic substrate, a flexible device is obtained. A manufacturing method of a flexible device.
 前記積層体のポリイミド系フィルムの表面に、電子素子および配線から選択される1以上の部材を形成し、前記部材を備えたポリイミド系フィルムの所定の部位に切り込みを入れて、ポリイミド系フィルムにおける前記部材の形成領域部分と、無機基板に接しているポリイミド系樹脂層Bの部分とを分割した後、ポリイミド系フィルムにおける前記部材の形成領域部分を剥離して、フレキシブルデバイスを得るとともに、無機基板に残存しているポリイミド系樹脂層Bを吸湿処理することにより無機基板から剥離して除去することを特徴とするフレキシブルデバイスの製造方法。 On the surface of the polyimide film of the laminate, one or more members selected from electronic elements and wirings are formed, and a predetermined portion of the polyimide film provided with the members is cut, the polyimide film After dividing the member formation region portion and the polyimide resin layer B portion in contact with the inorganic substrate, the member formation region portion in the polyimide film is peeled off to obtain a flexible device, and to the inorganic substrate. A method for producing a flexible device, wherein the remaining polyimide resin layer B is peeled off from the inorganic substrate by moisture absorption treatment.
 吸湿処理が、100℃以下の温度および70%以上の相対湿度の環境下で積層体を保持した後、減圧による脱湿を行う処理であることを特徴とする前記フレキシブルデバイスの製造方法。 The method for producing a flexible device, wherein the moisture absorption treatment is a treatment of dehumidification by reducing pressure after holding the laminate in an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more.
 本発明の積層体は、ポリイミド系フィルムが無機基板上に強固に接着しているにも拘わらず、例えば吸湿処理により、ポリイミド系フィルムを無機基板から簡単に剥離できるようになるので、容易にフレキシブルデバイスやフレキシブル配線基板を製造することができる。また、このポリイミド系フィルム表面上にガスバリア層が形成されている場合であっても、吸湿処理により、容易に良好な剥離性を得ることができる。 The laminate of the present invention is easily flexible because the polyimide film can be easily peeled off from the inorganic substrate by, for example, moisture absorption treatment, despite the fact that the polyimide film is firmly adhered to the inorganic substrate. Devices and flexible wiring boards can be manufactured. Moreover, even when a gas barrier layer is formed on the surface of the polyimide film, good peelability can be easily obtained by moisture absorption treatment.
(A)は、本発明に係る一実施態様の積層体の模式図(断面図)であり、(B)は、図1(A)の積層体を、図中、上方から見たときの概略見取り図である。(A) is the schematic diagram (sectional drawing) of the laminated body of one embodiment which concerns on this invention, (B) is the outline when the laminated body of FIG. 1 (A) is seen from upper direction in a figure. It is a sketch. (A)はガスバリア層を有する本発明に係る一実施態様の積層体の模式図(断面図)であり、(B)は、図2(A)の積層体を、図中、上方から見たときの概略見取り図である。(A) is the schematic diagram (sectional drawing) of the laminated body of one embodiment which concerns on this invention which has a gas barrier layer, (B) looked at the laminated body of FIG. 2 (A) from the upper direction in the figure. It is a schematic sketch at the time. (A)および(B)は、図1(A)の積層体を用いて積層体の処理法1によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。(A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method of manufacturing a flexible substrate by the processing method 1 of a laminated body using the laminated body of FIG. 1 (A). . (A)および(B)は、図2(A)の積層体を用いて積層体の処理法1によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。(A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method to manufacture a flexible substrate by the processing method 1 of a laminated body using the laminated body of FIG. 2 (A). . (A)および(B)は、図1(A)の積層体を用いて積層体の処理法2によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。(A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method to manufacture a flexible substrate by the processing method 2 of a laminated body using the laminated body of FIG. 1 (A). . (A)および(B)は、図2(A)の積層体を用いて積層体の処理法2によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。(A) And (B) is the schematic diagram (sectional drawing) of the polyimide-type film for demonstrating the method of manufacturing a flexible substrate by the processing method 2 of a laminated body using the laminated body of FIG. 2 (A). .
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[積層体]
 本発明の積層体は、無機基板上にポリイミド系フィルムからなるフレキシブル基板層を有する。ここで用いられる無機基板としては、ガラス基板、銅、アルミ等の金属基板、アルミナ等のセラミック基板等制限はないが、光透過性に優れたガラス基板が好ましく用いられる。ガラス基板としては、例えば、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス等を用いることが出来、これらのなかで、無アルカリガラス基板を好ましく用いることが出来る。
[Laminate]
The laminate of the present invention has a flexible substrate layer made of a polyimide film on an inorganic substrate. The inorganic substrate used here is not limited to a glass substrate, a metal substrate such as copper or aluminum, or a ceramic substrate such as alumina, but a glass substrate excellent in light transmittance is preferably used. As the glass substrate, for example, soda lime glass, borosilicate glass, non-alkali glass or the like can be used, and among these, the non-alkali glass substrate can be preferably used.
 前記無機基板の厚みとしては、0.3~5.0mmが好ましい。厚みが0.3mmより薄いと基板のハンドリング性が低下することがある。また、厚みが5.0mmより厚いと生産性が低下することがある。これらの無機基板は、ポリイミド系フィルム層との密着性を制御するための表面処理、例えばシランカップラ処理等が施されていても良い。 The thickness of the inorganic substrate is preferably 0.3 to 5.0 mm. If the thickness is less than 0.3 mm, the handling property of the substrate may be lowered. Moreover, productivity may fall when thickness is thicker than 5.0 mm. These inorganic substrates may be subjected to a surface treatment for controlling adhesion to the polyimide film layer, for example, a silane coupler treatment.
 本発明の積層体100は、図1(A)および(B)に示すように、無機基板1上にポリイミド系フィルム2が積層されている。このポリイミド系フィルム2は、ポリイミド系樹脂層A(21)とポリイミド系樹脂層B(22)を含む積層フィルムであり、ポリイミド系樹脂層A(21)の全面が前記無機基板1に接しており、かつポリイミド系樹脂層A(21)の表面に形成されたポリイミド系樹脂層B(22)の一部が前記無機基板1に接している。図1(A)は、本発明に係る一実施態様の積層体の模式図(断面図)である。図1(B)は、図1(A)の積層体を、図中、上方から見たときの概略見取り図である。 As shown in FIGS. 1A and 1B, a laminate 100 of the present invention has a polyimide film 2 laminated on an inorganic substrate 1. The polyimide film 2 is a laminated film including a polyimide resin layer A (21) and a polyimide resin layer B (22), and the entire surface of the polyimide resin layer A (21) is in contact with the inorganic substrate 1. A part of the polyimide resin layer B (22) formed on the surface of the polyimide resin layer A (21) is in contact with the inorganic substrate 1. FIG. 1A is a schematic view (cross-sectional view) of a laminate according to an embodiment of the present invention. FIG. 1B is a schematic sketch when the laminate of FIG. 1A is viewed from above in the drawing.
 ポリイミド系樹脂層Aの全面が前記無機基板に接しているとは、図1(A)に示すように、ポリイミド系樹脂層A(21)がその片面全体で無機基板1と接触している、という意味である。 The entire surface of the polyimide resin layer A is in contact with the inorganic substrate, as shown in FIG. 1A, the polyimide resin layer A (21) is in contact with the inorganic substrate 1 over the entire surface. It means that.
 ポリイミド系樹脂層Bの一部が前記無機基板に接しているとは、図1(A)および(B)に示すように、ポリイミド系樹脂層B(22)がポリイミド系樹脂層A(21)の表面全体および無機基板1の表面におけるポリイミド系樹脂層A(21)の外周領域210に形成されて、ポリイミド系樹脂層B(22)がその外縁部220(図中の斜線部)で無機基板1と直接的に接触している、という意味である。ポリイミド系樹脂層Bが形成されない場合、およびポリイミド系樹脂層Bが形成されたとしても、その一部分も無機基板に接していない場合、ポリイミド系フィルムの無機基板1に対する密着性が低下する。このため、ポリイミド系フィルムの無機基板からの剥離前にポリイミド系フィルム上に電子素子等の部材を形成するとき、ポリイミド系フィルムに剥離が生じて作業効率が低下する。ポリイミド系樹脂層Bの片面全体が無機基板に接する場合、すなわちポリイミド系樹脂層Aが形成されない場合、ポリイミド系フィルムの無機基板からの剥離性が低下する。詳しくは、表面にガスバリア層が形成されたポリイミド系フィルム上に電子素子等の部材を形成した後、ポリイミド系フィルムを無機基板から剥離するとき、当該部材直下のポリイミド系フィルム部分が十分に吸湿処理されないため、ポリイミド系フィルムの無機基板からの剥離が困難になる。 A part of the polyimide resin layer B is in contact with the inorganic substrate, as shown in FIGS. 1A and 1B, the polyimide resin layer B (22) is polyimide resin layer A (21). Formed on the outer peripheral region 210 of the polyimide resin layer A (21) on the entire surface of the substrate and the surface of the inorganic substrate 1, and the polyimide resin layer B (22) is formed at the outer edge portion 220 (shaded portion in the drawing) of the inorganic substrate. It means that it is in direct contact with 1. When the polyimide resin layer B is not formed, and even when the polyimide resin layer B is formed, if a portion thereof is not in contact with the inorganic substrate, the adhesion of the polyimide film to the inorganic substrate 1 is reduced. For this reason, when a member such as an electronic element is formed on the polyimide film before the polyimide film is peeled off from the inorganic substrate, the polyimide film is peeled off and the working efficiency is lowered. When the entire surface of the polyimide resin layer B is in contact with the inorganic substrate, that is, when the polyimide resin layer A is not formed, the peelability of the polyimide film from the inorganic substrate is lowered. Specifically, after forming a member such as an electronic element on a polyimide film having a gas barrier layer formed on the surface, when the polyimide film is peeled off from the inorganic substrate, the polyimide film portion immediately below the member is sufficiently moisture-absorbing. Therefore, it is difficult to peel the polyimide film from the inorganic substrate.
 ポリイミド系樹脂層Bの面積は、ポリイミド系フィルムの無機基板への密着性の観点から、ポリイミド系樹脂層Aの面積に対し、110%以上とすることが好ましく、120%以上とすることがより好ましく、150%以上とすることがさらに好ましい。ポリイミド系樹脂層Bの面積の上限値は、特に限定されるものではないが、材料ロス低減の観点から、ポリイミド系樹脂層Bの面積はポリイミド系樹脂層Aの面積に対し、通常は200%以下であり、好ましくは180%以下であり、より好ましくは160%以下である。ポリイミド系樹脂層Aの面積とは、無機基板1の表面におけるポリイミド系樹脂層Aの形成領域の面積のことであり、図1(B)中、破線領域211の面積に等しい。ポリイミド系樹脂層Bの面積とは、ポリイミド系樹脂層Aの面積と、無機基板1の表面においてポリイミド系樹脂層Bが直接的に形成されるポリイミド系樹脂層A(21)の外周領域210の面積との和のことであり、図1(B)中、ポリイミド系樹脂層Bを示す領域22の面積に等しい。 The area of the polyimide resin layer B is preferably 110% or more, more preferably 120% or more with respect to the area of the polyimide resin layer A, from the viewpoint of adhesion of the polyimide film to the inorganic substrate. Preferably, it is more preferable to set it as 150% or more. The upper limit of the area of the polyimide resin layer B is not particularly limited, but from the viewpoint of reducing material loss, the area of the polyimide resin layer B is usually 200% with respect to the area of the polyimide resin layer A. Or less, preferably 180% or less, and more preferably 160% or less. The area of the polyimide resin layer A is the area of the formation region of the polyimide resin layer A on the surface of the inorganic substrate 1 and is equal to the area of the broken line region 211 in FIG. The area of the polyimide resin layer B refers to the area of the polyimide resin layer A and the outer peripheral region 210 of the polyimide resin layer A (21) on which the polyimide resin layer B is directly formed on the surface of the inorganic substrate 1. This is the sum of the area and is equal to the area of the region 22 showing the polyimide resin layer B in FIG.
 図1(B)においてポリイミド系樹脂層A(21)およびポリイミド系樹脂層B(22)の形状はいずれも正方形状を有しているが、本発明の積層体において剥離されたポリイミド系フィルム2の用途に応じていかなる形状を有していても良い。ポリイミド系樹脂層Aおよびポリイミド系樹脂層Bは、例えば、円形状、長方形状を有していても良い。ポリイミド系フィルム2をフレキシブル基板として使用する場合、ポリイミド系樹脂層Aおよびポリイミド系樹脂層Bの形状は通常、正方形状または長方形状である。 In FIG. 1B, the polyimide resin layer A (21) and the polyimide resin layer B (22) have a square shape, but the polyimide film 2 peeled off in the laminate of the present invention. It may have any shape depending on the application. The polyimide resin layer A and the polyimide resin layer B may have, for example, a circular shape or a rectangular shape. When the polyimide film 2 is used as a flexible substrate, the shape of the polyimide resin layer A and the polyimide resin layer B is usually square or rectangular.
 ポリイミド系樹脂層B(22)において無機基板1と直接的に接触する外縁部220の幅W(図1(B)参照)は、通常は2mm以上、特に2mm以上100mm以下であり、ポリイミド系フィルム2の密着性と剥離性とのより一層良好なバランスの観点から、好ましくは3mm以上80mm以下、より好ましくは4mm以上50mm以下である。図1(A)および(B)においては、ポリイミド系樹脂層B(22)の外縁部220は、ポリイミド系樹脂層A(21)の外周領域210の全周にわたって、無機基板1と直接的に接触しているが、吸湿処理前においてポリイミド系フィルム2が所望の密着性を有する限り、外周領域210の一部において外縁部220が無機基板1と直接的に接触していなくてもよい。 In the polyimide resin layer B (22), the width W (see FIG. 1B) of the outer edge portion 220 that directly contacts the inorganic substrate 1 is usually 2 mm or more, particularly 2 mm or more and 100 mm or less. From the viewpoint of an even better balance between adhesiveness 2 and peelability, the thickness is preferably 3 mm or more and 80 mm or less, more preferably 4 mm or more and 50 mm or less. 1A and 1B, the outer edge 220 of the polyimide resin layer B (22) is directly connected to the inorganic substrate 1 over the entire circumference of the outer peripheral region 210 of the polyimide resin layer A (21). Although it is in contact, the outer edge 220 may not be in direct contact with the inorganic substrate 1 in a part of the outer peripheral region 210 as long as the polyimide film 2 has a desired adhesion before the moisture absorption treatment.
 ポリイミド系樹脂層Aの無機基板との接着強度は、2N/cm以下であり、1N/cm以下とすることが好ましく、0.5N/cm以下であることがより好ましい。ポリイミド系樹脂層Aが、後述される本発明の吸湿処理の前からこのような接着強度を有することにより、ポリイミド系樹脂層Aと無機基板との良好な剥離性を確保することができる。ポリイミド系樹脂層Aの無機基板との接着強度が2N/cmを超えるとポリイミド系フィルムの無機基板からの剥離が困難になる。ポリイミド系樹脂層Aの無機基板との接着強度の下限値は特に限定されず、低ければ低い程良い。 The adhesive strength of the polyimide resin layer A to the inorganic substrate is 2 N / cm or less, preferably 1 N / cm or less, and more preferably 0.5 N / cm or less. When the polyimide resin layer A has such an adhesive strength before the moisture absorption treatment of the present invention described later, good releasability between the polyimide resin layer A and the inorganic substrate can be ensured. If the adhesive strength of the polyimide resin layer A with the inorganic substrate exceeds 2 N / cm, it is difficult to peel the polyimide film from the inorganic substrate. The lower limit of the adhesive strength between the polyimide resin layer A and the inorganic substrate is not particularly limited, and the lower the better.
 ポリイミド系樹脂層Bの無機基板との接着強度は、2N/cm超であり、5N/cm以上とすることが好ましく、7N/cm以上であることがより好ましい。ポリイミド系樹脂層Bが、後述される本発明の吸湿処理の前においてこのような接着強度を有することにより、ポリイミド系樹脂層Bと無機基板との良好な密着性を確保することができるので、積層一体化されているポリイミド系フィルム全体の無機基板との密着性を確保することができる。ポリイミド系樹脂層Bの無機基板との接着強度が低すぎると、ポリイミド系フィルムの無機基板からの剥離前にポリイミド系フィルム上に電子素子等の部材を形成するとき、ポリイミド系フィルムに剥離が生じて作業効率が低下する。ポリイミド系樹脂層Bの無機基板との接着強度の上限値は特に限定されないが、当該接触強度は通常20N/cm以下であり、好ましくは10N/cm以下である。 The adhesive strength of the polyimide resin layer B with the inorganic substrate is more than 2 N / cm, preferably 5 N / cm or more, and more preferably 7 N / cm or more. By having such an adhesive strength before the moisture absorption treatment of the present invention, which will be described later, the polyimide resin layer B can ensure good adhesion between the polyimide resin layer B and the inorganic substrate, Adhesiveness with the inorganic substrate of the whole polyimide film laminated and integrated can be ensured. If the adhesive strength of the polyimide resin layer B with the inorganic substrate is too low, the polyimide film is peeled off when a member such as an electronic element is formed on the polyimide film before the polyimide film is peeled off from the inorganic substrate. Work efficiency is reduced. The upper limit value of the adhesive strength of the polyimide resin layer B with the inorganic substrate is not particularly limited, but the contact strength is usually 20 N / cm or less, preferably 10 N / cm or less.
 ポリイミド系樹脂層Bは、吸湿処理で、無機基板から剥離可能となる。詳しくは、ポリイミド系樹脂層Bは、後述の吸湿処理後において、手で端部から引きはがす方法等の後述の具体的な剥離方法により剥離可能となる。ポリイミド系樹脂層Bは、吸湿処理後において、例えば以下に示すような接着強度を示すようになる。ポリイミド系樹脂層Bの無機基板との吸湿処理後の接着強度は、通常、2N/cm以下であり、1N/cm以下とすることが好ましく、0.5N/cm以下であることがより好ましい。ポリイミド系樹脂層Bは、吸湿処理により、このように低い接着強度で無機基板と接着するようになるので、ポリイミド系フィルムが無機基板から容易に剥離できるようになる。吸湿処理後においてポリイミド系樹脂層Bの無機基板との接着強度が2N/cmを超えると、ポリイミド系フィルムの無機基板からの剥離が困難になる。ポリイミド系樹脂層Bの無機基板との吸湿処理後の接着強度の下限値は特に限定されず、低ければ低い程良い。 The polyimide resin layer B can be peeled from the inorganic substrate by moisture absorption treatment. Specifically, after the moisture absorption treatment described later, the polyimide resin layer B can be peeled off by a specific peeling method described later such as a method of peeling off from the end portion by hand. For example, the polyimide resin layer B has the following adhesive strength after the moisture absorption treatment. The adhesive strength of the polyimide resin layer B after the moisture absorption treatment with the inorganic substrate is usually 2 N / cm or less, preferably 1 N / cm or less, and more preferably 0.5 N / cm or less. Since the polyimide resin layer B is bonded to the inorganic substrate with such a low adhesive strength by the moisture absorption treatment, the polyimide film can be easily peeled from the inorganic substrate. If the adhesive strength of the polyimide resin layer B with the inorganic substrate exceeds 2 N / cm after the moisture absorption treatment, it is difficult to peel the polyimide film from the inorganic substrate. The lower limit value of the adhesive strength after the moisture absorption treatment of the polyimide resin layer B with the inorganic substrate is not particularly limited, and the lower the better.
 本発明で言う接着強度とは、ポリイミド系樹脂層と無機基板の層間の接着強度をJIS K6854-2に基づいて180°剥離試験を行うことにより測定された値を言う。 The adhesive strength referred to in the present invention refers to a value measured by performing a 180 ° peel test on the adhesive strength between a polyimide resin layer and an inorganic substrate based on JIS K6854-2.
 ポリイミド系フィルムを構成するポリイミド系樹脂層Aおよびポリイミド系樹脂層Bは、ポリイミド系樹脂をフィルム化したものである。ポリイミド系樹脂は、主鎖にイミド結合を有する樹脂であり、具体例としては、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられるがこれらに限定されるものではなく、主鎖にイミド結合を有する樹脂であれば如何なる樹脂も使用することができる。これらの樹脂は通常は単独で用いられるが、2種以上を混合して用いてもよい。ポリイミド系樹脂層Aおよびポリイミド系樹脂層Bを構成するポリイミド系樹脂はそれぞれ独立して選択され、いずれのポリイミド系樹脂も好ましくはポリイミドを単独で用いる。 The polyimide resin layer A and the polyimide resin layer B constituting the polyimide film are formed by forming a polyimide resin into a film. The polyimide resin is a resin having an imide bond in the main chain, and specific examples include polyimide, polyamideimide, polyesterimide, etc., but are not limited thereto, and a resin having an imide bond in the main chain. Any resin can be used. These resins are usually used alone, but two or more kinds may be mixed and used. The polyimide resins constituting the polyimide resin layer A and the polyimide resin layer B are independently selected, and any polyimide resin is preferably used alone.
 ポリイミドとしては、溶媒に溶解したポリアミック酸等のポリイミド前駆体を熱硬化してポリイミドとする前駆体型ポリイミドや溶媒可溶型のポリイミドを用いることができ、前駆体型ポリイミドを好ましく用いることが出来る。 As the polyimide, it is possible to use a precursor type polyimide or a solvent soluble type polyimide which is obtained by thermally curing a polyimide precursor such as polyamic acid dissolved in a solvent, and a precursor type polyimide can be preferably used.
 前記ポリイミド系樹脂としては、イミド結合に由来する構成単位を50モル%以上有する(但し、全構成単位を100モル%とする。)ことが好ましい。 The polyimide resin preferably has 50 mol% or more of structural units derived from imide bonds (provided that all the structural units are 100 mol%).
 前記ポリイミド系樹脂としては、市販品を用いてもよい。即ち、例えば、「UイミドAR」、「UイミドAH」、「UイミドBH」、「UイミドCR」、「UイミドCH」(いずれもユニチカ社製)やUワニスA(宇部興産社製)等のポリアミック酸型ワニス、「リカコートSN-20」(新日本理化社製)や「マトリミド5218」(ハンツマン社製)等を溶媒に溶解させた溶媒可溶型ポリイミドワニス、バイロマックスHR-11NN(東洋紡社製)等のポリアミドイミドワニスを使用することができる。 Commercially available products may be used as the polyimide resin. That is, for example, “Uimide AR”, “Uimide AH”, “Uimide BH”, “Uimide CR”, “Uimide CH” (all manufactured by Unitika Ltd.) and U varnish A (manufactured by Ube Industries) Polyamic acid type varnish such as “Rika Coat SN-20” (manufactured by Shin Nippon Chemical Co., Ltd.), “Matrimid 5218” (manufactured by Huntsman), etc., dissolved in a solvent, polyimide soluble varnish, Viromax HR-11NN Polyamideimide varnish such as Toyobo Co., Ltd.) can be used.
 前記前駆体型ポリイミドは、原料となるテトラカルボン酸やその二無水物とジアミンの略等モルを、溶媒中で反応させて得られるポリイミド前駆体溶液であり、これを塗布して、乾燥、熱硬化(イミド化)してポリイミド層を得ることができる。 The precursor-type polyimide is a polyimide precursor solution obtained by reacting approximately equimolar amounts of tetracarboxylic acid or dianhydride and diamine as raw materials in a solvent, and applying this, drying, thermosetting A polyimide layer can be obtained by (imidization).
 このポリイミド前駆体溶液を製造する際の、反応温度としては、-30~60℃が好ましく、-15~40℃がより好ましい。またこの反応において、モノマー及び溶媒の添加順序は特に制限はなく、いかなる順序でもよい。 The reaction temperature at the time of producing this polyimide precursor solution is preferably −30 to 60 ° C., more preferably −15 to 40 ° C. In this reaction, the order of addition of the monomer and the solvent is not particularly limited, and may be any order.
 ここでテトラカルボン酸もしくはその二無水物としては、例えばピロメリット酸、3,3′,4,4′-ビフェニルテトラカルボン酸、3,3′,4,4′-ベンゾフェノンテトラカルボン酸、3,3′,4,4′-ジフェニルスルホンテトラカルボン、酸、3,3′,4,4′-ジフェニルエーテルテトラカルボン酸、2,3,3′,4′-ベンゾフェノンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、1,4,5,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、3,3′,4,4′-ジフェニルメタンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10-テトラカルボキシペリレン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、1,2,3,4-シクロブタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸やこれらの二無水物等を単体もしくは混合物として使用することが出来るがこれらに限定されるものではない。 Examples of the tetracarboxylic acid or dianhydride thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3, 3 ', 4,4'-diphenylsulfone tetracarboxylic acid, acid, 3,3', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid, 2,3,6 , 7-naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2 , 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4,9,10 Tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane, 1, 2,3,4-cyclobutanetetracarboxylic acid, 1,2,4,5-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, bicyclo [2,2,2] oct-7- En-2,3,5,6-tetracarboxylic acid and their dianhydrides can be used alone or as a mixture, but are not limited thereto.
 ここで、ピロメリット酸、3,3′,4,4′-ビフェニルテトラカルボン酸もしくはこれらの二無水物が特に好ましく用いられる。 Here, pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid or their dianhydrides are particularly preferably used.
 ジアミンとしては例えば、p-フェニレンジアミン、m-フェニレンジアミン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルメタン、3,3′-ジメチル-4,4′-ジアミノジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2-ビス(p-アミノフェニル)プロパン、2,2-ビス(p-アミノフェニル)ヘキサフルオロプロパン、1,5-ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4-ビス(p-アミノフェノキシ)ベンゼン、4,4′-ビス(p-アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4′-ビス(3-アミノフェノキシフェニル)ジフェニルスルホン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロブタン、1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、1,2-エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタジアミン、1,6-ヘキサンジアミン、1,7―ヘプタンジアミン、1,8―オクタンジアミン、1,9-ノナンジアミン、1、10―デカンジアミン、1,12―ドデカンジアミン、cis-1,4―ジアミノシクロヘキサン、trans-1,4―ジアミノシクロヘキサン、1,4―ジアミノシクロヘキサン異性体混合物、cis-cis-4,4’-ジアミノジシクロヘキシルメタン、cis-trans-4,4’-ジアミノジシクロヘキシルメタン、trans-trans-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルメタン異性体混合物、cis-1,3-ビス(アミノエチル)シクロヘキサン、trans-1,3-ビス(アミノエチル)シクロヘキサン、1,3-ビス(アミノエチル)シクロヘキサン異性体混合物、cis-trans-4,4’-メチレンビス(2ーメチルシクロヘキシルアミン)、trans-trans-4,4’-メチレンビス(2ーメチルシクロヘキシルアミン)、4,4’-メチレンビス(2ーメチルシクロヘキシルアミン)異性体混合物、cis-cis-4,4’-ジアミノジシクロヘキシレンプロパン、cis-trans-4,4’-ジアミノジシクロヘキシレンプロパン、4,4’-ジアミノジシクロヘキシレンプロパン等を単体もしくは混合物として使用することが出来るがこれらに限定されるものではない。 Examples of the diamine include p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4 '. -Diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2 -Bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) )benzene, , 4'-bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4'-bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis ( Anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, 1,7-bis (anilino) tetradecafluoroheptane, 1,2-ethylenediamine, 1,3-propanediamine, 1,4-butanediamine 1,5-pentadiamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine, cis -1,4-diaminocyclohexane, trans-1,4-diaminocyclohex 1,4-diaminocyclohexane isomer mixture, cis-cis-4,4′-diaminodicyclohexylmethane, cis-trans-4,4′-diaminodicyclohexylmethane, trans-trans-4,4′-diaminodicyclohexylmethane 4,4′-diaminodicyclohexylmethane isomer mixture, cis-1,3-bis (aminoethyl) cyclohexane, trans-1,3-bis (aminoethyl) cyclohexane, 1,3-bis (aminoethyl) cyclohexane isomerism Body mixture, cis-trans-4,4′-methylenebis (2-methylcyclohexylamine), trans-trans-4,4′-methylenebis (2-methylcyclohexylamine), 4,4′-methylenebis (2-methylcyclohexyl) Amine ) Isomer mixture, cis-cis-4,4′-diaminodicyclohexylenepropane, cis-trans-4,4′-diaminodicyclohexylenepropane, 4,4′-diaminodicyclohexylenepropane, etc. However, it is not limited to these.
 ここで、p-フェニレンジアミン、4,4′-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが特に好ましく用いられる。 Here, p-phenylenediamine, 4,4′-diaminodiphenyl ether, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane are particularly preferably used.
 ポリイミド前駆体の固形分濃度としては1~50質量%が好ましく、5~30質量%がより好ましい。このポリアミック酸溶液は部分的にイミド化されていても良い。 The solid content concentration of the polyimide precursor is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass. This polyamic acid solution may be partially imidized.
 本発明のポリイミド前駆体溶液の25℃に於ける粘度は1~150Pa・sが好ましく、5~100Pa・sがより好ましい。 The viscosity of the polyimide precursor solution of the present invention at 25 ° C. is preferably 1 to 150 Pa · s, more preferably 5 to 100 Pa · s.
 ポリイミド前駆体溶液に用いられる溶媒としては、ポリイミド前駆体を溶解する溶媒であれば制限はないが、例えば、アミド系溶媒、エーテル系溶媒、水溶性アルコール系溶媒が挙げられる。 The solvent used in the polyimide precursor solution is not limited as long as it is a solvent that dissolves the polyimide precursor, and examples thereof include amide solvents, ether solvents, and water-soluble alcohol solvents.
 アミド系溶媒の具体例としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等が挙げられる。 Specific examples of the amide solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and the like.
 エーテル系溶媒としては、2-メトキシエタノール、2-エトキシエタノール、2-(メトキシメトキシ)エトキシエタノール、2-イソプロポキシエタノール、2-ブトキシエタノール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ポリエチレングリコール、ポリプロピレングリコール、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等が挙げられる。 Examples of ether solvents include 2-methoxyethanol, 2-ethoxyethanol, 2- (methoxymethoxy) ethoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, tetrahydrofurfuryl alcohol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol monobutyl ether, triethylene glycol, triethylene glycol monoethyl ether, tetraethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol Monoethyl ether, tripropylene glycol monomethyl ether, polyethylene Glycol, polypropylene glycol, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether.
 水溶性アルコール系溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、1,2,6-ヘキサントリオール、ジアセトンアルコール等が挙げられる。 Examples of water-soluble alcohol solvents include methanol, ethanol, 1-propanol, 2-propanol, tert-butyl alcohol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, , 4-butadiol, 2,3-butanediol, 1,5-pentanediol, 2-butene-1,4-diol, 2-methyl-2,4-pentanediol, 1,2,6-hexanetriol, di- Acetone alcohol etc. are mentioned.
 これらの溶媒は2種以上を混合して用いることができる。これらの溶媒のうち、特に好ましい例としては、単独溶媒としてはN,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが挙げられ、また、混合溶媒としては、N,N-ジメチルアセトアミドとN-メチル-2-ピロリドン、N-メチル-2-ピロリドンとメタノール、N-メチル-2-ピロリドンと2―メトキシエタノール等の組み合わせが挙げられる。 These solvents can be used as a mixture of two or more. Among these solvents, particularly preferred examples include N, N-dimethylacetamide and N-methyl-2-pyrrolidone as the sole solvent, and examples of the mixed solvent include N, N-dimethylacetamide and N—. Examples include combinations of methyl-2-pyrrolidone, N-methyl-2-pyrrolidone and methanol, N-methyl-2-pyrrolidone and 2-methoxyethanol, and the like.
 ポリイミド系樹脂層AおよびBを、ポリイミド前駆体溶液を用いて製造する方法について説明するが、ポリイミド系樹脂として前記したポリイミド以外の他のポリマーを用いる場合についても、以下の説明を準用することにより、ポリイミド系樹脂層AおよびBを製造できることは明らかである。 The method for producing the polyimide resin layers A and B using the polyimide precursor solution will be described, but the following description is applied mutatis mutandis also in the case of using a polymer other than the polyimide described above as the polyimide resin. It is clear that the polyimide resin layers A and B can be produced.
 ポリイミド系樹脂層AおよびBの製造に際しては、まず、ポリイミド系樹脂層Aを製造するための「ポリイミド前駆体溶液A」およびポリイミド系樹脂層Bを製造するための「ポリイミド前駆体溶液B」(これらをそれぞれ「ポリイミド溶液A」および「ポリイミド溶液B」と略記することがある)を用意する。次いで、ポリイミド溶液Aを無機基板上に塗布し、乾燥後、乾燥塗膜および無機基板の表面上に、ポリイミド溶液Bを塗布し、乾燥する。しかる後、これらの塗膜を一括して熱硬化してイミド化する。ここでいう乾燥とは、加熱等の手段によりポリイミド前駆体溶液における溶媒量を減少させることをいう。この際、塗膜中の固形分濃度が50質量%以上、90質量%以下となるまで溶媒の除去を行うことが好ましい。このように乾燥することにより、ポリイミド系樹脂層Aとポリイミド系樹脂層Bとの界面の密着性が確保され、積層一体化することができる。乾燥には任意の装置を用いることができ、熱風乾燥機が好ましいが、赤外線加熱、電磁誘導加熱等を使用してもよい。乾燥のためには50~200℃の温度範囲が適当である。また、ここでいう熱硬化とは、ポリイミド前駆体をポリイミドに変換する工程をいう。熱硬化のためには300~450℃の温度範囲が適当である。ポリイミド溶液Bの塗布に際しては、ポリイミド系樹脂層Aの全面を全て被覆し、かつポリイミド系樹脂層Aの面積よりもポリイミド系樹脂層Bの面積を大きくすることにより、前記した層構成とすることができる。 In the production of polyimide resin layers A and B, first, “polyimide precursor solution A” for producing polyimide resin layer A and “polyimide precursor solution B” for producing polyimide resin layer B ( These may be abbreviated as “polyimide solution A” and “polyimide solution B”, respectively). Subsequently, the polyimide solution A is apply | coated on an inorganic board | substrate, and after drying, the polyimide solution B is apply | coated and dried on the surface of a dry coating film and an inorganic substrate. Thereafter, these coating films are collectively thermoset and imidized. Drying as used herein refers to reducing the amount of solvent in the polyimide precursor solution by means such as heating. At this time, it is preferable to remove the solvent until the solid content concentration in the coating film is 50% by mass or more and 90% by mass or less. By drying in this way, the adhesiveness of the interface of the polyimide resin layer A and the polyimide resin layer B is ensured, and it can laminate and integrate. Any device can be used for drying, and a hot air dryer is preferable, but infrared heating, electromagnetic induction heating, or the like may be used. A temperature range of 50 to 200 ° C. is suitable for drying. Moreover, the thermosetting here means the process of converting a polyimide precursor into a polyimide. A temperature range of 300 to 450 ° C. is suitable for thermosetting. When applying the polyimide solution B, the entire surface of the polyimide resin layer A is covered, and the area of the polyimide resin layer B is made larger than the area of the polyimide resin layer A, so that the layer configuration described above is obtained. Can do.
 ポリイミド前駆体溶液Aには、ポリイミド系樹脂層Aの前記接着強度を得るために、例えば、ステアリン酸、パルミチン酸等の高級脂肪酸や、そのアミド、金属塩等の離形剤を配合することができる。これらの中で、ステアリン酸が好ましい。離形剤の配合量が多いほど、ポリイミド系樹脂層の接着強度は小さくなる。一方、離形剤の配合量が少ないほど、ポリイミド系樹脂層の接着強度は大きくなる。 In order to obtain the adhesive strength of the polyimide-based resin layer A, for example, a higher fatty acid such as stearic acid or palmitic acid, or a release agent such as an amide or a metal salt thereof may be added to the polyimide precursor solution A. it can. Of these, stearic acid is preferred. The greater the compounding amount of the release agent, the smaller the adhesive strength of the polyimide resin layer. On the other hand, the smaller the compounding amount of the release agent, the greater the adhesive strength of the polyimide resin layer.
 ポリイミド前駆体溶液Aにおける離形剤の配合量としては、ポリイミド系樹脂層が所定の接着強度を達成する限り特に限定されず、通常はポリイミド質量に対して0.01から2質量%添加することが好ましく、より好ましくは0.1から1質量%である。本明細書中、ポリイミド質量とは、ポリイミド前駆体溶液に含まれるポリイミド換算でのポリイミド全質量という意味である。 The compounding amount of the release agent in the polyimide precursor solution A is not particularly limited as long as the polyimide resin layer achieves a predetermined adhesive strength, and is usually added in an amount of 0.01 to 2% by mass relative to the polyimide mass. Is more preferable, and 0.1 to 1% by mass is more preferable. In this specification, the polyimide mass means the total polyimide mass in terms of polyimide contained in the polyimide precursor solution.
 ポリイミド前駆体溶液Aには、ポリイミド系樹脂層Aの前記接着強度を得るために、後述する密着性向上剤を配合することもできる。密着性向上剤の配合による接着強度への影響は、ポリイミド前駆体溶液Bにおいてと同様である。 In order to obtain the adhesive strength of the polyimide resin layer A, an adhesion improver described later can be blended in the polyimide precursor solution A. The influence on the adhesive strength by the blending of the adhesion improver is the same as in the polyimide precursor solution B.
 ポリイミド前駆体溶液Bには、前記接着強度を得るために、必要に応じ、シランカップラ等の密着性向上剤を溶液中に配合することができる。シランカップラとしては、アミン系、エポキシ系、アクリル系等その種類に制限は無いが、アミン系が好ましい。密着性向上剤の配合量が多いほど、ポリイミド系樹脂層の接着強度は大きくなる。一方、密着性向上剤の配合量が少ないほど、ポリイミド系樹脂層の接着強度は小さくなる。 In the polyimide precursor solution B, an adhesion improver such as a silane coupler can be blended in the solution as necessary in order to obtain the adhesive strength. The silane coupler is not limited in its type such as amine, epoxy, and acrylic, but is preferably an amine. The greater the compounding amount of the adhesion improver, the greater the adhesive strength of the polyimide resin layer. On the other hand, the smaller the compounding amount of the adhesion improver, the smaller the adhesive strength of the polyimide resin layer.
 ポリイミド前駆体溶液Bにおける密着性向上剤の配合量としては、ポリイミド質量に対して0.05から0.5質量%添加することが好ましく、より好ましくは0.05から0.2質量%、さらに好ましくは0.1から0.2質量%である。 As the compounding amount of the adhesion improver in the polyimide precursor solution B, it is preferable to add 0.05 to 0.5% by mass, more preferably 0.05 to 0.2% by mass, and more preferably to the polyimide mass. Preferably it is 0.1 to 0.2 mass%.
 ポリイミド前駆体溶液Bには、ポリイミド系樹脂層Bの前記接着強度を得るために、前記した離形剤を配合することもできる。離形剤の配合による接着強度への影響は、ポリイミド前駆体溶液Aにおいてと同様である。 In the polyimide precursor solution B, in order to obtain the adhesive strength of the polyimide resin layer B, the above-described release agent can be blended. The influence on the adhesive strength by the blending of the release agent is the same as in the polyimide precursor solution A.
 ポリイミド前駆体溶液AおよびBの塗布は、連続もしくは枚葉で行うことが出来る。 The polyimide precursor solutions A and B can be applied continuously or in single wafers.
 連続塗布は、ダイコーター、リップコーター、コンマコーター、グラビアコーター、リバースロールコーター等の塗工機を用いておこなうことが出来る。 Continuous coating can be carried out using a coating machine such as a die coater, lip coater, comma coater, gravure coater, reverse roll coater.
 連続塗布は、バーコータ、ドクターブレードコーター、スピンコーター等の塗工機を用いて行うこともできる。 Continuous coating can also be performed using a coating machine such as a bar coater, a doctor blade coater, or a spin coater.
 ここで連続塗布は、無機基板が剛直であるため、困難を伴うことが多いので、工業生産の観点からは枚様での塗布が好ましい。 Here, continuous application is often accompanied by difficulty because the inorganic substrate is rigid, and therefore, application in sheet form is preferable from the viewpoint of industrial production.
 ポリイミド系樹脂層Aの塗布厚みとしては、熱硬化後の厚さを、0.5から10μmとすることが好ましく、1から5μmとすることがより好ましい。
 また、ポリイミド系樹脂層Bの塗布厚みとしては、熱硬化後の厚さを、5から200μmとすることが好ましく、10から100μmとすることがより好ましい。ポリイミド系樹脂層Bの厚みは、ポリイミド系樹脂層Aを含むポリイミド系フィルム全体の厚みであり、外縁部220の厚みに等しい。
The coating thickness of the polyimide resin layer A is preferably 0.5 to 10 μm and more preferably 1 to 5 μm after thermosetting.
Moreover, as the application thickness of the polyimide resin layer B, the thickness after thermosetting is preferably 5 to 200 μm, and more preferably 10 to 100 μm. The thickness of the polyimide resin layer B is the thickness of the entire polyimide film including the polyimide resin layer A, and is equal to the thickness of the outer edge portion 220.
 前記したように、フレキシブル基板としてポリイミド系フィルムを使用した電子デバイスでは、OLED発光層等への水蒸気等の侵入を防ぐため、ガスバリア層を設けることが一般的である。本発明の積層体においては、ポリイミド系樹脂層Bの表面のポリイミド系樹脂層Aが積層(埋包)されている部分に、このガスバリア層を設けることができる。ガスバリア層としては、酸化珪素、酸化アルミニウム、炭化珪素、酸化炭化珪素、炭化窒化珪素、窒化珪素、窒化酸化珪素等の無機酸化物からなる被膜を用いることができるが、酸化珪素からなる被膜が好しい。これらの被膜を形成させる方法としては、スパッタ法、真空蒸着法、熱CVD法、プラズマCVD法、光CVD法等公知の方法挙げられるが、スパッタ法が好ましい。ガスバリア層の厚みとしては、10から100nmとすることが好ましく、20から50nmがより好ましい。 As described above, in an electronic device using a polyimide-based film as a flexible substrate, it is common to provide a gas barrier layer in order to prevent water vapor or the like from entering an OLED light-emitting layer or the like. In the laminated body of this invention, this gas barrier layer can be provided in the part by which the polyimide-type resin layer A of the surface of the polyimide-type resin layer B is laminated | stacked (embedded). As the gas barrier layer, a film made of an inorganic oxide such as silicon oxide, aluminum oxide, silicon carbide, silicon oxycarbide, silicon carbonitride, silicon nitride, or silicon nitride oxide can be used, but a film made of silicon oxide is preferable. That's right. Examples of the method for forming these films include known methods such as sputtering, vacuum deposition, thermal CVD, plasma CVD, and photo CVD, but sputtering is preferred. The thickness of the gas barrier layer is preferably 10 to 100 nm, and more preferably 20 to 50 nm.
 ガスバリア層3は、図2(A)および(B)に示すように、ポリイミド系樹脂層Bの表面においてポリイミド系樹脂層Aの位置と垂直方向で重複する位置(領域)に設ける。ガスバリア層3は、図2(A)および(B)に示すように、ポリイミド系樹脂層B(22)の表面における垂直方向でのポリイミド系樹脂層Aとの重複領域の全体に設けなければならないというわけではなく、当該重複領域内の一部に設けても良い。ポリイミド系樹脂層Bの表面における垂直方向でのポリイミド系樹脂層Aとの重複領域とは、図1(B)における符号211で示される領域である。当該重複領域211を超えてガスバリア層を形成すると、当該重複領域を超えた部分のガスバリア層の直下に位置するポリイミド系樹脂層Bの外縁部220が十分に後述の吸湿処理を受けることができない。このため、ポリイミド系フィルムの無機基板からの剥離が困難になる。図2(A)は、図1(A)の積層体のポリイミド系樹脂層B(22)の表面にガスバリア層3を形成した本発明に係る一実施態様の積層体の模式図(断面図)である。図2(B)は、図2(A)の積層体を、図中、上方から見たときの概略見取り図である。図2(A)および(B)において図1(A)および(B)と同様の符号は、図1においてと同様の部材、領域を示すものとする。 As shown in FIGS. 2A and 2B, the gas barrier layer 3 is provided on the surface of the polyimide resin layer B at a position (region) overlapping with the position of the polyimide resin layer A in the vertical direction. As shown in FIGS. 2A and 2B, the gas barrier layer 3 must be provided in the entire overlapping area with the polyimide resin layer A in the vertical direction on the surface of the polyimide resin layer B (22). However, it may be provided in a part of the overlapping area. The overlapping region with the polyimide resin layer A in the vertical direction on the surface of the polyimide resin layer B is a region indicated by reference numeral 211 in FIG. When the gas barrier layer is formed beyond the overlapping region 211, the outer edge portion 220 of the polyimide resin layer B located immediately below the gas barrier layer in the portion exceeding the overlapping region cannot sufficiently receive the moisture absorption treatment described later. For this reason, it becomes difficult to peel the polyimide film from the inorganic substrate. FIG. 2A is a schematic diagram (cross-sectional view) of the laminate of one embodiment according to the present invention in which the gas barrier layer 3 is formed on the surface of the polyimide resin layer B (22) of the laminate of FIG. It is. FIG. 2 (B) is a schematic sketch when the laminate of FIG. 2 (A) is viewed from above in the drawing. 2A and 2B, the same reference numerals as those in FIGS. 1A and 1B denote the same members and regions as in FIG.
 ガスバリア層3を、重複領域211の一部または全体に設けることにより、ポリイミド系樹脂層Bの大気に暴露している部分の面積を、ポリイミド系樹脂層Bの面積全体の10%以上とすることができる。すなわち、ポリイミド系樹脂層B表面にガスバリア層が設けられていても、ポリイミド系樹脂層Bの一部、特に外縁部220、が大気に露出しているので、吸湿処理による剥離が可能となる。ポリイミド系樹脂層Bの大気に暴露している部分の面積とは、ポリイミド系樹脂層Bの表面の面積から、ガスバリア層の表面の面積を差し引いた面積のことであり、図2(B)中、斜線領域220の面積に等しい。ポリイミド系樹脂層Bの面積全体は、図2(B)中、ポリイミド系樹脂層Bを示す領域22(正方形状)の面積に等しい。 By providing the gas barrier layer 3 in a part or the whole of the overlapping region 211, the area of the polyimide resin layer B exposed to the atmosphere is 10% or more of the entire area of the polyimide resin layer B. Can do. That is, even if a gas barrier layer is provided on the surface of the polyimide resin layer B, a part of the polyimide resin layer B, particularly the outer edge 220, is exposed to the atmosphere, so that peeling by moisture absorption treatment is possible. The area of the polyimide resin layer B exposed to the air is the area obtained by subtracting the surface area of the gas barrier layer from the surface area of the polyimide resin layer B. In FIG. , Equal to the area of the shaded region 220. The entire area of the polyimide resin layer B is equal to the area of the region 22 (square shape) showing the polyimide resin layer B in FIG.
 前記したように無機基板に接するポリイミド系樹脂層B(22)の単層部分(外縁部220)は、強固に無機基板と密着しているので、ポリイミド系フィルム2の無機基板との密着性が確保できる。 As described above, since the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) in contact with the inorganic substrate is firmly adhered to the inorganic substrate, the adhesion of the polyimide film 2 to the inorganic substrate is improved. It can be secured.
[積層体の処理法]
 本発明の積層体100は、以下に示す処理法(積層体の処理法1または2)により、ポリイミド系フィルム2を無機基板から容易に剥離させることができる。剥離されたポリイミド系フィルム2はフレキシブル基板として有用である。このとき、積層体100のポリイミド系フィルム2表面に、電子素子等の部材を予め形成しておくことにより、剥離されたポリイミド系フィルム2をフレキシブルデバイスとすることができる。フレキシブルデバイスの製造に際し、電子素子等の部材形成前には、ポリイミド系フィルム2の表面に前記したガスバリア層3を形成しておくことが好ましい。
[Processing method of laminate]
The laminate 100 of the present invention can easily peel the polyimide film 2 from the inorganic substrate by the following treatment method (laminate treatment method 1 or 2). The peeled polyimide film 2 is useful as a flexible substrate. At this time, the polyimide-type film 2 which peeled can be made into a flexible device by forming members, such as an electronic element, in advance on the polyimide-type film 2 surface of the laminated body 100. In manufacturing a flexible device, it is preferable to form the gas barrier layer 3 on the surface of the polyimide film 2 before forming a member such as an electronic element.
(積層体の処理法1)
 まず、本発明の積層体100に対して後述の吸湿処理を行う。しかる後、ポリイミド系フィルム2を剥離する。具体的に剥離する方法としては、手で端部から引きはがす方法や、駆動ロール、ロボット等の機械装置を用いる方法を採用することができる。その後、無機基板1に接していたポリイミド系樹脂層B(22)の部分を切断除去することにより、フレキシブル基板としてのポリイミド系フィルム2を得る。無機基板1に接していたポリイミド系樹脂層B(22)の部分とは、ポリイミド系樹脂層B(22)における単層部分(外縁部220)のことである。
(Laminate processing method 1)
First, the moisture absorption process described below is performed on the laminate 100 of the present invention. Thereafter, the polyimide film 2 is peeled off. As a specific peeling method, a method of peeling from the end portion by hand, or a method using a mechanical device such as a drive roll or a robot can be employed. Then, the polyimide-type film 2 as a flexible substrate is obtained by cutting and removing the part of the polyimide-type resin layer B (22) which was in contact with the inorganic substrate 1. The portion of the polyimide resin layer B (22) in contact with the inorganic substrate 1 is a single layer portion (outer edge portion 220) in the polyimide resin layer B (22).
 本方法において、例えば図1(A)および(B)に示す積層体100を使用する場合、まず、吸湿処理を行った後、図3(A)に示すように、ポリイミド系フィルム2を剥離する。次いで、ポリイミド系樹脂層B(22)の単層部分(外縁部220)を余剰部分として切断除去することにより、図3(B)に示すようなフレキシブル基板としてのポリイミド系フィルム2を得る。図3(A)および(B)は、図1(A)の積層体を用いて積層体の処理法1によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。図3において図1と同様の符号は、図1においてと同様の部材、領域を示すものとする。 In this method, for example, when using the laminated body 100 shown in FIGS. 1A and 1B, first, after performing a moisture absorption treatment, the polyimide film 2 is peeled off as shown in FIG. 3A. . Next, the polyimide film 2 as a flexible substrate as shown in FIG. 3B is obtained by cutting and removing the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) as an excess portion. 3A and 3B are schematic diagrams (cross-sectional views) of a polyimide film for explaining a method of manufacturing a flexible substrate by the laminate processing method 1 using the laminate of FIG. 1A. It is. 3, the same reference numerals as those in FIG. 1 denote the same members and regions as in FIG.
 本方法において、例えば図2(A)および(B)に示す積層体100を使用する場合、まず、吸湿処理を行った後、図4(A)に示すように、ガスバリア層3を有するポリイミド系フィルム2を剥離する。次いで、ポリイミド系樹脂層B(22)の単層部分(外縁部220)を余剰部分として切断除去することにより、図4(B)に示すようなフレキシブル基板としてのガスバリア層3を有するポリイミド系フィルム2を得る。図4(A)および(B)は、図2(A)の積層体を用いて積層体の処理法1によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。図4において図2と同様の符号は、図2においてと同様の部材、領域を示すものとする。 In this method, for example, when the laminate 100 shown in FIGS. 2A and 2B is used, first, after performing a moisture absorption treatment, as shown in FIG. 4A, a polyimide system having a gas barrier layer 3 is used. The film 2 is peeled off. Next, the polyimide film having the gas barrier layer 3 as a flexible substrate as shown in FIG. 4B by cutting and removing the single layer portion (outer edge portion 220) of the polyimide resin layer B (22) as an excess portion. Get 2. 4A and 4B are schematic views (cross-sectional views) of a polyimide film for explaining a method for producing a flexible substrate by the laminate processing method 1 using the laminate of FIG. 2A. It is. 4, the same reference numerals as those in FIG. 2 indicate the same members and regions as in FIG.
 本方法においては、外縁部220は吸湿処理により剥離することが好ましいが、例えば、外縁部220に、レーザ光、赤外線光、紫外線光、フラッシュ光等を照射することにより剥離を行うこともできる。また、本発明の積層体100を水に浸漬することにより剥離を行うこともできる。 In this method, it is preferable that the outer edge portion 220 is peeled off by moisture absorption treatment, but for example, the outer edge portion 220 can be peeled off by irradiating laser light, infrared light, ultraviolet light, flash light, or the like. Moreover, it can also peel by immersing the laminated body 100 of this invention in water.
 本積層体の処理法1においても、積層体100のポリイミド系フィルム2表面に、電子素子等の部材(図示せず)を予め形成しておくことにより得られたポリイミド系フィルム2はフレキシブルデバイスとして有用である。 Also in the processing method 1 of this laminated body, the polyimide film 2 obtained by previously forming members (not shown) such as electronic elements on the surface of the polyimide film 2 of the laminated body 100 is a flexible device. Useful.
(積層体の処理法2)
 まず、ポリイミド系フィルム2の所定の部位に切り込みを入れて、ポリイミド系フィルムにおける剥離予定領域部分と、無機基板1に接しているポリイミド系樹脂層B(22)の部分を含む部分とを分割する。切り込みを入れるポリイミド系フィルムの所定の部位とは、直下にポリイミド系樹脂層A(21)が存在する部位であり、通常は、図5(A)および図6(A)に示すように、ポリイミド系樹脂層A(21)の外周に沿って切り込み200を形成する。切り込み方法は無機基板1まで到達する切り込み200を形成できる限り特に限定されず、例えば、市販のカッターを用いる方法やレーザ光の照射を用いる方法が挙げられる。図5(A)および(B)は、図1(A)の積層体を用いて積層体の処理法2によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。図6(A)および(B)は、図2(A)の積層体を用いて積層体の処理法2によりフレキシブル基板を製造する方法を説明するためのポリイミド系フィルムの模式図(断面図)である。
(Laminate processing method 2)
First, a predetermined part of the polyimide film 2 is cut to divide the part to be peeled in the polyimide film and the part including the polyimide resin layer B (22) in contact with the inorganic substrate 1. . The predetermined part of the polyimide film to be cut is a part where the polyimide resin layer A (21) is present immediately below. Usually, as shown in FIG. 5 (A) and FIG. 6 (A), the polyimide film Cuts 200 are formed along the outer periphery of the resin layer A (21). The cutting method is not particularly limited as long as the cutting 200 reaching the inorganic substrate 1 can be formed. Examples thereof include a method using a commercially available cutter and a method using laser light irradiation. 5A and 5B are schematic diagrams (cross-sectional views) of a polyimide film for explaining a method for producing a flexible substrate by the laminate processing method 2 using the laminate of FIG. 1A. It is. 6A and 6B are schematic diagrams (cross-sectional views) of a polyimide-based film for explaining a method of manufacturing a flexible substrate by the laminate processing method 2 using the laminate of FIG. 2A. It is.
 剥離予定領域部分とは、この後、剥離される領域部分であり、具体的には、図5(B)および図6(B)に示すように剥離されるポリイミド系フィルム2に対応する部分250のことであり、例えば、ポリイミド系フィルム2の表面に、電子素子等の部材(図示せず)が形成される場合は、当該部材の形成領域を含む部分である。無機基板1に接しているポリイミド系樹脂層B(22)の部分とは、本方法においても、ポリイミド系樹脂層B(22)における単層部分(外縁部220)のことである。 The part to be peeled is a part to be peeled thereafter, and specifically, a part 250 corresponding to the polyimide film 2 to be peeled as shown in FIG. 5 (B) and FIG. 6 (B). For example, when a member (not shown) such as an electronic element is formed on the surface of the polyimide film 2, it is a portion including a formation region of the member. The part of the polyimide resin layer B (22) in contact with the inorganic substrate 1 is also a single layer part (outer edge part 220) in the polyimide resin layer B (22) in this method.
 本方法において切り込み200により分割を行った後は、図5(B)および図6(B)に示すように、剥離予定領域部分250を剥離して、フレキシブル基板を得る。剥離予定領域部分250は、ポリイミド系樹脂層A(21)のみで無機基板1と接触していたために、分割により、容易に剥離可能となる。具体的に剥離する方法としては、本方法においても、手で端部から引きはがす方法や、駆動ロール、ロボット等の機械装置を用いる方法を採用することができる。本積層体の処理法2においても、積層体100のポリイミド系フィルム2表面に、電子素子等の部材(図示せず)を予め形成しておくことにより得られたポリイミド系フィルム2(250)はフレキシブルデバイスとして有用である。 After dividing by the notch 200 in this method, as shown in FIG. 5B and FIG. 6B, the separation planned region portion 250 is peeled to obtain a flexible substrate. Since the peeling planned region portion 250 is in contact with the inorganic substrate 1 only by the polyimide resin layer A (21), it can be easily peeled by division. As a specific peeling method, also in this method, it is possible to adopt a method of peeling from the end by hand or a method using a mechanical device such as a drive roll or a robot. Also in the processing method 2 of this laminated body, the polyimide film 2 (250) obtained by previously forming a member (not shown) such as an electronic element on the surface of the polyimide film 2 of the laminated body 100 is obtained. It is useful as a flexible device.
 本方法においては、無機基板に残存しているポリイミド系樹脂層B(外縁部220)(図5(B)および図6(B)参照)を後述の吸湿処理により無機基板から剥離して除去することができる。本方法においても、外縁部220は吸湿処理により剥離することが好ましいが、例えば、外縁部220に、レーザ光、赤外線光、紫外線光、フラッシュ光等を照射することにより剥離を行うこともできる。また、水に浸漬することにより剥離を行うこともできる。外縁部220が剥離された無機基板は再利用が可能である。 In this method, the polyimide resin layer B (outer edge 220) (see FIGS. 5B and 6B) remaining on the inorganic substrate is peeled off from the inorganic substrate by a moisture absorption process described later and removed. be able to. Also in this method, it is preferable that the outer edge portion 220 is peeled off by moisture absorption treatment. However, for example, the outer edge portion 220 can be peeled off by irradiating laser light, infrared light, ultraviolet light, flash light, or the like. Moreover, it can also peel by being immersed in water. The inorganic substrate from which the outer edge 220 is peeled can be reused.
(吸湿処理)
 本発明において吸湿処理は少なくとも高温高湿環境下で積層体を保持する吸湿処理工程を含む。
(Hygroscopic treatment)
In the present invention, the moisture absorption treatment includes at least a moisture absorption treatment step for holding the laminate in a high temperature and high humidity environment.
 吸湿条件としては、特に限定されないが、好ましくは相対湿度70%以上、より好ましくは80%以上の条件下、吸湿温度は好ましくは70℃以上、より好ましくは、80℃以上で吸湿処理工程を行う。また、100℃超の加圧水蒸気を用いることもできるが、100℃以下で吸湿処理工程を行うことが好ましい。吸湿処理時間としては、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは5時間以上行う。吸湿処理時間の上限は、ポリイミド系フィルム2の剥離が達成される限り特に限定されないが、通常は20時間以下、好ましくは15時間以下、より好ましくは12時間以下で吸湿処理工程を行う。 The moisture absorption conditions are not particularly limited, but the moisture absorption treatment step is preferably performed at a relative humidity of 70% or more, more preferably 80% or more, and a moisture absorption temperature of preferably 70 ° C. or more, more preferably 80 ° C. or more. . Further, pressurized water vapor exceeding 100 ° C. can be used, but it is preferable to perform the moisture absorption treatment step at 100 ° C. or less. The moisture absorption treatment time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 5 hours or longer. The upper limit of the moisture absorption treatment time is not particularly limited as long as the release of the polyimide film 2 is achieved, but the moisture absorption treatment step is usually performed for 20 hours or less, preferably 15 hours or less, more preferably 12 hours or less.
 この吸湿処理においては、前記吸湿処理工程後、減圧による脱湿を行うことが好ましい。吸湿により体積が膨張したポリイミド系フィルムを、脱湿により急速に収縮させることができる。この吸脱湿操作により、膨張、収縮するポリイミド系フィルムに応力が発生し、吸脱湿で殆ど体積変化しない無機基板に接したポリイミド系フィルムの界面での強度を著しく低下させる。この作用により、ポリイミド系フィルムをより一層、簡単に剥離することができる。この吸脱湿は、2回以上繰り返すことにより、剥離性をさらに向上させることもできる。本発明においては通常、吸脱湿を1~3回行うことにより、ポリイミド系フィルムを簡単に剥離することができる。 In this moisture absorption treatment, it is preferable to perform dehumidification by decompression after the moisture absorption treatment step. A polyimide film having a volume expanded by moisture absorption can be rapidly shrunk by dehumidification. By this moisture absorption and desorption operation, stress is generated in the polyimide film that expands and contracts, and the strength at the interface of the polyimide film in contact with the inorganic substrate that hardly changes in volume due to moisture absorption and desorption is significantly reduced. By this action, the polyimide film can be more easily peeled off. This moisture absorption / desorption can be further improved by repeating two or more times. In the present invention, usually, the polyimide film can be easily peeled by performing moisture absorption and desorption one to three times.
 減圧条件としては、特に限定されないが、好ましくは減圧度を100Torr以下、より好ましくは50Torr以下、さらに好ましくは10Torr以下、温度を好ましくは70℃以上、より好ましくは、80℃以上で減圧処理を行う。なお、減圧処理の際の温度は前記吸湿処理温度と同じあっても異なっていても良いが、同じであることが好ましい。減圧処理時間としては、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは5時間以上行う。減圧処理時間の上限は、ポリイミド系フィルム2の剥離が促進される限り特に限定されないが、通常は20時間以下、好ましくは15時間以下、より好ましくは12時間以下で減圧処理工程を行う。 The decompression conditions are not particularly limited, but preferably the degree of decompression is 100 Torr or less, more preferably 50 Torr or less, more preferably 10 Torr or less, and the temperature is preferably 70 ° C. or more, more preferably 80 ° C. or more. . The temperature during the decompression treatment may be the same as or different from the moisture absorption treatment temperature, but is preferably the same. The decompression time is preferably 1 hour or longer, more preferably 3 hours or longer, and even more preferably 5 hours or longer. The upper limit of the reduced pressure treatment time is not particularly limited as long as the release of the polyimide film 2 is promoted, but the reduced pressure treatment step is usually performed for 20 hours or less, preferably 15 hours or less, more preferably 12 hours or less.
 前記の如く処理されたポリイミド積層体からポリイミド系フィルムを、具体的に剥離する方法としては、前記したような手で端部から引きはがす方法や、駆動ロール、ロボット等の機械装置を用いる方法を採用することができる。 As a method of specifically peeling the polyimide film from the polyimide laminate treated as described above, a method of peeling from the end portion by the hand as described above, or a method of using a mechanical device such as a drive roll or a robot. Can be adopted.
 なお、本発明のポリイミド系フィルムは、透明であることが好ましい。透明性の指標である500nmでの光線透過率としては、70%以上であることが好ましく、80%以上であることがより好ましい。 The polyimide film of the present invention is preferably transparent. The light transmittance at 500 nm, which is an index of transparency, is preferably 70% or more, and more preferably 80% or more.
 以上のべたように、本発明の積層体は、例えば、吸湿処理という簡単なプロセスでポリイミド積層体からポリイミド系フィルムを容易に得ることができるので、フレキシブルデバイスやフレキシブル配線板デバイスの製造に好適に用いることができる。 As described above, since the laminate of the present invention can easily obtain a polyimide-based film from a polyimide laminate by, for example, a simple process of moisture absorption treatment, it is suitable for manufacturing flexible devices and flexible wiring board devices. Can be used.
 詳しくは、本発明の積層体のポリイミド系フィルムの表面に、電子素子等の部材を形成した後、無機基板から、前記部材を備えたポリイミド系フィルムを剥離する。これにより、フレキシブルデバイスやフレキシブル配線板デバイスとして、前記部材を備えたポリイミド系フィルムを容易に得ることできる。 Specifically, after forming a member such as an electronic element on the surface of the polyimide film of the laminate of the present invention, the polyimide film provided with the member is peeled from the inorganic substrate. Thereby, the polyimide-type film provided with the said member can be obtained easily as a flexible device or a flexible wiring board device.
 電子素子等の部材の形成方法は、ポリイミド系フィルムをフレキシブル基板として用いる電子デバイスの分野で公知の方法を採用することができる。ガスバリア層の形成方法は、前記した方法と同様である。 As a method for forming a member such as an electronic element, a method known in the field of electronic devices using a polyimide film as a flexible substrate can be employed. The method for forming the gas barrier layer is the same as that described above.
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[参考例1]
 ユニチカ社製UイミドAR(3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとから得られるポリアミック酸型のポリイミド前駆体溶液であり、溶媒はNMP、固形分濃度は18質量%)を準備した。この溶液(ポリイミド溶液A-1とする)を厚さ0.7mmの無アルカリガラス板の表面上に、熱硬化後のフィルムの厚さが30μmになるようにバーコータによって塗布し、130℃で10分間乾燥してポリイミド前駆体被膜を形成した。次いで、窒素ガス気流下で、100℃から350℃まで2時間かけて昇温した後、350℃で2時間熱処理し、ポリイミド前駆体を熱硬化させてイミド化した。これによって、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-1を得た。
[Reference Example 1]
Unitika Uimide AR (polyamic acid type polyimide precursor solution obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, the solvent being NMP, solid content The concentration was 18% by mass). This solution (polyimide solution A-1) was applied on the surface of a non-alkali glass plate having a thickness of 0.7 mm by a bar coater so that the thickness of the heat-cured film was 30 μm. The polyimide precursor film was formed by drying for a minute. Next, the temperature was raised from 100 ° C. to 350 ° C. over 2 hours under a nitrogen gas stream, and then heat treatment was performed at 350 ° C. for 2 hours to thermoset the polyimide precursor and imidize. Thus, a laminate L-1 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained.
[参考例2]
 ポリイミド溶液A-1に、アミン系シランカップラ(信越シリコン社製KBE903)を、ポリイミド質量に対し0.006質量%を加え、均一に混合してポリイミド溶液A-2を得た。これを用いたこと以外、参考例1と同様にして、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-2を得た。
[Reference Example 2]
To the polyimide solution A-1, an amine-based silane coupler (KBE903 manufactured by Shin-Etsu Silicon Co., Ltd.) was added in an amount of 0.006% by mass with respect to the polyimide mass and mixed uniformly to obtain a polyimide solution A-2. A laminate L-2 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained in the same manner as in Reference Example 1 except that this was used.
[参考例3]
 ポリイミド溶液A-1に、参考例2においてと同様のシランカップラを、ポリイミド質量に対し0.06質量%を加え、均一に混合してポリイミド溶液B-1を得た。これを用いたこと以外、参考例1と同様にして、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-3を得た。
[Reference Example 3]
A silane coupler similar to that in Reference Example 2 was added to polyimide solution A-1 in an amount of 0.06% by mass based on the polyimide mass, and mixed uniformly to obtain polyimide solution B-1. A laminate L-3 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained in the same manner as in Reference Example 1 except that this was used.
[参考例4]
 ポリイミド溶液A-1に、参考例2においてと同様のシランカップラを、ポリイミド質量に対し0.1質量%を加え、均一に混合してポリイミド溶液B-2を得た。これを用いたこと以外、参考例1と同様にして、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-4を得た。
[Reference Example 4]
A silane coupler similar to that in Reference Example 2 was added to the polyimide solution A-1 at 0.1% by mass relative to the polyimide mass, and mixed uniformly to obtain a polyimide solution B-2. A laminate L-4 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained in the same manner as in Reference Example 1 except that this was used.
[参考例5]
 ユニチカ社製UイミドCR(3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と4,4′-ジアミノジフェニルエーテルとから得られるポリアミック酸型のポリイミド前駆体溶液であり、溶媒はNMP、固形分濃度は18質量%)を準備した。この溶液(ポリイミド溶液B-3とする)を厚さ0.7mmの無アルカリガラス板の表面上に、熱硬化後のフィルムの厚さが30μmになるようにバーコータによって塗布し、130℃で10分間乾燥してポリイミド前駆体被膜を形成した。次いで、窒素ガス気流下で、100℃から350℃まで2時間かけて昇温した後、350℃で2時間熱処理し、ポリイミド前駆体を熱硬化させてイミド化した。これによって、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-5を得た。
[Reference Example 5]
Unitika Uimide CR (polyamic acid type polyimide precursor solution obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, and the solvent is NMP The solid concentration was 18% by mass). This solution (polyimide solution B-3) was applied to the surface of a non-alkali glass plate having a thickness of 0.7 mm by a bar coater so that the thickness of the heat-cured film was 30 μm, and 10 ° C. at 130 ° C. The polyimide precursor film was formed by drying for a minute. Next, the temperature was raised from 100 ° C. to 350 ° C. over 2 hours under a nitrogen gas stream, and then heat treatment was performed at 350 ° C. for 2 hours to thermoset the polyimide precursor and imidize. Thus, a laminate L-5 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained.
[参考例6]
 ポリイミド溶液B-1に、ステアリン酸を、ポリイミド質量に対し0.8質量%を加え、均一に混合してポリイミド溶液A-3を得た。これを用いたこと以外、参考例5と同様にして、ガラス基板と厚さ30μmのポリイミドフィルム層を有する積層体L-6を得た。
[Reference Example 6]
To polyimide solution B-1, stearic acid was added in an amount of 0.8% by mass based on the polyimide mass, and mixed uniformly to obtain polyimide solution A-3. A laminate L-6 having a glass substrate and a polyimide film layer having a thickness of 30 μm was obtained in the same manner as in Reference Example 5 except that this was used.
<密着性(吸湿処理前)の評価>
 前記積層体L-1~L~6のガラス基板とポリイミド系フィルム層との層間の接着強度をJIS K6854に基づいて180°剥離試験により測定した。また、積層体のポリイミドフィルム端部に切り込みをいれ、そこから手で引っ張って容易にガラス板から剥離することができない場合、界面での密着性が「良好」、容易に剥離できる場合を密着性が「不良」と判定した。その結果を表1に示す。なお、表1において、接着強度が0.1N/cm以下の場合は正確な接着強度を特定することが困難なので、「0.1以下」と表記した。
<Evaluation of adhesion (before moisture absorption treatment)>
The adhesion strength between the glass substrates of the laminates L-1 to L-6 and the polyimide film layer was measured by a 180 ° peel test based on JIS K6854. In addition, when the end of the polyimide film of the laminate is cut and then pulled by hand from it, it cannot be easily peeled off from the glass plate. Was judged as “bad”. The results are shown in Table 1. In Table 1, since it is difficult to specify an accurate adhesive strength when the adhesive strength is 0.1 N / cm or less, it is described as “0.1 or less”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、積層体L-3、L-4、L-5は、密着性が良好であった。これに対し、積層体L-1、L-2、L-6は、密着性が不良、すなわち、剥離性が良好であった。 As shown in Table 1, the laminates L-3, L-4, and L-5 had good adhesion. In contrast, the laminates L-1, L-2, and L-6 had poor adhesion, that is, good peelability.
<剥離性(吸湿処理後)の評価-1>
 密着性が良好であった積層体L-3、L-4、L-5を、相対湿度95%、温度90℃の条件で10時間処理し、ポリイミド系フィルムを吸湿させた。その後、同温度で、5Torrの減圧下で10時間の減圧処理を行い、吸湿していたポリイミドを脱湿した。得られた積層体の層間の接着強度をJIS K6854に基づいて180°剥離試験により測定した。また、切り込みをいれたポリイミドフィルム端部から手で引っ張って容易にガラス板から剥離することができる場合、界面での剥離性が「良好」、容易に剥離できない場合を剥離性が「不良」と判定した。その結果を表2に示す。なお、表2において、接着強度が0.1N/cm以下の場合は正確な接着強度を特定することが困難なので、「0.1以下」と表記した。
<Evaluation of peelability (after moisture absorption treatment) -1>
The laminates L-3, L-4, and L-5, which had good adhesion, were treated for 10 hours under conditions of a relative humidity of 95% and a temperature of 90 ° C. to absorb the polyimide film. Thereafter, a reduced pressure treatment for 10 hours was performed at the same temperature under a reduced pressure of 5 Torr to dehumidify the polyimide that had absorbed moisture. The adhesion strength between layers of the obtained laminate was measured by a 180 ° peel test based on JIS K6854. In addition, when it can be easily peeled off from the glass plate by manually pulling from the end of the polyimide film that has been cut, the peelability at the interface is “good”, and the peelability is “bad” when it cannot be easily peeled off. Judged. The results are shown in Table 2. In Table 2, since it is difficult to specify an accurate adhesive strength when the adhesive strength is 0.1 N / cm or less, it is described as “0.1 or less”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<剥離性(吸湿処理後)の評価-2>
 密着性が良好であった積層体L-3、L-4、L-5を、相対湿度80%、温度50℃の条件で3時間処理し、ポリイミド系フィルムを吸湿させた。その後、同温度で、5Torrの減圧下で10時間の減圧処理を行い、吸湿していたポリイミドを脱湿した。得られた積層体の層間の接着強度をJIS K6854に基づいて180°剥離試験により測定した。また、切り込みをいれたポリイミドフィルム端部から手で引っ張って容易にガラス板から剥離することができる場合、界面での剥離性が「良好」、容易に剥離できない場合を剥離性が「不良」と判定した。その結果を表3に示す。
<Evaluation-2 of peelability (after moisture absorption treatment) -2>
Laminates L-3, L-4, and L-5, which had good adhesion, were treated for 3 hours under conditions of a relative humidity of 80% and a temperature of 50 ° C. to absorb the polyimide film. Thereafter, a reduced pressure treatment for 10 hours was performed at the same temperature under a reduced pressure of 5 Torr to dehumidify the polyimide that had absorbed moisture. The adhesion strength between layers of the obtained laminate was measured by a 180 ° peel test based on JIS K6854. In addition, when it can be easily peeled off from the glass plate by manually pulling from the end of the polyimide film that has been cut, the peelability at the interface is “good”, and the peelability is “bad” when it cannot be easily peeled off. Judged. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示す様に、吸湿処理前は、密着性が良好であった積層体L-3、L-4、L-5は吸湿処理を行うことにより、剥離性が良好な積層体とすることができる。 As shown in Tables 2 and 3, the laminates L-3, L-4, and L-5, which had good adhesion before the moisture absorption treatment, were subjected to moisture absorption treatment, thereby providing a laminate having good peelability. It can be.
[実施例1]
 図1(A)および(B)に示すように、厚さ0.7mmの無アルカリガラス板1の表面上に、ポリイミド層A(21)形成用溶液としてポリイミド溶液A-1を、熱硬化後のフィルムの厚さが3μmになるようにバーコータによって塗布し、130℃で10分間乾燥してポリイミド前駆体被膜を形成した。ここで塗布面の面積は約400cm(20cm×20cm)とした。この被膜の表面に、ポリイミド層B(22)形成用溶液としてポリイミド溶液B-1を熱硬化後のフィルム全体の厚さが30μmになるようにバーコータによって塗布し、130℃で10分間乾燥してポリイミド前駆体被膜を形成した。次いで、窒素ガス気流下で、100℃から360℃まで2時間かけて昇温した後、360℃で2時間熱処理し、ポリイミド前駆体を熱硬化させてイミド化することにより、ポリイミド層を積層一体化した。ここでポリイミド層B(22)の塗布面の面積は約576cm(24cm×24cm)であり、ガラス板表面におけるポリイミド層A(21)の外周領域210において、ポリイミド層B(22)の外縁部220が単層として幅(W)2cm分で、ガラス基板1に直接接していた。次いで、図2(A)および(B)に示すように、得られたポリイミド積層フィルム2の表面の一部(面積約400cm)にスパッタ法処理で、厚み30nmの酸化珪素被膜からなるガスバリア層3を形成して、積層体M-1を得た。ガスバリア層3の形成領域は、ポリイミド層B(22)の表面における垂直方向でのポリイミド層A(21)との重複領域211(図1(B)参照)の全体であった。
[Example 1]
As shown in FIGS. 1A and 1B, a polyimide solution A-1 as a solution for forming a polyimide layer A (21) is heat-cured on the surface of a non-alkali glass plate 1 having a thickness of 0.7 mm. The film was coated with a bar coater so that the thickness of the film became 3 μm, and dried at 130 ° C. for 10 minutes to form a polyimide precursor film. Here, the area of the coated surface was about 400 cm 2 (20 cm × 20 cm). On the surface of this coating, polyimide solution B-1 as a solution for forming polyimide layer B (22) was applied with a bar coater so that the total thickness of the film after thermosetting was 30 μm, and dried at 130 ° C. for 10 minutes. A polyimide precursor film was formed. Next, after raising the temperature from 100 ° C. to 360 ° C. over 2 hours under a nitrogen gas stream, heat treatment is carried out at 360 ° C. for 2 hours, and the polyimide precursor is thermally cured and imidized, whereby the polyimide layer is laminated and integrated. Turned into. Here, the area of the application surface of the polyimide layer B (22) is about 576 cm 2 (24 cm × 24 cm), and the outer edge portion of the polyimide layer B (22) in the outer peripheral region 210 of the polyimide layer A (21) on the glass plate surface. 220 had a width (W) of 2 cm as a single layer, and was in direct contact with the glass substrate 1. Next, as shown in FIGS. 2A and 2B, a gas barrier layer made of a silicon oxide film having a thickness of 30 nm is formed on a part of the surface of the obtained polyimide laminated film 2 (area: about 400 cm 2 ) by sputtering. 3 was formed to obtain a laminate M-1. The formation region of the gas barrier layer 3 was the entire overlapping region 211 (see FIG. 1B) with the polyimide layer A (21) in the vertical direction on the surface of the polyimide layer B (22).
[実施例2]
 ポリイミド溶液A-1をポリイミド溶液A-2としたこと以外は、実施例1と同様にして、積層体M-2を得た。
[Example 2]
A laminate M-2 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to the polyimide solution A-2.
[実施例3]
 ポリイミド溶液A-1をポリイミド溶液A-3としたこと以外は、実施例1と同様にして、積層体M-3を得た。
[Example 3]
A laminate M-3 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to the polyimide solution A-3.
[実施例4]
 ポリイミド溶液B-1をポリイミド溶液B-2としたこと以外は、実施例1と同様にして、積層体M-4を得た。
[Example 4]
A laminate M-4 was obtained in the same manner as in Example 1 except that the polyimide solution B-1 was changed to the polyimide solution B-2.
[実施例5]
 ポリイミド溶液B-1をポリイミド溶液B-3としたこと以外は、実施例1と同様にして、積層体M-5を得た。
[Example 5]
A laminate M-5 was obtained in the same manner as in Example 1 except that the polyimide solution B-1 was changed to the polyimide solution B-3.
[実施例6]
 ポリイミド溶液A-1をポリイミド溶液A-2とし、ポリイミド溶液B-1をポリイミド溶液B-3としたこと以外は、実施例1と同様にして、積層体M-6を得た。
[Example 6]
A laminate M-6 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-2 and the polyimide solution B-1 was changed to polyimide solution B-3.
[実施例7]
 ポリイミド溶液A-1をポリイミド溶液A-3とし、ポリイミド溶液B-1をポリイミド溶液B-3としたこと以外は、実施例1と同様にして、積層体M-7を得た。
[Example 7]
A laminate M-7 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-3 and the polyimide solution B-1 was changed to polyimide solution B-3.
[実施例8]
 ポリイミド溶液A-1をポリイミド溶液A-2とし、ポリイミド溶液B-1をポリイミド溶液B-2としたこと以外は、実施例1と同様にして、積層体M-8を得た。
[Example 8]
A laminate M-8 was obtained in the same manner as in Example 1 except that the polyimide solution A-1 was changed to polyimide solution A-2 and the polyimide solution B-1 was changed to polyimide solution B-2.
[実施例9]
 ポリイミド層B塗布面の面積を約484cm(22cm×22cm)とし、ポリイミド層Bの外縁部220が単層として幅(W)1cm分で、ガラス基板に直接接するようにしたこと以外は、実施例1と同様にして、積層体M-9を得た。
[Example 9]
Implemented except that the area of the polyimide layer B application surface was about 484 cm 2 (22 cm × 22 cm), and the outer edge 220 of the polyimide layer B was a single layer with a width (W) of 1 cm and was in direct contact with the glass substrate. In the same manner as in Example 1, laminate M-9 was obtained.
[実施例10]
 ポリイミド層B塗布面の面積を約441cm(21cm×21cm)とし、ポリイミド層Bの外縁部220が単層として幅(W)0.5cm分で、ガラス基板に直接接するようにしたこと以外は、実施例1と同様にして、積層体M-10を得た。
[Example 10]
Except that the area of the polyimide layer B application surface is about 441 cm 2 (21 cm × 21 cm), and the outer edge 220 of the polyimide layer B is a single layer with a width (W) of 0.5 cm and is in direct contact with the glass substrate. In the same manner as in Example 1, a laminate M-10 was obtained.
[比較例1]
 厚さ0.7mmの無アルカリガラス板の表面上に、ポリイミド溶液A-1を、熱硬化後のフィルムの厚さが30μmになるようにバーコータによって塗布し、130℃で10分間乾燥してポリイミド前駆体被膜を形成した。ここで塗布面の面積は約400cm(20cm×20cm)とした。次いで、窒素ガス気流下で、100℃から360℃まで2時間かけて昇温した後、360℃で2時間熱処理し、ポリイミド前駆体を熱硬化させてイミド化することにより、ポリイミド層Aを形成した。得られたポリイミド層Aの表面全面(面積約400cm)にスパッタ法処理で、厚み30nmの酸化珪素被膜からなるガスバリア層を形成して、積層体N-1を得た。
[Comparative Example 1]
A polyimide solution A-1 was applied on the surface of a non-alkali glass plate having a thickness of 0.7 mm by a bar coater so that the thickness of the heat-cured film was 30 μm, and dried at 130 ° C. for 10 minutes to obtain a polyimide. A precursor film was formed. Here, the area of the coated surface was about 400 cm 2 (20 cm × 20 cm). Next, under a nitrogen gas stream, the temperature is raised from 100 ° C. to 360 ° C. over 2 hours, then heat treated at 360 ° C. for 2 hours, and the polyimide precursor is thermally cured to imidize to form a polyimide layer A. did. A gas barrier layer made of a silicon oxide film having a thickness of 30 nm was formed on the entire surface (area of about 400 cm 2 ) of the obtained polyimide layer A by sputtering to obtain a laminate N-1.
[比較例2]
 ポリイミド溶液A-1の代わりにポリイミド溶液B-1を用いてポリイミド層Bを形成したこと、およびガスバリア層を当該ポリイミド層Bの表面全面に形成したこと以外は、比較例1と同様にして、積層体N-2を得た。
[Comparative Example 2]
Except that the polyimide layer B was formed using the polyimide solution B-1 instead of the polyimide solution A-1 and that the gas barrier layer was formed on the entire surface of the polyimide layer B, the same as in Comparative Example 1, A layered product N-2 was obtained.
[比較例3]
 ポリイミド溶液A-1の代わりにポリイミド溶液B-3を用いてポリイミド層Bを形成したこと、およびガスバリア層を当該ポリイミド層Bの表面全面に形成したこと以外は、比較例1と同様にして、積層体N-3を得た。
[Comparative Example 3]
Except that the polyimide layer B was formed using the polyimide solution B-3 instead of the polyimide solution A-1 and that the gas barrier layer was formed on the entire surface of the polyimide layer B, the same as in Comparative Example 1, A layered product N-3 was obtained.
[比較例4]
 ポリイミド層B塗布面の面積を約400cm(20cm×20cm)とし、ポリイミド層Bとポリイミド層Aとがほぼ重なるようにしたこと以外は、実施例1と同様にして、積層体N-4を得た。
[Comparative Example 4]
A laminate N-4 was prepared in the same manner as in Example 1 except that the area of the polyimide layer B application surface was about 400 cm 2 (20 cm × 20 cm), and the polyimide layer B and the polyimide layer A almost overlapped. Obtained.
<密着性、剥離性の評価>
 前記した実施例、比較例で得られた積層体について、吸湿処理前の密着性、吸湿処理後の剥離性を前記したような方法で評価した。特に吸湿処理後の剥離性の評価は「剥離性(吸湿処理後)の評価-1」の方法に従った。その結果を表4に示す。
<Evaluation of adhesion and peelability>
About the laminated body obtained by the above-mentioned Example and the comparative example, the adhesiveness before a moisture absorption process and the peelability after a moisture absorption process were evaluated by the method as mentioned above. In particular, the evaluation of peelability after moisture absorption treatment was in accordance with the method of “Evaluation of peelability (after moisture absorption treatment) -1”. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す様に、実施例で得られた積層体は、いずれも、吸湿処理前の密着性、吸湿処理後の剥離性共に良好であった。これに対し、比較例で得られた積層体は、吸湿処理前の密着性、吸湿処理後の剥離性のどちらかが不良であった。 As shown in Table 4, all of the laminates obtained in the examples had good adhesion before moisture absorption treatment and peelability after moisture absorption treatment. On the other hand, the laminate obtained in the comparative example had poor adhesion either before the moisture absorption treatment or peelability after the moisture absorption treatment.
[実施例11]
 実施例1で得られた積層体M-1においてガスバリア層3の形成領域の周囲四方に切り込み200を入れ(図2(A)および(B)および図6(A)参照)、ガラス基板1に直接接しているポリイミド層B(22)の外縁部220とガスバリア層3の形成領域の部分とを分割した。分割されたガスバリア層3の形成領域の部分の端部を手で引っ張った所、ガスバリア層3の形成領域の部分はガラス基板1から容易に剥離することができた。しかる後、ポリイミド層B(22)の外縁部220が残ったガラス基板(図6(B)参照)を、相対湿度95%、温度90℃の条件で10時間処理することにより、ポリイミド層Bを吸湿させた。その後、同温度で、5Torrの減圧下で10時間の減圧処理を行い、吸湿していたポリイミドを脱湿したところ、ポリイミド層Bは手で容易に剥離できた。ポリイミド層Bが剥離されたガラス基板を用い、実施例1と同様の操作を行った所、実施例1と同様の積層体を得ることができた。
[Example 11]
In the laminate M-1 obtained in Example 1, cuts 200 are made in the four directions around the formation region of the gas barrier layer 3 (see FIGS. 2A and 2B and FIG. 6A), and the glass substrate 1 is cut. The outer edge 220 of the polyimide layer B (22) in direct contact with the portion of the gas barrier layer 3 formation region was divided. When the end portion of the divided gas barrier layer 3 formation region was pulled by hand, the gas barrier layer 3 formation region portion could be easily separated from the glass substrate 1. Thereafter, the glass substrate (see FIG. 6B) on which the outer edge 220 of the polyimide layer B (22) remains is treated for 10 hours under the conditions of a relative humidity of 95% and a temperature of 90 ° C. Moisture was absorbed. Thereafter, a reduced pressure treatment was performed at the same temperature under a reduced pressure of 5 Torr for 10 hours to dehumidify the polyimide that had absorbed moisture. As a result, the polyimide layer B could be easily peeled off by hand. When the same operation as in Example 1 was performed using the glass substrate from which the polyimide layer B was peeled off, a laminate similar to that in Example 1 could be obtained.
[実施例12]
 ガスバリア層を形成しなかったこと以外は、実施例1と同様に行い、積層体M-12を得た。この積層体の重複領域211(図1(B)参照)の四方に切り込み200を入れ(図1(A)および(B)および図5(A)参照)、ガラス基板1に直接接しているポリイミド層B(22)の外縁部220と重複領域211の部分とを分割した。分割された重複領域211の部分の端部を手で引っ張った所、重複領域211の部分はガラス基板から容易に剥離することができた。しかる後、ポリイミド層B(22)の外縁部220が残ったガラス基板(図5(B)参照)を、相対湿度85%、温度80℃の条件で8時間処理することにより、ポリイミド層Bを吸湿させた。その後、常圧下、100℃で2時間乾燥を行い、吸湿していたポリイミドを脱湿したところ、ポリイミド層Bは手で容易に剥離できた。
[Example 12]
A laminate M-12 was obtained in the same manner as in Example 1 except that the gas barrier layer was not formed. A notch 200 is cut in four directions of the overlap region 211 (see FIG. 1B) of the laminate (see FIGS. 1A and 1B and FIG. 5A), and the polyimide is in direct contact with the glass substrate 1 The outer edge 220 of the layer B (22) and the overlapping region 211 were divided. When the end of the divided overlapping region 211 was pulled by hand, the overlapping region 211 could be easily peeled off from the glass substrate. Thereafter, the glass substrate (see FIG. 5B) on which the outer edge 220 of the polyimide layer B (22) remains is treated for 8 hours under conditions of a relative humidity of 85% and a temperature of 80 ° C. Moisture was absorbed. Thereafter, drying was performed at 100 ° C. under normal pressure for 2 hours to dehumidify the polyimide that had absorbed moisture, and the polyimide layer B could be easily peeled by hand.
[実施例13]
 実施例12で得られたポリイミド層B(22)の外縁部220が残ったガラス基板(図5(B)参照)を、30℃の温水に10時間浸漬した。その後、常圧下、100℃で2時間乾燥を行ったところ、ポリイミド層Bは手で容易に剥離できた。
[Example 13]
The glass substrate (see FIG. 5B) on which the outer edge 220 of the polyimide layer B (22) obtained in Example 12 remained was immersed in warm water at 30 ° C. for 10 hours. Then, when it dried at 100 degreeC under normal pressure for 2 hours, the polyimide layer B was able to peel easily by hand.
 以上述べたように、本発明の積層体は、ポリイミド系フィルムが無機基板上に強固に接着しているにも拘わらず、例えば吸湿処理により、ポリイミド系フィルムを無機基板から容易に剥離できるので、ポリイミド系フィルムからなる電子デバイス用フレキシブル基板の製造に有用である。本発明の積層体は、当該積層体を構成するポリイミド系フィルムの表面にガスバリア層が形成されている場合であっても、吸湿処理前の密着性、吸湿処理後の剥離性共に良好なので、フレキシブル基板としてのポリイミド系フィルムに電子素子等の部材を形成したフレキシブルデバイスやフレキシブル配線板を製造する際に有用である。 As described above, the laminate of the present invention can easily peel the polyimide film from the inorganic substrate by, for example, moisture absorption treatment, despite the fact that the polyimide film is firmly bonded onto the inorganic substrate. This is useful for manufacturing a flexible substrate for electronic devices made of a polyimide film. The laminate of the present invention is flexible because it has good adhesion before moisture absorption treatment and peelability after moisture absorption treatment even when a gas barrier layer is formed on the surface of the polyimide film constituting the laminate. This is useful when manufacturing a flexible device or flexible wiring board in which a member such as an electronic element is formed on a polyimide film as a substrate.
 1:無機基板
 2:ポリイミド系フィルム
 21:ポリイミド系樹脂層A(例えばポリイミド層A)
 22:ポリイミド系樹脂層B(例えばポリイミド層B)
 3:ガスバリア層
 210:外周領域
 211:ポリイミド系樹脂層B(22)の表面における垂直方向でのポリイミド系樹脂層A(21)との重複領域
 220:外縁部
1: Inorganic substrate 2: Polyimide film 21: Polyimide resin layer A (for example, polyimide layer A)
22: Polyimide resin layer B (for example, polyimide layer B)
3: Gas barrier layer 210: Peripheral region 211: Overlapping region with polyimide resin layer A (21) in the vertical direction on the surface of polyimide resin layer B (22) 220: Outer edge

Claims (8)

  1.  無機基板および該無機基板上に形成されたポリイミド系フィルムを有する積層体であって、以下の特徴を有する積層体:
    (1)ポリイミド系フィルムがポリイミド系樹脂層Aおよびポリイミド系樹脂層Bを含む積層フィルムであり、ポリイミド系樹脂層Aの全面が前記無機基板に接しており、かつポリイミド系樹脂層Aの表面に形成されたポリイミド系樹脂層Bの一部が前記無機基板に接している;
    (2)ポリイミド系樹脂層Aと前記無機基板との接着強度が2N/cm以下である;
    (3)ポリイミド系樹脂層Bと前記無機基板との接着強度が2N/cm超である;
    (4)前記無機基板に接しているポリイミド系樹脂層Bは、吸湿処理で、前記無機基板から剥離可能となる。
    A laminate having an inorganic substrate and a polyimide-based film formed on the inorganic substrate, the laminate having the following characteristics:
    (1) The polyimide film is a laminated film including a polyimide resin layer A and a polyimide resin layer B, the entire surface of the polyimide resin layer A is in contact with the inorganic substrate, and is on the surface of the polyimide resin layer A. Part of the formed polyimide resin layer B is in contact with the inorganic substrate;
    (2) The adhesive strength between the polyimide resin layer A and the inorganic substrate is 2 N / cm or less;
    (3) The adhesive strength between the polyimide resin layer B and the inorganic substrate is more than 2 N / cm;
    (4) The polyimide resin layer B in contact with the inorganic substrate can be peeled from the inorganic substrate by moisture absorption treatment.
  2.  無機基板がガラス基板であることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein the inorganic substrate is a glass substrate.
  3.  ポリイミド系樹脂層Bの表面にガスバリヤ層が形成されていることを特徴とする請求項1もしくは2に記載の積層体。 The laminate according to claim 1 or 2, wherein a gas barrier layer is formed on the surface of the polyimide resin layer B.
  4.  請求項1~3のいずれかに記載の積層体を吸湿処理することにより、無機基板からポリイミド系フィルムを剥離することを特徴とする積層体の処理法。 A method for treating a laminate, comprising subjecting the laminate according to any one of claims 1 to 3 to moisture absorption treatment to peel the polyimide film from the inorganic substrate.
  5.  吸湿処理が、100℃以下の温度および70%以上の相対湿度の環境下で積層体を保持した後、減圧による脱湿を行う処理であることを特徴とする請求項4に記載の積層体の処理法。 5. The laminate according to claim 4, wherein the moisture absorption treatment is a treatment of dehumidification by reducing pressure after holding the laminate in an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more. Processing method.
  6.  請求項1~3のいずれかに記載の積層体のポリイミド系フィルムの表面に、電子素子および配線から選択される1以上の部材を形成した後、該積層体を吸湿処理することにより、無機基板から、前記部材を備えたポリイミド系フィルムを剥離し、その後、無機基板に接していたポリイミド系樹脂層Bの部分を切断除去することによりフレキシブルデバイスを得ることを特徴とするフレキシブルデバイスの製造方法。 An inorganic substrate is formed by forming one or more members selected from electronic elements and wirings on the surface of the polyimide film of the laminate according to any one of claims 1 to 3, and then subjecting the laminate to moisture absorption treatment. The method for producing a flexible device is characterized in that a flexible device is obtained by peeling off the polyimide film provided with the member and then cutting and removing the portion of the polyimide resin layer B that has been in contact with the inorganic substrate.
  7.  請求項1~3のいずれかに記載の積層体のポリイミド系フィルムの表面に、電子素子および配線から選択される1以上の部材を形成し、前記部材を備えたポリイミド系フィルムの所定の部位に切り込みを入れて、ポリイミド系フィルムにおける前記部材の形成領域部分と、無機基板に接しているポリイミド系樹脂層Bの部分とを分割した後、ポリイミド系フィルムにおける前記部材の形成領域部分を剥離して、フレキシブルデバイスを得るとともに、無機基板に残存しているポリイミド系樹脂層Bを吸湿処理することにより無機基板から剥離して除去することを特徴とするフレキシブルデバイスの製造方法。 One or more members selected from electronic elements and wirings are formed on the surface of the polyimide-based film of the laminate according to any one of claims 1 to 3, and the polyimide-based film provided with the members has a predetermined portion. After cutting and dividing the member forming region portion in the polyimide film and the polyimide resin layer B portion in contact with the inorganic substrate, the member forming region portion in the polyimide film is peeled off. A method for producing a flexible device, comprising obtaining a flexible device and removing the polyimide-based resin layer B remaining on the inorganic substrate from the inorganic substrate by moisture absorption treatment.
  8.  吸湿処理が、100℃以下の温度および70%以上の相対湿度の環境下で積層体を保持した後、減圧による脱湿を行う処理であることを特徴とする請求項6もしくは7に記載のフレキシブルデバイスの製造方法。 8. The flexible according to claim 6, wherein the moisture absorption treatment is a treatment of dehumidification by reducing pressure after holding the laminate in an environment of a temperature of 100 ° C. or less and a relative humidity of 70% or more. Device manufacturing method.
PCT/JP2014/069526 2013-07-24 2014-07-24 Laminate, method for processing same, and method for manufacturing flexible device WO2015012339A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015528325A JP6363077B2 (en) 2013-07-24 2014-07-24 LAMINATE, PROCESSING METHOD THEREOF, AND METHOD FOR PRODUCING FLEXIBLE DEVICE
CN201480041568.6A CN105408115B (en) 2013-07-24 2014-07-24 The manufacturing method of laminated body and its facture and flexible apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-153635 2013-07-24
JP2013153635 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015012339A1 true WO2015012339A1 (en) 2015-01-29

Family

ID=52393373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069526 WO2015012339A1 (en) 2013-07-24 2014-07-24 Laminate, method for processing same, and method for manufacturing flexible device

Country Status (4)

Country Link
JP (1) JP6363077B2 (en)
CN (1) CN105408115B (en)
TW (1) TWI654090B (en)
WO (1) WO2015012339A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168341A1 (en) 2015-04-13 2016-10-20 Royole Corporation Support and detachment of flexible substrates
JP2017088735A (en) * 2015-11-10 2017-05-25 須賀 唯知 Method for manufacturing substrate
JP2017202570A (en) * 2016-05-09 2017-11-16 東洋紡株式会社 Laminate and method for manufacturing laminate
CN107994053A (en) * 2016-10-26 2018-05-04 三星显示有限公司 Display panel and the method for manufacturing the display panel
WO2020090631A1 (en) * 2018-11-01 2020-05-07 株式会社カネカ Laminate, method for manufacturing laminate, and method for manufacturing printed wiring board
WO2021241571A1 (en) * 2020-05-29 2021-12-02 東洋紡株式会社 Layered product including high temperature-resistant transparent film
WO2021241570A1 (en) * 2020-05-29 2021-12-02 東洋紡株式会社 Multilayer body comprising highly heat-resistant transparent film
JP7255726B1 (en) 2022-04-15 2023-04-11 Agc株式会社 Laminate, laminate with electronic device member, and method for manufacturing electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565045B (en) * 2017-08-08 2019-11-08 武汉华星光电半导体显示技术有限公司 The encapsulating method and structure of flexible OLED panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049064A1 (en) * 2005-08-30 2007-03-01 Jia-Chong Ho Alignment precision enhancement of electronic component process on flexible substrate device and method thereof the same
US20070065993A1 (en) * 2005-09-19 2007-03-22 Te-Chi Wong Fabricating method for flexible thin film transistor array substrate
JP2007251080A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Fixing method for plastic substrate, circuit substrate, and manufacturing method therefor
JP2010067957A (en) * 2008-09-15 2010-03-25 Ind Technol Res Inst Substrate structure applied in flexible electronic device and fabrication method thereof
JP2012199546A (en) * 2011-03-18 2012-10-18 Eternal Chemical Co Ltd Method for manufacturing flexible device
JP2013051180A (en) * 2011-08-31 2013-03-14 Dexerials Corp Separator sheet for battery, and battery
JP2013095851A (en) * 2011-11-01 2013-05-20 Ube Industries Ltd Method for producing polyimide laminate, polyimide laminate, polyimide film, and polyimide precursor solution composition
WO2014050933A1 (en) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 Display device production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196243A (en) 1998-12-28 2000-07-14 Fujitsu Ltd Manufacture of flexible multilayer circuit board
JP4525903B2 (en) * 2004-05-26 2010-08-18 三菱瓦斯化学株式会社 Color filter substrate
TWI288493B (en) * 2005-09-13 2007-10-11 Ind Tech Res Inst Method for fabricating a device with flexible substrate and method for stripping flexible-substrate
CN101510575A (en) * 2009-03-27 2009-08-19 南开大学 Method for producing medlin plastic substrate flexible silicon-based film solar battery integrated component
KR101918284B1 (en) * 2011-03-03 2019-01-30 엘지디스플레이 주식회사 Method of manufacturing a flexible display device
JP5964607B2 (en) * 2012-02-14 2016-08-03 株式会社カネカ Support with release layer, substrate structure, and method for manufacturing electronic device
JP2014022459A (en) * 2012-07-13 2014-02-03 Asahi Kasei E-Materials Corp Laminate and manufacturing method of flexible device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049064A1 (en) * 2005-08-30 2007-03-01 Jia-Chong Ho Alignment precision enhancement of electronic component process on flexible substrate device and method thereof the same
US20070065993A1 (en) * 2005-09-19 2007-03-22 Te-Chi Wong Fabricating method for flexible thin film transistor array substrate
JP2007251080A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Fixing method for plastic substrate, circuit substrate, and manufacturing method therefor
JP2010067957A (en) * 2008-09-15 2010-03-25 Ind Technol Res Inst Substrate structure applied in flexible electronic device and fabrication method thereof
JP2012199546A (en) * 2011-03-18 2012-10-18 Eternal Chemical Co Ltd Method for manufacturing flexible device
JP2013051180A (en) * 2011-08-31 2013-03-14 Dexerials Corp Separator sheet for battery, and battery
JP2013095851A (en) * 2011-11-01 2013-05-20 Ube Industries Ltd Method for producing polyimide laminate, polyimide laminate, polyimide film, and polyimide precursor solution composition
WO2014050933A1 (en) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 Display device production method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529924B2 (en) 2015-04-13 2020-01-07 Shenzhen Royole Technologies Co. Ltd. Support and detachment of flexible substrates
WO2016168341A1 (en) 2015-04-13 2016-10-20 Royole Corporation Support and detachment of flexible substrates
EP3284118A4 (en) * 2015-04-13 2019-04-03 Royole Corporation Support and detachment of flexible substrates
EP3514847A1 (en) * 2015-04-13 2019-07-24 Royole Corporation Support and detachment of flexible substrates
JP2017088735A (en) * 2015-11-10 2017-05-25 須賀 唯知 Method for manufacturing substrate
JP2017202570A (en) * 2016-05-09 2017-11-16 東洋紡株式会社 Laminate and method for manufacturing laminate
CN107994053A (en) * 2016-10-26 2018-05-04 三星显示有限公司 Display panel and the method for manufacturing the display panel
WO2020090631A1 (en) * 2018-11-01 2020-05-07 株式会社カネカ Laminate, method for manufacturing laminate, and method for manufacturing printed wiring board
JPWO2020090631A1 (en) * 2018-11-01 2021-09-24 株式会社カネカ Laminates and their manufacturing methods, as well as printed wiring board manufacturing methods
JP7265560B2 (en) 2018-11-01 2023-04-26 株式会社カネカ LAMINATED PRODUCT, METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING PRINTED WIRING BOARD
WO2021241571A1 (en) * 2020-05-29 2021-12-02 東洋紡株式会社 Layered product including high temperature-resistant transparent film
WO2021241570A1 (en) * 2020-05-29 2021-12-02 東洋紡株式会社 Multilayer body comprising highly heat-resistant transparent film
JP7255726B1 (en) 2022-04-15 2023-04-11 Agc株式会社 Laminate, laminate with electronic device member, and method for manufacturing electronic device
JP2023157595A (en) * 2022-04-15 2023-10-26 Agc株式会社 Laminate, laminate with member for electronic device, method for manufacturing electronic device

Also Published As

Publication number Publication date
JPWO2015012339A1 (en) 2017-03-02
TW201509682A (en) 2015-03-16
TWI654090B (en) 2019-03-21
CN105408115B (en) 2018-08-28
CN105408115A (en) 2016-03-16
JP6363077B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6363077B2 (en) LAMINATE, PROCESSING METHOD THEREOF, AND METHOD FOR PRODUCING FLEXIBLE DEVICE
JP6725948B2 (en) Laminate and flexible device manufacturing method
TWI718484B (en) Manufacturing method of display device
JP6185283B2 (en) Laminated body for flexible devices
JP6407362B2 (en) Manufacturing method of display device
TWI654251B (en) Display device and method for producing the same, and polyimide film for display device
JP6965978B2 (en) Laminated body of polyimide film and inorganic substrate
JP7013875B2 (en) Laminated body, manufacturing method of laminated body, manufacturing method of flexible electronic device
WO2015152120A1 (en) Composition for forming releasing layer
JP2006240073A (en) Flexible metal foil polyimide laminate
JP6537584B2 (en) Coating solution for glass substrate
CN106170178B (en) Method for peeling heat-resistant organic polymer layer and method for manufacturing flexible wiring board
JP6718736B2 (en) Method for peeling heat-resistant organic polymer layer and method for manufacturing flexible wiring board
JP7400273B2 (en) Polyimide film laminate and method for producing polyimide film laminate
TW201736145A (en) Method for producing laminate, and utilization thereof
WO2022113415A1 (en) Laminate
JP2015174379A (en) laminate
JP2021145045A (en) Stiffener with good quality and excellent bending resistance
JP2021091753A (en) Manufacturing method of polyimide substrate
JP2021147439A (en) Method for producing polyimide film laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041568.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829433

Country of ref document: EP

Kind code of ref document: A1