JP2015209487A - Polyimide, laminated film, phase difference film, and method of producing laminated film - Google Patents

Polyimide, laminated film, phase difference film, and method of producing laminated film Download PDF

Info

Publication number
JP2015209487A
JP2015209487A JP2014091551A JP2014091551A JP2015209487A JP 2015209487 A JP2015209487 A JP 2015209487A JP 2014091551 A JP2014091551 A JP 2014091551A JP 2014091551 A JP2014091551 A JP 2014091551A JP 2015209487 A JP2015209487 A JP 2015209487A
Authority
JP
Japan
Prior art keywords
film
polyimide
repeating unit
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014091551A
Other languages
Japanese (ja)
Other versions
JP6394045B2 (en
Inventor
田中 明
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014091551A priority Critical patent/JP6394045B2/en
Publication of JP2015209487A publication Critical patent/JP2015209487A/en
Application granted granted Critical
Publication of JP6394045B2 publication Critical patent/JP6394045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide that is useful as raw material for the production of a film with high birefringence and is excellent in transparency, mechanical characteristics and solubility in organic solvent, a laminated film and a phase difference film obtained by using the polyimide, and a method of producing the laminated film.SOLUTION: A polyimide comprises a repeating unit having a specific rigid structure, and a repeating unit having a specific fluorene ring structure, at a specific rate. There are also provided a laminated film and a phase difference film obtained by using the polyimide, and a method of producing the laminated film.

Description

本発明は、複屈折性が高いフィルムの製造原料として有用な、透明性、機械特性及び有機溶媒に対する溶解性に優れるポリイミド、このポリイミドを用いて得られる積層フィルム及び位相差フィルム、並びに、前記積層フィルムの製造方法に関する。   The present invention is useful as a raw material for producing a film having high birefringence, a polyimide excellent in transparency, mechanical properties and solubility in an organic solvent, a laminated film and a retardation film obtained using the polyimide, and the laminated film The present invention relates to a film manufacturing method.

従来、液晶ディスプレイ(LCD)においては、視野角特性やコントラストの向上を目的として、高分子フィルムを延伸して得られる延伸フィルムを位相差フィルムとして用いることが知られている。しかしながら、高分子フィルムを位相差フィルムに適用すべく大きな複屈折を発現させるためには、通常、樹脂フィルムを機械的に高倍率で延伸しなければならない。   Conventionally, in a liquid crystal display (LCD), for the purpose of improving viewing angle characteristics and contrast, it is known to use a stretched film obtained by stretching a polymer film as a retardation film. However, in order to develop a large birefringence in order to apply the polymer film to the retardation film, it is usually necessary to mechanically stretch the resin film at a high magnification.

近年、このような機械的操作を必要とせず、一定の複屈折を有するフィルム得る技術として、自己配向性を有するポリイミドのワニスを基板上に塗工し、得られた塗膜を乾燥することで複屈折性を有する樹脂フィルムを得る方法が提案されている。
例えば、特許文献1には、フルオレニル基を有するジアミン化合物等と脂環式テトラカルボン酸二無水物とから得られるポリイミド共重合体、及び、このポリイミド共重合体を含有するワニスを基板上に塗布・乾燥することにより得られる光学補償フィルムが記載されている。
In recent years, as a technique for obtaining a film having a certain birefringence without requiring such mechanical operation, by applying a self-orienting polyimide varnish on a substrate and drying the obtained coating film A method for obtaining a resin film having birefringence has been proposed.
For example, in Patent Document 1, a polyimide copolymer obtained from a diamine compound having a fluorenyl group and the like and an alicyclic tetracarboxylic dianhydride, and a varnish containing the polyimide copolymer are coated on a substrate. An optical compensation film obtained by drying is described.

特開2010−180350号公報JP 2010-180350 A

特許文献1に記載の光学補償フィルムは透明性及び複屈折性を有するものの、近年におけるLCDのさらなる高性能化や薄膜化に伴い、透明性により優れ、かつ、複屈折性が高いフィルムが要望されている。
したがって、このようなフィルムの製造原料として有用な、透明性、機械特性及び有機溶媒に対する溶解性に優れるポリイミドが求められている。
Although the optical compensation film described in Patent Document 1 has transparency and birefringence, a film having excellent transparency and high birefringence has been demanded as LCDs have been further improved in performance and thinned in recent years. ing.
Therefore, there is a need for a polyimide that is useful as a raw material for producing such a film and has excellent transparency, mechanical properties, and solubility in organic solvents.

本発明は、上記した従来技術に鑑みてなされたものであり、複屈折性が高いフィルムの製造原料として有用な、透明性、機械特性及び有機溶媒に対する溶解性に優れるポリイミド、このポリイミドを用いて得られる積層フィルム及び位相差フィルム、並びに、前記積層フィルムの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional technology, and is useful as a raw material for producing a film having high birefringence. A polyimide having excellent transparency, mechanical properties, and solubility in an organic solvent, and using this polyimide. It aims at providing the manufacturing method of the laminated film and retardation film which are obtained, and the said laminated film.

本発明者は上記課題を解決すべく、ポリイミドと、これを用いて得られるフィルムについて鋭意検討した。その結果、特定の剛直構造を有する繰り返し単位と特定のフルオレン環構造を有する繰り返し単位とを有するポリイミドが、透明性、機械特性及び有機溶媒に対する溶解性に優れることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently studied about polyimide and a film obtained using the polyimide. As a result, it has been found that a polyimide having a repeating unit having a specific rigid structure and a repeating unit having a specific fluorene ring structure is excellent in transparency, mechanical properties and solubility in organic solvents, and to complete the present invention. It came.

かくして本発明によれば、下記〔1〕〜〔3〕のポリイミド、〔4〕〜〔6〕の積層フィルム、〔7〕〜〔8〕の位相差フィルム、〔9〕〜〔10〕の積層フィルムの製造方法が提供される。
〔1〕下記式(1)で示される繰り返し単位と、下記式(2)で示される繰り返し単位とを有し、
式(1)で示される繰り返し単位と式(2)で示される繰り返し単位の割合〔式(1)で示される繰り返し単位:式(2)で示される繰り返し単位〕のモル比が、20:80〜70:30であり、
式(1)で示される繰り返し単位と式(2)で示される繰り返し単位の合計量が、全繰り返し単位中、80〜100モル%であることを特徴とするポリイミド。
Thus, according to the present invention, the following [1] to [3] polyimide, [4] to [6] laminated film, [7] to [8] retardation film, and [9] to [10] laminated film A method of manufacturing a film is provided.
[1] having a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2),
The molar ratio of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) [the repeating unit represented by the formula (1): the repeating unit represented by the formula (2)] is 20:80. ~ 70: 30,
The polyimide characterized by the total amount of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) being 80 to 100 mol% in all repeating units.

Figure 2015209487
Figure 2015209487

〔式中、R、Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。Aは、下記式(3a)又は(3b) [Wherein, R 1 and R 2 each independently represent a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxyl group having 1 to 6 carbon atoms, Or represents a trifluoromethyl group. A 1 represents the following formula (3a) or (3b)

Figure 2015209487
Figure 2015209487

(式中、*は、結合手を表す。)
で示される基を表す。a、bはそれぞれ独立に、0〜4の整数を表す。a、bがそれぞれ2以上のとき、複数のR同士およびR同士は、それぞれ同一であっても相異なっていてもよい。〕
(In the formula, * represents a bond.)
Represents a group represented by a and b each independently represents an integer of 0 to 4; When a and b are each 2 or more, a plurality of R 1 s and R 2 s may be the same or different. ]

Figure 2015209487
Figure 2015209487

(式中、R〜Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。Aは、前記式(3a)又は(3b)で示される基を表す。c〜fはそれぞれ独立に、0〜4の整数を表す。c、d、e、fがそれぞれ2以上のとき、複数のR同士、R同士、R同士およびR同士は、それぞれ同一であっても相異なっていてもよい。)
〔2〕厚みが10μmのフィルムに成形したときに、そのフィルムの、波長400nmの光の光線透過率が90%以上になる、〔1〕に記載のポリイミド。
〔3〕25℃のシクロペンタノンに溶解させて飽和溶液を調製したときに、その飽和溶液の濃度が5重量%以上になる、〔1〕または〔2〕に記載のポリイミド。
〔4〕延伸フィルムと、前記延伸フィルム上に、〔1〕〜〔3〕のいずれかに記載のポリイミドを含有するワニスを塗工し、得られた塗膜を乾燥することにより形成されたポリイミド膜とを有する積層フィルム。
〔5〕前記延伸フィルムが、未延伸のシクロオレフィンポリマーフィルムを延伸して得られたフィルムである、〔4〕に記載の積層フィルム。
〔6〕さらに、粘着剤層を有する〔4〕又は〔5〕に記載の積層フィルム。
〔7〕前記〔4〕〜〔6〕のいずれかに記載の積層フィルムから、延伸フィルムを剥離除去して得られる位相差フィルム。
〔8〕さらに、粘着剤層を有する〔7〕に記載の位相差フィルム。
〔9〕前記〔1〕〜〔3〕のいずれかに記載のポリイミドを含有するワニスを、延伸フィルム上に塗工し、得られた塗膜を乾燥する工程を有する積層フィルムの製造方法。
〔10〕前記延伸フィルムが、未延伸のシクロオレフィンポリマーフィルムを延伸して得られたフィルムである、〔9〕に記載の積層フィルムの製造方法。
(In the formula, R 3 to R 6 are each independently a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxyl group having 1 to 6 carbon atoms, Or A 1 represents a group represented by the formula (3a) or (3b), and cf each independently represents an integer of 0 to 4. c, d, e, When f is 2 or more, a plurality of R 3 s , R 4 s , R 5 s, and R 6 s may be the same or different.
[2] The polyimide according to [1], wherein when the film is formed into a film having a thickness of 10 μm, the light transmittance of light having a wavelength of 400 nm is 90% or more.
[3] The polyimide according to [1] or [2], wherein when a saturated solution is prepared by dissolving in cyclopentanone at 25 ° C., the concentration of the saturated solution becomes 5% by weight or more.
[4] A polyimide formed by applying a varnish containing the polyimide according to any one of [1] to [3] on a stretched film and the stretched film, and drying the resulting coating film A laminated film having a film.
[5] The laminated film according to [4], wherein the stretched film is a film obtained by stretching an unstretched cycloolefin polymer film.
[6] The laminated film according to [4] or [5], further having an adhesive layer.
[7] A retardation film obtained by peeling and removing a stretched film from the laminated film according to any one of [4] to [6].
[8] The retardation film according to [7], further having an adhesive layer.
[9] A method for producing a laminated film comprising a step of coating the varnish containing the polyimide according to any one of [1] to [3] on a stretched film and drying the obtained coating film.
[10] The method for producing a laminated film according to [9], wherein the stretched film is a film obtained by stretching an unstretched cycloolefin polymer film.

本発明のポリイミドは、透明性、機械特性及び有機溶媒に対する溶解性に優れる。
本発明の積層フィルムおよび位相差フィルムは、高い複屈折性を有し、透明性、機械特性及び有機溶媒に対する溶解性に優れる。
本発明の製造方法によれば、本発明の積層フィルムを効率よく製造することができる。
The polyimide of the present invention is excellent in transparency, mechanical properties, and solubility in organic solvents.
The laminated film and retardation film of the present invention have high birefringence and are excellent in transparency, mechanical properties, and solubility in organic solvents.
According to the production method of the present invention, the laminated film of the present invention can be produced efficiently.

以下、本発明を、1)ポリイミド、並びに、2)積層フィルム、位相差フィルム及び積層フィルムの製造方法、に項分けして詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing it into 1) polyimide, and 2) a method for producing a laminated film, a retardation film and a laminated film.

1)ポリイミド
本発明のポリイミドは、前記式(1)で示される繰り返し単位(以下、「繰り返し単位(1)」ということがある。)と、前記式(2)で示される繰り返し単位(以下、「繰り返し単位(2)」ということがある。)を有し、繰り返し単位(1)と繰り返し単位(2)の割合〔繰り返し単位(1):繰り返し単位(2)〕のモル比が、20:80〜70:30であり、繰り返し単位(1)と繰り返し単位(2)の合計量が、全繰り返し単位中、80〜100モル%であることを特徴とする。
1) Polyimide The polyimide of the present invention has a repeating unit represented by the above formula (1) (hereinafter sometimes referred to as “repeating unit (1)”) and a repeating unit represented by the above formula (2) (hereinafter referred to as “repeating unit”). The ratio of the repeating unit (1) to the repeating unit (2) [repeating unit (1): repeating unit (2)] molar ratio is 20: 80 to 70:30, and the total amount of the repeating unit (1) and the repeating unit (2) is 80 to 100 mol% in all repeating units.

<繰り返し単位(1)>
繰り返し単位(1)中、R、Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。
<Repeating unit (1)>
In the repeating unit (1), R 1 and R 2 are each independently a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched structure having 1 to 6 carbon atoms. An alkoxyl group or a trifluoromethyl group is represented.

、Rのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
、Rの炭素数1〜6の直鎖状若しくは分岐状アルキル基の炭素数は1〜3が好ましい。炭素数1〜6の直鎖状若しくは分岐状アルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−へキシル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基等が挙げられる。
、Rの炭素数1〜6の直鎖状若しくは分岐状アルコキシル基の炭素数は1〜3が好ましい。炭素数1〜6の直鎖状若しくは分岐状アルコキシル基としては、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基、イソプロポキシ基、イソブトキシ基、t−ブトキシ基等が挙げられる。
Examples of the halogen atom for R 1 and R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
R 1, the number of carbon atoms of the linear or branched alkyl group having 1 to 6 carbon atoms R 2 is 1-3 are preferable. Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, isopropyl group, isobutyl group, Examples thereof include s-butyl group and t-butyl group.
R 1, the number of carbon atoms of the linear or branched alkoxyl group having 1 to 6 carbon atoms R 2 is 1-3 are preferable. Examples of the linear or branched alkoxyl group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentyloxy group, n-hexyloxy group, isopropoxy group, isobutoxy group. Group, t-butoxy group and the like.

a、bは、それぞれ独立に、0〜4の整数を表す。a、bが、2〜4の整数の場合、複数のRは、互いに同一であってもよいし、異なっていてもよく、複数のRは、互いに同一であってもよいし、異なっていてもよい。
は、前記式(3a)又は(3b)で示される基を表す。
a and b each independently represents an integer of 0 to 4; When a and b are integers of 2 to 4, the plurality of R 1 may be the same or different from each other, and the plurality of R 2 may be the same or different from each other. It may be.
A 1 represents a group represented by the formula (3a) or (3b).

繰り返し単位(1)は、下記式(4a)又は(4b)で示されるテトラカルボン酸二無水物と、下記式(5)で示されるジアミンとを反応させて得られる構造を有する。
テトラカルボン酸二無水物〔下記式(4a)又は(4b)で示される化合物〕に由来する部分は脂環式構造を有する。
The repeating unit (1) has a structure obtained by reacting a tetracarboxylic dianhydride represented by the following formula (4a) or (4b) with a diamine represented by the following formula (5).
The part derived from tetracarboxylic dianhydride [compound represented by the following formula (4a) or (4b)] has an alicyclic structure.

Figure 2015209487
Figure 2015209487

Figure 2015209487
Figure 2015209487

このため、本発明のポリイミドは透明性に優れる。また、本発明のポリイミドは、この脂環式構造を有することで、有機溶媒に対する溶解性に優れる。したがって、本発明のポリイミドを用いることで、キャスト法により効率よく位相差フィルムを製造することができる。   For this reason, the polyimide of this invention is excellent in transparency. Moreover, the polyimide of this invention is excellent in the solubility with respect to an organic solvent by having this alicyclic structure. Therefore, by using the polyimide of the present invention, a retardation film can be efficiently produced by a casting method.

繰り返し単位(1)中の、ジアミン〔下記式(5)で示される化合物〕に由来する部分は、π結合が広がってなる剛直構造を有する。   The portion derived from the diamine [compound represented by the following formula (5)] in the repeating unit (1) has a rigid structure in which a π bond is expanded.

Figure 2015209487
Figure 2015209487

本発明のポリイミドは、この剛直構造を有するため分子鎖の向きが揃い易くなる。後述するように、延伸フィルムを基材として用いて、キャスト法によりポリイミドフィルムを形成する際に、剛直構造のこの作用により、繰り返し単位(2)中のフルオレン環がフィルム平面に対して垂直方向に立ち上がり易くなり、フィルムの複屈折性が高められる。   Since the polyimide of the present invention has this rigid structure, the molecular chains are easily aligned. As will be described later, when a polyimide film is formed by a casting method using a stretched film as a base material, this action of the rigid structure causes the fluorene ring in the repeating unit (2) to be perpendicular to the film plane. It becomes easy to stand up and the birefringence of the film is enhanced.

<繰り返し単位(2)>
繰り返し単位(2)中、R〜Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。
これらの基の具体例としては、R、Rとして例示したものと同様のものが挙げられる。
繰り返し単位(2)中、c〜fは、それぞれ独立に、0〜4の整数を表す。cが2〜4の整数の場合、複数のRは、互いに同一であってもよいし、異なっていてもよい。また、e〜fが2〜4の整数の場合におけるR〜Rについても同様である。
繰り返し単位(2)中、Aは、前記式(3a)又は(3b)で示される基を表す。
<Repeating unit (2)>
In the repeating unit (2), R 3 to R 6 are each independently a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, or a linear or branched structure having 1 to 6 carbon atoms. An alkoxyl group or a trifluoromethyl group is represented.
Specific examples of these groups include the same groups as those exemplified as R 1 and R 2 .
In the repeating unit (2), c to f each independently represents an integer of 0 to 4. When c is an integer of 2 to 4, a plurality of R 3 may be the same as or different from each other. The same applies to R 4 to R 6 when e to f are integers of 2 to 4.
In the repeating unit (2), A 1 represents a group represented by the formula (3a) or (3b).

繰り返し単位(2)中の、テトラカルボン酸二無水物〔前記式(4a)又は(4b)で示される化合物〕に由来する部分は、式(1)で示される繰り返し単位のテトラカルボン酸二無水物と同様のものである。したがって、本発明のポリイミドは透明性及び有機溶媒に対する溶解性に優れる。   The part derived from the tetracarboxylic dianhydride [compound represented by the above formula (4a) or (4b)] in the repeating unit (2) is the tetracarboxylic dianhydride of the repeating unit represented by the formula (1). It is the same thing as a thing. Therefore, the polyimide of the present invention is excellent in transparency and solubility in organic solvents.

繰り返し単位(2)は、前記式(4a)又は(4b)で示されるテトラカルボン酸二無水物と、下記式(6)で示されるジアミンとを反応させて得られる構造を有する。
ジアミン〔下記式(6)で示される化合物〕に由来する部分は、フルオレン環を有する。
The repeating unit (2) has a structure obtained by reacting the tetracarboxylic dianhydride represented by the formula (4a) or (4b) with the diamine represented by the following formula (6).
The part derived from diamine [compound shown by following formula (6)] has a fluorene ring.

Figure 2015209487
Figure 2015209487

本発明のポリイミドは、フルオレン環を有する繰り返し単位(前記(2)で示される繰り返し単位)と、前記剛直構造を有する繰り返し単位(前記式(1)で示される繰り返し単位)とを有する。この組み合わせにより、本発明のポリイミドは、より高い複屈折性が発現する。また、本発明のポリイミドは、このフルオレン環構造を有することで、有機溶媒に対する溶解性に優れる。したがって、本発明のポリイミドを用いることで、キャスト法により効率よく位相差フィルムを製造することができる。   The polyimide of the present invention has a repeating unit having a fluorene ring (repeating unit represented by (2) above) and a repeating unit having the rigid structure (repeating unit represented by the formula (1)). By this combination, the polyimide of the present invention exhibits higher birefringence. Moreover, the polyimide of this invention is excellent in the solubility with respect to an organic solvent by having this fluorene ring structure. Therefore, by using the polyimide of the present invention, a retardation film can be efficiently produced by a casting method.

本発明のポリイミドの、繰り返し単位(1)と繰り返し単位(2)の割合〔繰り返し単位(1):繰り返し単位(2)〕のモル比は、20:80〜70:30であり、好ましくは30:70〜70:30である。
繰り返し単位(1)の割合が少な過ぎると、後述するフィルムにおいて位相差が発現し難くなる。また、繰り返し単位(1)の割合が多過ぎると、ポリイミドが有機溶媒に溶けにくくなり、キャストフィルムを製造することが困難となる。
The molar ratio of the repeating unit (1) to the repeating unit (2) [repeating unit (1): repeating unit (2)] of the polyimide of the present invention is 20:80 to 70:30, preferably 30. : 70-70: 30.
When the ratio of the repeating unit (1) is too small, it becomes difficult to develop a retardation in a film described later. Moreover, when there are too many ratios of a repeating unit (1), it will become difficult to melt | dissolve a polyimide in an organic solvent, and it will become difficult to manufacture a cast film.

本発明のポリイミド中の繰り返し単位(1)と繰り返し単位(2)の合計量は、全繰り返し単位中、80〜100モル%であり、好ましくは90〜100モル%、より好ましくは95〜100モル%である。
繰り返し単位(1)と繰り返し単位(2)の合計が上記範囲内にあることで、複屈折性が高いフィルムの製造原料として有用な、透明性、機械特性及び有機溶媒に対する溶解性に優れるポリイミドを得ることができる。
The total amount of the repeating unit (1) and the repeating unit (2) in the polyimide of the present invention is 80 to 100 mol%, preferably 90 to 100 mol%, more preferably 95 to 100 mol in all repeating units. %.
A polyimide having excellent transparency, mechanical properties, and solubility in an organic solvent, which is useful as a raw material for producing a film having high birefringence because the total of the repeating unit (1) and the repeating unit (2) is within the above range. Can be obtained.

本発明のポリイミドは、繰り返し単位(1)、(2)以外の、任意の繰り返し単位を有していてもよい。このような繰り返し単位としては、後述する、前記式(4a)、(4b)で示されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物や、前記式(5)、(6)で示されるジアミン以外のジアミンを用いて形成された繰り返し単位が挙げられる。   The polyimide of the present invention may have any repeating unit other than the repeating units (1) and (2). Examples of such repeating units include tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides represented by the formulas (4a) and (4b) described later, and the formulas (5) and (6). And repeating units formed using a diamine other than the diamine.

本発明のポリイミドの合成方法は特に限定されない。例えば、前記式(4a)又は(4b)で示されるテトラカルボン酸二無水物、前記式(5)で示されるジアミン、前記式(6)で示されるジアミン、その他必要に応じて用いられる、前記式(4a)、(4b)で示されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物、前記式(5)、(6)で示されるジアミン以外のジアミンを原料として用いて反応を行うことにより、本発明のポリイミドを合成することができる。   The method for synthesizing the polyimide of the present invention is not particularly limited. For example, the tetracarboxylic dianhydride represented by the above formula (4a) or (4b), the diamine represented by the above formula (5), the diamine represented by the above formula (6), etc. Reaction is performed using a tetracarboxylic dianhydride other than the tetracarboxylic dianhydrides represented by the formulas (4a) and (4b) and a diamine other than the diamines represented by the formulas (5) and (6) as raw materials. Thus, the polyimide of the present invention can be synthesized.

式(4a)、(4b)で示されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸無水物、1,2,3,4−ベンゼンテトラカルボン酸無水物、1,4,5,8−ナフタレンテトラカルボン酸無水物、2,3,6,7−ナフタレンテトラカルボン酸無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,3’,4,4’−テトラカルボキシフェニル)テトラフルオロプロパン二無水物、2,2’−ビス(3,4−ジカルボキシフェノキシフェニル)スルホン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、シクロブタン−1,2,3,4−テトラカルボン酸二無水物等が挙げられる。   Examples of tetracarboxylic dianhydrides other than the tetracarboxylic dianhydrides represented by the formulas (4a) and (4b) include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic anhydride. 1,2,3,4-benzenetetracarboxylic anhydride, 1,4,5,8-naphthalenetetracarboxylic anhydride, 2,3,6,7-naphthalenetetracarboxylic anhydride, 2,2 ', 3,3'-biphenyltetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride 2,3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenyl ether tetracarbo Acid dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,3,3 ′, 4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis (3 , 3 ′, 4,4′-tetracarboxyphenyl) tetrafluoropropane dianhydride, 2,2′-bis (3,4-dicarboxyphenoxyphenyl) sulfone dianhydride, 2,2-bis (2,3 -Dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride and the like.

式(5)、(6)で示されるジアミン以外のジアミンとしては、4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ジ(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ジ(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、1,1−ジ(3−アミノフェニル)−1−フェニルエタン、1,1−ジ(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3− アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ビス[4−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’−ビス[4−(4−アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、2,2’−ジ(p−アミノフェニル)−6,6’−ビスベンゾオキサゾール、2−(4−アミノフェニル)−6−アミノベンゾオキサゾール、N−(4−アミノフェニル)−4−アミノベンズアミド、N,N’−ビス(4−アミノフェニル)テレフタルアミド、4−アミノフェニル−4−アミノベンゾエート、2,2’−ジメチルビフェニル−4,4’−ジアミン等が挙げられる。   Examples of diamines other than the diamines represented by formulas (5) and (6) include 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,3′-diaminodiphenyl ether, and 3,4′-diamino. Diphenyl ether, 3,3′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4 '-Diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4' -Diaminodiphenylmethane, 2 2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2,2-di (3 -Aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-di (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2 -(3-aminophenyl) -2- (4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 1,1-di (3-aminophenyl) -1-phenylethane, 1,1-di (4-aminophenyl) -1-phenylethane, 1- (3-aminophenyl) -1- (4-aminophenyl) -1-phenylethane, 1,3-bis (3-aminophenoxy) ) Benzene, 1,3-bis (4-amino) Phenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminobenzoyl) benzene, 1,3-bis (4 -Aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,4-bis (4-aminobenzoyl) benzene, 1,3-bis (3-amino-α, α-dimethylbenzyl) benzene 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α) , Α-dimethylbenzyl) benzene, 1,3-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethyl) Benzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6- Bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl Bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4- Aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) Phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 1,3-bis [4- (3-aminophenoxy) benzoyl] Benzene, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 1,4-bis [4 (4-Aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) -α , Α-dimethylbenzyl] benzene, 1,4-bis [4- (3-aminophenoxy) -α, α-dimethylbenzyl] benzene, 1,4-bis [4- (4-aminophenoxy) -α, α -Dimethylbenzyl] benzene, 4,4′-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, 4,4′-bis [4- (4-aminophenoxy) phenoxy Di] diphenylsulfone, 3,3′-diamino-4,4′-diphenoxybenzophenone, 3,3′-diamino-4,4′-dibiphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone, 3, , 3′-diamino-4-biphenoxybenzophenone, 5-amino-2- (p-aminophenyl) benzoxazole, 2,2′-di (p-aminophenyl) -6,6′-bisbenzoxazole, 2 -(4-aminophenyl) -6-aminobenzoxazole, N- (4-aminophenyl) -4-aminobenzamide, N, N'-bis (4-aminophenyl) terephthalamide, 4-aminophenyl-4- Examples thereof include aminobenzoate and 2,2′-dimethylbiphenyl-4,4′-diamine.

本発明のポリイミドの合成方法としては、テトラカルボン酸二無水物とジアミン(以下、これらの化合物をモノマーということがある。)を反応させて、ポリイミド前駆体を得た後、得られたポリイミド前駆体をイミド化してポリイミドを合成する方法(方法1)や、テトラカルボン酸二無水物とジアミンから、直接、ポリイミドを合成する方法(方法2)等が挙げられる。   As a method for synthesizing the polyimide of the present invention, tetracarboxylic dianhydride and diamine (hereinafter, these compounds may be referred to as monomers) are reacted to obtain a polyimide precursor, and then the obtained polyimide precursor is obtained. Examples thereof include a method of synthesizing a polyimide by imidizing a body (method 1), a method of synthesizing a polyimide directly from tetracarboxylic dianhydride and diamine (method 2), and the like.

方法1(ポリイミド前駆体をイミド化する方法)において、ポリイミド前駆体の合成方法は特に限定されず、公知の方法を採用することができる。
例えば、まず、前記式(5)で示されるジアミン及び前記式(6)で示されるジアミン、並びに、必要に応じて用いられるその他のジアミンを溶媒に溶かして溶液を得た後、撹拌下、この溶液に、用いたジアミンと実質的に当量の、前記式(4a)又は(4b)で示されるテトラカルボン酸二無水物、及び、必要に応じて用いられるその他のテトラカルボン酸二無水物を徐々に添加し、撹拌を継続して反応させることにより、ポリイミド前駆体の溶液を得ることができる。
このときのモノマー濃度は特に限定されないが、通常、5〜50重量%、好ましくは10〜40重量%である。
In Method 1 (method of imidizing a polyimide precursor), the method for synthesizing the polyimide precursor is not particularly limited, and a known method can be adopted.
For example, first, a diamine represented by the above formula (5), a diamine represented by the above formula (6), and other diamines used as needed are dissolved in a solvent to obtain a solution. To the solution, gradually add the tetracarboxylic dianhydride represented by the above formula (4a) or (4b) and other tetracarboxylic dianhydrides used as necessary, which are substantially equivalent to the diamine used. The solution of a polyimide precursor can be obtained by adding to and making it react by continuing stirring.
The monomer concentration at this time is not particularly limited, but is usually 5 to 50% by weight, preferably 10 to 40% by weight.

ポリイミド前駆体を合成する際に用いる溶媒は、モノマー及びポリイミド前駆体を十分溶解するものであれば、特に限定されない。例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ヘキサメチルリン酸トリアミド等のアミド系溶媒;スルホラン、ジメチルスルホキシド、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等の含硫黄系溶媒;クレゾール、フェノール、キシレノール等のフェノール系溶媒;ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライム等のジグライム系溶媒;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン等のラクトン系溶媒;イソホロン、シクロヘキサノン、3,3,5−トリメチルシクロヘキサノン等のケトン系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ピリジン、エチレングリコール、ジオキサン、テトラメチル尿素等のその他の溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を混合して用いることができる。   The solvent used when synthesizing the polyimide precursor is not particularly limited as long as it sufficiently dissolves the monomer and the polyimide precursor. For example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, hexamethylphosphate triamide; sulfolane, dimethyl sulfoxide, dimethyl sulfone, tetramethylene Sulfur-containing solvents such as sulfone and dimethyltetramethylenesulfone; phenolic solvents such as cresol, phenol and xylenol; diglyme-based solvents such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme) and tetraglyme; γ-butyrolactone, Lactone solvents such as γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone; isophorone, cyclohexanone, 3,3,5-trimethylcyclo Examples include ketone solvents such as hexanone; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; other solvents such as pyridine, ethylene glycol, dioxane, and tetramethylurea. These solvents can be used alone or in combination of two or more.

反応温度は特に限定されないが、通常、−10〜80℃、好ましくは0〜40℃である。
反応時間は特に限定されないが、通常、0.5〜150時間、好ましくは3〜24時間である。
Although reaction temperature is not specifically limited, Usually, it is -10-80 degreeC, Preferably it is 0-40 degreeC.
Although reaction time is not specifically limited, Usually, it is 0.5 to 150 hours, Preferably it is 3 to 24 hours.

得られたポリイミド前駆体の溶液は、ポリイミド前駆体を単離することなく、そのまま、あるいは濃度を調整した後、次のイミド化反応に供することができる。また、ポリイミド前駆体の溶液を大量の水やメタノール等の貧溶媒に滴下し、ポリイミド前駆体を析出させ、これをろ取、洗浄、乾燥することにより、ポリイミド前駆体を単離することもできる。   The obtained polyimide precursor solution can be subjected to the next imidation reaction as it is or after adjusting the concentration without isolating the polyimide precursor. Alternatively, the polyimide precursor can be isolated by dropping the polyimide precursor solution into a large amount of poor solvent such as water or methanol to precipitate the polyimide precursor, which is filtered, washed and dried. .

ポリイミド前駆体をイミド化する方法は特に限定されず、例えば、公知の化学イミド化法や、熱イミド化法を採用することができる。なかでも、過度に加熱する必要が無く、ポリイミドの分子量低下を抑制し得ることから、化学イミド化法がより好適に用いられる。   The method for imidizing the polyimide precursor is not particularly limited, and for example, a known chemical imidization method or thermal imidization method can be employed. Especially, since it is not necessary to heat too much and the molecular weight fall of a polyimide can be suppressed, a chemical imidation method is used more suitably.

化学イミド化法は、例えば、ポリイミド前駆体の溶液を撹拌しながら、この溶液に、有機酸無水物と有機塩基を滴下することにより行うことができる。
ポリイミド前駆体の溶液の溶媒としては、ポリイミド前駆体の合成用の溶媒として示したものと同様のものが挙げられる。
有機酸無水物としては、無水酢酸、無水プロピオン酸、無水マレイン酸、無水フタル酸等が挙げられる。なかでも、反応後の除去が容易であることや、費用の観点から、無水酢酸が好適に用いられる。
有機酸無水物の使用量は特に限定されないが、ポリイミド前駆体の理論脱水量の1〜10当量が好ましく、2〜5当量がより好ましい。
The chemical imidization method can be performed, for example, by dropping an organic acid anhydride and an organic base into this solution while stirring the solution of the polyimide precursor.
Examples of the solvent for the polyimide precursor solution include the same solvents as those shown as the solvent for the synthesis of the polyimide precursor.
Examples of the organic acid anhydride include acetic anhydride, propionic anhydride, maleic anhydride, and phthalic anhydride. Among these, acetic anhydride is preferably used from the viewpoint of easy removal after the reaction and cost.
Although the usage-amount of an organic acid anhydride is not specifically limited, 1-10 equivalent of the theoretical dehydration amount of a polyimide precursor is preferable, and 2-5 equivalent is more preferable.

有機塩基としては、ピリジン、ピコリン等の複素環式化合物;トリエチルアミン、N,N−ジメチルアニリン等の3級アミン;等が挙げられる。
有機塩基の使用量は特に限定されないが、有機酸無水物に対して0.1〜2当量が好ましく、0.2〜1.5当量がより好ましい。
Examples of the organic base include heterocyclic compounds such as pyridine and picoline; tertiary amines such as triethylamine and N, N-dimethylaniline;
Although the usage-amount of an organic base is not specifically limited, 0.1-2 equivalent is preferable with respect to an organic acid anhydride, and 0.2-1.5 equivalent is more preferable.

化学イミド化法において、反応温度は特に限定されないが、通常、0〜130℃、好ましくは20〜110℃である。反応時間は特に限定されないが、通常、0.5〜48時間、好ましくは1〜24時間である。   In the chemical imidization method, the reaction temperature is not particularly limited, but is usually 0 to 130 ° C, preferably 20 to 110 ° C. Although reaction time is not specifically limited, Usually, it is 0.5 to 48 hours, Preferably it is 1 to 24 hours.

熱イミド化法は、例えば、ポリイミド前駆体の溶液を脱水閉環反応が起きる温度に加熱することにより行うことができる。加熱する際は、最高温度まで一段階で昇温する方法、多段階で昇温する方法のどちらでもよい。   The thermal imidization method can be performed, for example, by heating a solution of the polyimide precursor to a temperature at which a dehydration ring-closing reaction occurs. When heating, either a method of raising the temperature up to the maximum temperature in one step or a method of raising the temperature in multiple steps may be used.

ポリイミド前駆体の溶液の溶媒としては、ポリイミド前駆体の合成用の溶媒として示したものと同様のものが挙げられる。
熱イミド化法において、反応温度は特に限定されないが、通常、130〜450℃、好ましくは300〜400℃である。反応時間は特に限定されないが、通常、0.1〜24時間、好ましくは0.5〜5時間である。
反応は、真空中、窒素、アルゴン等の不活性ガス中、あるいは空気中で行うことができる
反応系内には、触媒としてγ−ピコリン等の有機塩基や、副生成物である水を共沸留去するために、トルエンやキシレン等を添加してもよい。
Examples of the solvent for the polyimide precursor solution include the same solvents as those shown as the solvent for the synthesis of the polyimide precursor.
In the thermal imidization method, the reaction temperature is not particularly limited, but is usually 130 to 450 ° C, preferably 300 to 400 ° C. Although reaction time is not specifically limited, Usually, it is 0.1 to 24 hours, Preferably it is 0.5 to 5 hours.
The reaction can be carried out in vacuum, in an inert gas such as nitrogen or argon, or in the air. In the reaction system, an organic base such as γ-picoline or water as a by-product is azeotroped. To distill off, toluene, xylene or the like may be added.

また、単離したポリイミド前駆体を、そのまま加熱して熱イミド化することもできる。
反応温度は特に限定されないが、通常、200〜400℃、好ましくは250〜300℃である。
反応時間は特に限定されないが、通常、0.5〜48時間、好ましくは1〜24時間である。
反応は、真空中、窒素、アルゴン等の不活性ガス中、あるいは空気中で行うことができるが、着色を防ぐことができることから、真空中又は不活性ガス中で行うことが好ましい。
Moreover, the isolated polyimide precursor can also be heat-imidized by heating as it is.
Although reaction temperature is not specifically limited, Usually, it is 200-400 degreeC, Preferably it is 250-300 degreeC.
Although reaction time is not specifically limited, Usually, it is 0.5 to 48 hours, Preferably it is 1 to 24 hours.
The reaction can be performed in a vacuum, in an inert gas such as nitrogen or argon, or in the air. However, since the coloring can be prevented, the reaction is preferably performed in a vacuum or an inert gas.

方法2(テトラカルボン酸二無水物とジアミンから、直接、ポリイミドを合成する方法)によりポリイミドを合成する場合、例えば、方法1におけるポリイミド前駆体の合成方法の反応条件を変えることにより、テトラカルボン酸二無水物とジアミンから、直接、ポリイミドを合成することができる。   When a polyimide is synthesized by Method 2 (a method of directly synthesizing polyimide from tetracarboxylic dianhydride and diamine), for example, by changing reaction conditions of a method for synthesizing a polyimide precursor in Method 1, tetracarboxylic acid is obtained. Polyimide can be synthesized directly from dianhydride and diamine.

反応に用いる溶媒としては、ポリイミド前駆体の合成用の溶媒として示したものと同様のものが挙げられる。なかでも、アミド系溶媒やフェノール系溶媒が好ましい。
反応温度は特に限定されないが、通常、130〜250℃、好ましくは150〜200℃である。
反応時間は特に限定されないが、通常、0.5〜48時間、好ましくは1〜24時間である。
反応系内には、触媒としてγ−ピコリン等の有機塩基や、副生成物である水を共沸留去するために、トルエンやキシレン等を添加してもよい。
Examples of the solvent used for the reaction include the same solvents as those shown for the synthesis of the polyimide precursor. Of these, amide solvents and phenol solvents are preferable.
Although reaction temperature is not specifically limited, Usually, 130-250 degreeC, Preferably it is 150-200 degreeC.
Although reaction time is not specifically limited, Usually, it is 0.5 to 48 hours, Preferably it is 1 to 24 hours.
To the reaction system, toluene, xylene or the like may be added in order to azeotropically distill off an organic base such as γ-picoline or water as a by-product as a catalyst.

上記の方法1や方法2により反応を行い、得られたポリイミドの溶液を大量の貧溶媒中に滴下することで、ポリイミドを析出させることができる。さらに、析出したポリイミドを、ろ取、洗浄、乾燥等することにより、ポリイミドの粉末を得ることができる。
貧溶媒としては、ポリイミドを溶解しないものであれば特に限定されないが、反応溶媒や化学イミド化剤との親和性が高いことや、乾燥による効率よく除去し得ることから、水;メタノール、エタノール、n−プロパノール、イソプロパノール等のアルコール系溶媒;アセトン等のケトン系溶媒;酢酸エチル等のエステル系溶媒;これらの混合溶媒;等が好適に用いられる。
The reaction can be performed by the above-described method 1 or method 2, and the resulting polyimide solution can be dropped into a large amount of poor solvent to precipitate the polyimide. Furthermore, polyimide powder can be obtained by filtering, washing, drying, etc. the deposited polyimide.
The poor solvent is not particularly limited as long as it does not dissolve polyimide, but it has high affinity with a reaction solvent and a chemical imidizing agent and can be efficiently removed by drying. An alcohol solvent such as n-propanol and isopropanol; a ketone solvent such as acetone; an ester solvent such as ethyl acetate; a mixed solvent thereof;

本発明のポリイミドの重量平均分子量は、通常5,000〜1,000,000、好ましくは10,000〜500,000である。
ポリイミドの分子量分布は、通常1.3〜3、好ましくは1.5〜2.5である。
重量平均分子量や、分子量分布が上記範囲内のポリイミドを用いることで、透明性及び機械特性に優れ、かつ、複屈折性が高いフィルムが得られ易くなる。
なお、重量平均分子量および分子量分布は、シクロペンタノンを溶媒とするゲルパーミエーションクロマトグラフィー法により得られた、ポリスチレン換算値である。
The weight average molecular weight of the polyimide of this invention is 5,000-1,000,000 normally, Preferably it is 10,000-500,000.
The molecular weight distribution of the polyimide is usually 1.3 to 3, preferably 1.5 to 2.5.
By using a polyimide having a weight average molecular weight or molecular weight distribution within the above range, a film having excellent transparency and mechanical properties and high birefringence can be easily obtained.
In addition, a weight average molecular weight and molecular weight distribution are the polystyrene conversion values obtained by the gel permeation chromatography method which uses cyclopentanone as a solvent.

本発明のポリイミドは透明性に優れる。本発明のポリイミドは、厚みが10μmのフィルムに成形したときに、そのフィルムの、波長400nmの光の光線透過率が90%以上になるものが好ましく、95%以上になるものがより好ましい。   The polyimide of the present invention is excellent in transparency. The polyimide of the present invention preferably has a light transmittance of 90% or more, more preferably 95% or more, when the film is formed into a film having a thickness of 10 μm.

本発明のポリイミドは有機溶媒に対する溶解性が高い。本発明のポリイミドは、25℃のシクロペンタノンに溶解させて飽和溶液を調製したときに、その飽和溶液の濃度が5重量%以上になるものが好ましく、10重量%以上になるものがより好ましい。飽和溶液の濃度の好ましい上限は特にないが、通常は、50重量%以下である。   The polyimide of the present invention has high solubility in organic solvents. When the polyimide of the present invention is dissolved in cyclopentanone at 25 ° C. to prepare a saturated solution, the concentration of the saturated solution is preferably 5% by weight or more, more preferably 10% by weight or more. . There is no particular upper limit for the concentration of the saturated solution, but it is usually 50% by weight or less.

本発明のポリイミドは、上記のように、透明性に優れ、有機溶媒に対する溶解性が高い。このような特性を有するポリイミドは、キャスト法により光学フィルムを製造する際の材料として、好適に用いられる。   As described above, the polyimide of the present invention has excellent transparency and high solubility in organic solvents. A polyimide having such characteristics is suitably used as a material for producing an optical film by a casting method.

2)積層フィルム、位相差フィルム及び積層フィルムの製造方法
本発明の積層フィルムは、延伸フィルムと、前記延伸フィルム上に、本発明のポリイミドを含有するワニスを塗工し、得られた塗膜を乾燥することにより形成されたポリイミド膜とを有することを特徴とする。
2) Manufacturing method of laminated film, retardation film and laminated film The laminated film of the present invention is a stretched film, and a coated varnish containing the polyimide of the present invention is coated on the stretched film. And a polyimide film formed by drying.

〔ワニス〕
本発明の積層フィルムの製造に用いるワニスは、本発明のポリイミドの適当量を溶媒に溶解することにより、調製することができる。
ワニスの調製に用いる溶媒は、ポリイミドを溶解するものであって、かつ、延伸フィルムを侵さないものであれば、特に限定されない。ワニスの塗工後に、塗膜から溶媒を効率よく揮発させることができることから、溶媒の沸点は180℃以下が好ましく、150℃以下がより好ましく、130℃以下がさらに好ましい。
〔varnish〕
The varnish used for manufacturing the laminated film of the present invention can be prepared by dissolving an appropriate amount of the polyimide of the present invention in a solvent.
The solvent used for preparing the varnish is not particularly limited as long as it dissolves polyimide and does not attack the stretched film. Since the solvent can be efficiently evaporated from the coating film after the varnish is applied, the boiling point of the solvent is preferably 180 ° C. or less, more preferably 150 ° C. or less, and further preferably 130 ° C. or less.

用いる溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ヘキサメチルリン酸トリアミド等のアミド系溶媒;スルホラン、ジメチルスルホキシド、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等の含硫黄系溶媒;クレゾール、フェノール、キシレノール等のフェノール系溶媒;ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラグライム等のジグライム系溶媒;γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン等のラクトン系溶媒;ジエチルケトン、メチルイソブチルケトン、シクロペンタノン、イソホロン、シクロヘキサノン、3,3,5−トリメチルシクロヘキサノン等のケトン系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ピリジン、エチレングリコール、ジオキサン、テトラメチル尿素等のその他の溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を混合して用いることができる。
これらの中でも、延伸フィルムとして、シクロオレフィンポリマーフィルムを用いる場合、ケトン系溶媒が好ましく、シクロペンタノンがより好ましい。
As the solvent to be used, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, hexamethylphosphoric triamide; sulfolane, dimethyl sulfoxide, dimethyl sulfone Sulfur-containing solvents such as tetramethylene sulfone and dimethyltetramethylene sulfone; phenol solvents such as cresol, phenol and xylenol; diglyme solvents such as diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme) and tetraglyme; γ -Lactone solvents such as butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone; diethyl ketone, methyl isobutyl ketone, cyclo Ketone solvents such as pentanone, isophorone, cyclohexanone and 3,3,5-trimethylcyclohexanone; aromatic hydrocarbon solvents such as benzene, toluene and xylene; other solvents such as pyridine, ethylene glycol, dioxane and tetramethylurea; Etc. These solvents can be used alone or in combination of two or more.
Among these, when a cycloolefin polymer film is used as the stretched film, a ketone solvent is preferable, and cyclopentanone is more preferable.

ワニス中のポリイミドの濃度(樹脂濃度)は、ワニスの塗工方法や目的のフィルム厚みに応じて適宜決定することができる。樹脂濃度は、好ましくは5〜30重量%、より好ましくは5〜20重量%である。   The polyimide concentration (resin concentration) in the varnish can be appropriately determined according to the coating method of the varnish and the target film thickness. The resin concentration is preferably 5 to 30% by weight, more preferably 5 to 20% by weight.

本発明の効果を損ねない範囲において、ワニスは添加剤を含有してもよい。添加剤としては、酸化安定剤、フィラー、接着促進剤、シランカップリング剤、感光剤、光重合開始剤、増感剤、末端封止剤、架橋剤等が挙げられる。   The varnish may contain an additive as long as the effects of the present invention are not impaired. Examples of the additive include an oxidation stabilizer, a filler, an adhesion promoter, a silane coupling agent, a photosensitizer, a photopolymerization initiator, a sensitizer, a terminal blocking agent, and a crosslinking agent.

〔延伸フィルム〕
本発明に用いる延伸フィルムは、延伸により複屈折性が発現したものであれば、特に限定されない。
延伸フィルムの材料は、熱可塑性樹脂であれば特に制限はないが、ガラス転移温度(Tg)が80℃から200℃のものが好ましく、100℃から180℃のものがより好ましい。
延伸フィルムを構成する熱可塑性樹脂としては、例えば、シクロオレフィンポリマー、ポリカーボネート、ポリアリレート、ポリエチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリイミド、ポリアミドイミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリオレフィン、ポリビニルアルコール、ポリ塩化ビニルポリメチルメタクリレート、ポリアリレートなどが挙げられる。これらの中でも、シクロオレフィンポリマー、ポリカーボネートが好ましく、シクロオレフィンポリマーが特に好ましい。
[Stretched film]
The stretched film used in the present invention is not particularly limited as long as birefringence is expressed by stretching.
The stretched film material is not particularly limited as long as it is a thermoplastic resin, but preferably has a glass transition temperature (Tg) of 80 to 200 ° C, more preferably 100 to 180 ° C.
Examples of the thermoplastic resin constituting the stretched film include cycloolefin polymer, polycarbonate, polyarylate, polyethylene terephthalate, polysulfone, polyethersulfone, polyphenylene sulfide, polyimide, polyamideimide, polyethylene, polypropylene, polyvinyl chloride, polystyrene, and polyolefin. , Polyvinyl alcohol, polyvinyl chloride polymethyl methacrylate, polyarylate and the like. Among these, cycloolefin polymer and polycarbonate are preferable, and cycloolefin polymer is particularly preferable.

シクロオレフィンポリマーとしては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、および、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
ノルボルネン系樹脂としては、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体またはそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体またはそれらの水素化物等を挙げることができる。
Examples of the cycloolefin polymer include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
The norbornene-based resin includes a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or a monomer having a norbornene structure. An addition copolymer of a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, or the like can be given.

市販のシクロオレフィンポリマーとしては、「Topas」(Ticona社製)、「アートン」(JSR社製)、「ゼオノア」および「ゼオネックス」(日本ゼオン社製)」、「アペル」(三井化学社製)等が挙げられる(いずれも商品名である)。   Commercially available cycloolefin polymers include “Topas” (manufactured by Ticona), “Arton” (manufactured by JSR), “Zeonor” and “Zeonex” (manufactured by Nippon Zeon) ”,“ Appel ”(manufactured by Mitsui Chemicals). (All are trade names).

上記熱可塑性樹脂を製膜して、熱可塑性樹脂フィルムを得、これを延伸することにより、本発明に用いる延伸フィルムを得ることができる。
製膜する際には、溶剤キャスト法や溶融押出法など、公知の製膜手法を適宜利用することができる。また、「エスシーナ」、「SCA40」(積水化学工業社製)、「ゼオノアフィルム」(日本ゼオン社製)、「アートンフィルム」(JSR社製)等の市販の熱可塑性樹脂フィルムを利用することもできる。
A stretched film used in the present invention can be obtained by forming the thermoplastic resin into a film to obtain a thermoplastic resin film and stretching the film.
When forming a film, a known film forming method such as a solvent casting method or a melt extrusion method can be appropriately used. Further, commercially available thermoplastic resin films such as “Essina”, “SCA40” (manufactured by Sekisui Chemical Co., Ltd.), “Zeonor Film” (manufactured by Nippon Zeon Co., Ltd.), “Arton Film” (manufactured by JSR Corporation), etc. it can.

熱可塑性樹脂フィルムは、熱可塑性樹脂の他に、配合剤を含有していてもよい。配合剤としては、層状結晶化合物;無機微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;帯電防止剤等が挙げられる。これらの配合剤は、一種単独で、あるいは2種以上を組み合わせて用いることができる。配合剤の配合量は本発明の目的を損なわない範囲で適宜決定することができる。   The thermoplastic resin film may contain a compounding agent in addition to the thermoplastic resin. Compounding agents include layered crystalline compounds; inorganic fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers and other stabilizers; resin modifiers such as lubricants and plasticizers Agents; coloring agents such as dyes and pigments; antistatic agents and the like. These compounding agents can be used alone or in combination of two or more. The compounding quantity of a compounding agent can be suitably determined in the range which does not impair the objective of this invention.

熱可塑性樹脂フィルムを延伸する際は、一軸延伸法、二軸延伸法、斜め延伸法等の公知の方法を利用することができる。   When stretching the thermoplastic resin film, a known method such as a uniaxial stretching method, a biaxial stretching method, or an oblique stretching method can be used.

延伸フィルムは、大気圧プラズマ表面処理、シランカップリング剤処理等の表面処理を施すことが好ましい。これらの表面処理を施した延伸フィルムの表面に、キャスト法によりポリイミド膜を形成することで、延伸フィルムを構成する分子鎖の配列をポリイミド膜により強く反映させることができ、複屈折性により優れるポリイミド膜を形成することができる。   The stretched film is preferably subjected to a surface treatment such as an atmospheric pressure plasma surface treatment or a silane coupling agent treatment. By forming a polyimide film on the surface of the stretched film that has been subjected to these surface treatments by a casting method, the polyimide film can more strongly reflect the arrangement of molecular chains constituting the stretched film, and is superior in birefringence. A film can be formed.

延伸フィルムの厚みは、特に限定されないが、好ましくは5〜200μm、より好ましくは20〜100μmである。
延伸フィルムの波長550nmにおける面内のリタデーション(Re)は、特に限定されないが、好ましくは30〜250nm、より好ましくは80〜200nmである。
Although the thickness of a stretched film is not specifically limited, Preferably it is 5-200 micrometers, More preferably, it is 20-100 micrometers.
The in-plane retardation (Re) at a wavelength of 550 nm of the stretched film is not particularly limited, but is preferably 30 to 250 nm, and more preferably 80 to 200 nm.

ポリイミド膜を形成することにより得られる積層フィルムから延伸フィルムを剥離除去することなく、積層フィルムをそのまま位相差フィルムとして用いる場合〔後述する位相差フィルム(α)や位相差フィルム(β)〕、用いる延伸フィルムは、透明性に優れるものが好ましい。この場合、延伸フィルムの、波長が400〜800nmの光の光線透過率は、90%以上が好ましく、95%以上がより好ましい。
一方、延伸フィルムを工程シートとして利用し、延伸フィルムを剥離除去して用いる場合〔例えば、後述する位相差フィルム(γ)〕、用いる延伸フィルムは、透明性に劣るものであってもよい。
When the laminated film is used as it is as a retardation film without peeling and removing the stretched film from the laminated film obtained by forming the polyimide film [retarded film (α) or retardation film (β) described later], used The stretched film is preferably excellent in transparency. In this case, the light transmittance of light having a wavelength of 400 to 800 nm of the stretched film is preferably 90% or more, and more preferably 95% or more.
On the other hand, when the stretched film is used as a process sheet and the stretched film is peeled and removed [for example, a retardation film (γ) described later], the stretched film used may be inferior in transparency.

〔積層フィルム〕
本発明の積層フィルムは、前記ワニスを延伸フィルム上に塗工し、得られた塗膜を乾燥することによりポリイミド膜を形成することにより製造することができる。
[Laminated film]
The laminated film of the present invention can be produced by forming a polyimide film by coating the varnish on a stretched film and drying the resulting coating film.

ワニスを塗工する方法としては、特に制限されず、従来公知の方法を利用することができる。塗工方法としては、スピンコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、スリットコート法等が挙げられる。   The method for applying the varnish is not particularly limited, and a conventionally known method can be used. Examples of the coating method include spin coating, dip coating, roll coating, curtain coating, die coating, and slit coating.

乾燥温度は、通常50〜130℃、好ましくは60〜120℃、より好ましくは70〜110℃であり、乾燥時間は、通常1〜60分、好ましくは1〜50分、より好ましくは1〜40分である。   The drying temperature is usually 50 to 130 ° C., preferably 60 to 120 ° C., more preferably 70 to 110 ° C., and the drying time is usually 1 to 60 minutes, preferably 1 to 50 minutes, more preferably 1 to 40. Minutes.

ポリイミド膜の膜厚は、通常1μm以上、好ましくは、1〜100μm、より好ましくは、5〜50μmである。   The film thickness of the polyimide film is usually 1 μm or more, preferably 1 to 100 μm, more preferably 5 to 50 μm.

本発明の積層フィルムは、前記ポリイミド膜を有するものであればよく、その他の層は特に限定されない。
本発明の積層フィルムは、そのまま位相差フィルムとして用いることができる。本発明の積層フィルムとしては、延伸フィルムの片側に前記ポリイミド膜を有するフィルム〔位相差フィルム(α)〕、延伸フィルムの両側にそれぞれ前記ポリイミド膜を有するフィルム〔位相差フィルム(β)〕が挙げられる。
The laminated film of this invention should just have the said polyimide film, and another layer is not specifically limited.
The laminated film of the present invention can be used as it is as a retardation film. Examples of the laminated film of the present invention include a film having the polyimide film on one side of the stretched film [retardation film (α)] and a film having the polyimide film on both sides of the stretched film [retardation film (β)]. It is done.

位相差フィルム(α)としては、例えば、延伸フィルムの片側に、ポリイミド膜を形成して得られた直後の、延伸フィルム/ポリイミド膜、の層構造を有するフィルム等が挙げられる。
位相差フィルム(β)としては、例えば、位相差フィルム(α)の延伸フィルム側に、さらにポリイミド膜を形成して得られる、ポリイミド膜/延伸フィルム/ポリイミド膜、の層構造を有するフィルム等が挙げられる。
Examples of the retardation film (α) include a film having a layered structure of a stretched film / polyimide film immediately after a polyimide film is formed on one side of the stretched film.
Examples of the retardation film (β) include a film having a layer structure of polyimide film / stretched film / polyimide film obtained by further forming a polyimide film on the stretched film side of the retardation film (α). Can be mentioned.

〔位相差フィルム〕
前記積層フィルムから、延伸フィルムを剥離除去することにより、位相差フィルム〔位相差フィルム(γ)〕を得ることができる。
位相差フィルム(γ)としては、例えば、ポリイミド膜のみからなるフィルムが挙げられる。延伸フィルムの剥離除去は、例えば、位相差フィルム(α)を水中に浸漬させることにより行うことができる。
[Phase difference film]
A retardation film [retardation film (γ)] can be obtained by peeling and removing the stretched film from the laminated film.
Examples of the retardation film (γ) include a film made only of a polyimide film. The stretched film can be removed by, for example, immersing the retardation film (α) in water.

本発明の積層フィルム及び位相差フィルム(以下、「積層フィルム等」ということがある。)は粘着剤層を有するものであってもよい。粘着剤層を有する本発明の積層フィルム等を、他のフィルム等に貼着することで、複屈折性を有する積層フィルム等を効率よく得ることができる。   The laminated film and retardation film of the present invention (hereinafter sometimes referred to as “laminated film etc.”) may have an adhesive layer. By laminating the laminated film or the like of the present invention having an adhesive layer to another film or the like, a laminated film having birefringence can be efficiently obtained.

粘着剤層を形成する際は、光学フィルムにおいて通常用いられる粘着剤や接着剤を利用することができる。例えば、ホットメルト型接着剤、熱硬化型接着剤、感圧型接着剤、エネルギー線硬化型接着剤、吸湿型接着剤、乾燥型接着剤、UV硬化型接着剤、重合型接着剤、2液反応型接着剤、嫌気型接着剤等を利用することができる。
粘着剤層を形成する際は、市販の透明粘着シートを用いることもできる。かかる透明粘着シートとしては、例えば、LUCIACS(日東電工社製)等が挙げられる。
When forming the pressure-sensitive adhesive layer, a pressure-sensitive adhesive or adhesive usually used in an optical film can be used. For example, hot melt adhesives, thermosetting adhesives, pressure sensitive adhesives, energy ray curable adhesives, hygroscopic adhesives, dry adhesives, UV curable adhesives, polymerization adhesives, two-component reactions A mold adhesive, an anaerobic adhesive, or the like can be used.
When forming an adhesive layer, a commercially available transparent adhesive sheet can also be used. Examples of such a transparent adhesive sheet include LUCIACS (manufactured by Nitto Denko Corporation).

本発明の積層フィルム等は透明性に優れる。本発明の積層フィルム等の、波長400nmの光の光線透過率は、好ましくは90%以上、より好ましくは95%以上である。   The laminated film of the present invention is excellent in transparency. The light transmittance of light having a wavelength of 400 nm, such as the laminated film of the present invention, is preferably 90% or more, more preferably 95% or more.

本発明の積層フィルム等を構成するポリイミド膜は、高い複屈折性を有する。ポリイミド膜の、波長が400〜800nmにおける複屈折率は、通常、0.02以上、好ましくは0.03以上である。複屈折率の上限値は特にないが、通常は、0.06以下である。   The polyimide film constituting the laminated film of the present invention has high birefringence. The birefringence of the polyimide film at a wavelength of 400 to 800 nm is usually 0.02 or more, preferably 0.03 or more. There is no particular upper limit value for the birefringence, but it is usually 0.06 or less.

本発明の積層フィルム等を構成するポリイミド膜は、機械特性に優れる。膜厚10μm、幅10mmのポリイミド膜を用いて、100mm/分の速度で引張試験を行ったときに、破断強度は、60MPa以上が好ましく、80MPa以上がより好ましく、上限は特に限定されないが、200MPa程度である。また、破断伸びは、5%以上が好ましく、10%以上がより好ましく、上限は特に限定されないが、50%程度である。   The polyimide film constituting the laminated film of the present invention is excellent in mechanical properties. When a tensile test was performed at a rate of 100 mm / min using a polyimide film having a thickness of 10 μm and a width of 10 mm, the breaking strength is preferably 60 MPa or more, more preferably 80 MPa or more, and the upper limit is not particularly limited, but 200 MPa Degree. The elongation at break is preferably 5% or more, more preferably 10% or more, and the upper limit is not particularly limited, but is about 50%.

〔積層フィルムの製造方法〕
本発明の積層フィルムの製造方法は、本発明のポリイミドを含有するワニスを延伸フィルム上に塗工し、得られた塗膜を乾燥する工程を有する。
本発明の方法に用いる、ポリイミド、ワニス、延伸フィルムとしては、前記と同様のものが挙げられる。また、ワニスの塗工方法や得られた塗膜の乾燥方法としては、前記方法を利用することができる。
[Production method of laminated film]
The manufacturing method of the laminated | multilayer film of this invention has the process of coating the varnish containing the polyimide of this invention on a stretched film, and drying the obtained coating film.
Examples of the polyimide, varnish, and stretched film used in the method of the present invention include those described above. Moreover, the said method can be utilized as a coating method of a varnish, and the drying method of the obtained coating film.

本発明の方法によれば、キャスト法により効率よく積層フィルムを製造することができる。特に、複屈折性を強く発現させることができることから、延伸フィルムとしてシクロオレフィンポリマーフィルムを用いるのが好ましく、大気圧プラズマ表面処理及びシランカップリング剤処理を施したシクロオレフィンポリマーフィルムを用いるのがより好ましい。   According to the method of the present invention, a laminated film can be efficiently produced by a casting method. In particular, it is preferable to use a cycloolefin polymer film as a stretched film because birefringence can be strongly expressed, and it is more preferable to use a cycloolefin polymer film that has been subjected to an atmospheric pressure plasma surface treatment and a silane coupling agent treatment. preferable.

以下、実施例を挙げて、本発明をより詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではない。また、下記の実施例および比較例において、「部」および「%」は特に断りのない限り、重量基準である。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples. In the following Examples and Comparative Examples, “parts” and “%” are based on weight unless otherwise specified.

実施例において用いた材料は以下の通りである。
シクロオレフィンフィルム(1):シクロオレフィン系延伸フィルム(日本ゼオン社製、製品名:ゼオノアZM−16)に対して、大気圧プラズマ表面処理とシランカップリング剤(チッソ社製、商品名:サイラエースS330)処理を施して得られたフィルム
シクロオレフィンフィルム(2):シクロオレフィン系未延伸フィルム(日本ゼオン社製、製品名:ゼオノアZF−16)に対して、大気圧プラズマ表面処理とシランカップリング剤(チッソ社製、商品名:サイラエースS330)処理を施して得られたフィルム
The materials used in the examples are as follows.
Cycloolefin film (1): Atmospheric pressure plasma surface treatment and silane coupling agent (manufactured by Chisso Corporation, trade name: Sila Ace S330) for cycloolefin-based stretched film (manufactured by Nippon Zeon, product name: Zeonoa ZM-16) ) Film obtained by treatment Cycloolefin film (2): Cycloolefin unstretched film (manufactured by ZEON Corporation, product name: ZEONOR ZF-16), atmospheric pressure plasma surface treatment and silane coupling agent (Product name: Sila Ace S330, manufactured by Chisso Corporation) Film obtained by processing

〔実施例1〕
4,4’−ジアミノベンズアニリド(DABA)3.409g(0.015モル)、9,9’−ビス(4−アミノフェニル)フルオレン(BAFL)5.226g(0.015モル)、N,N−ジメチルアセトアミド(DMAc)107.6gを混合し、25℃で20分攪拌した。次いで、得られた溶液を氷冷し、この溶液にビス(オクタヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸)4,4’−スルホニルジアニリド(PSHT)18.259g(0.03モル)を加え、氷冷下で2時間、次いで25℃で20時間攪拌してポリイミド前駆体ワニスを得た。
得られたポリイミド前駆体ワニスに無水酢酸12.25g(0.12モル)、ピリジン11.87g(0.15モル)を加え、25℃で1時間、80℃で1時間、110℃で4時間攪拌して化学イミド化反応を行った。この際、反応液はゲル化しなかった。反応後、樹脂濃度が7%になるように反応液にDMAcを加えて希釈し、得られた希釈液をメタノール8L中に滴下することにより、ポリイミドを析出させ、これをろ過により回収した。
ポリイミドをメタノールで2度洗浄した後、130℃で6時間、真空乾燥した(収量:25.12g、収率97.1%)。
得られたポリイミドの25℃のシクロペンタノンに対する溶解性を調べたところ、その飽和溶液の濃度は20%以上であった。
[Example 1]
4,4′-diaminobenzanilide (DABA) 3.409 g (0.015 mol), 9,9′-bis (4-aminophenyl) fluorene (BAFL) 5.226 g (0.015 mol), N, N -Dimethylacetamide (DMAc) 107.6g was mixed and it stirred at 25 degreeC for 20 minutes. Subsequently, the obtained solution was ice-cooled, and 18.259 g (0.03 mol) of bis (octahydro-1,3-dioxo-5-isobenzofurancarboxylic acid) 4,4′-sulfonyldianilide (PSHT) was added to this solution. The mixture was stirred for 2 hours under ice-cooling and then for 20 hours at 25 ° C. to obtain a polyimide precursor varnish.
To the obtained polyimide precursor varnish, 12.25 g (0.12 mol) of acetic anhydride and 11.87 g (0.15 mol) of pyridine were added, 1 hour at 25 ° C., 1 hour at 80 ° C., 4 hours at 110 ° C. The chemical imidization reaction was performed by stirring. At this time, the reaction solution did not gel. After the reaction, the reaction solution was diluted with DMAc so that the resin concentration became 7%, and the obtained diluted solution was dropped into 8 L of methanol to precipitate polyimide, which was collected by filtration.
The polyimide was washed twice with methanol and then vacuum-dried at 130 ° C. for 6 hours (yield: 25.12 g, yield 97.1%).
When the solubility of the obtained polyimide in cyclopentanone at 25 ° C. was examined, the concentration of the saturated solution was 20% or more.

ポリイミドをシクロペンタノンに溶かし、濃度20%のワニスを得た。次いで、このワニスを、ドクターブレードを用いて、乾燥後の膜厚が10μmになるようにシクロオレフィンフィルム(1)上に塗工し、得られた塗膜を、窒素気流式イナートオーブンを用いて、80℃で30分、150℃で60分、加熱乾燥し、シクロオレフィンフィルム(1)とポリイミド膜とからなる積層フィルムを得た。
得られた積層フィルムを切断して膜断面を露出させた後、水中に24時間浸漬させることにより、ポリイミド膜をシクロオレフィンフィルム(1)から剥離し、剥離したポリイミド膜を130℃で3時間真空乾燥した。
Polyimide was dissolved in cyclopentanone to obtain a varnish having a concentration of 20%. Next, this varnish was applied onto the cycloolefin film (1) using a doctor blade so that the film thickness after drying was 10 μm, and the obtained coating film was applied using a nitrogen stream type inert oven. And dried at 80 ° C. for 30 minutes and 150 ° C. for 60 minutes to obtain a laminated film composed of the cycloolefin film (1) and the polyimide film.
After cutting the obtained laminated film to expose the cross section of the film, the polyimide film was peeled off from the cycloolefin film (1) by being immersed in water for 24 hours, and the peeled polyimide film was vacuumed at 130 ° C. for 3 hours. Dried.

〔実施例2〕
実施例1において、DABAの使用量を2.045g(0.009モル)、BAFLの使用量を7.316g(0.021モル)に変更したことを除き、実施例1と同様にしてポリイミド膜を得た。
[Example 2]
A polyimide film was prepared in the same manner as in Example 1 except that the amount of DABA used was changed to 2.045 g (0.009 mol) and the amount of BAFL used was changed to 7.316 g (0.021 mol). Got.

〔実施例3〕
実施例1において、DABAの使用量を4.772g(0.021モル)、BAFLの使用量を3.136g(0.009モル)に変更したことを除き、実施例1と同様にしてポリイミド膜を得た。
Example 3
A polyimide film was prepared in the same manner as in Example 1 except that the amount of DABA used was changed to 4.772 g (0.021 mol) and the amount of BAFL used was changed to 3.136 g (0.009 mol). Got.

〔実施例4〕
実施例1において、PSHTをビス(オクタヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸)1,4−フェニレンジアミド(PPHT)に変更したことを除き、実施例1と同様にしてポリイミド膜を得た。
Example 4
A polyimide film was prepared in the same manner as in Example 1 except that PSHT was changed to bis (octahydro-1,3-dioxo-5-isobenzofurancarboxylic acid) 1,4-phenylenediamide (PPHT) in Example 1. Obtained.

〔比較例1〕
実施例1において、シクロオレフィンフィルム(1)をシクロオレフィンフィルム(2)に変更したことを除き、実施例1と同様にしてポリイミド膜を得た。
[Comparative Example 1]
A polyimide film was obtained in the same manner as in Example 1 except that the cycloolefin film (1) was changed to the cycloolefin film (2) in Example 1.

〔比較例2〕
実施例1において、ジアミンとして、DABA6.818g(0.03モル)のみを使用したことを除き、実施例1と同様にしてポリイミドを合成した。得られたポリイミドは、25℃のシクロペンタノンに難溶であり(飽和溶液の濃度が5%以下)、ポリイミド膜を得ることができなかった。
[Comparative Example 2]
In Example 1, polyimide was synthesized in the same manner as in Example 1 except that only 6.818 g (0.03 mol) of DABA was used as the diamine. The obtained polyimide was hardly soluble in cyclopentanone at 25 ° C. (saturated solution concentration was 5% or less), and a polyimide film could not be obtained.

〔比較例3〕
実施例1において、ジアミンとして、BAFL10.453g(0.03モル)のみを使用したことを除き、実施例1と同様にしてポリイミド膜を得た。
[Comparative Example 3]
In Example 1, a polyimide film was obtained in the same manner as in Example 1 except that only BAFL 10.453 g (0.03 mol) was used as the diamine.

〔比較例4〕
実施例1において、テトラカルボン酸二無水物として、3,3’4,4’−ビフェニルテトラカルボン酸二無水物(S−BPDA)を8.826g(0.03モル)、ジアミンとして、BAFL10.453g(0.03モル)を使用したことを除き、実施例1と同様にしてポリイミドを合成した。得られたポリイミドは、25℃のシクロペンタノンに難溶であり(飽和溶液の濃度が5%以下)であり、ポリイミド膜を得ることができなかった。
[Comparative Example 4]
In Example 1, 8.826 g (0.03 mol) of 3,3′4,4′-biphenyltetracarboxylic dianhydride (S-BPDA) was used as tetracarboxylic dianhydride, and BAFL10. A polyimide was synthesized in the same manner as in Example 1 except that 453 g (0.03 mol) was used. The obtained polyimide was hardly soluble in cyclopentanone at 25 ° C. (the concentration of the saturated solution was 5% or less), and a polyimide film could not be obtained.

実施例1〜4及び比較例1〜4で得たポリイミド及びポリイミド膜について以下の測定を行い、物性を評価した。結果を第1表に示す。   The following measurements were performed on the polyimides and polyimide films obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and the physical properties were evaluated. The results are shown in Table 1.

〔溶解性〕
ポリイミドを25℃のシクロペンタノンに溶解させ、以下の基準で溶解性を評価した。
○:濃度が20%を超える溶液が得られる。
△:濃度が5%を超え、20%以下の溶液が得られる。
×:濃度が5%を超える溶液が得られない。
[Solubility]
The polyimide was dissolved in cyclopentanone at 25 ° C., and the solubility was evaluated according to the following criteria.
○: A solution having a concentration exceeding 20% is obtained.
Δ: A solution having a concentration exceeding 5% and 20% or less is obtained.
X: A solution having a concentration exceeding 5% cannot be obtained.

〔位相差測定〕
分光エリスロメーター(J.A.WOOLLAM JAPAN社製、製品名:M−2000を用いて、ポリイミドフィルム(厚膜約10μm)の、フィルムの面方向(x軸、y軸)、フィルムの垂直方向(z軸)の屈折率を測定し、位相差(Rth)を算出した。
(Phase difference measurement)
Using a spectroscopic erythrometer (manufactured by JA WOOLLAM JAPAN, product name: M-2000, polyimide film (thick film about 10 μm), film surface direction (x axis, y axis), film vertical direction ( The refractive index (z-axis) was measured, and the phase difference (Rth) was calculated.

〔光線透過率の測定〕
紫外可視近赤外分光光度計(日本分光社製、製品名:V−570)を用いて、ポリイミド膜(膜厚10μm)の波長400nmの光線透過率を測定し、光線透過率が90%以上である場合を○とした。
(Measurement of light transmittance)
Using a UV-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, product name: V-570), the light transmittance at a wavelength of 400 nm of the polyimide film (film thickness: 10 μm) was measured, and the light transmittance was 90% or more. The case where is.

〔熱膨張率の測定〕
熱機械分析装置(SII社製、製品名:TMASS7100)を用いて、窒素雰囲気下、温度範囲:室温〜300℃、昇温速度:5℃/分、2サイクルの条件でポリイミドフィルムの熱膨張率(ppm/℃)を測定し、2サイクル目の測定値を採用した。
(Measurement of thermal expansion coefficient)
Using a thermomechanical analyzer (product name: TMASS7100, manufactured by SII), under a nitrogen atmosphere, temperature range: room temperature to 300 ° C., temperature increase rate: 5 ° C./min, thermal expansion coefficient of polyimide film under conditions of 2 cycles (Ppm / ° C.) was measured, and the measured value of the second cycle was adopted.

〔膜破断強度、破断伸び〕
精密万能試験機(島津製作所社製、製品名:オートグラフAG)を用いて、膜厚10μm、幅10mmのポリイミドフィルムを用いて、100mm/分の速度で引張り試験を行い、破断強度(MPa)、破断伸び(%)を測定した。
[Membrane breaking strength, breaking elongation]
Using a precision universal testing machine (manufactured by Shimadzu Corporation, product name: Autograph AG), a tensile test was performed at a rate of 100 mm / min using a polyimide film having a thickness of 10 μm and a width of 10 mm, and breaking strength (MPa). The elongation at break (%) was measured.

Figure 2015209487
Figure 2015209487

第1表から以下のことが分かる。
実施例1〜4で得られたポリイミドは、シクロペンタノンに対して高い溶解性を示し、キャスト法用のワニスを調製することができる。
一方、ジアミンとしてDABAのみを用いた比較例2のポリイミド、テトラカルボン酸二無水物としてS−BPDAを用いた比較例4のポリイミドは、いずれもシクロペンタノンに対する溶解性に劣る。
比較例1では、基材として未延伸フィルムを用いたため、複屈折性が十分には発現していない。
比較例3では、ジアミンとしてDABAを用いていないため、複屈折性がほとんど発現していない。
The following can be seen from Table 1.
The polyimides obtained in Examples 1 to 4 exhibit high solubility with respect to cyclopentanone, and can prepare a varnish for a casting method.
On the other hand, the polyimide of Comparative Example 2 using only DABA as the diamine and the polyimide of Comparative Example 4 using S-BPDA as the tetracarboxylic dianhydride are both poor in solubility in cyclopentanone.
In Comparative Example 1, since an unstretched film was used as a base material, birefringence was not sufficiently developed.
In Comparative Example 3, since DABA is not used as a diamine, birefringence is hardly exhibited.

Claims (10)

下記式(1)で示される繰り返し単位と、下記式(2)で示される繰り返し単位とを有し、
式(1)で示される繰り返し単位と式(2)で示される繰り返し単位の割合〔式(1)で示される繰り返し単位:式(2)で示される繰り返し単位〕のモル比が、20:80〜70:30であり、
式(1)で示される繰り返し単位と式(2)で示される繰り返し単位の合計量が、全繰り返し単位中、80〜100モル%であることを特徴とするポリイミド。
Figure 2015209487
〔式中、R、Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。Aは、下記式(3a)又は(3b)
Figure 2015209487
(式中、*は、結合手を表す。)
で示される基を表す。a、bはそれぞれ独立に、0〜4の整数を表す。a、bがそれぞれ2以上のとき、複数のR同士およびR同士は、それぞれ同一であっても相異なっていてもよい。〕
Figure 2015209487
(式中、R〜Rは、それぞれ独立に、ハロゲン原子、水酸基、炭素数1〜6の直鎖状若しくは分岐状アルキル基、炭素数1〜6の直鎖状若しくは分岐状アルコキシル基、又はトリフルオロメチル基を表す。Aは、前記式(3a)又は(3b)で示される基を表す。c〜fはそれぞれ独立に、0〜4の整数を表す。c、d、e、fがそれぞれ2以上のとき、複数のR同士、R同士、R同士およびR同士は、それぞれ同一であっても相異なっていてもよい。)
Having a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2),
The molar ratio of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) [the repeating unit represented by the formula (1): the repeating unit represented by the formula (2)] is 20:80. ~ 70: 30,
The polyimide characterized by the total amount of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) being 80 to 100 mol% in all repeating units.
Figure 2015209487
[Wherein, R 1 and R 2 each independently represent a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxyl group having 1 to 6 carbon atoms, Or represents a trifluoromethyl group. A 1 represents the following formula (3a) or (3b)
Figure 2015209487
(In the formula, * represents a bond.)
Represents a group represented by a and b each independently represents an integer of 0 to 4; When a and b are each 2 or more, a plurality of R 1 s and R 2 s may be the same or different. ]
Figure 2015209487
(In the formula, R 3 to R 6 are each independently a halogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxyl group having 1 to 6 carbon atoms, Or A 1 represents a group represented by the formula (3a) or (3b), and cf each independently represents an integer of 0 to 4. c, d, e, When f is 2 or more, a plurality of R 3 s , R 4 s , R 5 s, and R 6 s may be the same or different.
厚みが10μmのフィルムに成形したときに、そのフィルムの、波長400nmの光の光線透過率が90%以上になる、請求項1に記載のポリイミド。   The polyimide according to claim 1, wherein when formed into a film having a thickness of 10 μm, the light transmittance of light having a wavelength of 400 nm of the film becomes 90% or more. 25℃のシクロペンタノンに溶解させて飽和溶液を調製したときに、その飽和溶液の濃度が5重量%以上になる、請求項1または2に記載のポリイミド。   The polyimide according to claim 1 or 2, wherein when a saturated solution is prepared by dissolving in cyclopentanone at 25 ° C, the concentration of the saturated solution becomes 5% by weight or more. 延伸フィルムと、前記延伸フィルム上に、請求項1〜3のいずれかに記載のポリイミドを含有するワニスを塗工し、得られた塗膜を乾燥することにより形成されたポリイミド膜とを有する積層フィルム。   A laminate having a stretched film and a polyimide film formed by applying the varnish containing the polyimide according to any one of claims 1 to 3 on the stretched film and drying the resulting coating film. the film. 前記延伸フィルムが、未延伸のシクロオレフィンポリマーフィルムを延伸して得られたフィルムである、請求項4に記載の積層フィルム。   The laminated film according to claim 4, wherein the stretched film is a film obtained by stretching an unstretched cycloolefin polymer film. さらに、粘着剤層を有する請求項4又は5に記載の積層フィルム。   Furthermore, the laminated film of Claim 4 or 5 which has an adhesive layer. 請求項4〜6のいずれかに記載の積層フィルムから、延伸フィルムを剥離除去して得られる位相差フィルム。   A retardation film obtained by peeling and removing a stretched film from the laminated film according to claim 4. さらに、粘着剤層を有する請求項7に記載の位相差フィルム。   Furthermore, the retardation film of Claim 7 which has an adhesive layer. 請求項1〜3のいずれかに記載のポリイミドを含有するワニスを、延伸フィルム上に塗工し、得られた塗膜を乾燥する工程を有する積層フィルムの製造方法。   The manufacturing method of the laminated | multilayer film which has the process of coating the varnish containing the polyimide in any one of Claims 1-3 on a stretched film, and drying the obtained coating film. 前記延伸フィルムが、未延伸のシクロオレフィンポリマーフィルムを延伸して得られたフィルムである、請求項9に記載の積層フィルムの製造方法。   The method for producing a laminated film according to claim 9, wherein the stretched film is a film obtained by stretching an unstretched cycloolefin polymer film.
JP2014091551A 2014-04-25 2014-04-25 Polyimide, laminated film, retardation film, and laminated film manufacturing method Active JP6394045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014091551A JP6394045B2 (en) 2014-04-25 2014-04-25 Polyimide, laminated film, retardation film, and laminated film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091551A JP6394045B2 (en) 2014-04-25 2014-04-25 Polyimide, laminated film, retardation film, and laminated film manufacturing method

Publications (2)

Publication Number Publication Date
JP2015209487A true JP2015209487A (en) 2015-11-24
JP6394045B2 JP6394045B2 (en) 2018-09-26

Family

ID=54611951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091551A Active JP6394045B2 (en) 2014-04-25 2014-04-25 Polyimide, laminated film, retardation film, and laminated film manufacturing method

Country Status (1)

Country Link
JP (1) JP6394045B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503832A (en) * 2016-01-12 2018-09-07 湖南工业大学 A kind of polyimides and its preparation method and application containing fluorenes or Fluorenone structure
CN111683992A (en) * 2018-02-05 2020-09-18 三菱瓦斯化学株式会社 Polyimide resin composition and polyimide film
WO2022014210A1 (en) * 2020-07-15 2022-01-20 東洋紡株式会社 Resin film and method for manufacturing resin film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150453A (en) * 1988-12-01 1990-06-08 Sumitomo Bakelite Co Ltd Polyimide film and its production
JP2006221188A (en) * 2004-11-22 2006-08-24 Nitto Denko Corp Optical film, polarizing plate, liquid crystal cell, liquid crystal display device, image display apparatus and manufacturing method of optical film
JP2006293331A (en) * 2005-03-11 2006-10-26 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display device
JP2008107766A (en) * 2006-07-21 2008-05-08 Toray Ind Inc Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film
JP2012072121A (en) * 2010-09-01 2012-04-12 Nippon Fine Chem Co Ltd Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
WO2012173126A1 (en) * 2011-06-13 2012-12-20 株式会社カネカ Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
JP2013120289A (en) * 2011-12-07 2013-06-17 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013154141A1 (en) * 2012-04-13 2013-10-17 宇部興産株式会社 Poly(amic acid) solution composition, and polyimide
JP2013241571A (en) * 2012-04-25 2013-12-05 Jnc Corp Liquid crystal aligning agent, and liquid crystal display device using the same
WO2014024892A1 (en) * 2012-08-10 2014-02-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014024893A1 (en) * 2012-08-10 2014-02-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014074772A (en) * 2012-10-03 2014-04-24 Jsr Corp Radiation-sensitive polymer composition, insulation film, and organic el element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150453A (en) * 1988-12-01 1990-06-08 Sumitomo Bakelite Co Ltd Polyimide film and its production
JP2006221188A (en) * 2004-11-22 2006-08-24 Nitto Denko Corp Optical film, polarizing plate, liquid crystal cell, liquid crystal display device, image display apparatus and manufacturing method of optical film
JP2006293331A (en) * 2005-03-11 2006-10-26 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display device
JP2008107766A (en) * 2006-07-21 2008-05-08 Toray Ind Inc Resin composition for retardation thin film, color filter substrate for liquid crystal display device, liquid crystal display device, and method for production of color filter substrate for liquid crystal display device having retardation thin film
JP2012072121A (en) * 2010-09-01 2012-04-12 Nippon Fine Chem Co Ltd Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
WO2012173126A1 (en) * 2011-06-13 2012-12-20 株式会社カネカ Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
JP2013120289A (en) * 2011-12-07 2013-06-17 Jsr Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2013154141A1 (en) * 2012-04-13 2013-10-17 宇部興産株式会社 Poly(amic acid) solution composition, and polyimide
JP2013241571A (en) * 2012-04-25 2013-12-05 Jnc Corp Liquid crystal aligning agent, and liquid crystal display device using the same
WO2014024892A1 (en) * 2012-08-10 2014-02-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014024893A1 (en) * 2012-08-10 2014-02-13 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2014074772A (en) * 2012-10-03 2014-04-24 Jsr Corp Radiation-sensitive polymer composition, insulation film, and organic el element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503832A (en) * 2016-01-12 2018-09-07 湖南工业大学 A kind of polyimides and its preparation method and application containing fluorenes or Fluorenone structure
CN111683992A (en) * 2018-02-05 2020-09-18 三菱瓦斯化学株式会社 Polyimide resin composition and polyimide film
CN111683992B (en) * 2018-02-05 2023-05-05 三菱瓦斯化学株式会社 Polyimide resin composition and polyimide film
WO2022014210A1 (en) * 2020-07-15 2022-01-20 東洋紡株式会社 Resin film and method for manufacturing resin film
JPWO2022014210A1 (en) * 2020-07-15 2022-01-20

Also Published As

Publication number Publication date
JP6394045B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
TWI588182B (en) Polyimide film, Polyimide film varnish, Polyimide film products, and laminated body
US10544266B2 (en) Composition for the production of polyimide film for flexible board of photoelectronic device
KR102475756B1 (en) Polyimide-based films and laminates
KR102077152B1 (en) Laminate and method for manufacturing the same
KR102025316B1 (en) Laminate
JP6912287B2 (en) Polyimide film and its manufacturing method
WO2006025263A1 (en) Optical film, polarization plate and liquid crystal display
KR101760555B1 (en) Polyimide-based solution and polyimide-based film prepared by using same
TW202010641A (en) A laminate and a method for producing the same
JP6850352B2 (en) Polyimide varnish and its manufacturing method
JP6394045B2 (en) Polyimide, laminated film, retardation film, and laminated film manufacturing method
JP5675114B2 (en) Optical compensation film, optical compensation laminate, optical compensation polarizing plate, and liquid crystal display device
JP2019001989A (en) Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
TW202020021A (en) Optical film having small variations in local thickness and excellent flatness of the film surface
JP5325491B2 (en) Novel coating type optical compensation film and method for producing the same
JP7135857B2 (en) Composition for forming release layer
TW201841994A (en) Polyimide film, laminate, and surface material for display
KR20230017146A (en) Varnish, optical film, and method of producing optical film
KR102471725B1 (en) Polyimide based film
WO2022163759A1 (en) Optical film and flexible display device provided with optical film
JP6962323B2 (en) Composition for forming a release layer
JP5015070B2 (en) Novel coating type optical compensation film and method for producing the same
KR20190128607A (en) Laminate and method for manufacturing the same
JP2010180350A (en) Polyimide copolymer, coating type optical compensation film comprising this, and manufacturing method therefor
WO2022163758A1 (en) Laminated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250