KR20230040304A - Resin film and manufacturing method of resin film - Google Patents

Resin film and manufacturing method of resin film Download PDF

Info

Publication number
KR20230040304A
KR20230040304A KR1020227026647A KR20227026647A KR20230040304A KR 20230040304 A KR20230040304 A KR 20230040304A KR 1020227026647 A KR1020227026647 A KR 1020227026647A KR 20227026647 A KR20227026647 A KR 20227026647A KR 20230040304 A KR20230040304 A KR 20230040304A
Authority
KR
South Korea
Prior art keywords
resin film
resin
temperature
range
solvent
Prior art date
Application number
KR1020227026647A
Other languages
Korean (ko)
Inventor
하루히코 나루사와
나오키 와타나베
히로유키 와쿠이
하루미 요네무시
Original Assignee
도요보 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요보 가부시키가이샤 filed Critical 도요보 가부시키가이샤
Publication of KR20230040304A publication Critical patent/KR20230040304A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

내열성이 우수하고, 고온 영역까지 낮은 선팽창계수를 유지하고, 높은 인장 탄성률을 가지며, 수지 필름의 MD 방향 및 TD 방향의 선팽창계수 및 인장 탄성률의 비가 작고, 물성 등방성이 양호한 수지 필름을 제공한다. 하기 (1)∼(2)를 만족시키는 수지 필름.
(1) 손실 탄성률을 저장 탄성률로 나눈 값인 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)가 250∼500℃의 범위 내에 있고, 상기 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)와 선팽창계수 변곡점 온도(B)가 하기 식의 관계에 있다
(40+0.8×A)≤B<A,
(2) 상기 수지 필름의 원료인 수지의 중량 평균 분자량이 50,000∼500,000의 범위 내에 있고, 상기 중량 평균 분자량을 상기 수지의 수평균 분자량으로 나눈 값인 분자량 분포가 1.0∼5.0의 범위 내에 있다.
Provided is a resin film having excellent heat resistance, maintaining a low linear expansion coefficient up to a high temperature region, having a high tensile modulus, having a small ratio of linear expansion coefficient and tensile modulus in the MD and TD directions of the resin film, and having good physical property isotropy. A resin film satisfying the following (1) to (2).
(1) The temperature (A) at which the temperature dependent curve of tanδ, which is the value obtained by dividing the loss modulus by the storage elastic modulus, has a peak is within the range of 250 to 500°C, and the temperature (A) at which the temperature dependent curve of tanδ has a peak and linear expansion The coefficient inflection point temperature (B) is in the relationship of the following formula
(40+0.8×A)≤B<A;
(2) The weight average molecular weight of the resin as a raw material of the resin film is in the range of 50,000 to 500,000, and the molecular weight distribution, which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin, is in the range of 1.0 to 5.0.

Description

수지 필름 및 수지 필름의 제조 방법Resin film and manufacturing method of resin film

본 발명은, 수지 필름과 수지 필름의 제조 방법에 관한 것이다. 보다 상세하게는, 내열성이 우수하고, 고온 영역까지 낮은 선팽창계수를 유지하고, 높은 인장 탄성률을 가지며, 수지 필름의 MD 방향에 대한 TD 방향의 선팽창계수 및 인장 탄성률의 비가 작고, 수지 필름의 물성 등방성이 양호한 투명성이 우수한 수지 필름과 수지 필름의 제조 방법에 관한 것이다. The present invention relates to a resin film and a method for manufacturing the resin film. More specifically, it has excellent heat resistance, maintains a low linear expansion coefficient up to a high temperature region, has a high tensile modulus, has a small ratio of the linear expansion coefficient and tensile modulus in the TD direction to the MD direction of the resin film, and has isotropic physical properties of the resin film. It relates to a resin film excellent in this good transparency and a method for producing the resin film.

최근, 고기능화하는 휴대전화나 디지털 카메라, 디스플레이 기기, 기타 각종 전자 기기류의 소형화, 경량화, 편리성의 진전에 따라, 종래부터 이용되어 온 딱딱하고 충격에 약한 유리 기판 대신, 내열성, 낮은 선팽창계수, 높은 인장 탄성률, 유연성, 내충격성, 투명성이 우수한 수지 필름 기판 재료가 기대되고 있다. In recent years, with the advancement of miniaturization, weight reduction, and convenience of highly functional mobile phones, digital cameras, display devices, and other various electronic devices, instead of the conventionally used hard and impact-resistant glass substrate, heat resistance, low coefficient of linear expansion, and high tensile strength A resin film substrate material having excellent elastic modulus, flexibility, impact resistance and transparency is expected.

수지 필름은 유기 고분자 수지 재료를 필름형으로 제막 가공함으로써 공업적으로 제조되고, 제막 방법으로서는 유기 고분자 수지를 용융한 후에 슬릿형의 다이로부터 압출하는 용융 제막법, 유기 고분자 수지 용액을 지지체에 균일하게 도공하고 용제를 건조 휘발시키는 용액 제막법 등이 있다. 유기 고분자 수지 재료 중에서도 특히 내열성이 우수한 폴리이미드 수지, 폴리아미드이미드 수지는, 용융되지 않거나 매우 고온에서 용융되기 때문에, 용액 제막에 의해 수지 필름을 얻는 것이 일반적이다. The resin film is industrially produced by forming an organic polymer resin material into a film, and as a film forming method, a melt film forming method in which an organic polymer resin is melted and then extruded from a slit-type die, and an organic polymer resin solution is uniformly applied to a support There is a solution film forming method in which coating is applied and the solvent is dried and volatilized. Among organic polymeric resin materials, since polyimide resins and polyamideimide resins, which are particularly excellent in heat resistance, do not melt or melt at very high temperatures, it is common to obtain a resin film by solution film formation.

이와 같은 도공하여 용제를 건조 휘발시키는 용액 제막 방법에서는, 도공 조건이나 건조 조건에 따라 두께 불균일이나 배향 불균일이 생기는 경우가 있어, 예컨대 특허문헌 1에서는 지지체 회전 속도 등의 도공 조건을 재검토함으로써 길이 방향의 가로단 불균일을 저감한 제안이 있다. In such a solution film forming method in which the solvent is dried and volatilized by coating, thickness unevenness or orientation unevenness may occur depending on the coating conditions and drying conditions. For example, in Patent Document 1, by reviewing the coating conditions such as support rotation speed, There is a proposal that reduces cross section unevenness.

또한, 필름의 늘어짐의 차이를 억제하기 위해, 늘어짐과, 이방성 지수, 주축 배향계수, 열수축률, 건조 온도에 상관이 있는 것을 발견하고, 폭방향의 건조 온도 불균일을 억제하여, 선팽창계수, 즉 치수 변화의 차이를 억제하는 방법이 기재되어 있다(특허문헌 2). In addition, in order to suppress the difference in sagging of the film, it was found that there is a correlation between the sagging, the anisotropic index, the principal axis orientation coefficient, the thermal contraction rate, and the drying temperature, and suppressing the drying temperature unevenness in the width direction, the linear expansion coefficient, that is, the dimension A method for suppressing the difference in change is described (Patent Document 2).

특허문헌 3에서는, 유리 전이 온도 이상에서 현저한 탄성률 저하를 일으키는 폴리이미드 필름을 제조할 때에, 가열 공정에서 수축과 팽창에 의해 변화하는 필름의 폭에 맞춰, 필름의 양쪽 단부를 고정하여 늘어짐없이 반송하는 것에 의해, 필름의 MD 방향(진행 방향)과 TD 방향(폭방향)의 선팽창계수의 이방성을 작게 하는 제조 방법이 기재되어 있다. In Patent Literature 3, when manufacturing a polyimide film that causes a significant drop in elastic modulus above the glass transition temperature, both ends of the film are fixed in accordance with the width of the film that changes due to contraction and expansion in the heating process and transported without sagging. Thereby, a manufacturing method for reducing the anisotropy of the linear expansion coefficient in the MD direction (advancing direction) and the TD direction (width direction) of the film is described.

특허문헌 1 : 일본특허공개 제2013-203838호 공보Patent Document 1: Japanese Unexamined Patent Publication No. 2013-203838 특허문헌 2 : 일본특허공개 제2018-70842호 공보Patent Document 2: Japanese Unexamined Patent Publication No. 2018-70842 특허문헌 3 : 일본특허공개 제2000-290401호 공보Patent Document 3: Japanese Unexamined Patent Publication No. 2000-290401

전극이나 디스플레이 소자 등 기능 소자를 표면에 직접 형성하기 위해, 유리 기판 대체로서 이용되는 수지 필름에는 높은 인장 탄성률과 낮은 CTE 및 내열성이나 내약품성이 요구된다. 그와 같은 수지 필름에 적합한 수지로서의 폴리이미드, 폴리아미드이미드 및 폴리이미드의 전구체가 되는 폴리아미드산은, 모빌리티가 낮은 강직한 분자쇄를 많이 포함하고 높은 분자량을 가짐으로써 내열성을 발현하고 있고, 또한, 고분자량화할 때에 결과적으로 분자량에 넓은 분포를 갖고 있다. In order to form functional elements such as electrodes and display elements directly on the surface, resin films used as substitutes for glass substrates are required to have high tensile modulus, low CTE, and heat resistance and chemical resistance. Polyimide as a resin suitable for such a resin film, polyamideimide, and polyamic acid as a precursor of polyimide contain many rigid molecular chains with low mobility and have high molecular weight, thereby exhibiting heat resistance, and As a result of high molecular weight, it has a wide distribution in molecular weight.

이러한 수지 용액을 도포, 건조할 때에, 고분자량이며 분자량 분포가 넓고 모빌리티가 낮은 강직한 분자쇄를 많이 포함하는 경우, 용제가 제거됨에 따라서 먼저 형성되는 분자의 배향 방향, 배향도나 서로 얽힘을 반영한 보다 치밀한 고차 구조와, 나중에 형성되는 분자의 배향 방향, 배향도나 서로 얽힘을 반영한 보다 성긴 고차 구조가 상이해져, 각각의 도메인이 형성된다. When applying and drying such a resin solution, if it contains a lot of rigid molecular chains with high molecular weight, wide molecular weight distribution, and low mobility, as the solvent is removed, the orientation direction, degree of orientation, or entanglement of the molecules formed first is reflected. Each domain is formed by a difference between a dense higher order structure and a coarser higher order structure reflecting the orientation direction, degree of orientation, and entanglement of molecules formed later.

수지 용액으로부터 도포 건조에 의해 필름을 공업적으로 연속으로 제조하는 경우, 롤투롤로 가열 로에 반송하기 위해, 연속 제조되는 필름에는 MD 방향(진행 방향)과 TD 방향(폭방향)과 같은 공정적·형상적인 이방성을 갖는다. 이러한 공정적·형상적인 이방성은, 앞서 설명한 상이한 고차 구조를 갖는 도메인 형성에 영향을 미치고, 폭방향 또는 진행 방향의 어느 하나에 분자의 배향 방향, 배향도나 서로 얽힘이 불균일해져, 치수 변화의 차이나 물성의 이방성이 생긴다. When a film is industrially continuously manufactured by application and drying from a resin solution, in order to be conveyed to a heating furnace by roll-to-roll, the continuously manufactured film has the same process and shape as the MD direction (running direction) and TD direction (width direction) has a negative anisotropy. This eutectic and morphological anisotropy affects the formation of domains having different higher-order structures described above, and the orientation direction, degree of orientation, and entanglement of molecules in either the width direction or the forward direction become non-uniform, resulting in differences in dimensional change and physical properties. anisotropy of

특허문헌 1의 방법에서는 길이 방향의 가로단 불균일을 저감하고, 두께의 차이에 기인한 물성의 이방성은 억제되었지만, 필름 내부의 분자의 배향 방향, 배향도나 서로 얽힘의 불균일에 의한 물성의 이방성까지는 억제되지 않았다. 또한, 특허문헌 2에서는, 폭방향의 건조 온도 불균일이 20℃ 이하가 되는 조건하에 건조를 행하는 것에 의해, 필름의 길이 방향과 폭방향에서의 열수축률을 0.05% 이하로 했지만, 실시예 중에서는 열수축률 최대치의 길이 방향에 대한 폭방향의 비율이 최대0.33이고, 열수축률의 MD 방향(길이 방향)과 TD 방향(폭방향)의 이방성은 억제되지 않았다. In the method of Patent Literature 1, the transverse unevenness in the longitudinal direction is reduced, and the anisotropy of physical properties due to the difference in thickness is suppressed, but the orientation direction of the molecules inside the film, the degree of orientation, and the anisotropy of physical properties due to non-uniformity in entanglement are suppressed It didn't work. Further, in Patent Literature 2, drying is performed under the condition that the drying temperature unevenness in the width direction is 20° C. or less, so that the heat shrinkage rate in the longitudinal direction and the width direction of the film is set to 0.05% or less. The ratio of the maximum value of shrinkage in the width direction to the length direction was 0.33 at most, and the anisotropy of the MD direction (lengthwise direction) and TD direction (width direction) of the heat shrinkage rate was not suppressed.

특허문헌 3의 폴리이미드 필름의 제조 방법에서는, 서서히 높은 온도의 로를 순차적으로 통과시키는 공정에 맞춰, 전반의 공정에서 필름을 폭방향으로 고의로 수축시키고, 후반의 공정에서 필름의 늘어짐이 생기는 단계에서 폭방향으로 넓혀, 늘어짐없이 제조하여 필름의 폭방향과 진행 방향의 이방성을 저감하고 있지만, 실시예 중에서는 폴리이미드 필름의 MD(유동 방향) 방향과, TD(폭방향) 방향의 선팽창계수의 비는 0.96이며, 이방성을 한층 더 저감하는 것이 과제가 된다. In the method for producing a polyimide film of Patent Document 3, the film is intentionally shrunk in the width direction in the first half of the step in accordance with the step of gradually passing through a high-temperature furnace sequentially, and in the step of causing sagging of the film in the second half of the step. Although the anisotropy in the width direction and the traveling direction of the film is reduced by widening it in the width direction and manufacturing it without sagging, in the examples, the ratio of the linear expansion coefficient in the MD (flow direction) direction and the TD (width direction) direction of the polyimide film is 0.96, and further reducing the anisotropy becomes a subject.

이와 같이, 폴리이미드는 내열성이 우수하고, 낮은 선팽창계수와 높은 인장 탄성률을 갖는 반면, 고분자량이며 분자량 분포가 넓고 모빌리티가 낮은 강직한 분자쇄를 갖기 때문에, 용제 건조에 따라 분자의 배향 방향, 배향도나 서로 얽힘을 반영한 고차 구조가 상이한 도메인이 형성되기 때문에, 고온 영역까지 낮은 선팽창계수를 유지하고, 수지 필름의 MD 방향 및 TD 방향의 선팽창계수 및 인장 탄성률의 비가 작고, 물성 등방성이 양호한 수지 필름을 얻는 것이 과제였다. As described above, polyimide has excellent heat resistance, a low linear expansion coefficient and a high tensile modulus, while having a high molecular weight, wide molecular weight distribution, and a rigid molecular chain with low mobility. Since domains with different high-order structures reflecting degree or entanglement are formed, a resin film that maintains a low linear expansion coefficient up to a high temperature region, has a small ratio of linear expansion coefficient and tensile modulus in the MD and TD directions of the resin film, and has good isotropy in physical properties. Getting it was a challenge.

본 발명자들은, 상기 과제를 해결하기 위해 예의 검토한 결과, 이러한 과제를 해결할 수 있는 것을 발견하여 본 발명에 도달했다. 즉 본 발명은 이하의 구성을 갖는 것이다. The inventors of the present invention, as a result of intensive studies to solve the above problems, found that these problems could be solved and reached the present invention. That is, this invention has the following structures.

하기 (1)∼(2)를 만족시키는 수지 필름. A resin film satisfying the following (1) to (2).

(1) 손실 탄성률을 저장 탄성률로 나눈 값인 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)가 250∼500℃의 범위 내에 있고, 상기 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)와 선팽창계수 변곡점 온도(B)가 하기 식의 관계에 있다(1) The temperature (A) at which the temperature dependent curve of tanδ, which is the value obtained by dividing the loss modulus by the storage elastic modulus, has a peak is within the range of 250 to 500°C, and the temperature (A) at which the temperature dependent curve of tanδ has a peak and linear expansion The coefficient inflection point temperature (B) is in the relationship of the following formula

(40+0.8×A)≤B<A (40+0.8×A)≤B<A

(2) 상기 수지 필름의 원료인 수지의 중량 평균 분자량이 50,000∼500,000의 범위 내에 있고, 상기 중량 평균 분자량을 상기 수지의 수평균 분자량으로 나눈 값인 분자량 분포가 1.0∼5.0의 범위 내에 있다(2) The weight average molecular weight of the resin, which is the raw material of the resin film, is within the range of 50,000 to 500,000, and the molecular weight distribution, which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin, is within the range of 1.0 to 5.0.

상기 수지 필름은 (3)∼(4)를 더 만족시키는 것이 바람직하다. It is preferable that the resin film further satisfies (3) to (4).

(3) MD 방향 및 TD 방향의 양 방향의 35∼200℃의 범위에서 측정한 선팽창계수가 -5 ppm/℃∼+55 ppm/℃의 범위에 있고, 상기 선팽창계수의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다 (3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both MD and TD directions is in the range of -5 ppm / ° C to +55 ppm / ° C, and the linear expansion coefficient is in the TD direction with respect to the MD direction The ratio of is in the range of 0.97 to 1.03

(4) MD 방향 및 TD 방향의 양 방향의 인장 탄성률이 2∼20 GPa의 범위에 있고, 상기 인장 탄성률의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다(4) The tensile modulus of elasticity in both MD and TD directions is in the range of 2 to 20 GPa, and the ratio of the tensile modulus in the TD direction to the MD direction is in the range of 0.97 to 1.03.

상기 수지 필름은, 옐로우 인덱스가 10 이하, 파장 400 nm에서의 광선 투과율이 70% 이상, 전광선 투과율이 85% 이상인 것이 바람직하다. The resin film preferably has a yellow index of 10 or less, a light transmittance of 70% or more at a wavelength of 400 nm, and a total light transmittance of 85% or more.

수지 용액을 지지체 상에 도포, 건조하여 용매를 함유하는 수지 필름 적층체를 제작하는 공정 A, Step A of applying a resin solution onto a support and drying it to produce a resin film laminate containing a solvent;

상기 적층체로부터 상기 지지체를 박리하여 용매를 함유하는 수지 필름을 얻는 공정 B, Step B of peeling the support from the laminate to obtain a solvent-containing resin film;

상기 용매를 함유하는 수지 필름으로부터, 용매를 제거, 또는 용매를 제거하면서 탈수 폐환 반응하는 공정 C를 포함하고, Step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent,

상기 공정 C의 적어도 일부를 마이크로파 가열에 의해 행하는 것을 특징으로 하는 상기 수지 필름의 제조 방법. The manufacturing method of the said resin film characterized by performing at least a part of said process C by microwave heating.

상기 수지 용액은, 폴리아미드산, 폴리이미드 및 폴리아미드이미드로 이루어진 군에서 선택되는 적어도 1종의 수지와, 쌍극자 모멘트가 3.0∼6.0 D의 범위에 있고 상기 수지를 용해하는 용매를 함유하는 것이 바람직하다. The resin solution preferably contains at least one resin selected from the group consisting of polyamic acid, polyimide and polyamideimide, and a solvent having a dipole moment in the range of 3.0 to 6.0 D and dissolving the resin. do.

본 발명에 의하면, 고분자량이며 분자량 분포가 넓고 모빌리티가 낮은 강직한 분자쇄를 많이 포함하는 폴리이미드, 폴리아미드이미드, 및 폴리이미드의 전구체가 되는 폴리아미드산으로 이루어진 수지 용액을 도포 건조한 경우에도, 내열성이 우수하고, 고온 영역까지 낮은 선팽창계수를 유지하고, 높은 인장 탄성률을 가지며, 수지 필름의 MD 방향 및 TD 방향의 선팽창계수 및 인장 탄성률의 비가 작고, 물성 등방성이 양호한 투명성이 우수한 수지 필름을 얻을 수 있다. According to the present invention, even when a resin solution composed of polyimide, polyamideimide, and polyamic acid, which is a precursor of polyimide, containing many rigid molecular chains having a high molecular weight and a wide molecular weight distribution and low mobility, is coated and dried, A resin film having excellent heat resistance, maintaining a low coefficient of linear expansion up to a high temperature range, having a high tensile modulus, having a small ratio of linear expansion coefficient and tensile modulus in the MD and TD directions of the resin film, and excellent isotropy in physical properties and excellent transparency can be obtained. can

이하, 본 발명의 실시형태의 수지 필름 및 수지 필름의 제조 방법에 관해 설명한다. 본 발명의 수지 필름은 하기 (1)∼(2)를 만족시키는 필름이다. Hereinafter, the resin film of the embodiment of the present invention and the manufacturing method of the resin film will be described. The resin film of the present invention is a film that satisfies the following (1) to (2).

(1) 손실 탄성률을 저장 탄성률로 나눈 값인 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)가 250∼500℃의 범위 내에 있고, 상기 tanδ의 온도 의존 곡선이 피크가 되는 온도와 선팽창계수 변곡점 온도(B)가 하기 식의 관계에 있다. (1) The temperature (A) at which the temperature dependent curve of tanδ, which is the value obtained by dividing the loss modulus by the storage elastic modulus, has a peak is within the range of 250 to 500 ° C, the temperature at which the temperature dependent curve of tanδ has a peak and the temperature of the inflection point of the linear expansion coefficient (B) exists in the relationship of the following formula.

(40+0.8×A)≤B<A (40+0.8×A)≤B<A

온도에 대한 tanδ의 온도 의존 곡선은 온도 변화에 의한 수지의 점탄성이 변화하는 지표이며, tanδ의 온도 의존 곡선이 피크가 되는 온도를 넘으면, 수지의 점성이 현저하게 증가하고 강도가 저하된다. 그 때문에, 휴대전화나 디지털 카메라, 디스플레이 기기, 기타 각종 전자 기기류에 이용되는 유리 기판의 대체에서 요구되는 내열성의 점에서, tanδ의 온도 의존 곡선이 피크가 되는 온도가 250∼500℃의 범위 내에 있는 것이 필요하고, 바람직하게는 260∼480℃의 범위 내, 보다 바람직하게는 270∼460℃의 범위 내에 있다. 상기 수지 필름의 tanδ의 온도 의존 곡선이 피크가 되는 온도의 측정 방법은 실시예에 기재된 방법에 따른다. The tanδ temperature dependence curve with respect to temperature is an index for changing the viscoelasticity of the resin due to temperature change, and when the tanδ temperature dependence curve exceeds the temperature at which it peaks, the viscosity of the resin increases markedly and the strength decreases. Therefore, in terms of heat resistance required for replacement of glass substrates used in mobile phones, digital cameras, display devices, and other various electronic devices, the temperature at which the tan δ temperature dependence curve peaks is within the range of 250 to 500 ° C. It is necessary, preferably within the range of 260 to 480 ° C, more preferably within the range of 270 to 460 ° C. The method of measuring the temperature at which the temperature dependence curve of tan δ of the resin film becomes a peak follows the method described in Examples.

수지 필름은 온도 변화에 의해 팽창하거나 수축하고 선팽창계수는 그 변화의 지표이며, 수지 필름의 선팽창계수는 측정 온도 영역에 대하여 항상 일정한 것은 아니며, 수지 필름에 따른 특정 온도에서 선팽창계수가 높아진다. 이 특정 온도를 선팽창계수 변곡점 온도라고 부른다. The resin film expands or contracts due to temperature change, and the linear expansion coefficient is an index of the change. The linear expansion coefficient of the resin film is not always constant with respect to the measured temperature range, and the linear expansion coefficient increases at a specific temperature according to the resin film. This specific temperature is called the temperature of the inflection point of the coefficient of linear expansion.

본 발명의 수지 필름은, 수지 용액을 도포, 건조하는 것에 의해 얻어지는 것이 바람직하다. 수지 용액을 도포, 건조하여 수지 필름을 얻을 때에, 용제가 제거됨에 따라서 먼저 형성되는 분자의 배향 방향, 배향도나 서로 얽힘을 반영한 보다 치밀한 고차 구조와, 나중에 형성되는 분자의 배향 방향, 배향도나 서로 얽힘을 반영한 보다 성긴 고차 구조가 생기고, 각각의 도메인이 형성된다. 이 때 수지가 보다 고분자량이며 분자량 분포가 넓고 모빌리티가 낮은 강직한 분자쇄를 보다 많이 포함하는 경우, 각각의 도메인의 고차 구조의 소밀(疎密)이 더 크게 상이하다. It is preferable that the resin film of this invention is obtained by apply|coating and drying a resin solution. When a resin film is obtained by applying and drying a resin solution, as the solvent is removed, a more dense higher-order structure reflecting the orientation direction, degree of orientation, and entanglement of molecules formed first, and the orientation direction, degree of orientation, and entanglement of molecules formed later A coarser higher-order structure reflecting , and each domain is formed. At this time, when the resin contains more rigid molecular chains with a higher molecular weight and a wider molecular weight distribution and low mobility, the coarseness of the higher order structure of each domain is more greatly different.

tanδ의 온도 의존 곡선이 피크가 되는 온도와 선팽창계수 변곡점 온도는 모두 물성 변곡점 온도이지만, tanδ의 온도 의존 곡선이 피크가 되는 온도는 수지 필름 제작의 단계에서 형성된 소밀이 상이한 고차 구조의 평균의 물성 변화를 반영하는 데 비해, 선팽창계수는 수지 필름 작성의 단계에서 형성된 성긴 고차 구조의 물성 변화를 반영하기 때문에, tanδ의 온도 의존 곡선이 피크가 되는 온도(A)보다 선팽창계수 변곡점 온도(B)는 항상 낮아진다(B<A). 또한, tanδ의 온도 의존 곡선이 피크가 되는 온도로부터 선팽창계수 변곡점 온도를 뺀 값은 tanδ의 온도 의존 곡선이 피크가 되는 온도가 높을수록 커지는 경향이 있다. 유리 기판의 대체에서 요구되는 낮은 선팽창계수와 기판 가공 공정에서의 고온시에도 낮은 선팽창계수를 유지하기 위해, 선팽창계수 변곡점 온도(B)는 보다 높은 쪽이 바람직하고, 구체적으로는, tanδ의 온도 의존 곡선이 피크가 되는 온도(A)에 대하여, 식(40+0.8×A)≤B를 만족시키는 것이 바람직하다. 상기 수지 필름의 선팽창계수 변곡점 온도의 측정 방법은 실시예에 기재된 방법에 따른다. The temperature at which the tanδ temperature dependence curve peaks and the temperature at the inflection point of the linear expansion coefficient are both the physical property inflection point temperatures, but the temperature at which the tanδ temperature dependence curve peaks is the average change in physical properties of higher-order structures of different roughness formed at the stage of production of the resin film. Since the coefficient of linear expansion reflects the change in physical properties of the coarse higher order structure formed at the stage of preparation of the resin film, the temperature of the inflection point of the coefficient of linear expansion (B) is always higher than the temperature (A) at which the temperature dependence curve of tanδ becomes a peak. lower (B<A). In addition, the value obtained by subtracting the inflection point temperature of the linear expansion coefficient from the temperature at which the tan δ temperature dependence curve peaks tends to increase as the temperature at which the tan δ temperature dependence curve peaks is higher. In order to maintain a low linear expansion coefficient required for replacement of glass substrates and a low linear expansion coefficient even at high temperatures in the substrate processing process, the linear expansion coefficient inflection point temperature (B) is preferably higher, and specifically, the temperature dependence of tanδ For the temperature (A) at which the curve becomes a peak, it is preferable to satisfy the expression (40+0.8xA)≤B. The method of measuring the temperature of the inflection point of the linear expansion coefficient of the resin film is in accordance with the method described in Examples.

(2) 수지 필름의 원료인 수지의 중량 평균 분자량이 50,000∼500,000의 범위 내에 있고, 상기 중량 평균 분자량을 상기 수지의 수평균 분자량으로 나눈 값인 분자량 분포가 1.0∼5.0의 범위 내에 있다. (2) The weight average molecular weight of the resin, which is a raw material of the resin film, is within the range of 50,000 to 500,000, and the molecular weight distribution, which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin, is within the range of 1.0 to 5.0.

본 발명의 수지 필름의 원료인 수지의 중량 평균 분자량은 50,000∼500,000의 범위 내이며, 보다 바람직하게는 80,000∼400,000, 더욱 바람직하게는 100,000∼300,000, 특히 바람직하게는 120,000∼200,000이다. 중량 평균 분자량이 상기 하한 이상이면 유리 기판의 대체에서 요구되는 높은 인장 탄성률, 유연성, 내충격성을 만족시킬 수 있다. 또한, 중량 평균 분자량이 상기 상한 이하이면 상기 식을 만족시키는 것이 용이해진다. 또한, 수지 용액 중의 수지의 중량 평균 분자량이 상기 범위 내인 것이 바람직하다. The weight average molecular weight of the resin as a raw material of the resin film of the present invention is within the range of 50,000 to 500,000, more preferably 80,000 to 400,000, still more preferably 100,000 to 300,000, and particularly preferably 120,000 to 200,000. If the weight average molecular weight is greater than or equal to the above lower limit, high tensile modulus, flexibility, and impact resistance required for replacement of glass substrates can be satisfied. Moreover, it becomes easy to satisfy the said formula as a weight average molecular weight is below the said upper limit. Moreover, it is preferable that the weight average molecular weight of resin in a resin solution is within the said range.

본 발명의 수지 필름의 원료인 수지의 중량 평균 분자량을 수평균 분자량으로 나눈 값인 분자량 분포는 1.0∼5.0의 범위 내이며, 보다 바람직하게는 1.5∼4.5, 더욱 바람직하게는 2.0∼4.0이다. 분자량 분포가 상기 하한 이상이면 수지 정제의 비용을 저감할 수 있고, 분자량 분포가 상기 상한 이하이면 상기 식을 만족시키는 것이 용이해진다. 상기 수지 필름의 원료인 수지의 중량 평균 분자량 및 분자량 분포의 측정 방법은 실시예에 기재된 방법에 따른다. The molecular weight distribution, which is a value obtained by dividing the weight average molecular weight of the resin as a raw material of the resin film of the present invention by the number average molecular weight, is within the range of 1.0 to 5.0, more preferably 1.5 to 4.5, still more preferably 2.0 to 4.0. When the molecular weight distribution is equal to or greater than the lower limit, the cost of resin purification can be reduced, and when the molecular weight distribution is equal to or less than the upper limit, it becomes easy to satisfy the above expression. The method for measuring the weight average molecular weight and molecular weight distribution of the resin, which is a raw material of the resin film, follows the method described in Examples.

본 발명의 수지 필름은 하기 (3)∼(4)를 더 만족시키는 것이 바람직하다. The resin film of the present invention preferably further satisfies the following (3) to (4).

(3) MD 방향 및 TD 방향의 양 방향의 35∼200℃의 범위에서 측정한 선팽창계수가 -5 ppm/℃∼+55 ppm/℃의 범위에 있고, 상기 선팽창계수의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다. (3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both MD and TD directions is in the range of -5 ppm / ° C to +55 ppm / ° C, and the linear expansion coefficient is in the TD direction with respect to the MD direction The ratio of is in the range of 0.97 to 1.03.

본 발명에서의 수지 필름의 MD 방향 및 TD 방향의 양 방향의 35∼200℃의 범위에서 측정한 평균의 선팽창계수는 -5 ppm/℃∼+55 ppm/℃인 것이 바람직하다. 보다 바람직하게는 -4 ppm/℃∼+45 ppm/℃이며, 더욱 바람직하게는 -3 ppm/℃∼+35 ppm/℃이다. 선팽창계수가 상기 범위 내이면, 기능 소자와의 선팽창계수의 차를 작게 유지할 수 있고, 열을 가하는 프로세스에 제공하더라도 수지 필름과 기능 소자가 박리되는 것을 회피할 수 있어, 가공성이 우수하다. It is preferable that the average linear expansion coefficient measured in the range of 35-200 degreeC of both MD direction and TD direction of the resin film in this invention is -5 ppm/degreeC - +55 ppm/degreeC. More preferably -4 ppm/°C to +45 ppm/°C, still more preferably -3 ppm/°C to +35 ppm/°C. If the linear expansion coefficient is within the above range, the difference in linear expansion coefficient with the functional element can be kept small, and separation of the resin film and the functional element can be avoided even when subjected to a heat application process, resulting in excellent workability.

본 발명에서의 수지 필름의 선팽창계수의 MD 방향에 대한 TD 방향의 비는 0.97∼1.03의 범위인 것이 바람직하다. 보다 바람직하게는 0.975∼1.025, 더욱 바람직하게는 0.98∼1.02이다. 이 선팽창계수의 MD 방향에 대한 TD 방향의 비가 상기 범위 내에 있으면, 수지 필름의 MD 방향, TD 방향을 구별하지 않고 기능 소자와의 가공 프로세스에 제공할 수 있어, 작업성이나 수율을 향상시킬 수 있다. 상기 수지 필름의 선팽창계수의 측정 방법은 실시예에 기재된 방법에 따른다. The ratio of the linear expansion coefficient of the resin film in the TD direction to the MD direction in the present invention is preferably in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, still more preferably 0.98 to 1.02. If the ratio of the TD direction to the MD direction of this linear expansion coefficient is within the above range, the resin film can be used in the processing process with the functional element without distinguishing between the MD and TD directions, and the workability and yield can be improved. . The method for measuring the coefficient of linear expansion of the resin film follows the method described in Examples.

(4) MD 방향 및 TD 방향의 양 방향의 인장 탄성률이 2∼20 GPa의 범위에 있고, 상기 인장 탄성률의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다. (4) The tensile modulus of elasticity in both MD and TD directions is in the range of 2 to 20 GPa, and the ratio of the tensile modulus in the TD direction to the MD direction is in the range of 0.97 to 1.03.

본 발명의 수지 필름의 인장 탄성률은 MD 방향 및 TD 방향의 양 방향의 인장 탄성률이 2∼20 GPa의 범위인 것이 바람직하다. 보다 바람직하게는 2.5∼15 GPa, 더욱 바람직하게는 3∼10 GPa이다. 인장 탄성률이 상기 하한 이상이면, 수지 필름과 기능 소자가 박리되는 것을 회피할 수 있어, 취급성이 우수하다. 또한, 인장 탄성률이 상기 상한 이하이면, 수지 필름을 플렉시블한 필름으로서 사용할 수 있다. The tensile modulus of elasticity of the resin film of the present invention is preferably in the range of 2 to 20 GPa in both MD and TD directions. More preferably, it is 2.5-15 GPa, More preferably, it is 3-10 GPa. When the tensile modulus of elasticity is equal to or greater than the above lower limit, peeling between the resin film and the functional element can be avoided, and handleability is excellent. Moreover, a resin film can be used as a flexible film as tensile elasticity modulus is below the said upper limit.

본 발명에서의 수지 필름의 인장 탄성률의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있는 것이 바람직하다. 보다 바람직하게는 0.975∼1.025, 더욱 바람직하게는 0.98∼1.02이다. 인장 탄성률의 MD 방향에 대한 TD 방향의 비가 상기 범위 내에 있으면, 수지 필름의 MD 방향, TD 방향을 구별하지 않고 기능 소자와의 가공 프로세스에 제공할 수 있어, 작업성이나 수율을 향상시킬 수 있다. 상기 수지 필름의 인장 탄성률의 측정 방법은 실시예에 기재된 방법에 따른다. It is preferable that the ratio of the TD direction to the MD direction of the tensile modulus of elasticity of the resin film in the present invention is in the range of 0.97 to 1.03. It is more preferably 0.975 to 1.025, still more preferably 0.98 to 1.02. When the ratio of the tensile modulus in the TD direction to the MD direction is within the above range, the resin film can be applied to the functional element processing process regardless of the MD and TD directions, and workability and yield can be improved. The method for measuring the tensile modulus of elasticity of the resin film is in accordance with the method described in Examples.

본 발명의 수지 필름은 주로 터치패널이나 디스플레이 등의 화상 표시 장치의 전면판, 전극 주변에 이용되기 때문에, 황색도 지수(옐로우 인덱스)는 10 이하가 바람직하고, 보다 바람직하게는 7 이하이며, 더욱 바람직하게는 5 이하이며, 한층 더 바람직하게는 3 이하이다. 상기 수지 필름의 황색도의 하한은 특별히 제한되지 않지만, 플렉시블 전자 디바이스로서 이용하기 위해서는 0.1 이상인 것이 바람직하고, 보다 바람직하게는 0.2 이상이고, 더욱 바람직하게는 0.3 이상이다. 상기 수지 필름의 황색도 지수(옐로우 인덱스)의 측정 방법은 실시예에 기재된 방법에 따른다. Since the resin film of the present invention is mainly used for front plates and around electrodes of image display devices such as touch panels and displays, the yellowness index (yellow index) is preferably 10 or less, more preferably 7 or less, and further Preferably it is 5 or less, More preferably, it is 3 or less. The lower limit of the yellowness of the resin film is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more for use as a flexible electronic device. The method for measuring the yellowness index (yellow index) of the resin film is in accordance with the method described in Examples.

본 발명의 수지 필름은 주로 터치패널이나 디스플레이 등의 화상 표시 장치의 전면판, 전극 주변에 이용되기 때문에, 파장 400 nm에서의 광선 투과율은 70% 이상이 바람직하고, 보다 바람직하게는 72% 이상이고, 더욱 바람직하게는 75% 이상이고, 한층 더 바람직하게는 80% 이상이다. 상기 수지 필름의 파장 400 nm의 광선 투과율의 상한은 특별히 제한되지 않지만, 플렉시블 전자 디바이스로서 이용하기 위해서는 99% 이하인 것이 바람직하고, 보다 바람직하게는 98% 이하이며, 더욱 바람직하게는 97% 이하이다. 상기 수지 필름의 파장 400 nm에서의 광선 투과율의 측정 방법은 실시예에 기재된 방법에 따른다. Since the resin film of the present invention is mainly used for the front plate and electrode periphery of image display devices such as touch panels and displays, the light transmittance at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, , More preferably, it is 75% or more, and even more preferably, it is 80% or more. The upper limit of the light transmittance of the resin film at a wavelength of 400 nm is not particularly limited, but for use as a flexible electronic device, it is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less. The method for measuring the light transmittance of the resin film at a wavelength of 400 nm was the method described in Examples.

본 발명의 수지 필름은 주로 터치패널이나 디스플레이 등의 화상 표시 장치의 전면판, 전극 주변에 이용되기 때문에, 전광선 투과율은 85% 이상이 바람직하고, 보다 바람직하게는 86% 이상이고, 더욱 바람직하게는 87% 이상이고, 한층 더 바람직하게는 88% 이상이다. 상기 수지 필름의 전광선 투과율의 상한은 특별히 제한되지 않지만, 플렉시블 전자 디바이스로서 이용하기 위해서는 99% 이하인 것이 바람직하고, 보다 바람직하게는 98% 이하이며, 더욱 바람직하게는 97% 이하이다. 상기 수지 필름의 전광선 투과율의 측정 방법은 실시예에 기재된 방법에 따른다. Since the resin film of the present invention is mainly used for front plates and around electrodes of image display devices such as touch panels and displays, the total light transmittance is preferably 85% or more, more preferably 86% or more, still more preferably It is 87% or more, and more preferably 88% or more. The upper limit of the total light transmittance of the resin film is not particularly limited, but for use as a flexible electronic device, it is preferably 99% or less, more preferably 98% or less, still more preferably 97% or less. The method for measuring the total light transmittance of the resin film is in accordance with the method described in Examples.

본 발명의 수지 필름은, 원하는 tanδ의 온도 의존 곡선이 피크가 되는 온도에 도달하기 위해, 수지 용액을 도포, 건조하는 것에 의해 얻어지는 것이 바람직하다. 수지 용액으로서 폴리아미드산, 폴리이미드 및 폴리아미드이미드로 이루어진 군에서 선택되는 적어도 1종의 수지를 함유하는 수지 용액을 이용하는 것이 바람직하다. 수지 용액은 이하의 어느 제조 방법에 의해 얻을 수 있다. The resin film of the present invention is preferably obtained by coating and drying a resin solution so as to reach a temperature at which a desired tan δ temperature dependence curve becomes a peak. As the resin solution, it is preferable to use a resin solution containing at least one resin selected from the group consisting of polyamic acid, polyimide and polyamideimide. A resin solution can be obtained by any of the following manufacturing methods.

폴리아미드산 용액은, 디아민류와 테트라카르복실산류를 용매 중에서 교반 및/또는 혼합하고, 축합 반응에 의해 아미드 결합을 생성하면서 고분자량화함으로써 얻을 수 있다. The polyamic acid solution can be obtained by stirring and/or mixing diamines and tetracarboxylic acids in a solvent, and increasing the molecular weight while forming an amide bond through a condensation reaction.

폴리이미드 용액은, 첫번째 방법으로서, 디아민류와 테트라카르복실산류를 용매 중에서 가열 교반 및/또는 혼합하면서, 탈수 폐환 반응에 의해 1단계로 이미드 결합을 생성하면서 고분자량화함으로써 얻을 수 있다. 또한, 두번째 방법으로서 전술한 폴리아미드산 용액을 얻은 후에 이미드화 촉진제 및 이미드화제를 첨가하고, 교반 및/또는 혼합하면서, 탈수 폐환 반응에 의해 2단계로 이미드 결합을 생성하면서 고분자량화함으로써 얻을 수 있다. As a first method, the polyimide solution can be obtained by increasing the molecular weight while heating and stirring and/or mixing diamines and tetracarboxylic acids in a solvent while generating an imide bond in one step by a dehydration ring-closing reaction. In addition, as a second method, after obtaining the above-described polyamic acid solution, an imidation accelerator and an imidation agent are added, and while stirring and / or mixing, high molecular weight is generated while generating an imide bond in two stages by a dehydration ring closure reaction. You can get it.

폴리아미드이미드 용액은, 디이소시아네이트류와 트리카르복실산류를 용매 중에서 가열 교반 및/또는 혼합하면서, 탈탄산 반응에 의해 1단계로 아미드 결합 및 이미드 결합을 생성하면서 고분자량화함으로써 얻을 수 있다. The polyamideimide solution can be obtained by high molecular weight while generating an amide bond and an imide bond in one step by a decarboxylation reaction while stirring and/or mixing diisocyanates and tricarboxylic acids in a solvent.

상기 폴리아미드산, 폴리이미드 및 폴리아미드이미드를 고분자량화할 때에, 수지 용액 및 수지 필름의 특성을 손상하지 않는 범위에서, 디카르복실산류를 공중합 성분으로서 이용할 수 있다. When increasing the molecular weight of the above polyamic acid, polyimide and polyamideimide, dicarboxylic acids can be used as copolymerization components within a range that does not impair the properties of the resin solution and resin film.

본 발명에서 이용하는 수지 용액은, 상기에서 얻은 수지 용액을 빈용매에 유하하여 수지분을 석출시켜 세정·여과·건조함으로써 얻어지는 수지 고형물이나, 수지 용액을 유연 건조함으로써 얻어지는 수지 고형물을, 다시 가용성 용매에 용해하는 것에 의해서도 얻을 수 있다. The resin solution used in the present invention is a resin solid obtained by pouring the resin solution obtained above into a poor solvent to precipitate a resin component, washing, filtering, and drying, or a resin solid obtained by casting and drying the resin solution into a soluble solvent. It can also be obtained by melting.

상기 테트라카르복실산류, 트리카르복실산류, 디카르복실산류로서는, 폴리이미드 합성, 폴리아미드이미드 합성에 통상 이용되는 방향족 테트라카르복실산류(그 산무수물을 포함), 지방족 테트라카르복실산류(그 산무수물을 포함), 지환식 테트라카르복실산류(그 산무수물을 포함), 방향족 트리카르복실산류(그 산무수물을 포함), 지방족 트리카르복실산류(그 산무수물을 포함), 지환식 트리카르복실산류(그 산무수물을 포함), 방향족 디카르본류, 지방족 디카르복실산류, 지환식 디카르복실산류 등을 이용할 수 있다. 그 중에서도, 방향족 테트라카르복실산 무수물류, 지환식 테트라카르복실산 무수물류가 바람직하고, 내열성의 관점에서는 방향족 테트라카르복실산 무수물류가 보다 바람직하고, 광투과성의 관점에서는 지환식 테트라카르복실산류가 보다 바람직하다. 테트라카르복실산류가 산무수물인 경우, 분자 내에 무수물 구조는 1개여도 좋고 2개여도 좋지만, 바람직하게는 2개의 무수물 구조를 갖는 것(이무수물)이 좋다. 테트라카르복실산류, 트리카르복실산류, 디카르복실산류는 단독으로 이용해도 좋고, 2종 이상을 병용해도 좋다. As the tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids, aromatic tetracarboxylic acids (including acid anhydrides thereof) commonly used in polyimide synthesis and polyamideimide synthesis, aliphatic tetracarboxylic acids (the acid (including anhydrides), alicyclic tetracarboxylic acids (including their acid anhydrides), aromatic tricarboxylic acids (including their acid anhydrides), aliphatic tricarboxylic acids (including their acid anhydrides), alicyclic tricarboxylic acids Acids (including their acid anhydrides), aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like can be used. Among them, aromatic tetracarboxylic acid anhydrides and alicyclic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic tetracarboxylic acids from the viewpoint of light transmittance. is more preferable. When the tetracarboxylic acid is an acid anhydride, one or two anhydride structures may be used in the molecule, but preferably one having two anhydride structures (dianhydride) is good. Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.

본 발명에서의 무색 투명성이 높은 폴리이미드를 얻기 위한 방향족 테트라카르복실산류로서는, 4,4'-(2,2-헥사플루오로이소프로필리덴)디프탈산, 4,4'-옥시디프탈산, 3,4'-옥시디프탈산, 비스(1,3-디옥소-1,3-디히드로-2-벤조푸란-5-카르복실산)1,4-페닐렌, 비스(1,3-디옥소-1,3-디히드로-2-벤조푸란-5-일)벤젠-1,4-디카르복실레이트, 4,4'-[4,4'-(3-옥소-1,3-디히드로-2-벤조푸란-1,1-디일)비스(벤젠-1,4-디일옥시)]디벤젠-1,2-디카르복실산, 3,3',4,4'-벤조페논테트라카르복실산, 4,4'-[(3-옥소-1,3-디히드로-2-벤조푸란-1,1-디일)비스(톨루엔-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[(3-옥소-1,3-디히드로-2-벤조푸란-1,1-디일)비스(1,4-크실렌-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[4,4'-(3-옥소-1,3-디히드로-2-벤조푸란-1,1-디일)비스(4-이소프로필-톨루엔-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[4,4'-(3-옥소-1,3-디히드로-2-벤조푸란-1,1-디일)비스(나프탈렌-1,4-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[4,4'-(3H-2,1-벤즈옥사티올-1,1-디옥시드-3,3-디일)비스(벤젠-1,4-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-벤조페논테트라카르복실산, 4,4'-[(3H-2,1-벤즈옥사티올-1,1-디옥시드-3,3-디일)비스(톨루엔-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[(3H-2,1-벤즈옥사티올-1,1-디옥시드-3,3-디일)비스(1,4-크실렌-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[4,4'-(3H-2,1-벤즈옥사티올-1,1-디옥시드-3,3-디일)비스(4-이소프로필-톨루엔-2,5-디일옥시)]디벤젠-1,2-디카르복실산, 4,4'-[4,4'-(3H-2,1-벤즈옥사티올-1,1-디옥시드-3,3-디일)비스(나프탈렌-1,4-디일옥시)]디벤젠-1,2-디카르복실산, 3,3',4,4'-디페닐술폰테트라카르복실산, 3,3',4,4'-비페닐테트라카르복실산, 2,3,3',4'-비페닐테트라카르복실산, 2,2',3,3'-비페닐테트라카르복실산, 2,2'-디페녹시-4,4',5,5'-비페닐테트라카르복실산, 피로멜리트산, 4,4'-[스피로(크산텐-9,9'-플루오렌)-2,6-디일비스(옥시카르보닐)]디프탈산, 4,4'-[스피로(크산텐-9,9'-플루오렌)-3,6-디일비스(옥시카르보닐)]디프탈산 등의 테트라카르복실산 및 이들의 산무수물을 들 수 있다. 이들 중에서도, 2개의 산무수물 구조를 갖는 이무수물이 적합하며, 특히, 4,4'-(2,2-헥사플루오로이소프로필리덴)디프탈산 이무수물, 4,4'-옥시디프탈산 이무수물이 바람직하다. 또, 방향족 테트라카르복실산류는 단독으로 이용해도 좋고, 2종 이상을 병용해도 좋다. 방향족 테트라카르복실산류는, 내열성을 중시하는 경우에는, 예컨대, 전체 테트라카르복실산류의 50 질량% 이상이 바람직하고, 보다 바람직하게는 60 질량% 이상, 더욱 바람직하게는 70 질량% 이상, 더욱 더 바람직하게는 80 질량% 이상이다. As aromatic tetracarboxylic acids for obtaining a colorless and highly transparent polyimide in the present invention, 4,4'-(2,2-hexafluoroisopropylidene)diphthalic acid, 4,4'-oxydiphthalic acid, 3 ,4'-oxydiphthalic acid, bis(1,3-dioxo-1,3-dihydro-2-benzofuran-5-carboxylic acid) 1,4-phenylene, bis(1,3-dioxo -1,3-dihydro-2-benzofuran-5-yl)benzene-1,4-dicarboxylate, 4,4'-[4,4'-(3-oxo-1,3-dihydro -2-benzofuran-1,1-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 3,3',4,4'-benzophenonetetra Carboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(toluene-2,5-diyloxy)]dibenzene-1 ,2-dicarboxylic acid, 4,4'-[(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl)bis(1,4-xylene-2,5-di yloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3-dihydro-2-benzofuran-1,1-diyl) Bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3-oxo-1,3- dihydro-2-benzofuran-1,1-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'- (3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(benzene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4 ,4'-benzophenonetetracarboxylic acid, 4,4'-[(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(toluene-2,5-di yloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(1, 4-xylene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4'-(3H-2,1-benzoxathiol-1,1 -dioxide-3,3-diyl)bis(4-isopropyl-toluene-2,5-diyloxy)]dibenzene-1,2-dicarboxylic acid, 4,4'-[4,4' -(3H-2,1-benzoxathiol-1,1-dioxide-3,3-diyl)bis(naphthalene-1,4-diyloxy)]dibenzene-1,2-dicarboxylic acid; 3,3',4,4'-diphenylsulfone Tetracarboxylic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4'-biphenyltetracarboxylic acid, 2,2',3,3'-bi Phenyltetracarboxylic acid, 2,2'-diphenoxy-4,4',5,5'-biphenyltetracarboxylic acid, pyromellitic acid, 4,4'-[spiro(xanthene-9,9 '-fluorene) -2,6-diylbis (oxycarbonyl)] diphthalic acid, 4,4'-[spiro (xanthene-9,9'-fluorene) -3,6-diylbis (oxycarbonyl) bornyl)] tetracarboxylic acids such as diphthalic acid and acid anhydrides thereof. Among these, dianhydrides having two acid anhydride structures are suitable, particularly 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride and 4,4'-oxydiphthalic dianhydride. this is preferable Moreover, aromatic tetracarboxylic acids may be used independently and may use 2 or more types together. Aromatic tetracarboxylic acids are preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and even more preferably 50% by mass or more of all tetracarboxylic acids, when importance is placed on heat resistance. Preferably it is 80 mass % or more.

지환식 테트라카르복실산류로서는, 1,2,3,4-시클로부탄테트라카르복실산, 1,2,3,4-시클로펜탄테트라카르복실산, 1,2,3,4-시클로헥산테트라카르복실산, 1,2,4,5-시클로헥산테트라카르복실산, 3,3',4,4'-비시클로헥실테트라카르복실산, 비시클로[2,2,1]헵탄-2,3,5,6-테트라카르복실산, 비시클로[2,2,2]옥탄-2,3,5,6-테트라카르복실산, 비시클로[2,2,2]옥토-7-엔-2,3,5,6-테트라카르복실산, 테트라히드로안트라센-2,3,6,7-테트라카르복실산, 테트라데카히드로-1,4:5,8:9,10-트리메타노안트라센-2,3,6,7-테트라카르복실산, 데카히드로나프탈렌-2,3,6,7-테트라카르복실산, 데카히드로-1,4:5,8-디메타노나프탈렌-2,3,6,7-테트라카르복실산, 데카히드로-1,4-에타노-5,8-메타노나프탈렌-2,3,6,7-테트라카르복실산, 노보난-2-스피로-α-시클로펜타논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산(별칭 「노보난-2-스피로-2'-시클로펜타논-5'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산」), 메틸노보난-2-스피로-α-시클로펜타논-α'-스피로-2''-(메틸노보난)-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로헥사논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산(별칭 「노보난-2-스피로-2'-시클로헥사논-6'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산」), 메틸노보난-2-스피로-α-시클로헥사논-α'-스피로-2''-(메틸노보난)-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로프로파논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로부타논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로헵타논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로옥타논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로노나논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로운데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로도데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로트리데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로테트라데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로-α-시클로펜타데카논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로(메틸시클로펜타논)-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산, 노보난-2-스피로(메틸시클로헥사논)-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산 등의 테트라카르복실산 및 이들의 산무수물을 들 수 있다. 이들 중에서도, 2개의 산무수물 구조를 갖는 이무수물이 적합하며, 특히, 1,2,3,4-시클로부탄테트라카르복실산 이무수물, 1,2,3,4-시클로헥산테트라카르복실산 이무수물, 1,2,4,5-시클로헥산테트라카르복실산 이무수물이 바람직하고, 1,2,3,4-시클로부탄테트라카르복실산 이무수물, 1,2,4,5-시클로헥산테트라카르복실산 이무수물이 보다 바람직하고, 1,2,3,4-시클로부탄테트라카르복실산 이무수물이 더욱 바람직하다. 또, 이들은 단독으로 이용해도 좋고, 2종 이상을 병용해도 좋다. 지환식 테트라카르복실산류는, 투명성을 중시하는 경우에는, 예컨대, 전체 테트라카르복실산류의 50 질량% 이상이 바람직하고, 보다 바람직하게는 60 질량% 이상, 더욱 바람직하게는 70 질량% 이상, 더욱 더 바람직하게는 80 질량% 이상이다. As alicyclic tetracarboxylic acids, 1,2,3,4-cyclobutane tetracarboxylic acid, 1,2,3,4-cyclopentane tetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid Boxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3',4,4'-bicyclohexyltetracarboxylic acid, bicyclo[2,2,1]heptane-2,3 ,5,6-tetracarboxylic acid, bicyclo[2,2,2]octane-2,3,5,6-tetracarboxylic acid, bicyclo[2,2,2]octo-7-en-2 ,3,5,6-tetracarboxylic acid, tetrahydroanthracene-2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4:5,8:9,10-trimethanoanthracene- 2,3,6,7-tetracarboxylic acid, decahydronaphthalene-2,3,6,7-tetracarboxylic acid, decahydro-1,4:5,8-dimethanonaphthalene-2,3, 6,7-tetracarboxylic acid, decahydro-1,4-ethano-5,8-methanonaphthalene-2,3,6,7-tetracarboxylic acid, norbornane-2-spiro-α-cyclo Pentanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid (aka "norbonane-2-spiro-2'-cyclopentanone-5' -spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid'), methylnorbornane-2-spiro-α-cyclopentanone-α'-spiro-2' '-(methylnorbornane)-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclohexanone-α'-spiro-2''-norbonane- 5,5'',6,6''-tetracarboxylic acid (aka "norbonane-2-spiro-2'-cyclohexanone-6'-spiro-2''-norbonane-5,5'' ,6,6'-tetracarboxylic acid"), methylnorbornane-2-spiro-α-cyclohexanone-α'-spiro-2''-(methylnorbornane)-5,5'',6 ,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclopropanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclobutanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro -α-cycloheptanone-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclooctanone-α '-spiro-2''-norbonan-5,5'',6,6 ''-tetracarboxylic acid, norbonane-2-spiro-α-cyclononanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, Norbonane-2-spiro-α-cyclodecanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α -Cycloundecanone-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclododecanone-α'- Spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclotridecanone-α'-spiro-2''-novo I-5,5'',6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclotetradecanone-α'-spiro-2''-norbonane-5,5'' ,6,6''-tetracarboxylic acid, norbonane-2-spiro-α-cyclopentadecanone-α'-spiro-2''-norbonane-5,5'',6,6''- Tetracarboxylic acid, norbonane-2-spiro(methylcyclopentanone)-α'-spiro-2''-norbonane-5,5'',6,6''-tetracarboxylic acid, norbonane- Tetracarboxylic acids such as 2-spiro(methylcyclohexanone)-α'-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid and their acid anhydrides can be heard Among these, dianhydrides having two acid anhydride structures are suitable, particularly 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,3,4-cyclohexanetetracarboxylic dianhydride. Water and 1,2,4,5-cyclohexanetetracarboxylic dianhydride are preferred, and 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetra Carboxylic acid dianhydride is more preferable, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is still more preferable. Moreover, these may be used independently and may use 2 or more types together. Alicyclic tetracarboxylic acids are preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, of all tetracarboxylic acids, for example, when importance is placed on transparency. More preferably, it is 80 mass % or more.

트리카르복실산류로서는, 트리멜리트산, 1,2,5-나프탈렌트리카르복실산, 디페닐에테르-3,3',4'-트리카르복실산, 디페닐술폰-3,3',4'-트리카르복실산 등의 방향족 트리카르복실산, 혹은 헥사히드로트리멜리트산 등의 상기 방향족 트리카르복실산의 수소 첨가물, 에틸렌글리콜비스트리멜리테이트, 프로필렌글리콜비스트리멜리테이트, 1,4-부탄디올비스트리멜리테이트, 폴리에틸렌글리콜비스트리멜리테이트 등의 알킬렌글리콜비스트리멜리테이트, 및 이들의 1무수물, 에스테르화물을 들 수 있다. 이들 중에서도, 1개의 산무수물 구조를 갖는 1무수물이 적합하며, 특히, 트리멜리트산 무수물, 헥사히드로트리멜리트산 무수물이 바람직하다. 또한, 이들은 단독으로 사용해도 좋고 복수를 조합하여 사용해도 좋다. As tricarboxylic acids, trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3',4'-tricarboxylic acid, diphenylsulfone-3,3',4' - Aromatic tricarboxylic acids such as tricarboxylic acids, or hydrogenated products of the aromatic tricarboxylic acids such as hexahydrotrimellitic acid, ethylene glycol bistrimellitate, propylene glycol bistrimellitate, and 1,4-butanediol and alkylene glycol bistrimellitates such as bistrimellitate and polyethylene glycol bistrimellitate, and monohydrides and esters thereof. Among these, a monohydride having one acid anhydride structure is suitable, and trimellitic anhydride and hexahydrotrimellitic anhydride are particularly preferable. In addition, these may be used individually or may be used combining plurality.

디카르복실산류로서는, 테레프탈산, 이소프탈산, 오르토프탈산, 나프탈렌디카르복실산, 4,4'-옥시디벤젠카르복실산 등의 방향족 디카르복실산, 혹은 1,6-시클로헥산디카르복실산 등의 상기 방향족 디카르복실산의 수소 첨가물, 옥살산, 숙신산, 글루탈산, 아디프산, 헵탄2산, 옥탄2산, 아젤라산, 세바스산, 운데카2산, 도데칸2산, 2-메틸숙신산, 및 이들의 산염화물 혹은 에스테르화물 등을 들 수 있다. 이들 중에서 방향족 디카르복실산 및 그 수소 첨가물이 적합하며, 특히, 테레프탈산, 1,6-시클로헥산디카르복실산, 4,4'-옥시디벤젠카르복실산이 바람직하다. 또한, 디카르복실산류는 단독으로 사용해도 좋고 복수를 조합하여 사용해도 좋다. Examples of dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid, or 1,6-cyclohexanedicarboxylic acid. Hydrogenates of the above aromatic dicarboxylic acids, such as oxalic acid, succinic acid, glutalic acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 2-methyl succinic acid, and acid chlorides or ester compounds thereof; and the like. Among these, aromatic dicarboxylic acids and hydrogenated products thereof are suitable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferred. In addition, dicarboxylic acids may be used independently or may be used in combination of plurality.

본 발명에서의 무색 투명성이 높은 폴리이미드를 얻기 위한 디아민류 혹은 디이소시아네이트류로서는, 특별히 제한은 없고, 폴리이미드 합성, 폴리아미드이미드 합성에 통상 이용되는 방향족 디아민류, 지방족 디아민류, 지환식 디아민류, 방향족 디이소시아네이트류, 지방족 디이소시아네이트류, 지환식 디이소시아네이트류 등을 이용할 수 있다. 내열성의 관점에서는, 방향족 디아민류가 바람직하고, 투명성의 관점에서는 지환식 디아민이 바람직하다. 또한, 벤조옥사졸 구조를 갖는 방향족 디아민류를 이용하면, 높은 내열성과 함께, 높은 탄성률, 낮은 열수축성, 낮은 선팽창계수를 발현시키는 것이 가능해진다. 디아민류 및 디이소시아네이트류는, 단독으로 이용해도 좋고 2종 이상을 병용해도 좋다. Diamines or diisocyanates for obtaining colorless and highly transparent polyimide in the present invention are not particularly limited, and aromatic diamines, aliphatic diamines, and alicyclic diamines commonly used in polyimide synthesis and polyamideimide synthesis. , aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferred, and from the viewpoint of transparency, alicyclic diamines are preferred. Moreover, when aromatic diamines which have a benzoxazole structure are used, it becomes possible to express a high elastic modulus, low thermal contraction property, and a low linear expansion coefficient with high heat resistance. Diamines and diisocyanates may be used independently or may use 2 or more types together.

방향족 디아민류로서는, 예컨대, 2,2'-디메틸-4,4'-디아미노비페닐, 1,4-비스[2-(4-아미노페닐)-2-프로필]벤젠, 1,4-비스(4-아미노-2-트리플루오로메틸페녹시)벤젠, 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐, 4,4'-비스(4-아미노페녹시)비페닐, 4,4'-비스(3-아미노페녹시)비페닐, 비스[4-(3-아미노페녹시)페닐]케톤, 비스[4-(3-아미노페녹시)페닐]술피드, 비스[4-(3-아미노페녹시)페닐] 술폰, 2,2-비스[4-(3-아미노페녹시)페닐]프로판, 2,2-비스[4-(3-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, m-페닐렌디아민, o-페닐렌디아민, p-페닐렌디아민, m-아미노벤질아민, p-아미노벤질아민, 4-아미노-N-(4-아미노페닐)벤즈아미드, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 2,2'-트리플루오로메틸-4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐술피드, 3,4'-디아미노디페닐술피드, 4,4'-디아미노디페닐술피드, 3,3'-디아미노디페닐술폭시드,3,4'-디아미노디페닐술폭시드,4,4'-디아미노디페닐술폭시드,3,3'-디아미노디페닐술폰, 3,4'-디아미노디페닐술폰, 4,4'-디아미노디페닐술폰, 3,3'-디아미노벤조페논, 3,4'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4,4'-디아미노디페닐메탄, 비스[4-(4-아미노페녹시)페닐]메탄, 1,1-비스[4-(4-아미노페녹시)페닐]에탄, 1,2-비스[4-(4-아미노페녹시)페닐]에탄, 1,1-비스[4-(4-아미노페녹시)페닐]프로판, 1,2-비스[4-(4-아미노페녹시)페닐]프로판, 1,3-비스[4-(4-아미노페녹시)페닐]프로판, 2,2-비스[4-(4-아미노페녹시)페닐]프로판, 1,1-비스[4-(4-아미노페녹시)페닐]부탄, 1,3-비스[4-(4-아미노페녹시)페닐]부탄, 1,4-비스[4-(4-아미노페녹시)페닐]부탄, 2,2-비스[4-(4-아미노페녹시)페닐]부탄, 2,3-비스[4-(4-아미노페녹시)페닐]부탄, 2-[4-(4-아미노페녹시)페닐]-2-[4-(4-아미노페녹시)-3-메틸페닐]프로판, 2,2-비스[4-(4-아미노페녹시)-3-메틸페닐]프로판, 2-[4-(4-아미노페녹시)페닐]-2-[4-(4-아미노페녹시)-3,5-디메틸페닐]프로판, 2,2-비스[4-(4-아미노페녹시)-3,5-디메틸페닐]프로판, 2,2-비스[4-(4-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 1,4-비스(3-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 1,4-비스(4-아미노페녹시)벤젠, 4,4'-비스(4-아미노페녹시)비페닐, 비스[4-(4-아미노페녹시)페닐]케톤, 비스[4-(4-아미노페녹시)페닐]술피드, 비스[4-(4-아미노페녹시)페닐]술폭시드, 비스[4-(4-아미노페녹시)페닐] 술폰, 비스[4-(3-아미노페녹시)페닐]에테르, 비스[4-(4-아미노페녹시)페닐]에테르, 1,3-비스[4-(4-아미노페녹시)벤조일]벤젠, 1,3-비스[4-(3-아미노페녹시)벤조일]벤젠, 1,4-비스[4-(3-아미노페녹시)벤조일]벤젠, 4,4'-비스[(3-아미노페녹시)벤조일]벤젠, 1,1-비스[4-(3-아미노페녹시)페닐]프로판, 1,3-비스[4-(3-아미노페녹시)페닐]프로판, 3,4'-디아미노디페닐술피드, 2,2-비스[3-(3-아미노페녹시)페닐]-1,1,1,3,3,3-헥사플루오로프로판, 비스[4-(3-아미노페녹시)페닐]메탄, 1,1-비스[4-(3-아미노페녹시)페닐]에탄, 1,2-비스[4-(3-아미노페녹시)페닐]에탄, 비스[4-(3-아미노페녹시)페닐]술폭시드, 4,4'-비스[3-(4-아미노페녹시)벤조일]디페닐에테르, 4,4'-비스[3-(3-아미노페녹시)벤조일]디페닐에테르, 4,4'-비스[4-(4-아미노-α,α-디메틸벤질)페녹시]벤조페논, 4,4'-비스[4-(4-아미노-α,α-디메틸벤질)페녹시]디페닐술폰, 비스[4-{4-(4-아미노페녹시)페녹시}페닐] 술폰, 1,4-비스[4-(4-아미노페녹시)페녹시-α,α-디메틸벤질]벤젠, 1,3-비스[4-(4-아미노페녹시)페녹시-α,α-디메틸벤질]벤젠, 1,3-비스[4-(4-아미노-6-트리플루오로메틸페녹시)-α,α-디메틸벤질]벤젠, 1,3-비스[4-(4-아미노-6-플루오로페녹시)-α,α-디메틸벤질]벤젠, 1,3-비스[4-(4-아미노-6-메틸페녹시)-α,α-디메틸벤질]벤젠, 1,3-비스[4-(4-아미노-6-시아노페녹시)-α,α-디메틸벤질]벤젠, 3,3'-디아미노-4,4'-디페녹시벤조페논, 4,4'-디아미노-5,5'-디페녹시벤조페논, 3,4'-디아미노-4,5'-디페녹시벤조페논, 3,3'-디아미노-4-페녹시벤조페논, 4,4'-디아미노-5-페녹시벤조페논, 3,4'-디아미노-4-페녹시벤조페논, 3,4'-디아미노-5'-페녹시벤조페논, 3,3'-디아미노-4,4'-디비페녹시벤조페논, 4,4'-디아미노-5,5'-디비페녹시벤조페논, 3,4'-디아미노-4,5'-디비페녹시벤조페논, 3,3'-디아미노-4-비페녹시벤조페논, 4,4'-디아미노-5-비페녹시벤조페논, 3,4'-디아미노-4-비페녹시벤조페논, 3,4'-디아미노-5'-비페녹시벤조페논, 1,3-비스(3-아미노-4-페녹시벤조일)벤젠, 1,4-비스(3-아미노-4-페녹시벤조일)벤젠, 1,3-비스(4-아미노-5-페녹시벤조일)벤젠, 1,4-비스(4-아미노-5-페녹시벤조일)벤젠, 1,3-비스(3-아미노-4-비페녹시벤조일)벤젠, 1,4-비스(3-아미노-4-비페녹시벤조일)벤젠, 1,3-비스(4-아미노-5-비페녹시벤조일)벤젠, 1,4-비스(4-아미노-5-비페녹시벤조일)벤젠, 2,6-비스[4-(4-아미노-α,α-디메틸벤질)페녹시]벤조니트릴, 4,4'-[9H-플루오렌-9,9-디일]비스아닐린(별칭 「9,9-비스(4-아미노페닐)플루오렌」), 스피로(크산텐-9,9'-플루오렌)-2,6-디일비스(옥시카르보닐)]비스아닐린, 4,4'-[스피로(크산텐-9,9'-플루오렌)-2,6-디일비스(옥시카르보닐)]비스아닐린, 4,4'-[스피로(크산텐-9,9'-플루오렌)-3,6-디일비스(옥시카르보닐)]비스아닐린, 9,10-비스(4-아미노페닐)아데닌, 2,4-비스(4-아미노페닐)시클로부탄-1,3-디카르복실산디메틸, 및 상기 방향족 디아민의 방향환 상의 수소 원자의 일부 혹은 전부가, 할로겐 원자, 탄소수 1∼3의 알킬기 또는 알콕실기, 시아노기, 또는 알킬기 또는 알콕실기의 수소 원자의 일부 혹은 전부가 할로겐 원자로 치환된 탄소수 1∼3의 할로겐화알킬기 또는 알콕실기로 치환된 방향족 디아민 등을 들 수 있다. 또한, 상기 벤조옥사졸 구조를 갖는 방향족 디아민류로서는, 특별히 한정되지 않고, 예컨대, 5-아미노-2-(p-아미노페닐)벤조옥사졸, 6-아미노-2-(p-아미노페닐)벤조옥사졸, 5-아미노-2-(m-아미노페닐)벤조옥사졸, 6-아미노-2-(m-아미노페닐)벤조옥사졸, 2,2'-p-페닐렌비스(5-아미노벤조옥사졸), 2,2'-p-페닐렌비스(6-아미노벤조옥사졸), 1-(5-아미노벤조옥사졸로)-4-(6-아미노벤조옥사졸로)벤젠, 2,6-(4,4'-디아미노디페닐)벤조[1,2-d:5,4-d']비스옥사졸, 2,6-(4,4'-디아미노디페닐)벤조[1,2-d:4,5-d']비스옥사졸, 2,6-(3,4'-디아미노디페닐)벤조[1,2-d:5,4-d']비스옥사졸, 2,6-(3,4'-디아미노디페닐)벤조[1,2-d:4,5-d']비스옥사졸, 2,6-(3,3'-디아미노디페닐)벤조[1,2-d:5,4-d']비스옥사졸, 2,6-(3,3'-디아미노디페닐)벤조[1,2-d:4,5-d']비스옥사졸 등을 들 수 있다. 이들 중에서, 특히, 2,2'-디트리플루오로메틸-4,4'-디아미노비페닐, 4-아미노-N-(4-아미노페닐)벤즈아미드, 4,4'-디아미노디페닐술폰, 3,3'-디아미노벤조페논이 바람직하다. 또한, 방향족 디아민류는 단독으로 사용해도 좋고 복수를 조합하여 사용해도 좋다. As aromatic diamines, for example, 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis[2-(4-aminophenyl)-2-propyl]benzene, 1,4-bis (4-amino-2-trifluoromethylphenoxy)benzene, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-bis(4-aminophenoxy) cy)biphenyl, 4,4'-bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sul Feed, bis[4-(3-aminophenoxy)phenyl] sulfone, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy) ) phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, m-aminobenzylamine, p-aminobenzylamine , 4-amino-N- (4-aminophenyl) benzamide, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 2 ,2'-trifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-dia Minodiphenylsulfide, 3,3'-diaminodiphenylsulfoxide, 3,4'-diaminodiphenylsulfoxide, 4,4'-diaminodiphenylsulfoxide, 3,3'-diaminodi Phenylsulfone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'- Diaminobenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl ]methane, 1,1-bis[4-(4-aminophenoxy)phenyl]ethane, 1,2-bis[4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4-( 4-aminophenoxy)phenyl]propane, 1,2-bis[4-(4-aminophenoxy)phenyl]propane, 1,3-bis[4-(4-aminophenoxy)phenyl]propane, 2, 2-bis[4-(4-aminophenoxy)phenyl]propane, 1,1-bis[4-(4-aminophenoxy)phenyl]butane, 1,3-bis[4-(4-aminophenoxy) ) phenyl] butane, 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl ]butane, 2,3-bis[4-(4-aminophenoxy)phenyl]butane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)- 3-methylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3-methylphenyl]propane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4 -Aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4 -aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy) ) Benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [ 4-(4-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfoxide, bis[4-(4-aminophenoxy)phenyl] sulfone, bis[4-( 3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4-aminophenoxy)benzoyl]benzene, 1,3-bis[ 4-(3-aminophenoxy)benzoyl]benzene, 1,4-bis[4-(3-aminophenoxy)benzoyl]benzene, 4,4'-bis[(3-aminophenoxy)benzoyl]benzene, 1,1-bis[4-(3-aminophenoxy)phenyl]propane, 1,3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4'-diaminodiphenylsulfide, 2,2-bis[3-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl]methane, 1,1-bis[4-(3-aminophenoxy)phenyl]ethane, 1,2-bis[4-(3-aminophenoxy)phenyl]ethane, bis[4-(3-aminophenoxy)phenyl ] Sulfoxide, 4,4'-bis[3-(4-aminophenoxy)benzoyl]diphenyl ether, 4,4'-bis[3-(3-aminophenoxy)benzoyl]diphenyl ether, 4, 4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzophenone, 4,4'-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]di Phenylsulfone, bis[4-{4-(4-aminophenoxy)phenoxy}phenyl] sulfone, 1,4-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene , 1,3-bis[4-(4 -aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-trifluoromethylphenoxy)-α,α-dimethylbenzyl]benzene, 1 ,3-bis[4-(4-amino-6-fluorophenoxy)-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-methylphenoxy)-α ,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-cyanophenoxy)-α,α-dimethylbenzyl]benzene, 3,3'-diamino-4,4' -Diphenoxybenzophenone, 4,4'-diamino-5,5'-diphenoxybenzophenone, 3,4'-diamino-4,5'-diphenoxybenzophenone, 3,3'- Diamino-4-phenoxybenzophenone, 4,4'-diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5' -phenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 4,4'-diamino-5,5'-dibiphenoxybenzophenone, 3,4'-dia Mino-4,5'-dibiphenoxybenzophenone, 3,3'-diamino-4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'- Diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1,3-bis (3-amino-4-phenoxybenzoyl) benzene, 1,4- Bis(3-amino-4-phenoxybenzoyl)benzene, 1,3-bis(4-amino-5-phenoxybenzoyl)benzene, 1,4-bis(4-amino-5-phenoxybenzoyl)benzene, 1,3-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,4-bis(3-amino-4-biphenoxybenzoyl)benzene, 1,3-bis(4-amino-5- Biphenoxybenzoyl)benzene, 1,4-bis(4-amino-5-biphenoxybenzoyl)benzene, 2,6-bis[4-(4-amino-α,α-dimethylbenzyl)phenoxy]benzo Nitrile, 4,4'-[9H-fluorene-9,9-diyl]bisaniline (also known as "9,9-bis(4-aminophenyl)fluorene"), spiro(xanthene-9,9'- Fluorene) -2,6-diylbis (oxycarbonyl)] bisaniline, 4,4'-[spiro (xanthene-9,9'-fluorene) -2,6-diylbis (oxycarbonyl) ]bisaniline, 4,4'-[spiro(xanthen-9,9'-fluorene)-3,6-diylbis(oxycarbonyl)]bisaniline, 9,10-bis(4-aminophenyl) Adenine, 2,4-bis(4-aminophenyl)cycle Some or all of the hydrogen atoms on dimethyl lobutane-1,3-dicarboxylic acid and the aromatic ring of the aromatic diamine are halogen atoms, alkyl groups or alkoxyl groups having 1 to 3 carbon atoms, cyano groups, or alkyl or alkoxyl groups aromatic diamines in which some or all of the hydrogen atoms of are substituted with halogen atoms, a halogenated alkyl group having 1 to 3 carbon atoms, or an alkoxyl group. In addition, the aromatic diamines having the benzoxazole structure are not particularly limited, and examples thereof include 5-amino-2-(p-aminophenyl)benzoxazole and 6-amino-2-(p-aminophenyl)benzo. Oxazole, 5-amino-2-(m-aminophenyl)benzoxazole, 6-amino-2-(m-aminophenyl)benzoxazole, 2,2'-p-phenylenebis(5-aminobenzo oxazole), 2,2'-p-phenylenebis(6-aminobenzoxazole), 1-(5-aminobenzooxazolo)-4-(6-aminobenzooxazolo)benzene, 2,6- (4,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2,6-(4,4'-diaminodiphenyl)benzo[1,2 -d:4,5-d']bisoxazole, 2,6-(3,4'-diaminodiphenyl)benzo[1,2-d:5,4-d']bisoxazole, 2, 6-(3,4'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1 ,2-d:5,4-d']bisoxazole, 2,6-(3,3'-diaminodiphenyl)benzo[1,2-d:4,5-d']bisoxazole, etc. can be heard Among these, in particular, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 4-amino-N-(4-aminophenyl)benzamide, 4,4'-diaminodiphenyl Sulfone and 3,3'-diaminobenzophenone are preferred. Moreover, aromatic diamines may be used individually or may be used combining plurality.

지환식 디아민류로서는, 예컨대, 1,4-디아미노시클로헥산, 1,4-디아미노-2-메틸시클로헥산, 1,4-디아미노-2-에틸시클로헥산, 1,4-디아미노-2-n-프로필시클로헥산, 1,4-디아미노-2-이소프로필시클로헥산, 1,4-디아미노-2-n-부틸시클로헥산, 1,4-디아미노-2-이소부틸시클로헥산, 1,4-디아미노-2-sec-부틸시클로헥산, 1,4-디아미노-2-tert-부틸시클로헥산, 4,4'-메틸렌비스(2,6-디메틸시클로헥실아민) 등을 들 수 있다. 이들 중에서, 특히, 1,4-디아미노시클로헥산, 1,4-디아미노-2-메틸시클로헥산이 바람직하고, 1,4-디아미노시클로헥산이 보다 바람직하다. 또한, 지환식 디아민류는 단독으로 사용해도 좋고 복수를 조합하여 사용해도 좋다. As alicyclic diamines, for example, 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino- 2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane , 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 4,4'-methylenebis(2,6-dimethylcyclohexylamine), etc. can be heard Among these, 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferred, and 1,4-diaminocyclohexane is more preferred. Moreover, alicyclic diamines may be used independently or may be used combining plurality.

디이소시아네이트류로서는, 예컨대, 디페닐메탄-2,4'-디이소시아네이트, 3,2'- 또는 3,3'- 또는 4,2'- 또는 4,3'- 또는 5,2'- 또는 5,3'- 또는 6,2'- 또는 6,3'-디메틸디페닐메탄-2,4'-디이소시아네이트, 3,2'- 또는 3,3'- 또는 4,2'- 또는 4,3'- 또는 5,2'- 또는 5,3'- 또는 6,2'- 또는 6,3'-디에틸디페닐메탄-2,4'-디이소시아네이트, 3,2'- 또는 3,3'- 또는 4,2'- 또는 4,3'- 또는 5,2'- 또는 5,3'- 또는 6,2'- 또는 6,3'-디메톡시디페닐메탄-2,4'-디이소시아네이트, 디페닐메탄-4,4'-디이소시아네이트, 디페닐메탄-3,3'-디이소시아네이트, 디페닐메탄-3,4'-디이소시아네이트, 디페닐에테르-4,4'-디이소시아네이트, 벤조페논-4,4'-디이소시아네이트, 디페닐술폰-4,4'-디이소시아네이트, 톨릴렌-2,4-디이소시아네이트, 톨릴렌-2,6-디이소시아네이트, m-크실릴렌디이소시아네이트, p-크실릴렌디이소시아네이트, 나프탈렌-2,6-디이소시아네이트, 4,4'-(2,2-비스(4-페녹시페닐)프로판)디이소시아네이트, 3,3'- 또는 2,2'-디메틸비페닐-4,4'-디이소시아네이트, 3,3'- 또는 2,2'-디에틸비페닐-4,4'-디이소시아네이트, 3,3'-디메톡시비페닐-4,4'-디이소시아네이트, 3,3'-디에톡시비페닐-4,4'-디이소시아네이트 등의 방향족 디이소시아네이트류, 및 이들 중 어느 하나를 수소 첨가한 디이소시아네이트(예컨대, 이소포론디이소시아네이트, 1,4-시클로헥산디이소시아네이트, 1,3-시클로헥산디이소시아네이트, 4,4'-디시클로헥실메탄디이소시아네이트, 헥사메틸렌디이소시아네이트) 등을 들 수 있다. 이들 중에서는, 저흡습성, 치수 안정성, 가격 및 중합성의 점에서 디페닐메탄-4,4'-디이소시아네이트, 톨릴렌-2,4-디이소시아네이트, 톨릴렌-2,6-디이소시아네이트, 3,3'-디메틸비페닐-4,4'-디이소시아네이트나 나프탈렌-2,6-디이소시아네이트, 4,4'-디시클로헥실메탄디이소시아네이트, 1,4-시클로헥산디이소시아네이트가 바람직하다. 또한, 디이소시아네이트류는 단독으로 사용해도 좋고 복수를 조합하여 사용해도 좋다. Examples of diisocyanates include diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5 ,3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3 '- or 5,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3' - or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate , diphenylmethane-4,4'-diisocyanate, diphenylmethane-3,3'-diisocyanate, diphenylmethane-3,4'-diisocyanate, diphenylether-4,4'-diisocyanate, benzo Phenone-4,4'-diisocyanate, diphenylsulfone-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, m-xylylene diisocyanate, p -xylylene diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-(2,2-bis(4-phenoxyphenyl)propane) diisocyanate, 3,3'- or 2,2'-dimethyl Biphenyl-4,4'-diisocyanate, 3,3'- or 2,2'-diethylbiphenyl-4,4'-diisocyanate, 3,3'-dimethoxybiphenyl-4,4'- Aromatic diisocyanates such as diisocyanate and 3,3'-diethoxybiphenyl-4,4'-diisocyanate, and diisocyanates obtained by hydrogenating any of these diisocyanates (e.g., isophorone diisocyanate, 1,4-diisocyanate) Cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate) and the like. Among these, diphenylmethane-4,4'-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, 3, tolylene-2,4-diisocyanate, 3, 3'-dimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexane diisocyanate are preferable. In addition, diisocyanates may be used independently or may be used in combination of plurality.

본 발명의 수지 용액에 이용되는 용매는, 쌍극자 모멘트가 3.0∼6.0 D의 범위에 있고, 폴리아미드산, 폴리이미드 및 폴리아미드이미드로 이루어진 군에서 선택되는 적어도 1종의 수지를 용해하는 용매인 것이 바람직하다. 쌍극자 모멘트가 상기 범위 내이면, 후술하는 수지 필름의 용매 제거 공정에서 이용되는 마이크로파 가열의 균일 가열 효과가 우수하고, 얻어지는 수지 필름의 물성 등방성을 향상시키는 것이 용이해진다. The solvent used in the resin solution of the present invention has a dipole moment in the range of 3.0 to 6.0 D and is a solvent that dissolves at least one resin selected from the group consisting of polyamic acid, polyimide and polyamideimide. desirable. When the dipole moment is within the above range, the uniform heating effect of microwave heating used in the solvent removal step of the resin film described later is excellent, and it becomes easy to improve the isotropy of physical properties of the obtained resin film.

본 발명의 수지 용액에 이용되는 용매로서, 예컨대, N,N-디메틸포름아미드(쌍극자 모멘트 : 3.86 D), N,N-디메틸아세트아미드(DMAc)(쌍극자 모멘트 : 3.72D), N-메틸-2-피롤리돈(NMP)(쌍극자 모멘트 : 4.09 D), N-메틸-ε-카프로락탐(쌍극자 모멘트 : 4.23 D), 디메틸술폭시드(쌍극자 모멘트 : 3.96 D), 디메틸술폰(쌍극자 모멘트 : 4.47 D), 술포란(쌍극자 모멘트 : 4.68 D), 1,3-디메틸-2-이미다졸리디논(쌍극자 모멘트 : 4.07 D), 1,3-디메틸-2-피리미디논(쌍극자 모멘트 : 4.17 D), 3-메틸-2-옥사졸리돈(쌍극자 모멘트 : 4.10 D), 헥사메틸포스포르아미드(쌍극자 모멘트 : 5.54 D), γ-부티로락톤(GBL)(쌍극자 모멘트 : 4.27 D) 등이 있고, 이들은 단독으로 사용해도 좋고, 2종 이상을 병용해도 좋다. 또한 이들 용매와 더불어, 톨루엔(쌍극자 모멘트 : 0.36 D), 크실렌(쌍극자 모멘트 : 0.00∼0.64 D) 등의 빈용매를, 수지 고형분이 석출되지 않고 마이크로파 가열의 균일 가열 효과를 손상하지 않을 정도로 사용해도 좋다. 또한, 2종류 이상의 용매를 혼합하는 경우의 쌍극자 모멘트의 값은, 각각의 값의 가중 평균치로 한다. As the solvent used in the resin solution of the present invention, for example, N,N-dimethylformamide (dipole moment: 3.86 D), N,N-dimethylacetamide (DMAc) (dipole moment: 3.72 D), N-methyl- 2-pyrrolidone (NMP) (dipole moment: 4.09 D), N-methyl-ε-caprolactam (dipole moment: 4.23 D), dimethylsulfoxide (dipole moment: 3.96 D), dimethylsulfone (dipole moment: 4.47 D), sulfolane (dipole moment: 4.68 D), 1,3-dimethyl-2-imidazolidinone (dipole moment: 4.07 D), 1,3-dimethyl-2-pyrimidinone (dipole moment: 4.17 D) ), 3-methyl-2-oxazolidone (dipole moment: 4.10 D), hexamethylphosphoramide (dipole moment: 5.54 D), γ-butyrolactone (GBL) (dipole moment: 4.27 D), etc. , These may be used independently or may use 2 or more types together. In addition to these solvents, poor solvents such as toluene (dipole moment: 0.36 D) and xylene (dipole moment: 0.00 to 0.64 D) may be used to the extent that resin solids do not precipitate and the uniform heating effect of microwave heating is not impaired. good night. In addition, the value of the dipole moment in the case of mixing two or more types of solvent is made into the weighted average value of each value.

본 발명의 수지 용액에는, 수지 필름의 특성을 손상하지 않는 범위에서 미립자를 첨가해도 좋다. 미립자로서는 무기 미립자라도 유기 미립자이어도 좋고, 무기 미립자로서는, 예컨대 질화규소, 산화규소, 산화티탄, 산화알루미늄, 산화마그네슘, 산화아연, 산화주석, 탄산칼슘, 황산바륨, 탈크, 카올린, 황산칼슘 등을 들 수 있다. 또한, 유기 미립자로서는, 예컨대 폴리아미드계 수지, 폴리이미드계 수지, 벤조구아나민계 수지, 멜라민계 수지 등을 들 수 있고, 이들 미립자는 복합하여 이용해도 좋다. Fine particles may be added to the resin solution of the present invention within a range not impairing the properties of the resin film. The fine particles may be inorganic fine particles or organic fine particles. Examples of the inorganic fine particles include silicon nitride, silicon oxide, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like. can Further, examples of the organic fine particles include polyamide-based resins, polyimide-based resins, benzoguanamine-based resins, and melamine-based resins, and these fine particles may be used in combination.

본 발명의 수지 용액의 수지 고형분 농도는, 5∼40 질량%인 것이 바람직하고, 보다 바람직하게는 7∼35 질량%, 더욱 바람직하게는 10∼30 질량%이다. 수지 고형분 농도가 상기 하한 이상이면, 수지 필름에 필요한 막두께를 얻는 관점에서 바람직하고, 상기 상한 이하이면, 수지 필름의 물성 등방성을 손상하지 않을 정도의 용액 유동성을 얻는 관점에서 바람직하다. The resin solid content concentration of the resin solution of the present invention is preferably 5 to 40% by mass, more preferably 7 to 35% by mass, still more preferably 10 to 30% by mass. A resin solid content concentration of at least the lower limit is preferable from the viewpoint of obtaining a film thickness necessary for the resin film, and a concentration of the resin solid content of the upper limit is preferably from the viewpoint of obtaining solution fluidity that does not impair the physical property isotropy of the resin film.

본 발명에서의 수지 필름은 후술하는 수지 필름의 제조 방법에 의해 얻어지는 수지 필름인 것이 바람직하다. 구체적으로는, 주쇄에 이미드 결합을 갖는 고분자 필름이며, 바람직하게는 폴리이미드 필름, 또는 폴리아미드이미드 필름이며, 보다 바람직하게는 폴리이미드 필름이다. It is preferable that the resin film in this invention is a resin film obtained by the manufacturing method of the resin film mentioned later. Specifically, it is a polymer film having an imide bond in the main chain, preferably a polyimide film or a polyamideimide film, more preferably a polyimide film.

본 발명에서의 수지 필름의 두께의 하한은, 수지 필름에 필요한 강도나 취급성의 관점에서, 3 μm 이상이 바람직하고, 보다 바람직하게는 5 μm 이상이고, 더욱 바람직하게는 7 μm 이상이다. 상기 수지 필름의 두께의 상한은, 균일하게 용매를 제거하는 관점에서, 250 μm 이하인 것이 바람직하고, 보다 바람직하게는 150 μm 이하이며, 더욱 바람직하게는 100 μm 이하이다. The lower limit of the thickness of the resin film in the present invention is preferably 3 μm or more, more preferably 5 μm or more, still more preferably 7 μm or more, from the viewpoint of strength and handleability required for the resin film. The upper limit of the thickness of the resin film is preferably 250 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, from the viewpoint of uniformly removing the solvent.

본 발명의 수지 필름의 바람직한 제조 방법은, A preferred method for producing the resin film of the present invention is

상기 수지 용액을 지지체 상에 도포·건조하여 용매를 함유하는 수지 필름 적층체를 제작하는 공정 A, Step A of applying and drying the resin solution on a support to produce a resin film laminate containing a solvent;

상기 용매를 함유하는 수지 필름 적층체로부터 상기 지지체를 박리하여 용매를 함유하는 수지 필름을 얻는 공정 B, Step B of peeling the support from the resin film layered product containing the solvent to obtain a resin film containing the solvent;

상기 용매를 함유하는 수지 필름으로부터, 용매를 제거, 또는 용매를 제거하면서 탈수 폐환 반응하는 공정 C를 포함하고, Step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent,

상기 공정 C의 적어도 일부를 마이크로파 가열에 의해 행하는 것을 특징으로 한다. It is characterized in that at least part of the step C is performed by microwave heating.

공정 A에 관해 설명한다. 공정 A는, 수지 용액을 지지체 상에 도포·건조하여 용매를 함유하는 수지 필름 적층체(이하, 단순히 적층체라고도 함)를 제작하는 공정이다. 상기 적층체는, 상기 지지체에 상기 수지 용액의 건조물이 적층된 것이다. Process A is explained. Process A is a process of applying and drying a resin solution on a support to produce a resin film laminate (hereinafter simply referred to as a laminate) containing a solvent. In the laminate, a dried product of the resin solution is laminated on the support.

본 발명에서 이용되는 지지체로서는, 예컨대, 수지 필름 기재, 스테인레스강 벨트 기재, 유리 기재 등을 들 수 있다. 수지 필름 기재로서는, 수지 용액에 포함되는 용매에 팽윤, 용출되지 않는 수지 필름 기재를 이용하는 것이 바람직하고, 예컨대 폴리에틸렌테레프탈레이트(PET) 필름, 폴리에틸렌나프탈레이트(PEN) 필름, 폴리올레핀계(PP) 필름, 시클로올레핀계(COP) 필름 등을 들 수 있다. 또한, 용매를 함유하는 수지 필름을 지지체로부터 박리하기 위해, 박리 용이성을 갖는 지지체를 이용하는 것이 바람직하다. Examples of the support used in the present invention include resin film substrates, stainless steel belt substrates, and glass substrates. As the resin film substrate, it is preferable to use a resin film substrate that does not swell or elute in the solvent contained in the resin solution, such as a polyethylene terephthalate (PET) film, a polyethylene naphthalate (PEN) film, a polyolefin-based (PP) film, A cycloolefin type (COP) film etc. are mentioned. Further, in order to peel the solvent-containing resin film from the support, it is preferable to use a support having easy peelability.

지지체 상에 수지 용액을 도포하는 방법으로서는, 다이코트법, 콤마코트법, 블레이드코트법, 롤코트법, 나이프코트법, 바코트법에 의한 방법 등을 들 수 있고, 이들 중에서 2종의 방법을 조합해도 좋다. 콤마코트법, 다이코트법, 혹은 이들의 조합이라면 생산성의 관점에서 바람직하다. Examples of the method for applying the resin solution on the support include a die coating method, a comma coating method, a blade coating method, a roll coating method, a knife coating method, and a bar coating method. may be combined A comma coat method, a die coat method, or a combination thereof is preferred from the viewpoint of productivity.

지지체 상에서 수지 용액을 건조하는 방법으로서는, 송풍 건조, 열풍 건조, 적외선 가열 건조, 지지체로부터의 전열 가열 건조에 의한 방법 등을 들 수 있고, 이들 중에서 2종의 방법을 조합해도 좋다. 건조한 후의 용매를 함유하는 수지 필름의 용매 함유량으로서는, 3∼50 질량%인 것이 바람직하고, 보다 바람직하게는 5∼40 질량%, 더욱 바람직하게는 7∼30 질량%이다. 용매 함유량이 상기 하한 이상이면, 지지체에 접한 수지 필름면과 반대면의 용매 함유량이나 고분자 고차 구조의 차가 적고, 수지 필름의 두께 방향에서의 물성 이방성이 적어지고, 수지 필름의 컬이 억제되고, 상기 상한 이하이면, 지지체로부터 박리한 후의 수지 필름의 변형이 억제되고, 핸드링이 용이해진다. Examples of the method of drying the resin solution on the support include blow drying, hot air drying, infrared heat drying, and electrothermal heating and drying from the support, among which two methods may be combined. As solvent content of the resin film containing the solvent after drying, it is preferable that it is 3-50 mass %, More preferably, it is 5-40 mass %, More preferably, it is 7-30 mass %. When the solvent content is at least the above lower limit, the difference between the solvent content and higher molecular structure of the resin film side in contact with the support and the opposite side is small, the physical property anisotropy in the thickness direction of the resin film is reduced, and curling of the resin film is suppressed. If it is below the upper limit, deformation of the resin film after peeling from the support is suppressed, and handling becomes easy.

공정 B에 관해 설명한다. 공정 B는, 상기 적층체로부터 상기 지지체를 박리하여 용매를 함유하는 수지 필름을 얻는 공정이다, Process B is explained. Step B is a step of peeling the support from the layered product to obtain a resin film containing a solvent.

상기 용매를 함유하는 수지 필름을 상기 지지체로부터 박리하는 방법으로서는, 특별히 제한되지 않지만, 핀셋 등으로 끝으로부터 걷어 올리는 방법, 적층체에 칼집을 내고, 칼집 부분의 1변에 점착 테이프를 접착시킨 후에 그 테이프 부분으로부터 걷어 올리는 방법, 수지 필름의 칼집을 넣은 부분의 1변을 진공 흡착한 후에 그 부분으로부터 걷어 올리는 방법 등을 들 수 있다. The method of peeling the solvent-containing resin film from the support is not particularly limited, but is a method of lifting from the edge with tweezers or the like, a cut is made in the laminate, an adhesive tape is adhered to one side of the cut, and then that A method of rolling up from a tape portion, a method of vacuum adsorbing one side of a sheathed portion of a resin film, and then a method of rolling up from that portion, and the like.

공정 C에 관해 설명한다. 공정 C는, 상기 용매를 함유하는 수지 필름으로부터, 용매를 제거, 또는 용매를 제거하면서 탈수 폐환 반응하는 공정이며, 공정 C의 적어도 일부에 마이크로파 가열을 행한다. Process C is explained. Step C is a step of removing the solvent from the resin film containing the solvent or carrying out a dehydration ring closure reaction while removing the solvent, and at least a part of step C is subjected to microwave heating.

지지체로부터 박리한 후, 용매를 함유하는 수지 필름의 용매 제거 공정에서 이용하는 마이크로파 가열은, 그 가열 원리로서 피가열체에 포함되는 분자의 쌍극자를 마이크로파에 의해 진동시키는 것에 기초하고 있다. 따라서, 마이크로파의 흡수 효율은 쌍극자 모멘트의 크기와 분자가 마이크로파의 주기에 추종하여 운동하는 것의 용이함에 의존한다. 따라서 용매를 함유하는 수지 필름으로부터 마이크로파를 이용하여 효율적으로 용매를 균일 가열하여 제거하기 위해, 전술한 쌍극자 모멘트의 값을 갖는 용매를 지정하고 있다. Microwave heating used in the solvent removal step of a solvent-containing resin film after peeling from a support is based on vibrating dipoles of molecules contained in a heated object by microwaves as its heating principle. Therefore, the absorption efficiency of microwaves depends on the magnitude of the dipole moment and the ease with which molecules move by following the period of the microwaves. Therefore, in order to efficiently and uniformly heat and remove the solvent from the resin film containing the solvent using microwaves, a solvent having the above-mentioned dipole moment value is specified.

본 발명에서 이용되는 마이크로파 가열 장치의 주파수는, 전술한 쌍극자 모멘트의 값을 갖는 용매의 분자가 운동하기 쉬운 주파수를 선택하는 것이 바람직하다. 그러나, 일반적으로는 전파법에 의한 제약이나, 마이크로파 전자관의 제약에 의해, 2,450 MHz의 주파수의 가열 장치가 일반적이다. 단, 다른 통신 등으로 방해하지 않으면, 915 MHz도 이용할 수 있다. 본 발명에서는, 이러한 사정에서 주파수 2,450 MHz 및 915 MHz를 선택하는 것이 더욱 바람직하다. 또한, 마이크로파의 강도는, 수지 필름 표면의 발포, 오렌지필, 파형 등의 상태를 감안하여 적절하게 선택된다. As the frequency of the microwave heating device used in the present invention, it is preferable to select a frequency at which molecules of the solvent having the above-mentioned dipole moment value are easy to move. However, in general, a heating device with a frequency of 2,450 MHz is common due to restrictions by the radio wave law and restrictions of microwave electron tubes. However, 915 MHz can be used as long as it is not interfered with by other communications. In the present invention, it is more preferable to select the frequencies 2,450 MHz and 915 MHz in this circumstance. In addition, the intensity of the microwave is appropriately selected in view of conditions such as foaming, orange peel, and waviness on the surface of the resin film.

지정한 쌍극자 모멘트의 값을 갖는 용매를 함유하는 수지 용액을 사용하고, 마이크로파 가열을 이용함으로써, 용매 제거 공정에서 수지 필름이 균일하게 가열 건조되어, 형성되는 고차 구조의 소밀의 차이가 저감하고, 식(40+0.8×A)≤B<A를 달성하는 것이 용이해진다. 또한 얻어지는 수지 필름의 물성 등방성을 향상시킬 수 있고, 수지 필름의 선팽창계수의 MD 방향에 대한 TD 방향의 비, 및, 인장 탄성률의 MD 방향에 대한 TD 방향의 비를 바람직한 범위 내로 하는 것이 용이해진다. By using a resin solution containing a solvent having a specified dipole moment value and using microwave heating, the resin film is uniformly heated and dried in the solvent removal step, and the difference in roughness of the formed higher order structure is reduced, and the formula ( It becomes easy to achieve 40+0.8×A)≤B<A. In addition, the isotropy of physical properties of the resulting resin film can be improved, and the ratio of the linear expansion coefficient in the TD direction to the MD direction and the ratio of the tensile modulus in the TD direction to the MD direction of the resin film can be easily adjusted within a preferred range.

본 발명에서는 마이크로파 가열에 병용하여, 송풍 건조, 열풍 건조, 적외선 가열 건조에 의한 방법 등을 이용할 수 있고, 이들 중에서 2종의 방법을 조합해도 좋다. In the present invention, air drying, hot air drying, infrared heating drying, and the like can be used in combination with microwave heating, and two of these methods may be combined.

상기 가열 방법을 이용한 용매 제거 공정에서의 승온 프로파일은, 초기 온도가 50∼200℃의 범위인 것이 바람직하고, 지정 범위의 하한 이상이면, 건조 로 내의 온도 변동을 억제하는 것이 용이하고, 초기 온도가 지정 범위의 상한 이하이면, 용매가 급격하게 가열되는 것에 의한 수지 필름의 발포나 표면의 오렌지필 등을 억제하는 것이 용이해지고, 또한, 수지 필름 표면과 수지 필름 내부의 용매 함유량이나 고분자 고차 구조의 차가 적어지고, 식(40+0.8×A)≤B<A를 달성하는 것이 용이해진다. In the temperature rise profile in the solvent removal step using the heating method, the initial temperature is preferably in the range of 50 to 200 ° C., and if it is at least the lower limit of the specified range, it is easy to suppress the temperature fluctuation in the drying furnace, and the initial temperature is If it is less than the upper limit of the specified range, it is easy to suppress foaming of the resin film and orange peel on the surface due to rapid heating of the solvent, and the difference in solvent content between the surface of the resin film and the inside of the resin film or in the higher order structure of the polymer becomes smaller, and it becomes easy to achieve the expression (40+0.8×A)≤B<A.

상기 가열 방법을 이용한 용매 제거 공정에서의 승온 프로파일은, 최종 온도가 300∼500℃의 범위인 것이 바람직하고, 지정 범위의 하한 이상이면, 수지 필름 중의 잔류 용매량을 억제하는 것이 용이해지고, 최종 온도가 지정 범위의 상한 이하이면, 수지 필름의 열열화를 억제하는 것이 용이해진다. The temperature increase profile in the solvent removal step using the above heating method preferably has a final temperature in the range of 300 to 500 ° C., and if it is at least the lower limit of the specified range, it is easy to suppress the amount of residual solvent in the resin film, and the final temperature It becomes easy to suppress thermal deterioration of a resin film as it is below the upper limit of a designated range.

상기 가열 방법을 이용한 용매 제거 공정에서의 승온 프로파일은, 승온 속도가 5∼60℃/분으로 승온하거나, 2단계 이상의 스텝형으로 승온하거나, 어느 하나 또는 양쪽을 조합한 방법으로 승온하는 것이 바람직하다. 승온 속도가 지정 범위의 하한 이상이면 용매 제거 공정에서의 작업 시간을 단축할 수 있고, 상기 지정 범위의 상한 이하이면, 용매가 급격하게 가열되는 것에 의한 수지 필름의 발포나 표면의 오렌지필 등을 억제하는 것이 용이해지고, 또한, 수지 필름 표면과 수지 필름 내부의 용매 함유량이나 고분자 고차 구조의 차가 적어지고, 식(40+0.8×A)≤B<A를 달성하는 것이 용이해진다. The temperature increase profile in the solvent removal step using the above heating method is preferably increased at a temperature increase rate of 5 to 60 ° C./min, a stepwise increase in two or more steps, or a method in which either one or both are combined. . When the temperature increase rate is equal to or greater than the lower limit of the specified range, the working time in the solvent removal process can be shortened, and when the temperature is equal to or less than the upper limit of the specified range, foaming of the resin film and orange peel on the surface due to rapid heating of the solvent are suppressed. It becomes easy to do, and the difference between the solvent content and the higher order structure of the polymer between the surface of the resin film and the inside of the resin film decreases, and it becomes easy to achieve the formula (40+0.8xA)≤B<A.

스텝형으로 승온하는 경우는, 스텝수는 2∼10회인 것이 바람직하고, 각 스텝 사이의 승온 속도는 10∼100℃/분인 것이 바람직하다. 스텝수가 지정 범위의 하한 이상이면, 용매가 급격하게 가열되는 것에 의한 수지 필름의 발포나 표면의 오렌지필 등을 억제하는 것이 용이하고, 또한, 수지 필름 표면과 수지 필름 내부의 용매 함유량이나 고분자 고차 구조의 차가 적어지고, 식(40+0.8×A)≤B<A를 달성하는 것이 용이해진다. 또한, 스텝수가 지정 범위의 상한 이하이면, 작업 효율이 양호해진다. When the temperature is raised in a stepwise manner, the number of steps is preferably 2 to 10, and the rate of temperature increase between each step is preferably 10 to 100°C/min. If the step number is at least the lower limit of the specified range, it is easy to suppress foaming of the resin film and orange peel on the surface due to rapid heating of the solvent, and also the solvent content and high molecular structure of the resin film surface and inside the resin film The difference in is small, and it becomes easy to achieve the expression (40+0.8xA)≤B<A. In addition, when the number of steps is equal to or less than the upper limit of the specified range, the work efficiency is improved.

용매 제거 공정에서의 총건조 시간은 5∼100분이 되도록, 상기 초기 온도, 최종 온도, 승온 속도, 스텝수를 결정하는 것이 바람직하다. 총건조 시간이 지정 범위의 하한 이상이면, 용매가 급격하게 가열되는 것에 의한 수지 필름의 발포나 표면의 오렌지필 등을 억제하는 것이 용이해지고, 상한 이하이면, 생산성이 향상되어 수지 필름의 열열화를 억제하는 것이 용이해진다. It is preferable to determine the initial temperature, the final temperature, the heating rate, and the number of steps so that the total drying time in the solvent removal step is 5 to 100 minutes. When the total drying time is equal to or greater than the lower limit of the specified range, it is easy to suppress foaming of the resin film and orange peel on the surface due to rapid heating of the solvent, while productivity is improved and thermal deterioration of the resin film is prevented when the total drying time is equal to or less than the upper limit. suppression becomes easier.

본 발명에서의 용매 제거 공정에서는, 수지 필름에 연신을 더 행할 수 있다. 이러한 연신 조작에서의 연신 배율은, MD(장척) 방향으로 1.5∼4.0배, TD(단척) 방향으로 1.4∼3.0배인 것이 바람직하고, MD 방향의 연신 배율과 TD 방향의 연신 배율의 비율(MD/TD)은, 1.0을 넘는 것이 바람직하다. 연신 조건을 상기 범위 내로 함으로써, 수지 필름의 MD 방향 및 TD 방향의 양 방향의 35∼200℃의 범위에서 측정한 평균의 선팽창계수 및, MD 방향 및 TD 방향의 양 방향의 인장 탄성률을 바람직한 범위 내로 하는 것이 용이해진다. In the solvent removal step in the present invention, the resin film can be further stretched. The draw ratio in this stretching operation is preferably 1.5 to 4.0 times in the MD (long) direction and 1.4 to 3.0 times in the TD (short) direction, and the ratio of the draw ratio in the MD direction to the draw ratio in the TD direction (MD/ TD) preferably exceeds 1.0. By setting the stretching conditions within the above range, the average coefficient of linear expansion measured in the range of 35 to 200 ° C. in both the MD and TD directions of the resin film and the tensile modulus in both the MD and TD directions are within a preferable range. it becomes easier to do

용매 제거 공정후의 수지 필름의 용매 함유량은, 0.01∼5.0 질량%인 것이 바람직하고, 보다 바람직하게는 0.02∼4.0 질량%, 더욱 바람직하게는 0.03∼3.0 질량%의 범위이다. 용매 함유량을 상기 하한치 이상으로 하는 것에 의해, 지나친 고온 처리에 의한 수지 필름의 열열화가 억제되고, 상한 이하로 하는 것에 의해, 선팽창계수 및 인장 탄성률을 바람직한 범위 내로 하는 것이 용이해진다. The solvent content of the resin film after the solvent removal step is preferably in the range of 0.01 to 5.0% by mass, more preferably in the range of 0.02 to 4.0% by mass, still more preferably in the range of 0.03 to 3.0% by mass. By setting the solvent content to the lower limit or more, thermal deterioration of the resin film due to excessive high-temperature treatment is suppressed, and by setting the solvent content to the upper limit or less, it is easy to make the coefficient of linear expansion and the tensile modulus within a preferable range.

실시예Example

이하, 본 발명에 관해 실시예를 이용하여 상세히 설명하지만, 본 발명은 그 요지를 벗어나지 않는 한 이하의 실시예에 한정되는 것이 아니다. Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to the following examples unless departing from the gist thereof.

한편 실시예, 비교예에서의 각 측정치는, 특별히 언급하지 않는 한 이하의 방법으로 측정했다. On the other hand, each measured value in Examples and Comparative Examples was measured by the following method unless otherwise noted.

<수지 필름의 tanδ의 온도 의존 곡선 피크 온도> <Temperature dependence curve peak temperature of tanδ of resin film>

수지 필름의 유동 방향(MD 방향) 및 폭방향(TD 방향) 각각 샘플 3점에 있어서, 하기 조건으로 저장 탄성률(E`), 손실 탄성률(E") 및 손실 탄성률을 저장 탄성률로 나눈 값인 tanδ(=E"/E')의 온도 의존 곡선을 얻어 피크 온도를 구하고, 유동 방향(MD 방향) 및 폭방향(TD 방향)의 평균치를 산출했다. In each of three samples in the flow direction (MD direction) and width direction (TD direction) of the resin film, storage modulus (E`), loss modulus (E") and loss modulus divided by storage modulus tanδ ( A temperature dependence curve of =E"/E') was obtained, the peak temperature was obtained, and the average value in the flow direction (MD direction) and width direction (TD direction) was calculated.

기기명 : TA 인스투루먼트사 제조 DMA Q800Device name: DMA Q800 manufactured by TA Instruments

시료 길이 : 15-20 mm Sample length: 15-20 mm

시료폭 : 4 mm Sample width: 4 mm

승온 개시 온도 : 25℃ Heating start temperature: 25°C

승온 종료 온도 : 500℃ Heating end temperature: 500℃

승온 속도 : 5℃/min Heating rate: 5℃/min

측정 주파수 : 10 HzMeasurement frequency: 10 Hz

<수지 필름의 선팽창계수 변곡점 온도> <Inflection point temperature of linear expansion coefficient of resin film>

수지 필름의 유동 방향(MD 방향) 및 폭방향(TD 방향) 각각 샘플 3점에 있어서, 하기 조건으로 신축률을 측정하여 2회째의 승온시의 신축률 변곡점이 되는 온도을 판독하고, 유동 방향(MD 방향) 및 폭방향(TD 방향)의 평균치를 산출했다. At each of three samples in the flow direction (MD direction) and width direction (TD direction) of the resin film, the expansion and contraction was measured under the following conditions, and the temperature at the inflection point of the expansion and contraction at the time of the second temperature increase was read, and the flow direction (MD) direction) and the average value of the width direction (TD direction) was calculated.

기기명 : 부르커 AXS사 제조 TMA-4000SA Device name: TMA-4000SA manufactured by Burker AXS

시료 길이 : 15 mm Sample length: 15 mm

시료폭 : 2 mm Sample width: 2 mm

척간 거리 : 10 mm Distance between chucks: 10 mm

하중 : 5 gfLoad: 5 gf

1회째 승온 개시 온도 : 25℃ 1st heating start temperature: 25℃

1회째 승온 종료 온도 : 200℃ 1st heating end temperature: 200℃

1회째 승온 속도 : 20℃/min 1st heating rate: 20℃/min

강온 속도 : 5℃/minTemperature drop rate: 5℃/min

2회째 승온 개시 온도 : 30℃ 2nd heating start temperature: 30°C

2회째 승온 종료 온도 : 500℃ 2nd heating end temperature: 500℃

2회째 승온 속도 : 10℃/min 2nd heating rate: 10℃/min

분위기 : 아르곤Atmosphere: Argon

<수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포> <Weight average molecular weight, number average molecular weight and molecular weight distribution of resin>

수지 샘플을 8 mg 칭량하여 8 ml의 용매에 침지하고, 3시간 교반하여 수지 용액을 얻었다. 하기 조건으로 수지 용액을 겔침투 크로마토그래피(GPC) 분석하고, 표준 폴리스티렌 환산으로 중량 평균 분자량, 수평균 분자량 및 분자량 분포를 산출했다. 8 mg of the resin sample was weighed, immersed in 8 ml of a solvent, and stirred for 3 hours to obtain a resin solution. The resin solution was analyzed by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight, number average molecular weight and molecular weight distribution were calculated in terms of standard polystyrene.

기기명 : 도소사 제조 HLC-8420GPC Device name: Tosoh Corporation HLC-8420GPC

컬럼 : TSKgel SuperAWH-H×2Column: TSKgel SuperAWH-H×2

용매 : DMAc(30 mM의 브롬화리튬 첨가)Solvent: DMAc (30 mM of lithium bromide added)

유속 : 0.3 ml/min Flow rate: 0.3 ml/min

농도 : 0.1% Concentration: 0.1%

주입량 : 10 μl Injection volume: 10 μl

온도 : 40℃ Temperature: 40℃

검출기 : RIDetector: RI

<수지 필름의 두께> <Thickness of resin film>

마이크로미터(파인류프사 제조, 밀리트론 1245D)를 이용하여 측정했다. It was measured using a micrometer (Militron 1245D, manufactured by Fine Lupe Co., Ltd.).

<수지 필름의 선팽창계수(CTE)> <Coefficient of linear expansion (CTE) of resin film>

수지 필름의 유동 방향(MD 방향) 및 폭방향(TD 방향) 각각 샘플 3점에 있어서, 하기 조건으로 신축률을 측정하고, 35℃∼50℃, 50℃∼65℃와 같이 15℃의 간격에서의 신축률/온도를 측정하고, 이 측정을 200℃까지 행하여, 전체 측정치의 평균치를 CTE로서 산출했다. In each of three samples in the flow direction (MD direction) and width direction (TD direction) of the resin film, the expansion and contraction was measured under the following conditions, and at intervals of 15 ° C, such as 35 ° C to 50 ° C and 50 ° C to 65 ° C. The expansion/contraction rate/temperature of was measured, this measurement was performed up to 200°C, and the average value of all measured values was calculated as CTE.

기기명 : MAC 사이언스사 제조 TMA4000S Device name: TMA4000S manufactured by MAC Science

시료 길이 : 20 mm Sample length: 20 mm

시료폭 : 2 mm Sample width: 2 mm

승온 개시 온도 : 25℃ Heating start temperature: 25°C

승온 종료 온도 : 400℃ Heating end temperature: 400℃

승온 속도 : 5℃/min Heating rate: 5℃/min

분위기 : 아르곤Atmosphere: Argon

<수지 필름의 인장 탄성률> <Tensile modulus of elasticity of resin film>

수지 필름의 유동 방향(MD 방향) 및 폭방향(TD 방향)으로 각각 100 mm×10 mm의 스트립형으로 잘라낸 것을 시험편으로 했다. 시험편은, 폭방향 중앙 부분으로부터 잘라냈다. 하기 조건으로, MD 방향, TD 방향 각각 샘플 3점에 관해, 인장 탄성률을 측정하고, 전체 측정치의 평균치를 구했다. What was cut into strips of 100 mm x 10 mm each in the flow direction (MD direction) and width direction (TD direction) of the resin film was used as a test piece. The test piece was cut out from the central part in the width direction. Under the following conditions, the tensile modulus of elasticity was measured for each of three samples in the MD direction and the TD direction, and the average value of all the measured values was obtained.

기기명 : 시마즈 제작소 제조 오토그래프(R) AG-5000A Device name: Autograph (R) AG-5000A manufactured by Shimadzu Corporation

척간 거리 : 40 mm Distance between chucks: 40 mm

온도 : 25℃ Temperature: 25℃

인장 속도 : 50 mm/minTensile speed: 50 mm/min

<수지 필름의 황색도 지수(옐로우 인덱스, YI)> <Yellowness Index (Yellow Index, YI) of Resin Film>

컬러 미터(ZE6000, 니폰덴쇼쿠사 제조) 및 C2 광원을 사용하고, ASTM D1925에 준하여 수지 필름의 3자극값 XYZ값을 측정하고, 하기 식에 의해 황색도 지수(YI)를 산출했다. 또한, 동일한 측정을 3회 행하여 그 산술 평균치를 채용했다. Using a color meter (ZE6000, manufactured by Nippon Denshoku Co., Ltd.) and a C2 light source, the tristimulus values XYZ values of the resin film were measured according to ASTM D1925, and the yellowness index (YI) was calculated by the following formula. In addition, the same measurement was performed three times and the arithmetic average value was adopted.

YI=100×(1.28X-1.06Z)/Y YI=100×(1.28X-1.06Z)/Y

<수지 필름의 400 nm 광선 투과율> <400 nm light transmittance of resin film>

분광 광도계(히타치 제작소 제조 「U-2001」)를 이용하여 파장 400 nm에서의 수지 필름의 광선 투과율을 측정하고, 얻어진 값을 런벨트·베일의 법칙에 따르는 것으로 하여 20 μm의 두께로 환산하고, 얻어진 값을 수지 필름의 400 nm 광선 투과율로 했다. 또한, 동일한 측정을 3회 행하여 그 산술 평균치를 채용했다. Using a spectrophotometer ("U-2001" manufactured by Hitachi, Ltd.), the light transmittance of the resin film at a wavelength of 400 nm was measured, and the obtained value was calculated according to Runbelt-Vale's law and converted to a thickness of 20 μm, The obtained value was taken as the 400 nm light transmittance of the resin film. In addition, the same measurement was performed three times and the arithmetic average value was adopted.

<수지 필름의 전광선 투과율(TT)> <Total light transmittance (TT) of resin film>

HAZEMETER(NDH5000, 니폰덴쇼쿠사 제조)을 이용하여 수지 필름의 전광선 투과율(TT)을 측정했다. 광원으로서는 D65 램프를 사용했다. 또한, 동일한 측정을 3회 행하고 그 산술 평균치를 채용했다. The total light transmittance (TT) of the resin film was measured using HAZEMETER (NDH5000, manufactured by Nippon Denshoku Co., Ltd.). As a light source, a D65 lamp was used. In addition, the same measurement was performed 3 times and the arithmetic average value was adopted.

〔합성예 1(폴리아미드산 용액 A의 조제)〕[Synthesis Example 1 (Preparation of Polyamic Acid Solution A)]

질소 도입관, 온도계, 교반 막대를 구비한 반응 용기 내를 질소 치환한 후, 상기 반응 용기 내에 질소 분위기하, 1470.8 질량부의 1,2,3,4-시클로부탄테트라카르복실산 이무수물(CBDA), 775.6 질량부의 4,4'-옥시디프탈산(ODPA), 3202.4 질량부의 2,2'-디트리플루오로메틸-4,4'-디아미노비페닐(TFMB), 21795 질량부의 N,N-디메틸아세트아미드(DMAc)를 넣고 용해시킨 후, 실온에서 24시간 교반하여, 고형분 17.2 질량부가 되는 환원 점도 4.5 dl/g의 폴리아미드산 용액 A를 얻었다. 얻어진 수지 용액 중의 수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포의 측정 결과를 표 1에 나타낸다. After purging the inside of the reaction vessel equipped with a nitrogen inlet pipe, a thermometer, and a stirring bar with nitrogen, 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) was added to the reaction vessel under a nitrogen atmosphere at 1470.8 parts by mass. , 775.6 parts by mass of 4,4'-oxydiphthalic acid (ODPA), 3202.4 parts by mass of 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB), 21795 parts by mass of N,N- Dimethylacetamide (DMAc) was added and dissolved, followed by stirring at room temperature for 24 hours to obtain a polyamic acid solution A having a solid content of 17.2 parts by mass and a reduced viscosity of 4.5 dl/g. Table 1 shows the measurement results of the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin in the obtained resin solution.

〔합성예 2(폴리이미드 용액 B의 조제)〕[Synthesis Example 2 (Preparation of Polyimide Solution B)]

질소 도입관, 온도계, 교반 막대를 구비한 반응 용기 내를 질소 치환한 후, 상기 반응 용기 내에 질소 분위기하, 551 질량부의 N,N-디메틸아세트아미드(DMAc)와 64.1 질량부의 2,2'-디트리플루오로메틸-4,4'-디아미노비페닐(TFMB)을 넣고 교반하여, TFMB를 DMAc 중에 용해시켰다. 이어서, 반응 용기 내를 교반하면서, 질소 기류하에, 44.4 질량부의 4,4'-(2,2-헥사플루오로이소프로필리덴)디프탈산 이무수물(6FDA), 및, 29.4 질량부의 비페닐테트라카르복실산 이무수물(BPDA)을 10분 정도에 걸쳐서 투입하고, 그대로 온도가 20∼40℃의 온도 범위가 되도록 조정하면서 6시간 계속 교반하여 중합 반응을 행하여, 점조의 폴리아미드산 용액을 얻었다. After purging the inside of the reaction vessel equipped with a nitrogen inlet tube, thermometer, and stirring rod with nitrogen, 551 parts by mass of N,N-dimethylacetamide (DMAc) and 64.1 parts by mass of 2,2'- were added to the reaction vessel under a nitrogen atmosphere. Ditrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was added and stirred to dissolve TFMB in DMAc. Then, 44.4 parts by mass of 4,4'-(2,2-hexafluoroisopropylidene)diphthalic dianhydride (6FDA) and 29.4 parts by mass of biphenyltetracar were added under a nitrogen stream while stirring the inside of the reaction vessel. A boxylic acid dianhydride (BPDA) was added over about 10 minutes, and the polymerization reaction was carried out by continuously stirring for 6 hours while adjusting the temperature so as to be in the temperature range of 20 to 40°C as it was, and a viscous polyamic acid solution was obtained.

다음으로, 얻어진 폴리아미드산 용액에 410 질량부의 DMAc를 가하여 희석한 후, 이미드화 촉진제로서 25.83 질량부의 이소퀴놀린을 가하고, 폴리아미드산 용액을 교반하면서 30∼40℃의 온도 범위로 유지하고, 거기에 이미드화제로서, 122.5 질량부의 무수아세트산을 약 10분에 걸쳐 천천히 적하하면서 투입하고, 그 후, 액온을 30∼40℃로 유지하여 12시간 계속 교반하여 화학 이미드화 반응을 더 행하여, 폴리이미드 용액을 얻었다. Next, after diluting by adding 410 parts by mass of DMAc to the obtained polyamic acid solution, 25.83 parts by mass of isoquinoline was added as an imidation accelerator, and the polyamic acid solution was maintained at a temperature range of 30 to 40° C. while stirring, there As an imidation agent, 122.5 parts by mass of acetic anhydride was slowly added dropwise over about 10 minutes, and then the liquid temperature was maintained at 30 to 40° C. and stirred continuously for 12 hours to further carry out a chemical imidation reaction to obtain polyimide. got a solution.

다음으로, 얻어진 이미드화제, 및, 이미드화 촉진제를 포함하는 폴리이미드 용액 1000 질량부를, 교반 장치와 교반 날개를 구비한 반응 용기로 옮기고, 120 rpm의 속도로 교반하면서 15∼25℃의 온도로 유지하고, 거기에 1500 질량부의 메탄올을 10 g/분의 속도로 적하시켰다. 약 800 질량부의 메탄올을 투입한 지점에서 폴리이미드 용액이 흐려진 것이 확인되고, 분체상의 폴리이미드의 석출이 확인되었다. 이어서 1500 질량부 전량의 메탄올을 투입하고, 폴리이미드의 석출을 완료시켰다. 계속해서, 반응 용기의 내용물을 흡인 여과 장치에 의해 여과 분리하고, 1000 질량부의 메탄올을 이용하여 더 세정·여과 분리했다. 그 후, 여과 분리한 폴리이미드 분체 50 질량부를 국소 배기 장치가 부착된 건조기를 이용하여, 50℃에서 24시간 건조시키고, 260℃에서 2시간 더 건조시켜, 남아 있는 휘발 성분을 제거하고 폴리이미드 분체를 얻었다. 얻어진 폴리이미드 분체의 환원 점도는 2.1 dl/g였다. 다음으로, 얻어진 폴리이미드 분체 42 질량부를 168 질량부의 DMAc에 용해시켜, 고형분 20 질량부가 되는 폴리이미드 용액 B를 얻었다. 얻어진 수지 용액 중의 수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포의 측정 결과를 표 1에 나타낸다. Next, 1000 parts by mass of the obtained imidation agent and the polyimide solution containing the imidation accelerator were transferred to a reaction vessel equipped with a stirring device and a stirring blade, and heated to a temperature of 15 to 25°C while stirring at a speed of 120 rpm. 1500 parts by mass of methanol was added dropwise thereto at a rate of 10 g/min. It was confirmed that the polyimide solution became cloudy at the point where about 800 parts by mass of methanol was injected, and precipitation of powdery polyimide was confirmed. Next, 1500 parts by mass of methanol was introduced to complete the precipitation of polyimide. Subsequently, the contents of the reaction container were separated by filtration with a suction filtration device, and further washed and filtered using 1000 parts by mass of methanol. Thereafter, 50 parts by mass of the polyimide powder separated by filtration was dried at 50° C. for 24 hours using a dryer equipped with a local exhaust system, and further dried at 260° C. for 2 hours to remove the remaining volatile components and obtain polyimide powder got The reduced viscosity of the obtained polyimide powder was 2.1 dl/g. Next, 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of DMAc to obtain a polyimide solution B having a solid content of 20 parts by mass. Table 1 shows the measurement results of the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin in the obtained resin solution.

〔합성예 3(폴리이미드 용액 C의 조제)〕[Synthesis Example 3 (Preparation of Polyimide Solution C)]

질소 도입관, 딘·스타크 장치, 환류관, 온도계, 교반 막대를 구비한 반응 용기에 질소 가스를 도입하면서, 124.15 질량부의 4,4'-디아미노디페닐술폰(4,4'-DDS), 124.15 질량부의 3,3'-디아미노디페닐술폰(3,3'-DDS), 750 질량부의 감마부티로락톤(GBL)을 가했다. 계속해서 248.18 질량부의 4,4'-옥시디프탈산 이무수물(ODPA), 58.8 질량부의 비페닐테트라카르복실산 이무수물(BPDA), 335 질량부의 GBL, 390 질량부의 톨루엔을 실온에서 가한 후, 내부 온도 160℃까지 승온하고, 160℃에서 1시간 가열 환류하여 이미드화를 행했다. 이미드화 완료후, 180℃까지 승온하고, 톨루엔을 뽑아내면서 반응을 계속했다. 12시간 반응후, 오일바스를 제거하고 실온으로 되돌려 고형분이 20 질량부가 되도록 GBL을 1149 질량부 가하고, 환원 점도 0.6 dl/g의 폴리이미드 용액 C를 얻었다. 얻어진 수지 용액 중의 수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포의 측정 결과를 표 1에 나타낸다. 124.15 parts by mass of 4,4'-diaminodiphenylsulfone (4,4'-DDS), 124.15 parts by mass of 3,3'-diaminodiphenylsulfone (3,3'-DDS) and 750 parts by mass of gamma butyrolactone (GBL) were added. Subsequently, after adding 248.18 parts by mass of 4,4'-oxydiphthalic dianhydride (ODPA), 58.8 parts by mass of biphenyltetracarboxylic dianhydride (BPDA), 335 parts by mass of GBL, and 390 parts by mass of toluene at room temperature, the internal The temperature was raised to 160°C, and imidation was performed by heating under reflux at 160°C for 1 hour. After completion of the imidation, the temperature was raised to 180°C, and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed, the temperature was returned to room temperature, and 1149 parts by mass of GBL was added so that the solid content was 20 parts by mass, thereby obtaining a polyimide solution C having a reduced viscosity of 0.6 dl/g. Table 1 shows the measurement results of the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin in the obtained resin solution.

〔합성예 4(폴리이미드 용액 D의 조제)〕[Synthesis Example 4 (Preparation of Polyimide Solution D)]

질소 도입관, 딘·스타크 장치, 환류관, 온도계, 교반 막대를 구비한 반응 용기에 질소 가스를 도입하면서, 384.38 질량부의 노보난-2-스피로-α-시클로펜타논-α'-스피로-2''-노보난-5,5'',6,6''-테트라카르복실산 이무수물(CpODA), 348.45 질량부의 9,9-비스(4-아미노페닐)플루오렌(BAFL), 36.00 질량부의 트리에틸아민, 1465 질량부의 N-메틸-2-피롤리돈(NMP), 1465 질량부의 감마부티로락톤(GBL), 360 질량부의 톨루엔을 실온에서 가한 후, 내부 온도 180℃까지 승온하고, 톨루엔을 증류 제거하면서 180℃에서 3시간 가열 이미드화를 행하여, 폴리이미드 용액을 얻었다. 384.38 parts by mass of norbornane-2-spiro-α-cyclopentanone-α'-spiro-2 while introducing nitrogen gas into a reaction vessel equipped with a nitrogen inlet tube, a Dean Stark apparatus, a reflux tube, a thermometer, and a stirring bar. ''-norbonane-5,5'',6,6''-tetracarboxylic dianhydride (CpODA), 348.45 parts by mass of 9,9-bis(4-aminophenyl)fluorene (BAFL), 36.00 mass After adding part triethylamine, 1465 parts by mass of N-methyl-2-pyrrolidone (NMP), 1465 parts by mass of gamma butyrolactone (GBL), and 360 parts by mass of toluene at room temperature, the internal temperature is raised to 180 ° C., Heating imidation was performed at 180 degreeC for 3 hours, distilling off toluene, and the polyimide solution was obtained.

다음으로, 얻어진 폴리이미드 용액 2500 질량부를 교반 장치와 교반 날개를 구비한 반응 용기로 옮기고, 120 rpm의 속도로 교반하면서 15∼25℃의 온도로 유지하고, 거기에 50000 질량부의 아세톤을 10 g/분의 속도로 적하시켰다. 약 2500 질량부를 투입한 지점에서 폴리이미드 용액이 흐려진 것이 확인되고, 분체상의 폴리이미드의 석출이 확인되었다. 이어서, 남아 있는 2500 질량부의 아세톤을 투입하고, 폴리이미드의 석출을 완료시켰다. 계속해서, 반응 용기의 내용물을 흡인 여과 장치에 의해 여과 분리하고, 2000 질량부의 메탄올을 이용하여 더 세정·여과 분리했다. 그 후, 여과 분리한 폴리이미드 분체 300 질량부를 국소 배기 장치가 부착된 건조기를 이용하여 50℃에서 24시간 건조시키고, 260℃에서 2시간 더 건조시켜, 남아 있는 휘발 성분을 제거하고, 폴리이미드 분체를 얻었다. 얻어진 폴리이미드 분체의 환원 점도는 0.7 dl/g였다. 다음으로, 얻어진 폴리이미드 분체 42 질량부를 168 질량부의 NMP에 용해시켜, 고형분 20 질량부가 되는 환원 점도 0.7 dl/g의 폴리이미드 용액 D를 얻었다. 얻어진 수지 용액 중의 수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포의 측정 결과를 표 1에 나타낸다. Next, 2500 parts by mass of the obtained polyimide solution was transferred to a reaction vessel equipped with a stirrer and a stirring blade, and was maintained at a temperature of 15 to 25°C while stirring at a speed of 120 rpm, where 50000 parts by mass of acetone was added at 10 g/ drop rate per minute. At the point where about 2500 parts by mass was injected, it was confirmed that the polyimide solution became cloudy, and precipitation of powdery polyimide was confirmed. Subsequently, the remaining 2500 parts by mass of acetone was charged to complete the polyimide precipitation. Subsequently, the contents of the reaction container were separated by filtration with a suction filtration device, and further washed and filtered using 2000 parts by mass of methanol. Thereafter, 300 parts by mass of the polyimide powder separated by filtration was dried at 50° C. for 24 hours using a dryer equipped with a local exhaust system, and further dried at 260° C. for 2 hours to remove remaining volatile components, and polyimide powder got The reduced viscosity of the obtained polyimide powder was 0.7 dl/g. Next, 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of NMP to obtain a polyimide solution D having a reduced viscosity of 0.7 dl/g and a solid content of 20 parts by mass. Table 1 shows the measurement results of the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin in the obtained resin solution.

〔합성예 5(폴리아미드산 용액 E의 조제)〕[Synthesis Example 5 (Preparation of polyamic acid solution E)]

질소 도입관, 온도계, 교반 막대를 구비한 반응 용기 내를 질소 치환한 후, 상기 반응 용기 내에 질소 분위기하, 196.1 질량부의 1,2,3,4-시클로부탄테트라카르복실산 이무수물(CBDA), 227.3 질량부의 4-아미노-N-(4-아미노페닐)벤즈아미드(DABAN), 및, 1694 질량부의 N,N-디메틸아세트아미드(DMAc)를 넣어 용해시킨 후, 실온에서 24시간 교반하여, 고형분 20 질량부가 되는 환원 점도 4.5 dl/g의 폴리아미드산 용액 E를 얻었다. 얻어진 수지 용액 중의 수지의 중량 평균 분자량, 수평균 분자량 및 분자량 분포의 측정 결과를 표 1에 나타낸다. After purging the inside of the reaction vessel equipped with a nitrogen inlet tube, thermometer, and stirring rod with nitrogen, 196.1 parts by mass of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) was added to the reaction vessel under a nitrogen atmosphere. , 227.3 parts by mass of 4-amino-N- (4-aminophenyl) benzamide (DABAN), and 1694 parts by mass of N, N-dimethylacetamide (DMAc) were added and dissolved, followed by stirring at room temperature for 24 hours, A polyamic acid solution E having a reduced viscosity of 4.5 dl/g and a solid content of 20 parts by mass was obtained. Table 1 shows the measurement results of the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin in the obtained resin solution.

〔폴리이미드 필름의 제작예 1(실시예 1∼5)〕[Production Example 1 of Polyimide Film (Examples 1 to 5)]

폴리아미드산 용액 A를, 다이코터를 이용하여, 필름 제작 지지체인 경면 마무리한 스테인레스스틸제의 무단 연속 벨트 상에 도포하고(도공폭 1240 mm), 90∼115℃에서 10분간 건조시켰다. 건조후에 자기 지지성이 된 폴리아미드산 필름(잔류 용매를 9 질량% 포함)을 지지체로부터 박리하고 양쪽 단부를 커트하여 그린 필름을 얻었다. Polyamic acid solution A was applied using a die coater onto a mirror-finished stainless steel endless continuous belt (coating width: 1240 mm) as a film production support, and dried at 90 to 115° C. for 10 minutes. After drying, the self-supporting polyamic acid film (containing 9% by mass of residual solvent) was peeled off from the support and both ends were cut to obtain a green film.

얻어진 그린 필름을 핀 텐터에 의해 최종 핀 시트 간격이 1140 mm가 되도록 필름 양쪽 단부를 파지하고, 마이크로파 가열 존과 열풍 순환 장치를 구비한 연속 가열 로에 삽입하여, 1단계 170℃에서 1분간 가열, 이어서 승온 속도 60℃/min로 230℃까지 승온하고, 2단계 230℃에서 1분간, 이어서 승온 속도 60℃/min로 350℃까지 승온하고, 3단계 350℃에서 5분간 열처리를 했다. 이 때 2,450 MHz의 마이크로파 50 kW를 마이크로파 가열 존으로 유도했다. 그 후, 2분간 실온까지 냉각시키고, 필름의 양쪽 단부의 평면성이 나쁜 부분을 슬리터로 잘라내고, 롤형으로 감아, 표 2에 나타내는 수지 필름 1A를 얻었다. 이하 동일하게 폴리아미드산 용액 A를 다른 수지 용액 B, C, D, E로 바꾸고, 또한 지지체에 대한 도포 두께를 바꿔, 수지 필름 1B, 1C, 1D, 1E를 얻었다. 얻어진 수지 필름의 특성 평가 결과를 표 2에 나타낸다. The obtained green film is held at both ends of the film by a pin tenter so that the final pin sheet interval is 1140 mm, and inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulator, heating at 170 ° C. for 1 minute in the first step, and then The temperature was raised to 230 ° C. at a heating rate of 60 ° C./min, followed by heating at 230 ° C. for 1 minute in the second step, followed by heating to 350 ° C. at a heating rate of 60 ° C./min, and heat treatment at 350 ° C. for 5 minutes in the third step. At this time, 50 kW of 2,450 MHz microwave was induced into the microwave heating zone. Thereafter, it was cooled to room temperature for 2 minutes, and portions with poor flatness at both ends of the film were cut out with a slitter, and rolled up to obtain a resin film 1A shown in Table 2. In the same manner, polyamic acid solution A was replaced with other resin solutions B, C, D, and E, and the coating thickness to the support was also changed to obtain resin films 1B, 1C, 1D, and 1E. Table 2 shows the evaluation results of the properties of the obtained resin film.

〔폴리이미드 필름의 제작예 2(실시예 6∼10)〕[Production Example 2 of Polyimide Film (Examples 6 to 10)]

폴리아미드산 용액 A를, 필름 제작 지지체인 지점의 영역 표면 거칠기(Sa)가 1 nm, 최대 돌기 높이(Sp)가 7 nm, 산정점 밀도(Spd)가 20/평방 μm 이하이며, 표면에 코트층을 갖지 않는 폴리에스테르 필름에 콤마코터를 이용하여 도포하고(도공폭 1240 mm), 90∼115℃에서 10분간 건조시켰다. 건조후에 자기 지지성이 된 폴리아미드산 필름(잔류 용매를 10 질량% 포함)을 지지체로부터 박리하고 양쪽 단부를 컷트하여, 그린 필름을 얻었다. 얻어진 그린 필름을 핀 텐터에 의해 최종 핀 시트 간격이 1140 mm가 되도록 필름 양쪽 단부를 파지하고, 마이크로파 가열 존과 열풍 순환 장치를 구비한 연속 가열 로에 삽입하여, 170℃로부터 350℃까지 승온 속도 15℃/min로 가열 승온했다. 이 때 2,450 MHz의 마이크로파 40 kW를 마이크로파 가열 존으로 유도했다. 그 후, 2분간 실온까지 냉각시키고, 필름의 양쪽 단부의 평면성이 나쁜 부분을 슬리터로 잘라내고, 롤형으로 감아, 표 2에 나타내는 수지 필름 2A를 얻었다. 이하 동일하게 폴리아미드산 용액 A를 다른 수지 용액 B, C, D, E로 바꾸고, 또한 지지체에 대한 도포 두께를 바꿔, 수지 필름 2B, 2C, 2D, 2E를 얻었다. 얻어진 수지 필름의 특성 평가 결과를 표 2에 나타낸다. Polyamic acid solution A was coated on the surface with a surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, a peak point density (Spd) of 20/square μm or less, and It was applied to a non-layered polyester film using a comma coater (coating width: 1240 mm), and dried at 90 to 115° C. for 10 minutes. After drying, the self-supporting polyamic acid film (containing 10% by mass of residual solvent) was peeled off from the support and both ends were cut to obtain a green film. The obtained green film was held at both ends of the film by a pin tenter so that the final pin sheet distance was 1140 mm, and inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulator, and the temperature was raised from 170 ° C to 350 ° C at a rate of 15 ° C. /min, and the temperature was raised. At this time, 40 kW of 2,450 MHz microwave was induced into the microwave heating zone. Thereafter, it was cooled to room temperature for 2 minutes, and portions with poor flatness at both ends of the film were cut out with a slitter and wound into a roll to obtain a resin film 2A shown in Table 2. In the same manner, polyamic acid solution A was replaced with other resin solutions B, C, D, and E, and the coating thickness to the support was also changed to obtain resin films 2B, 2C, 2D, and 2E. Table 2 shows the evaluation results of the properties of the obtained resin film.

〔폴리이미드 필름의 제작예 3(비교예 1∼5)〕[Production Example 3 of Polyimide Film (Comparative Examples 1 to 5)]

폴리아미드산 용액 A를, 다이코터를 이용하여, 필름 제작 지지체인 경면 마무리한 스테인레스스틸제의 무단 연속 벨트 상에 도포하고(도공폭 1240 mm), 90∼115℃에서 10분간 건조시켰다. 건조후에 자기 지지성이 된 폴리아미드산 필름(잔류 용매를 9 질량% 포함)을 지지체로부터 박리하고 양쪽 단부를 컷트하여, 그린 필름을 얻었다. Polyamic acid solution A was applied using a die coater onto a mirror-finished stainless steel endless continuous belt (coating width: 1240 mm) as a film production support, and dried at 90 to 115° C. for 10 minutes. After drying, the self-supporting polyamic acid film (containing 9% by mass of residual solvent) was peeled off from the support and both ends were cut to obtain a green film.

얻어진 그린 필름을 핀 텐터에 의해 최종 핀 시트 간격이 1140 mm가 되도록 필름 양쪽 단부를 파지하고, 열풍 순환 장치를 구비한 연속 가열 로에 삽입하여, 170℃로부터 350℃까지 승온 속도 15℃/min로 가열 승온했다. 그 후, 2분간 실온까지 냉각시키고, 필름의 양쪽 단부의 평면성이 나쁜 부분을 슬리터로 잘라내고, 롤형으로 감아, 표 3에 나타내는 수지 필름 3A를 얻었다. 이하 동일하게 폴리아미드산 용액 A를 다른 수지 용액 B, C, D, E로 바꾸고, 또한 지지체에 대한 도포 두께를 바꿔, 수지 필름 3B, 3C, 3D, 3E를 얻었다. 얻어진 수지 필름의 특성 평가 결과를 표 3에 나타낸다. The obtained green film was held by a pin tenter at both ends of the film so that the final pin sheet interval was 1140 mm, and inserted into a continuous heating furnace equipped with a hot air circulator, and heated from 170 ° C to 350 ° C at a heating rate of 15 ° C / min The temperature was raised. Thereafter, it was cooled to room temperature for 2 minutes, and portions with poor flatness at both ends of the film were cut out with a slitter and wound into a roll to obtain a resin film 3A shown in Table 3. In the same manner, polyamic acid solution A was replaced with other resin solutions B, C, D, and E, and the coating thickness to the support was changed to obtain resin films 3B, 3C, 3D, and 3E. Table 3 shows the evaluation results of the properties of the obtained resin film.

〔폴리이미드 필름의 제작예 4(비교예 6∼10)〕[Production Example 4 of Polyimide Film (Comparative Examples 6 to 10)]

폴리아미드산 용액 A를, 필름 제작 지지체인 지점의 영역 표면 거칠기(Sa)가 1 nm, 최대 돌기 높이(Sp)가 7 nm, 산정점 밀도(Spd)가 20/평방 μm 이하이며, 표면에 코트층을 갖지 않는 폴리에스테르 필름에 콤마코터를 이용하여 도포하고(도공폭 1240 mm), 90∼115℃에서 10분간 건조시켰다. 건조후에 자기 지지성이 된 폴리아미드산 필름(잔류 용매를 10 질량% 포함)을 지지체로부터 박리하고 양쪽 단부를 컷트하여, 그린 필름을 얻었다. 얻어진 그린 필름을 핀 텐터에 의해 최종 핀 시트 간격이 1140 mm가 되도록 필름 양쪽 단부를 파지하고, 마이크로파 가열 존과 열풍 순환 장치를 구비한 연속 가열 로에 삽입하여, 170℃로부터 350℃까지 승온 속도 70℃/min로 가열 승온하고, 350℃에서 4분간 열처리를 했다. 이 때 2,450 MHz의 마이크로파 50 kW를 마이크로파 가열 존으로 유도했다. 그 후, 2분간 실온까지 냉각시키고, 필름의 양쪽 단부의 평면성이 나쁜 부분을 슬리터로 잘라내고, 롤형으로 감아, 표 3에 나타내는 수지 필름 4A를 얻었다. 이하 동일하게 폴리아미드산 용액 A를 다른 수지 용액 B, C, D, E로 바꾸고, 또한 지지체에 대한 도포 두께를 바꿔, 수지 필름 4B, 4C, 4D, 4E를 얻었다. 얻어진 수지 필름의 특성 평가 결과를 표 3에 나타낸다. Polyamic acid solution A was coated on the surface with a surface roughness (Sa) of 1 nm, a maximum protrusion height (Sp) of 7 nm, a peak point density (Spd) of 20/square μm or less, and It was applied to a non-layered polyester film using a comma coater (coating width: 1240 mm), and dried at 90 to 115° C. for 10 minutes. After drying, the self-supporting polyamic acid film (containing 10% by mass of residual solvent) was peeled off from the support and both ends were cut to obtain a green film. The obtained green film was held at both ends of the film by a pin tenter so that the final pin sheet interval was 1140 mm, and inserted into a continuous heating furnace equipped with a microwave heating zone and a hot air circulator, and the temperature was raised from 170 ° C to 350 ° C at a rate of 70 ° C. The temperature was raised by heating at /min, and heat treatment was performed at 350°C for 4 minutes. At this time, 50 kW of 2,450 MHz microwave was induced into the microwave heating zone. Thereafter, it was cooled to room temperature for 2 minutes, and portions with poor flatness at both ends of the film were cut out with a slitter and wound into a roll shape to obtain a resin film 4A shown in Table 3. In the same manner, polyamic acid solution A was replaced with other resin solutions B, C, D, and E, and the coating thickness to the support was changed to obtain resin films 4B, 4C, 4D, and 4E. Table 3 shows the evaluation results of the properties of the obtained resin film.

[표 1] [Table 1]

Figure pct00001
Figure pct00001

[표 2] [Table 2]

Figure pct00002
Figure pct00002

[표 3] [Table 3]

Figure pct00003
Figure pct00003

이상 설명한 바와 같이, 본 발명의 수지 필름은 내열성과 투명성이 우수하고, 고온 영역까지 낮은 선팽창계수를 유지하고, 높은 인장 탄성률을 가지며, 수지 필름의 MD 방향 및 TD 방향의 선팽창계수 및 인장 탄성률의 비가 작고 물성 등방성이 양호하기 때문에, 터치패널이나 디스플레이 등의 화상 표시 장치의 전면판, 전극 주변에 매우 유용하다.As described above, the resin film of the present invention has excellent heat resistance and transparency, maintains a low linear expansion coefficient up to a high temperature region, has a high tensile modulus, and has a ratio of linear expansion coefficient and tensile modulus in the MD and TD directions of the resin film. Since it is small and has good isotropy in physical properties, it is very useful for the front plate of image display devices such as touch panels and displays, and around electrodes.

Claims (5)

하기 (1)∼(2)를 만족시키는 수지 필름.
(1) 손실 탄성률을 저장 탄성률로 나눈 값인 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)가 250∼500℃의 범위 내에 있고, 상기 tanδ의 온도 의존 곡선이 피크가 되는 온도(A)와 선팽창계수 변곡점 온도(B)가 하기 식의 관계에 있다
(40+0.8×A)≤B<A
(2) 상기 수지 필름의 원료인 수지의 중량 평균 분자량이 50,000∼500,000의 범위 내에 있고, 상기 중량 평균 분자량을 상기 수지의 수평균 분자량으로 나눈 값인 분자량 분포가 1.0∼5.0의 범위 내에 있다
A resin film satisfying the following (1) to (2).
(1) The temperature (A) at which the temperature dependent curve of tanδ, which is the value obtained by dividing the loss modulus by the storage elastic modulus, has a peak is within the range of 250 to 500°C, and the temperature (A) at which the temperature dependent curve of tanδ has a peak and linear expansion The coefficient inflection point temperature (B) is in the relationship of the following formula
(40+0.8×A)≤B<A
(2) The weight average molecular weight of the resin, which is the raw material of the resin film, is within the range of 50,000 to 500,000, and the molecular weight distribution, which is the value obtained by dividing the weight average molecular weight by the number average molecular weight of the resin, is within the range of 1.0 to 5.0.
제1항에 있어서, (3)∼(4)를 더 만족시키는 수지 필름.
(3) MD 방향 및 TD 방향의 양 방향의 35∼200℃의 범위에서 측정한 선팽창계수가 -5 ppm/℃∼+55 ppm/℃의 범위에 있고, 상기 선팽창계수의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다
(4) MD 방향 및 TD 방향의 양 방향의 인장 탄성률이 2∼20 GPa의 범위에 있고, 상기 인장 탄성률의 MD 방향에 대한 TD 방향의 비가 0.97∼1.03의 범위에 있다
The resin film according to claim 1, which further satisfies (3) to (4).
(3) The linear expansion coefficient measured in the range of 35 to 200 ° C. in both MD and TD directions is in the range of -5 ppm / ° C to +55 ppm / ° C, and the linear expansion coefficient is in the TD direction with respect to the MD direction The ratio of is in the range of 0.97 to 1.03
(4) The tensile modulus of elasticity in both MD and TD directions is in the range of 2 to 20 GPa, and the ratio of the tensile modulus in the TD direction to the MD direction is in the range of 0.97 to 1.03.
제1항 또는 제2항에 있어서, 옐로우 인덱스가 10 이하, 파장 400 nm에서의 광선 투과율이 70% 이상, 전광선 투과율이 85% 이상인 것을 특징으로 하는 수지 필름. The resin film according to claim 1 or 2, which has a yellow index of 10 or less, a light transmittance of 70% or more at a wavelength of 400 nm, and a total light transmittance of 85% or more. 수지 용액을 지지체 상에 도포, 건조하여 용매를 함유하는 수지 필름 적층체를 제작하는 공정 A,
상기 적층체로부터 상기 지지체를 박리하여 용매를 함유하는 수지 필름을 얻는 공정 B,
상기 용매를 함유하는 수지 필름으로부터, 용매를 제거, 또는 용매를 제거하면서 탈수 폐환 반응하는 공정 C를 포함하고,
상기 공정 C의 적어도 일부를 마이크로파 가열에 의해 행하는 것을 특징으로 하는 제1항 내지 제3항 중 어느 한 항에 기재된 수지 필름의 제조 방법.
Step A of applying a resin solution onto a support and drying it to produce a resin film laminate containing a solvent;
Step B of peeling the support from the laminate to obtain a solvent-containing resin film;
Step C of removing the solvent from the resin film containing the solvent or performing a dehydration ring closure reaction while removing the solvent,
The manufacturing method of the resin film in any one of Claims 1-3 characterized by performing at least one part of said process C by microwave heating.
제4항에 있어서, 상기 수지 용액이, 폴리아미드산, 폴리이미드 및 폴리아미드이미드로 이루어진 군에서 선택되는 적어도 1종의 수지와, 쌍극자 모멘트가 3.0∼6.0 D의 범위에 있고 상기 수지를 용해하는 용매를 함유하는 수지 필름의 제조 방법.The method according to claim 4, wherein the resin solution is at least one resin selected from the group consisting of polyamic acid, polyimide and polyamideimide, and the dipole moment is in the range of 3.0 to 6.0 D and dissolves the resin. A method for producing a resin film containing a solvent.
KR1020227026647A 2020-07-15 2021-06-09 Resin film and manufacturing method of resin film KR20230040304A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-121442 2020-07-15
JP2020121442 2020-07-15
PCT/JP2021/021946 WO2022014210A1 (en) 2020-07-15 2021-06-09 Resin film and method for manufacturing resin film

Publications (1)

Publication Number Publication Date
KR20230040304A true KR20230040304A (en) 2023-03-22

Family

ID=79555181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227026647A KR20230040304A (en) 2020-07-15 2021-06-09 Resin film and manufacturing method of resin film

Country Status (5)

Country Link
JP (3) JP7502724B2 (en)
KR (1) KR20230040304A (en)
CN (1) CN115667379A (en)
TW (1) TW202206520A (en)
WO (1) WO2022014210A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102634466B1 (en) * 2021-08-20 2024-02-06 에스케이마이크로웍스 주식회사 Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290401A (en) 1999-04-08 2000-10-17 Kanegafuchi Chem Ind Co Ltd Production of polyimide film
JP2013203838A (en) 2012-03-28 2013-10-07 Du Pont-Toray Co Ltd Polyimide film and method for producing the same
KR20180070842A (en) 2016-12-19 2018-06-27 주식회사 새론테크 Peak power detection and alarm system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146850B (en) * 2005-04-12 2011-11-16 株式会社钟化 Polyimide film
JP2014133887A (en) 2012-12-14 2014-07-24 Mitsubishi Chemicals Corp Polyimide resin composition
JP6394045B2 (en) 2014-04-25 2018-09-26 日本ゼオン株式会社 Polyimide, laminated film, retardation film, and laminated film manufacturing method
CN106832279A (en) 2017-02-21 2017-06-13 北京化工大学 A kind of method that utilization microwave radiation technology imidization prepares Kapton or fiber
JP6862956B2 (en) * 2017-03-17 2021-04-21 コニカミノルタ株式会社 Transparent polyimide film for flexible display front plate and its manufacturing method, and organic electroluminescence display
JP7050382B2 (en) 2017-07-03 2022-04-08 Eneos株式会社 Polyimide film and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290401A (en) 1999-04-08 2000-10-17 Kanegafuchi Chem Ind Co Ltd Production of polyimide film
JP2013203838A (en) 2012-03-28 2013-10-07 Du Pont-Toray Co Ltd Polyimide film and method for producing the same
KR20180070842A (en) 2016-12-19 2018-06-27 주식회사 새론테크 Peak power detection and alarm system

Also Published As

Publication number Publication date
WO2022014210A1 (en) 2022-01-20
TW202206520A (en) 2022-02-16
CN115667379A (en) 2023-01-31
JP2023139144A (en) 2023-10-03
JP2024113108A (en) 2024-08-21
JP7502724B2 (en) 2024-06-19
JPWO2022014210A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN108699270B (en) Polyimide film, method for producing polyimide film, and polyimide precursor resin composition
JP2024113108A (en) Resin film and method for producing same
CN116137837A (en) Polyimide film and method for producing same
WO2022004852A1 (en) Resin film and production method thereof
JP7268791B2 (en) laminate
JP7287536B2 (en) Polyimide film and its manufacturing method
WO2022102450A1 (en) Colorless multilayer polyimide film, laminate body, and flexible electronic device manufacturing method
JP7103534B2 (en) Polyimide film and its manufacturing method
CN116133854A (en) Polyimide film and method for producing same
KR20220156808A (en) laminate
CN115515790A (en) Colorless multilayer polyimide film, laminate, and method for manufacturing flexible electronic device
JP2022068709A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, as well as production method of polyimide film
JP2006168222A (en) Polyimide film forming method
CN118524933A (en) Laminate body

Legal Events

Date Code Title Description
A201 Request for examination