WO2022014010A1 - 物体検知装置及び物体検知方法及びプログラム - Google Patents

物体検知装置及び物体検知方法及びプログラム Download PDF

Info

Publication number
WO2022014010A1
WO2022014010A1 PCT/JP2020/027684 JP2020027684W WO2022014010A1 WO 2022014010 A1 WO2022014010 A1 WO 2022014010A1 JP 2020027684 W JP2020027684 W JP 2020027684W WO 2022014010 A1 WO2022014010 A1 WO 2022014010A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna array
unit
image
antenna
radio wave
Prior art date
Application number
PCT/JP2020/027684
Other languages
English (en)
French (fr)
Inventor
慎吾 山之内
正行 有吉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2020/027684 priority Critical patent/WO2022014010A1/ja
Priority to JP2022536069A priority patent/JP7367876B2/ja
Publication of WO2022014010A1 publication Critical patent/WO2022014010A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves

Definitions

  • the present invention relates to an object detection device and an object detection method for recognizing or identifying the existence of a detection object by irradiating the detection object with radio waves and detecting the reflected or radiated radio waves from the object.
  • radio waves microwaves, millimeter waves, terahertz waves, etc.
  • devices and sensing technologies that image and inspect articles under clothes and in bags by utilizing the ability to transmit radio waves have been put into practical use.
  • a transmission / reception device 201 including transmission / reception antennas 202 1 , 202 2 , ..., 202 N is used.
  • the transmission / reception device 201 irradiates the transmission wave (radio wave) 204 toward the detection object 203 from one or more of the transmission / reception antennas 202 1 , 202 2 , ..., 202 N and 202 m.
  • the transmitted wave 204 is reflected by the detection target object 203, and reflected waves 205 1 , 205 2 , ..., 205 N are generated.
  • the generated reflected waves 205 1 , 205 2 , ..., 205 N are received by the transmission / reception antennas 202 1 , 202 2 , ..., 202 N.
  • the transmission / reception device 201 calculates the radio wave amplitude reflected from the detection object 203 based on the received reflected waves 205 1 , 205 2 , ..., 205 N. By imaging the distribution of the radio wave amplitude, an image of the detection object 203 can be obtained.
  • the object detection device may have the transmission device 301 and the reception device 306 installed at different positions.
  • the transmission / reception device 301 detects a transmission wave (radio wave) 304 from one or more of the transmission / reception antennas 302 1 , 302 2 , ..., 302 M and 302 m. Irradiate toward 303.
  • the transmitted wave 304 is reflected by the detection object 303, and reflected waves 305 1 , 305 2 , ..., 305 N are generated.
  • the generated reflected waves 305 1 , 305 2 , ..., 305 N are received by the receiving antennas 307 1 , 307 2 , ..., 307 N.
  • the transmitting device 301 and the receiving device 306 calculate the radio wave amplitude reflected from the detection object 303 based on the received reflected waves 305 1 , 305 2 , ..., 305 N. By imaging the distribution of the radio wave amplitude, an image of the detection object 303 can be obtained.
  • a pedestrian normally passes between the transmission device 301 and the reception device 306, and moves an article under the pedestrian's clothes or in a bag. Image and inspect.
  • the transmitting device 301 and the receiving device 306 are connected to the oscillating unit 401.
  • the transmitter 301 transmits the radio wave generated by the oscillator 401 via the transmitter 404 by the transmitting antenna 302.
  • the transmitter 404 is implemented by an IC or a module.
  • the receiving device 306 includes a receiving antenna 307, a receiver 405 including a mixer 402, and a data transfer unit 403.
  • the receiver 405 is implemented by an IC or a module.
  • the mixer 402 in the receiving device 306 is referred to as a reflected wave 305 from the detection object 303 received by the receiving antenna 307 and a local oscillation signal (hereinafter, referred to as “LO (Local Oscillator) signal” generated by the oscillating unit 401.
  • LO Local Oscillator
  • IF Intermediate Frequency
  • the IF signal generated by the mixer 402 is output to the data transfer unit 403.
  • the IF signal output to the data transfer unit 403 is used for calculating the radio wave amplitude reflected from the detection target object 303 and generating an image of the detection target object 303.
  • a cable that connects the oscillator 401, the transmitter 404, and the receiver 405 to transmit radio waves is represented by a double line.
  • the transmitted wave 304 transmitted from the transmitting device 301 and the LO signal used by the receiving unit 307 are the same signal generated from the same oscillating unit 401. Further, even when the transmitting device and the receiving device are integrated as the transmitting / receiving device 201 as shown in the conceptual diagram of FIG. 18, the transmission wave 205 transmitted from the transmitting device and the LO signal used in the receiving device are still present. , The same signal generated from the same oscillator is used.
  • the phase difference between the transmitted wave and the LO signal in the receiving device It is possible to eliminate the fluctuation and suppress the deterioration of the image quality of the image of the detection target 203 to 303 due to the fluctuation of the phase difference between the transmitted wave and the LO signal in the receiving device.
  • the transmitting device 301 and the receiving device 306 are housed in different housings.
  • the transmission device 301 and the reception device 306 are housed in one housing and used as the transmission / reception device 201.
  • the same signal generated from the same oscillator is used as the transmission wave transmitted from the transmission device and the LO signal used in the reception device.
  • the fluctuation of the phase difference between the transmitted wave and the LO signal in the receiving device is eliminated, and the deterioration of the image quality of the image of the detected object due to the fluctuation of the phase difference between the transmitted wave and the LO signal in the receiving device is suppressed.
  • the transmitting device 301 and the receiving device 306 are connected by a wiring cable via the same oscillating unit 401. You need to connect. However, in the configuration in which the transmitting device 301 and the receiving device 306 are connected by a wiring cable via the same oscillation unit 401, some problems described below occur.
  • the object detection device at least several tens of transmitters and N are required to obtain the desired image quality and imaging range.
  • the need for a large number of wiring cables for supplying radio waves also contributes to the problem of increasing the cost and increasing the size of the housing in order to accommodate a large number of cables.
  • the oscillating unit that generates the radio wave emitted from the transmitting device and the oscillating unit that generates the LO signal in the receiving device are separated from each other from the radio wave radiated from the transmitting unit and the oscillating unit in the receiving unit.
  • the transmitter is A transmission oscillator that generates transmission radio waves of multiple frequencies for irradiating the object.
  • a transmitting antenna array that irradiates the object with the transmitted radio waves, Equipped with The receiver is A receiving antenna array that receives the radio waves reflected from the object, and The receive oscillator that generates the receive local oscillator signal, and the receive oscillator.
  • a receiver that generates an intermediate frequency signal from the received signal received by the receiving antenna array and the received local oscillation signal generated from the received oscillation unit, and a receiver.
  • the arithmetic unit is used. From the intermediate frequency signal for each antenna constituting the first antenna array, a first image is generated for each frequency of the transmitted radio wave and for each antenna of the second antenna array. Based on the first image, a first correction term for correcting the phase difference between the transmitted radio wave and the received local oscillation signal is generated for each frequency of the transmitted radio wave and for each antenna of the second antenna array. Based on the first image and the first correction term, a second image is generated for each antenna of the second antenna array.
  • a second correction term for correcting the phase difference between the transmitted radio wave and the received local oscillation signal is generated for each antenna of the second antenna array.
  • An image of the object is generated based on the second image and the second correction term.
  • a step of generating a transmission radio wave of a plurality of frequencies for irradiating the object with a transmission oscillator The step of irradiating the object with the transmitted radio wave using the transmitting antenna array, The step of receiving the radio wave reflected from the object by the receiving antenna array, and The step of generating the received local oscillation signal in the receiving oscillator, A step of generating an intermediate frequency signal from the received signal received by the receiving antenna array and the received local oscillation signal generated from the receiving oscillation unit by the receiver, and a step of generating an intermediate frequency signal by the receiver.
  • the transmitting antenna array or the receiving antenna array is used as the first antenna array and the other is used as the second antenna array.
  • the first correction for correcting the phase difference between the transmitted radio wave and the received local oscillation signal for each frequency of the transmitted radio wave and for each antenna of the second antenna array based on the first image. Steps to generate terms and A step of generating a second image for each antenna of the second antenna array in the calculation unit based on the first image and the first correction term.
  • a step of generating an image of the object based on the second image and the second correction term, and An object detection method characterized by having the above is provided.
  • a transmission unit including a transmission oscillation unit that generates transmission radio waves of a plurality of frequencies for irradiating the object, and a transmission antenna array that irradiates the object with the transmission radio waves.
  • the receiving antenna array that receives the radio waves reflected from the object, the receiving oscillating unit that generates the received local oscillation signal, the receiving signal received by the receiving antenna array, and the receiving local oscillation generated from the receiving oscillating unit.
  • a receiver with a receiver that generates an intermediate frequency signal from the signal, and a receiver.
  • a step of generating a second image for each antenna of the second antenna array based on the first image and the first correction term.
  • a step of generating a second correction term for correcting the phase difference between the transmitted radio wave and the received local oscillation signal for each antenna of the second antenna array based on the second image A step of generating an image of the object based on the second image and the second correction term, and A program is provided that is characterized by executing.
  • the object detection device and the object detection method according to the present invention by using different oscillation units for the transmission unit and the reception unit, the phase difference between the radio wave emitted from the transmission unit and the LO signal output from the oscillation unit in the reception unit.
  • An image generation method for stably generating a correct image of a detection object is provided even when the frequency fluctuates.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the object detection device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a method for controlling the frequency of radio waves irradiated by a transmitting unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a method for controlling the frequency of radio waves irradiated by a transmitting unit according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a method of controlling a radio wave emitted by a transmitting unit and an LO signal in a receiving unit according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an object detection method according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an object detection method according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing an object detection method according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing an object detection method according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection target by the conventional method.
  • FIG. 9 is a diagram showing the result of imaging the radio wave amplitude distribution of the reflected wave from the detection target in the embodiment according to the present invention.
  • FIG. 10 is a configuration diagram showing an example of the configuration of the object detection device according to the first modification of the first embodiment according to the present invention.
  • FIG. 11 is a configuration diagram showing an example of the configuration of the object detection device in the second modification of the first embodiment according to the present invention.
  • FIG. 12 is a configuration diagram showing an example of the configuration of the object detection device according to the second embodiment of the present invention.
  • FIG. 13 is a flowchart showing an object detection method according to the second embodiment of the present invention.
  • FIG. 14 is a flowchart showing an object detection method according to the second embodiment of the present invention.
  • FIG. 15 is a configuration diagram showing an example of the configuration of the object detection device in the first modification of the second embodiment according to the present invention.
  • FIG. 16 is a configuration diagram showing an example of the configuration of the object detection device in the second modification of the second embodiment according to the present invention.
  • FIG. 17 is a block diagram showing an example of a computer that realizes the object detection device according to the embodiment of the present invention.
  • FIG. 18 is a configuration diagram showing an example of the configuration of an object detection device using radio waves in the conventional general technology.
  • FIG. 19 is a configuration diagram showing an example of the configuration of an object detection device using radio waves in the conventional general technology.
  • FIG. 20 is a configuration diagram showing an example of the configuration of an object detection device using radio waves in the conventional general technology.
  • FIG. 21 is a configuration diagram showing an example of the configuration of an object detection device using radio waves in the conventional general technology.
  • the object detection device the object detection method, and the program according to the embodiment of the present invention will be described with reference to FIGS. 1 to 17.
  • the oscillating unit that generates the radio wave emitted from the transmitting device and the oscillating unit that generates the LO signal in the receiving device are separated, and the object detection that can stably generate the correct image of the detection target object.
  • Equipment is provided.
  • object detectors, object detection methods, and programs that can reduce the number of devices and reduce the cost and size of the device.
  • the object detection device 1000 in the present embodiment shown in FIG. 1 is a device for detecting an object by radio waves. As shown in FIG. 1, the object detection device 1000 includes a transmission unit 1001 and a reception unit 1101.
  • the transmission unit 1001 irradiates a radio wave as a transmission signal toward an object to be detected (hereinafter referred to as an "object") 1201. Further, the receiving unit 1101 receives the radio wave reflected from the object 1201.
  • the transmission unit 1001 includes a transmission antenna 1002, a transmitter 1004 including a transmission oscillation unit 1003, and a control unit 1005. It is desirable that the transmitter antenna 1002 and the transmitter 1004 are integrally mounted by an IC or a module.
  • the transmitter 1004 provided with the transmission oscillating unit 1003 and the transmitting antenna 1002 are mounted by an IC or a module, and the transmission oscillating unit 1003 and the transmitting antenna 1002 are connected by wiring in the IC or the module. No wiring cable for supply is required. Unlike the conventional object detection device, in the present embodiment, the wiring cable for supplying radio waves is not required in the transmission unit 1001, so that the device cost can be reduced and the housing size can be reduced.
  • the transmission oscillation unit 1003 in the transmitter 1004 outputs radio waves toward the transmission antenna 1002.
  • the transmitter 1004 may have a function of amplifying or attenuating the radio wave output from the transmission oscillation unit 1003 to a predetermined value.
  • the transmitting antenna 1002 irradiates the radio wave output from the transmitter 1004 toward the object 1201. At this time, the irradiation of the radio wave from the transmitting antenna 1002 may be performed in a time division manner in which the transmitting antennas 1002 1 , 1002 2 , ..., 1002 N are switched.
  • control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004. Specifically, the control unit 1105 controls the amplitude and frequency of the radio wave output from the transmission oscillation unit 1003.
  • the receiving unit 1101 includes a receiving antenna 1102, a receiving oscillation unit 1103, a receiver 1104 including a mixer 1105, a data transfer unit 1106, a calculation unit 1107, a synchronization signal detection unit 1109, and a control unit 1110. There is. It is desirable that the receiving antenna 1102 and the receiver 1104 are integrally mounted by an IC or a module. Further, the arithmetic unit 1107 may be physically and / or logically separated from the receiving unit 1101, or may be physically and logically integrated.
  • the receiving antenna 1102 receives the radio wave reflected from the object 1201. At this time, the radio waves reflected from the object 1201 may be simultaneously received by the receiving antennas 1102 1 , 1102 2 , ..., 1102 N. The radio wave received by the receiving antenna 1102 is output to the receiver 1104.
  • the receiving oscillation unit 1103 outputs a local oscillation signal (Local Oscillator signal, hereinafter referred to as "LO signal") toward the receiver 1104.
  • LO signal Local Oscillator signal
  • a wiring cable for radio wave supply is used for the connection between the reception oscillator 1103 and the receiver 1104 shown by the double line in FIG.
  • the mixer 1104 in the receiver 1104 mixes the radio wave output from the receiving antenna 1102 and the LO signal output from the receiving oscillating unit 1103 to form an intermediate frequency signal (Intermediate Frequency signal, hereinafter "IF signal”. ”) Is generated, and the generated IF signal is output to the data transfer unit 1106.
  • IF signal Intermediate Frequency signal
  • the data transfer unit 1106 outputs an IF signal to the arithmetic unit 1107.
  • the data transfer unit 1106 may convert the IF signal output from the receiver 1104 into a digital signal and output it to the calculation unit 1107.
  • the calculation unit 1107 calculates the reflection distribution of the radio wave from the object 1201 based on the IF signal output from the data transfer unit 1106. Further, an image of the object 1201 is generated based on the reflection distribution of the radio wave from the object 1201. The details of the operation of the calculation unit 1107 will be described in the section [Device operation] described later.
  • control unit 1110 controls the receiving oscillation unit 1103. Specifically, the control unit 1110 controls the amplitude and frequency of the LO signal output from the reception oscillation unit 1103.
  • This embodiment is different from the conventional embodiment shown in FIG. 18, and is characterized in that different oscillation units are used for the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101.
  • the characteristic that different oscillation units are used for the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101 eliminates the need for a wiring cable between the transmission unit 1001 and the reception unit 1101. Since there is no wiring between the transmitting unit 1001 and the receiving unit 1101, which is an area through which pedestrians pass, the wiring cable does not obstruct the passage of pedestrians in the present embodiment. Further, since there is no wiring cable between the transmitting unit 1001 and the receiving unit 1101, it is possible to flexibly change the positional relationship between the transmitting unit 1001 and the receiving unit 1101.
  • the frequency 1301 of the radio wave emitted from the transmission unit 1001 may be swept.
  • the control unit 1005 in the transmission unit 1001 controls the transmission oscillation unit 1003 so as to sweep the frequency 1301 of the radio wave output from the transmission oscillation unit 1003.
  • the method of sweeping the frequency 1301 of the radio wave emitted from the transmission unit 1001 may be a stepped frequency continuous wave (SFW) method of sweeping at discrete frequency values according to time.
  • the method of sweeping the frequency 1301 of the radio wave radiated from the transmission unit 1001 may be a frequency modulation continuous wave (FMCW) method of sweeping at a continuous frequency value according to time.
  • FMCW frequency modulation continuous wave
  • the frequency 1301 of the radio wave emitted from the transmitting unit 1001 is swept, the frequency 1301 of the radio wave emitted from the transmitting unit 1001 and the frequency 1302 of the LO signal output from the receiving oscillation unit 1103 in the receiving unit 1101 are set. , It is desirable that they are the same.
  • the frequency 1301 of the radio wave emitted from the transmitting unit 1001 when the frequency 1301 of the radio wave emitted from the transmitting unit 1001 is swept, the frequency 1301 of the radio wave emitted from the transmitting unit 1001 and the LO output from the receiving oscillation unit 1103 in the receiving unit 1101 are used. In order to match the frequency 1302 of the signal, the operation described below is performed.
  • the transmitting unit 1001 irradiates the radio wave serving as a trigger signal toward the receiving unit 1101.
  • the control unit 1005 controls the transmission oscillation unit 1003 in the transmitter 1004 so as to generate a radio wave as a trigger signal.
  • the transmitter 1004 outputs a radio wave that becomes a trigger signal to the transmitting antenna 1002.
  • the transmitting antenna 1002 irradiates a radio wave that becomes a trigger signal from the transmitting unit 1001.
  • the receiving unit 1101 receives a radio wave that becomes a trigger signal at the receiving antenna 1102.
  • the radio wave that becomes the trigger signal received by the receiving antenna 1102 is output to the synchronization signal detection unit 1109.
  • the synchronization signal detection unit 1109 demodulates the radio wave that becomes the trigger signal and detects the trigger signal.
  • the synchronization signal detection unit 1109 outputs the detected trigger signal to the control unit 1110.
  • the control unit 1110 controls the reception oscillation unit 1103 based on the trigger signal output from the synchronization signal detection unit 1109. If any one of the receiving antennas 1102 1, 1102 2 , ... 1102 N receives a radio wave that serves as a trigger signal, the above operation can be performed.
  • the transmission unit 1001 a radio wave serving as a trigger signal to irradiate toward the receiving unit 1101. Further, the time from the timing at which the transmission unit 1001 irradiates the radio wave to be the trigger signal toward the reception unit 1101 until the synchronization signal detection unit 1109 detects the trigger signal in the reception unit 1101 is sufficiently short. Therefore, the time when the transmitting unit 1001 irradiates the radio wave to be the trigger signal toward the receiving unit 1101 and the time when the synchronization signal detecting unit 1109 detects the trigger signal in the receiving unit 1101 are regarded as the same time (tt). It's okay.
  • the control unit 1005 in the transmission portion 1001 the electric wave from the transmitting oscillation unit 1003 after a lapse predetermined time from the irradiation of radio wave serving as a trigger signal (t s1 -t t) is output And control to start its frequency sweep.
  • the LO from the reception oscillation unit 1103 has elapsed. It controls the output of the signal and the start of its frequency sweep.
  • the output swept radio wave frequency 1301 is, and from the reception oscillation unit 1103 in the reception unit 1101 emitted from transmission unit 1001 Sweep the frequency 1302 of the LO signal to be generated.
  • the control unit 1005 in the transmission unit 1001 and the control unit 1110 in the reception unit 1101 control the transmission oscillation unit 1003 and the reception oscillation unit 1103, respectively, so that the time dependence of the frequency 1301 and the frequency 1302 becomes the same. conduct.
  • the time dependence of each frequency may be arbitrary as long as the time dependence of the frequency 1301 and the frequency 1302 is the same.
  • FIG. 5 is a flow chart showing the operation of the object detection device according to the first embodiment of the present invention. Further, in the first embodiment, the object detection method is implemented by operating the object detection device 1000. Therefore, the description of the object detection method in the first embodiment is replaced with the following description of the operation of the object detection device 1000.
  • the synchronization signal is transmitted from the transmission unit 1001 (step A1).
  • the receiving unit 1101 receives the synchronization signal transmitted from the transmitting unit 1001 (step A2).
  • the transmission / reception of the synchronization signal in steps A1 and A2 is output from the frequency 1301 of the radio wave radiated from the transmission unit 1001 and the reception oscillation unit 1103 in the reception unit 1101 as described in the section of [device configuration]. This is an operation for matching the frequency 1302 of the LO signal.
  • the radio wave is emitted from the transmission unit 1001 toward the object 1201 (step A3).
  • the radio wave reflected by the object 1201 is received by each receiving antenna 1102 of the receiving unit 1101 (step A4).
  • an IF signal is generated from the radio waves received by each receiving antenna 1102 of the receiving 1101 (step A5).
  • the reflection distribution (image) of the object 1201 is calculated from the IF signal (step A6).
  • FIG. 6 is a flow chart showing the details of step A6 for calculating the reflection distribution (image) of the object 1201 from the IF signal in the calculation unit 1107.
  • step A6 for calculating the reflection distribution (image) of the object 1201 from the IF signal in the calculation unit 1107 is composed of steps B1 to B7.
  • the step A6 for calculating the reflection distribution (image) of the object 1201 from the IF signal which is shown in detail in FIG. 6, varies during measurement between the radio wave transmitted from the transmitting unit 1001 and the LO signal in the receiving unit 1101. Even if there is an indefinite phase difference, the reflection distribution (image) of the object 1201 is stably and correctly calculated.
  • step A6 for calculating the reflection distribution (image) of the object 1201 from the IF signal the calibration parameter peculiar to the measurement system is calculated as a preprocessing before the measurement.
  • Pre-processing before measurement includes step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term.
  • step B3 for calculating the wave number axis calibration term and step B6 for calculating the transmitting antenna axis calibration term are performed.
  • step A6 for calculating the reflection distribution (image) of the object 1201 from the IF signal as processing at the time of measurement, correction of an error that fluctuates for each measurement and the reflection distribution (image) of the object 1201 are performed. ) Is generated.
  • the processing at the time of measurement is composed of steps B1 to B2, steps B4 to B5, and step B7.
  • steps B1 to B2, steps B4 to B5, and step B7 the object is simultaneously corrected for fluctuations in the phase difference between the radio wave emitted from the transmitting unit 1001 and the LO signal output from the receiving oscillation unit 1103 in the receiving unit 1101. Generates a reflection distribution (image) of 1201.
  • Step B1 In step B1 shown in FIG. 6, the IF signals s (m, n, q) output from the data transfer unit 1106 to the calculation unit 1107 are used.
  • m, n, and q represent the number of the transmitting antenna 1002, the number of the receiving antenna 1102, and the number of the wave number, respectively.
  • the frequency 1301 of the radio wave emitted from the transmission unit 1001 is f
  • there is a relationship of k 2 ⁇ f / c between the wave number k and the frequency f, where c is the speed of light.
  • the IF signal is obtained for a set (m, n, q) of a transmitting antenna 1002, a receiving antenna 1102, and a wave number (that is, frequency).
  • the image PRX (m, q, r) is obtained by calculating the correlation sum of the receiving antenna axes based on the following equation (1) using the IF signal s (m, n, q). Generate.
  • r is a position in space.
  • the image PRX (m, q, r) represents the image intensity at the position r in space.
  • the image PRX (m, q, r) is also an amount obtained for each set of the number m of the transmitting antenna 1002 and the number q of the wave number.
  • Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r.
  • Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r.
  • j is an imaginary unit.
  • Step B2 In the next step B2, the correction term c ⁇ [WN] (m, q) on the wave number axis of the indefinite phase difference between the transmitted radio wave and the LO signal is obtained in the image P in step B1 based on the following equation (2). Calculated from RX (m, q, r).
  • Equation (2) q'is a wavenumber different from q, and q'may be arbitrary. It is desirable that the wave numbers k corresponding to q'and q take close values.
  • the reason why the correction term c ⁇ [WN] (m, q) is obtained by the equation (2) will be described.
  • the phase of the radio wave emitted from the transmitting unit 1001 is set in the receiving unit 1101. It fluctuates regardless of the phase of the LO signal output from the reception oscillator 1103.
  • the phase difference between the radio wave emitted from the transmitting unit 1001 and the LO signal in the receiving unit 1101 can be expressed by the phase ⁇ (m, q) that randomly fluctuates with respect to the transmission number m and the wave number q.
  • the phase ⁇ is the number of the receiving antenna 1102. It has no dependency on n. Due to this randomly fluctuating phase ⁇ (m, q), the phase of the image PRX (m, q, r) is shifted by ⁇ (m, q).
  • PRX PRX (m, q, r) and PRX (m, q', r) having different wavenumbers q.
  • Step B3 In the next step B3, the wave number axis calibration term c A [WN] (m, q) is calculated before the measurement. The detailed procedure of this step B3 will be described later in FIG.
  • Step B4 In the next step B4, the image PRX (m, q, r) obtained in step B1, the correction term c ⁇ [WN] (m, q) obtained in step B2, and the calibration term c obtained in step B3.
  • the image P WN (m, r) is generated by the correlation sum of the wavenumber axes in the following equation (3).
  • Step B5 In the next step B5, the correction term c [Delta] [theta] on the transmit antenna axis indefinite phase difference of the transmitted wave and the LO signal [TX] (m)
  • Equation (4) is the same as in Equation (2), with the correction term c ⁇ under the condition of maximizing the absolute value of P WN (m, r) + P WN (m', r) c ⁇ [TX] (m). [TX] (m) has been determined.
  • Step B6 In the next step B6, the transmitting antenna axis calibration term c A [TX] (m) is calculated before the measurement. The detailed procedure of this step B6 will be described later in FIG.
  • Step B7 In the next step B7, the image P WN (m, r) obtained in step B4, the correction term c ⁇ [TX] (m) obtained in step B5, and the calibration term c A [TX] obtained in step B6.
  • the image P (r) is generated by the correlation sum of the wavenumber axes in the following equation (5).
  • the image P (r) given by the equation (5) is an object obtained by correcting the randomly fluctuating phase difference ⁇ (m, q) between the radio wave radiated from the transmitting unit 1001 and the LO signal in the receiving unit 1101. It is an image showing the reflection distribution of 1201.
  • FIG. 7 shows step B3 in which the wave number axis calibration term c A [WN] (m, q) is calculated before measurement, and step B6 in which the transmit antenna axis calibration term c A [TX] (m) is calculated before measurement. It is a flow chart which showed the details.
  • the flow chart shown in FIG. 7 is composed of steps C0 to C6. It should be noted that each step shown in FIG. 7 is performed by numerical calculation, not by actual measurement. However, the arrangement of the transmitting antenna 1002 used in the actual measurement, the arrangement of the receiving antenna 1102, and the setting of the frequency 1301 of the radio wave emitted from the transmitting unit 1001 are also used in the numerical calculation performed in each step of FIG.
  • step C0 In step C0 shown in FIG. 7, the IF signal s (m, n, q) when the calibration target is the detection target 1201 is numerically calculated based on the following equation (6).
  • ⁇ (r) is the reflection intensity of the calibration object at the position r. It is desirable to use a plate-shaped reflector as large as possible for the calibration object.
  • Rt (m, r) represents the distance between the transmitting antenna 1002 corresponding to the number m and the position r.
  • Rr (n, r) represents the distance between the receiving antenna 1102 corresponding to the number n and the position r.
  • k (q) represents the wave number k corresponding to the number q.
  • step C1 the image PRX (m, q, r) is calculated based on the equation (1) as in step B1 by using the IF signal obtained by the equation (6).
  • step C2 the correction term c ⁇ [WN] (m, q) is corrected based on the equation (2) as in step B2, using the image PRX (m, q, r) calculated in step C1. calculate.
  • step C3 the wave number axis calibration term c A [WN] (m, q) is calculated from the correction term c ⁇ [WN] (m, q) obtained in step C2 based on the following equation (7). calculate.
  • step C4 Next, in step C3, the image PRX (m, q, r) obtained in step C1, the correction term c ⁇ [WN] (m, q) obtained in step C2, and the wave number axis obtained in step C3.
  • the image P WN (m, r) is calculated based on the equation (3) as in step B4.
  • step C5 the correction term c ⁇ [TX] (m) is calculated based on the equation (4) as in step B5, using the image P WN (m, r) calculated in step C4.
  • step C6 the wave number axis calibration term c A [TX] (m) is calculated from the correction term c ⁇ [TX] (m) obtained in step C5 based on the following equation (8).
  • FIG. 8 shows a square by a conventional image generation method without correction and calibration when the phase difference between the radio wave emitted from the transmitting unit 1001 and the LO signal output from the receiving oscillation unit 1103 in the receiving unit 1101 fluctuates.
  • An example of generating an image of the detection target object 1201 of the above is shown.
  • the position of the detection object 1201 is shown in the broken line in the center of the image, but the actually obtained image of the detection object 1201 is greatly deviated from the original square.
  • FIG. 9 when the phase difference between the radio wave emitted from the transmitting unit 1001 and the LO signal output from the receiving oscillation unit 1103 in the receiving unit 1101 fluctuates, correction and calibration were performed based on the present embodiment.
  • an image of the detection object 1201 is generated at the position of the detection object 1201 (inside the broken line in the center of the image) without collapsing.
  • FIG. 10 shows a diagram of the device configuration in the first modification of the first embodiment.
  • the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the present embodiment 1 shown in FIG.
  • the transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
  • the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated.
  • the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
  • FIG. 11 shows a diagram of the device configuration in the second modification of the first embodiment.
  • the control unit 1005 controls both the transmission oscillation unit 1003 in the transmission unit 1001 and the reception oscillation unit 1103 in the reception unit 1101.
  • the control unit 1005 controls to set the frequency of the radio wave output by the transmission oscillation unit 1003 in the transmission unit 1001 and the frequency of the LO signal output by the reception oscillation unit 1103 in the reception unit 1101 to be the same.
  • the radio wave output by the transmission oscillation unit 1003 in the transmission unit 1001 by the control unit 1005 and the reception oscillation unit 1103 in the reception unit 1101 are used inside the object detection device 1000. Control is performed to set the frequency of the output LO signal to be the same. Therefore, in the second modification of the first embodiment, step A1 and step A2 in FIG. 5 may be skipped and started from skip A3. Except for the above, the device operation in the second modification of the first embodiment is the same as the device operation in the first embodiment, and thus the description thereof will be omitted.
  • Examplementation 2 [Device configuration] The configuration of the object detection device according to the second embodiment will be described with reference to FIG.
  • the components of the second embodiment shown in FIG. 12 are the same as the components of the first embodiment shown in FIG. However, in the first embodiment, the oscillation unit in the transmission unit 1001 is separated into a plurality of transmission oscillation units 1003 1 , 1003 2 , 1003 M , whereas in the second embodiment, a single transmission oscillation unit is used. It is implemented in 1003.
  • the oscillating unit in the receiving unit 1101 is mounted by a single receiving oscillating unit 1103, whereas in the second embodiment, a plurality of receiving oscillating units 1103 1 , 1103 2 , 1103 are mounted. It is separated into M.
  • the mounting by a single oscillator and the mounting by a plurality of oscillators are exchanged for transmission and reception.
  • the radio wave supply cable shown by the double wire is used for the connection between the transmission oscillator 1003 and the transmitter 1004.
  • the wiring cable for supplying radio waves is not required in the receiving unit 1101, so that the device cost can be reduced and the housing size can be reduced.
  • the device operation in the second embodiment is carried out according to the flow chart shown in FIG. Since the device operation according to FIG. 5 is common to the first and second embodiments, the description thereof will be omitted.
  • FIG. 13 shows a flow chart showing the details of step A6 in the flow chart shown in FIG. 5 among the device operations in the second embodiment.
  • the steps in the flow diagram 13 in the second embodiment are as follows.
  • the steps in the flow diagram 6 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged between the first embodiment and the second embodiment.
  • step B1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes
  • step B1'in the second embodiment an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
  • step B6 in the first embodiment calculates the transmitting antenna axis calibration term
  • step B6'in the second embodiment calculates the receiving antenna axis calibration term
  • step B7 in the first embodiment generates an image by the correlation sum of the transmitting antenna axes
  • step B7'in the second embodiment generates an image by the correlation sum of the receiving antenna axes.
  • FIG. 14 shows a flow chart showing the details of steps B3 and B6'in the flow chart shown in FIG. 13 among the device operations in the second embodiment.
  • the steps in the flow diagram 14 in the second embodiment are as follows.
  • the steps in the flow diagram 7 in the first embodiment are changed as follows. Specifically, the processing for the transmitting antenna and the processing for the receiving antenna are exchanged between the first embodiment and the second embodiment.
  • step C1 in the first embodiment generates an image from the IF signal by the correlation sum of the receiving antenna axes
  • step C1'in the second embodiment an image is generated from the IF signal by the correlation sum of the transmitting antenna axes. do.
  • step C5 in the first embodiment calculates the correction term for the transmitting antenna shaft
  • step C5'in the second embodiment calculates the correction term for the receiving antenna shaft
  • step C6 in the first embodiment calculates the transmitting antenna axis calibration term
  • step C6'in the second embodiment calculates the receiving antenna axis calibration term
  • the phase difference between the radio wave emitted from the transmitting unit 1001 and the LO signal output from the receiving oscillation unit 1103 in the receiving unit 1101 fluctuates due to the operation of the device according to the second embodiment. Even in this case, an image generation method for stably generating a correct image of the detection object 1201 is provided.
  • FIG. 15 shows a diagram of the device configuration in the first modification of the second embodiment.
  • the transmitting unit 1001 and the receiving unit 1101 are housed in different housings, but as in the modified example 1 of the second embodiment shown in FIG.
  • the transmitting unit 1001 and the receiving unit 1101 may be housed in the same housing and used as the object detection device 1000.
  • the transmitting antenna 1002 connected to the transmitter 1004 and the receiving antenna 1102 connected to the receiver 1104 are separated.
  • the transmitter 1004 and the receiver 1104 may be connected to the same antenna via a switch or an isolator for switching transmission / reception, and may share the same antenna for transmission / reception.
  • FIG. 16 shows a diagram of the device configuration in the second modification of the second embodiment.
  • the control unit 1005 controls both the transmission oscillation unit 1003 in the transmission unit 1001 and the reception oscillation unit 1103 in the reception unit 1101.
  • the control unit 1005 controls to set the frequency of the radio wave output by the transmission oscillation unit 1003 in the transmission unit 1001 and the frequency of the LO signal output by the reception oscillation unit 1103 in the reception unit 1101 to be the same.
  • the radio wave output by the transmission oscillation unit 1003 in the transmission unit 1001 by the control unit 1005 and the reception oscillation unit 1103 in the reception unit 1101 are used inside the object detection device 1000. Control is performed to set the frequency of the output LO signal to be the same. Therefore, in the second modification of the first embodiment, step A1 and step A2 in FIG. 5 may be skipped and started from skip A3. Except for the above, the device operation in the second modification of the second embodiment is the same as the device operation in the second embodiment, and thus the description thereof will be omitted.
  • FIG. 17 is a block diagram showing an example of a computer that realizes the object detection device according to the embodiment of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
  • the CPU 111 expands the program (code) in the present embodiment stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to perform various operations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • the object detection device in the present embodiment can also be realized by using the hardware corresponding to each part instead of the computer in which the program is installed. Further, the object detection device may be partially realized by a program and the rest may be realized by hardware.
  • different oscillators are used for the transmission oscillation unit 1003 of the transmission unit 1001 and the reception oscillation unit 1103 of the reception unit 1101, so that the radio waves emitted from the transmission unit 1001 and the reception oscillation in the reception unit 1101 are used. Even when the phase difference of the LO signal output from the unit 1103 fluctuates, an image generation method for stably generating a correct image of the detection target object 1201 is provided. This provides an object detection device capable of separating the oscillating unit that generates the radio wave emitted from the transmitting device and the oscillating unit that generates the LO signal in the receiving device.
  • the object detection devices of the first and second embodiments can eliminate the wiring between the transmitting unit and the receiving unit, solve the problem of hindering the passage of pedestrians, and further improve the positional relationship between the transmitting device and the receiving device. It is possible to change it flexibly. It also reduces the number of wiring cables for radio wave supply and solves the problems of cost and housing size.
  • the above embodiments may also be described, but not limited to: 1.
  • It is an object detection device for detecting objects by radio waves. It has a transmitter, a receiver, and a calculation unit.
  • the transmitter is A transmission oscillator that generates transmission radio waves of multiple frequencies for irradiating the object.
  • a transmitting antenna array that irradiates the object with the transmitted radio waves, Equipped with
  • the receiver is A receiving antenna array that receives the radio waves reflected from the object, and The receive oscillator that generates the receive local oscillator signal, and the receive oscillator.
  • a receiver that generates an intermediate frequency signal from the received signal received by the receiving antenna array and the received local oscillation signal generated from the received oscillation unit, and a receiver.
  • the arithmetic unit is used. From the intermediate frequency signal for each antenna constituting the first antenna array, a first image is generated for each frequency of the transmitted radio wave and for each antenna of the second antenna array. Based on the first image, a first correction term for correcting the phase difference between the transmitted radio wave and the received local oscillation signal is generated for each frequency of the transmitted radio wave and for each antenna of the second antenna array. Based on the first image and the first correction term, a second image is generated for each antenna of the second antenna array.
  • a second correction term for correcting the phase difference between the transmitted radio wave and the received local oscillation signal is generated for each antenna of the second antenna array.
  • An image of the object is generated based on the second image and the second correction term.
  • An object detection device characterized by this. 2.
  • the arithmetic unit is based on the positions of the transmitting antennas and the antennas constituting the receiving antenna array and the frequency of the transmitted radio waves.
  • a first calibration term for calibrating the error inherent in the setting of each antenna position and the frequency of the transmitted radio wave is generated for each frequency of the transmitted radio wave and for each antenna of the second antenna array.
  • a second calibration term for calibrating the error is generated for each antenna in the second antenna array.
  • the second image is generated based on the first image, the first correction term and the first calibration term.
  • An image of the object is generated based on the second image, the second correction term and the second calibration term.
  • the first antenna array is the receiving antenna array.
  • the second antenna array is the transmitting antenna array.
  • the reception oscillation unit supplies the reception local oscillation signal to the plurality of receivers.
  • the transmission oscillator is composed of a plurality of oscillators.
  • the first antenna array is the transmitting antenna array.
  • the second antenna array is the receiving antenna array.
  • the transmission oscillator supplies the transmission radio wave to the plurality of transmission antennas.
  • the receive oscillator is composed of a plurality of oscillators.
  • the transmitting unit and the receiving unit are housed in different housings.
  • the transmitting unit and the receiving unit are housed in the same housing.
  • the transmitting unit transmits a transmission radio wave carrying the synchronization signal from the transmitting antenna array toward the receiving unit, and irradiates the object with reference to the timing of transmitting the transmitted radio wave carrying the synchronization signal.
  • the receiving unit receives a transmission radio wave carrying the synchronization signal, detects the synchronization signal in the synchronization detection unit provided in the reception unit, and generates the reception local oscillation signal based on the synchronization signal.
  • Control the receive oscillator 5.
  • a step of generating a transmission radio wave of a plurality of frequencies for irradiating the object with a transmission oscillator The step of irradiating the object with the transmitted radio wave using the transmitting antenna array, The step of receiving the radio wave reflected from the object by the receiving antenna array, and The step of generating the received local oscillation signal in the receiving oscillator, A step of generating an intermediate frequency signal from the received signal received by the receiving antenna array and the received local oscillation signal generated from the receiving oscillation unit by the receiver, and a step of generating an intermediate frequency signal by the receiver.
  • the transmitting antenna array or the receiving antenna array is used as the first antenna array and the other is used as the second antenna array.
  • the first correction for correcting the phase difference between the transmitted radio wave and the received local oscillation signal for each frequency of the transmitted radio wave and for each antenna of the second antenna array based on the first image.
  • the object detection method according to 9. 11. It is an object detection device for detecting objects by radio waves.
  • a transmission unit including a transmission oscillation unit that generates transmission radio waves of a plurality of frequencies for irradiating the object, and a transmission antenna array that irradiates the object with the transmission radio waves.
  • the receiving antenna array that receives the radio waves reflected from the object, the receiving oscillating unit that generates the received local oscillation signal, the receiving signal received by the receiving antenna array, and the receiving local oscillation generated from the receiving oscillating unit.
  • a step of generating a second image for each antenna of the second antenna array based on the first image and the first correction term.
  • the processor Based on the position of each antenna constituting the transmitting antenna array and the receiving antenna array, and the frequency of the transmitted radio wave, the processor is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

物体検知装置(1000)は、物体(1201)に向けて電波を送信信号として照射する送信部(1001)と、反射された電波を複数の受信アンテナで受信し中間周波数信号を生成する受信部(1101)を備え、中間周波数信号に基づいて物体(1201)の像を生成する。

Description

物体検知装置及び物体検知方法及びプログラム
 本発明は、電波を検知対象物に照射し、対象物からの反射ないし放射された電波を検知する事で検知対象物の存在を認識ないし識別するための物体検知装置および物体検知方法に関する。
 電波(マイクロ波、ミリ波、テラヘルツ波など)は、光と異なり、物体を透過する能力が優れている。電波の透過能力を活用し、衣服下や鞄内の物品を画像化して検査する装置及びセンシング技術が実用化されている。
 電波を用いたイメージング装置(物体検知装置)として特許文献1ないし特許文献2ないし図18の概念図で示したアクティブ型のアンテナアレイ方式が提案されている。
 図18の概念図で示したアレイアンテナ方式では、送受信アンテナ202、202、・・・、202を備えた送受信装置201が使用される。送受信装置201は、送受信アンテナ202、202、・・・、202の内の一つもしくは複数のアンテナ202から送信波(電波)204を検知対象物203に向けて照射する。送信波204は検知対象物203において反射され、反射波205、205、・・・、205が発生する。発生した反射波205、205、・・・、205は送受信アンテナ202、202、・・・、202において受信される。送受信装置201は、受信した反射波205、205、・・・、205に基づいて検知対象物203から反射されている電波振幅を算出する。その電波振幅の分布を画像化する事で、検知対象物203の像を得る事ができる。
 また物体検知装置は、特許文献2ないし図19の概念図で示すように、送信装置301と受信装置306が別の位置に設置されていてもよい。図19で示したイメージング装置では、送受信装置301が、送受信アンテナ302、302、・・・、302の内の一つもしくは複数のアンテナ302から送信波(電波)304を検知対象物303に向けて照射する。送信波304は検知対象物303において反射され、反射波305、305、・・・、305が発生する。発生した反射波305、305、・・・、305は受信アンテナ307、307、・・・、307において受信される。送信装置301及び受信装置306は、受信した反射波305、305、・・・、305に基づいて検知対象物303から反射されている電波振幅を算出する。その電波振幅の分布を画像化する事で、検知対象物303の像を得る事ができる。
 図19で示した物体検知装置では、特許文献2で示されているように、通常は送信装置301と受信装置306の間を歩行者が通過し、歩行者の衣服下ないし鞄内の物品を画像化して検査を行う。
 図20の概念図で示すように、送信装置301と受信装置306は発振部401と接続されている。送信装置301は、発振部401で生成された電波を、送信機404を経由して送信アンテナ302で送信する。送信機404はICないしモジュールで実装される。受信装置306は、受信アンテナ307と、ミキサ402を含む受信機405と、データ転送部403を備えている。受信機405はICないしモジュールで実装される。受信装置306内のミキサ402は、受信アンテナ307で受信した検知対象物303からの反射波305と、発振部401で生成された局所発振信号(以下、「LO(Local Oscillator)信号」と表記する場合がある。)と、をミキシングする事で、中間周波数信号(以下、「IF(Intermediate Frequency)信号」と表記する場合がある。)を生成する。ミキサ402において生成されたIF信号はデータ転送部403へ出力される。データ転送部403へ出力されたIF信号は、検知対象物303から反射されている電波振幅の算出及び検知対象物303の像の生成に用いられる。図20では、発振部401と送信機404および受信機405を接続し電波を伝達するケーブルを二重線で表記している。
 図20の概念図で示したように、送信装置301から送信される送信波304と、受信部307で使用されるLO信号は、同一の発振部401から生成された、同一の信号である。また、図18の概念図で示したように送信装置と受信装置が送受信装置201として一体化されている場合も、送信装置から送信される送信波205と、受信装置で使用されるLO信号は、同一の発振部から生成された同一の信号が用いられる。
 送信装置から送信される送信波、及び、受信装置で使用されるLO信号として、同一の発振部から生成された同一の信号を用いる事で、送信波と受信装置内のLO信号の位相差の変動を無くし、送信波と受信装置内のLO信号の位相差の変動に起因する検知対象物203ないし303の像の画質劣化を抑制できる。
 図20で示した構成では、送信装置301と受信装置306は別の筐体に収める。一方で、図21で示した構成のように、送信装置301と受信装置306を一つの筐体に収めて送受信装置201として用いる構成もある。
US2014/0167784A1 特許第5358053号
 まず、図18ないし図20の概念図を示した従来の電波を用いたイメージング装置(物体検知装置)の問題点について説明する。
 背景技術において説明したとおり、従来の物体検知装置では、送信装置から送信される送信波、及び、受信装置で使用されるLO信号として、同一の発振部から生成された同一の信号を用いる事で、送信波と受信装置内のLO信号の位相差の変動を無くし、送信波と受信装置内のLO信号の位相差の変動に起因する検知対象物の像の画質劣化を抑制している。
 一方で、送信装置から送信される送信波および受信装置で使用されるLO信号を同一の発振部から供給する場合、送信装置301と受信装置306とを同一の発振部401を介して配線ケーブルで接続する必要がある。ただし送信装置301と受信装置306とを同一の発振部401を介して配線ケーブルで接続する構成では、以下で説明するいくつかの課題が生じる。
 図20で示した送信301と受信装置306を別筐体で実装した場合、通常は送信装置301と受信装置306の間を歩行者が通過し、歩行者の衣服下ないし鞄内の物品を画像化して検査を行う。ところが従来の物体検知装置では、歩行者が通過する領域である送信装置301と受信装置306の間に配線ケーブルを設置しなければならず、この配線ケーブルは歩行者の通過を妨げるという課題がある。また送信装置301と受信装置306を配線ケーブルで接続した場合、配線長の制約により送信装置301と受信装置306の位置関係を柔軟に変更しづらいという課題がある。
 また、図20で示した送信装置301と受信装置306を別筐体で実装した場合、および図21で示した送信装置301と受信装置306を同じ筐体に実装した場合の両方に共通する課題として、発振部401から送信装置301と受信装置306に電波を供給するために多数の配線用ケーブルが必要な事が挙げられる。具体的には、図20および図21で示したいずれの装置構成の場合も、送信機の数をM、受信機の数をNとして、最低でも(M+N)本の電波供給用の配線ケーブルが必要になる。なお図20および図21において、電波供給用の配線ケーブルは二重線で表記している。物体検知装置では、所望の画質と撮像範囲を得るために、送信機の数Mと受信機の数Nはそれぞれ最低でも数十は必要となる。電波供給用の配線ケーブルが多数必要となる事は、コストを増大させ、かつ多数のケーブルを収めるために筐体の大型化にもつながるという課題の要因にもなる。
 そこで本発明では、送信装置から照射される電波を生成する発振部と、受信装置内でLO信号を生成する発振部を分離した状態で、送信部から照射される電波と受信部内の発振部から出力されるLO信号の位相差が変動する場合においても、検知対象物の正しい像を安定して生成するための像生成手法を提供する。
 本発明によれば、
 電波によって物体を検知するための物体検知装置であって、
 送信部と、受信部と、演算部とを備え、
 前記送信部は、
  前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、
  前記送信電波を前記物体に照射する送信アンテナアレイと、
を備え、
 前記受信部は、
  前記物体から反射された前記電波を受信する受信アンテナアレイと、
  受信局所発振信号を生成する受信発振部と、
  前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、
を備え、
 前記演算部は、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成し、
  前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成し、
  前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成し、
  前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成し、
 前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成する、
ことを特徴とする物体検知装置が提供される。
 また、本発明によれば、
 電波によって物体を検知するための物体検知方法であって、
 前記物体に向けて照射するための複数の周波数の送信電波を送信発振部で生成するステップと、
 送信アンテナアレイを用いて前記送信電波を前記物体に照射するステップと、
 前記物体から反射された前記電波を受信アンテナアレイで受信するステップと、
 受信局所発振信号を受信発振部で生成するステップと、
 前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を受信機で生成するステップと、
 前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  演算部において、前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
  前記演算部において、前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
  前記演算部において、前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
  前記演算部において、前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
  前記演算部において、前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
を有することを特徴とする物体検知方法が提供される。
 また、本発明によれば、
 電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、前記送信電波を前記物体に照射する送信アンテナアレイと、を備えた送信部と、
 前記物体から反射された前記電波を受信する受信アンテナアレイと、受信局所発振信号を生成する受信発振部と、前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、を備えた受信部と、
 プロセッサと、を備える物体検知装置の前記プロセッサに、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
  前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
  前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
  前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
  前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
を実行させることを特徴とするプログラムが提供される。
 本発明による物体検知装置および物体検知方法によれば、送信部と受信部で異なる発振部を用いる事で、送信部から照射される電波と受信部内の発振部から出力されるLO信号の位相差が変動する場合であっても、検知対象物の正しい像を安定して生成するための像生成手法が提供される。
図1は、本発明による実施の形態1における物体検知装置の構成の一例を示した構成図である。 図2は、本発明による実施の形態における送信部が照射する電波の周波数の制御方法の一例を説明する図である。 図3は、本発明による実施の形態における送信部が照射する電波の周波数の制御方法の一例を説明する図である。 図4は、本発明による実施の形態における送信部が照射する電波及び受信部内のLO信号の制御方法の一例を説明する図である。 図5は、本発明の実施の形態における物体検知方法を示すフローチャートである。 図6は、本発明の実施の形態1における物体検知方法を示すフローチャートである。 図7は、本発明の実施の形態1における物体検知方法を示すフローチャートである。 図8は、従来の方式で検知対象物からの反射波の電波振幅分布を画像化した結果を示す図である。 図9は、本発明による実施の形態で検知対象物からの反射波の電波振幅分布を画像化した結果を示す図である。 図10は、本発明による実施の形態1の変形例1における物体検知装置の構成の一例を示した構成図である。 図11は、本発明による実施の形態1の変形例2における物体検知装置の構成の一例を示した構成図である。 図12は、本発明による実施の形態2における物体検知装置の構成の一例を示した構成図である。 図13は、本発明の実施の形態2における物体検知方法を示すフローチャートである。 図14は、本発明の実施の形態2における物体検知方法を示すフローチャートである。 図15は、本発明による実施の形態2の変形例1における物体検知装置の構成の一例を示した構成図である。 図16は、本発明による実施の形態2の変形例2における物体検知装置の構成の一例を示した構成図である。 図17は、本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。 図18は、従来の一般技術における電波を用いた物体検知装置の構成の一例を示す構成図である。 図19は、従来の一般技術における電波を用いた物体検知装置の構成の一例を示す構成図である。 図20は、従来の一般技術における電波を用いた物体検知装置の構成の一例を示す構成図である。 図21は、従来の一般技術における電波を用いた物体検知装置の構成の一例を示す構成図である。
 以下、本発明による送信装置および送信方法の好適な実施形態について添付図を参照して説明する。なお、以降に示す各図面において、同一または相当部分の部位については、同一符号を付して示すこととし、その説明は繰り返さないことにする。
(実施の形態)
 以下、本発明の実施の形態における、物体検知装置、物体検知方法、及びプログラムについて、図1~図17を参照しながら説明する。本実施の形態では、送信装置から照射される電波を生成する発振部と、受信装置内でLO信号を生成する発振部を分離し、かつ検知対象物の正しい像を安定して生成できる物体検知装置が提供される。本発明により、送信部と受信部の間の配線を無くす事ができ、歩行者の通過を妨げる事無く、さらに送信装置と受信装置の位置関係を柔軟に変更でき、さらに電波供給用の配線ケーブルの数を削減し装置のコストとサイズを低減できる、物体検知装置、物体検知方法、及びプログラムが開示される。
(本実施の形態1)
[装置構成]
 最初に、図1を用いて、本実施の形態1における物体検知装置の構成について説明する。
 図1に示す本実施の形態における物体検知装置1000は、電波によって物体を検知するための装置である。図1に示すように、物体検知装置1000は、送信部1001と、受信部1101とを備えている。
 送信部1001は、検知対象となる物体(以下、「対象物」と表記する)1201に向けて、送信信号となる電波を照射する。さらに受信部1101は、対象物1201から反射された電波を受信する。
 送信部1001は、送信アンテナ1002と、送信発振部1003を備えた送信機1004と、制御部1005とを備えている。送信アンテナ1002と送信機1004はICないしモジュールで一体化して実装する事が望ましい。本実施の形態では、送信発振部1003を備えた送信機1004と送信アンテナ1002はICないしモジュールで実装し、送信発振部1003と送信アンテナ1002の接続はICないしモジュール内の配線で行うため、電波供給用の配線ケーブルは不要である。従来の物体検知装置と異なり、本実施の形態では送信部1001内で電波供給用の配線ケーブルが不要なため、装置コストの低減および筐体サイズの小型化を実現できる。
 送信部1001において、送信機1004内の送信発振部1003は電波を送信アンテナ1002に向けて出力する。送信機1004は、送信発振部1003から出力された電波を所定値に増幅もしくは減衰する機能を備えていてもよい。送信アンテナ1002は、送信機1004から出力された電波を対象物1201に向けて照射する。この時、送信アンテナ1002からの電波の照射は、送信アンテナ1002、1002、・・・、1002を切り替える時分割で行ってもよい。
 送信部1001において、制御部1005は、送信機1004内の送信発振部1003の制御を行う。具体的には、制御部1105は、送信発振部1003から出力される電波の振幅や周波数の制御を行う。
 受信部1101は、受信アンテナ1102と、受信発振部1103と、ミキサ1105を含む受信機1104と、データ転送部1106と、演算部1107と、同期信号検出部1109と、制御部1110とを備えている。受信アンテナ1102と受信機1104はICないしモジュールで一体化して実装する事が望ましい。また演算部1107は、受信部1101と物理的及び/又は論理的に分かれて構成されてもよいし、物理的及び論理的に一体となって構成されてもよい。
 受信部1101において、受信アンテナ1102は対象物1201から反射された電波を受信する。この時、対象物1201から反射された電波は、受信アンテナ1102、1102、・・・、1102で同時に受信してもよい。受信アンテナ1102で受信された電波は、受信機1104に出力される。
 受信部1101において、受信発振部1103は局所発振信号(Local Oscillator信号、以下「LO信号」と表記)を受信機1104に向けて出力する。図1内において二重線で示した受信発振部1103と受信機1104の接続は、電波供給用の配線ケーブルを用いる。
 受信部1101において、受信機1104内のミキサ1104は、受信アンテナ1102から出力された電波と、受信発振部1103から出力されたLO信号をミキシングして中間周波数信号(Intermediate Frequency信号、以下「IF信号」と表記)を生成し、生成したIF信号をデータ転送部1106に出力する。
 受信部1101において、データ転送部1106は、演算部1107に向けてIF信号を出力する。データ転送部1106は、受信機1104から出力されたIF信号を、アナログ信号からデジタル信号に変換して、演算部1107に出力してもよい。
 演算部1107は、データ転送部1106から出力されたIF信号に基づいて対象物1201からの電波の反射分布を計算する。さらに、対象物1201からの電波の反射分布に基づいて対象物1201の像を生成する。演算部1107の動作の詳細は、後述の[装置動作]の項において説明する。
 受信部1101において、制御部1110は、受信発振部1103の制御を行う。具体的には、制御部1110は、受信発振部1103から出力されるLO信号の振幅や周波数の制御を行う。
 本実施の形態は、図18で示した従来の形態と異なり、送信部1001の送信発振部1003と、受信部1101の受信発振部1103とで、異なる発振部を用いるという特徴がある。
 送信部1001の送信発振部1003と、受信部1101の受信発振部1103とで、異なる発振部を用いるという特徴により、送信部1001と受信部1101の間の配線ケーブルが不要になっている。歩行者が通過する領域である送信部1001と受信部1101の間に配線がないため、本実施の形態では配線ケーブルにより歩行者の通過を妨げる事がない。また送信部1001と受信部1101の間に配線ケーブルが無いため、送信部1001と受信部1101の位置関係を柔軟に変更する事も可能である。
 本実施の形態において、送信部1001から照射される電波の周波数1301はスイープしてもよい。この時、送信部1001内の制御部1005は、送信発振部1003から出力する電波の周波数1301をスイープするように送信発振部1003を制御する。
 送信部1001から照射される電波の周波数1301をスイープさせる方法は、図2で示すように、時間に応じて離散的な周波数値でスイープするstepped frequency continuous wave(SFCW)方式でも良い。もしくは、送信部1001から照射される電波の周波数1301をスイープさせる方法は、図3で示すように、時間に応じて連続的な周波数値でスイープするfrequency modulation continuous wave (FMCW)方式でも良い。
 また、送信部1001から照射される電波の周波数1301をスイープさせる場合、送信部1001から照射される電波の周波数1301と、受信部1101内の受信発振部1103から出力されるLO信号の周波数1302は、同じである事が望ましい。
 本実施の形態では、送信部1001から照射される電波の周波数1301をスイープさせる場合において、送信部1001から照射される電波の周波数1301と、受信部1101内の受信発振部1103から出力されるLO信号の周波数1302を一致させるため、以下で説明する動作を行う。
 本実施の形態では、送信部1001はトリガ信号となる電波を、受信部1101に向けて照射する。送信部1001内における具体的な動作としては、制御部1005は送信機1004内の送信発振部1003にトリガ信号となる電波を生成するように制御を行う。送信機1004はトリガ信号となる電波を送信アンテナ1002に出力する。送信アンテナ1002は、トリガ信号となる電波を送信部1001から照射する。
 受信部1101は受信アンテナ1102においてトリガ信号となる電波を受信する。受信アンテナ1102において受信されたトリガ信号となる電波は、同期信号検出部1109へ出力される。同期信号検出部1109はトリガ信号となる電波を復調してトリガ信号を検出する。同期信号検出部1109は検出したトリガ信号を制御部1110に出力する。制御部1110は、同期信号検出部1109から出力されたトリガ信号に基づいて、受信発振部1103の制御を行う。なお、受信アンテナ1102、1102、・・・、1102の内、一つでもトリガ信号となる電波を受信した場合、上記の動作が実施される構成とすることができる。
 本実施の形態では、図4で示した時刻tのタイミングで、送信部1001はトリガ信号となる電波を、受信部1101に向けて照射する。また、送信部1001はトリガ信号となる電波を受信部1101に向けて照射するタイミングから、受信部1101内で同期信号検出部1109がトリガ信号を検出するまでの時間は十分短い。そのため、送信部1001はトリガ信号となる電波を受信部1101に向けて照射する時刻と、受信部1101内で同期信号検出部1109がトリガ信号を検出する時刻は、同時刻(t)と見なしてよい。
 本実施の形態では、図4で示すように、時刻ts1のタイミングにおいて、送信部1001からの電波の照射及びその周波数1301のスイープを開始し、同時に受信部1101内の受信発振部1103のLO信号の出力及びその周波数1302のスイープを開始する。この動作の実現のため、送信部1001内の制御部1005が、トリガ信号となる電波の照射から予め定められた時間(ts1-t)が経過した後に送信発振部1003からの電波の出力およびその周波数スイープを開始する制御を行う。同様に、受信部1101内の制御部1110が、同期信号検出部1109からのトリガ信号を検出してから予め定められた時間(ts1-t)が経過した後に受信発振部1103からのLO信号の出力およびその周波数スイープを開始する制御を行う。
 本実施の形態では、図4で示すように、時刻ts1から時刻te1に掛けて、送信部1001から照射される電波の周波数1301のスイープ、および受信部1101内の受信発振部1103から出力されるLO信号の周波数1302のスイープを行う。この時、周波数1301および周波数1302の時間依存性は同一になるように、送信部1001内の制御部1005と受信部1101内の制御部1110がそれぞれ送信発振部1003と受信発振部1103の制御を行う。本実施の形態では、周波数1301および周波数1302の時間依存性が同一であれば、各周波数の時間依存性は任意でよい。
 本実施の形態では、図4で示すように、時刻te1の後に、時刻ts2から時刻te2に掛けて、時刻ts1から時刻te1までと同一の動作を行う。なお、時刻ts1から時刻te1に掛けての動作と、時刻ts2から時刻te2に掛けての動作において、異なる送信機1004を使用してもよい。また、時刻te2の後に、再び時刻ts1から時刻te1までと同一の動作を複数回行ってもよい。
 本実施の形態では、送信部1001と受信部1101の間に配線が無い状態で、検知対象物1201の像を生成するために必要なIF信号を生成する事ができる。
 ただし、図1で示した物体検知装置1000装置構成のみでは、送信部1001から照射される電波と、受信部1101内の受信発振部1103から出力されるLO信号の位相差を制御する事が困難である。例えば、送信部1001内の送信機1004を切り替えた際や、送信部1001内から照射する電波の周波数を切り替えた際、送信部1001から照射する電波の位相が、受信部1101内の受信発振部1103から出力されるLO信号の位相と無関係に変動する。このような送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差の変動は、検知対象物1201の像を乱す要因となる。
 本実施の形態では、以下の[装置動作]において説明するとおり、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、検知対象物1201の正しい像を安定して生成するための像生成手法を提供する。
[装置動作]
 図5は、本発明の実施の形態1における物体検知装置の動作を示すフロー図である。また、本実施の形態1では、物体検知装置1000を動作させることによって、物体検知方法が実施される。よって、本実施の形態1における物体検知方法の説明は、以下の物体検知装置1000の動作説明に代える。
 図5で示すように、最初に、送信部1001から同期信号を送信する(ステップA1)。
 次に、受信部1101が、送信部1001から送信された同期信号を受信する(ステップA2)。
 ステップA1及びステップA2における同期信号の送受信は、[装置構成]の項で説明しているとおり、送信部1001から照射される電波の周波数1301と、受信部1101内の受信発振部1103から出力されるLO信号の周波数1302を一致させるための動作である。
 次に、送信部1001から対象物1201に向けて電波を照射する(ステップA3)。
 次に、対象物1201で反射された電波を受信部1101の各受信アンテナ1102で受信する(ステップA4)。
 次に、受信1101の各受信アンテナ1102で受信した電波からIF信号を生成する(ステップA5)。
 次に、演算部1107において、IF信号から対象物1201の反射分布(像)を計算する(ステップA6)
 図6は、演算部1107においてIF信号から対象物1201の反射分布(像)を計算するステップA6の詳細を示したフロー図である。図6で示すように、演算部1107においてIF信号から対象物1201の反射分布(像)を計算するステップA6は、ステップB1からB7で構成される。
 図6で詳細を示した、IF信号から対象物1201の反射分布(像)を計算するステップA6は、送信部1001から送信される電波と受信部1101内のLO信号の間に、測定時に変動する不定な位相差がある場合でも、対象物1201の反射分布(像)を安定して正しく算出する事を特徴とする。
 図6で示すように、IF信号から対象物1201の反射分布(像)を計算するステップA6では、測定前の事前処理として、測定系固有の較正パラメータの計算を行う。測定前の事前処理としては、波数軸較正項の計算を行うステップB3と、送信アンテナ軸較正項の計算を行うステップB6がある。
 本実施の形態では、送信部1001から照射する電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する問題とは別に、送信アンテナ1002の配置と、受信アンテナ1102の配置と、送信部1001から照射される電波の周波数1301の設定に応じた、固定的な誤差が発生する。この固定的な誤差を較正するために、波数軸較正項の計算を行うステップB3と、送信アンテナ軸較正項の計算を行うステップB6を行う。
 また図6で示すように、IF信号から対象物1201の反射分布(像)を計算するステップA6では、測定時の処理として、測定毎に変動する誤差の補正及び対象物1201の反射分布(像)の生成を行う。測定時の処理は、ステップB1~B2及びステップB4~B5及びステップB7で構成される。ステップB1~B2及びステップB4~B5及びステップB7では、送信部1001から照射する電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差の変動を補正しながら、同時に対象物1201の反射分布(像)を生成する。
 続いて、図6で示したステップの詳細について説明する。
[ステップB1]
 図6で示したステップB1では、データ転送部1106から演算部1107に出力されたIF信号s(m,n,q)を用いる。ここで、m、n、qは、それぞれ送信アンテナ1002の番号、受信アンテナ1102の番号、波数の番号を表す。送信部1001から照射される電波の周波数1301をfとした時、波数kと周波数fの間には、cを光速としてk=2πf/cの関係がある。IF信号は、送信アンテナ1002と、受信アンテナ1102と、波数(すなわち周波数)の組(m,n,q)に対して得られるものとする。ステップB1では、IF信号s(m,n,q)を用いて、以下の式(1)に基づいて受信アンテナ軸の相関和を計算する事で、画像PRX(m,q,r)を生成する。
Figure JPOXMLDOC01-appb-M000001
  式(1)において、rは空間上の位置である。画像PRX(m,q,r)は空間上の位置rにおける像強度を表す。また画像PRX(m,q,r)は、送信アンテナ1002の番号mと、波数の番号qの組毎に得られる量でもある。Rt(m,r)は番号mに対応する送信アンテナ1002と位置rの距離を表す。また、Rr(n,r)は番号nに対応する受信アンテナ1102と位置rの距離を表す。jは虚数単位である。
[ステップB2]
 次のステップB2では、送信電波とLO信号の不定位相差の波数軸上の補正項cΔθ[WN](m,q)を、以下の式(2)に基づいてステップB1で得た画像PRX(m,q,r)から計算する。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、q'はqとは異なる波数番号で、q'は任意に取ってよい。なお、q'とqに対応する波数kは近い値を取る事が望ましい。
 以下では、補正項cΔθ[WN](m,q)が式(2)で得られる理由について説明する。すでに述べたとおり、送信部1001内の送信機1004を切り替えた際や、送信部1001内から照射する電波の周波数を切り替えた際、送信部1001から照射する電波の位相が、受信部1101内の受信発振部1103から出力されるLO信号の位相と無関係に変動する。この時、送信部1001から照射する電波と、受信部1101内のLO信号の位相差は、送信番号mと波数番号qに対してランダムに変動する位相Δθ(m,q)で表現できる。なお、図1に示した受信部1101において、複数の受信機1104、1104、1104に対し共通の受信発振部1103からLO信号が供給されているため、位相Δθが受信アンテナ1102の番号nに対して依存性を持つ事は無い。このランダムに変動する位相Δθ(m,q)により、画像PRX(m,q,r)の位相は、Δθ(m,q)だけシフトする。ここで、波数番号qが異なる二つの画像PRX(m,q,r)とPRX(m,q',r)を考える。ランダムに変動する位相Δθ(m,q)が無い場合、二つの画像PRX(m,q,r)とPRX(m,q',r)の位相はあまり変化しない。この事から、PRX(m,q',r)に補正項cΔθ[WN](m,q)を掛けて位相補正をした場合、PRX(m,q,r)とPRX(m,q',r)cΔθ[WN](m,q)の位相は一致する事が望ましい。またPRX(m,q,r)とPRX(m,q',r)cΔθ[WN](m,q)の位相が一致する場合、PRX(m,q,r)+PRX(m,q',r)cΔθ[WN](m,q)の絶対値は最大になる。PRX(m,q,r)+PRX(m,q',r)cΔθ[WN](m,q)の絶対値を最大化する条件で補正項cΔθ[WN](m,q)を決定した結果が、式(2)で与えられる。
[ステップB3]
 次のステップB3では、波数軸較正項cA[WN](m,q)を測定前に計算しておく。このステップB3の詳細手順は図7において後述する。
[ステップB4]
 次のステップB4では、ステップB1で得た画像PRX(m,q,r)と、ステップB2で得た補正項cΔθ[WN](m,q)と、ステップB3で得た較正項cA[WN](m,q)の3つを用いて、以下の式(3)に波数軸の相関和で画像PWN(m,r)を生成する。
Figure JPOXMLDOC01-appb-M000003
[ステップB5]
 次のステップB5では、送信電波とLO信号の不定位相差の送信アンテナ軸上の補正項cΔθ[TX](m)を、以下の式(4)に基づいてステップB4で得た画像PWN(m,r)から計算する。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、m'はmとは異なるアンテナ番号で、m'は任意に取ってよい。なお、m'とmに対応する送信アンテナは互いに近い位置にある事が望ましい。式(4)は、式(2)と同様に、PWN(m,r)+PWN(m',r)cΔθ[TX](m)の絶対値を最大化する条件で補正項cΔθ[TX](m)を決定している。
[ステップB6]
 次のステップB6では、送信アンテナ軸較正項cA[TX](m)を測定前に計算しておく。このステップB6の詳細手順は図7において後述する。
[ステップB7]
 次のステップB7では、ステップB4で得た画像PWN(m,r)と、ステップB5で得た補正項cΔθ[TX](m)と、ステップB6で得た較正項cA[TX](m)の3つを用いて、以下の式(5)に波数軸の相関和で画像P(r)を生成する。
Figure JPOXMLDOC01-appb-M000005
 式(5)で与えられる画像P(r)が、送信部1001から照射する電波と受信部1101内のLO信号のランダムに変動する位相差Δθ(m,q)を補正して得られる対象物1201の反射分布を示す像となる。
 図7は、波数軸較正項cA[WN](m,q)を測定前に計算するステップB3と、送信アンテナ軸較正項cA[TX](m)を測定前に計算するステップB6の詳細を示したフロー図である。図7で示したフロー図は、ステップC0からステップC6で構成される。なお、図7で示した各ステップは、実際の測定ではなく、数値計算により行う。ただし、実際の測定で用いる送信アンテナ1002の配置と、受信アンテナ1102の配置と、送信部1001から照射される電波の周波数1301の設定を、図7の各ステップで行う数値計算においても用いる。
 続いて、図7で示したステップの詳細について説明する。
[ステップC0]
 図7で示したステップC0では、較正用対象物を検知対象物1201とした場合のIF信号s(m,n,q)を、以下の式(6)に基づいて数値計算する。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、σ(r)は、位置rにおける較正用対象物の反射強度である。較正用対象物は、可能な限り大きな板状の反射体を用いる事が望ましい。また、式(6)において、Rt(m,r)は番号mに対応する送信アンテナ1002と位置rの距離を表す。また、Rr(n,r)は番号nに対応する受信アンテナ1102と位置rの距離を表す。また、k(q)は番号qに対応する波数kを表す。
[ステップC1]
 次に、ステップC1では式(6)で得たIF信号を用いて、ステップB1と同じく式(1)に基づいて画像PRX(m,q,r)を計算する。
[ステップC2]
 次に、ステップC2では、ステップC1で計算した画像PRX(m,q,r)を用いて、ステップB2と同じく式(2)に基づいて補正項cΔθ[WN](m,q)を計算する。
[ステップC3]
 次に、ステップC3では、ステップC2で得た補正項cΔθ[WN](m,q)から、以下の式(7)に基づいて波数軸較正項cA[WN](m,q)を計算する。
Figure JPOXMLDOC01-appb-M000007
 式(7)で計算された波数軸較正項cA[WN](m,q)が、図6のステップB3において使用される。
[ステップC4]
 次に、ステップC3では、ステップC1で得た画像PRX(m,q,r)と、ステップC2で得た補正項cΔθ[WN](m,q)と、ステップC3で得た波数軸較正項cA[WN](m,q)を用いて、ステップB4と同じく式(3)に基づいて画像PWN(m,r)を計算する。
[ステップC5]
 次に、ステップC5では、ステップC4で計算した画像PWN(m,r)を用いて、ステップB5と同じく式(4)に基づいて補正項cΔθ[TX](m)を計算する。
[ステップC6]
 次に、ステップC6では、ステップC5で得た補正項cΔθ[TX](m)から、以下の式(8)に基づいて波数軸較正項cA[TX](m)を計算する。
Figure JPOXMLDOC01-appb-M000008
 式(8)で計算された波数軸較正項cA[TX](m)が、図6のステップB6において使用される。
 装置動作の説明は以上である。上記の装置動作により、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、検知対象物1201の正しい像を安定して生成するための像生成手法が提供される。
 なお、上記で説明した補正項cΔθ[WN](m,q)及びcΔθ[TX](m)と、較正項cA[WN](m,q)及びcA[TX](m)が引数m及びqによらず全て1の場合が、補正及び較正を行わない従来の像生成手法に該当する。
 図8に、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合において、補正及び較正を行わない従来の像生成手法で正方形の検知対象物1201の画像を生成した例を示す。図8では画像中央の破線内が検知対象物1201の位置を表しているが、実際に得られた検知対象物1201の像は元の正方形から大きく崩れている。
 図9に、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合において、本実施の形態に基づいて補正及び較正を実施した像生成手法で正方形の検知対象物1201の画像を生成した例を示す。図9では、検知対象物1201の位置(画像中央の破線内)に、崩れる事なく検知対象物1201の像が生成されている。
(本実施の形態1の変形例1)
 図10に本実施の形態1の変形例1における装置構成の図を示す。図1で示した本実施の形態1の装置構成では送信部1001と受信部1101は別の筐体に収められていたが、図10で示した本実施の形態1の変形例1のように、送信部1001と受信部1101を同じ筐体に収めて物体検知装置1000として使用しても良い。
 図10では、送信機1004に接続された送信アンテナ1002と、受信機1104に接続された受信アンテナ1102は分離されている。一方で、送信機1004と受信機1104は、送受信を切り替えるスイッチないしアイソレータを経由して同じアンテナに接続し、送受で同じアンテナを共有してもよい。
 本実施の形態1の変形例1における装置動作は、本実施の形態1おける装置動作と同一なので、説明は省略する。
(本実施の形態1の変形例2)
 図11に本実施の形態1の変形例2における装置構成の図を示す。図11で示した本実施の形態1の変形例2の装置構成では、図10で示した本実施の形態1の変形例1の装置構成から受信部1101内の同期信号検出部1109と制御部1110とを省き、制御部1005が送信部1001内の送信発振部1003と受信部1101内の受信発振部1103の両方を制御している。制御部1005は送信部1001内の送信発振部1003が出力する電波と、受信部1101内の受信発振部1103が出力するLO信号の周波数を同じに設定する制御を行っている。
 本実施の形態1の変形例2の装置動作としては、物体検知装置1000の内部で制御部1005が送信部1001内の送信発振部1003が出力する電波と受信部1101内の受信発振部1103が出力するLO信号の周波数を同じに設定する制御を行っている。そのため、本実施の形態1の変形例2では、図5内のステップA1とステップA2はスキップとして、スキップA3から開始してもよい。上記を除いて、本実施の形態1の変形例2における装置動作は、本実施の形態1おける装置動作と同一なので、説明は省略する。
(本実施の形態2)
[装置構成]
 図12を用いて、本実施の形態2における物体検知装置の構成について説明する。
 図12に示す本実施の形態2における構成要素は、図1で示した本実施の形態1における構成要素と同一である。ただし、本実施の形態1では送信部1001内の発振部が複数の送信発振部1003、1003,1003に分離していたのに対し、本実施の形態2では単一の送信発振部1003で実装されている。
 また、本実施の形態1では受信部1101内の発振部が単一の受信発振部1103で実装していたのに対し、本実施の形態2では複数の受信発振部1103、1103,1103に分離されている。
 すなわち、本実施の形態1と形態2では、送信と受信で、単一の発振部による実装と複数の発振部による実装を入れ替えている。
 本実施の形態2では、送信発振部1003と送信機1004の接続のために、二重線で示した電波供給用ケーブルを使用している。一方で、従来の物体検知装置と異なり、本実施の形態では受信部1101内で電波供給用の配線ケーブルが不要なため、装置コストの低減および筐体サイズの小型化を実現できる。
 本実施の形態1と形態2で、上記以外の違いは無いため、送信発振部1003と受信発振部1103以外の構成要素の説明は省略する。
[装置動作]
 装置動作も、本実施の形態1と形態2でほぼ共通である。ここでは、本実施の形態2の装置動作で、本実施の形態1の装置動作と異なる要素のみを説明する。
 本実施の形態2における装置動作は、図5で示したフロー図によって実施される。図5による装置動作は、本実施の形態1と形態2で共通であるため、説明は省略する。
 本実施の形態2における装置動作の内、図5で示したフロー図内のステップA6の詳細を示したフロー図を図13に示す。本実施の形態1と形態2において送信と受信で単一の発振部による実装と複数の発振部による実装を入れ替えた事を反映して、本実施の形態2におけるフロー図13内のステップは、本実施の形態1におけるフロー図6内のステップから以下のように変更される。具体的には、送信アンテナに対する処理と受信アンテナに対する処理を本実施の形態1と形態2で入れ替える。
 本実施の形態1におけるステップB1が受信アンテナ軸の相関和によりIF信号から画像を生成するのに対し、本実施の形態2におけるステップB1'では送信アンテナ軸の相関和によりIF信号から画像を生成する。
 本実施の形態1におけるステップB6が送信アンテナ軸較正項の計算を行うのに対し、本実施の形態2におけるステップB6'では受信アンテナ軸較正項の計算を行う。
 本実施の形態1におけるステップB7が送信アンテナ軸の相関和で画像を生成するのに対し、本実施の形態2におけるステップB7'では受信アンテナ軸の相関和で画像を生成する。
 本実施の形態2における装置動作の内、図13で示したフロー図内のステップB3及びステップB6'の詳細を示したフロー図を図14に示す。本実施の形態1と形態2において送信と受信で単一の発振部による実装と複数の発振部による実装を入れ替えた事を反映して、本実施の形態2におけるフロー図14内のステップは、本実施の形態1におけるフロー図7内のステップから以下のように変更される。具体的には、送信アンテナに対する処理と受信アンテナに対する処理を本実施の形態1と形態2で入れ替える。
 本実施の形態1におけるステップC1が受信アンテナ軸の相関和によりIF信号から画像を生成するのに対し、本実施の形態2におけるステップC1'では送信アンテナ軸の相関和によりIF信号から画像を生成する。
 本実施の形態1におけるステップC5が送信アンテナ軸の補正項の計算を行うのに対し、本実施の形態2におけるステップC5'では受信アンテナ軸の補正項の計算を行う。
 本実施の形態1におけるステップC6が送信アンテナ軸較正項を計算するのに対し、本実施の形態2におけるステップC6'では受信アンテナ軸較正項を計算する。
 上記の本実施の形態2における装置動作により、本実施の形態1と同じく、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合においても、検知対象物1201の正しい像を安定して生成するための像生成手法が提供される。
(本実施の形態2の変形例1)
 図15に本実施の形態2の変形例1における装置構成の図を示す。図12で示した本実施の形態2の装置構成では送信部1001と受信部1101は別の筐体に収められていたが、図15で示した本実施の形態2の変形例1のように、送信部1001と受信部1101を同じ筐体に収めて物体検知装置1000として使用しても良い。
 図15では、送信機1004に接続された送信アンテナ1002と、受信機1104に接続された受信アンテナ1102は分離されている。一方で、送信機1004と受信機1104は、送受信を切り替えるスイッチないしアイソレータを経由して同じアンテナに接続し、送受で同じアンテナを共有してもよい。
 本実施の形態2の変形例1における装置動作は、本実施の形態2おける装置動作と同一なので、説明は省略する。
(本実施の形態2の変形例2)
 図16に本実施の形態2の変形例2における装置構成の図を示す。図16で示した本実施の形態2の変形例2の装置構成では、図15で示した本実施の形態1の変形例1の装置構成から受信部1101内の同期信号検出部1109と制御部1110とを省き、制御部1005が送信部1001内の送信発振部1003と受信部1101内の受信発振部1103の両方を制御している。制御部1005は送信部1001内の送信発振部1003が出力する電波と、受信部1101内の受信発振部1103が出力するLO信号の周波数を同じに設定する制御を行っている。
 本実施の形態2の変形例2の装置動作としては、物体検知装置1000の内部で制御部1005が送信部1001内の送信発振部1003が出力する電波と受信部1101内の受信発振部1103が出力するLO信号の周波数を同じに設定する制御を行っている。そのため、本実施の形態1の変形例2では、図5内のステップA1とステップA2はスキップとして、スキップA3から開始してもよい。上記を除いて、本実施の形態2の変形例2における装置動作は、本実施の形態2における装置動作と同一なので、説明は省略する。
[プログラム]
 ここで、本発明の実施の形態におけるプログラムを実行することによって、物体検知装置を実現するコンピュータ(演算装置)について図17を用いて説明する。図17は本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。
 図17に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。
 なお、本実施の形態における物体検知装置は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、物体検知装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
[効果]
 以下において、本実施の形態1及び2の効果を要約する。
 本実施の形態1及び2では、送信部1001の送信発振部1003と受信部1101の受信発振部1103で異なる発振器を用いる事で、送信部1001から照射される電波と受信部1101内の受信発振部1103から出力されるLO信号の位相差が変動する場合であっても、検知対象物1201の正しい像を安定して生成するための像生成手法が提供される。この事により、送信装置から照射される電波を生成する発振部と、受信装置内でLO信号を生成する発振部を分離する事が可能な物体検知装置が提供される。
 本実施の形態1及び2の物体検知装置により、送信部と受信部の間の配線を無くす事ができ、歩行者の通過を妨げるという課題を解決し、さらに送信装置と受信装置の位置関係を柔軟に変更する事が可能になる。また電波供給用の配線ケーブルの数を削減し、コストと筐体サイズの課題を解決する。
 以上、本発明の好適な実施形態の構成を説明した。しかし、前述の各特許文献等に開示されている内容は、本発明に引用をもって繰り込むことも可能とする。本発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態の変更・調整が可能である。また、本発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせあるいは選択も可能である。すなわち、本発明は、特許請求の範囲を含む全開示、技術的思想にしたがって、当業者であればなし得ることが可能な各種変形、修正を含むことは勿論である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限定されない。
1. 電波によって物体を検知するための物体検知装置であって、
 送信部と、受信部と、演算部とを備え、
 前記送信部は、
  前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、
  前記送信電波を前記物体に照射する送信アンテナアレイと、
を備え、
 前記受信部は、
  前記物体から反射された前記電波を受信する受信アンテナアレイと、
  受信局所発振信号を生成する受信発振部と、
  前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、
を備え、
 前記演算部は、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成し、
  前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成し、
  前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成し、
  前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成し、
 前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成する、
ことを特徴とする物体検知装置。
2. 前記演算部は、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
  前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成し、
  前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成し、
  前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成し、
  前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成する、
ことを特徴とする1に記載の物体検知装置。
3. 前記第一アンテナアレイは前記受信アンテナアレイであり、
 前記第二アンテナアレイは前記送信アンテナアレイであり、
 前記受信発振部は複数の前記受信機に前記受信局所発振信号を供給しており、
 前記送信発振部は複数の発振器で構成されている、
ことを特徴とする1又は2に記載の物体検知装置。
4. 前記第一アンテナアレイは前記送信アンテナアレイであり、
 前記第二アンテナアレイは前記受信アンテナアレイであり、
 前記送信発振部は複数の前記送信アンテナに前記送信電波を供給しており、
 前記受信発振部は複数の発振器で構成されている、
ことを特徴とする1又は2に記載の物体検知装置。
5. 前記送信部と前記受信部が、異なる筐体に収められている、
ことを特徴とする1ないし4のいずれかに記載の物体検知装置。
6. 前記送信部と前記受信部が、同一の筐体に収められている、
ことを特徴とする1ないし4のいずれかに記載の物体検知装置。
7. 前記送信部は、同期信号を搬送する送信電波を、前記送信アンテナアレイから前記受信部に向けて送信し、かつ前記同期信号を搬送する送信電波を送信したタイミングを基準として前記物体に向けて照射するための送信電波を生成する送信発振部の制御を行い、
 前記受信部は、前記同期信号を搬送する送信電波を受信し、前記受信部に備えられた同期検出部において同期信号を検出し、かつ前記同期信号に基づいて前記受信局所発振信号を生成する前記受信発振部を制御する、
ことを特徴とする5又は6に記載の物体検知装置。
8. 前記物体に向けて照射するための送信電波を生成する送信発振部及び前記受信局所発振信号を生成する前記受信発振部を制御する制御部を備える、
ことを特徴とする6に記載の物体検知装置。
9. 電波によって物体を検知するための物体検知方法であって、
 前記物体に向けて照射するための複数の周波数の送信電波を送信発振部で生成するステップと、
 送信アンテナアレイを用いて前記送信電波を前記物体に照射するステップと、
 前記物体から反射された前記電波を受信アンテナアレイで受信するステップと、
 受信局所発振信号を受信発振部で生成するステップと、
 前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を受信機で生成するステップと、
 前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  演算部において、前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
  前記演算部において、前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
  前記演算部において、前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
  前記演算部において、前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
  前記演算部において、前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
を有することを特徴とする物体検知方法。
10.前記演算部において、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
  前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成するステップと、
  前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成するステップと、
  前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成するステップと、
  前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成するステップと、
を有することを特徴とする9に記載の物体検知方法。
11. 電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、前記送信電波を前記物体に照射する送信アンテナアレイと、を備えた送信部と、
 前記物体から反射された前記電波を受信する受信アンテナアレイと、受信局所発振信号を生成する受信発振部と、前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、を備えた受信部と、
 プロセッサと、を備える前記物体検知装置の前記プロセッサに、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
  前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
  前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
  前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
  前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
  前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
を実行させることを特徴とするプログラム。
12. 前記プロセッサに、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
  前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成するステップと、
  前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成するステップと、
  前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成するステップと、
  前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成するステップと、
を実行させることを特徴とする11に記載のプログラム。
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 1000 物体検知装置
 1001 送信部
 1002 送信アンテナ
 1003 送信発振部
 1004 送信機
 1005、1110 制御部
 1101 受信部
 1102 受信アンテナ
 1103 受信発振部
 1104 受信機
 1105 ミキサ
 1106 データ転送部
 1107 演算部
 1109 同期信号検出部
 1201 検知対象物
 1301 電波の周波数
 1302 LO信号の周波数

Claims (12)

  1.  電波によって物体を検知するための物体検知装置であって、
     送信部と、受信部と、演算部とを備え、
     前記送信部は、
      前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、
      前記送信電波を前記物体に照射する送信アンテナアレイと、
    を備え、
     前記受信部は、
      前記物体から反射された前記電波を受信する受信アンテナアレイと、
      受信局所発振信号を生成する受信発振部と、
      前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、
    を備え、
     前記演算部は、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
      前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成し、
      前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成し、
      前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成し、
      前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成し、
     前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成する、
    ことを特徴とする物体検知装置。
  2.  前記演算部は、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
      前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成し、
      前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成し、
      前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成し、
      前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成する、
    ことを特徴とする請求項1に記載の物体検知装置。
  3.  前記第一アンテナアレイは前記受信アンテナアレイであり、
     前記第二アンテナアレイは前記送信アンテナアレイであり、
     前記受信発振部は複数の前記受信機に前記受信局所発振信号を供給しており、
     前記送信発振部は複数の発振器で構成されている、
    ことを特徴とする請求項1又は2に記載の物体検知装置。
  4.  前記第一アンテナアレイは前記送信アンテナアレイであり、
     前記第二アンテナアレイは前記受信アンテナアレイであり、
     前記送信発振部は複数の前記送信アンテナに前記送信電波を供給しており、
     前記受信発振部は複数の発振器で構成されている、
    ことを特徴とする請求項1又は2に記載の物体検知装置。
  5.  前記送信部と前記受信部が、異なる筐体に収められている、
    ことを特徴とする請求項1ないし4のいずれか1項に記載の物体検知装置。
  6.  前記送信部と前記受信部が、同一の筐体に収められている、
    ことを特徴とする請求項1ないし4のいずれか1項に記載の物体検知装置。
  7.  前記送信部は、同期信号を搬送する送信電波を、前記送信アンテナアレイから前記受信部に向けて送信し、かつ前記同期信号を搬送する送信電波を送信したタイミングを基準として前記物体に向けて照射するための送信電波を生成する送信発振部の制御を行い、
     前記受信部は、前記同期信号を搬送する送信電波を受信し、前記受信部に備えられた同期検出部において同期信号を検出し、かつ前記同期信号に基づいて前記受信局所発振信号を生成する前記受信発振部を制御する、
    ことを特徴とする請求項5又は6に記載の物体検知装置。
  8.  前記物体に向けて照射するための送信電波を生成する送信発振部及び前記受信局所発振信号を生成する前記受信発振部を制御する制御部を備える、
    ことを特徴とする請求項6に記載の物体検知装置。
  9.  電波によって物体を検知するための物体検知方法であって、
     前記物体に向けて照射するための複数の周波数の送信電波を送信発振部で生成するステップと、
     送信アンテナアレイを用いて前記送信電波を前記物体に照射するステップと、
     前記物体から反射された前記電波を受信アンテナアレイで受信するステップと、
     受信局所発振信号を受信発振部で生成するステップと、
     前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を受信機で生成するステップと、
     前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
      演算部において、前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
      前記演算部において、前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
      前記演算部において、前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
      前記演算部において、前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
      前記演算部において、前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
    を有することを特徴とする物体検知方法。
  10.  前記演算部において、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
      前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成するステップと、
      前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成するステップと、
      前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成するステップと、
      前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成するステップと、
    を有することを特徴とする請求項9に記載の物体検知方法。
  11.  電波によって物体を検知するための物体検知装置であって、
     前記物体に向けて照射するための複数の周波数の送信電波を生成する送信発振部と、前記送信電波を前記物体に照射する送信アンテナアレイと、を備えた送信部と、
     前記物体から反射された前記電波を受信する受信アンテナアレイと、受信局所発振信号を生成する受信発振部と、前記受信アンテナアレイで受信した受信信号と前記受信発振部から生成された前記受信局所発振信号から中間周波数信号を生成する受信機と、を備えた受信部と、
     プロセッサと、を備える前記物体検知装置の前記プロセッサに、前記送信アンテナアレイと前記受信アンテナアレイのいずれかを第一アンテナアレイとし、他方を第二アンテナアレイとした場合、
      前記第一アンテナアレイを構成するアンテナ毎の中間周波数信号から、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、第一の画像を生成するステップと、
      前記第一の画像に基づいて、前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第一の補正項を生成するステップと、
      前記第一の画像及び前記第一の補正項に基づいて、前記第二アンテナアレイのアンテナ毎に、第二の画像を生成するステップと、
      前記第二の画像に基づいて、前記第二アンテナアレイのアンテナ毎に、前記送信電波と前記受信局所発振信号の位相差を補正する第二の補正項を生成するステップと、
      前記第二の画像及び前記第二の補正項に基づいて、前記物体の画像を生成するステップと、
    を実行させることを特徴とするプログラム。
  12.  前記プロセッサに、前記送信アンテナアレイ及び前記受信アンテナアレイを構成する各アンテナ位置と、前記送信電波の周波数に基づいて、
      前記各アンテナ位置と前記送信電波の周波数の設定に固有な誤差を較正する第一の較正項を前記送信電波の周波数毎および前記第二アンテナアレイのアンテナ毎に生成するステップと、
      前記誤差を較正する第二の較正項を前記第二アンテナアレイのアンテナ毎に生成するステップと、
      前記第二の画像を、前記第一の画像及び前記第一の補正項及び前記第一の較正項に基づいて生成するステップと、
      前記物体の画像を、前記第二の画像及び前記第二の補正項及び前記第二の較正項に基づいて生成するステップと、
    を実行させることを特徴とする請求項11に記載のプログラム。
PCT/JP2020/027684 2020-07-16 2020-07-16 物体検知装置及び物体検知方法及びプログラム WO2022014010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/027684 WO2022014010A1 (ja) 2020-07-16 2020-07-16 物体検知装置及び物体検知方法及びプログラム
JP2022536069A JP7367876B2 (ja) 2020-07-16 2020-07-16 物体検知装置及び物体検知方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027684 WO2022014010A1 (ja) 2020-07-16 2020-07-16 物体検知装置及び物体検知方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022014010A1 true WO2022014010A1 (ja) 2022-01-20

Family

ID=79554527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027684 WO2022014010A1 (ja) 2020-07-16 2020-07-16 物体検知装置及び物体検知方法及びプログラム

Country Status (2)

Country Link
JP (1) JP7367876B2 (ja)
WO (1) WO2022014010A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218979A (ja) * 1985-03-25 1986-09-29 Matsushita Electric Works Ltd 距離限定型光センサ
JP2015169643A (ja) * 2014-03-11 2015-09-28 日本電気株式会社 レーダ装置及びその制御方法
WO2018181201A1 (ja) * 2017-03-31 2018-10-04 日本電気株式会社 送信装置、受信装置、送信方法及び受信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080006A1 (en) 2005-01-26 2006-08-03 Gamma Medica-Ideas (Norway) As Video-rate holographic surveillance system
US7170440B1 (en) 2005-12-10 2007-01-30 Landray Technology, Inc. Linear FM radar
CN102135610B (zh) 2010-12-28 2013-03-06 中国航天科工集团第二研究院二○三所 一种用于人体毫米波成像安检系统的近场实时校准方法
CN104375143A (zh) 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及人体或物品检查方法
JP6271384B2 (ja) 2014-09-19 2018-01-31 株式会社東芝 検査装置
DE102014014864A1 (de) 2014-10-06 2016-04-07 Astyx Gmbh Abbildender Radarsensor mit horizontaler digitaler Strahlformung und vertikaler Objektvermessung durch Phasenvergleich bei zueinander versetzten Sendern
US10948580B2 (en) 2016-03-15 2021-03-16 Nec Corporation Object sensing device and object sensing method
US11906650B2 (en) 2018-03-19 2024-02-20 Nec Corporation Object detection apparatus, object detection method, and computer-readable recording medium
EP3882661A4 (en) 2018-12-12 2021-12-15 Huawei Technologies Co., Ltd. SIGNAL PROCESSING METHODS, RADAR SYSTEM AND VEHICLE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218979A (ja) * 1985-03-25 1986-09-29 Matsushita Electric Works Ltd 距離限定型光センサ
JP2015169643A (ja) * 2014-03-11 2015-09-28 日本電気株式会社 レーダ装置及びその制御方法
WO2018181201A1 (ja) * 2017-03-31 2018-10-04 日本電気株式会社 送信装置、受信装置、送信方法及び受信方法

Also Published As

Publication number Publication date
JP7367876B2 (ja) 2023-10-24
JPWO2022014010A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
US9151839B2 (en) Imaging system
US20170254898A1 (en) Method and apparatus for reading code using short-range millimeter wave (mmwave) radar
KR101954183B1 (ko) 능동 위상배열 안테나의 원전계 신호 측정 시스템 및 이의 동작 방법
US20070290864A1 (en) IC-tag read-write apparatus
WO2022014010A1 (ja) 物体検知装置及び物体検知方法及びプログラム
EP0503600B1 (en) Optical distance measuring apparatus
JP6849100B2 (ja) 物体検知装置、物体検知方法及びプログラム
JP7248454B2 (ja) レーダ装置および補正値算出方法
JP3538183B2 (ja) パルスレーダ装置
WO2022014011A1 (ja) 物体検知装置及び物体検知方法
FI119744B (fi) Menetelmä ja mittalaite mitata mikroaalloilla
JP7042975B2 (ja) 信号処理装置、信号処理方法及びレーダ装置
US20200386800A1 (en) System and method of characterizing a quiet zone of an over-the-air testing space
KR102118010B1 (ko) 광대역 송신장치, 이를 구비하는 레이다 설비, 및 이의 이득 평탄도 보상방법
US20070005817A1 (en) Computer system having a wireless input device and coordinate processing method
JP2006258484A (ja) レーザレーダ装置
JP2002048529A (ja) 送信器と受信器との間の位相シフトを補正する方法及び装置
WO2022054160A1 (ja) 物体検知装置、物体検知方法及びプログラム
JP2005164370A (ja) レーダ装置
JP3749489B2 (ja) レーダ装置
WO2019180767A1 (ja) 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
WO2021048929A1 (ja) 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
US11658415B2 (en) Antenna module supporting of sensing distance and electronic device including the same
US11616546B2 (en) High frequency beam forming device
US20220163658A1 (en) System and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945195

Country of ref document: EP

Kind code of ref document: A1