WO2022012351A1 - Transparent conductive electrode, preparation method therefor, and electronic device - Google Patents

Transparent conductive electrode, preparation method therefor, and electronic device Download PDF

Info

Publication number
WO2022012351A1
WO2022012351A1 PCT/CN2021/104086 CN2021104086W WO2022012351A1 WO 2022012351 A1 WO2022012351 A1 WO 2022012351A1 CN 2021104086 W CN2021104086 W CN 2021104086W WO 2022012351 A1 WO2022012351 A1 WO 2022012351A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
transparent conductive
substrate
nanowire network
transparent
Prior art date
Application number
PCT/CN2021/104086
Other languages
French (fr)
Chinese (zh)
Inventor
王硕
辛凯
刘云峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022012351A1 publication Critical patent/WO2022012351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Non-Insulated Conductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a transparent conductive electrode, a preparation method therefor, and an electronic device, relating to the technical field of transparent electrical conductors, and capable of reducing the sheet resistance of transparent conductive electrodes. The transparent conductive electrode comprises a transparent substrate, and a metal mesh (2) and a metal nanowire network (3) disposed inside the transparent substrate. The metal nanowire network (3) is located in a mesh hole region of the metal mesh (2). The transparent substrate (1) comprises a first surface disposed in a thickness direction. The metal mesh (2) and the metal nanowire network (3) are exposed at the first surface, and are flush with the first surface. The transparent conductive electrode further comprises a transparent conductive modification layer (4). The transparent conductive modification layer (4) covers the first surface and the metal mesh (2) and the metal nanowire network (3) exposed at the first surface.

Description

透明导电电极及其制备方法、电子器件Transparent conductive electrode and preparation method thereof, electronic device
本申请要求在2020年7月13日提交国家知识产权局、申请号为202010670908.9、发明名称为“透明导电电极及其制备方法、电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application with the application number 202010670908.9 and the invention title "Transparent Conductive Electrode and its Preparation Method, Electronic Device" submitted to the State Intellectual Property Office on July 13, 2020, the entire contents of which are incorporated by reference in this application.
技术领域technical field
本申请涉及透明导电技术领域,尤其涉及一种透明导电电极及其制备方法、电子器件。The present application relates to the technical field of transparent conduction, and in particular, to a transparent conductive electrode, a preparation method thereof, and an electronic device.
背景技术Background technique
透明导电电极(也可以简称为透明电极)基于其自身的透光性而广泛应用于在光电转换、信息显示、固体照明等领域,现有的透明电极中多采用透明导电氧化物(transparent conductive oxide,TCO)制成,由于TCO的电阻率相对较高,使得形成的透明电极的方阻较大,尤其是对于柔性衬底场景下,透明电极的方阻一般可以达到几十欧姆甚至上百欧姆,从而导致大面积的透明电极的电阻会大幅增加,进而也就造成了透明电极的应用受限的问题。Transparent conductive electrodes (also referred to as transparent electrodes) are widely used in photoelectric conversion, information display, solid-state lighting and other fields based on their own light transmittance. Transparent conductive oxides are mostly used in existing transparent electrodes. , TCO), due to the relatively high resistivity of TCO, the square resistance of the formed transparent electrode is large, especially for the flexible substrate scenario, the square resistance of the transparent electrode can generally reach tens of ohms or even hundreds of ohms , resulting in a large increase in the resistance of the large-area transparent electrode, which in turn causes the problem that the application of the transparent electrode is limited.
以透明电极在太阳能电池(也可以称为光电池)中的应用为例,透明电极作为太阳能电池的重要组成部分,由于透明电极的方阻过高,严重影响太阳能电池的光电转换效率,大面积的太阳能电池通常采用多个窄条状子电池串联的设置方式,造成太阳能电池本身出现人眼可见的线条,进而导致其应用场景受到很大程度的限制;例如对于目前出现的智能穿戴领域、消费电子等电子产品,对视觉性、美观度都有很高的要求,而目前采用多个窄条状子电池串联方式的太阳能电池无法满足其需求;因此需要设计一种采用低方阻的透明电极,以扩大太阳能电池的应用场景。Taking the application of transparent electrodes in solar cells (also known as photovoltaic cells) as an example, transparent electrodes are an important part of solar cells. Due to the high square resistance of transparent electrodes, the photoelectric conversion efficiency of solar cells is seriously affected. Solar cells are usually set up in series with multiple narrow strip sub-cells, resulting in visible lines in the solar cell itself, which greatly limits its application scenarios; for example, for the current smart wearable fields, consumer electronics, etc. Electronic products have high requirements on visibility and aesthetics, and the current solar cells that use multiple narrow strip sub-cells in series cannot meet their needs; therefore, it is necessary to design a transparent electrode with low square resistance to expand Application scenarios of solar cells.
发明内容SUMMARY OF THE INVENTION
本申请提供一种透明导电电极及其制备方法、电子器件,能够降低透明导电电极的方阻。The present application provides a transparent conductive electrode, a preparation method thereof, and an electronic device, which can reduce the square resistance of the transparent conductive electrode.
本申请提供一种透明导电电极,包括透明衬底以及嵌入在透明衬底中的金属网格、金属纳米线网络;金属纳米线网络位于金属网格的网孔区域;透明衬底包括位于厚度方向上的第一表面;金属网格以及金属纳米线网络露出第一表面、且与第一表面平齐;透明导电电极还包括:透明导电修饰层;透明导电修饰层覆盖第一表面以及露出于第一表面的金属网格、金属纳米线网络。The application provides a transparent conductive electrode, including a transparent substrate, a metal grid and a metal nanowire network embedded in the transparent substrate; the metal nanowire network is located in the mesh area of the metal grid; The metal grid and the metal nanowire network are exposed on the first surface and are flush with the first surface; the transparent conductive electrode further includes: a transparent conductive modification layer; the transparent conductive modification layer covers the first surface and is exposed on the first surface. A metal mesh, metal nanowire network on a surface.
在本申请提供的透明导电电极中,将透明导电修饰层设置在嵌入有金属网格和金属纳米线网络的透明衬底的表面,一方面,通过设置金属网格、金属纳米线网络露出于透明衬底的表面直接与透明导电修饰层接触,使得金属纳米线网络能够向透明导电修饰层提供载流子横向迁移的辅助高导电通路,金属网格对载流子进行高效收集(以透明导电电极在光电池中的应用为例),进而有效的降低了透明导电电极的方阻;另一方面,通过设置金属 网格、金属纳米线网络、透明衬底在与透明导电修饰层接触的一侧表面平齐,避免了透明导电修饰层因下方不平整而出现台阶或者被刺穿,而导致失效或者产生较大漏电流等弊端。In the transparent conductive electrode provided by this application, the transparent conductive modification layer is arranged on the surface of the transparent substrate embedded with the metal grid and the metal nanowire network. On the one hand, the metal grid and the metal nanowire network are exposed on the transparent The surface of the substrate is in direct contact with the transparent conductive modification layer, so that the metal nanowire network can provide the transparent conductive modification layer with an auxiliary high-conductivity path for the lateral migration of carriers, and the metal grid can efficiently collect the carriers (with the transparent conductive electrode). For example, the application in photovoltaic cells), thereby effectively reducing the square resistance of the transparent conductive electrode; It is flush, which avoids the defects of the transparent conductive decoration layer being stepped or pierced due to the unevenness below, which may lead to failure or generate a large leakage current.
在一些可能实现的方式中,透明衬底还包括位于第一表面相对侧的第二表面;金属网格以及金属纳米线网络均未露出第二表面;以避免透明导电电极在使用的过程,透明导电电极在第二表面一侧与其他的线路或者器件造成不必要的电连接(例如短路等)。In some possible implementations, the transparent substrate further includes a second surface on the opposite side of the first surface; neither the metal grid nor the metal nanowire network is exposed on the second surface; to avoid the process of using the transparent conductive electrode, the transparent The conductive electrodes cause unnecessary electrical connections (eg, short circuits, etc.) with other lines or devices on the side of the second surface.
在一些可能实现的方式中,金属纳米线网络嵌入在透明衬底中表面覆盖有氧化物纳米颗粒;以使得金属纳米线在搭接位置更加紧密,也即降低了金属纳米线在搭接位置的接触电阻,也即提高了金属纳米线网络的导电性能,进而也就降低了透明导电电极的方阻,提高了透明导电电极的导电性能。In some possible implementations, the metal nanowire network is embedded in the transparent substrate and the surface is covered with oxide nanoparticles; so that the metal nanowires are more compact at the overlapping position, that is, the metal nanowires at the overlapping position are reduced. The contact resistance also improves the electrical conductivity of the metal nanowire network, thereby reducing the square resistance of the transparent conductive electrode and improving the electrical conductivity of the transparent conductive electrode.
在一些可能实现的方式中,金属纳米线网络为银纳米线网络。In some possible implementations, the metal nanowire network is a silver nanowire network.
在一些可能实现的方式中,透明导电修饰层中包括透明导电氧化物、透明导电聚合物、碳纳米管、石墨烯中的一种或多种。In some possible implementations, the transparent conductive modification layer includes one or more of transparent conductive oxides, transparent conductive polymers, carbon nanotubes, and graphene.
在一些可能实现的方式中,透明衬底为柔性衬底。In some possible implementations, the transparent substrate is a flexible substrate.
本申请实施例还提供电子器件,包括如前述任一种可能实现的方式中提供的透明导电电极。The embodiments of the present application also provide electronic devices, including the transparent conductive electrodes provided in any of the foregoing possible implementation manners.
在一些可能实现的方式中,电子器件包括光电池;光电池中的至少一个电极采用透明导电电极。In some possible implementations, the electronic device includes a photovoltaic cell; at least one electrode in the photovoltaic cell adopts a transparent conductive electrode.
本申请实施例还提供一种透明导电电极的制备方法,包括:在基板上形成胶质层;在所述胶质层上形成镂空的网格沟槽,以得到胶质图案层;在位于胶质图案层的网格沟槽内的基板上形成金属网格,并去除胶质图案层;在位于金属网格的网孔区域的基板上形成金属纳米线网络;在形成有金属网格和金属纳米线网络的基板上形成高分子透明膜层,以将金属网格和金属纳米线网络嵌入在高分子透明膜层中;将高分子透明膜层以及嵌入在高分子透明膜层中的金属网格、金属纳米线网络整体从基板进行剥离,得到透明导电基底;在透明导电基底的剥离侧的表面形成透明导电修饰层。The embodiment of the present application also provides a method for preparing a transparent conductive electrode, which includes: forming a colloidal layer on a substrate; forming a hollow grid groove on the colloidal layer to obtain a colloidal pattern layer; forming a metal mesh on the substrate in the mesh groove of the quality pattern layer, and removing the colloidal pattern layer; forming a metal nanowire network on the substrate located in the mesh area of the metal mesh; forming a metal mesh and metal mesh on the substrate; A polymer transparent film layer is formed on the substrate of the nanowire network to embed the metal grid and the metal nanowire network in the polymer transparent film layer; the polymer transparent film layer and the metal mesh embedded in the polymer transparent film layer are The whole grid and the metal nanowire network are peeled off from the substrate to obtain a transparent conductive substrate; a transparent conductive modification layer is formed on the surface of the peeled side of the transparent conductive substrate.
采用本申请的制作方法,通过先在基板上制作金属网格、金属纳米线网络,然后再形成高分子透明膜层(也即作为透明导电电极的透明衬底),也即采用“反向嵌入工艺”将金属网格、金属纳米线网络嵌入至透明衬底中,一方面,能够使得金属网格、金属纳米线网络露出于透明衬底的表面直接与透明导电修饰层直接接触,使得金属纳米线网络能够向透明导电修饰层提供载流子横向迁移的辅助高导电通路,金属网格对载流子进行高效收集(以透明导电电极在光电池中的应用为例),进而有效的降低了透明导电电极的方阻;另一方面,在无需通过额外的复杂平整工艺(例如化学或机械抛光处理)来进行平坦化处理的情况下,保证了金属网格、金属纳米线网络、透明衬底在与透明导电修饰层接触的一侧共平面(也即具有零台阶、超低粗糙度的界面),进而保证了透明导电修饰层的平整性,避免了透明导电修饰层因下方不平整而出现台阶或者被刺穿,而导致失效或者产生较大漏电流等弊端。Using the production method of the present application, by first fabricating metal grids and metal nanowire networks on the substrate, and then forming a polymer transparent film layer (that is, a transparent substrate serving as a transparent conductive electrode), that is, using "reverse embedding" "Process" embeds the metal grid and the metal nanowire network into the transparent substrate. The wire network can provide an auxiliary high-conductivity path for the lateral migration of carriers to the transparent conductive modification layer, and the metal grid can efficiently collect the carriers (taking the application of transparent conductive electrodes in photovoltaic cells as an example), which effectively reduces the transparent square resistance of conductive electrodes; on the other hand, without the need for additional complex planarization processes (such as chemical or mechanical polishing), the metal grid, metal nanowire network, transparent substrate The side in contact with the transparent conductive modification layer is coplanar (that is, the interface with zero steps and ultra-low roughness), thereby ensuring the flatness of the transparent conductive modification layer and avoiding the appearance of steps due to unevenness below the transparent conductive modification layer. Or be punctured, resulting in failure or large leakage current and other drawbacks.
在一些可能实现的方式中,在胶质层上形成镂空的网格沟槽,以得到胶质图案层包括:采用光刻法或者纳米压印法,在胶质层上形成镂空的网格沟槽。In some possible implementation manners, forming hollow grid grooves on the colloidal layer to obtain the colloidal pattern layer includes: using photolithography or nanoimprinting to form hollow grid grooves on the colloidal layer groove.
在一些可能实现的方式中,在位于胶质图案层的网格沟槽内的基板上形成金属网格包 括:采用选择性电镀工艺在胶质图案层的网格沟槽内的基板上形成金属网格;其中,基板为导电基板。In some possible implementations, forming the metal mesh on the substrate located in the mesh grooves of the colloidal pattern layer includes: using a selective electroplating process to form metal meshes on the substrate in the mesh grooves of the colloidal pattern layer grid; wherein, the substrate is a conductive substrate.
在一些可能实现的方式中,在位于金属网格的网孔区域的基板上形成金属纳米线网络包括:采用涂布工艺将含有纳米金属线的溶液填充至金属网格的网孔区域,以在金属网格的网孔区域的基板上形成金属纳米线网络。In some possible implementation manners, forming the metal nanowire network on the substrate located in the mesh area of the metal grid includes: using a coating process to fill the solution containing nano-metal wires into the mesh area of the metal grid, to A metal nanowire network is formed on the substrate in the mesh area of the metal mesh.
在一些可能实现的方式中,在位于金属网格的网孔区域的基板上形成金属纳米线网络包括:采用涂布工艺将含有纳米金属线和氧化物纳米颗粒的溶液填充至金属网格的网孔区域,以在金属网格的网孔区域的基板上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络。In some possible implementation manners, forming the metal nanowire network on the substrate located in the mesh area of the metal mesh includes: filling the mesh of the metal mesh with a solution containing nano-metal wires and oxide nanoparticles using a coating process A hole region is formed to form a metal nanowire network whose surface is covered with oxide nanoparticles on the substrate in the mesh region of the metal grid.
在含有氧化物纳米颗粒和金属纳米线的溶液在溶剂蒸发的过程中能够提供毛细作用力,氧化物纳米颗粒随机聚集在金属纳米线的表面,尤其是在金属纳米线搭接位置的表面,能够使得金属纳米线在搭接位置更加紧密,降低了金属纳米线在搭接位置的接触电阻,也即提高了金属纳米线网络的导电性能。The solution containing oxide nanoparticles and metal nanowires can provide capillary force in the process of solvent evaporation. The oxide nanoparticles randomly aggregate on the surface of metal nanowires, especially on the surface of the overlapping position of metal nanowires. The metal nanowires are made closer at the overlapping position, the contact resistance of the metal nanowires at the overlapping position is reduced, and the electrical conductivity of the metal nanowire network is improved.
在一些可能实现的方式中,在位于金属网格的网孔区域的基板上形成金属纳米线网络包括:先采用涂布工艺将含有纳米金属线的溶液填充至金属网格的网孔区域形成金属纳米线网络,然后再采用涂布工艺将含有氧化物纳米颗粒的溶液填充至金属网格的网孔区域,以在金属网格的网孔区域的基板上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络。In some possible implementation manners, forming the metal nanowire network on the substrate located in the mesh area of the metal mesh includes: firstly using a coating process to fill the mesh area of the metal mesh with a solution containing nano metal wires to form a metal mesh The nanowire network, and then the solution containing oxide nanoparticles is filled into the mesh area of the metal mesh by a coating process to form a metal surface covered with oxide nanoparticles on the substrate in the mesh area of the metal mesh. Nanowire network.
在溶剂蒸发的过程中能够提供毛细作用力,氧化物纳米颗粒随机聚集在金属纳米线网络的表面,尤其是在金属纳米线搭接位置的表面,能够使得金属纳米线在搭接位置更加紧密,降低了金属纳米线在搭接位置的接触电阻,也即提高了金属纳米线网络的导电性能。In the process of solvent evaporation, it can provide capillary force, and the oxide nanoparticles are randomly aggregated on the surface of the metal nanowire network, especially on the surface of the overlapping position of the metal nanowires, which can make the metal nanowires more closely at the overlapping position. The contact resistance of the metal nanowires at the overlapping position is reduced, that is, the electrical conductivity of the metal nanowire network is improved.
附图说明Description of drawings
图1为本申请实施例提供的一种透明导电电极的分解示意结构图;1 is an exploded schematic structural diagram of a transparent conductive electrode provided by an embodiment of the present application;
图2为图1的透明导电电极的剖面结构示意图;2 is a schematic cross-sectional structure diagram of the transparent conductive electrode of FIG. 1;
图3为本申请实施例提供的一种透明导电电极的局部膜层的结构示意图;3 is a schematic structural diagram of a partial film layer of a transparent conductive electrode provided by an embodiment of the present application;
图4为本申请实施例提供的一种透明导电电极的制备方法流程图;4 is a flow chart of a method for preparing a transparent conductive electrode provided by an embodiment of the present application;
图5为本申请实施例提供的一种透明导电电极的制备过程的结构示意图;5 is a schematic structural diagram of a preparation process of a transparent conductive electrode provided by an embodiment of the present application;
图6为本申请实施例提供的一种光电池的结构示意。FIG. 6 is a schematic structural diagram of a photovoltaic cell according to an embodiment of the present application.
具体实施方式detailed description
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions in the present application will be clearly described below with reference to the accompanying drawings in the present application. Obviously, the described embodiments are part of the embodiments of the present application, and Not all examples. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或 单元。“上”、“下”等仅用于相对于附图中的部件的方位而言的,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中的部件所放置的方位的变化而相应地发生变化。The terms "first", "second", etc. in the description, embodiments and claims of the present application and the drawings are only used for the purpose of distinguishing and describing, and should not be construed as indicating or implying relative importance, nor should they be construed as indicating or implied order. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, eg, comprising a series of steps or elements. A method, system, product or device is not necessarily limited to those steps or units expressly listed, but may include other steps or units not expressly listed or inherent to the process, method, product or device. "Upper", "lower", etc. are only used relative to the orientation of components in the drawings, these directional terms are relative concepts, and they are used for relative description and clarification, which may be The orientation in which the component is placed changes accordingly.
本申请实施例提供一种透明导电电极,如图1(分解示意图)和图2(图1的剖面示意图)所示,该透明导电电极包括透明衬底1(具有非导电性)以及嵌入在透明衬底1中的金属网格2、金属纳米线网络3;其中,金属纳米线网络3位于金属网格2的网孔区域C。An embodiment of the present application provides a transparent conductive electrode, as shown in FIG. 1 (an exploded schematic view) and FIG. 2 (a schematic cross-sectional view of FIG. 1 ), the transparent conductive electrode includes a transparent substrate 1 (with non-conductivity) and is embedded in a transparent The metal mesh 2 and the metal nanowire network 3 in the substrate 1 ; wherein, the metal nanowire network 3 is located in the mesh area C of the metal mesh 2 .
参考图3(省略了部分膜层)所示,透明衬底1包括位于厚度方向DD’上第一侧的第一表面A1(也可以称为上表面)和第二侧的第二表面A2(也可以称为下表面);其中,在透明导电电极位于厚度方向DD’上的第一侧,金属网格2以及金属纳米线网络3露出第一表面A1、且与第一表面A1平齐;也就是说,金属网格2、金属纳米线网络3以及透明衬底1在第一侧共平面。Referring to FIG. 3 (some film layers are omitted), the transparent substrate 1 includes a first surface A1 (also referred to as an upper surface) on the first side in the thickness direction DD' and a second surface A2 ( It can also be referred to as the lower surface); wherein, on the first side where the transparent conductive electrode is located in the thickness direction DD', the metal mesh 2 and the metal nanowire network 3 expose the first surface A1 and are flush with the first surface A1; That is, the metal mesh 2, the metal nanowire network 3 and the transparent substrate 1 are coplanar on the first side.
另外,如图2所示,该透明导电电极还包括:覆盖透明衬底1的第一表面A1以及露出于第一表面A1的金属网格2、金属纳米线网络3的透明导电修饰层4。也就是说,透明导电修饰层4会与露出于透明衬底1的金属网格2、金属纳米线网络3直接接触;这样一来,以透明导电电极在光电池中的使用为例,金属纳米线网络能够向透明导电修饰层中载流子的横向迁移提供辅助高导电通路,金属网格能够对载流子进行高效收集,也就是说金属网格和金属纳米线网络促进了载流子的横向迁移和高效收集;从而能够使得该透明导电电极的方阻大幅下降。In addition, as shown in FIG. 2 , the transparent conductive electrode further includes: a first surface A1 covering the transparent substrate 1 and a transparent conductive modification layer 4 exposed on the first surface A1 of the metal mesh 2 and the metal nanowire network 3 . That is to say, the transparent conductive modification layer 4 will be in direct contact with the metal mesh 2 and the metal nanowire network 3 exposed on the transparent substrate 1; in this way, taking the use of transparent conductive electrodes in photovoltaic cells as an example, the metal nanowire The network can provide an auxiliary high-conductivity path for the lateral migration of carriers in the transparent conductive modification layer, and the metal grid can efficiently collect the carriers, that is to say, the metal grid and the metal nanowire network promote the lateral transfer of carriers. migration and efficient collection; thus, the square resistance of the transparent conductive electrode can be greatly reduced.
另外,还可以理解的是,在本申请提供的透明导电电极中,金属网格2、金属纳米线网络3以及透明衬底1在第一侧共平面,从而能够保证位于透明衬底1上侧的透明导电修饰层具有很好的平整性,进而避免了透明导电修饰层因下方不平整而出现台阶或者被刺穿,而导致失效或者产生较大漏电流等弊端。In addition, it can also be understood that, in the transparent conductive electrode provided by the present application, the metal mesh 2 , the metal nanowire network 3 and the transparent substrate 1 are coplanar on the first side, so as to ensure that they are located on the upper side of the transparent substrate 1 The transparent conductive decoration layer has good flatness, thereby avoiding the defects of the transparent conductive decoration layer being stepped or being pierced due to the unevenness below, resulting in failure or generating a large leakage current.
综上所述,在本申请提供的透明导电电极中,将透明导电修饰层设置在嵌入有金属网格和金属纳米线网络的透明衬底的表面,一方面,通过设置金属网格、金属纳米线网络露出于透明衬底的表面直接与透明导电修饰层接触,使得金属纳米线网络能够向透明导电修饰层提供载流子横向迁移的辅助高导电通路,并通过金属网格对载流子进行高效收集(以透明导电电极在光电池中的应用为例),进而有效的降低了透明导电电极的方阻;另一方面,通过设置金属网格、金属纳米线网络、透明衬底在与透明导电修饰层接触的一侧表面平齐,避免了透明导电修饰层因下方不平整而出现台阶或者被刺穿,而导致失效或者产生较大漏电流等弊端。To sum up, in the transparent conductive electrode provided by this application, the transparent conductive modification layer is arranged on the surface of the transparent substrate embedded with the metal grid and the metal nanowire network. The wire network exposed on the surface of the transparent substrate is in direct contact with the transparent conductive modification layer, so that the metal nanowire network can provide an auxiliary high conductive path for the lateral migration of carriers to the transparent conductive modification layer, and the carriers can be transferred through the metal grid. Efficient collection (taking the application of transparent conductive electrodes in photovoltaic cells as an example), thereby effectively reducing the square resistance of transparent conductive electrodes; on the other hand, by setting metal grids, metal nanowire networks, and transparent substrates The surface of the side contacted by the decoration layer is flush, which avoids the occurrence of steps or punctures of the transparent conductive decoration layer due to the unevenness below, resulting in failure or generation of large leakage current and other drawbacks.
此处可以理解的是,相比于相关技术中透明导电电极的方阻过大,需要增加透明导电电极的厚度来降低其方阻,造成透明导电电极的透光度降低而言,本申请的透明导电电极有效的降低了方阻,从而也就保证了透明导电电极的透光度。It can be understood here that, compared with the related art, the square resistance of the transparent conductive electrode is too large, and the thickness of the transparent conductive electrode needs to be increased to reduce its square resistance, resulting in a decrease in the transmittance of the transparent conductive electrode. The transparent conductive electrode effectively reduces the square resistance, thereby ensuring the light transmittance of the transparent conductive electrode.
在此基础上,参考图2所示,为了避免透明导电电极在使用的过程,透明导电电极在第二表面A2一侧与其他的线路或者器件造成不必要的电连接(例如短路等),在一些可能实现的方式中,可以设置金属网格2以及金属纳米线网络3均未露出透明衬底1的第二表面A2。On this basis, referring to FIG. 2 , in order to avoid the process of using the transparent conductive electrode, the transparent conductive electrode causes unnecessary electrical connection (such as short circuit, etc.) with other circuits or devices on the side of the second surface A2. In some possible implementation manners, neither the metal grid 2 nor the metal nanowire network 3 may be set to expose the second surface A2 of the transparent substrate 1 .
当然,根据实际的需求,如果需要透明导电电极在第二表面A2导电,也可以设置金 属网格2露出第二表面A2,本申请对此不作具体限制,以下实施例均是以金属网格2以及金属纳米线网络3均未露出透明衬底1的第二表面A2为例进行说明的。Of course, according to actual needs, if the transparent conductive electrode needs to conduct electricity on the second surface A2, the metal grid 2 can also be set to expose the second surface A2, which is not specifically limited in this application, and the following embodiments are all based on the metal grid 2 And the metal nanowire network 3 is not exposed to the second surface A2 of the transparent substrate 1 as an example to illustrate.
以下对透明衬底1、金属网格2、金属纳米线网络3、透明导电修饰层4的具体设置情况做进一步的说明。The specific arrangement of the transparent substrate 1 , the metal grid 2 , the metal nanowire network 3 , and the transparent conductive modification layer 4 will be further described below.
本申请中的透明衬底1可以为柔性基板,但并不限制于此。本申请实施例中均是以透明衬底1为柔性基板为例进行说明的。The transparent substrate 1 in the present application may be a flexible substrate, but is not limited thereto. The embodiments of the present application are all described by taking the transparent substrate 1 as the flexible substrate as an example.
本申请对透明衬底1采用的材料不作限制。例如,透明衬底1可以采用聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、环烯烃共聚物(COC)、聚酰亚胺(PI)、诺兰光学胶(NOA 63)或聚乙烯醇(PVA)、聚二甲基硅氧烷(PDMS)或聚甲基丙烯酸甲酯(PMMA)中的一种或多种高分子聚合物。The present application does not limit the material used for the transparent substrate 1 . For example, the transparent substrate 1 can be made of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), cyclic olefin copolymer (COC), polyimide (PI), Blue optical adhesive (NOA 63) or one or more high molecular polymers in polyvinyl alcohol (PVA), polydimethylsiloxane (PDMS) or polymethyl methacrylate (PMMA).
本申请对金属网格2采用的金属材料不作具体限制。例如,金属网格2采用的金属材料可以包括铜(Cu)、银(Ag)、金(Au)、铝(Al)、镍(Ni)、锌(Zn)中的一种或多种,本申请对此不作限制。The application does not specifically limit the metal material used for the metal grid 2 . For example, the metal material used for the metal grid 2 may include one or more of copper (Cu), silver (Ag), gold (Au), aluminum (Al), nickel (Ni), and zinc (Zn). There are no restrictions on the application.
另外,本申请对金属网格2的网孔区域的形状不作限制,例如,可以为正六边形、矩形、正方形、菱形、三角形或其他随机互连图案等中的一种或多种的混合。In addition, the present application does not limit the shape of the mesh area of the metal mesh 2, for example, it may be a mixture of one or more of regular hexagons, rectangles, squares, diamonds, triangles or other random interconnection patterns.
在一些可能实现的方式中,金属网格2的厚度为0.5μm~15μm,也即金属网格2的格栅的厚度为0.5μm~15μm;当然并不限制于此,实际中可以根据需要进行设置。In some possible implementations, the thickness of the metal grid 2 is 0.5 μm to 15 μm, that is, the thickness of the grid of the metal grid 2 is 0.5 μm to 15 μm; of course, it is not limited to this, and can be implemented according to actual needs. set up.
在一些可能实现的方式中,金属网格2的宽度为0.5μm~10μm,也即形成金属网格2的格栅的宽度0.5μm~10μm;当然并不限制于此,实际中可以根据需要进行设置。In some possible implementation manners, the width of the metal grid 2 is 0.5 μm to 10 μm, that is, the width of the grid forming the metal grid 2 is 0.5 μm to 10 μm; of course, it is not limited to this, and can be implemented according to actual needs. set up.
在一些可能实现的方式中,金属网格2的格栅的厚度与宽度之比大于1:1,以保证金属网格2的导电需求。In some possible implementation manners, the ratio of the thickness to the width of the grid of the metal grid 2 is greater than 1:1, so as to ensure the electrical conductivity requirement of the metal grid 2 .
在一些可能实现的方式中,金属网格2的总面积占透明衬底1总面积的20%以下;也即金属网格2在透明衬底1上的投影面积的总和占透明衬底1总面积的20%以下;当然并不限制于此,实际中可以根据需要进行设置。In some possible implementations, the total area of the metal grid 2 accounts for less than 20% of the total area of the transparent substrate 1; that is, the sum of the projected areas of the metal grid 2 on the transparent substrate 1 accounts for the total area of the transparent substrate 1. 20% or less of the area; of course, it is not limited to this, and can be set as required in practice.
本申请对金属纳米线网络3采用的金属材料不作具体限制,例如,金属纳米线网络3采用的金属材料可以为金、银(即金纳米线网络、银纳米线网络)。The application does not specifically limit the metal material used in the metal nanowire network 3. For example, the metal material used in the metal nanowire network 3 may be gold or silver (ie, gold nanowire network, silver nanowire network).
示意的,以金属纳米线网络3为银纳米线(Ag nanowires,AgNWs)网络为例,AgNWs网络在形成的过程中,可以采用含银纳米线(AgNWs)的溶液通过蒸发干燥得到,具体可以参考后续提供的方法实施例。Schematically, taking the metal nanowire network 3 as a silver nanowires (AgNWs) network as an example, in the process of forming the AgNWs network, a solution containing silver nanowires (AgNWs) can be obtained by evaporation and drying. For details, please refer to Method examples provided later.
在一些可能实现的方式中,AgNWs的长径比≥1000;示意的,AgNWs的线长可以为1μm~200μm,线径范围为5nm~100nm;AgNWs网络的厚度范围可以为10nm~100nm。In some possible implementations, the aspect ratio of the AgNWs is greater than or equal to 1000; schematically, the wire length of the AgNWs can be 1 μm-200 μm, and the wire diameter can range from 5 nm to 100 nm; the thickness of the AgNWs network can be in the range of 10 nm to 100 nm.
本申请对透明导电修饰层4采用的材料不作限制。例如透明导电修饰层4可以采用透明导电氧化物、透明导电聚合物、碳纳米管(carbon nanotubes,CNT)、石墨烯中的一种或多种组合。The present application does not limit the material used for the transparent conductive modification layer 4 . For example, the transparent conductive modification layer 4 may adopt one or more combinations of transparent conductive oxides, transparent conductive polymers, carbon nanotubes (CNTs, CNTs), and graphene.
示意的,透明导电氧化物可以为掺铟氧化锡(ITO)、掺氟氧化锡(FTO)、掺铝氧化锌(AZO)、掺锑氧化锡(ATO)、掺镓锌氧化物(GZO)、掺硼锌氧化物(BZO)中的一种或多种组合;透明导电聚合物可以为PEDOT:PSS。Illustratively, the transparent conductive oxide may be indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), antimony-doped tin oxide (ATO), gallium-doped zinc oxide (GZO), One or more combinations of boron-doped zinc oxide (BZO); the transparent conductive polymer may be PEDOT:PSS.
在一些可能实现的方式中,透明导电修饰层4的厚度可以为10nm~150nm;当然并不限制于此,实际中可以根据需要进行设置。In some possible implementations, the thickness of the transparent conductive modification layer 4 may be 10 nm to 150 nm; of course, it is not limited to this, and can be set as required in practice.
另外,在一些可能实现的方式中,在该透明导电电极中,金属纳米线网络3嵌入在透明衬底1中的表面覆盖有氧化物纳米颗粒。In addition, in some possible implementations, in the transparent conductive electrode, the surface of the metal nanowire network 3 embedded in the transparent substrate 1 is covered with oxide nanoparticles.
示意的,在一些实施例中,覆盖在金属纳米线网络3表面的氧化物纳米颗粒可以是采用具有氧化物纳米颗粒的溶液对金属纳米线网络3的表面进行处理,溶液中的氧化物纳米颗粒在溶剂蒸发的过程中能够提供毛细作用力,从而不断的聚集在金属纳米线网络3及其搭接位置处的表面,能够使得金属纳米线在搭接位置(也即金属纳米线网络3的节点位置)更加紧密,也即降低了金属纳米线在搭接位置的接触电阻,提高了金属纳米线网络的导电性能,进而也就降低了透明导电电极的方阻,提高了透明导电电极的导电性能。Illustratively, in some embodiments, the oxide nanoparticles covering the surface of the metal nanowire network 3 may be treated with a solution having oxide nanoparticles on the surface of the metal nanowire network 3, and the oxide nanoparticles in the solution In the process of solvent evaporation, capillary force can be provided, so as to continuously gather on the surface of the metal nanowire network 3 and its overlapping position, so that the metal nanowires can be located at the overlapping position (that is, the node of the metal nanowire network 3 ). position) is closer, that is, the contact resistance of the metal nanowires at the overlapping position is reduced, and the electrical conductivity of the metal nanowire network is improved, which in turn reduces the square resistance of the transparent conductive electrode and improves the conductivity of the transparent conductive electrode. .
当然,对于覆盖在金属纳米线网络3表面的氧化物纳米颗粒的具体制作方法可以参考后续实施例提供的制作方法,此处不再赘述。Of course, for the specific fabrication method of the oxide nanoparticles covering the surface of the metal nanowire network 3, reference may be made to the fabrication method provided in the subsequent embodiments, and details are not described herein again.
本申请对于上述覆盖在金属纳米线网络3表面的氧化物纳米颗粒的具体材料不做限制,实际中可以根据需要选择设置即可。The present application does not limit the specific materials of the oxide nanoparticles covering the surface of the metal nanowire network 3, which can be selected and set according to actual needs.
示意的,在一些可能实现的方式,上述金属氧化纳米颗粒可以为二氧化钛(TiO 2)、二氧化锆(ZrO 2)、二氧化硅(SiO 2)、三氧化二铝(Al 2O 3)、氧化锌(ZnO)、氧化锡(SnO 2)中的一种或多种。 Illustratively, in some possible implementations, the aforementioned metal oxide nanoparticles can be titanium dioxide (TiO 2 ), zirconium dioxide (ZrO 2 ), silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), One or more of zinc oxide (ZnO) and tin oxide (SnO 2 ).
在一些可能实现的方式中,可以在覆盖于金属纳米线网络3表面的氧化物纳米颗粒的表面涂覆导电聚合物涂层(例如PEDOT:PSS),从而增强金属纳米线网络的机械稳定性,向金属纳米线网络提供更强的结合力,提高金属纳米线网络与基板的附着力,同时对金属纳米线也起到隔离保护作用。In some possible implementations, a conductive polymer coating (eg PEDOT:PSS) can be coated on the surface of the oxide nanoparticles covering the surface of the metal nanowire network 3, thereby enhancing the mechanical stability of the metal nanowire network, Provide stronger bonding force to the metal nanowire network, improve the adhesion between the metal nanowire network and the substrate, and also play an isolation and protection role for the metal nanowire.
本申请实施例还提供一种透明导电电极的制备方法,如图4所示,该制备方法包括:The embodiment of the present application also provides a method for preparing a transparent conductive electrode, as shown in FIG. 4 , the preparation method includes:
步骤01、参考图5中(a)所示,在基板10上形成胶质层11。 Step 01 , as shown in FIG. 5( a ), a colloidal layer 11 is formed on the substrate 10 .
当然,在基板10上形成胶质层11之前,一般需要对基板10进行清洗、干燥等处理。Of course, before the colloidal layer 11 is formed on the substrate 10 , the substrate 10 generally needs to be cleaned and dried.
本申请中对于基板10的类型不作限制,可以为导电基板,也可以为非导电基板,实际中可以根据制作工艺进行选择(具体可以参考后续制作金属网格2的步骤);本申请以下实施例均是以基板10采用导电基板为例进行示意说明的。The type of the substrate 10 is not limited in this application, and it can be a conductive substrate or a non-conductive substrate. In practice, it can be selected according to the manufacturing process (for details, please refer to the subsequent steps of manufacturing the metal mesh 2 ); the following embodiments of the present application All are illustrated schematically by taking the substrate 10 as an example of a conductive substrate.
示意的,基板10可以采用ITO玻璃或FTO玻璃等导电玻璃,但并不限制于此。Illustratively, the substrate 10 can be made of conductive glass such as ITO glass or FTO glass, but is not limited thereto.
示意的,胶质层11可以采用光刻胶、液态光固化材料、热固化材料等,但并不限制于此。Illustratively, the glue layer 11 may use photoresist, liquid photocurable material, thermal curing material, etc., but is not limited thereto.
在一些可能实现的方式中,上述步骤01可以包括:在采用ITO玻璃的基板10上通过旋涂光刻胶形成胶质层11。In some possible implementation manners, the above step 01 may include: forming a colloidal layer 11 on the substrate 10 using ITO glass by spin-coating photoresist.
具体的,选取FTO导电玻璃(即基板10),对其进行洗涤剂、去离子水、乙醇或异丙醇溶液中超声清洗、干燥处理,并在FTO导电玻璃表面旋涂光刻胶,旋涂光刻胶使固化后厚度至少等于所需的金属网格厚度(例如8μm),然后加热固化冷却,形成胶质层11。Specifically, FTO conductive glass (ie, substrate 10) is selected, ultrasonically cleaned and dried in detergent, deionized water, ethanol or isopropanol solution, and photoresist is spin-coated on the surface of the FTO conductive glass. The thickness of the photoresist after curing is at least equal to the required thickness of the metal grid (eg, 8 μm), and then heated, cured, and cooled to form the glue layer 11 .
步骤02、参考图5中(b)所示,在胶质层11上形成镂空的网格沟槽S,以得到胶质图案层11’。 Step 02. Referring to Fig. 5(b), a hollow grid groove S is formed on the glue layer 11 to obtain a glue pattern layer 11'.
本申请中对于在胶质层10上形成镂空的网格沟槽S的方式不作限制,实际中可以根据需要选择设置。In the present application, there is no limitation on the manner of forming the hollow grid trench S on the colloidal layer 10 , and in practice, it can be selected and set as required.
示意的,在一些可能实现的方式中,步骤02可以包括:采用光刻法或者纳米压印法, 在胶质层11上形成镂空的网格沟槽S,以使得导电玻璃(也即基板10)在位于网格沟槽S的区域裸露出来。Illustratively, in some possible implementation manners, step 02 may include: using a photolithography method or a nanoimprint method to form a hollow grid groove S on the glue layer 11, so that the conductive glass (ie, the substrate 10 ) are exposed in the region located in the grid trench S.
在胶质层11上形成镂空的网格沟槽S的网孔区域的形状可以根据需要来设置光刻掩膜版的掩膜图案或者压印模板的压印图案,本申请对此不作限制。示意的,网格沟槽S的网孔区域可以呈正六边形、矩形、正方形、菱形、三角形或其他的随机互连网格图案等一种或几种形式复用;当然,根据实际选取的制作工艺,网格沟槽S的横截面可能为呈梯形、矩形、铆钉型等其他形状,本申请对此不作具体限制,图5中(b)仅是以梯形进行示意说明的。The shape of the mesh area of the hollow mesh groove S formed on the glue layer 11 can be set according to the requirements of the mask pattern of the photolithography mask or the imprint pattern of the imprint template, which is not limited in this application. Schematically, the mesh area of the mesh groove S can be reused in one or more forms such as regular hexagon, rectangle, square, diamond, triangle or other random interconnected mesh patterns; of course, according to the actual selected manufacturing process , the cross section of the grid groove S may be trapezoidal, rectangular, rivet-shaped and other shapes, which are not specifically limited in the present application, and (b) in FIG.
示意的,在一些可能实现的方式中,步骤02可以包括对光刻胶层(即胶质层11)进行曝光、显影、清洗、干燥等处理,在光刻胶层中形成镂空的网格沟槽S,并使得FTO导电玻璃(即基板10)上表面裸露于网格沟槽S底部;其中,网格沟槽S的网孔区域呈正方形,且正方形线间距为80μm(也即网孔的宽度),网孔区域的光刻胶的截面呈梯形,梯形窄边为3μm,宽边为4μm,深度为8μm。Illustratively, in some possible implementation manners, step 02 may include exposing, developing, cleaning, drying, etc. to the photoresist layer (ie, the colloidal layer 11 ) to form hollow grid grooves in the photoresist layer groove S, and make the top surface of the FTO conductive glass (ie, the substrate 10 ) exposed at the bottom of the grid groove S; wherein, the mesh area of the grid groove S is square, and the square line spacing is 80 μm (that is, the mesh width), the cross section of the photoresist in the mesh area is a trapezoid, the narrow side of the trapezoid is 3 μm, the wide side is 4 μm, and the depth is 8 μm.
步骤03、参考图5中(c)所示,在位于胶质图案层11’的网格沟槽S内的基板上形成金属网格2,并去除胶质图案层11’(参考图5中(d))。其中,金属网格2的平面图可以参考图1。 Step 03. Referring to FIG. 5(c), a metal mesh 2 is formed on the substrate located in the mesh groove S of the colloidal pattern layer 11', and the colloidal pattern layer 11' is removed (refer to FIG. 5). (d)). The plan view of the metal grid 2 may refer to FIG. 1 .
本申请中,对于步骤03中在位于胶质图案层11’的网格沟槽S内的基板10上形成金属网格2的方式不作限制。In the present application, the manner of forming the metal mesh 2 on the substrate 10 located in the mesh groove S of the colloidal pattern layer 11' in step 03 is not limited.
在一些可能实现的方式中,可以采用选择性电镀工艺在胶质图案层11’的网格沟槽S内的基板10(采用导电基板)上形成金属网格2。In some possible implementations, a selective electroplating process can be used to form the metal grid 2 on the substrate 10 (using a conductive substrate) in the grid groove S of the colloidal pattern layer 11'.
示意的,可以采用选择性电镀铜工艺,使得金属铜填满齐平于网格沟槽S上表面,形成致密铜金属网格,并通过去离子水或蒸馏水清洗、干燥等处理。Illustratively, a selective copper electroplating process may be used to fill the upper surface of the mesh trench S with metal copper to form a dense copper metal mesh, which is cleaned and dried with deionized water or distilled water.
应当理解的是,胶质图案层11’中网格沟槽S的沟槽宽度、宽度等直接决定了步骤03中形成的金属网格2的栅格厚度和宽度等,因此,实际在制作时,应跟据需求设计,在进行步骤01时控制胶质层11的厚度,在进行步骤02时,控制网格沟槽S的宽度、深度以及间距,以满足金属网格2的需求。例如,为了满足金属网格2的导电需求可以设置金属网格2的格栅的厚度与宽度之比大于1:1。It should be understood that the groove width and width of the grid grooves S in the colloidal pattern layer 11 ′ directly determine the grid thickness and width of the metal grid 2 formed in step 03. Therefore, in actual production , should be designed according to the requirements, the thickness of the glue layer 11 should be controlled in step 01 , and the width, depth and spacing of the grid trenches S should be controlled in step 02 to meet the requirements of the metal grid 2 . For example, in order to meet the electrical conduction requirement of the metal grid 2, the ratio of the thickness to the width of the grid of the metal grid 2 may be set to be greater than 1:1.
另外,对于步骤03中去除胶质图案层11’而言,可以采用光刻法或刻蚀法等工艺,将位于金属网格2以外的胶质图案层11’去除,从而使得基板10的表面仅保留金属网格2。例如,可以采用丙酮清洗剩余的光刻胶图案(即胶质图案层11’),使铜金属网格完全裸露于FTO导电玻璃表面,并进行清洗、干燥等处理;此时基板10在位于金属网格2的网孔区域C的部分裸露出来(参考图5中(d))。In addition, for the removal of the colloidal pattern layer 11 ′ in step 03 , the colloidal pattern layer 11 ′ located outside the metal grid 2 can be removed by using a photolithography method or an etching method, so that the surface of the substrate 10 can be removed. Only metal mesh 2 remains. For example, acetone can be used to clean the remaining photoresist pattern (ie, the colloidal pattern layer 11 ′), so that the copper metal grid is completely exposed on the surface of the FTO conductive glass, and the processing such as cleaning and drying is performed; at this time, the substrate 10 is on the metal Part of the mesh area C of the mesh 2 is exposed (refer to (d) in FIG. 5 ).
步骤04、参考图5中(e)所示,在位于金属网格2的网孔区域C的基板10上形成金属纳米线网络3。其中,金属纳米线网络3的平面图可以参考图1。 Step 04 , as shown in (e) of FIG. 5 , a metal nanowire network 3 is formed on the substrate 10 located in the mesh area C of the metal mesh 2 . The plan view of the metal nanowire network 3 may refer to FIG. 1 .
本申请中对于形成金属纳米线网络3的具体方式做不限制,以形成银纳米线网络为例,在一些可能实现的方式中,可以采用涂布工艺将含有纳米金属线(AgNWs)的溶液填充至金属网格2的网孔区域C,经过风干、加热等工艺将溶剂挥发,以在金属网格2的网孔区域C的基板10上形成银纳米线网络3。This application does not limit the specific method of forming the metal nanowire network 3. Taking the formation of a silver nanowire network as an example, in some possible implementation methods, a coating process can be used to fill the solution containing nano metal wires (AgNWs). To the mesh area C of the metal mesh 2 , the solvent is volatilized through air drying, heating and other processes to form a silver nanowire network 3 on the substrate 10 of the mesh area C of the metal mesh 2 .
上述形成银纳米线网络采用的涂布工艺可以为喷涂印刷、刮涂法、旋涂法、喷墨印刷 等工艺,本申请对此不作限制。当然,在将含有纳米金属线(AgNWs)的溶液填充至金属网格2的网孔区域C的过程中,也可以包括一次或多次处理残留于金属网格2表面的溶液的过程,以将残留溶液尽可能的全部填充至金属网格2的网孔区域C。The above-mentioned coating technology used for forming the silver nanowire network can be processes such as spray printing, blade coating method, spin coating method, inkjet printing, etc., which is not limited in this application. Of course, in the process of filling the solution containing nano metal wires (AgNWs) into the mesh area C of the metal mesh 2, it may also include one or more processes of treating the solution remaining on the surface of the metal mesh 2 to remove The residual solution is filled as much as possible into the mesh area C of the metal mesh 2 .
示意的,可以通过刮涂法在铜金属网格的网孔区域均匀填充平均长径比约1000的AgNWs溶液(如AgNWs的直径~30nm,长度20~50μm,溶剂可以为乙醇、异丙醇等),经过风干后形成AgNWs网络。Schematically, the mesh area of the copper metal grid can be uniformly filled with an AgNWs solution with an average aspect ratio of about 1000 (such as AgNWs with a diameter of ~30 nm and a length of 20 ~ 50 μm, and the solvent can be ethanol, isopropanol, etc. ), the AgNWs network was formed after air-drying.
步骤05、参考图5中(f)所示,在形成有金属网格2和金属纳米线网络3的基板10上形成高分子透明膜层1’(即前述的透明衬底1),以将金属网格2和金属纳米线网络3嵌入在高分子透明膜层1’中。 Step 05. Referring to Fig. 5(f), a polymer transparent film layer 1' (ie, the aforementioned transparent substrate 1) is formed on the substrate 10 on which the metal mesh 2 and the metal nanowire network 3 are formed, so as to The metal mesh 2 and the metal nanowire network 3 are embedded in the polymer transparent film layer 1'.
在一些可能实现的方式中,可以采用热塑性透明高分子聚合物材料,通过加热至玻璃转化温度以上,通过热压及后续冷却处理等手段,形成完全包覆金属网格2和金属纳米线网络3的透明膜层(即高分子透明膜层1’)。In some possible implementations, a thermoplastic transparent polymer material can be used to form a completely covered metal mesh 2 and a metal nanowire network 3 by heating to a temperature above the glass transition temperature, through hot pressing and subsequent cooling treatment, etc. The transparent film layer (ie the polymer transparent film layer 1').
在一些可能实现的方式中,高分子透明膜层1’还可以采用能够溶解在溶剂中、并能在溶剂挥发后固化的聚合物前驱液固化形成,或者由未交联的聚合物前驱液热固化、光固化形成。In some possible implementation manners, the polymer transparent film layer 1 ′ can also be formed by curing a polymer precursor liquid that can be dissolved in a solvent and cured after the solvent is volatilized, or is formed by heating the uncrosslinked polymer precursor liquid Curing and photocuring.
示意的,可通过涂覆透明的聚酰亚胺(PI)前驱溶液,并进行加热固化,得到覆盖铜金属网格、银纳米线网络的透明PI膜(即高分子透明膜层1’),控制膜厚约50μm。Illustratively, the transparent PI film (ie the polymer transparent film layer 1') covering the copper metal grid and the silver nanowire network can be obtained by coating a transparent polyimide (PI) precursor solution and heating and curing, The film thickness was controlled to be about 50 μm.
在此情况下,可以理解的是,高分子透明膜层1’、金属网格2、金属纳米线网络3的下表面均直接与基板10接触,且高分子透明膜层1’、金属网格2、金属纳米线网络3的下表面处于同一平面中。In this case, it can be understood that the lower surfaces of the polymer transparent film layer 1', the metal mesh 2, and the metal nanowire network 3 are in direct contact with the substrate 10, and the polymer transparent film layer 1', the metal mesh 2. The lower surfaces of the metal nanowire network 3 are in the same plane.
步骤06、参考图5中(g)所示,将高分子透明膜层1’以及嵌入在高分子透明膜层1’中的金属网格2、金属纳米线网络3整体从基板10上剥离,得到透明导电基底M。Step 06: Referring to FIG. 5(g), peel off the polymer transparent film layer 1', the metal mesh 2 and the metal nanowire network 3 embedded in the polymer transparent film layer 1' from the substrate 10 as a whole, A transparent conductive substrate M was obtained.
可以理解的是,在剥离后得到的透明导电基底M中,金属网格2、金属纳米线网络3均嵌入在高分子透明膜层1’,并且在透明导电基底M剥离侧的表面A,金属网格2和金属纳米线网络3会裸露出高分子透明膜层1’,且高分子透明膜层1’、金属网格2、金属纳米线网络3在剥离侧的表面共平面。It can be understood that, in the transparent conductive substrate M obtained after peeling, the metal mesh 2 and the metal nanowire network 3 are embedded in the polymer transparent film layer 1 ′, and on the surface A of the peeling side of the transparent conductive substrate M, the metal mesh 2 and the metal nanowire network 3 are embedded in the polymer transparent film layer 1 ′. The mesh 2 and the metal nanowire network 3 expose the transparent polymer film layer 1 ′, and the surfaces of the transparent polymer film layer 1 ′, the metal mesh 2 , and the metal nanowire network 3 on the peeling side are coplanar.
步骤07、参考图5中(h)所示,在透明导电基底M的剥离侧的表面A形成透明导电修饰层4。 Step 07 , as shown in (h) of FIG. 5 , a transparent conductive modification layer 4 is formed on the surface A of the peeling side of the transparent conductive substrate M. As shown in FIG.
示意的,可以通过沉积工艺,在透明导电基底M的剥离侧的表面A沉积ITO、FTO、AZO、ATO、GZO、BZO、导电聚合物(如PEDOT:PSS等)、碳纳米管(CNT)、石墨烯等中的一种或多种,以形成透明导电修饰层4,得到复合的透明导电电极。其中,ITO、FTO、AZO、ATO、GZO、BZO等可以采用磁控溅射、电子束蒸发等沉积工艺,导电聚合物(如PEDOT:PSS等)、碳纳米管(CNT)、石墨烯可以采用其他的沉积工艺,本申请对此不作具体限制,实际中可以根据具体的材料,选择合适的沉积工艺即可。Illustratively, ITO, FTO, AZO, ATO, GZO, BZO, conductive polymers (such as PEDOT:PSS, etc.), carbon nanotubes (CNTs), One or more of graphene and the like are used to form a transparent conductive modification layer 4 to obtain a composite transparent conductive electrode. Among them, ITO, FTO, AZO, ATO, GZO, BZO, etc. can be deposited by magnetron sputtering, electron beam evaporation, etc., and conductive polymers (such as PEDOT:PSS, etc.), carbon nanotubes (CNT), and graphene can be used. Other deposition processes are not specifically limited in this application. In practice, a suitable deposition process can be selected according to specific materials.
在一些可能实现的方式中,可以通磁控溅射在透明导电基底M的剥离侧的表面A沉积50nm后的ITO薄膜(即透明导电修饰层4),从而得到复合的透明导电电极。In some possible implementations, a 50-nm ITO film (ie, the transparent conductive modification layer 4 ) can be deposited on the peeled-off surface A of the transparent conductive substrate M by magnetron sputtering, thereby obtaining a composite transparent conductive electrode.
综上所述,采用本申请的制作方法,通过先在基板上制作金属网格、金属纳米线网络,然后在形成高分子透明膜层(也即作为透明导电电极的透明衬底),也即采用“反向嵌入工艺”将金属网格、金属纳米线网络嵌入至透明衬底中,一方面,能够使得金属网格、金 属纳米线网络露出于透明衬底的表面直接与透明导电修饰层直接接触,使得金属纳米线网络能够向透明导电修饰层提供载流子横向迁移的辅助高导电通路,金属网格对载流子进行高效收集(以透明导电电极在光电池中的应用为例),进而有效的降低了透明导电电极的方阻;另一方面,在无需通过额外的复杂平整工艺(例如化学或机械抛光处理)来进行平坦化处理的情况下,保证了金属网格、金属纳米线网络、透明衬底在与透明导电修饰层接触的一侧共平面(也即具有零台阶、超低粗糙度的界面),进而保证了透明导电修饰层的平整性,避免了透明导电修饰层因下方不平整而出现台阶或者被刺穿,而导致失效或者产生较大漏电流等弊端。To sum up, using the manufacturing method of the present application, by first fabricating metal grids and metal nanowire networks on the substrate, and then forming a polymer transparent film layer (that is, a transparent substrate serving as a transparent conductive electrode), that is, The "reverse embedding process" is used to embed the metal grid and the metal nanowire network into the transparent substrate. On the one hand, the metal grid and the metal nanowire network can be exposed on the surface of the transparent substrate directly and directly with the transparent conductive modification layer. contact, so that the metal nanowire network can provide an auxiliary high-conductivity path for the lateral migration of carriers to the transparent conductive modification layer, and the metal grid can efficiently collect the carriers (taking the application of transparent conductive electrodes in photovoltaic cells as an example), and then The square resistance of the transparent conductive electrode is effectively reduced; on the other hand, the metal mesh and metal nanowire network are guaranteed without the need for additional complex planarization processes (such as chemical or mechanical polishing) to be planarized. , The transparent substrate is coplanar on the side in contact with the transparent conductive modification layer (that is, the interface with zero steps and ultra-low roughness), thereby ensuring the flatness of the transparent conductive modification layer and avoiding the transparent conductive modification layer. If it is uneven, it will appear steps or be punctured, resulting in failure or large leakage current.
此外,为了保证步骤04中形成的金属纳米线网络3在纳米线搭接位置更加紧密,也即降低金属纳米线在搭接位置的接触电阻,提高金属纳米线网络的导电性能;示意的,可以通过步骤04形成表面覆盖有氧化物纳米颗粒的金属纳米线网络3。In addition, in order to ensure that the metal nanowire network 3 formed in step 04 is closer at the overlapping position of the nanowires, that is, to reduce the contact resistance of the metal nanowires at the overlapping position, and improve the electrical conductivity of the metal nanowire network; Through step 04, a metal nanowire network 3 whose surface is covered with oxide nanoparticles is formed.
例如,在一些可能实现的方式中,可以采用涂布工艺将含有纳米金属线和氧化物纳米颗粒的溶液填充至金属网格2的网孔区域,以在金属网格2的网孔区域的基板10上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络3。For example, in some possible implementations, a solution containing nano metal wires and oxide nanoparticles can be filled into the mesh area of the metal mesh 2 by a coating process, so that the substrate in the mesh area of the metal mesh 2 can be A metal nanowire network 3 whose surface is covered with oxide nanoparticles is formed on 10 .
示意的,可以将含有TiO 2纳米粒子和AgNWs分散溶液或溶胶-凝胶溶液,通过蒸发、干燥等处理形成TiO2纳米粒子包覆的AgNWs网络。 Illustrated, may contain TiO 2 nanoparticles and AgNWs dispersion solution or sol - gel solution to form coated with TiO2 nanoparticles AgNWs network by evaporation, drying process.
此处可以理解的是,由于AgNWs和TiO2纳米粒子通过混合溶液的方式进行干燥成膜,因此AgNWs网络与基板10接触的表面可能会存在极少量的TiO2纳米粒子;在此情况下,可以在步骤06中进行剥离工艺之后,对位于AgNWs网络在剥离侧表面的TiO2纳米粒子进行清除;当然,也可以不进行清除。It can be understood here that since the AgNWs and TiO2 nanoparticles are dried to form a film by mixing the solution, there may be a very small amount of TiO2 nanoparticles on the surface of the AgNWs network in contact with the substrate 10; After the lift-off process in 06, the TiO2 nanoparticles located on the surface of the AgNWs network on the lift-off side were removed; of course, removal may not be performed.
又例如,在一些可能实现的方式中,可以先采用涂布工艺将含有纳米金属线的溶液填充至所述金属网格的网孔区域形成金属纳米线网络,然后再采用涂布工艺将含有氧化物纳米颗粒的溶液填充至金属网格的网孔区域,以在金属网格2的网孔区域的基板10上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络3。For another example, in some possible implementation manners, a solution containing metal nanowires may be filled into the mesh area of the metal grid to form a metal nanowire network first by using a coating process, and then the metal nanowire network may be formed by using a coating process. The solution of oxide nanoparticles is filled into the mesh area of the metal mesh to form a metal nanowire network 3 whose surface is covered with oxide nanoparticles on the substrate 10 in the mesh area of the metal mesh 2 .
示意的,可以将含有AgNWs分散溶液通过蒸发、干燥等处理,形成AgNWs网络;然后,再进一步的采用含有TiO 2纳米粒子的分散溶液或溶胶-凝胶溶液,低温(80℃)、干燥等处理,形成TiO2纳米粒子包覆的AgNWs网络。 Illustrated, may be a dispersion containing AgNWs solution by evaporation, drying, etc., to form a network AgNWs; Then, further using a solution or dispersion containing TiO 2 nanoparticles sol - gel solution, a low temperature (80 deg.] C), drying process , forming a network of AgNWs coated with TiO2 nanoparticles.
对于上述两种形成表面覆盖有TiO 2纳米粒子的AgNWs网络的制作方式而言,可以理解的是,含有TiO 2纳米粒子的分散溶液在溶剂蒸发的过程中能够提供毛细作用力,从而聚集在金属纳米线以及金属纳米线搭接处的表面,能够使得金属纳米线在搭接位置(也即金属纳米线网络3的节点位置)更加紧密,降低了金属纳米线在搭接位置的接触电阻,也即提高了金属纳米线网络的导电性能。 For both production methods forming surface covered with AgNWs network TiO 2 nanoparticles, it will be appreciated that the TiO 2 dispersion solution containing nanoparticles during the solvent evaporation in capillary forces can be provided, so that the aggregate metal The nanowires and the surface of the overlapped metal nanowires can make the metal nanowires at the overlapped position (that is, the node position of the metal nanowire network 3) more compact, reduce the contact resistance of the metal nanowires at the overlapped position, and That is, the electrical conductivity of the metal nanowire network is improved.
当然,在一些可能实现的方式中,可以在形成AgNWs网络之后,采用加热的方式,将AgNWs在搭接位置处进行融合,从而来降低金属纳米线在搭接位置的接触电阻,提高金属纳米线网络的导电性能。Of course, in some possible implementations, after the AgNWs network is formed, the AgNWs can be fused at the overlapping position by heating, thereby reducing the contact resistance of the metal nanowires at the overlapping position and improving the metal nanowires. Conductivity of the network.
本申请还提供一种电子器件,该电子器件包括前述的任一种透明导电电极。The present application also provides an electronic device comprising any of the aforementioned transparent conductive electrodes.
本申请中对于该电子器件的设置形式不做限制,该电子器件可以为光电池(也可以称为太阳能电池)、有机发光二极管、触摸屏、液晶显示面板、透明电磁屏蔽、透明5G(5th generation mobile networks,第五代移动通信技术)天线等器件,也可以是包含该部分器件 的其他的电子产品或设备。There is no limitation on the setting form of the electronic device in this application, and the electronic device can be a photovoltaic cell (also called a solar cell), an organic light-emitting diode, a touch screen, a liquid crystal display panel, a transparent electromagnetic shield, a transparent 5G (5th generation mobile networks) , the fifth generation of mobile communication technology) antenna and other devices, it can also be other electronic products or equipment containing this part of the device.
本申请对于该电子器件的应用场景不作限制,示意的,以该电子器件为光电池为例,光电池可以应用在智能可穿戴设备领域,也可以应用在消费电子设备等其他领域,以实现光电能量收集以延长续航等;其中,智能可穿戴设备可以包括但不限定于智能眼镜、护目镜、手表、手环、头戴式耳机、AR(augmented reality,增强现实)/VR(virtual reality,虚拟现实)设备等,智能消费电子类设备可以包括但不限定于手机、平板、笔记本、智能音箱、随身智能路由等。This application does not limit the application scenarios of the electronic device. For illustration, taking the electronic device as a photovoltaic cell as an example, the photovoltaic cell can be applied in the field of smart wearable devices, as well as other fields such as consumer electronic devices, so as to realize photoelectric energy collection. In order to prolong battery life, etc.; wherein, smart wearable devices may include but are not limited to smart glasses, goggles, watches, bracelets, headsets, AR (augmented reality, augmented reality)/VR (virtual reality, virtual reality) Devices, etc., smart consumer electronic devices may include but are not limited to mobile phones, tablets, notebooks, smart speakers, portable smart routers, and the like.
以下结合光电池,对本申请实施例提供的透明导电电极进行进一步的说明。The transparent conductive electrodes provided in the embodiments of the present application will be further described below in conjunction with photovoltaic cells.
如图6所示,在一些可能实现的方式中,光电池可以包括依次层叠设置的底电极E1、第一缓冲层B1、活性层L、第二缓冲层B2、顶电极E2;当然,光电池还可以包括其他的部件或者膜层,本申请对此不作限制。其中,第一缓冲层B1和第二缓冲层B2中,一个为电子传输层,另一个为空穴传输层;活性层L为吸光材料,如钙钛矿材料或有机材料等,活性层吸收光子受激发产生电子-空穴对。As shown in FIG. 6 , in some possible implementations, the photovoltaic cell may include a bottom electrode E1, a first buffer layer B1, an active layer L, a second buffer layer B2, and a top electrode E2 that are stacked in sequence; of course, the photovoltaic cell may also Other components or film layers are included, which are not limited in this application. Among them, among the first buffer layer B1 and the second buffer layer B2, one is an electron transport layer and the other is a hole transport layer; the active layer L is a light absorbing material, such as a perovskite material or an organic material, and the active layer absorbs photons Excited to generate electron-hole pairs.
以第一缓冲层B1为电子传输层,第二缓冲层B2为空穴传输层为例,活性层L在接收光线照射后吸收光子受激发产生电子-空穴对,电子通过第一缓冲层B1传输至底电极E1,空穴通过第二缓冲层B2传输至顶电极E2,底电极E1和顶电极E2收集电荷为外电路供电。Taking the first buffer layer B1 as an electron transport layer and the second buffer layer B2 as a hole transport layer as an example, the active layer L absorbs photons and is excited to generate electron-hole pairs after receiving light irradiation, and the electrons pass through the first buffer layer B1 The holes are transferred to the bottom electrode E1, and the holes are transferred to the top electrode E2 through the second buffer layer B2, and the bottom electrode E1 and the top electrode E2 collect the charges to supply power to the external circuit.
为了保证活性层L能够有效的接收光线的入射,底电极E1和顶电极E2至少一个可以采用本申请实施例提供的透明导电电极。In order to ensure that the active layer L can effectively receive the incident light, at least one of the bottom electrode E1 and the top electrode E2 may use the transparent conductive electrode provided in the embodiment of the present application.
例如,在一些可能实现的方式中,底电极E1可以采用前述实施例提供的任一种透明导电电极,而顶电极E2可以采用银薄膜作为导电电极。又例如,在一些可能实现的方式中,顶电极E2采用前述实施例提供的任一种透明导电电极,而底电极E1可以采用银薄膜作为导电电极。再例如,在一些可能实现的方式中,底电极E1和顶电极E2可以均采用前述实施例提供的任一种透明导电电极。当然对于光电池中位于底电极E1和顶电极E2之间的各膜层(如B1、L、B2)采用的材料以及相关参数的设置,可以参考相关技术,此处不再赘述。For example, in some possible implementations, the bottom electrode E1 may use any one of the transparent conductive electrodes provided in the foregoing embodiments, and the top electrode E2 may use a silver thin film as the conductive electrode. For another example, in some possible implementations, the top electrode E2 adopts any one of the transparent conductive electrodes provided in the foregoing embodiments, and the bottom electrode E1 can use a silver thin film as the conductive electrode. For another example, in some possible implementation manners, both the bottom electrode E1 and the top electrode E2 may use any one of the transparent conductive electrodes provided in the foregoing embodiments. Of course, for the materials used for each film layer (eg, B1, L, B2) between the bottom electrode E1 and the top electrode E2 in the photovoltaic cell and the setting of related parameters, reference can be made to related technologies, which will not be repeated here.
以该光电池在智能眼镜中的设置为例,光电池可以贴附在镜片的内侧,在此情况下,外界的光线经过镜片后入射至光电池;又例如,光电池也可以贴附在镜片的外侧,在此情况下,外界的光线先入射至光电池;再例如,可以设置双层镜片,将光电池夹设在双层镜片之间,通过镜片对光电池起到一定的保护作用;本申请对此不作具体限制。Taking the arrangement of the photocell in the smart glasses as an example, the photocell can be attached to the inner side of the lens. In this case, the external light enters the photocell after passing through the lens; for another example, the photocell can also be attached to the outer side of the lens. In this case, the light from the outside is first incident on the photocell; for example, a double-layer lens can be provided, and the photocell is sandwiched between the double-layer lenses, and the lens can protect the photocell to a certain extent; this application does not specifically limit this. .
通过对本申请的透明导电电极应用在光电池中的实际检测,本申请一些实施例的透明导电电极的方阻可以降低至0.1Ω左右,相对于常规的ITO透明电极,其导电性提升了近千倍。基于其高导电性,大幅度的提升了光电池的效率,从而能够满足单个光电池对大面积的需求,进而可以满足可穿戴设备或消费电子设备对美观的需求,同时大幅提升了续航时间。Through the actual testing of the application of the transparent conductive electrode of the present application in photovoltaic cells, the square resistance of the transparent conductive electrode of some embodiments of the present application can be reduced to about 0.1Ω, and its conductivity is improved by nearly a thousand times compared with the conventional ITO transparent electrode . Based on its high conductivity, the efficiency of photovoltaic cells is greatly improved, so that it can meet the large area demand of a single photovoltaic cell, which in turn can meet the aesthetic needs of wearable devices or consumer electronic devices, while greatly improving the battery life.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. should be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be subject to the protection scope of the claims.

Claims (13)

  1. 一种透明导电电极,其特征在于,包括透明衬底以及嵌入在所述透明衬底中的金属网格、金属纳米线网络;A transparent conductive electrode, characterized by comprising a transparent substrate and a metal grid and a metal nanowire network embedded in the transparent substrate;
    所述金属纳米线网络位于所述金属网格的网孔区域;the metal nanowire network is located in the mesh area of the metal grid;
    所述透明衬底包括位于厚度方向上的第一表面;the transparent substrate includes a first surface in the thickness direction;
    所述金属网格以及所述金属纳米线网络露出所述第一表面、且与所述第一表面平齐;The metal mesh and the metal nanowire network are exposed on the first surface and are flush with the first surface;
    所述透明导电电极还包括:透明导电修饰层;所述透明导电修饰层覆盖所述第一表面以及露出于所述第一表面的所述金属网格、所述金属纳米线网络。The transparent conductive electrode further includes: a transparent conductive decoration layer; the transparent conductive decoration layer covers the first surface and the metal mesh and the metal nanowire network exposed on the first surface.
  2. 根据权利要求1所述的透明导电电极,其特征在于,The transparent conductive electrode according to claim 1, wherein,
    所述透明衬底还包括位于所述第一表面相对侧的第二表面;The transparent substrate further includes a second surface opposite the first surface;
    所述金属网格以及所述金属纳米线网络均未露出所述第二表面。Neither the metal mesh nor the metal nanowire network is exposed to the second surface.
  3. 根据权利要求1或2所述的透明导电电极,其特征在于,The transparent conductive electrode according to claim 1 or 2, characterized in that,
    所述金属纳米线网络嵌入在所述透明衬底中表面覆盖有氧化物纳米颗粒。The metal nanowire network is embedded in the transparent substrate and the surface is covered with oxide nanoparticles.
  4. 根据权利要求1-3任一项所述的透明导电电极,其特征在于,The transparent conductive electrode according to any one of claims 1-3, characterized in that,
    所述金属纳米线网络为银纳米线网络。The metal nanowire network is a silver nanowire network.
  5. 根据权利要求1-4任一项所述的透明导电电极,其特征在于,The transparent conductive electrode according to any one of claims 1-4, wherein,
    所述透明导电修饰层中包括透明导电氧化物、透明导电聚合物、碳纳米管、石墨烯中的一种或多种。The transparent conductive modification layer includes one or more of transparent conductive oxide, transparent conductive polymer, carbon nanotube, and graphene.
  6. 根据权利要求1-5任一项所述的透明导电电极,其特征在于,所述透明衬底为柔性衬底。The transparent conductive electrode according to any one of claims 1-5, wherein the transparent substrate is a flexible substrate.
  7. 一种电子器件,其特征在于,包括如权利要求1-6任一项所述的透明导电电极。An electronic device, characterized by comprising the transparent conductive electrode according to any one of claims 1-6.
  8. 根据权利要求7所述的电子器件,其特征在于,The electronic device according to claim 7, wherein,
    所述电子器件包括光电池;the electronic device includes a photovoltaic cell;
    所述光电池中的至少一个电极采用所述透明导电电极。At least one electrode in the photovoltaic cell adopts the transparent conductive electrode.
  9. 一种透明导电电极的制备方法,其特征在于,包括:A method for preparing a transparent conductive electrode, comprising:
    在基板上形成胶质层;forming a colloidal layer on the substrate;
    在所述胶质层上形成镂空的网格沟槽,以得到胶质图案层;forming hollow grid grooves on the colloidal layer to obtain a colloidal pattern layer;
    在位于所述胶质图案层的网格沟槽内的基板上形成金属网格,并去除所述胶质图案层;forming metal grids on the substrate located in the grid grooves of the colloidal pattern layer, and removing the colloidal pattern layer;
    在位于所述金属网格的网孔区域的基板上形成金属纳米线网络;forming a network of metal nanowires on the substrate located in the mesh area of the metal mesh;
    在形成有所述金属网格和所述金属纳米线网络的基板上形成高分子透明膜层,以将所述金属网格和所述金属纳米线网络嵌入在所述高分子透明膜层中;forming a polymer transparent film layer on the substrate formed with the metal grid and the metal nanowire network, so as to embed the metal grid and the metal nanowire network in the polymer transparent film layer;
    将所述高分子透明膜层以及嵌入在所述高分子透明膜层中的金属网格、金属纳米线网络整体从所述基板进行剥离,得到透明导电基底;peeling off the polymer transparent film layer, the metal grid and the metal nanowire network embedded in the polymer transparent film layer as a whole from the substrate to obtain a transparent conductive substrate;
    在所述透明导电基底的剥离侧的表面形成透明导电修饰层。A transparent conductive modification layer is formed on the surface of the peeling side of the transparent conductive substrate.
  10. 根据权利要求9所述的透明导电电极的制备方法,其特征在于,The method for preparing a transparent conductive electrode according to claim 9, wherein,
    所述在所述胶质层上形成镂空的网格沟槽,以得到胶质图案层包括:The forming of hollow grid grooves on the colloidal layer to obtain the colloidal pattern layer includes:
    采用光刻法或者纳米压印法,在所述胶质层上形成镂空的网格沟槽。A photolithography method or a nano-imprint method is used to form hollow grid grooves on the colloidal layer.
  11. 根据权利要求9或10所述的透明导电电极的制备方法,其特征在于,The method for preparing a transparent conductive electrode according to claim 9 or 10, wherein,
    所述在位于所述胶质图案层的网格沟槽内的基板上形成金属网格包括:The forming a metal grid on the substrate located in the grid groove of the colloidal pattern layer includes:
    采用选择性电镀工艺在所述胶质图案层的网格沟槽内的基板上形成金属网格;其中,所述基板为导电基板。A metal grid is formed on the substrate in the grid groove of the colloidal pattern layer by a selective electroplating process; wherein, the substrate is a conductive substrate.
  12. 根据权利要求9-11任一项所述的透明导电电极的制备方法,其特征在于,The method for preparing a transparent conductive electrode according to any one of claims 9-11, wherein,
    所述在位于所述金属网格的网孔区域的基板上形成金属纳米线网络包括:The forming a metal nanowire network on the substrate located in the mesh area of the metal grid includes:
    采用涂布工艺将含有纳米金属线的溶液填充至所述金属网格的网孔区域,以在所述金属网格的网孔区域的基板上形成金属纳米线网络。A solution containing metal nanowires is filled into the mesh area of the metal grid by a coating process, so as to form a metal nanowire network on the substrate in the mesh area of the metal grid.
  13. 根据权利要求9-11任一项所述的透明导电电极的制备方法,其特征在于,The method for preparing a transparent conductive electrode according to any one of claims 9-11, wherein,
    所述在位于所述金属网格的网孔区域的基板上形成金属纳米线网络包括:The forming a metal nanowire network on the substrate located in the mesh area of the metal grid includes:
    采用涂布工艺将含有纳米金属线和氧化物纳米颗粒的溶液填充至所述金属网格的网孔区域,以在所述金属网格的网孔区域的基板上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络;A solution containing nano metal wires and oxide nanoparticles is filled into the mesh area of the metal grid by a coating process, so as to form a surface covered with oxide nanoparticles on the substrate in the mesh area of the metal grid metal nanowire network;
    或者,先采用涂布工艺将含有纳米金属线的溶液填充至所述金属网格的网孔区域形成金属纳米线网络,然后再采用涂布工艺将含有氧化物纳米颗粒的溶液填充至所述金属网格的网孔区域,以在所述金属网格的网孔区域的基板上形成表面覆盖有氧化物纳米颗粒的金属纳米线网络。Alternatively, the solution containing nano metal wires is first filled into the mesh area of the metal mesh by a coating process to form a metal nanowire network, and then the solution containing oxide nanoparticles is filled into the metal mesh by a coating process. The mesh area of the mesh is used to form a metal nanowire network covered with oxide nanoparticles on the substrate in the mesh area of the metal mesh.
PCT/CN2021/104086 2020-07-13 2021-07-01 Transparent conductive electrode, preparation method therefor, and electronic device WO2022012351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010670908.9 2020-07-13
CN202010670908.9A CN113936844B (en) 2020-07-13 2020-07-13 Transparent conductive electrode, preparation method thereof and electronic device

Publications (1)

Publication Number Publication Date
WO2022012351A1 true WO2022012351A1 (en) 2022-01-20

Family

ID=79273570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104086 WO2022012351A1 (en) 2020-07-13 2021-07-01 Transparent conductive electrode, preparation method therefor, and electronic device

Country Status (2)

Country Link
CN (1) CN113936844B (en)
WO (1) WO2022012351A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115645696A (en) * 2022-12-13 2023-01-31 山东百多安医疗器械股份有限公司 Double-cuff nerve monitoring tracheal cannula

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150041527A (en) * 2013-10-08 2015-04-16 주식회사 고려이노테크 Transparent Electrode Substrate Using Metal Nanowire
CN105073912A (en) * 2013-03-25 2015-11-18 电子部品研究院 Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
KR20180028631A (en) * 2016-09-09 2018-03-19 고려대학교 산학협력단 Metal mesh transparent electrode
CN108335781A (en) * 2018-02-11 2018-07-27 无锡博硕珈睿科技有限公司 Composite conductive thin film, preparation method, its application, product with heating film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI428937B (en) * 2005-08-12 2014-03-01 Cambrios Technologies Corp Nanowires-based transparent conductors
CN104795130B (en) * 2014-01-20 2017-12-05 中国科学院苏州纳米技术与纳米仿生研究所 Transparent conductive film and preparation method thereof
CN106229080B (en) * 2016-08-26 2018-01-05 华南理工大学 Low resistance electrically conducting transparent network film for flexible electronic device and preparation method thereof
CN108075040A (en) * 2016-11-07 2018-05-25 中国科学院苏州纳米技术与纳米仿生研究所 Flexible OLED base materials and preparation method thereof
CN108550424A (en) * 2018-03-22 2018-09-18 佛山市顺德区中山大学研究院 A kind of conductive film and the method for promoting conductive film electric conductivity
CN109285640A (en) * 2018-11-20 2019-01-29 西安交通大学 A kind of transparent conductive film and its preparation method and application
CN109890190B (en) * 2019-03-27 2021-01-19 西安交通大学 Transparent electromagnetic shielding film and preparation method thereof
CN110021462B (en) * 2019-05-17 2020-05-05 青岛五维智造科技有限公司 Manufacturing method and application of embedded metal grid flexible transparent electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073912A (en) * 2013-03-25 2015-11-18 电子部品研究院 Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film
KR20150041527A (en) * 2013-10-08 2015-04-16 주식회사 고려이노테크 Transparent Electrode Substrate Using Metal Nanowire
KR20180028631A (en) * 2016-09-09 2018-03-19 고려대학교 산학협력단 Metal mesh transparent electrode
CN108335781A (en) * 2018-02-11 2018-07-27 无锡博硕珈睿科技有限公司 Composite conductive thin film, preparation method, its application, product with heating film

Also Published As

Publication number Publication date
CN113936844B (en) 2023-02-03
CN113936844A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
US9860993B2 (en) Grid and nanostructure transparent conductor for low sheet resistance applications
US9253890B2 (en) Patterned conductive film, method of fabricating the same, and application thereof
CN106159040B (en) A kind of method that Whote-wet method prepares flexible metal network transparency electrode
JP2015501534A (en) Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices
CN105489784B (en) Electrode and its application prepared by the preparation method and this method of compliant conductive electrode
US10329660B2 (en) Flexible transparent thin film
KR102216418B1 (en) Embedded electrode substrate for transparent light emitting device display and method for manufacturing thereof
CN105405752A (en) Fabrication method of flexible nanowire gate-type transparent conductive electrode
KR20120001684A (en) Transparent conducting film, preparing method for the same, and transparent electrode and devices using the same
CN113066604A (en) Conductive film and preparation method thereof
WO2022012351A1 (en) Transparent conductive electrode, preparation method therefor, and electronic device
KR20120078875A (en) Preparation method of front electrode for solar cell and front electrode manufactured by the same
TW202027290A (en) Solar cell manufacturing method, solar cell, and solar cell module
KR20140133317A (en) Transparent conductor comprising silver nanowire and silver grid complex pattern and method of manufacturing the same
US20150367616A1 (en) Pressure-transferred components
CN110265178A (en) A kind of preparation method of flexible transparent conducting film
TW201304173A (en) Photo sensor and method of fabricating the same
KR101197575B1 (en) Solar cell, and manufacturing method therefor
KR102574926B1 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
TWI780454B (en) Touch panel and manufacturing method thereof
KR20130033538A (en) Method for manufacturing transparent electrode film
JP2017147257A (en) Photoelectric conversion element, manufacturing method for the same and solar battery
JP2006083036A (en) Glass etching method, manufacturing method of transparent conductive substrate and photoelectric transducer
WO2023035180A1 (en) Solar cell device and manufacturing method therefor, and electronic device
KR101673147B1 (en) Method of fabricating a hybrid solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842145

Country of ref document: EP

Kind code of ref document: A1