JP2015501534A - Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices - Google Patents

Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices Download PDF

Info

Publication number
JP2015501534A
JP2015501534A JP2014535980A JP2014535980A JP2015501534A JP 2015501534 A JP2015501534 A JP 2015501534A JP 2014535980 A JP2014535980 A JP 2014535980A JP 2014535980 A JP2014535980 A JP 2014535980A JP 2015501534 A JP2015501534 A JP 2015501534A
Authority
JP
Japan
Prior art keywords
electro
nanowires
optical device
nanoparticles
nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014535980A
Other languages
Japanese (ja)
Inventor
ヤン ヤン
ヤン ヤン
チョン ヒューイ チャン
チョン ヒューイ チャン
ルイ チュー
ルイ チュー
ヅエ ビン ソン
ヅエ ビン ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
University of California
Original Assignee
THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE REGENTS OF THE UNIVERSITY OF CARIFORNIA, University of California filed Critical THE REGENTS OF THE UNIVERSITY OF CARIFORNIA
Publication of JP2015501534A publication Critical patent/JP2015501534A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】電気光学装置用の透明導電体としての溶液プロセスによるナノ粒子−ナノワイヤ複合フィルムを提供する。【解決手段】電気光学装置は、下部構造と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記下部構造の上に堆積されたナノワイヤの層と、複数の前記空間を少なくとも部分的に充填するように配置され、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成する電導性及び光透過性を有する複数のナノ粒子と、を含む。前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成する。【選択図】図1The present invention provides a nanoparticle-nanowire composite film by a solution process as a transparent conductor for an electro-optical device. An electro-optical device includes a substructure and a joint portion electrically connected at an overlapping portion of the nanowires, and the substructure is formed to form a network of nanowires defining a space without the nanowires. A layer of nanowires deposited thereon and a plurality of said spaces arranged to at least partially fill and form a further conductive path for said network of nanowires traversing said spaces and light transmission A plurality of nanoparticles having properties. The network of nanowires and the plurality of nanoparticles having electrical conductivity and optical transparency form at least a part of the optically transparent electrode of the electro-optical device. [Selection] Figure 1

Description

(関連出願の参照)
本出願は、2011年10月13日に出願された米国特許仮出願第61/546,659の優先権を主張し、当該仮出願の全内容は参照によって本出願に組み込まれる。
(Refer to related applications)
This application claims priority from US Provisional Application No. 61 / 546,659, filed Oct. 13, 2011, the entire contents of which are hereby incorporated by reference.

現在クレームされている本発明の実施の形態に係る技術分野は、電気光学装置及びその製造方法に関し、特に、ナノ粒子−ナノワイヤ複合透明電極を有する電気光学装置及びその製造方法に関する。   The presently claimed technical field according to embodiments of the present invention relates to an electro-optical device and a manufacturing method thereof, and more particularly, to an electro-optical device having a nanoparticle-nanowire composite transparent electrode and a manufacturing method thereof.

現在、液晶ディスプレイ、タッチスクリーンディスプレイや太陽電池等の電気光学装置用に最も広く用いられている透明導電フィルムは、例えばインジウムスズ酸化物(以下「ITO」と称する。)である。(「電気光学(electro-optic)」及び「光電子工学(opto-electronic)」との用語は同じ意味で使用される。)ITOはその高透明度と低シート抵抗性のため多くの分野で幅広く適用されている。ITOは数十年にわたって使用され続けているが、インジウムの入手がより困難になりそれに伴い価格が上昇しているため、ITOの代替物の開発に大きな関心が向けられている。かかる透明電極の需要の更なる増加とインジウムの限られた供給を背景に、近年新たな透明電極の緊急な需要が発生している。   Currently, the most widely used transparent conductive film for electro-optical devices such as liquid crystal displays, touch screen displays and solar cells is, for example, indium tin oxide (hereinafter referred to as “ITO”). (The terms “electro-optic” and “opto-electronic” are used interchangeably.) ITO is widely applied in many fields because of its high transparency and low sheet resistance. Has been. Although ITO has been in use for decades, there has been a great deal of interest in developing ITO alternatives as indium has become more difficult to obtain and the price has increased accordingly. In recent years, there has been an urgent demand for new transparent electrodes against the background of the further increase in demand for such transparent electrodes and the limited supply of indium.

ITOに代替し得る可能性を有する材料を元にした透明電極には、幾つかの候補が存在する。例えば、カーボンナノチューブ(以下「CNT」と称する。)、グラフェン、あるいは薄い金属フィルムなどを用いたものがある。しかしながら、これら全ての候補には光透過性と電導性を両立していないという短所がある。   There are several candidates for transparent electrodes based on materials that have the potential to replace ITO. For example, there are those using carbon nanotubes (hereinafter referred to as “CNT”), graphene, or a thin metal film. However, all these candidates have the disadvantage that they do not achieve both light transmission and electrical conductivity.

近年、銀ナノワイヤ(以下「AgNW」と称する。)ネットワークを用いた透明導電体の形成に向けた取り組みがなされている。しかしながら、AgNWフィルムの量産には幾つかの未解決の課題が残っている。第一に、高導電性を達成するためには、交差したAgNW間の十分な電気的接続が重要な要素となる。しかしながら、AgNW表面へのPVPの表面活性コーティングのため、交差したAgNWを融着するための余分な工程が発生する場合が多い。かかる工程には高温熱アニール(>150℃)、陽極酸化アルミニウム(以下「AAO」と称する。)膜基板への余剰圧力又は減圧濾過の適用、及びHCl蒸気処理などが含まれる。第二に、安定性と堅牢性を備えたAgNW繊維質フィルムを得るためには、AgNWと基板との間に強力な付着力が必要となる。AgNWの基板上への付着性を向上させるために、基板の表面改質の手法が採用されている。圧力をかけることによりポリマーフィルムにAgNWを埋め込む手法によっても、AgNWと基板との間の強い付着力を得ることができる。さらに、ネイルポリッシュやin−situ重合法によっても付着性を改善できることが報告されている。しかしながら、これらの取り組みにおいては、未だITOに十分に取って代わることができる透明電極やその製造方法は得られていない。したがって、改良された透明電極、該電極の製造方法及び該電極を用いた装置への需要は未だ残っている。   In recent years, efforts have been made to form a transparent conductor using a silver nanowire (hereinafter referred to as “AgNW”) network. However, some unsolved problems remain in mass production of AgNW films. First, in order to achieve high conductivity, sufficient electrical connection between crossed AgNWs is an important factor. However, due to the surface active coating of PVP on the AgNW surface, an extra step to fuse the crossed AgNW often occurs. Such processes include high temperature thermal annealing (> 150 ° C.), application of excess pressure or vacuum filtration to an anodized aluminum (hereinafter “AAO”) film substrate, and HCl vapor treatment. Second, in order to obtain an AgNW fibrous film having stability and robustness, a strong adhesive force is required between the AgNW and the substrate. In order to improve the adhesion of AgNW to the substrate, a method for modifying the surface of the substrate is employed. A strong adhesion force between the AgNW and the substrate can also be obtained by a method of embedding the AgNW in the polymer film by applying pressure. Furthermore, it has been reported that the adhesion can be improved by nail polish or in-situ polymerization method. However, in these efforts, a transparent electrode that can sufficiently replace ITO and a manufacturing method thereof have not been obtained yet. Accordingly, there remains a need for improved transparent electrodes, methods for manufacturing the electrodes, and devices using the electrodes.

本発明の実施の形態に係る電気光学装置は、下部構造と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記下部構造の上に堆積されたナノワイヤの層と、複数の前記空間を少なくとも部分的に充填するように配置され、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成する電導性及び光透過性を有する複数のナノ粒子と、を含む。前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成する。   An electro-optical device according to an embodiment of the present invention has a substructure and a joint electrically connected at a portion where nanowires overlap, and forms a network of nanowires that partitions a space without the nanowires A layer of nanowires deposited on the substructure and a conductor arranged to at least partially fill a plurality of the spaces and form a further conducting path for the network of nanowires across the spaces And a plurality of nanoparticles having light permeability. The network of nanowires and the plurality of nanoparticles having electrical conductivity and light permeability form at least a part of the light transmissive electrode of the electro-optical device.

本発明の実施の形態に係る電気光学装置の製造方法は、下部構造を用意する工程と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記下部構造の上にナノワイヤの層を堆積する工程と、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成するために、複数の前記空間を少なくとも部分的に充填するように、電導性及び光透過性を有する複数のナノ粒子を前記下部構造及び前記ナノワイヤの層の上に堆積する工程と、を含む。前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成する。   An electro-optical device manufacturing method according to an embodiment of the present invention includes a step of preparing a lower structure, a joint electrically connected at a portion where nanowires overlap, and a nanowire that partitions a space without the nanowire Depositing a layer of nanowires on the substructure to form a network of, and forming at least a plurality of the spaces to form additional conductive paths for the network of nanowires across the spaces. Depositing a plurality of electrically conductive and light transmissive nanoparticles on the substructure and the layer of nanowires to partially fill. The network of nanowires and the plurality of nanoparticles having electrical conductivity and light permeability form at least a part of the light transmissive electrode of the electro-optical device.

本発明の実施の形態に係る電気光学装置の製造方法は、下部構造を用意する工程と、電導性及び光透過性を有する複数のナノ粒子を前記下部構造の上に堆積する工程と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記電導性及び光透過性を有する複数のナノ粒子の上にナノワイヤの層を堆積する工程と、を含む。前記電導性及び光透過性を有する複数のナノ粒子の少なくとも幾つかが、複数の前記空間を少なくとも部分的に充填し、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成する。前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成する。   An electro-optical device manufacturing method according to an embodiment of the present invention includes a step of preparing a lower structure, a step of depositing a plurality of nanoparticles having conductivity and light transmittance on the lower structure, In order to form a network of nanowires having junctions electrically connected at overlapping portions and partitioning the space without the nanowires, the nanowires are formed on the plurality of conductive and light transmissive nanoparticles. Depositing a layer. At least some of the plurality of conductive and light transmissive nanoparticles at least partially fill the plurality of spaces and form additional conductive paths to the network of nanowires across the spaces. The network of nanowires and the plurality of nanoparticles having electrical conductivity and light permeability form at least a part of the light transmissive electrode of the electro-optical device.

本発明の更なる目的及び利点は、発明の詳細な説明、図面及び実施例を考慮することにより明らかになる。   Further objects and advantages of the present invention will become apparent upon consideration of the detailed description, drawings and examples of the invention.

図1は、本発明の実施の形態に係る電気光学装置の概略図である。FIG. 1 is a schematic diagram of an electro-optical device according to an embodiment of the present invention.

図2は、本発明の実施の形態による、ガラスの上に堆積されたAgNW/ITO NPとITO NP/AgNW/ITO NPの構造を有するITO NP−AgNW複合フィルムの光透過率を示している。FIG. 2 shows the light transmittance of an ITO NP-AgNW composite film having a structure of AgNW / ITO NP and ITO NP / AgNW / ITO NP deposited on glass according to an embodiment of the present invention.

図3は、従来のCuIn(Se,S)装置(左)、本発明の実施の形態によるAgNW/ITO NP透明導電体を有する装置(中央)、及び、本発明の実施の形態によるITO NP/AgNW/ITO NP透明導電体を有する装置(右)の装置概略図を示している。FIG. 3 shows a conventional CuIn (Se, S) 2 device (left), a device having an AgNW / ITO NP transparent conductor according to an embodiment of the present invention (center), and an ITO NP according to an embodiment of the present invention. The apparatus schematic of the apparatus (right) which has a / AgNW / ITO NP transparent conductor is shown.

図4は、本発明の実施の形態による透明導電体としてのITO NP/AgNW/ITO NP(左)、AgNW/ITO NP(右)を有するCISS装置の断面走査型電子顕微鏡像を示している。FIG. 4 shows a cross-sectional scanning electron microscope image of a CISS device having ITO NP / AgNW / ITO NP (left) and AgNW / ITO NP (right) as transparent conductors according to an embodiment of the present invention.

図5は、本発明の幾つかの実施の形態による装置を従来の(制御)装置と比較するためのバッチ1(左)及びバッチ2(右)における製造された装置の電流密度−電圧特性を示している。FIG. 5 shows the current density-voltage characteristics of the devices produced in batch 1 (left) and batch 2 (right) for comparing the device according to some embodiments of the present invention with a conventional (control) device. Show.

以下に本発明の幾つかの実施例を詳細に説明する。本発明の実施の形態を記載するにあたり、明確性を確保するために特定の技術用語が用いられている。しかしながら、本発明は、かかる選択された特定の技術用語に限定することを意図するものではない。関連分野の当業者は、他の同等の部材が適用され得ること、及び本発明の広い概念から逸脱することなく他の方法が展開され得ることを認めるであろう。従来技術、発明の詳細な説明を包含する本明細書で引用した全ての参照文献はそれぞれが独立に組み込まれるように組み込まれる。   Several embodiments of the invention are described in detail below. In describing embodiments of the present invention, specific terminology is used in order to ensure clarity. However, the present invention is not intended to be limited to such specific selected technical terms. Those skilled in the relevant art will recognize that other equivalent members can be applied and that other methods can be developed without departing from the broad concepts of the present invention. All references cited herein, including the prior art and detailed description of the invention, are incorporated so that each is incorporated independently.

本明細書における「光透過性」との用語は、特定用途に関して、動作波長範囲内の十分な量の光が通過できることを意味する。   As used herein, the term “light transmissive” means that for a particular application, a sufficient amount of light within the operating wavelength range can pass.

本明細書における「光」との用語は、電磁スペクトルの可視及び非可視領域の両者を含む広い意味を有するものとする。例えば、赤外光及び紫外光は、「光」との用語の広義に含まれるものとする。   As used herein, the term “light” shall have a broad meaning including both visible and non-visible regions of the electromagnetic spectrum. For example, infrared light and ultraviolet light are included in the broad sense of the term “light”.

本明細書における「ナノワイヤ」との用語は、断面寸法が200ナノメートル(以下「nm」と称する。)未満であり、かつ、長手方向寸法が少なくとも最大断面寸法の10倍以上である電導性を有するあらゆる構造体を含むものとする。場合により、かかる長手方向寸法は最大断面寸法の100倍以上、1000倍以上、あるいはそれ以上であってもよい。   As used herein, the term “nanowire” refers to conductivity having a cross-sectional dimension of less than 200 nanometers (hereinafter referred to as “nm”) and a longitudinal dimension of at least 10 times the maximum cross-sectional dimension. Including any structure it has. In some cases, the longitudinal dimension may be 100 times or more, 1000 times or more, or more than the maximum cross-sectional dimension.

本明細書における「ナノ粒子」との用語は、全ての外形寸法が200nm未満であるあらゆる形状を含むものとする。   As used herein, the term “nanoparticle” is intended to include any shape having all outer dimensions of less than 200 nm.

本明細書における「ナノワイヤのネットワーク」との用語は、複数のナノワイヤの配列であって、異なるナノワイヤが重なり合う多数の接合部を有するものを指すとする。ナノワイヤのネットワークを構成するナノワイヤは、ランダムに又は半ランダムに配列されていてよく、長さの分布を有していてもよい。すなわち、ナノワイヤのネットワークを構成するナノワイヤは長さが均一である必要はない。ナノワイヤのネットワークは、体系的に織り合わされあるいは結合されているものではないが、織物と類似していると考えられている。電極としては、ナノワイヤのネットワークのかかる複数のナノワイヤは、該ネットワークの一端と他端を結ぶ多数の電気的経路を形成しており、比較的少数の接合部を破壊しても該ネットワークの一端と他端を結ぶ別の電気的経路が残る。このように、ナノワイヤのネットワークは、耐欠陥性とともに柔軟性をも備えており、例えばインターネットなどのような通信ネットワークとある程度の類似が見られる。   As used herein, the term “network of nanowires” refers to an array of nanowires having multiple junctions where different nanowires overlap. The nanowires constituting the nanowire network may be arranged randomly or semi-randomly, and may have a length distribution. That is, the nanowires constituting the nanowire network need not be uniform in length. Nanowire networks are not systematically interwoven or bonded, but are considered to be similar to textiles. As an electrode, a plurality of such nanowires in a network of nanowires form a large number of electrical paths connecting one end and the other end of the network, and even if a relatively small number of joints are broken, Another electrical path that connects the other ends remains. Thus, the nanowire network has both defect resistance and flexibility, and shows some similarity to a communication network such as the Internet.

本明細書における「溶液」との用語は、液体中に溶解した成分、及び、液体中に懸濁した成分の両者を含む広い意味を有するものとする。例えば、液体中に懸濁したナノ粒子及び/又はナノワイヤは、本明細書では「溶液」との用語の定義に含まれると考えられる。   As used herein, the term “solution” has a broad meaning including both components dissolved in a liquid and components suspended in a liquid. For example, nanoparticles and / or nanowires suspended in a liquid are considered herein to be included in the definition of the term “solution”.

図1は、本発明の別の実施の形態に係る電気光学装置100の概略図である。電気光学装置100は、下部構造102と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、下部構造102の上に堆積された前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、下部構造102の上に堆積されたナノワイヤ104の層と、複数の前記空間を少なくとも部分的に充填するように配置され、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成する電導性及び光透過性を有し、ナノワイヤ104のネットワークに付着した複数のナノ粒子106と、を含む。図1は、幾つかのナノワイヤ104及び幾つかの複数のナノ粒子106を例として描画しているに過ぎない。幾つかの実施の形態においては、前記複数のナノ粒子は、重なり合うナノワイヤの接合部、例えば接合部108、を融着して、前記ナノワイヤのネットワークのシート電気抵抗を低減している。ナノワイヤ104の層、並びに、電導性及び光透過性を有する複数のナノ粒子106は、電気光学装置100の光透過性電極の少なくとも一部を形成する。   FIG. 1 is a schematic view of an electro-optical device 100 according to another embodiment of the present invention. The electro-optical device 100 has a joint structure electrically connected at the overlapping portion of the lower structure 102 and the nanowire, and forms a network of nanowires that partitions the space without the nanowire deposited on the lower structure 102. In order to do so, a layer of nanowires 104 deposited on the lower structure 102 and a plurality of the spaces arranged to at least partially fill the space and further conducting paths to the network of nanowires across the spaces And a plurality of nanoparticles 106 attached to the network of nanowires 104. FIG. 1 only depicts several nanowires 104 and several multiple nanoparticles 106 as examples. In some embodiments, the plurality of nanoparticles fuses overlapping nanowire junctions, such as junction 108, to reduce the sheet electrical resistance of the nanowire network. The layer of the nanowire 104 and the plurality of nanoparticles 106 having conductivity and light transmission form at least a part of the light transmission electrode of the electro-optical device 100.

幾つかの実施の形態では、電導性及び光透過性を有する複数のナノ粒子106は、前記ナノワイヤがない空間を実質的に充填する。幾つかの実施の形態では、電導性及び光透過性を有する複数のナノ粒子106の少なくとも幾つかは、重なり合うナノワイヤの接合部、例えば接合部108、を融着して、ナノワイヤ104のネットワークのシート電気抵抗を低減する。   In some embodiments, the plurality of electrically conductive and light transmissive nanoparticles 106 substantially fills the space free of the nanowires. In some embodiments, at least some of the plurality of electrically conductive and light transmissive nanoparticles 106 fuse together overlapping nanowire joints, such as joints 108, to form a sheet of a network of nanowires 104. Reduce electrical resistance.

幾つかの実施の形態では、電気光学装置100は、ナノワイヤ104のネットワークの上、複数のナノ粒子106の上、及び、前記下部構造102の上に、更に接着剤材料110の層を備え、接着剤材料110がナノワイヤ104のネットワーク及び複数のナノ粒子106を下部構造102の上で被包している。   In some embodiments, the electro-optic device 100 further comprises a layer of adhesive material 110 over the network of nanowires 104, over the plurality of nanoparticles 106, and over the substructure 102. An agent material 110 encapsulates a network of nanowires 104 and a plurality of nanoparticles 106 on the substructure 102.

幾つかの実施の形態では、下部構造102は、電導性及び光透過性を有するナノ粒子の層(図1には図示されていない)を更に含むことができ、ナノワイヤ104の層は、下部構造の電導性及び光透過性を有するナノ粒子の層の上に堆積される。本発明の一般的概念は、電導性及び光透過性を有するナノ粒子及び/又はナノワイヤの任意の組み合わせによる多数の層を含むことができる。ただし、ナノワイヤの各層は、電導性及び光透過性を有するナノ粒子の層の少なくとも1つに接している必要がある。   In some embodiments, the substructure 102 can further include a layer of conductive and light transmissive nanoparticles (not shown in FIG. 1), and the layer of nanowires 104 can include the substructure. Are deposited on a layer of nanoparticles having electrical conductivity and optical transparency. The general concept of the present invention can include multiple layers of any combination of electrically conductive and light transmissive nanoparticles and / or nanowires. However, each layer of nanowires needs to be in contact with at least one layer of nanoparticles having electrical conductivity and optical transparency.

幾つかの実施の形態では、電導性及び光透過性を有する複数のナノ粒子106は、金属酸化物、導電性ポリマー、又はフッ素ドープ酸化スズのうちの少なくとも1つを含むことができる。幾つかの実施の形態では、電導性及び光透過性を有する複数のナノ粒子106は、インジウムスズ酸化物、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、及び酸化セリウムから成る金属酸化物のグループから選択された少なくとも1つの金属酸化物を含むことができる。幾つかの実施の形態では、ナノワイヤ104のネットワークは、カーボンナノチューブ又は金属ナノワイヤのうちの少なくとも1つを含むことができる。幾つかの実施の形態では、金属ナノワイヤは、銀、金、銅、又はアルミニウムのうちの少なくとも1つを含むことができる。幾つかの実施の形態では、ナノワイヤは、例えば、実質的に純元素物質であってもよく、あるいは、ドープされた合金又は金属合金であってもよい。幾つかの実施の形態では、ナノワイヤ104のネットワークは、実質的に銀ナノワイヤから成ることができ、電導性及び光透過性を有する複数のナノ粒子106は、実質的にインジウムスズ酸化物のナノ粒子から成ることができる。幾つかの実施の形態では、下部構造102は活性層を含むことができ、前記電気光学装置は、光起電装置、発光ダイオード、又はフォトダイオードのうちの少なくとも1つである。しかしながら、本発明の一般的概念はこれらの実施例に限定されるものではない。電導性及び少なくとも部分的な光透過性を有する層を備えるあらゆる電気光学(又は光電子工学)装置は、本発明の一般的概念に含まれてもよい。   In some embodiments, the plurality of electrically conductive and light transmissive nanoparticles 106 can include at least one of a metal oxide, a conductive polymer, or fluorine-doped tin oxide. In some embodiments, the plurality of electrically conductive and light transmissive nanoparticles 106 is a group of metal oxides comprising indium tin oxide, zinc oxide, aluminum-doped zinc oxide, indium zinc oxide, and cerium oxide. At least one metal oxide selected from: In some embodiments, the network of nanowires 104 can include at least one of carbon nanotubes or metal nanowires. In some embodiments, the metal nanowire can include at least one of silver, gold, copper, or aluminum. In some embodiments, the nanowire may be, for example, a substantially pure element material, or may be a doped alloy or metal alloy. In some embodiments, the network of nanowires 104 can consist essentially of silver nanowires, and the plurality of electrically conductive and light transmissive nanoparticles 106 are substantially indium tin oxide nanoparticles. Can consist of In some embodiments, the substructure 102 can include an active layer, and the electro-optic device is at least one of a photovoltaic device, a light emitting diode, or a photodiode. However, the general concept of the invention is not limited to these examples. Any electro-optic (or optoelectronic) device comprising a layer having electrical conductivity and at least partial light transmission may be included in the general concept of the invention.

本発明の実施の形態に係る電気光学装置100の製造方法は、下部構造102を用意する工程と、ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、ナノワイヤ104がない空間を区画するナノワイヤのネットワークを形成するために、下部構造102の上にナノワイヤ104の層を堆積する工程と、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成するために、複数の前記空間を少なくとも部分的に充填するように、電導性及び光透過性を有する複数のナノ粒子106を下部構造102及びナノワイヤ104の層の上に堆積する工程と、を含む。ナノワイヤ104のネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子は、前記電気光学装置の光透過性電極の少なくとも一部を形成する。本発明の幾つかの実施の形態に係る製造方法では、上記の様々な材料を用いることができる。   The method for manufacturing the electro-optical device 100 according to the embodiment of the present invention includes a step of preparing the lower structure 102, a joint portion electrically connected at the overlapping portion of the nanowires, and a space where the nanowires 104 are absent. Depositing a layer of nanowires 104 on the underlying structure 102 to form a network of nanowires to perform, and a plurality of said conductive paths to form additional conductive paths for the network of nanowires across the space Depositing a plurality of electrically conductive and light transmissive nanoparticles 106 on the underlying structure 102 and nanowire 104 layers to at least partially fill the space. The network of nanowires 104 and the plurality of nanoparticles having electrical conductivity and light permeability form at least a part of the light transmissive electrode of the electro-optical device. In the manufacturing method according to some embodiments of the present invention, the various materials described above can be used.

幾つかの実施の形態では、電気光学装置の製造方法は、下部構造102を用意する工程の前に、下部構造102の一部の上に電導性及び光透過性を有するナノ粒子の層を堆積する工程を更に含むことができ、下部構造102が前記電導性及び光透過性を有するナノ粒子の層を含む。この実施の形態では、下部構造102の上にナノワイヤ104の層を堆積する工程は、前記電導性及び光透過性を有するナノ粒子の層の上に前記ナノワイヤの層を堆積するものである。   In some embodiments, the method of manufacturing an electro-optic device deposits a layer of conductive and light transmissive nanoparticles on a portion of the lower structure 102 before the step of preparing the lower structure 102. The substructure 102 includes a layer of nanoparticles having electrical conductivity and light transmission. In this embodiment, the step of depositing the nanowire 104 layer on the lower structure 102 is to deposit the nanowire layer on the conductive and light transmissive nanoparticle layer.

幾つかの実施の形態では、電気光学装置100の製造方法は、ナノワイヤ104の層を堆積する工程、又は、前記電導性及び光透過性を有する複数のナノ粒子106を堆積する工程のうちの少なくとも1つの後に、アニールする工程を更に含むことができる。幾つかの実施の形態では、前記アニールする工程は、少なくとも25℃以上かつ1000℃未満の温度で実行することができる。   In some embodiments, the method of manufacturing the electro-optical device 100 includes at least one of depositing a layer of nanowires 104 or depositing the plurality of nanoparticles 106 having electrical conductivity and optical transparency. An annealing step can be further included after the one. In some embodiments, the annealing step may be performed at a temperature of at least 25 ° C. and less than 1000 ° C.

幾つかの実施の形態では、電気光学装置100の製造方法は、ナノワイヤ104の層を堆積する工程、又は、前記電導性及び光透過性を有する複数のナノ粒子を堆積する工程のうちの少なくとも1つの後に、紫外線照射により硬化する工程を更に含むことができる。   In some embodiments, the method of manufacturing the electro-optic device 100 includes at least one of depositing a layer of nanowires 104 or depositing a plurality of nanoparticles having the electrical conductivity and light transmission properties. After the two, a step of curing by ultraviolet irradiation can be further included.

以下に示す実施例は本発明の概念の説明に役立つが、本発明の一般的概念はかかる特定の実施例によって制限されるものではない。   The following examples serve to illustrate the concept of the present invention, but the general concept of the present invention is not limited by such specific examples.

スパッタ堆積されたインジウムスズ酸化物(ITO)、又は、アルミニウムドープ酸化亜鉛は、一般に、ディスプレイや薄膜太陽電池などの薄膜電気光学装置用の透明導電体として使用されている。これは、それらの膜が低抵抗及び高透過率の両者をもたらすためである(C. A. Hoel, T. O. Mason, J.- F. Gaillard, and K. R. Poeppelmeier, Chem. Mater. 2010, 22, 3569)。従来の透明導電体の作製においては真空技術の使用により製造コストが高くなっているため、コストを抑える目的で非真空式プロセス方法(non-vacuum processing methods)が研究されている(R. G. Gordon, MRS bulletin 2000, 25, 52)。溶液プロセスによる銀ナノワイヤ(AgNW)は可能性のある代替物として探求されているが、これらのフィルムは隣接する層への付着不良を示している(S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, ACS Nano 2009, 3, 1767)。したがって、電気光学特性のみならず優れた付着特性を提供する新しい構造又は材料の開発が必要である。   Sputter deposited indium tin oxide (ITO) or aluminum doped zinc oxide is commonly used as a transparent conductor for thin film electro-optic devices such as displays and thin film solar cells. This is because these membranes provide both low resistance and high permeability (C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, Chem. Mater. 2010, 22, 3569). The manufacturing cost of conventional transparent conductors is high due to the use of vacuum technology, so non-vacuum processing methods have been studied for the purpose of reducing costs (RG Gordon, MRS). bulletin 2000, 25, 52). Although solution-processed silver nanowires (AgNW) have been explored as a possible alternative, these films have shown poor adhesion to adjacent layers (S. De, TM Higgins, PE Lyons, EM Doherty , PN Nirmalraj, WJ Blau, JJ Boland, ACS Nano 2009, 3, 1767). Accordingly, there is a need for the development of new structures or materials that provide excellent adhesion properties as well as electro-optic properties.

本発明の実施の形態によれば、ITOナノ粒子(NP)−AgNWフィルムは、溶液プロセスを用いて作製され、CuIn(Se,S)(又はCISS)太陽電池における透明導電体として採用される。実施例の結果は、ITO NP−AgNWフィルムが、従来のスパッタ堆積されたITOに匹敵する優れた付着及び電気光学特性を示すことを証明する。加えて、ITO NP−AgNWフィルムは、CISS太陽電池の透明導電体(又は窓層)として適していることが示され、幾つかの実施例についての性能は、従来のCISS装置で使用されているスパッタ堆積されたITOフィルムよりも更に良好である。我々の知る限りでは、これは透明導電体としてのITO NP−AgNW複合フィルムの使用を初めて示すものである。 According to an embodiment of the present invention, the ITO nanoparticle (NP) -AgNW film is produced using a solution process and employed as a transparent conductor in CuIn (Se, S) 2 (or CISS) solar cells. . The results of the examples demonstrate that the ITO NP-AgNW film exhibits excellent adhesion and electro-optic properties comparable to conventional sputter deposited ITO. In addition, ITO NP-AgNW films have been shown to be suitable as transparent conductors (or window layers) for CISS solar cells, and performance for some embodiments has been used in conventional CISS devices. Even better than sputter deposited ITO films. To our knowledge, this is the first demonstration of the use of an ITO NP-AgNW composite film as a transparent conductor.

実験と結果
ITOナノ粒子−AgNW複合透明導電体の製作。
アルコール系AgNW溶液がスピンキャストされ、ガラス基板の上にフィルムが形成された。その後、ITO NP溶液が、アルコール系分散液からAgNW層の上にスピンキャストされた。ITO NP−AgNWフィルムの付着性を向上させるために、脱イオン(DI)水中に溶解したポリビニルアルコールが、ITO粒子溶液に必要に応じて加えられた。基板へのITO NP−AgNWフィルムの付着性を更に向上させるために、ITO NPフィルムが、基板とAgNW層の間に必要に応じて挿入された。ITO NP層及びAgNW層は、回転速度が2000rpmのアルコール系溶液からのスピンコーティングによって堆積され、その後堆積されたフィルムを120℃の温度でアニールした。
Experiment and Results Fabrication of ITO nanoparticle-AgNW composite transparent conductor.
The alcohol-based AgNW solution was spin-cast to form a film on the glass substrate. Thereafter, an ITO NP solution was spin-cast from the alcohol-based dispersion onto the AgNW layer. Polyvinyl alcohol dissolved in deionized (DI) water was added to the ITO particle solution as needed to improve the adhesion of the ITO NP-AgNW film. In order to further improve the adhesion of the ITO NP-AgNW film to the substrate, an ITO NP film was inserted as needed between the substrate and the AgNW layer. The ITO NP layer and the AgNW layer were deposited by spin coating from an alcohol-based solution with a rotation speed of 2000 rpm, and the deposited film was then annealed at a temperature of 120 ° C.

ITO−AgNW複合フィルムの電気特性及び光学特性。
図2は、ガラスの上に堆積されたAgNW/ITO NPとITO NP/AgNW/ITO NPの構造を有するITO NP−AgNW複合フィルムの光透過率を示している。これらのフィルムのシート抵抗は、それぞれ32Ω/□と24Ω/□である。両フィルムとも可視領域における光透過率は約80〜90%である。
Electrical and optical properties of ITO-AgNW composite film.
FIG. 2 shows the light transmittance of an ITO NP-AgNW composite film having a structure of AgNW / ITO NP and ITO NP / AgNW / ITO NP deposited on glass. The sheet resistance of these films is 32Ω / □ and 24Ω / □, respectively. Both films have a light transmittance in the visible region of about 80-90%.

透明導電体としてのITO NP−AgNW複合フィルムを有するCuIn(Se,S)装置。
我々のCISS装置は、文献(I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 2008, 16, 235)で報告された一般的な高効率構造に従って製造された。制御装置のアーキテクチャは、CuInSe、硫化カドミウム、スパッタ真性酸化亜鉛、及びスパッタ堆積されたITOフィルムの層が続いて上に堆積されたソーダライムガラス基板に基づいている。本発明の実施の形態による我々の装置では、スパッタ堆積されたi−ZnO及びITOが、溶液プロセスによるITO NP−AgNW複合フィルムに置き換えられる。装置構造の各バージョンは図3に示されている。
CuIn (Se, S) 2 device with ITO NP-AgNW composite film as transparent conductor.
Our CISS device is described in the literature (I. Repins, MA Contreras, B. Egaas, C. DeHart, J. Scharf, CL Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 2008, 16, 235) and manufactured according to the general high-efficiency structure reported in 235). The controller architecture is based on a soda lime glass substrate on which is subsequently deposited a layer of CuInSe 2 , cadmium sulfide, sputtered intrinsic zinc oxide, and sputter deposited ITO film. In our apparatus according to embodiments of the present invention, sputter deposited i-ZnO and ITO are replaced with solution-processed ITO NP-AgNW composite films. Each version of the device structure is shown in FIG.

図4は、ITO NP/AgNW/ITO NPを透明導電体として有するCISS装置の2つの断面走査型電子顕微鏡像を示している。画像に見られるように、フィルムはCdS層にわたって連続的であり、直径がおおよそ50nmの多数の緻密なナノ粒子(NP)から構成される。   FIG. 4 shows two cross-sectional scanning electron microscope images of a CISS device having ITO NP / AgNW / ITO NP as a transparent conductor. As can be seen in the image, the film is continuous across the CdS layer and is composed of a large number of dense nanoparticles (NP) approximately 50 nm in diameter.

作業装置は、図2に示されたものと同様の、溶液プロセスによるITO NP−AgNW複合層を用いて製造された。これらの装置は、スパッタ堆積されたi−ZnO/ITOを透明導電体層として有する制御装置よりも高い効率を示した。図5は、溶液プロセスによるITO NP−AgNW層を有する典型的な装置の電流密度−電圧特性を示している。   The working device was manufactured using an ITO NP-AgNW composite layer by solution process similar to that shown in FIG. These devices showed higher efficiencies than control devices with sputter deposited i-ZnO / ITO as the transparent conductor layer. FIG. 5 shows the current density-voltage characteristics of a typical device having an ITO NP-AgNW layer by a solution process.

本発明の幾つかの実施の形態による溶液プロセスによるITO NP−AgNW複合層の利点は、例えば、非真空式製作製造(non-vacuum fabrication production)、高スループットの堆積方法、及び低いプロセス温度に由来し得る。スパッタリング又は化学蒸着によって堆積された一般的な窓層に比べて、溶液プロセスによるITO NP−AgNWフィルムは、加工コストの著しい削減をもたらすことができるため、透明導電体の付着及び電気光学特性を犠牲にすることなく、対費用効果の高い装置製造の可能性を高めることができる。CuInSe太陽電池に特有であるが、吸収材料、又は、装置内の窓層の直前に配置される熱的に不安定な硫化カドミウムのバッファ層のいずれかの損傷を回避することを試みる場合には、この種の透明導電体及び堆積技術に伴う低いプロセス温度及び良好な化学条件は極めて有用である。 Advantages of solution-processed ITO NP-AgNW composite layers according to some embodiments of the present invention stem from, for example, non-vacuum fabrication production, high-throughput deposition methods, and low process temperatures Can do. Compared to common window layers deposited by sputtering or chemical vapor deposition, solution-processed ITO NP-AgNW films can provide a significant reduction in processing costs, thus sacrificing transparent conductor adhesion and electro-optic properties. Without increasing the likelihood of cost-effective device manufacturing. Unique to CuInSe 2 solar cells, but when trying to avoid damage to either the absorbing material or the thermally unstable cadmium sulfide buffer layer placed just before the window layer in the device The low process temperature and good chemical conditions associated with this type of transparent conductor and deposition technique are extremely useful.

本発明の幾つかの態様は以下の事項を含むことができるが、それに限定されない。
1.これらに限定されないがCu(In,Ga)(Se,S)、CuZnSn(Se,S)、CdTe、シリコン太陽電池、有機太陽電池、有機発光ダイオード、及び無機発光ダイオードを含む、ディスプレイや太陽電池などの電気光学装置における透明導電体及び/又は金属格子の一部又は全てとして、溶液プロセスによるITO NP−AgNWフィルムを使用すること。
2.複合フィルムがITO NP/AgNW/ITO NPの多層膜から成る項目1(上記)の特徴。
3.複合フィルムがAgNW/ITO NPの多層膜から成る項目1(上記)の特徴。
4.複合フィルムがITO NP/AgNWの多層膜から成る項目1(上記)の特徴。
5.複合フィルムが、混合ITO NP−AgNW溶液により作製されたITO NP−AgNWのネットワークから成る項目1(上記)の特徴。
6.ITO NP−AgNWフィルムが、スピンコーティング(spin-coating)、ドクターブレード(doctor blading)、ロッドコーティング(rod-coating)、スリットコーティング(slit-coating)、及びスプレーコーティング(spray coating)などの非真空法の様々な方法によって作製される項目1(上記)の特徴。
7.ITO粒子の大きさが1nmから1000nmの間にある項目1(上記)の特徴。
8.ITO NP−AgNW複合フィルムを形成するために用いられる、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニル、及びポリビニルブチラールなどのポリマー材料が、ITO NP溶液及び/又はAgNW溶液に加えられる項目1(上記)の特徴。
9.AgNWの長さが100nmから1000umの間にある項目1(上記)の特徴。
10.これらに限定されないが酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、酸化セリウム、及びフッ素ドープ酸化スズを含む他の金属酸化物、並びに、これに限定されないがPEDOT:PSSを含む導電性ポリマーも、ITO NPと同様の機能を果たす候補である項目1(上記)の特徴。
11.これらに限定されないが銅、金、及びアルミニウム、並びに/又はそれらの合金ナノワイヤを含むカーボンナノチューブ及び金属ナノワイヤを含む他の1次元ナノ構造体も、AgNWと同様の機能を果たす候補である項目1(上記)の特徴。
12.フィルムが25〜1000℃の範囲の温度でアニールされる項目1(上記)の特徴。
13.フィルムが紫外線照射によって硬化される項目1(上記)の特徴。
Some aspects of the invention can include, but are not limited to, the following:
1. But not limited to Cu (In, Ga) (Se , S) 2, Cu 2 ZnSn (Se, S) 4, CdTe, silicon solar cells, organic solar cells, organic light emitting diodes, and an inorganic light-emitting diodes, displays Use ITO NP-AgNW film by solution process as part or all of the transparent conductor and / or metal grid in electro-optical devices such as solar cells.
2. Item 1 (above) characterized in that the composite film comprises a multilayer film of ITO NP / AgNW / ITO NP.
3. Item 1 (above) characterized in that the composite film comprises a multilayer film of AgNW / ITO NP.
4). Item 1 (above) characterized in that the composite film comprises a multilayer film of ITO NP / AgNW.
5. The feature of item 1 (above), wherein the composite film consists of a network of ITO NP-AgNW made with a mixed ITO NP-AgNW solution.
6). ITO NP-AgNW film is a non-vacuum method such as spin-coating, doctor blading, rod-coating, slit-coating, and spray coating Features of item 1 (above) produced by various methods.
7). The feature of item 1 (above), wherein the ITO particle size is between 1 nm and 1000 nm.
8). Item 1 (above) in which polymer materials such as polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral used to form the ITO NP-AgNW composite film are added to the ITO NP solution and / or AgNW solution. Feature.
9. The feature of item 1 (above), wherein the AgNW length is between 100 nm and 1000 um.
10. Other metal oxides including, but not limited to, zinc oxide, aluminum doped zinc oxide, indium zinc oxide, cerium oxide, and fluorine doped tin oxide, and conductive polymers including but not limited to PEDOT: PSS, The feature of item 1 (above), which is a candidate for performing the same function as ITO NP.
11. Other one-dimensional nanostructures including, but not limited to, carbon nanotubes and metal nanowires including copper, gold, and aluminum and / or their alloy nanowires are also candidates for performing the same function as AgNW 1 Features of (above).
12 The feature of item 1 (above) wherein the film is annealed at a temperature in the range of 25-1000 ° C.
13. A feature of item 1 (above) in which the film is cured by UV irradiation.

当明細書において説明され議論された実施の形態は、当業者に本発明に係るものを製造し使用する方法を教示することのみを意図したものである。本発明の実施の形態を記載するにあたり、明確性を確保するために特定の技術用語が用いられている。しかしながら、本発明は、かかる選択された特定の技術用語に限定することを意図するものではない。上記の本発明の実施の形態は、上記技術を考慮することにより当業者によって認識されるように、本発明から逸脱することなく変形・変更されてもよい。したがって、特許請求の範囲及びその同等範囲内において、本発明は特に説明された以外の方法でも実施されてもよい。   The embodiments described and discussed herein are intended only to teach those skilled in the art how to make and use the invention. In describing embodiments of the present invention, specific terminology is used in order to ensure clarity. However, the present invention is not intended to be limited to such specific selected technical terms. The above-described embodiments of the present invention may be modified and changed without departing from the present invention, as will be appreciated by those skilled in the art in view of the above techniques. Therefore, within the scope of the appended claims and equivalents thereof, the present invention may be practiced otherwise than as specifically described.

100 電気光学装置
102 下部構造
104 ナノワイヤ
106 ナノ粒子
108 接合部
110 接着剤材料
DESCRIPTION OF SYMBOLS 100 Electro-optical device 102 Substructure 104 Nanowire 106 Nanoparticle 108 Joint part 110 Adhesive material

Claims (35)

下部構造と、
ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記下部構造の上に堆積されたナノワイヤの層と、
複数の前記空間を少なくとも部分的に充填するように配置され、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成する電導性及び光透過性を有する複数のナノ粒子と、を備える電気光学装置であって、
前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成することを特徴とする電気光学装置。
Substructure,
A layer of nanowires deposited on the substructure to form a network of nanowires having junctions electrically connected at the overlapping portions of the nanowires and defining a space free of the nanowires;
A plurality of nanoparticles having electrical conductivity and optical transparency arranged to at least partially fill the plurality of spaces and forming a further conductive path for the network of nanowires across the spaces. An electro-optic device,
The electro-optic device, wherein the nanowire network and the plurality of nanoparticles having electrical conductivity and light permeability form at least part of a light-transmissive electrode of the electro-optic device.
前記電導性及び光透過性を有する複数のナノ粒子は、前記ナノワイヤがない前記空間を実質的に充填することを特徴とする請求項1に記載の電気光学装置。   The electro-optical device according to claim 1, wherein the plurality of nanoparticles having conductivity and light transmittance substantially fill the space without the nanowire. 前記電導性及び光透過性を有する複数のナノ粒子の少なくとも幾つかは、重なり合うナノワイヤの接合部を融着して、前記ナノワイヤのネットワークのシート電気抵抗を低減することを特徴とする請求項1に記載の電気光学装置。   2. The sheet electrical resistance of the network of nanowires according to claim 1, wherein at least some of the plurality of conductive and light transmissive nanoparticles fuses overlapping nanowire junctions to reduce sheet electrical resistance of the nanowire network. The electro-optical device described. 前記下部構造は、電導性及び光透過性を有するナノ粒子の層を更に備え、前記ナノワイヤの層は、前記電導性及び光透過性を有するナノ粒子の層の上に堆積されることを特徴とする請求項1に記載の電気光学装置。   The substructure further includes a nanoparticle layer having electrical conductivity and light transmission, and the nanowire layer is deposited on the nanoparticle layer having electrical conductivity and light transmission. The electro-optical device according to claim 1. 前記ナノワイヤの層並びに前記電導性及び光透過性を有する複数のナノ粒子のうちの少なくとも1つを被包するか、あるいは、前記ナノワイヤの層並びに前記電導性及び光透過性を有する複数のナノ粒子のうちの少なくとも1つが混合されたポリマー層を更に備えることにより、複合ポリマー−ナノワイヤ−ナノ粒子層を形成することを特徴とする請求項1に記載の電気光学装置。   Encapsulating at least one of the nanowire layer and the plurality of nanoparticles having electrical conductivity and light transmission, or the nanowire layer and the plurality of nanoparticles having electrical conductivity and light transmission The electro-optical device according to claim 1, further comprising a polymer layer in which at least one of the layers is mixed to form a composite polymer-nanowire-nanoparticle layer. 前記電導性及び光透過性を有する複数のナノ粒子が、金属酸化物、導電性ポリマー、又はフッ素ドープ酸化スズのうちの少なくとも1つを備えることを特徴とする請求項1に記載の電気光学装置。   2. The electro-optical device according to claim 1, wherein the plurality of nanoparticles having conductivity and light transmittance include at least one of a metal oxide, a conductive polymer, or fluorine-doped tin oxide. . 前記電導性及び光透過性を有する複数のナノ粒子が、インジウムスズ酸化物、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、及び酸化セリウムから成る金属酸化物のグループから選択された少なくとも1つの金属酸化物を備えることを特徴とする請求項6に記載の電気光学装置。   The at least one metal selected from the group consisting of metal oxides, wherein the plurality of nanoparticles having electrical conductivity and optical transparency are selected from the group consisting of indium tin oxide, zinc oxide, aluminum-doped zinc oxide, indium zinc oxide, and cerium oxide. The electro-optical device according to claim 6, further comprising an oxide. 前記ナノワイヤのネットワークが、カーボンナノチューブ又は金属ナノワイヤのうちの少なくとも1つを備えることを特徴とする請求項1に記載の電気光学装置。   The electro-optical device according to claim 1, wherein the network of nanowires includes at least one of carbon nanotubes or metal nanowires. 前記金属ナノワイヤが、銀、金、銅、又はアルミニウムのうちの少なくとも1つを備えることを特徴とする請求項8に記載の電気光学装置。   The electro-optical device according to claim 8, wherein the metal nanowire includes at least one of silver, gold, copper, and aluminum. 前記ナノワイヤのネットワークが、カーボンナノチューブ又は金属ナノワイヤのうちの少なくとも1つを備えることを特徴とする請求項6に記載の電気光学装置。   The electro-optical device according to claim 6, wherein the network of nanowires includes at least one of carbon nanotubes or metal nanowires. 前記金属ナノワイヤが、銀、金、銅、又はアルミニウムのうちの少なくとも1つを備えることを特徴とする請求項10に記載の電気光学装置。   The electro-optical device according to claim 10, wherein the metal nanowire includes at least one of silver, gold, copper, and aluminum. 前記電導性及び光透過性を有する複数のナノ粒子が、インジウムスズ酸化物、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、及び酸化セリウムから成る金属酸化物のグループから選択された少なくとも1つの金属酸化物を備えることを特徴とする請求項11に記載の電気光学装置。   The at least one metal selected from the group consisting of metal oxides, wherein the plurality of nanoparticles having electrical conductivity and optical transparency are selected from the group consisting of indium tin oxide, zinc oxide, aluminum-doped zinc oxide, indium zinc oxide, and cerium oxide. The electro-optical device according to claim 11, comprising an oxide. 前記ナノワイヤのネットワークが実質的に銀ナノワイヤから成り、
前記電導性及び光透過性を有する複数のナノ粒子が実質的にインジウムスズ酸化物のナノ粒子から成ることを特徴とする請求項1に記載の電気光学装置。
The network of nanowires consists essentially of silver nanowires,
The electro-optical device according to claim 1, wherein the plurality of nanoparticles having conductivity and light transmittance are substantially composed of nanoparticles of indium tin oxide.
前記下部構造は活性層を備え、前記電気光学装置は、光起電装置、発光ダイオード、又はフォトダイオードのうちの少なくとも1つであることを特徴とする請求項1に記載の電気光学装置。   The electro-optical device according to claim 1, wherein the lower structure includes an active layer, and the electro-optical device is at least one of a photovoltaic device, a light-emitting diode, or a photodiode. 下部構造を用意する工程と、
ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記下部構造の上にナノワイヤの層を堆積する工程と、
前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成するために、複数の前記空間を少なくとも部分的に充填するように、電導性及び光透過性を有する複数のナノ粒子を前記下部構造及び前記ナノワイヤの層の上に堆積する工程と、を備える電気光学装置の製造方法であって、
前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成することを特徴とする電気光学装置の製造方法。
Preparing a substructure;
Depositing a layer of nanowires on the underlying structure to form a network of nanowires having junctions electrically connected at the overlapping portions of the nanowires and defining a space free of the nanowires;
In order to form a further conductive path for the network of nanowires traversing the space, a plurality of conductive and light transmissive nanoparticles are applied to the lower portion so as to at least partially fill the plurality of spaces. A structure and a step of depositing on the nanowire layer, comprising:
The method of manufacturing an electro-optical device, wherein the nanowire network and the plurality of conductive and light-transmitting nanoparticles form at least a part of a light-transmitting electrode of the electro-optical device.
前記下部構造を用意する前記工程の前に、前記下部構造の一部の上に電導性及び光透過性を有するナノ粒子の層を堆積する工程を更に備えることにより、前記下部構造が前記電導性及び光透過性を有するナノ粒子の層を備え、
前記下部構造の上に前記ナノワイヤの層を堆積する前記工程は、前記電導性及び光透過性を有するナノ粒子の層の上に前記ナノワイヤの層を堆積するものであることを特徴とする請求項15に記載の電気光学装置の製造方法。
Before the step of preparing the substructure, the method further comprises the step of depositing a layer of nanoparticles having electrical conductivity and light transmission on a part of the substructure, so that the substructure is electrically conductive. And a layer of nanoparticles having optical transparency,
The step of depositing the nanowire layer on the substructure comprises depositing the nanowire layer on the conductive and light transmissive nanoparticle layer. 15. A method for manufacturing the electro-optical device according to 15.
前記電導性及び光透過性を有する複数のナノ粒子は、前記ナノワイヤがない前記空間を実質的に充填することを特徴とする請求項15に記載の電気光学装置の製造方法。   16. The method of manufacturing an electro-optical device according to claim 15, wherein the plurality of nanoparticles having conductivity and light transmittance substantially fill the space without the nanowire. 前記電導性及び光透過性を有する複数のナノ粒子の少なくとも幾つかは、重なり合うナノワイヤの接合部を融着して、前記ナノワイヤのネットワークのシート電気抵抗を低減することを特徴とする請求項15に記載の電気光学装置の製造方法。   16. The at least some of the plurality of conductive and light transmissive nanoparticles fuses overlapping nanowire junctions to reduce sheet electrical resistance of the nanowire network. A method of manufacturing the electro-optical device according to claim. 複数のナノワイヤを液体に加える工程を更に備えることにより、前記ナノワイヤの層の溶液堆積のためのナノワイヤ溶液を形成することを特徴とする請求項15に記載の電気光学装置の製造方法。   The method of manufacturing an electro-optical device according to claim 15, further comprising a step of adding a plurality of nanowires to a liquid to form a nanowire solution for solution deposition of the nanowire layer. 電導性及び光透過性を有する複数のナノ粒子を液体に加える工程を更に備えることにより、前記電導性及び光透過性を有する複数のナノ粒子の溶液堆積のためのナノ粒子溶液を形成することを特徴とする請求項19に記載の電気光学装置の製造方法。   Forming a nanoparticle solution for solution deposition of the plurality of electrically conductive and light transmissive nanoparticles by further adding a plurality of electrically conductive and light transmissive nanoparticles to the liquid. The method of manufacturing an electro-optical device according to claim 19. ポリマーを前記ナノワイヤ溶液又は前記ナノ粒子溶液のうちの少なくとも1つと混合する工程を更に備えることにより、前記ポリマーを含む複合層を形成することを特徴とする請求項20に記載の電気光学装置の製造方法。   21. The electro-optic device according to claim 20, further comprising a step of mixing a polymer with at least one of the nanowire solution or the nanoparticle solution to form a composite layer containing the polymer. Method. 前記電導性及び光透過性を有する複数のナノ粒子が、金属酸化物、導電性ポリマー、又はフッ素ドープ酸化スズのうちの少なくとも1つを備えることを特徴とする請求項15に記載の電気光学装置の製造方法。   The electro-optical device according to claim 15, wherein the plurality of conductive and light-transmitting nanoparticles include at least one of a metal oxide, a conductive polymer, or fluorine-doped tin oxide. Manufacturing method. 前記電導性及び光透過性を有する複数のナノ粒子が、インジウムスズ酸化物、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、及び酸化セリウムから成る金属酸化物のグループから選択された少なくとも1つの金属酸化物を備えることを特徴とする請求項22に記載の電気光学装置の製造方法。   The at least one metal selected from the group consisting of metal oxides, wherein the plurality of nanoparticles having electrical conductivity and optical transparency are selected from the group consisting of indium tin oxide, zinc oxide, aluminum-doped zinc oxide, indium zinc oxide, and cerium oxide. The method of manufacturing an electro-optical device according to claim 22, comprising an oxide. 前記ナノワイヤのネットワークが、カーボンナノチューブ又は金属ナノワイヤのうちの少なくとも1つを備えることを特徴とする請求項15に記載の電気光学装置の製造方法。   The method of manufacturing an electro-optical device according to claim 15, wherein the network of nanowires includes at least one of carbon nanotubes or metal nanowires. 前記金属ナノワイヤが、銀、金、銅、又はアルミニウムのうちの少なくとも1つを備えることを特徴とする請求項24に記載の電気光学装置の製造方法。   25. The method of manufacturing an electro-optical device according to claim 24, wherein the metal nanowire includes at least one of silver, gold, copper, and aluminum. 前記ナノワイヤのネットワークが、カーボンナノチューブ又は金属ナノワイヤのうちの少なくとも1つを備えることを特徴とする請求項22に記載の電気光学装置の製造方法。   23. The method of manufacturing an electro-optical device according to claim 22, wherein the network of nanowires includes at least one of a carbon nanotube or a metal nanowire. 前記金属ナノワイヤが、銀、金、銅、又はアルミニウムのうちの少なくとも1つを備えることを特徴とする請求項26に記載の電気光学装置の製造方法。   27. The method of manufacturing an electro-optical device according to claim 26, wherein the metal nanowire includes at least one of silver, gold, copper, and aluminum. 前記電導性及び光透過性を有する複数のナノ粒子が、インジウムスズ酸化物、酸化亜鉛、アルミニウムドープ酸化亜鉛、インジウム酸化亜鉛、及び酸化セリウムから成る金属酸化物のグループから選択された少なくとも1つの金属酸化物を備えることを特徴とする請求項27に記載の電気光学装置の製造方法。   The at least one metal selected from the group consisting of metal oxides, wherein the plurality of nanoparticles having electrical conductivity and optical transparency are selected from the group consisting of indium tin oxide, zinc oxide, aluminum-doped zinc oxide, indium zinc oxide, and cerium oxide. 28. The method of manufacturing an electro-optical device according to claim 27, comprising an oxide. 前記ナノワイヤのネットワークが実質的に銀ナノワイヤから成り、
前記電導性及び光透過性を有する複数のナノ粒子が実質的にインジウムスズ酸化物のナノ粒子から成ることを特徴とする請求項15に記載の電気光学装置の製造方法。
The network of nanowires consists essentially of silver nanowires,
16. The method of manufacturing an electro-optical device according to claim 15, wherein the plurality of nanoparticles having electrical conductivity and light transmittance are substantially composed of indium tin oxide nanoparticles.
前記下部構造は活性層を備え、前記電気光学装置は、光起電装置、発光ダイオード、又はフォトダイオードのうちの少なくとも1つであることを特徴とする請求項15に記載の電気光学装置の製造方法。   The electro-optical device manufacturing method according to claim 15, wherein the lower structure includes an active layer, and the electro-optical device is at least one of a photovoltaic device, a light emitting diode, or a photodiode. Method. 前記ナノワイヤの層を堆積する前記工程、又は、前記電導性及び光透過性を有する複数のナノ粒子を堆積する前記工程のうちの少なくとも1つの後に、アニールする工程を更に備えることを特徴とする請求項15に記載の電気光学装置の製造方法。   The method further comprises annealing after at least one of the step of depositing the layer of nanowires or the step of depositing the plurality of conductive and light transmissive nanoparticles. Item 16. A method for manufacturing the electro-optical device according to Item 15. 前記アニールする工程が、少なくとも25℃以上かつ1000℃未満の温度で実行されることを特徴とする請求項31に記載の電気光学装置の製造方法。   32. The method of manufacturing an electro-optical device according to claim 31, wherein the annealing step is performed at a temperature of at least 25 [deg.] C. and less than 1000 [deg.] C. 前記ナノワイヤの層を堆積する前記工程、又は、前記電導性及び光透過性を有する複数のナノ粒子を堆積する前記工程のうちの少なくとも1つの後に、紫外線照射により硬化する工程を更に備えることを特徴とする請求項15に記載の電気光学装置の製造方法。   The method further comprises the step of curing by ultraviolet irradiation after at least one of the step of depositing the nanowire layer, or the step of depositing the plurality of conductive and light transmissive nanoparticles. The method of manufacturing an electro-optical device according to claim 15. 前記ナノワイヤの層を堆積する前記工程、又は、前記電導性及び光透過性を有する複数のナノ粒子を堆積する前記工程のうちの少なくとも1つの後に、紫外線照射により硬化する工程を更に備えることを特徴とする請求項32に記載の電気光学装置の製造方法。   The method further comprises the step of curing by ultraviolet irradiation after at least one of the step of depositing the nanowire layer, or the step of depositing the plurality of conductive and light transmissive nanoparticles. A method for manufacturing an electro-optical device according to claim 32. 下部構造を用意する工程と、
電導性及び光透過性を有する複数のナノ粒子を前記下部構造の上に堆積する工程と、
ナノワイヤの重なり合う部分において電気的に接続された接合部を有するとともに、前記ナノワイヤがない空間を区画するナノワイヤのネットワークを形成するために、前記電導性及び光透過性を有する複数のナノ粒子の上にナノワイヤの層を堆積する工程と、を備える電気光学装置の製造方法であって、
前記電導性及び光透過性を有する複数のナノ粒子の少なくとも幾つかが、複数の前記空間を少なくとも部分的に充填し、前記空間を横切る前記ナノワイヤのネットワークに対して更なる電導経路を形成し、
前記ナノワイヤのネットワーク、並びに、前記電導性及び光透過性を有する複数のナノ粒子が、前記電気光学装置の光透過性電極の少なくとも一部を形成することを特徴とする電気光学装置の製造方法。
Preparing a substructure;
Depositing a plurality of conductive and light transmissive nanoparticles on the substructure;
In order to form a network of nanowires that have joints electrically connected at the overlapping portions of the nanowires and define a space without the nanowires, the conductive and light transmissive nanoparticles are formed on the nanowires. Depositing a layer of nanowires, and a method of manufacturing an electro-optical device comprising:
At least some of the plurality of electrically conductive and light transmissive nanoparticles at least partially fill the plurality of spaces and form additional conductive paths to the network of nanowires across the spaces;
The method of manufacturing an electro-optical device, wherein the nanowire network and the plurality of conductive and light-transmitting nanoparticles form at least a part of a light-transmitting electrode of the electro-optical device.
JP2014535980A 2011-10-13 2012-10-15 Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices Pending JP2015501534A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161546659P 2011-10-13 2011-10-13
US61/546,659 2011-10-13
PCT/US2012/060276 WO2013056242A1 (en) 2011-10-13 2012-10-15 Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices

Publications (1)

Publication Number Publication Date
JP2015501534A true JP2015501534A (en) 2015-01-15

Family

ID=48082582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014535980A Pending JP2015501534A (en) 2011-10-13 2012-10-15 Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices

Country Status (5)

Country Link
US (1) US9560754B2 (en)
EP (1) EP2800994A4 (en)
JP (1) JP2015501534A (en)
KR (1) KR20140088150A (en)
WO (1) WO2013056242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710797B2 (en) 2017-09-08 2023-07-25 Kabushiki Kaisha Toshiba Transparent electrode, device employing the same, and manufacturing method of the device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US11274223B2 (en) * 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
FR3029010B1 (en) * 2014-11-24 2017-12-15 Commissariat Energie Atomique POLYCRYSTALLINE SEMICONDUCTOR NANOSTRUCTURE MATERIAL
EP3250506B1 (en) * 2015-01-30 2020-08-26 Nanyang Technological University Method of interconnecting nanowires, nanowire network and transparent conductive electrode
JP6626126B2 (en) 2015-05-05 2019-12-25 ナノ−シー インコーポレイテッドNano−C, Inc. Multilayer, transparent, conductive, carbon nanotube-based hybrid film for mechanical reinforcement of thin layers
US10829605B2 (en) 2015-07-02 2020-11-10 Sabic Global Technologies B.V. Process and material for growth of adsorbed compound via nanoscale-controlled resistive heating and uses thereof
WO2018111686A1 (en) 2016-12-14 2018-06-21 The Charles Stark Draper Laboratory, Inc. Reactively assisted ink for printed electronic circuits
LU100018B1 (en) * 2017-01-11 2018-08-14 Luxembourg Inst Science & Tech List Infrared reflective and electrical conductive composite film and manufacturing method thereof
CN107195798B (en) * 2017-07-06 2020-03-06 京东方科技集团股份有限公司 Conductive layer and preparation method thereof, flexible substrate and flexible device
KR102198483B1 (en) * 2018-11-12 2021-01-07 인천대학교 산학협력단 Photodetector and manufacturing method thereof
US20220377887A1 (en) * 2019-11-19 2022-11-24 Massachusetts Institute Of Technology Transparent composite nanowire electrodes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20020039A1 (en) * 2002-03-08 2003-09-08 Colorobbia Italiana Spa PIGMENTS INCLUDED FOR CERAMIC AND OXIDE PRODUCTS IN THE FORM OF NANOMETRIC PARTICLES
US20080142970A1 (en) * 2006-12-14 2008-06-19 Sharp Laboratories Of America, Inc. Nanowire chemical mechanical polishing
KR100883737B1 (en) 2007-01-17 2009-02-12 삼성전자주식회사 Transparent carbon nanotube electrode with net shape carbon nanotube film and preparation method thereof
US7763978B2 (en) * 2007-03-28 2010-07-27 Hewlett-Packard Development Company, L.P. Three-dimensional crossbar array systems and methods for writing information to and reading information stored in three-dimensional crossbar array junctions
TWI487125B (en) * 2007-04-20 2015-06-01 Cambrios Technologies Corp Composite transparent conductors and methods of forming the same
JP2009094033A (en) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material
KR101598235B1 (en) * 2008-03-14 2016-02-26 나노-씨, 인크. Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
KR20090103250A (en) 2008-03-28 2009-10-01 전자부품연구원 Ink composition for transparent electrode and method of manufacturing transparent electrode using the ink composition
US8198796B2 (en) * 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
KR101036453B1 (en) * 2009-07-06 2011-05-24 한양대학교 산학협력단 Solar cell utilizing p-i-n nanowire
TWI402992B (en) * 2009-10-23 2013-07-21 Ind Tech Res Inst Solar cell and method for fabricating the same
CN102208317B (en) * 2010-03-31 2013-07-31 清华大学 Carbon nanotube slurry and field emitter prepared from same
US20120234581A1 (en) * 2011-03-18 2012-09-20 Ivanov Ilia N Percolative Conductive Network and Conductive Polymer Composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710797B2 (en) 2017-09-08 2023-07-25 Kabushiki Kaisha Toshiba Transparent electrode, device employing the same, and manufacturing method of the device

Also Published As

Publication number Publication date
US9560754B2 (en) 2017-01-31
KR20140088150A (en) 2014-07-09
EP2800994A1 (en) 2014-11-12
EP2800994A4 (en) 2015-10-07
WO2013056242A1 (en) 2013-04-18
US20140290987A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP2015501534A (en) Solution-processed nanoparticle-nanowire composite film as a transparent conductor for electro-optic devices
Shen et al. Rational interface engineering for efficient flexible perovskite light-emitting diodes
US10964890B2 (en) Opto-electrical devices incorporating metal nanowires
Krantz et al. Spray‐coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM‐based organic solar cell devices
CN102834936B (en) Nanowire-based transparent conductors and methods of patterning same
CN102324462B (en) Nanowire-based transparent conductors and applications thereof
CN107610802B (en) Transparent conductive film, photoelectric device and preparation method thereof
KR20140076268A (en) Substrate having transparent electrode for flexible display and method of fabricating the same
CN105789448A (en) Thin film preparation method utilizing nanoparticle to improve surface wettability
Pan et al. Over 1 cm2 flexible organic solar cells
KR20180124405A (en) Flexible transparent electrode and manufacturing method thereof
US20170179198A1 (en) Tandem organic photovoltaic devices that include a metallic nanostructure recombination layer
Wei et al. Solution-processed Ag-nanowire/ZnO-nanoparticle composite transparent electrode for flexible organic solar cells
Zhu et al. Highly flexible transparent micromesh electrodes via blade-coated polymer networks for organic light-emitting diodes
Lee et al. Highly efficient deep-UV light-emitting diodes using AlN-based deep-UV-transparent glass electrodes
Steim et al. Laminated fabric as top electrode for organic photovoltaics
Takada et al. High performance organic solar cells fabricated using recycled transparent conductive substrates
Li et al. Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes
Lu et al. Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability
Cho et al. Hierarchical silver network transparent conducting electrodes for thin-film solar cells
TW201824299A (en) Transparent conductive film and optical device having the same
Zarei et al. Substrate-embedded metal meshes for ITO-free organic light emitting diodes
WO2022012351A1 (en) Transparent conductive electrode, preparation method therefor, and electronic device
US20110247692A1 (en) Thin Film Type Solar Cell and Method for Manufacturing the Same
US11950436B2 (en) All-back-contact photovoltaic devices using cracked film lithography