JP2009094033A - Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material - Google Patents

Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material Download PDF

Info

Publication number
JP2009094033A
JP2009094033A JP2007266305A JP2007266305A JP2009094033A JP 2009094033 A JP2009094033 A JP 2009094033A JP 2007266305 A JP2007266305 A JP 2007266305A JP 2007266305 A JP2007266305 A JP 2007266305A JP 2009094033 A JP2009094033 A JP 2009094033A
Authority
JP
Japan
Prior art keywords
metal
transparent conductive
conductive material
nanowires
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266305A
Other languages
Japanese (ja)
Inventor
Hiroshi Takada
宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007266305A priority Critical patent/JP2009094033A/en
Publication of JP2009094033A publication Critical patent/JP2009094033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive material superior in conductivity and transparency, and additionally, to provide a light-weighted transparent conductive element rich in flexibility by a liquid phase film forming method. <P>SOLUTION: Disclosed are the transparent conductive material, the manufacturing method thereof, and the transparent conductive element using the material, wherein metal nano wire and metal nano particles are contained, and at least a part of the metal nano particles is joined to at least a part of the metal nano wires. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液晶表示素子、有機発光素子、無機電界発光素子、太陽電池、電磁波シールド、タッチパネル等の各種分野において好適に用いることができる、高い導電性と良好な透明性を併せ持つ透明導電材料及び透明導電素子に関するものである。   The present invention can be suitably used in various fields such as liquid crystal display elements, organic light emitting elements, inorganic electroluminescent elements, solar cells, electromagnetic wave shields, touch panels, and the like, and a transparent conductive material having both high conductivity and good transparency, and The present invention relates to a transparent conductive element.

液晶表示素子、有機発光素子、無機電界発光素子、太陽電池、電磁波シールド、タッチパネル等の各種分野における透明導電材料として、特定の金属酸化物を好適に用いることができる。透明導電材料として用いられる金属酸化物は、3eV以上の大きなバンドギャップと赤外域のプラズマ周波数のために紫外線を吸収し、可視光を透過し、赤外線を反射する性質を持ち、さらに元素置換によって伝導帯であるsバンドに電子をドープすることによって、金属的な電気伝導性を付与された無機材料である。具体例としては、錫や亜鉛をドープした酸化インジウム(ITO、IZO)、アルミニウムやガリウムをドープした酸化亜鉛(AZO、GZO)、フッ素やアンチモンをドープした酸化錫(FTO、ATO)等が挙げられる。   A specific metal oxide can be suitably used as a transparent conductive material in various fields such as a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, a solar cell, an electromagnetic wave shield, and a touch panel. Metal oxides used as transparent conductive materials absorb UV light, transmit visible light, reflect infrared light due to a large band gap of 3 eV or more and plasma frequency in the infrared region, and conduct by element substitution. It is an inorganic material imparted with metallic electrical conductivity by doping electrons into the band s band. Specific examples include indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), tin oxide doped with fluorine or antimony (FTO, ATO), and the like. .

一般に、金属酸化物透明導電膜の作製には、真空蒸着法、スパッタリング法、イオンプレーティング法等の気相製膜法が用いられる。しかしながら、これらの製膜方法は真空環境を必要とするため装置が大掛りかつ複雑なものとなり、また製膜に大量のエネルギーを消費するため、製造コストや環境負荷を軽減できる技術の開発が求められていた。また、一方で、液晶ディスプレイやタッチディスプレイに代表されるように、透明導電材料の大面積化が指向されており、それに伴い透明導電材料の軽量化や柔軟性に対する要請が高まっていた。   In general, the metal oxide transparent conductive film is produced by a vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method. However, since these film forming methods require a vacuum environment, the apparatus is large and complicated, and since a large amount of energy is consumed for film forming, it is necessary to develop a technology that can reduce the manufacturing cost and environmental load. It was done. On the other hand, as represented by a liquid crystal display and a touch display, an increase in the area of the transparent conductive material is aimed at, and accordingly, demands for weight reduction and flexibility of the transparent conductive material have increased.

このような要請に対して、導電性微粒子を含有する液状材料を用いて塗布や印刷のような液相成膜法により透明導電膜を形成する方法が提案されている。例えば、酸化インジウムや酸化錫よりなる導電性酸化物粒子を含む分散液を、支持体上に塗布し熱処理を行うことにより透明導電膜を形成する方法が開示されて(例えば、特許文献1参照)いる。また、基材上に塗布した無機酸化物微粒子の表面を溶解し、その後加熱処理により安定化させる成膜方法が開示されて(例えば、特許文献2参照)いる。しかし、これらの方法は、透明導電膜形成時に加熱処理を必要とするため、プラスチックフィルムのような樹脂支持体上に透明導電膜を形成する場合には適用できない。また、一般に市販されている透明導電性ペーストや透明導電性インクと呼ばれる材料も、高い導電性を得るためには塗膜形成後に加熱処理や焼結処理が必要であり、樹脂支持体への使用には適さないものである。   In response to such a demand, a method of forming a transparent conductive film by a liquid phase film forming method such as coating or printing using a liquid material containing conductive fine particles has been proposed. For example, a method of forming a transparent conductive film by applying a dispersion containing conductive oxide particles made of indium oxide or tin oxide on a support and performing a heat treatment is disclosed (for example, see Patent Document 1). Yes. In addition, a film forming method is disclosed in which the surface of inorganic oxide fine particles applied on a substrate is dissolved and then stabilized by heat treatment (see, for example, Patent Document 2). However, since these methods require heat treatment when forming the transparent conductive film, they cannot be applied when forming the transparent conductive film on a resin support such as a plastic film. In addition, the materials called transparent conductive pastes and transparent conductive inks that are generally available on the market also require heat treatment and sintering treatment after forming the coating film in order to obtain high conductivity. It is not suitable for.

液相成膜に適した透明導電材料として、π共役系高分子に代表される導電性高分子材料が挙げられる。一般に導電性高分子は、二重結合と単結合が交互に並んだ(π共役を主鎖とする)構造を持ち、導電性はこの構造に由来する。π共役系高分子は、一般の高分子と異なり導電経路は有するものの、自由に動ける電荷(キャリア)が存在しないためそれ自身では導電性を発現しない。しかし、無機半導体のようにドーピングによって自由に動けるキャリアを注入することで導電性を付与することができる。導電性高分子材料を用いると、適当な溶媒に溶解または分散し、必要に応じてバインダー成分を加えて塗布や印刷することによって透明導電素子を形成することが(例えば、特許文献3参照)できる。しかし、真空成膜法によるITOやZnO等の金属酸化物透明導電素子に較べると、導電性は低くかつ透明性にも劣る。   Examples of transparent conductive materials suitable for liquid phase film formation include conductive polymer materials typified by π-conjugated polymers. In general, a conductive polymer has a structure in which double bonds and single bonds are alternately arranged (with π conjugation as a main chain), and conductivity is derived from this structure. Unlike a general polymer, a π-conjugated polymer has a conductive path but does not exhibit conductivity by itself because there is no charge (carrier) that can move freely. However, conductivity can be imparted by injecting carriers that can move freely by doping like an inorganic semiconductor. When a conductive polymer material is used, a transparent conductive element can be formed by dissolving or dispersing in an appropriate solvent and adding or printing a binder component as necessary (see, for example, Patent Document 3). . However, compared to metal oxide transparent conductive elements such as ITO and ZnO formed by vacuum film formation, the conductivity is low and the transparency is also poor.

金属酸化物や導電性高分子に較べ、Ag、Cu、Au等の金属材料の導電率は2桁以上高く導電性の観点では好ましいが、透明性を確保できないという問題があった。それに対して、均質な金の超薄膜を形成することにより導電性と透明性を両立できることが報告されて(例えば、非特許文献1参照)いる。しかし、均質な金の超薄膜を形成するには、デュアルイオンビームスパッタ法という特殊な真空成膜法が必要であり、製造コストや環境負荷の軽減は実現できない。   Compared to metal oxides and conductive polymers, the conductivity of metal materials such as Ag, Cu, and Au is two orders of magnitude higher, which is preferable from the viewpoint of conductivity, but there is a problem that transparency cannot be secured. On the other hand, it has been reported that both conductivity and transparency can be achieved by forming a homogeneous gold ultrathin film (see, for example, Non-Patent Document 1). However, in order to form a uniform ultra-thin gold film, a special vacuum film forming method called a dual ion beam sputtering method is required, and reduction of manufacturing cost and environmental load cannot be realized.

液相成膜が可能な透明導電材料技術として、CNT(カーボンナノチューブ)や金属ナノワイヤを導電体として用いる方法が提案されて(例えば、特許文献4〜9参照)いる。CNTや金属ナノワイヤのような導電性繊維を導体として用いる透明導電材料においては、導電性繊維間の電気的なネットワーク形成によって導電性が発現する。従って、理想的には全ての導電性繊維が他の導電性繊維と少なくとも2つ以上の接点を有して、空間的に広く分布してネットワークを形成している状態であることが、導電性と透明性を両立するために好ましい。しかし、導電性繊維のネットワーク形成を制御できないため、満足できる導電性を得ることが難しかった。
特許第3251066号公報 特開2006−245516号公報 特開平6−273964号公報 富山県工業技術センター技術情報誌,No.95号(2004) 特表2004−526838号公報 特開2005−8893号公報 特開2005−255985号公報 特表2006−517485号公報 特表2006−519712号公報 米国特許第2007/0074316A1号明細書
As a transparent conductive material technology capable of liquid phase film formation, a method using CNT (carbon nanotube) or metal nanowire as a conductor has been proposed (for example, see Patent Documents 4 to 9). In a transparent conductive material using conductive fibers such as CNTs and metal nanowires as a conductor, conductivity is exhibited by forming an electrical network between the conductive fibers. Therefore, ideally, all the conductive fibers have at least two or more contacts with other conductive fibers, and are in a state of being widely distributed in a spatially formed network. And transparency are preferable. However, it is difficult to obtain satisfactory conductivity because the network formation of the conductive fibers cannot be controlled.
Japanese Patent No. 3251066 JP 2006-245516 A JP-A-6-273964 Toyama Industrial Technology Center, Technical Information Magazine, No. 95 (2004) Japanese translation of PCT publication No. 2004-526838 JP 2005-8893 A JP 2005-255985 A Special table 2006-517485 gazette JP 2006-519712 A US2007 / 0074316A1

本発明は以上のような事情に鑑みてなされたものであり、解決すべき課題は、透明導電材料及び透明導電素子における導電性と透明性の向上と更にはそれらの両立、加えて製造コストの削減と環境負荷の軽減にある。従って本発明の目的は、導電性と透明性に優れた透明導電材料を提供することにあり、加えて軽量で柔軟性に富む透明導電素子をコストや環境適性に優れた液相成膜法で提供することにある。   The present invention has been made in view of the circumstances as described above, and the problem to be solved is the improvement in conductivity and transparency in the transparent conductive material and the transparent conductive element, and further the compatibility thereof, in addition to the manufacturing cost. It is in reduction and reduction of environmental load. Accordingly, an object of the present invention is to provide a transparent conductive material excellent in conductivity and transparency. In addition, a transparent conductive element that is lightweight and rich in flexibility can be obtained by a liquid phase film forming method excellent in cost and environmental suitability. It is to provide.

本発明の上記目的は、以下の構成により達成することができる。   The above object of the present invention can be achieved by the following configuration.

1.金属ナノワイヤと金属ナノ粒子を含む透明導電材料であって、該金属ナノ粒子の少なくとも一部が、該金属ナノワイヤの少なくとも一部に接合していることを特徴とする透明導電材料。   1. A transparent conductive material comprising a metal nanowire and metal nanoparticles, wherein at least a part of the metal nanoparticle is bonded to at least a part of the metal nanowire.

2.金属ナノワイヤと金属ナノ粒子を含む透明導電材料であって、該金属ナノワイヤの少なくとも一部が、該金属ナノ粒子の少なくとも一部を介して他の金属ナノワイヤと接合していることを特徴とする透明導電材料。   2. A transparent conductive material comprising a metal nanowire and metal nanoparticles, wherein at least a part of the metal nanowire is bonded to another metal nanowire through at least a part of the metal nanoparticle Conductive material.

3.前記金属ナノ粒子が、Ag、Cu、Auより選択される元素を含むことを特徴とする前記1または2に記載の透明導電材料。   3. 3. The transparent conductive material according to 1 or 2, wherein the metal nanoparticles include an element selected from Ag, Cu, and Au.

4.金属ナノワイヤと金属ナノ粒子を含む分散媒体にエネルギーを印加することにより、金属ナノワイヤと金属ナノ粒子を融着させ、金属ナノワイヤ・金属ナノ粒子接合体を製造することを特徴とする金属ナノワイヤ・金属ナノ粒子接合体の製造方法。   4). Metal nanowires and metal nanostructures characterized in that metal nanowires and metal nanoparticle assemblies are manufactured by fusing metal nanowires and metal nanoparticles by applying energy to a dispersion medium containing metal nanowires and metal nanoparticles. A method for producing a particle assembly.

5.前記エネルギーの印加が、前記金属ナノ粒子の表面プラズモン吸収に対応する波長の光照射により行われることを特徴とする前記4に記載の金属ナノワイヤ・金属ナノ粒子接合体の製造方法。   5). 5. The method for producing a metal nanowire / metal nanoparticle assembly according to 4, wherein the energy is applied by irradiation with light having a wavelength corresponding to surface plasmon absorption of the metal nanoparticles.

6.前記1〜3のいずれか一項に記載の透明導電材料が前記4または5に記載の製造方法を用いて製造されたことを特徴とする透明導電材料。   6). 6. The transparent conductive material, wherein the transparent conductive material according to any one of 1 to 3 is manufactured using the manufacturing method according to 4 or 5.

7.透明導電素子が、透明樹脂支持体上に、前記1〜3及び前記6のいずれか一項に記載の透明導電材料を液相成膜して形成されたことを特徴とする透明導電素子。   7. A transparent conductive element formed by liquid-phase film-forming the transparent conductive material according to any one of 1 to 3 and 6 above on a transparent resin support.

本発明の上記手段によれば、金属ナノワイヤと金属ナノ粒子を複合化することにより、その効果として導電性と透明性に優れた透明導電材料を提供することができる。なおかつ軽量で柔軟性に富む透明導電素子をコストや環境適性に優れた液相成膜法で提供することができる。   According to the above-mentioned means of the present invention, by compositing metal nanowires and metal nanoparticles, a transparent conductive material excellent in conductivity and transparency can be provided as its effect. In addition, a transparent conductive element that is light and flexible can be provided by a liquid phase film forming method that is excellent in cost and environmental suitability.

本発明を更に詳しく説明する。   The present invention will be described in more detail.

本発明の透明導電材料は、金属ナノワイヤと金属ナノ粒子を複合化した透明導電材料であって、特に該金属ナノワイヤと該金属ナノ粒子が接合していることを特徴とする。この特徴は、請求項1〜7に係る発明に共通する技術的特徴である。   The transparent conductive material of the present invention is a transparent conductive material in which metal nanowires and metal nanoparticles are combined, and is particularly characterized in that the metal nanowires and the metal nanoparticles are bonded. This feature is a technical feature common to the inventions according to claims 1 to 7.

なお、本願において「接合している」とは、金属ナノワイヤや金属ナノ粒子が融着して、電気的に一つの連続体と看做せる状態を意味する。単に接触している場合には、接触抵抗による導電性のロスが発生するが、接合体の場合にはその影響が無いため導電性を向上できる。   In the present application, “bonded” means a state in which metal nanowires or metal nanoparticles are fused and can be regarded as one electrical continuum. In the case of simple contact, a loss of conductivity due to contact resistance occurs. However, in the case of a joined body, there is no influence, so that the conductivity can be improved.

以下、本発明とその構成要素、及び本発明を実施するための最良の形態等について詳細な説明をする。   Hereinafter, the present invention, its components, and the best mode for carrying out the present invention will be described in detail.

〔金属ナノワイヤ〕
本発明の透明導電材料において、金属ナノワイヤは主要な導電体として機能する。本発明では、金属ナノワイヤの金属元素として、バルク状態での導電率が1×106S/m以上の元素を用いることができる。本発明で好ましく用いることができる金属ナノワイヤの金属元素として具体例としては、Ag,Cu,Au,Al,Rh,Ir,Co,Zn,Ni,In,Fe,Pd,Pt,Sn,Ti等を挙げることができる。本発明においては2種類以上の金属ナノワイヤを組み合わせて用いることもできるが、導電性の観点から、Ag,Cu,Au,Al,Coより選択される元素を用いることが好ましい。
[Metal nanowires]
In the transparent conductive material of the present invention, the metal nanowire functions as a main conductor. In the present invention, an element having a conductivity in a bulk state of 1 × 10 6 S / m or more can be used as the metal element of the metal nanowire. Specific examples of metal elements of metal nanowires that can be preferably used in the present invention include Ag, Cu, Au, Al, Rh, Ir, Co, Zn, Ni, In, Fe, Pd, Pt, Sn, Ti, and the like. Can be mentioned. In the present invention, two or more kinds of metal nanowires can be used in combination, but from the viewpoint of conductivity, an element selected from Ag, Cu, Au, Al, and Co is preferably used.

本発明において金属ナノワイヤの製造手段には特に制限は無く、例えば、液相法や気相法などの公知の手段を用いることができる。また、具体的な製造方法にも特に制限は無く、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.2002,14,833〜837;Chem.Mater.2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報などを参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にかつ大量に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に関わる金属ナノワイヤの製造方法として好ましく適用することができる。   In the present invention, there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag nanowires, Adv. Mater. 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, etc. As a method for producing Au nanowires, JP 2006-233252A, etc., as a method for producing Cu nanowires, JP 2002-266007 A, etc., as a method for producing Co nanowires, JP Reference can be made to 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in 1 can produce silver nanowires easily and in large quantities in an aqueous system, and the conductivity of silver is the largest among metals, so that the production of metal nanowires according to the present invention is possible. It can be preferably applied as a method.

本発明において金属ナノワイヤの平均直径は、透明性の観点から200nm以下であることが好ましく、導電性の観点から10nm以上であることが好ましい。平均直径が200nm以下であれば光散乱の影響を軽減でき、平均直径がより小さい方が光透過率低下やヘイズ劣化を抑制することができるため好ましい。一方で、平均直径が10nm以上であれば導電体としての機能を有意に発現でき、平均直径がより大きい方が導電性が向上するため好ましい。従って、より好ましくは20〜150nmであり、40〜150nmであることが更に好ましい。   In the present invention, the average diameter of the metal nanowires is preferably 200 nm or less from the viewpoint of transparency, and preferably 10 nm or more from the viewpoint of conductivity. If the average diameter is 200 nm or less, the influence of light scattering can be reduced, and a smaller average diameter is preferable because light transmittance reduction and haze deterioration can be suppressed. On the other hand, if the average diameter is 10 nm or more, the function as a conductor can be expressed significantly, and a larger average diameter is preferable because conductivity is improved. Therefore, it is more preferably 20 to 150 nm, and further preferably 40 to 150 nm.

本発明において金属ナノワイヤの平均長さは、導電性の観点から1μm以上であることが好ましく、凝集による透明性への影響から100μm以下であることが好ましい。より好ましくは1〜50μmであり、3〜50μmであることが更に好ましい。   In the present invention, the average length of the metal nanowires is preferably 1 μm or more from the viewpoint of conductivity, and preferably 100 μm or less from the viewpoint of the effect on the transparency due to aggregation. More preferably, it is 1-50 micrometers, and it is still more preferable that it is 3-50 micrometers.

本発明において上記金属ナノワイヤの平均直径及び平均長さは、SEMやTEMを用いて十分な数のナノワイヤについて電子顕微鏡写真を撮影し、個々のナノワイヤ像の計測値の算術平均から求めることができる。ナノワイヤの長さは、本来直線状に伸ばした状態で求めるべきであるが、現実には屈曲している場合が多いため、電子顕微鏡写真から画像解析装置を用いてナノワイヤの投影径及び投影面積を算出し、円柱体を仮定して算出する(長さ=投影面積/投影径)ものとする。計測対象のナノワイヤ数は、少なくとも100個以上が好ましく、300個以上のナノワイヤを計測するのが更に好ましい。   In the present invention, the average diameter and average length of the metal nanowires can be obtained from the arithmetic average of the measured values of individual nanowire images by taking electron micrographs of a sufficient number of nanowires using SEM or TEM. The length of the nanowire should be calculated in a straight line, but in reality, it is often bent, so the projection diameter and projected area of the nanowire can be determined from an electron micrograph using an image analyzer. The calculation is performed assuming a cylindrical body (length = projected area / projected diameter). The number of nanowires to be measured is preferably at least 100 or more, and more preferably 300 or more nanowires.

〔金属ナノ粒子〕
本発明の透明導電材料において、金属ナノ粒子は、金属ナノワイヤに接合して突起物を形成し、金属ナノワイヤ同士が絡み合う確率を高めてネットワーク形成を容易にする、或いはハンダの様な役割を果たして金属ナノワイヤ同士の接合材料として機能する。
[Metal nanoparticles]
In the transparent conductive material of the present invention, the metal nanoparticles are bonded to the metal nanowires to form protrusions, increase the probability that the metal nanowires are entangled with each other, facilitate network formation, or play a role like solder. It functions as a bonding material between nanowires.

本発明では、金属ナノ粒子の金属元素として、バルク状態での導電率が1×106S/m以上の元素を用いることができる。本発明で好ましく用いることができる金属ナノワイヤの金属元素として具体例としては、Ag,Cu,Au,Al,Rh,Ir,Co,Zn,Ni,In,Fe,Pd,Pt,Sn,Ti等を挙げることができる。本発明においては2種類以上の金属ナノ粒子を組み合わせて用いることもできるが、導電性と接合操作の観点から、少なくともAg,Cu,Auより選択される元素を用いることが好ましい。 In the present invention, an element having a bulk conductivity of 1 × 10 6 S / m or more can be used as the metal element of the metal nanoparticles. Specific examples of metal elements of metal nanowires that can be preferably used in the present invention include Ag, Cu, Au, Al, Rh, Ir, Co, Zn, Ni, In, Fe, Pd, Pt, Sn, Ti, and the like. Can be mentioned. In the present invention, two or more kinds of metal nanoparticles can be used in combination, but it is preferable to use at least an element selected from Ag, Cu, and Au from the viewpoint of conductivity and bonding operation.

本発明において金属ナノ粒子の製造手段には特に制限は無く、例えば、液相法や気相法などの公知の方法を用いて製造することができる。液相法としては、例えば液相還元法やアルコキシド法、逆ミセル法、ホットソープ法、水熱反応法のような化学的液相法や、噴霧乾燥法のような物理的液相法などを用いることができる。気相法としては、例えば一般的な化学気相析出法(CVD法)や物理気相析出法(PVD)などを用いることができる。また、具体的な製造方法にも特に制限は無く、公知の製造方法を用いることができる。例えば、Ag,Rh,Pd,Ptナノ粒子の製造方法としてはJ.Phys.Chem.B205,109,16326〜16331、Auナノ粒子の製造方法としてはNature(London)Phys.Sci.,241,20(1973);J.Chem.Soc.,Chem.Commun,1994,801、Cuナノ粒子の製造方法としては特開2005−281781号公報などを参考にすることができる。   In the present invention, the means for producing metal nanoparticles is not particularly limited, and can be produced by using a known method such as a liquid phase method or a gas phase method. Examples of the liquid phase method include a chemical liquid phase method such as a liquid phase reduction method, an alkoxide method, a reverse micelle method, a hot soap method, a hydrothermal reaction method, and a physical liquid phase method such as a spray drying method. Can be used. As the vapor phase method, for example, a general chemical vapor deposition method (CVD method), a physical vapor deposition method (PVD), or the like can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag, Rh, Pd, Pt nanoparticles, J. Org. Phys. Chem. B205, 109, 16326-16331, as a method for producing Au nanoparticles, Nature (London) Phys. Sci. , 241, 20 (1973); Chem. Soc. , Chem. As a method for producing Commun, 1994, 801, Cu nanoparticles, JP-A-2005-281781 and the like can be referred to.

本発明において金属ナノ粒子の平均粒径としては、2〜100nmが好ましく、5〜100nmがより好ましく、10〜80nmが特に好ましい。粒径が100nm以下であれば、光散乱の影響を軽減でき、粒径がより小さい方が光透過率低下やヘイズ劣化を抑制することができため好ましい。一方で、安定性の観点から2nmより大きいことが好ましく、さらに導電性の観点から5nmより大きいことが好ましく、10nm以上であることがより好ましい。   In the present invention, the average particle diameter of the metal nanoparticles is preferably 2 to 100 nm, more preferably 5 to 100 nm, and particularly preferably 10 to 80 nm. If the particle diameter is 100 nm or less, the influence of light scattering can be reduced, and a smaller particle diameter is preferable because light transmittance reduction and haze deterioration can be suppressed. On the other hand, it is preferably larger than 2 nm from the viewpoint of stability, more preferably larger than 5 nm from the viewpoint of conductivity, and more preferably 10 nm or more.

本発明において上記金属ナノ粒子の平均粒径は、SEMやTEMを用いて十分な数のナノ粒子について電子顕微鏡写真を撮影し、個々のナノ粒子像の計測値の算術平均から求めることができる。なお、平均粒径は、電子顕微鏡写真から画像解析装置を用いてナノ粒子の投影面積を算出し、その値と等価な面積を有する円の直径として求めるものとする。計測対象のナノワイヤ数は、少なくとも100個以上が好ましく、300個以上のナノワイヤを計測するのが更に好ましい。   In the present invention, the average particle diameter of the metal nanoparticles can be determined from an arithmetic average of measured values of individual nanoparticle images obtained by taking an electron micrograph of a sufficient number of nanoparticles using SEM or TEM. The average particle diameter is calculated as the diameter of a circle having an area equivalent to the calculated area of the nanoparticles by calculating the projected area from an electron micrograph using an image analyzer. The number of nanowires to be measured is preferably at least 100 or more, and more preferably 300 or more nanowires.

〔接合操作〕
本発明において、金属ナノワイヤと金属ナノ粒子を接合させる方法に特に制限はなく、例えば、ナノソルダリング現象を用いて、金属ナノワイヤと金属ナノ粒子を含む分散媒体にエネルギーを印加することによって、金属ナノワイヤと金属ナノ粒子を融着させる方法を用いることができる。
(Joining operation)
In the present invention, the method for joining the metal nanowire and the metal nanoparticle is not particularly limited. For example, by applying energy to the dispersion medium containing the metal nanowire and the metal nanoparticle using the nanosoldering phenomenon, the metal nanowire is joined. And a method of fusing the metal nanoparticles can be used.

一般に、Ag,Cu,Auなどの金属ナノ粒子が分散した系では、金属ナノ粒子表面の自由電子の集団的な振動に起因した表面プラズモン吸収と呼ばれる光吸収が生ずる。例えば、Auナノ粒子の場合には530nm近傍に吸収ピークを有するため、補色の関係から赤色に着色して見える。また、Agナノ粒子の場合には420nm近傍に吸収ピークを有するため、補色の関係から黄色に着色して見える。このような、表面プラズモン吸収を利用すると、金属ナノ粒子に選択的にエネルギーを付与することが可能となる。本発明においては、金属ナノ粒子の表面プラズモン吸収波長に相当する光を、金属ナノワイヤと金属ナノ粒子を含む分散媒体に照射することで、金属ナノ粒子を溶解して金属ナノワイヤに融着し接合させる方法を好ましく用いることができ、照射する光源としてレーザーを使用することが好ましい。   In general, in a system in which metal nanoparticles such as Ag, Cu and Au are dispersed, light absorption called surface plasmon absorption caused by collective vibration of free electrons on the surface of the metal nanoparticles occurs. For example, in the case of Au nanoparticles, since they have an absorption peak near 530 nm, they appear colored red due to complementary colors. In addition, since Ag nanoparticles have an absorption peak near 420 nm, they appear to be colored yellow because of complementary colors. By utilizing such surface plasmon absorption, it becomes possible to selectively impart energy to the metal nanoparticles. In the present invention, the light corresponding to the surface plasmon absorption wavelength of the metal nanoparticles is irradiated onto the dispersion medium containing the metal nanowires and the metal nanoparticles, so that the metal nanoparticles are dissolved and fused to the metal nanowires to be bonded. The method can be preferably used, and it is preferable to use a laser as a light source for irradiation.

上記の接合操作は、金属ナノワイヤと金属ナノ粒子の混合分散液状態の透明導電材料調製後から透明導電素子形成後までの、いずれの工程においても実施することができる。金属ナノワイヤと金属ナノ粒子の混合分散液に対して実施する場合には、分散液中の金属ナノワイヤと金属ナノ粒子の空間分布を均一に保つために分散液を十分に攪拌した状態で実施することが好ましい。また、接合効率を高めるためには、分散液中の金属ナノワイヤと金属ナノ粒子含有量を高くすることが有効である。同様に、透明導電素子形成後の接合操作も接合効率を高める上で有効である。   Said joining operation can be implemented in any process from after the transparent conductive material preparation of the mixed dispersion state of a metal nanowire and a metal nanoparticle to after a transparent conductive element formation. When performing on a mixed dispersion of metal nanowires and metal nanoparticles, the dispersion should be sufficiently stirred to maintain a uniform spatial distribution of the metal nanowires and metal nanoparticles in the dispersion. Is preferred. In order to increase the bonding efficiency, it is effective to increase the content of metal nanowires and metal nanoparticles in the dispersion. Similarly, the bonding operation after forming the transparent conductive element is also effective in increasing the bonding efficiency.

上記接合操作により金属ナノ粒子が金属ナノワイヤに接合すると、金属ナノ粒子の表面プラズモン吸収は消失する、または波長シフトが起きるので、表面プラズモン吸収をモニターすることで上記接合の進行状態を把握することができる。   When the metal nanoparticles are bonded to the metal nanowire by the bonding operation, the surface plasmon absorption of the metal nanoparticles disappears or the wavelength shift occurs. Therefore, the progress of the bonding can be grasped by monitoring the surface plasmon absorption. it can.

また、本発明においては、上記接合操作前後で金属ナノ粒子の形状が変化する場合があり、金属ナノワイヤや金属ナノ粒子の粒径や材質、接合操作時の様々な条件などによって多様な接合状態を形成することができる。例えば、本発明において「金属ナノ粒子の少なくとも一部が、該金属ナノワイヤの少なくとも一部に接合している」状態とは、a)少なくとも1つの金属ナノ粒子が、接合操作前の形状を殆ど保持したままで1つの金属ナノワイヤに接合している状態や、b)少なくとも1つの金属ナノ粒子が、接合操作前とは大きく形状を変えて1つの金属ナノワイヤに接合している状態、c)複数の金属ナノ粒子が、紐状に連なって1つの金属ナノワイヤに接合している状態、d)複数の金属ナノ粒子が、凝集した状態で1つの金属ナノワイヤに接合している状態などをいう。同様に、本発明において「金属ナノワイヤの少なくとも一部が、該金属ナノ粒子の少なくとも一部を介して他の金属ナノワイヤと接合している」状態とは、e)少なくとも1つの金属ナノワイヤが、1つまたは複数の金属ナノ粒子を介して別の1つまたは複数の金属ナノワイヤに接合している状態をいう。この場合、金属ナノワイヤ間の接合に介在する金属ナノ粒子は、上記a)〜d)のように様々な形状をとることができる。   Further, in the present invention, the shape of the metal nanoparticles may change before and after the joining operation, and various joining states can be obtained depending on the particle size and material of the metal nanowires and metal nanoparticles, various conditions during the joining operation, and the like. Can be formed. For example, in the present invention, the state that “at least a part of the metal nanoparticles are bonded to at least a part of the metal nanowires” means that a) at least one metal nanoparticle almost retains the shape before the bonding operation. A state in which it is bonded to one metal nanowire as it is, and b) a state in which at least one metal nanoparticle is bonded to one metal nanowire by changing its shape greatly from that before the bonding operation, c) a plurality of A state in which metal nanoparticles are connected to one metal nanowire in a string shape, and d) a state in which a plurality of metal nanoparticles are aggregated and bonded to one metal nanowire. Similarly, in the present invention, “a state in which at least a part of the metal nanowire is joined to another metal nanowire through at least a part of the metal nanoparticle” means that e) at least one metal nanowire is 1 A state in which one or more metal nanowires are bonded to one or more metal nanowires. In this case, the metal nanoparticles interposed in the bonding between the metal nanowires can take various shapes as in the above a) to d).

〔透明樹脂支持体及び透明樹脂〕
本発明において用いられる透明樹脂支持体には特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、透明樹脂支持体としては基材としての硬度に優れ、またその表面への導電層の形成のし易さ等の点で、樹脂基板、樹脂フィルムなどが好適に挙げられるが、軽量性と柔軟性の観点から樹脂フィルムを用いることが好ましい。該樹脂には特に制限はなく、公知のものの中から適宜選択することができ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、環状オレフィン系樹脂などのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを挙げることができるが、可視域の波長(380〜780nm)における透過率が80%以上である樹脂支持体であれば、本発明の透明樹脂支持体に好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、アクリル樹脂フィルム、トリアセチルセルロースフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルムであることがより好ましい。
[Transparent resin support and transparent resin]
There is no restriction | limiting in particular in the transparent resin support body used in this invention, About the material, a shape, a structure, thickness, etc., it can select suitably from well-known things. For example, as a transparent resin support, a resin substrate, a resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of formation of a conductive layer on the surface. It is preferable to use a resin film from the viewpoint of flexibility. There is no restriction | limiting in particular in this resin, It can select suitably from well-known things, For example, polyesters, such as polyethylene terephthalate (PET) and a polyethylene naphthalate, polyethylene (PE), polypropylene (PP), polystyrene, cyclic | annular Polyolefins such as olefin resins, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide , Acrylic resin, triacetyl cellulose (TAC) and the like, and the transparent resin support of the present invention as long as it has a transmittance of 80% or more at a visible wavelength (380 to 780 nm). Preferably applied to Can. Among these, a biaxially stretched polyethylene terephthalate film, an acrylic resin film, and a triacetylcellulose film are preferable, and a biaxially stretched polyethylene terephthalate film is more preferable from the viewpoint of transparency, heat resistance, ease of handling, and cost.

透明樹脂支持体には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できるが、透明樹脂支持体が二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率が1.57〜1.63とすることで、フィルム基材と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾルなどの比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで作製できる。易接着層は単層でも良いが、接着性を向上させるためには2層以上の構成にしても良い。   In order to ensure the wettability and adhesiveness of the coating liquid, the transparent resin support can be subjected to a surface treatment or an easy adhesion layer. Conventionally known techniques can be used for the surface treatment and the easy-adhesion layer, but when the transparent resin support is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy-adhesion layer adjacent to the film is 1.57-1. By setting it to 63, the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved, which is more preferable. As a method for adjusting the refractive index, the refractive index can be prepared by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy-adhesion layer may be a single layer, but in order to improve the adhesiveness, it may be composed of two or more layers.

また、本発明の透明導電材料は、金属ナノワイヤと金属ナノ粒子の他に、透明樹脂を含有してもよい。該透明樹脂としては、上記透明樹脂支持体に用いることができる樹脂を好ましく用いることができる。透明樹脂支持体を構成する透明樹脂と透明導電材料に含まれる透明樹脂には、同一の化合物を用いてもよいし、異なる化合物を用いてもよい。また、これらの透明樹脂は単独で用いてもよく、2種以上組み合わせて用いてもよい。   Moreover, the transparent conductive material of this invention may contain transparent resin other than a metal nanowire and a metal nanoparticle. As this transparent resin, the resin which can be used for the said transparent resin support body can be used preferably. The same compound may be used for the transparent resin which comprises a transparent resin support body, and the transparent resin contained in a transparent conductive material, and a different compound may be used. Moreover, these transparent resins may be used independently and may be used in combination of 2 or more type.

〔導電性高分子化合物〕
本発明の透明導電材料は、金属ナノワイヤと金属ナノ粒子の他に、導電性高分子化合物を含有してもよい。
[Conductive polymer compound]
The transparent conductive material of the present invention may contain a conductive polymer compound in addition to the metal nanowire and the metal nanoparticle.

本発明において用いられる導電性高分子として、例えば、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンからなる群より選ばれる化合物を挙げることができる。これらの導電性高分子は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   Examples of the conductive polymer used in the present invention include polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and Mention may be made of compounds selected from the group consisting of polynaphthalene. One type of these conductive polymers may be used alone, or two or more types may be used in combination.

本発明においては、上記導電性高分子の導電性をより高めるために、ドーピング処理を施すことができる。導電性高分子に対するドーパントとしては、例えば、炭素数が6〜30の炭化水素基を有するスルホン酸(以下「長鎖スルホン酸」ともいう。)あるいはその重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO4(M=Li+、Na+)、R4+(R=CH3、C49、C65)、またはR4+(R=CH3、C49、C65)からなる群から選ばれる少なくとも1種が挙げられる。なかでも、上記長鎖スルホン酸が好ましい。 In the present invention, a doping treatment can be performed in order to further increase the conductivity of the conductive polymer. As a dopant for the conductive polymer, for example, a sulfonic acid having a hydrocarbon group having 6 to 30 carbon atoms (hereinafter also referred to as “long-chain sulfonic acid”) or a polymer thereof (for example, polystyrene sulfonic acid), halogen Lewis acid, proton acid, transition metal halide, transition metal compound, alkali metal, alkaline earth metal, MClO 4 (M = Li + , Na + ), R 4 N + (R = CH 3 , C 4 H 9 , C 6 H 5 ), or R 4 P + (R═CH 3 , C 4 H 9 , C 6 H 5 ). Of these, the long-chain sulfonic acid is preferable.

また、本発明の透明導電材料及び透明導電素子は、水溶性有機化合物を含有してもよい。水溶性有機化合物の中で、導電性高分子材料に添加することによって導電性を向上させる効果を有する化合物が知られており、2nd.ドーパント(或いは増感剤)と称する場合がある。本発明で用いることができる2nd.ドーパントには特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。なかでも、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが特に好ましい。   Moreover, the transparent conductive material and transparent conductive element of this invention may contain a water-soluble organic compound. Among water-soluble organic compounds, compounds having an effect of improving conductivity by adding to a conductive polymer material are known, and 2nd. Sometimes referred to as a dopant (or sensitizer). 2nd. Which can be used in the present invention. There is no restriction | limiting in particular in a dopant, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. Among these, it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol.

〔添加剤〕
本発明に係る透明樹脂には、目的に応じて、可塑剤、酸化防止剤などの安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料などの着色剤などの添加物を含んでいても良い。更に、本発明に係る透明樹脂には、塗布性などの作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。
〔Additive〕
The transparent resin according to the present invention includes additives such as stabilizers such as plasticizers and antioxidants, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments, depending on the purpose. You can leave. Furthermore, the transparent resin according to the present invention has a solvent (for example, water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, from the viewpoint of improving workability such as coating properties. Organic solvents such as hydrocarbons).

〔疎水化処理〕
本発明においては、水系にて製造した金属ナノワイヤや金属ナノ粒子を、必要に応じて疎水化処理することができる。例えば、金属ナノワイヤを疎水化処理する方法としては、特開2007−500606号などを参考に出来る。金属ナノ粒子を疎水化する方法としては、特開2006−299329号などを参考にできる。
[Hydrophobic treatment]
In the present invention, metal nanowires and metal nanoparticles produced in an aqueous system can be hydrophobized as necessary. For example, as a method for hydrophobizing metal nanowires, JP 2007-500606 A can be referred to. JP-A-2006-299329 can be referred to as a method for hydrophobizing metal nanoparticles.

〔液相成膜法〕
本発明の透明導電材料を透明な樹脂支持体(以後単に透明な支持体若しくは支持体ともいう)上に成膜して、透明導電素子を形成する方法としては、高生産性と生産コスト低減の両立、および環境負荷軽減の観点から、塗布法や印刷法などの液相成膜法を用いることが好ましい。塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法などを用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法などを用いることができる。また、本発明の透明導電材料で透明な支持体上に回路パターンを直接描画して、透明導電素子を形成することもできる。
[Liquid phase deposition]
As a method of forming a transparent conductive element by forming a film of the transparent conductive material of the present invention on a transparent resin support (hereinafter also simply referred to as a transparent support or support), high productivity and low production cost can be achieved. From the viewpoint of compatibility and reduction of environmental burden, it is preferable to use a liquid phase film forming method such as a coating method or a printing method. As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, a letterpress (letter) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used. Moreover, a transparent conductive element can also be formed by drawing a circuit pattern directly on a transparent support with the transparent conductive material of the present invention.

液相成膜法で本発明に係る透明導電層を形成した後、適宜乾燥処理を施すことができる。乾燥処理の条件として特に制限はないが、透明樹脂支持体や透明導電層が損傷しない範囲の温度で処理することが好ましい。また、本発明に係る透明導電層を形成した後、必要に応じてカレンダー処理を施すこともできる。   After forming the transparent conductive layer according to the present invention by the liquid phase film forming method, a drying treatment can be appropriately performed. Although there is no restriction | limiting in particular as conditions of a drying process, It is preferable to process at the temperature of the range which does not damage a transparent resin support body and a transparent conductive layer. Moreover, after forming the transparent conductive layer which concerns on this invention, a calendar process can also be given as needed.

〔透明導電素子〕
本発明の透明導電材料を透明支持体上に液相成膜して透明導電層を形成することにより、本発明の透明導電素子を形成することができる。本発明の透明導電素子の透明性と導電性は、目的に応じて適宜選択することができ、透明性と導電性を調整する方法にも特に制限はない。例えば、透明導電材料で使用する金属ナノワイヤと金属ナノ粒子の材質や組み合わせ、添加量、接合状態で調整する方法、導電性高分子を使用する場合には、その種類や組み合わせや添加量、および/またはドーパントや2nd.ドーパントの種類や組み合わせや添加量で調整する方法、透明導電膜の膜厚で調整する方法、透明導電材料に添加する透明樹脂やその他添加剤の添加量で調整する方法、透明な支持体の種類やその厚さで調整する方法など、透明性と導電性を調整可能な方法であれば単独で、あるいはそれらの方法を組み合わせて適用することができる。
[Transparent conductive element]
The transparent conductive element of the present invention can be formed by forming a transparent conductive layer by forming a transparent conductive layer of the transparent conductive material of the present invention on a transparent support. The transparency and conductivity of the transparent conductive element of the present invention can be appropriately selected according to the purpose, and the method for adjusting the transparency and conductivity is not particularly limited. For example, the material and combination of metal nanowires and metal nanoparticles used in the transparent conductive material, the addition amount, a method of adjusting the bonding state, and when using a conductive polymer, the type, combination, addition amount, and / or Or dopant or 2nd. A method of adjusting with the kind, combination and addition amount of dopant, a method of adjusting with the film thickness of the transparent conductive film, a method of adjusting with the addition amount of transparent resin and other additives added to the transparent conductive material, and a type of transparent support Any method that can adjust the transparency and conductivity, such as a method for adjusting the thickness and the thickness thereof, can be used alone or in combination.

本発明の透明導電素子において、金属ナノワイヤおよび/または金属ナノ粒子は、透明導電層の表面に露出および/または突出していてもよい。一方、本発明の透明導電素子において、金属ナノワイヤおよび/または金属ナノ粒子が、透明導電層の表面に露出および/または突出していない場合には、表面における導電性を確保するために透明導電層に導電性高分子を含有していることが好ましい。   In the transparent conductive element of the present invention, the metal nanowires and / or metal nanoparticles may be exposed and / or protruded from the surface of the transparent conductive layer. On the other hand, in the transparent conductive element of the present invention, when the metal nanowires and / or metal nanoparticles are not exposed and / or protruded from the surface of the transparent conductive layer, the transparent conductive layer is provided with a transparent conductive layer to ensure conductivity on the surface. It preferably contains a conductive polymer.

本発明において、透明導電素子における金属ナノワイヤと金属ナノ粒子の換算膜厚は、導電性と透明性の関係から5〜100nmであることが好ましく、10〜80nmであることがより好ましい。ここで換算膜厚とは、透明導電素子単位面積当たりの金属ナノワイヤ及び金属ナノ粒子の平均質量と等しい質量を有する均一な金属膜の厚みを意味する。   In this invention, it is preferable that the conversion film thickness of the metal nanowire and metal nanoparticle in a transparent conductive element is 5-100 nm from the relationship between electroconductivity and transparency, and it is more preferable that it is 10-80 nm. Here, the equivalent film thickness means the thickness of a uniform metal film having a mass equal to the average mass of metal nanowires and metal nanoparticles per unit area of the transparent conductive element.

本発明の透明導電素子の全光線透過率は、60%以上、好ましくは70%以上、特に好ましくは80%以上であることが望ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。   The total light transmittance of the transparent conductive element of the present invention is preferably 60% or more, preferably 70% or more, and particularly preferably 80% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.

本発明の透明導電素子における電気抵抗値としては、表面抵抗率として104Ω/□以下であることが好ましく、103Ω/□以下であることがより好ましく、102Ω/□以下であることが特に好ましい。104Ω/□を越えると液晶ディスプレイ、透明タッチパネル等の透明電極や電磁波シールド材として用いたときに、電極として十分に機能しなかったり、十分な電磁波シールド特性が得られない場合がある。前記表面抵抗率は、例えば、JIS K6911、ASTM D257、などに準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。 The electrical resistance value in the transparent conductive element of the present invention is preferably 10 4 Ω / □ or less, more preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less as the surface resistivity. It is particularly preferred. If it exceeds 10 4 Ω / □, when used as a transparent electrode or an electromagnetic shielding material for liquid crystal displays, transparent touch panels, etc., it may not function sufficiently as an electrode, or sufficient electromagnetic shielding characteristics may not be obtained. The surface resistivity can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.

本発明の透明導電素子の透明導電膜の厚みには特に制限はなく、目的に応じて適宜選択することができるが、透明樹脂支持体との密着性および透明性の観点から10μm以下であることが好ましく、厚みが薄くなるほど透明樹脂支持体との密着性や透明性が向上するためより好ましい。一方で、透明導電膜の均質性の観点から透明導電膜の厚みは50nm以上であることが好ましく、100nm以上であることがより好ましい。   There is no restriction | limiting in particular in the thickness of the transparent conductive film of the transparent conductive element of this invention, Although it can select suitably according to the objective, It is 10 micrometers or less from a viewpoint of adhesiveness and transparency with a transparent resin support body. It is preferable that the thinner the thickness is, the better the adhesiveness and transparency with the transparent resin support. On the other hand, from the viewpoint of homogeneity of the transparent conductive film, the thickness of the transparent conductive film is preferably 50 nm or more, and more preferably 100 nm or more.

本発明の透明導電素子には、必要に応じてアンカーコートやハードコート、バリアコートを付与することもできる。   The transparent conductive element of the present invention may be provided with an anchor coat, a hard coat, or a barrier coat as necessary.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

(実施例1)
《透明導電材料M−11の作製》
Chem.Mater.2002,14,4736〜4745に記載の方法を参考に、平均直径60nm、平均長さ5.5μmの銀ナノワイヤを作製し、フィルターを用いて銀ナノワイヤを濾別かつ水洗処理を施した後、エタノール中に再分散して銀ナノワイヤ分散液W−10(銀ナノワイヤ含有量0.5%)を調製した。また、J.Chem.Soc.,Chem.Commun,1994,801に記載の方法を参考に、平均粒径25nmの金ナノ粒子を作製し、限外濾過膜を用いて金ナノ粒子を濾別かつ水洗処理を施した後、エタノール中に再分散して金ナノ粒子分散液G−10(金ナノ粒子含有量0.5%)を調製した。得られたW−10とG−10を、銀ナノワイヤと金ナノ粒子の質量比が300:1の比率になるよう混合し、銀ナノワイヤと金ナノ粒子の混合分散液M−10を調製した。
Example 1
<< Production of Transparent Conductive Material M-11 >>
Chem. Mater. In reference to the method described in 2002, 14, 4736-4745, silver nanowires having an average diameter of 60 nm and an average length of 5.5 μm were prepared, and the silver nanowires were filtered and washed with water using a filter. It was re-dispersed in a silver nanowire dispersion W-10 (silver nanowire content 0.5%). In addition, J.H. Chem. Soc. , Chem. Referring to the method described in Commun, 1994, 801, gold nanoparticles having an average particle diameter of 25 nm are prepared, and after gold nanoparticles are filtered and washed with an ultrafiltration membrane, the nanoparticles are re-introduced in ethanol. Dispersion was performed to prepare a gold nanoparticle dispersion liquid G-10 (gold nanoparticle content: 0.5%). The obtained W-10 and G-10 were mixed so that the mass ratio of silver nanowires and gold nanoparticles was 300: 1 to prepare a mixed dispersion M-10 of silver nanowires and gold nanoparticles.

混合分散液M−10を攪拌しながら、波長532nm、エネルギー密度が約5J/パルスcm2のNd:YAGレーザーを照射した。パルス照射を続けるに従い、金ナノ粒子の表面プラズモン吸収(ピーク波長約520nm)強度は低下した。表面プラズモン吸収強度がレーザー照射前の1/2になった時点でレーザー照射を終了し、透明導電材料M−11を作製した。 While stirring the mixed dispersion M-10, an Nd: YAG laser having a wavelength of 532 nm and an energy density of about 5 J / pulse cm 2 was irradiated. As the pulse irradiation was continued, the intensity of surface plasmon absorption (peak wavelength: about 520 nm) of the gold nanoparticles decreased. When the surface plasmon absorption intensity became 1/2 before the laser irradiation, the laser irradiation was terminated, and a transparent conductive material M-11 was produced.

《透明導電材料M−12の作製》
混合分散液M−10に対するレーザーの照射を、金ナノ粒子の表面プラズモン吸収がほぼ消失するまで継続した以外はM−11と同様にして、透明導電材料M−12を作製した。
<< Preparation of transparent conductive material M-12 >>
A transparent conductive material M-12 was produced in the same manner as M-11 except that the laser irradiation on the mixed dispersion M-10 was continued until the surface plasmon absorption of the gold nanoparticles almost disappeared.

《透明導電材料M−20の作製》
Chem.Mater.2002,14,4736〜4745に記載の方法を参考に、平均直径60nm、平均長さ5.5μmの銀ナノワイヤを作製し、フィルターを用いて銀ナノワイヤを濾別かつ水洗処理を施した後、エタノール中に再分散して銀ナノワイヤ分散液W−20(銀ナノワイヤ含有量5%)を調製した。また、J.Chem.Soc.,Chem.Commun,1994,801に記載の方法を参考に、平均粒径25nmの金ナノ粒子を作製し、限外濾過膜を用いて金ナノ粒子を濾別かつ水洗処理を施した後、エタノール中に再分散して金ナノ粒子分散液G−20(金ナノ粒子含有量5%)を調製した。得られたW−20とG−20を、銀ナノワイヤと金ナノ粒子の質量比が300:1の比率になるよう混合し、銀ナノワイヤと金ナノ粒子の混合分散液である透明導電材料M−20を調製した。
<< Production of Transparent Conductive Material M-20 >>
Chem. Mater. In reference to the method described in 2002, 14, 4736-4745, silver nanowires having an average diameter of 60 nm and an average length of 5.5 μm were prepared, and the silver nanowires were filtered and washed with water using a filter. It was re-dispersed in a silver nanowire dispersion W-20 (silver nanowire content 5%). In addition, J.H. Chem. Soc. , Chem. Referring to the method described in Commun, 1994, 801, gold nanoparticles having an average particle diameter of 25 nm are prepared, and after gold nanoparticles are filtered and washed with an ultrafiltration membrane, the nanoparticles are re-introduced in ethanol. Dispersion was performed to prepare a gold nanoparticle dispersion liquid G-20 (gold nanoparticle content: 5%). The obtained W-20 and G-20 were mixed so that the mass ratio of silver nanowires to gold nanoparticles was 300: 1, and a transparent conductive material M- that was a mixed dispersion of silver nanowires and gold nanoparticles was obtained. 20 was prepared.

《透明導電材料M−21の作製》
透明導電材料M−20を攪拌しながら、波長532nm、エネルギー密度が約5J/パルスcm2のNd:YAGレーザーを照射した。パルス照射を続けるに従い、金ナノ粒子の表面プラズモン吸収(ピーク波長約520nm)強度は低下した。表面プラズモン吸収強度がレーザー照射前の1/2になった時点でレーザー照射を終了し、透明導電材料M−21を作製した。
<< Preparation of transparent conductive material M-21 >>
While stirring the transparent conductive material M-20, an Nd: YAG laser having a wavelength of 532 nm and an energy density of about 5 J / pulse cm 2 was irradiated. As the pulse irradiation was continued, the intensity of surface plasmon absorption (peak wavelength: about 520 nm) of the gold nanoparticles decreased. When the surface plasmon absorption intensity became ½ before the laser irradiation, the laser irradiation was terminated, and a transparent conductive material M-21 was produced.

《透明導電材料M−22の作製》
混合分散液M−20に対するレーザーの照射を、金ナノ粒子の表面プラズモン吸収がほぼ消失するまで継続した以外はM−21と同様にして、透明導電材料M−22を作製した。
<< Preparation of transparent conductive material M-22 >>
A transparent conductive material M-22 was produced in the same manner as M-21 except that the laser irradiation on the mixed dispersion M-20 was continued until the surface plasmon absorption of the gold nanoparticles almost disappeared.

《透明導電材料W−21の作製》
銀ナノワイヤ分散液W−20に対して、上記M−22と同じ時間レーザーを照射し、透明導電材料W−21を作製した。
<< Preparation of transparent conductive material W-21 >>
The silver nanowire dispersion W-20 was irradiated with laser for the same time as the above M-22 to produce a transparent conductive material W-21.

上記のように作製した各導電材料に含まれる銀ナノワイヤと金ナノ粒子を電子顕微鏡にて観察し、銀ナノワイヤ全体に対する、A:少なくとも1個以上の金ナノ粒子が接合した銀ナノワイヤの存在比率と、B:銀ナノワイヤ同士が接合している銀ナノワイヤの存在比率を求めた。得られた結果を表1に示す。   The silver nanowire and the gold nanoparticle contained in each conductive material produced as described above are observed with an electron microscope, and A: the abundance ratio of the silver nanowire in which at least one gold nanoparticle is bonded to the entire silver nanowire; , B: The abundance ratio of silver nanowires in which silver nanowires are bonded to each other was determined. The obtained results are shown in Table 1.

Figure 2009094033
Figure 2009094033

表1の結果より、以下のことが示唆される。M−20では、銀ナノワイヤと金ナノ粒子の接合、及び銀ナノワイヤ同士の接合が確認されないことから、銀ナノワイヤと金ナノ粒子の接合、及び銀ナノワイヤ同士の接合はレーザー照射によってもたらされ、かつ、照射時間が長いほど、また、溶液濃度が高いほど接合の確率が高くなる。金ナノ粒子を含まないW−21では銀ナノワイヤ同士の接合が起きていないことから、ワイヤ同士の接合にはナノ粒子が共存する必要がある。   The results in Table 1 suggest the following. In M-20, since bonding between silver nanowires and gold nanoparticles and bonding between silver nanowires is not confirmed, bonding between silver nanowires and gold nanoparticles and bonding between silver nanowires are brought about by laser irradiation, and The longer the irradiation time and the higher the solution concentration, the higher the probability of joining. In W-21 which does not contain gold nanoparticles, since bonding between silver nanowires does not occur, it is necessary for nanoparticles to coexist in bonding between wires.

実施例2
《透明導電素子の作製》
実施例1で作製した透明導電材料M−11を、ポリエチレンテレフタレート(PET)フィルムにスピンコーターを用いて換算膜厚が30nmになるように塗布した後、80℃にて乾燥処理を行った。続いて、ウレタンアクリレートの溶液(メチルイソブチルケトン溶媒)を乾燥後の厚さが40nm相当になるように塗布し、透明導電素子M−11Fを作製した。さらに、表1に挙げたその他の透明導電材料及びW−20を用いて、M−11Fと同様にして透明導電素子M−12F,21F,22F,20F,W−20F,21Fを各々作製した。
Example 2
<< Preparation of transparent conductive element >>
The transparent conductive material M-11 produced in Example 1 was applied to a polyethylene terephthalate (PET) film using a spin coater so that the equivalent film thickness was 30 nm, and then dried at 80 ° C. Subsequently, a solution of urethane acrylate (methyl isobutyl ketone solvent) was applied so that the thickness after drying was equivalent to 40 nm to produce a transparent conductive element M-11F. Further, using other transparent conductive materials and W-20 listed in Table 1, transparent conductive elements M-12F, 21F, 22F, 20F, W-20F, and 21F were respectively produced in the same manner as M-11F.

作製した各透明導電素子の表面抵抗率および全光線透過率(以下、単に「透過率」という。)を、各々JIS K 7194:1994およびJIS K 7361−1:1997に準拠した方法で測定した。得られた結果を表2に示す。   The surface resistivity and total light transmittance (hereinafter simply referred to as “transmittance”) of each of the produced transparent conductive elements were measured by methods according to JIS K 7194: 1994 and JIS K 7361-1: 1997, respectively. The obtained results are shown in Table 2.

Figure 2009094033
Figure 2009094033

金属ナノワイヤと金属ナノ粒子が接合、或いは金属ナノワイヤ同士が接合した本発明の透明導電材料を用いて作製された本発明の透明導電素子M−11F,12F,21F,22Fでは、比較例のW−20F(金属ナノワイヤ単独)やM−20F(金属ナノワイヤと金属ナノ粒子の接合や金属ナノワイヤ同士の接合が無い)に対して表面抵抗率が有意に低下しており、本発明の透明導電材料によって優れた導電性が得られることが判る。また、W−20FとW−21Fの結果から、本発明の透明導電素子における導電性の向上は、単にレーザー照射によるものではなく、金属ナノワイヤと金属ナノ粒子の接合、或いは金属ナノワイヤ同士の接合によってもたらされるものであることが判る。   In the transparent conductive elements M-11F, 12F, 21F, and 22F of the present invention manufactured using the transparent conductive material of the present invention in which metal nanowires and metal nanoparticles are bonded or metal nanowires are bonded to each other, W- The surface resistivity is significantly reduced with respect to 20F (metal nanowires alone) and M-20F (there is no metal nanowire and metal nanoparticle bonding or metal nanowire bonding), and the transparent conductive material of the present invention is excellent. It can be seen that high conductivity can be obtained. In addition, from the results of W-20F and W-21F, the improvement in conductivity in the transparent conductive element of the present invention is not simply due to laser irradiation, but by joining metal nanowires and metal nanoparticles or joining metal nanowires. It turns out that it is brought about.

実施例3
《透明導電素子の作製》
実施例2で作製した透明導電素子M−20Fに対して、実施例1で用いたレーザー光の照射を金ナノ粒子の表面プラズモン吸収強度がほぼ消失するまでレーザー照射を行うことにより、透明導電素子M−23Fを作製した。
Example 3
<< Preparation of transparent conductive element >>
The transparent conductive element M-20F produced in Example 2 is irradiated with the laser beam used in Example 1 until the surface plasmon absorption intensity of the gold nanoparticles almost disappears. M-23F was produced.

同様に、実施例2で作製した透明導電素子W−20Fに対して、上記M−23Fと同じ時間レーザーを照射し、透明導電素子W−22Fを作製した。   Similarly, the transparent conductive element W-20F produced in Example 2 was irradiated with a laser for the same time as the above M-23F to produce a transparent conductive element W-22F.

作製した各透明導電素子の表面抵抗率および全光線透過率を、実施例2と同じ方法で測定した。得られた結果を表3に示す。   The surface resistivity and total light transmittance of each produced transparent conductive element were measured by the same method as in Example 2. The obtained results are shown in Table 3.

Figure 2009094033
Figure 2009094033

透明導電素子作製後にエネルギーを印加したM−23Fでは、表面抵抗率の大幅な改善が認められており、透明導電素子作製後のレーザー照射によっても、金属ナノワイヤと金属ナノ粒子の接合、或いは金属ナノワイヤ同士の接合により導電性を向上できることが判る。一方、金属ナノ粒子を含まないW−22Fでは、レーザー照射による性能向上は認められない。   In M-23F to which energy was applied after the production of the transparent conductive element, a significant improvement in the surface resistivity was recognized, and even after laser irradiation after the production of the transparent conductive element, the metal nanowire and the metal nanoparticle were joined, or the metal nanowire. It turns out that electroconductivity can be improved by joining each other. On the other hand, with W-22F that does not contain metal nanoparticles, performance improvement by laser irradiation is not recognized.

Claims (7)

金属ナノワイヤと金属ナノ粒子を含む透明導電材料であって、該金属ナノ粒子の少なくとも一部が、該金属ナノワイヤの少なくとも一部に接合していることを特徴とする透明導電材料。 A transparent conductive material comprising a metal nanowire and metal nanoparticles, wherein at least a part of the metal nanoparticle is bonded to at least a part of the metal nanowire. 金属ナノワイヤと金属ナノ粒子を含む透明導電材料であって、該金属ナノワイヤの少なくとも一部が、該金属ナノ粒子の少なくとも一部を介して他の金属ナノワイヤと接合していることを特徴とする透明導電材料。 A transparent conductive material comprising a metal nanowire and metal nanoparticles, wherein at least a part of the metal nanowire is bonded to another metal nanowire through at least a part of the metal nanoparticle Conductive material. 前記金属ナノ粒子が、Ag、Cu、Auより選択される元素を含むことを特徴とする請求項1または2に記載の透明導電材料。 The transparent conductive material according to claim 1, wherein the metal nanoparticles contain an element selected from Ag, Cu, and Au. 金属ナノワイヤと金属ナノ粒子を含む分散媒体にエネルギーを印加することにより、金属ナノワイヤと金属ナノ粒子を融着させ、金属ナノワイヤ・金属ナノ粒子接合体を製造することを特徴とする金属ナノワイヤ・金属ナノ粒子接合体の製造方法。 Metal nanowires and metal nanostructures characterized in that metal nanowires and metal nanoparticle assemblies are manufactured by fusing metal nanowires and metal nanoparticles by applying energy to a dispersion medium containing metal nanowires and metal nanoparticles. A method for producing a particle assembly. 前記エネルギーの印加が、前記金属ナノ粒子の表面プラズモン吸収に対応する波長の光照射により行われることを特徴とする請求項4に記載の金属ナノワイヤ・金属ナノ粒子接合体の製造方法。 The method for producing a metal nanowire / metal nanoparticle assembly according to claim 4, wherein the energy is applied by light irradiation with a wavelength corresponding to surface plasmon absorption of the metal nanoparticles. 請求項1〜3のいずれか一項に記載の透明導電材料が請求項4または5に記載の製造方法を用いて製造されたことを特徴とする透明導電材料。 The transparent conductive material as described in any one of Claims 1-3 was manufactured using the manufacturing method of Claim 4 or 5. The transparent conductive material characterized by the above-mentioned. 透明導電素子が、透明樹脂支持体上に、請求項1〜3及び請求項6のいずれか一項に記載の透明導電材料を液相成膜して形成されたことを特徴とする透明導電素子。 The transparent conductive element formed by liquid phase film-forming the transparent conductive material as described in any one of Claims 1-3 and Claim 6 on a transparent resin support body. .
JP2007266305A 2007-10-12 2007-10-12 Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material Pending JP2009094033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266305A JP2009094033A (en) 2007-10-12 2007-10-12 Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266305A JP2009094033A (en) 2007-10-12 2007-10-12 Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material

Publications (1)

Publication Number Publication Date
JP2009094033A true JP2009094033A (en) 2009-04-30

Family

ID=40665807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266305A Pending JP2009094033A (en) 2007-10-12 2007-10-12 Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material

Country Status (1)

Country Link
JP (1) JP2009094033A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device
JP2011060751A (en) * 2009-09-14 2011-03-24 Industrial Technology Research Inst Conductive material formed by light energy or heat energy, manufacturing method of conductive material, and conductive composition
CN102044309A (en) * 2009-10-21 2011-05-04 财团法人工业技术研究院 Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition
WO2012086174A1 (en) * 2010-12-20 2012-06-28 日本電気株式会社 Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element
JP2012181828A (en) * 2011-02-07 2012-09-20 Panasonic Corp Touch panel
WO2013056242A1 (en) * 2011-10-13 2013-04-18 The Regents Of The University Of California Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices
WO2013133420A1 (en) * 2012-03-09 2013-09-12 昭和電工株式会社 Method for manufacturing transparent conductive pattern
JP2013247063A (en) * 2012-05-29 2013-12-09 Shin Etsu Polymer Co Ltd Conductive pattern forming substrate and method of manufacturing the same
JP2014208469A (en) * 2013-03-29 2014-11-06 昭和電工株式会社 Substrate for forming transparent conductive pattern, substrate with transparent conductive pattern formed therein, and method for manufacturing substrate with transparent conductive pattern formed therein
DE102014210303A1 (en) 2013-05-31 2014-12-04 Basf Corporation Nanostructure dispersions and transparent conductors
KR20140139015A (en) * 2012-03-20 2014-12-04 시쉘 테크널러지, 엘엘씨 Mixtures, methods and compositions pertaining to conductive materials
KR101484771B1 (en) * 2013-07-31 2015-01-22 한국과학기술원 Electrode element using silver nano-wire and its manufacturing method
KR20160024640A (en) * 2014-08-26 2016-03-07 삼성전자주식회사 Aqueous compositions, methods of producing conductive thin films using the same and conductive thin films produced thereby, and electronic devices including the same
WO2016046061A1 (en) * 2014-09-22 2016-03-31 Basf Se Transparent conductive layer, a film comprising the layer, and a process for its production
US9318230B2 (en) 2013-05-31 2016-04-19 Basf Corporation Nanostructure dispersions and transparent conductors
JP2016121241A (en) * 2014-12-24 2016-07-07 昭和電工株式会社 Conductive composition for thin film printing and thin film conductive pattern formation method
WO2017047909A1 (en) * 2015-09-17 2017-03-23 株式会社カネカ Conductive composite material and method for manufacturing same
JP2018174148A (en) * 2014-10-28 2018-11-08 エヌアンドビー シーオー., エルティーディー.N&B Co., Ltd. Transparent conductor and preparation method for the same
WO2021018315A1 (en) * 2019-07-29 2021-02-04 北京华纳高科科技有限公司 Uniformly transparent and conductive optical thin film and preparation method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070300A (en) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp Metal particulate-containing composition and its application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070300A (en) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp Metal particulate-containing composition and its application

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device
JP2011060751A (en) * 2009-09-14 2011-03-24 Industrial Technology Research Inst Conductive material formed by light energy or heat energy, manufacturing method of conductive material, and conductive composition
CN102044309A (en) * 2009-10-21 2011-05-04 财团法人工业技术研究院 Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition
WO2012086174A1 (en) * 2010-12-20 2012-06-28 日本電気株式会社 Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element
JP5861646B2 (en) * 2010-12-20 2016-02-16 日本電気株式会社 Method for producing carbon nanotube dispersed paste
JPWO2012086174A1 (en) * 2010-12-20 2014-05-22 日本電気株式会社 Method for producing carbon nanotube dispersion paste and carbon nanotube dispersion paste
JP2012181828A (en) * 2011-02-07 2012-09-20 Panasonic Corp Touch panel
US20140290987A1 (en) * 2011-10-13 2014-10-02 The Regents Of The University Of California Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices
WO2013056242A1 (en) * 2011-10-13 2013-04-18 The Regents Of The University Of California Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices
US9560754B2 (en) 2011-10-13 2017-01-31 The Johns Hopkins University Solution processed nanoparticle-nanowire composite film as a transparent conductor for opto-electronic devices
JP5587522B2 (en) * 2012-03-09 2014-09-10 昭和電工株式会社 Method for producing transparent conductive pattern
CN104160457A (en) * 2012-03-09 2014-11-19 昭和电工株式会社 Method for manufacturing transparent conductive pattern
WO2013133420A1 (en) * 2012-03-09 2013-09-12 昭和電工株式会社 Method for manufacturing transparent conductive pattern
KR20140139015A (en) * 2012-03-20 2014-12-04 시쉘 테크널러지, 엘엘씨 Mixtures, methods and compositions pertaining to conductive materials
KR102026594B1 (en) 2012-03-20 2019-09-30 바스프 에스이 Mixtures, methods and compositions pertaining to conductive materials
JP2013247063A (en) * 2012-05-29 2013-12-09 Shin Etsu Polymer Co Ltd Conductive pattern forming substrate and method of manufacturing the same
JP2014208469A (en) * 2013-03-29 2014-11-06 昭和電工株式会社 Substrate for forming transparent conductive pattern, substrate with transparent conductive pattern formed therein, and method for manufacturing substrate with transparent conductive pattern formed therein
DE102014210303A1 (en) 2013-05-31 2014-12-04 Basf Corporation Nanostructure dispersions and transparent conductors
US9318230B2 (en) 2013-05-31 2016-04-19 Basf Corporation Nanostructure dispersions and transparent conductors
KR101484771B1 (en) * 2013-07-31 2015-01-22 한국과학기술원 Electrode element using silver nano-wire and its manufacturing method
US9969893B2 (en) 2014-08-26 2018-05-15 Samsung Electronics Co., Ltd. Aqueous compositions, methods of producing conductive thin films using the same, conductive thin films produced thereby, and electronic devices including the same
KR102225511B1 (en) * 2014-08-26 2021-03-08 삼성전자주식회사 Aqueous compositions, methods of producing conductive thin films using the same and conductive thin films produced thereby, and electronic devices including the same
KR20160024640A (en) * 2014-08-26 2016-03-07 삼성전자주식회사 Aqueous compositions, methods of producing conductive thin films using the same and conductive thin films produced thereby, and electronic devices including the same
US10201082B2 (en) 2014-09-22 2019-02-05 Basf Se Transparent conductive layer, a film comprising the layer, and a process for its production
CN107257942A (en) * 2014-09-22 2017-10-17 巴斯夫欧洲公司 Transparency conducting layer, the film comprising this layer and its production method
TWI689951B (en) * 2014-09-22 2020-04-01 德商巴斯夫歐洲公司 Transparent conductive layer, a film comprising the layer, and a process for its production
WO2016046061A1 (en) * 2014-09-22 2016-03-31 Basf Se Transparent conductive layer, a film comprising the layer, and a process for its production
JP2018174148A (en) * 2014-10-28 2018-11-08 エヌアンドビー シーオー., エルティーディー.N&B Co., Ltd. Transparent conductor and preparation method for the same
JP2016121241A (en) * 2014-12-24 2016-07-07 昭和電工株式会社 Conductive composition for thin film printing and thin film conductive pattern formation method
WO2017047909A1 (en) * 2015-09-17 2017-03-23 株式会社カネカ Conductive composite material and method for manufacturing same
WO2021018315A1 (en) * 2019-07-29 2021-02-04 北京华纳高科科技有限公司 Uniformly transparent and conductive optical thin film and preparation method therefor
JP2023530378A (en) * 2019-07-29 2023-07-18 ジアンス・ナノメィダ・オプトエレクトロニクス・テクノロジー・カンパニー,リミテッド Optically consistent transparent conductive thin film and its manufacturing method
JP7425180B2 (en) 2019-07-29 2024-01-30 ジアンス・ナノメィダ・オプトエレクトロニクス・テクノロジー・カンパニー,リミテッド Transparent conductive thin film with optical consistency and method for producing the same
US12002602B2 (en) 2019-07-29 2024-06-04 Jiangsu Nanomeida Optoelectronics Technology Co., Ltd. Optically consistent transparent conductive film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2009094033A (en) Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material
JP5245112B2 (en) Transparent conductive film, transparent conductive film, and flexible transparent electrode
JP5472889B2 (en) Metal nanowire and transparent conductor including metal nanowire
JP2009129882A (en) Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
JP5569607B2 (en) Transparent conductive film, transparent conductive film, and flexible transparent electrode
JP5332186B2 (en) Method for producing transparent conductive film using metal nanowire and transparent conductive film produced using the same
TWI576866B (en) Nanowire-based transparent conductors and applications thereof
JP6449559B2 (en) Nanostructure dispersion and transparent conductor
TWI525033B (en) Nanowire-based transparent conductors and methods of patterning same
JP5570094B2 (en) Metal nanowire, metal nanowire manufacturing method, and transparent conductor including metal nanowire
Mo et al. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating
JP5245113B2 (en) Transparent auxiliary electrode film, transparent auxiliary electrode film manufacturing method, transparent conductive film, and transparent conductive film manufacturing method
JP2009140788A (en) Conductive material, inkjet ink and transparent conductive film using the same
US10993320B2 (en) Population of metal oxide nanosheets, preparation method thereof, and electrical conductor and electronic device including the same
JP2009252437A (en) Transparent conductive film
JP2009037752A (en) Transparent conductive material and transparent conductive element using the same
JP2010073322A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using it
JP4688138B2 (en) Method for producing transparent conductor
TWI787185B (en) Method of forming transparent conductive pattern
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
Wang et al. Communication—Ag NW networks enhanced by Ni electroplating for flexible transparent electrodes
JP2013155440A (en) Method for manufacturing metal nanowire
JP2013151752A (en) Method for manufacturing metal nano-wire
Chen et al. Metal nanowires
Kim et al. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel–carbon nanotube coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111004

A131 Notification of reasons for refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605