WO2012086174A1 - Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element - Google Patents

Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element Download PDF

Info

Publication number
WO2012086174A1
WO2012086174A1 PCT/JP2011/007085 JP2011007085W WO2012086174A1 WO 2012086174 A1 WO2012086174 A1 WO 2012086174A1 JP 2011007085 W JP2011007085 W JP 2011007085W WO 2012086174 A1 WO2012086174 A1 WO 2012086174A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
solvent
paste
carbon
dispersed
Prior art date
Application number
PCT/JP2011/007085
Other languages
French (fr)
Japanese (ja)
Inventor
眞由美 小坂
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012549632A priority Critical patent/JP5861646B2/en
Publication of WO2012086174A1 publication Critical patent/WO2012086174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/0439Field emission cathodes characterised by the emitter material
    • H01J2329/0444Carbon types
    • H01J2329/0455Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a carbon nanotube-dispersed paste in which carbon nanotubes are dispersed in a solvent, a manufacturing method thereof, a circuit board, an emitter electrode, and a field emission light-emitting device.
  • a method for forming a circuit pattern on a circuit board As a method for forming a circuit pattern on a circuit board, in recent years, a method for forming a circuit pattern on a circuit board by printing using a conductive paste has been developed.
  • a conductive paste that cures in a relatively low temperature range for example, a temperature range of 180 ° C. or less, is required. It has been.
  • Conductive paste is used for electrical connection of electronic parts and circuit pattern formation, so it must have low resistance.
  • the low temperature curing type conductive paste has a small volume shrinkage rate when cured, and it is difficult to stably secure a contact area between metal particles in the conductive paste.
  • Patent Documents 1 to 3 it has been proposed to mix carbon nanotubes with the conductive paste.
  • Carbon materials such as carbon nanotubes and carbon nanofibers are widely used as electron emission sources for field emission displays (FED), liquid crystal backlights using field emission, field emission illumination (FEL), and the like.
  • CNT carbon nanotubes
  • a carbon material as an electron emission source an inorganic material such as glass powder for bonding the carbon material and the cathode electrode, an organic binder as an electrode structure support member, and an organic binder are dissolved.
  • the paste to be used for the field emission electrode is prepared by mixing the solvent to be used.
  • carbon nanotubes have a high aspect ratio, the carbon nanotubes are bundled or entangled. As a result, the dispersion characteristics with respect to the solvent and other materials are poor, and it is difficult to uniformly disperse in the conductive paste, so it is not easy to ensure high conductivity.
  • carbon nanotubes with high conductivity have few defects, and the graphite layer constituting the carbon nanotubes has an ordered six-membered ring arrangement structure, so that it is difficult to be cut when dispersed in the conductive paste. Further, since there are few functional groups on the surface, dispersion is difficult.
  • Highly conductive carbon nanotubes have a low D / G ratio measured by Raman spectroscopy.
  • the D / G ratio is an intensity ratio between a G band which is a Raman band unique to a nanotube and a D band derived from a defect.
  • carbon nanotubes having a D / G ratio of 0.2 or less are difficult to disperse.
  • the density of the carbon nanotube is about several tens mg / cm 3 , and when the carbon nanotube is dispersed in a high boiling point solvent used for the conductive paste, the density of the solvent is about 50 to 100 times.
  • the volume of the solvent is very small relative to the volume of. For this reason, it is difficult to disperse the carbon nanotubes.
  • the carbon nanotubes serving as the electron emission source are not uniformly mixed, but are aggregated and entangled in a bundle shape or a dumpling shape.
  • carbon nanotubes having good crystallinity are considered good because they have high electron emission characteristics, but it is difficult to produce a uniform kneaded paste because they are difficult to disperse. As a result, the number of bright spots of the field emission device is greatly reduced.
  • the present invention has been made in view of the above problems, and provides a carbon nanotube dispersion paste in which carbon nanotubes are uniformly dispersed in a solvent that does not adversely affect the components of other materials, and a method for producing the same. Is.
  • the carbon nanotubes are dispersed in a solvent, A solvent (A) having a boiling point of not less than 90% by volume and less than 99.9999% by volume and having a boiling point of not less than 150 ° C. in all the solvents; A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of the solvent (A); A carbon nanotube dispersion paste is provided.
  • the boiling point of the solvent (A) is 150 ° C. or more is that when the carbon nanotube-dispersed paste is stored at room temperature, the solvent (A) does not volatilize for a long time and the paste concentration does not change. .
  • the boiling point of a solvent (B) is 10 degreeC or more lower than the boiling point of a solvent (A).
  • the carbon nanotube dispersion paste of the present invention it is desirable that 1 part by weight of the carbon nanotubes are dispersed in 1 to 100 parts by weight of the solvent.
  • the density of the carbon nanotube is about 20 mg / cm 3
  • the density of the solvent is about 50 times that. Therefore, in the state where 1 part by weight of the carbon nanotubes are dispersed in 1 to 100 parts by weight of the solvent, the volume ratio of the solvent is about 0.02 to 2 times the volume of the carbon nanotubes. It becomes.
  • the amount of the solvent with respect to the carbon nanotube is increased to 101 parts by weight or more, the viscosity of the carbon nanotube-dispersed paste decreases as the amount of the solvent increases, and becomes a solution.
  • the carbon nanotube dispersion paste of the present invention may further contain conductive particles and a binder.
  • a circuit board in which a circuit pattern is formed on a substrate using a conductive paste containing the carbon nanotube dispersion paste. Furthermore, according to the present invention, there is provided an emitter electrode using the carbon nanotube dispersion paste as an electron emission source. Furthermore, according to the present invention, there is provided a field emission light-emitting device comprising the emitter electrode and a phosphor layer provided opposite to the emitter electrode and emitting light when electrons emitted from the emitter collide with each other. Is done.
  • the step of dispersing the carbon nanotubes in a solvent (B) having a boiling point of 150 ° C. or higher and a solvent (B) to produce a carbon nanotube dispersion solution Replacing the carbon nanotube dispersion solution with the solvent (A) to obtain a carbon nanotube dispersion paste;
  • a method for producing a carbon nanotube-dispersed paste having the following is provided.
  • ultrasonic waves may be irradiated to disperse the carbon nanotubes in the solvent (B), and at least one of frequency and intensity is different.
  • the ultrasonic waves may be alternately applied.
  • the solvent (B) may be volatilized by mixing and kneading.
  • the step of simultaneously mixing and kneading the carbon nanotube dispersion paste, the conductive particles, and the binder, or the first mixing and kneading step of mixing and kneading the conductive particles and the binder A second mixing and kneading step of adding and mixing and kneading the carbon nanotube dispersion paste after the first mixing and kneading step; and a step of curing the carbon nanotube dispersion paste at a temperature not higher than the boiling point of the solvent (A); , May further be included.
  • a plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
  • the manufacturing method of the present invention describes a plurality of manufacturing steps in order, the order of description does not limit the order of executing the plurality of manufacturing steps. For this reason, when implementing the manufacturing method of this invention, the order of the some manufacturing process can be changed in the range which does not interfere in content.
  • the manufacturing method of the present invention is not limited to the case where a plurality of manufacturing processes are executed at different timings. For this reason, another manufacturing process may occur during the execution of a certain manufacturing process, or a part or all of the execution timing of a certain manufacturing process and the execution timing of another manufacturing process may overlap.
  • the carbon nanotube-dispersed paste of the present invention is 90% by volume or more and less than 99.9999% by volume in the total solvent, the solvent (A) having a boiling point of 150 ° C. or more, and the remaining volume% or less of the solvent (A), and And a solvent (B) having a lower boiling point than that of the solvent (A).
  • FIG. 1st embodiment of this invention It is a schematic diagram of the electrically conductive paste in 1st embodiment of this invention. It is process drawing at the time of supplying electrically conductive paste to the surface of a circuit board in a second embodiment. It is a perspective view which shows typically an example of a structure of the cathode electrode of FED and FEL in 4th embodiment. It is a figure showing the light emission photograph of the field emission electrode of Example 7 in 4th embodiment. It is a figure showing the light emission photograph of the field emission electrode of the comparative example 7 in 4th embodiment.
  • the carbon nanotube-dispersed paste 1 of the present embodiment includes a solvent (A) in which carbon nanotubes are dispersed in a solvent, 90% by volume to less than 99.9999% by volume, and a boiling point of 150 ° C. or higher in the total solvent, A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of (A).
  • Examples of the solvent (A) having a boiling point of 150 ° C. or higher include 2-ethoxyethyl acetate, 2-n-butoxyethanol, dimethyl sulfoxide, 2-n-butoxyethyl acetate, ethyl carbitol, carbitol acetate, terpineol, Examples thereof include butyl carbitol and butyl carbitol acetate.
  • Examples of the solvent (B) having a boiling point lower than that of the solvent (A) include solvents having a boiling point of 150 ° C. or less, such as acetone, tetrahydrofuran, hexane, ethanol, acetonitrile, isopropyl alcohol, 1,2-dichloroethane, toluene, diethoxyethane. It is done.
  • the solvent (B) may be any of these solvents, or a solvent having a boiling point of 150 ° C. or higher as long as the boiling point is lower than that of the solvent (A) to be used.
  • a solvent (B) is a solvent which has a boiling point 10 degreeC or more lower than a solvent (A).
  • the carbon nanotube dispersion paste 1 is manufactured by the method described below, for example.
  • the carbon nanotubes 2 are dispersed in the solvent (B), and a plurality of types of ultrasonic waves having different frequencies and intensities or a plurality of types of ultrasonic waves having different application conditions are irradiated in combination.
  • the ultrasonic waves with different application conditions indicate, for example, chip-type ultrasonic waves, probe-type ultrasonic waves, bus-type ultrasonic waves, or the like.
  • the carbon nanotubes 2 with poor dispersibility in the solvent can be dispersed efficiently in a short time, and a carbon nanotube dispersion solution can be obtained.
  • the solvent (B) in the carbon nanotube dispersion solution is replaced with a small amount of the solvent (A).
  • the small amount means an amount of 1 to 100 parts by weight of the solvent with respect to 1 part by weight of the carbon nanotube.
  • a three-roll mill, a homogenizer, a slip pulverizer, or the like that can replace the solvent (B) with the solvent (A) while kneading is used. By kneading using these tools, the carbon nanotubes dispersed in the solvent (B) are maintained, and even in the solvent (A), the carbon nanotubes are appropriately cut and dispersed without deteriorating the carbon nanotubes. Can raise the sex. By doing so, a highly dispersed carbon nanotube dispersion paste 1 can be produced.
  • the carbon nanotube 2 used in the present embodiment includes a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanohorn, a carbon nanohorn aggregate, and a carbon nanotube having a structure in which at least one of the carbon nanotube and the carbon nanohorn is joined.
  • the carbon nanotubes 2 having a good crystallinity with a D / G ratio of 0.2 or less measured by Raman spectroscopic analysis have high conductivity.
  • the solvent (A) having a boiling point of 150 ° C. or higher is 90% by volume or more and less than 99.9999% by volume in the total solvent, and the solvent (B) having a boiling point lower than that of the solvent (A) is 0.0001 in the total solvent. Containing at least 10% by volume.
  • a conductive paste is prepared by adding conductive particles, a curable resin as a binder, and a curing agent to the carbon nanotube dispersion paste 1 prepared as described above.
  • FIG. 1 is a schematic view of a conductive paste in the first embodiment of the present invention.
  • carbon nanotubes 2, conductive particles 3, and curable resin 4 are uniformly mixed.
  • the carbon nanotubes 2, the conductive particles 3, and the curable resin 4 are uniformly mixed as compared with the case where the carbon nanotubes 2 are mixed between the conductive particles 3.
  • the conductive particles 3 are composed of one kind selected from the group consisting of silver, copper, gold, tin, indium, nickel and palladium, or a mixture of a plurality of kinds of particles or an alloy.
  • the shape of the conductive particles 3 is not particularly limited, and various shapes such as spherical, scale-like, plate-like, dendritic, massive, granular, rod-like, foil-like, and needle-like particles are used. be able to.
  • a resin such as a thermosetting resin or a photocurable resin can be used in the presence of a suitable combination of curing agents.
  • resins include one or more selected from the group consisting of epoxy resins, acrylic resins, phenol resins, polyimide resins, silicone resins, polyurethane resins, and unsaturated polyester resins. Can be used.
  • the above-mentioned curing agent is generally known as a combination of suitable curing agent components corresponding to the curable resin 4, and such a combination can also be used in this embodiment.
  • suitable curing agent components corresponding to the curable resin 4
  • a substance selected from thiol, amine, and acid anhydride can be used as the curing agent component.
  • the carbon nanotube dispersion paste 1 of the present embodiment can uniformly disperse the carbon nanotubes 2 in the solvent of the conductive paste or the solvent (A) having a similar structure. For this reason, when mixing and kneading with the conductive particles 3, the curable resin 4, and the curing agent, the influence of the solvent component that disperses the carbon nanotubes 2 decomposes or denatures the material of the conductive paste is minimized. be able to.
  • the carbon nanotube dispersion paste 1 is mixed and kneaded with the conductive particles 3, the curable resin 4, and a curing agent (not shown), whereby the carbon nanotubes 2 are uniformly dispersed between the conductive particles 3. Sex paste can be obtained.
  • the method of preparing the conductive paste by kneading the carbon nanotube dispersion paste 1 with the conductive particles 3, the curable resin 4, and the curing agent is to mix and knead the carbon nanotube dispersion paste simultaneously with other conductive paste materials.
  • the conductive paste may be prepared, or the conductive paste may be prepared by adding the carbon nanotube dispersion paste 1 to the conductive paste having already been kneaded with other materials and kneading. Even if either of the above-described production methods is used, a conductive paste in which carbon nanotubes are uniformly dispersed can be produced.
  • the conductive paste shrinks the entire volume of the curable resin 4, so that the interval between the conductive particles 3 is narrowed.
  • the carbon nanotubes 2 between the conductive particles 3 can serve as a good conductive path for the conductive particles 3.
  • the carbon nanotubes 2 are not uniformly dispersed in the conductive resin, there may be a place where the carbon nanotubes 2 are not between the conductive particles 3, or the carbon nanotubes 2 are conductive at the aggregated portion. It may occur that the distance between the particles 3 increases and the conductivity is hindered.
  • the conductive paste using the carbon nanotube dispersion paste 1 according to the present embodiment can form the conductive connection of the conductive particles 3 by uniformly dispersing the carbon nanotubes 2 between the conductive particles 3. For this reason, compared with the conventional electrically conductive paste, the electrically conductive paste which concerns on this embodiment can implement
  • each step of preparing a sample means an embodiment shown below.
  • Step 1A Irradiation of ultrasonic waves with carbon nanotubes and solvent (B) under two conditions
  • Step 1A ' Irradiation of ultrasonic waves with carbon nanotubes and solvent (A) under two conditions
  • Step 1B Carbon nanotubes And solvent (B) are irradiated with ultrasonic waves under one condition
  • Step 2 The solvent (B) in the carbon nanotube dispersion solution is replaced with the solvent (A) to obtain a carbon nanotube dispersion paste
  • Example 1 Mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol (boiling point 82 ° C.), and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves, Produced (step 1A).
  • BCA butyl carbitol acetate
  • the solvent component in the dispersion paste was about 1% by volume of isopropanol and 99% by volume of BCA.
  • the carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent.
  • the electroconductive paste comprised by these was manufactured (in Table 1, ⁇ mixture of materials>). After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1.
  • Example 2 A carbon nanotube dispersion solution was prepared by mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
  • the carbon nanotube dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three roll mill, isopropanol was volatilized and solvent substitution was performed to prepare a BCA dispersion paste of carbon nanotubes (step 2).
  • the carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent.
  • the conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1.
  • Example 2 differs in that only one type of ultrasonic irradiation to the solvent (B) is used (Step 1B). That is, unlike the first embodiment, two types of ultrasonic waves are not used, but the process 2 is the same.
  • Example 3 A carbon nanotube dispersion solution was prepared by mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A). ).
  • the carbon nanotube dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three roll mill, isopropanol was volatilized and solvent substitution was performed to prepare a BCA dispersion paste of carbon nanotubes (step 2).
  • Comparative Example 1 A conductive paste composed of 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent is manufactured by mixing and kneading with a three-roll mill, and cured at 150 ° C. It was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 1 does not use carbon nanotubes.
  • Comparative Example 2 A conductive paste composed of 1 part by weight of carbon nanotubes, 10 parts by weight of BCA solvent, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent is produced by mixing and kneading with a three-roll mill. After being cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 2 has the same component ratio in the conductive paste, but does not use the carbon nanotube-dispersed paste of the present embodiment and the manufacturing method thereof.
  • Carbon nanotube dispersion paste was prepared by mixing 1 part by weight of carbon nanotubes with 10 parts by weight of BCA and alternately irradiating 45 kHz, 100 W bath-type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A ′ ).
  • the carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent.
  • the conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 3 is different in that only the solvent (A) is used and the above-described solvent replacement step (Step 2) is not used.
  • the conductive paste of Example 1 has a greater effect of reducing the specific resistance than the conductive pastes of Comparative Example 1 and Comparative Example 2.
  • the conductive paste is not mixed or mixed at the same time with the conductive paste. Compared with the case where kneading is performed, the specific resistance can be reduced and high conductivity can be realized.
  • the conductive paste of Example 2 was produced under the same conditions except that the two types of ultrasonic waves of Example 1 were replaced with one type of ultrasonic wave, and the carbon nanotubes were well dispersed to some extent. For this reason, the effect of reducing specific resistance is great.
  • the conductive paste of Example 3 was produced under the same conditions as in Example 1 except that a nanotube-dispersed paste was produced under the same conditions as in Example 1 and kneaded afterwards into a silver paste that had been previously kneaded. Since the carbon nanotubes are uniformly dispersed in the same manner as in Example 1, the specific resistance can be reduced.
  • Example 4 By mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane (boiling point 84 ° C.), and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves, carbon A nanohorn dispersion was prepared (Step 1A).
  • the carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
  • the carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent.
  • the conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2.
  • Example 5 A carbon nanohorn dispersion was prepared by mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
  • the carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
  • the carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent.
  • the conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2.
  • Example 5 differs in that only one type of ultrasonic irradiation to the solvent (B) is used (Step 1B). That is, unlike the first embodiment, two types of ultrasonic waves are not used, but the process 2 is the same.
  • Example 6 A carbon nanohorn dispersion was prepared by mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
  • the carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
  • Comparative Example 4 A conductive paste composed of 190 parts by weight of silver particles, 10 parts by weight of a BCA solvent, 10 parts by weight of an epoxy resin, and 1 part by weight of a curing agent is manufactured by mixing and kneading with a three-roll mill, and cured at 150 ° C. Thereafter, the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Comparative Example 4 does not use carbon nanohorns.
  • Comparative Example 5 A conductive paste composed of 1 part by weight of carbon nanohorn, 10 parts by weight of BCA solvent, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent is produced by mixing and kneading with a three-roll mill. After being cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Comparative Example 5 has the same component ratio in the conductive paste, but does not use the carbon nanohorn dispersion paste of this embodiment and the manufacturing method thereof.
  • Carbon nanohorn dispersion paste was prepared by mixing 1 part by weight of carbon nanohorn with 10 parts by weight of BCA and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A ′ ).
  • the carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent.
  • the conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2.
  • Comparative Example 6 uses only the solvent (A) and does not use the above-described solvent replacement step (Step 2).
  • the conductive pastes of Examples 4, 5 and 6 have a greater effect of reducing the specific resistance than the conductive pastes of Comparative Example 4 and Comparative Example 5. That is, before carbon nanohorn is mixed and kneaded with conductive paste, when carbon nanohorn dispersed paste uniformly dispersed in solvent (A) is used, when conductive paste is not mixed or mixed with conductive paste, Compared with the case where kneading is performed, the specific resistance can be reduced and high conductivity can be realized.
  • the conductive paste of Example 5 was produced under the same conditions except that the two types of ultrasonic waves of Example 4 were replaced with one type of ultrasonic wave, and carbon nanohorns are more dispersible than carbon nanotubes. For this reason, even if one kind of ultrasonic treatment is performed, it is dispersed to some extent, and the effect of reducing specific resistance is great.
  • the conductive paste of Example 6 was prepared under the same conditions as in Example 5 except that a carbon nanohorn dispersion paste was prepared under the same conditions as in Example 5 and the silver paste was previously kneaded. . Since carbon nanohorns are uniformly dispersed in the same manner as in Example 5, the specific resistance can be reduced.
  • the conductive paste made of the carbon nanotubes, conductive particles, and curable resin produced in the first embodiment is used to form a circuit pattern on a substrate and mount an electronic component on the substrate. It is a case where it is used for.
  • the conductive paste is prepared using a carbon nanotube dispersion paste in which 1 part by weight of carbon nanotubes are uniformly dispersed in 1 to 100 parts by weight of a solvent.
  • circuit board material various materials selected from the group of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, thermoplastic resin, epoxy, thermosetting resin, aramid nonwoven fabric, glass woven fabric, and glass fabric woven fabric are used. Although it can be used, it is not limited to this.
  • the conductive paste 1 according to the present embodiment is arranged in a predetermined pattern on the surface of the circuit board, and forms a circuit pattern on the circuit board.
  • the circuit pattern can be connected to various corresponding electronic components as well as general wiring formed with copper foil on a circuit board. In this way, a desired circuit board can be formed.
  • the electronic component can be mounted on the circuit board by mounting the electronic component on the circuit pattern in a positional relationship such that the electrodes correspond to each other.
  • FIG. 2 is a process diagram when the conductive paste 1 is supplied to the surface of the circuit board 5.
  • a circuit board 5 is prepared.
  • a mask 6 serving as a negative of the circuit pattern 7 is placed on the circuit board 5, and the conductive paste 1 is supplied onto the mask 6.
  • various methods such as screen printing, ink jet, dispenser, impregnation, spin coating and the like can be used.
  • the carbon nanotubes 2 and the conductive particles 3 which are each component of the conductive paste 1 are dispersed in the curable resin 4. In the above state, since the carbon nanotubes 2 and the respective conductive particles 3 are spaced at an appropriate interval, the carbon nanotubes 2 and the conductive particles 3 are not in contact with each other.
  • the conductive paste 1 is formed on the circuit board 5 and the mask 6 is removed, and then heat, light, etc. are applied to the circuit pattern 7 of the conductive paste 1. To activate the reducing agent. By doing so, the conductive paste 1 is cured in the pattern, and a desired circuit pattern 7 is formed on the circuit board 5.
  • the entire volume of the curable resin 4 contracts.
  • the interval between the carbon nanotube 2 and each conductive particle 3 becomes small, and the carbon nanotube 2 enters between the narrowed conductive particles 3.
  • electrical contact can be formed between the conductive particles 3 and the carbon nanotubes 2.
  • the conductive component can be brought into contact as a whole, a conductive connection can be formed over the entire conductive particle 3 via the carbon nanotube 2.
  • the electrodes (or terminals) of the electronic component 8 may be attached to the circuit pattern 7 in a positional relationship.
  • the conductive paste 1 is increased in temperature to a predetermined temperature as necessary, and is disposed for a predetermined time. By doing so, the conductive paste 1 can be cured and the electronic component 8 can be mounted on the circuit board 5.
  • the conductive paste 1 in the present embodiment is applied with heat, light, etc. after being supplied to the surface of the circuit board 5.
  • the curing reaction of the curable resin 4 has not yet started. Therefore, the operation of supplying the conductive paste 1 has a relatively high degree of freedom with respect to time, supply operation, supply means, and the like. Can have.
  • the conductive paste 1 can maintain sufficient fluidity and can be supplied in a predetermined pattern on the surface of the circuit board 5 by a general printing means.
  • the conductive paste 1 can be supplied on the mask 6 by placing a mask 6 serving as a negative of the circuit pattern 7 on the circuit board 5.
  • the conductive paste 1 in this embodiment is applied in a predetermined pattern on the surface of the circuit board 5, and a circuit pattern 7 is formed on the circuit board 5.
  • the circuit pattern 7 can form a desired circuit board 5 by connecting various corresponding electronic components 8 and the like in the same manner as general wiring formed of copper foil on the circuit board 5. it can.
  • the electronic component 8 can be mounted on the circuit board 5 by mounting the electronic component 8 on the circuit pattern 7 in such a positional relationship that the electrodes correspond to each other.
  • the circuit board 5 When the conductive paste 1 according to the present embodiment is formed on the circuit board 5 as the circuit pattern 7, high adhesive strength can be realized with respect to the circuit board 5. For this reason, the circuit board 5 with high reliability can be formed.
  • the conductive paste 1 of this embodiment is printed when the electronic component 8 is mounted by printing the circuit pattern 7 on the circuit board 5 and then placing the electronic component 8 and raising the temperature to a predetermined temperature.
  • a high adhesive strength can be realized for the circuit board 5 and the electronic component 8.
  • the present embodiment relates to a paste used for a field emission electrode (electron emission source electrode) having a composition different from that of the first embodiment, using the carbon nanotube-dispersed paste of the first embodiment, and a manufacturing method thereof.
  • a field emission electrode electron emission source electrode
  • the carbon nanotube serving as the electron emission source may be any of the carbon nanotubes described above.
  • a carbon nanotube having a crystallinity with a D / G ratio of 0.2 or less measured by Raman spectroscopic analysis is preferable because of its high characteristics as an electron emission source and high durability.
  • carbon nanotubes having good crystallinity have a defect that the dispersibility in a solvent is poor because they have few defects and few surface functional groups.
  • the dispersibility of carbon nanotubes having good crystallinity can be dramatically improved by a simple method without using a surfactant or the like. .
  • the carbon nanotube dispersion paste prepared as described above is mixed with an inorganic substance such as glass powder for adhering the cathode electrode, an organic binder as a support member for the electrode structure, and a solvent for dissolving the organic binder to form a field emission electrode. Make the paste to be used.
  • Examples of the inorganic substance include glass frit, alumina, zirconia, titanium dioxide, and silica.
  • examples of the organic binder include cellulose resin, acrylic resin, ethylene vinyl acetate copolymer resin, polyvinyl butyral, polyvinyl alcohol, propylene glycol, urethane resin, melamine resin, phenol resin, alkyd resin, and the like. Is mentioned.
  • the carbon nanotube-dispersed paste of the present embodiment can uniformly disperse carbon nanotubes in a solvent (A) having a similar structure or a paste used for a field emission electrode. Therefore, when mixing and kneading with an inorganic or organic binder In addition, it is possible to minimize the influence of the solvent component in which the carbon nanotubes are dispersed decomposing or modifying the paste material used for the field emission electrode.
  • a paste used for a field emission electrode in which the carbon nanotubes are uniformly dispersed between the glass frit and the organic binder can be obtained.
  • An electrode manufactured using the above-described paste has high dispersibility of carbon nanotubes, and thus has a large number of bright spots, is uniform, and emits light as a highly efficient electron emission source.
  • FIG. 3 is a perspective view schematically showing an example of the configuration of the cathode electrodes of the FED and FEL in the fourth embodiment.
  • the field emission light-emitting device 9 includes an anode substrate 10, a cathode substrate 20, and a spacer 30.
  • the anode substrate 10 has a transparent substrate 11, an anode electrode 12 formed on the substrate 11, and a phosphor layer 13 formed on the anode electrode 12.
  • a transparent electrode is applied as the anode electrode 12 will be described.
  • the cathode substrate 20 includes a substrate 21 made of a metal, a semiconductor, or an insulator, a cathode electrode 22, and an emitter electrode.
  • the cathode electrode 22 is a conductive layer, and the emitter electrode is an electron emission layer.
  • the spacer 30 is provided between the anode substrate 10 and the cathode substrate 20. For this reason, the space between the anode substrate 10 and the cathode substrate 20 is a vacuum.
  • the distance between the anode electrode 12 and the cathode electrode 22 is determined by inserting a spacer 30 between the anode substrate 10 and the cathode substrate 20.
  • a spacer 30 between the anode substrate 10 and the cathode substrate 20.
  • the distance between the anode electrode 12 and the cathode electrode 22 is preferably 0.1 mm to 200 mm, more preferably 1 mm to 10 mm.
  • the anode electrode 12 is a transparent electrode made of, for example, ITO, ZnO, TiO 2 , carbon nanotube, or the like.
  • a phosphor such as that used in CRT (Cathode Ray Tube) can be applied to the phosphor layer 13.
  • CRT Cathode Ray Tube
  • a sulfide phosphor, an oxide phosphor, or a nitride phosphor that is an electron beam excited phosphor that emits fluorescence when irradiated with an electron beam can be used.
  • the phosphor layer 13 can be formed by using, for example, a spray method, screen printing, hand coating printing, or sedimentation method.
  • the film thickness of the phosphor layer 13 is preferably, for example, 0.1 ⁇ m to 100 ⁇ m.
  • the cathode electrode 22 is an electrode made of metal, conductive metal oxide, or the like.
  • the metal used as the cathode electrode 22 is Ag, Au, Pt, Ti, Al, Cu, Cd, Pd, Zr, C, and the metal oxide is a simple substance or alloy selected from ITO, TiO 2 and ZnO. Can be used.
  • the emitter electrode is an electron emission layer composed of a nanocarbon material such as carbon nanotube 2.
  • a method for applying the emitter electrode for example, screen printing, spraying, hand-painting, ink jet, or the like can be applied.
  • the emitter electrode uses the carbon nanotube dispersion paste described in the first or second embodiment to improve the dispersibility of the carbon nanotubes in the electrode, and has a larger number of bright spots than the conventional emitter electrode, It emits light as a uniform and highly efficient electron emission source.
  • Example 7 By mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of 1,2-dichloroethane (boiling point 84 ° C.), carbon is irradiated by alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves. A nanotube dispersion solution was prepared (Step 1A). As the carbon nanotube, a carbon nanotube with a good crystallinity having a D / G ratio of 0.2 or less as measured by Raman spectroscopy was used.
  • Step 2 10 parts by weight of a carbon nanotube dispersion solution and terpineol (boiling point 218 ° C.) are mixed, while kneading using a three-roll mill, 1,2-dichloroethane is volatilized and solvent substitution is performed, and terpineol dispersion paste of carbon nanotubes (Step 2).
  • the carbon nanotube / terpineol dispersion paste is mixed and kneaded with glass frit, ethyl cellulose, etc. by a three roll mill, and an electric field composed of 1 part by weight of carbon nanotubes, 7 parts by weight of glass frit, 2 parts by weight of ethyl cellulose, and a terpineol solvent.
  • a paste used for the emission electrode was produced.
  • the paste used for the field emission electrode is printed on the cathode electrode substrate on which the ITO film is formed by using a screen printer, dried at 80 ° C., and 1 ⁇ 5 ⁇ 10 ⁇ 3 Torr in vacuum at 500 ° C. Time firing was performed to produce a field emission electrode.
  • the phosphor layer 13 of the anode substrate 10 and the emitter electrode 23 of the cathode substrate 20 are provided opposite to each other with a space surrounded by the spacer 30 interposed therebetween, and the phosphor layer 13 and the emitter electrode 23 are vacuumed. is there.
  • the emitter electrode 23 When a positive electric field is applied from the cathode electrode 22 toward the anode electrode 12, the emitter electrode 23 emits electrons. The emitted electrons are accelerated by the potential difference between the cathode electrode 22 and the anode electrode 12 and irradiated onto the phosphor layer 13. As a result, the phosphor layer 13 emits light.
  • the phosphor layer 13 transmits light. Therefore, the light emitted from the phosphor layer 13 passes through the anode electrode 12 and the transparent glass substrate 11 and irradiates the outside.
  • the result of electron emission using the field emission electrode prepared above is shown in FIG.
  • Carbon nanotubes are mixed and kneaded with glass frit, ethyl cellulose, etc. in a three-roll mill, and paste used for a field emission electrode composed of 1 part by weight of carbon nanotubes, 7 parts by weight of glass frit, 2 parts by weight of ethyl cellulose, and terpineol solvent. Manufactured. The same materials as in Example 7 were used, such as carbon nanotubes.
  • the paste used for the field emission electrode thus prepared was printed on a cathode electrode substrate on which an ITO film was formed using a screen printer, dried at 80 ° C., and vacuum of 5 ⁇ 10 ⁇ 3 Torr at 500 ° C. Was fired for 1 hour to prepare a field emission electrode.
  • the result of electron emission using this is shown as a light emission photograph in FIG.
  • the present invention also includes the following aspects.
  • Carbon nanotubes are dispersed in a solvent, A solvent (A) having a boiling point of not less than 90% by volume and less than 99.9999% by volume and having a boiling point of not less than 150 ° C. in all the solvents; A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of the solvent (A); Carbon nanotube dispersion paste containing.
  • a method for producing a carbon nanotube-dispersed paste according to (1) or (2) A manufacturing method comprising a step of dispersing the carbon nanotubes in the solvent by combining a plurality of types of ultrasonic waves having at least one of frequency, intensity, and application method being different.
  • a method for producing a carbon nanotube-dispersed paste according to (1) or (2) A step of dispersing the carbon nanotubes in the solvent (B) to form a carbon nanotube dispersion solution; Replacing the solvent (B) of the carbon nanotube dispersion solution with the solvent (A) having a boiling point of 150 ° C.
  • a manufacturing method comprising: (5) A method for producing a carbon nanotube-dispersed paste according to (1) or (2), Combining a plurality of types of ultrasonic waves having different frequencies, intensities, and application methods to disperse the carbon nanotubes in the solvent (B) to produce a carbon nanotube dispersion solution; Replacing the solvent (B) of the carbon nanotube dispersion solution with the solvent (A) having a boiling point of 150 ° C. or higher; A manufacturing method comprising: (6) The carbon nanotube dispersion paste according to (1) or (2), wherein the conductive particles and the binder are further dispersed.
  • a method for producing a carbon nanotube-dispersed paste comprising: (3) to produce the carbon nanotube-dispersed paste by the production method according to any one of (5), A production method in which conductive particles and the binder are mixed and kneaded in the produced carbon nanotube dispersion paste and dispersed together with the carbon nanotubes.
  • a method for producing a carbon nanotube-dispersed paste comprising: (3) to producing the carbon nanotube-dispersed paste by the production method according to any one of (5), A manufacturing method in which the inorganic substance, the organic binder, and the solvent are mixed and kneaded with the produced carbon nanotube dispersion paste and dispersed together with the carbon nanotubes. (10) (6) or an emitter electrode using the carbon nanotube-dispersed paste according to any one of (8), A phosphor layer that is provided to face the emitter electrode and emits light by collision of electrons emitted from the emitter; A field emission light emitting device having:

Abstract

Provided is a carbon-nanotube-dispersed paste wherein carbon nanotubes are evenly dispersed in a solvent that does not impart a negative effect on the components other materials. The carbon-nanotube-dispersed paste has: a solvent (A) that is at least 90 vol% and less than 99.9999 vol% of the entire solvent and that has a boiling point of at least 150°C; and a solvent (B) that has a vol% that is no greater than the remnant from solvent (A) and that has a lower boiling point than solvent (A). In order to disperse carbon nanotubes, for example, a plurality of types of ultrasonic wave having differing frequencies, strengths, or application conditions are radiated at solvent (B), and by means of replacement with solvent (A), carbon nanotubes, which have poor dispersibility, can be highly efficiently dispersed in a solvent in a short period of time.

Description

カーボンナノチューブ分散ペースト、その製造方法、回路基板、エミッタ電極、電界放出発光素子Carbon nanotube dispersion paste, manufacturing method thereof, circuit board, emitter electrode, field emission light emitting device
 本発明は、カーボンナノチューブが溶媒に分散されているカーボンナノチューブ分散ペースト、その製造方法、回路基板、エミッタ電極、電界放出発光素子、に関する。 The present invention relates to a carbon nanotube-dispersed paste in which carbon nanotubes are dispersed in a solvent, a manufacturing method thereof, a circuit board, an emitter electrode, and a field emission light-emitting device.
 回路基板に回路パターンを形成する方法として、近年、回路基板上に導電性ペーストを用いて印刷などで回路パターンを形成する方法が開発されている。特に、耐熱性の低い電子部品の導通接続や、耐熱性の低い基板材料に回路パターンを形成する場合には、比較的低い温度範囲、例えば180℃以下の温度範囲で硬化する導電性ペーストが求められている。 As a method for forming a circuit pattern on a circuit board, in recent years, a method for forming a circuit pattern on a circuit board by printing using a conductive paste has been developed. In particular, when a circuit pattern is formed on a conductive material for electronic components having low heat resistance or a substrate material having low heat resistance, a conductive paste that cures in a relatively low temperature range, for example, a temperature range of 180 ° C. or less, is required. It has been.
 導電性ペーストは電子部品の導通接続や回路パターン形成などに使用されるため、抵抗が低い必要がある。しかし、低温硬化型の導電性ペーストは硬化する際の体積収縮率が小さく、導電性ペースト中の金属粒子どうしの接触面積を安定して確保することが困難である。 導電 Conductive paste is used for electrical connection of electronic parts and circuit pattern formation, so it must have low resistance. However, the low temperature curing type conductive paste has a small volume shrinkage rate when cured, and it is difficult to stably secure a contact area between metal particles in the conductive paste.
 このため、実用的に必要な低い抵抗を得ることができなかった。そこで、上記導電性ペーストに対して、カーボンナノチューブを混合することが提案されている(特許文献1~3)。 For this reason, the low resistance necessary for practical use could not be obtained. Therefore, it has been proposed to mix carbon nanotubes with the conductive paste (Patent Documents 1 to 3).
 カーボンナノチューブやカーボンナノファイバ等のカーボン材料は、電界放出型ディスプレイ(FED)、電界放出を用いた液晶用バックライトや電界放出型照明(FEL)等の電子放出源として広く利用されている。 Carbon materials such as carbon nanotubes and carbon nanofibers are widely used as electron emission sources for field emission displays (FED), liquid crystal backlights using field emission, field emission illumination (FEL), and the like.
 特に、カーボンナノチューブ(CNT)は化学的および機械的耐久性に優れているだけでなく、電界放出に適した先鋭な先端形状と大きなアスペクト比を持っており、優秀な電子放出源として盛んに研究されている。 In particular, carbon nanotubes (CNT) not only have excellent chemical and mechanical durability, but also have a sharp tip shape and large aspect ratio suitable for field emission, and are actively researched as an excellent electron emission source. Has been.
 電界放出電極を作製するには、まず、電子放出源としてのカーボン材料、およびカーボン材料とカソード電極を接着させるためのガラス粉末などの無機物、電極構造の支持部材としての有機物バインダ、有機物バインダを溶解させる溶媒を混合して、電界放出電極に用いられるペーストを作製する。 In order to produce a field emission electrode, first, a carbon material as an electron emission source, an inorganic material such as glass powder for bonding the carbon material and the cathode electrode, an organic binder as an electrode structure support member, and an organic binder are dissolved. The paste to be used for the field emission electrode is prepared by mixing the solvent to be used.
特開2008-293821号公報JP 2008-293821A 特開2006-120665号公報JP 2006-120665 A 特開2009-117340号公報JP 2009-117340 A
 カーボンナノチューブはアスペクト比が高い形状であるため、カーボンナノチューブ同士がバンドルを組んでいたり、絡み合ったりしてしまう。その結果、溶媒や他の材料に対しての分散特性が悪く、導電性ペースト中に均一に分散することが困難であるため、高い導電性を確保することが容易ではない。 Since carbon nanotubes have a high aspect ratio, the carbon nanotubes are bundled or entangled. As a result, the dispersion characteristics with respect to the solvent and other materials are poor, and it is difficult to uniformly disperse in the conductive paste, so it is not easy to ensure high conductivity.
 特に、導電性の高いカーボンナノチューブは欠陥が少なく、カーボンナノチューブを構成するグラファイト層が規則正しい六員環配列構造を持っているため、導電性ペースト中に分散する際に切断されにくい。また、表面の官能基も少ないため、分散が困難である。 Especially, carbon nanotubes with high conductivity have few defects, and the graphite layer constituting the carbon nanotubes has an ordered six-membered ring arrangement structure, so that it is difficult to be cut when dispersed in the conductive paste. Further, since there are few functional groups on the surface, dispersion is difficult.
 導電性の高いカーボンナノチューブは、ラマン分光分析で測定されるD/G比が小さい。上記D/G比とは、ナノチューブ固有のラマンバンドであるGバンドと、欠陥由来のDバンドの強度比である。ここでD/G比が、例えば、0.2以下のカーボンナノチューブは分散しにくい。 Highly conductive carbon nanotubes have a low D / G ratio measured by Raman spectroscopy. The D / G ratio is an intensity ratio between a G band which is a Raman band unique to a nanotube and a D band derived from a defect. Here, for example, carbon nanotubes having a D / G ratio of 0.2 or less are difficult to disperse.
 さらに、カーボンナノチューブの密度は数10mg/cm程度であり、導電性ペーストに用いられる高沸点の溶媒にカーボンナノチューブを分散させた場合、溶媒の密度は約50~100倍であるため、カーボンナノチューブの体積に対して溶媒の体積は非常に少なくなる。このため、カーボンナノチューブを分散させることが困難である。 Further, the density of the carbon nanotube is about several tens mg / cm 3 , and when the carbon nanotube is dispersed in a high boiling point solvent used for the conductive paste, the density of the solvent is about 50 to 100 times. The volume of the solvent is very small relative to the volume of. For this reason, it is difficult to disperse the carbon nanotubes.
 導電性ペーストに用いられる溶媒以外の溶媒に、カーボンナノチューブを分散させた分散溶液を用いて、カーボンナノチューブを導電性ペーストなどの他の材料に分散させる場合、カーボンナノチューブを分散させるための溶媒が他の材料の成分である樹脂や硬化剤などを分解したり、変性させたりする悪影響を与えることがある。例えば、導電性ペーストの樹脂を分解する溶媒で分散したカーボンナノチューブ分散溶液を導電性ペースト材料に直接混合すると、導電性ペーストの特性は落ち、抵抗も高くなる。 When carbon nanotubes are dispersed in other materials such as conductive paste using a dispersion solution in which carbon nanotubes are dispersed in a solvent other than the solvent used for the conductive paste, there are other solvents for dispersing the carbon nanotubes. It may have an adverse effect of decomposing or modifying a resin or a curing agent that is a component of the material. For example, when a carbon nanotube dispersion solution dispersed with a solvent that decomposes the resin of the conductive paste is directly mixed with the conductive paste material, the characteristics of the conductive paste are lowered and the resistance is increased.
 また、電界放出源電極ペーストにおいても、従来の方法では、電子放出源となるカーボンナノチューブが均一に混ざらず、バンドル状、団子状などに凝集して絡み合ってしまう。 Also in the field emission source electrode paste, in the conventional method, the carbon nanotubes serving as the electron emission source are not uniformly mixed, but are aggregated and entangled in a bundle shape or a dumpling shape.
 カーボンナノチューブが凝集している場合、ガラス粉末や有機物バインダと均一に混練することは困難になる。これにより、製造された電極の電子放出の際に電子放出源の数が減少するため、均一に電子放出しない。 When carbon nanotubes are agglomerated, it becomes difficult to uniformly knead with glass powder or organic binder. As a result, the number of electron emission sources is reduced when electrons are emitted from the manufactured electrode, so that electrons are not emitted uniformly.
 特に、良質の結晶性を有するカーボンナノチューブは、高い電子放出特性を有しているので良いと考えられるが、分散が困難なことから、均一な混練ペースト作製は難しい。その結果、電界放出素子の輝点が非常に少なくなる。 In particular, carbon nanotubes having good crystallinity are considered good because they have high electron emission characteristics, but it is difficult to produce a uniform kneaded paste because they are difficult to disperse. As a result, the number of bright spots of the field emission device is greatly reduced.
 本発明は上述のような課題に鑑みてなされたものであり、他の材料の成分に悪影響を与えない溶媒にカーボンナノチューブが均一に分散されているカーボンナノチューブ分散ペースト、その製造方法、を提供するものである。 The present invention has been made in view of the above problems, and provides a carbon nanotube dispersion paste in which carbon nanotubes are uniformly dispersed in a solvent that does not adversely affect the components of other materials, and a method for producing the same. Is.
 本発明によると、カーボンナノチューブが溶媒に分散されており、
 全溶媒中90体積%以上99.9999体積%未満で沸点が150℃以上である溶媒(A)と、
 前記溶媒(A)の残余の体積%以下で前記溶媒(A)よりも沸点が低い溶媒(B)と、
を含むカーボンナノチューブ分散ペーストが提供される。
According to the present invention, the carbon nanotubes are dispersed in a solvent,
A solvent (A) having a boiling point of not less than 90% by volume and less than 99.9999% by volume and having a boiling point of not less than 150 ° C. in all the solvents;
A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of the solvent (A);
A carbon nanotube dispersion paste is provided.
 溶媒(A)の沸点が150℃以上である理由は、カーボンナノチューブ分散ペーストを室温で保存する際に、長期間溶媒(A)が揮発せずにペースト濃度が変化しない状態を維持できるからである。なお、溶媒(B)の沸点は溶媒(A)の沸点よりも10℃以上低いことが好ましい。 The reason why the boiling point of the solvent (A) is 150 ° C. or more is that when the carbon nanotube-dispersed paste is stored at room temperature, the solvent (A) does not volatilize for a long time and the paste concentration does not change. . In addition, it is preferable that the boiling point of a solvent (B) is 10 degreeC or more lower than the boiling point of a solvent (A).
 また、本発明のカーボンナノチューブ分散ペーストは、カーボンナノチューブ1重量部が溶媒1~100重量部に分散されていることが望ましい。カーボンナノチューブの密度を約20mg/cmとすると、溶媒の密度はその約50倍である。このため、カーボンナノチューブ1重量部が溶媒1~100重量部に分散されている状態では、カーボンナノチューブの体積に対して、溶媒の体積比が、0.02~2倍程度となるため、ペースト状となる。カーボンナノチューブに対する溶媒量を101重量部以上に増加させた場合、カーボンナノチューブ分散ペーストは溶媒量増加に伴って粘度が下がり、溶液状となる。 In the carbon nanotube dispersion paste of the present invention, it is desirable that 1 part by weight of the carbon nanotubes are dispersed in 1 to 100 parts by weight of the solvent. When the density of the carbon nanotube is about 20 mg / cm 3 , the density of the solvent is about 50 times that. Therefore, in the state where 1 part by weight of the carbon nanotubes are dispersed in 1 to 100 parts by weight of the solvent, the volume ratio of the solvent is about 0.02 to 2 times the volume of the carbon nanotubes. It becomes. When the amount of the solvent with respect to the carbon nanotube is increased to 101 parts by weight or more, the viscosity of the carbon nanotube-dispersed paste decreases as the amount of the solvent increases, and becomes a solution.
 本発明のカーボンナノチューブ分散ペーストは、導電性粒子とバインダとをさらに含んでいてもよい。 The carbon nanotube dispersion paste of the present invention may further contain conductive particles and a binder.
 また、本発明によると、上記カーボンナノチューブ分散ペーストを含む導電性ペーストを用いて回路パターンが基板上に形成された回路基板が提供される。
 さらに、本発明によると、上記カーボンナノチューブ分散ペーストを電子放出源として用いているエミッタ電極が提供される。
 さらに、本発明によると、上記エミッタ電極と、前記エミッタ電極に対向して設けられた、前記エミッタから放出された電子が衝突することで発光する蛍光体層と、を有する電界放出発光素子が提供される。
In addition, according to the present invention, there is provided a circuit board in which a circuit pattern is formed on a substrate using a conductive paste containing the carbon nanotube dispersion paste.
Furthermore, according to the present invention, there is provided an emitter electrode using the carbon nanotube dispersion paste as an electron emission source.
Furthermore, according to the present invention, there is provided a field emission light-emitting device comprising the emitter electrode and a phosphor layer provided opposite to the emitter electrode and emitting light when electrons emitted from the emitter collide with each other. Is done.
 さらに、本発明によると、カーボンナノチューブを沸点が150℃以上である溶媒(A)よりも低い溶媒(B)に分散させてカーボンナノチューブ分散溶液を生成する工程と、
 前記カーボンナノチューブ分散溶液を前記溶媒(A)に置換してカーボンナノチューブ分散ペーストを得る工程と、
を有するカーボンナノチューブ分散ペーストの製造方法が提供される。
Furthermore, according to the present invention, the step of dispersing the carbon nanotubes in a solvent (B) having a boiling point of 150 ° C. or higher and a solvent (B) to produce a carbon nanotube dispersion solution;
Replacing the carbon nanotube dispersion solution with the solvent (A) to obtain a carbon nanotube dispersion paste;
A method for producing a carbon nanotube-dispersed paste having the following is provided.
 また、前記カーボンナノチューブ分散溶液を生成する工程において、超音波を照射して前記カーボンナノチューブを前記溶媒(B)に分散させてもよく、周波数および強度のうち、少なくともどちらか一方が異なる2種以上の超音波を交互に照射してもよい。 Further, in the step of generating the carbon nanotube dispersion solution, ultrasonic waves may be irradiated to disperse the carbon nanotubes in the solvent (B), and at least one of frequency and intensity is different. The ultrasonic waves may be alternately applied.
 さらに、前記カーボンナノチューブ分散ペーストを得る工程において、混合混練することで、前記溶媒(B)を揮発させてもよい。なお、カーボンナノチューブ分散ペーストを得る工程の後、前記カーボンナノチューブ分散ペースト、導電性粒子、およびバインダを同時に混合混練する工程、または導電性粒子およびバインダを混合混練する第一の混合混練工程と、前記第一の混合混練工程の後、前記カーボンナノチューブ分散ペーストを添加して混合混練する第二の混合混練工程と、前記溶媒(A)の沸点以下の温度で前記カーボンナノチューブ分散ペーストを硬化させる工程と、をさらに含んでもよい。 Furthermore, in the step of obtaining the carbon nanotube dispersion paste, the solvent (B) may be volatilized by mixing and kneading. In addition, after the step of obtaining the carbon nanotube dispersion paste, the step of simultaneously mixing and kneading the carbon nanotube dispersion paste, the conductive particles, and the binder, or the first mixing and kneading step of mixing and kneading the conductive particles and the binder, A second mixing and kneading step of adding and mixing and kneading the carbon nanotube dispersion paste after the first mixing and kneading step; and a step of curing the carbon nanotube dispersion paste at a temperature not higher than the boiling point of the solvent (A); , May further be included.
 なお、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。 The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, or the like.
 また、本発明の製造方法は、複数の製造工程を順番に記載してあるが、その記載の順番は複数の製造工程を実行する順番を限定するものではない。このため、本発明の製造方法を実施するときには、その複数の製造工程の順番は内容的に支障しない範囲で変更することができる。 Moreover, although the manufacturing method of the present invention describes a plurality of manufacturing steps in order, the order of description does not limit the order of executing the plurality of manufacturing steps. For this reason, when implementing the manufacturing method of this invention, the order of the some manufacturing process can be changed in the range which does not interfere in content.
 さらに、本発明の製造方法は、複数の製造工程が個々に相違するタイミングで実行されることに限定されない。このため、ある製造工程の実行中に他の製造工程が発生すること、ある製造工程の実行タイミングと他の製造工程の実行タイミングとの一部ないし全部が重複していること、等でもよい。 Furthermore, the manufacturing method of the present invention is not limited to the case where a plurality of manufacturing processes are executed at different timings. For this reason, another manufacturing process may occur during the execution of a certain manufacturing process, or a part or all of the execution timing of a certain manufacturing process and the execution timing of another manufacturing process may overlap.
 本発明のカーボンナノチューブ分散ペーストは、全溶媒中90体積%以上99.9999体積%未満で沸点が150℃以上である溶媒(A)と、溶媒(A)の残余の体積%以下であり、かつ溶媒(A)よりも沸点が低い溶媒(B)と、を含んでいる。このように沸点の異なる溶媒(A)と(B)を用いることによって、他の材料の成分に悪影響を与えない溶媒にカーボンナノチューブが均一に分散されているカーボンナノチューブ分散ペーストを実現することができる。 The carbon nanotube-dispersed paste of the present invention is 90% by volume or more and less than 99.9999% by volume in the total solvent, the solvent (A) having a boiling point of 150 ° C. or more, and the remaining volume% or less of the solvent (A), and And a solvent (B) having a lower boiling point than that of the solvent (A). By using the solvents (A) and (B) having different boiling points in this way, it is possible to realize a carbon nanotube dispersion paste in which carbon nanotubes are uniformly dispersed in a solvent that does not adversely affect the components of other materials. .
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本発明の第一の実施形態における、導電性ペーストの模式図である。It is a schematic diagram of the electrically conductive paste in 1st embodiment of this invention. 第二の実施形態で回路基板の表面に導電性ペーストを供給した場合の工程図である。It is process drawing at the time of supplying electrically conductive paste to the surface of a circuit board in a second embodiment. 第四の実施形態における、FEDおよびFELのカソード電極の構成の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of a structure of the cathode electrode of FED and FEL in 4th embodiment. 第四の実施形態における、実施例7の電界放出電極の発光写真を表した図である。It is a figure showing the light emission photograph of the field emission electrode of Example 7 in 4th embodiment. 第四の実施形態における、比較例7の電界放出電極の発光写真を表した図である。It is a figure showing the light emission photograph of the field emission electrode of the comparative example 7 in 4th embodiment.
〔第一の実施形態〕
 以下に、本発明を実施するための好ましい形態について説明する。但し、以下に述べる実施形態には本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
[First embodiment]
Below, the preferable form for implementing this invention is demonstrated. However, technically preferable limitations for carrying out the present invention are provided in the embodiments described below, but the scope of the invention is not limited to the following.
 本実施の形態のカーボンナノチューブ分散ペースト1は、カーボンナノチューブが溶媒に分散されており、全溶媒中90体積%以上99.9999体積%未満で沸点が150℃以上である溶媒(A)と、溶媒(A)の残余の体積%以下で溶媒(A)よりも沸点が低い溶媒(B)と、を含む。 The carbon nanotube-dispersed paste 1 of the present embodiment includes a solvent (A) in which carbon nanotubes are dispersed in a solvent, 90% by volume to less than 99.9999% by volume, and a boiling point of 150 ° C. or higher in the total solvent, A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of (A).
 沸点が150℃以上である溶媒(A)としては、例えば、酢酸2-エトキシエチル、2-n-ブトキシエタノール、ジメチルスルホキシド、酢酸2-n-ブトキシエチル、エチルカルビトール、カルビトールアセテート、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテートなどが挙げられる。 Examples of the solvent (A) having a boiling point of 150 ° C. or higher include 2-ethoxyethyl acetate, 2-n-butoxyethanol, dimethyl sulfoxide, 2-n-butoxyethyl acetate, ethyl carbitol, carbitol acetate, terpineol, Examples thereof include butyl carbitol and butyl carbitol acetate.
 溶媒(A)より沸点の低い溶媒(B)としては、アセトン、テトラヒドロフラン、ヘキサン、エタノール、アセトニトリル、イソプロピルアルコール、1,2-ジクロロエタン、トルエン、ジエトキシエタンなどの沸点が150℃以下の溶媒が挙げられる。溶媒(B)はこれらの溶媒でもよいし、用いる溶媒(A)よりも沸点が低ければ、沸点が150℃以上の溶媒でもよい。なお、溶媒(B)は、溶媒(A)より10℃以上低い沸点を有する溶媒であることが好ましい。本実施形態では、沸点の異なる溶媒(A)および(B)を用いることによって、分散性の悪いカーボンナノチューブを多量の溶媒(B)中で超音波などを用いて高効率に分散し、これを溶媒(A)で置換することによって、少量の溶媒(A)によく分散したカーボンナノチューブ分散ペースト1を得ることができる。 Examples of the solvent (B) having a boiling point lower than that of the solvent (A) include solvents having a boiling point of 150 ° C. or less, such as acetone, tetrahydrofuran, hexane, ethanol, acetonitrile, isopropyl alcohol, 1,2-dichloroethane, toluene, diethoxyethane. It is done. The solvent (B) may be any of these solvents, or a solvent having a boiling point of 150 ° C. or higher as long as the boiling point is lower than that of the solvent (A) to be used. In addition, it is preferable that a solvent (B) is a solvent which has a boiling point 10 degreeC or more lower than a solvent (A). In the present embodiment, by using solvents (A) and (B) having different boiling points, carbon nanotubes having poor dispersibility are dispersed with high efficiency using ultrasonic waves in a large amount of solvent (B). By substituting with the solvent (A), the carbon nanotube dispersed paste 1 well dispersed in a small amount of the solvent (A) can be obtained.
 以下、本実施形態に係るカーボンナノチューブ分散ペーストの製造方法について説明する。 Hereinafter, a method for producing a carbon nanotube-dispersed paste according to this embodiment will be described.
 カーボンナノチューブ分散ペースト1は、例えば、以下に記載する方法で製造する。
 まず、溶媒(B)にカーボンナノチューブ2を分散させ、周波数や強度が異なる超音波を複数種類、あるいは印加条件が異なる超音波を複数種類、組み合わせて照射する。ここで、印加条件が異なる超音波とは、例えば、チップ型の超音波もしくはプローブ型の超音波とバス型の超音波等を示す。このように、超音波を照射することによって、溶媒への分散性の悪いカーボンナノチューブ2を短時間で、かつ効率良く分散することができ、カーボンナノチューブ分散溶液を得ることができる。
The carbon nanotube dispersion paste 1 is manufactured by the method described below, for example.
First, the carbon nanotubes 2 are dispersed in the solvent (B), and a plurality of types of ultrasonic waves having different frequencies and intensities or a plurality of types of ultrasonic waves having different application conditions are irradiated in combination. Here, the ultrasonic waves with different application conditions indicate, for example, chip-type ultrasonic waves, probe-type ultrasonic waves, bus-type ultrasonic waves, or the like. Thus, by irradiating with ultrasonic waves, the carbon nanotubes 2 with poor dispersibility in the solvent can be dispersed efficiently in a short time, and a carbon nanotube dispersion solution can be obtained.
 次に、カーボンナノチューブ分散溶液の溶媒(B)を、少量の溶媒(A)に置換する。ここで少量とは、カーボンナノチューブ1重量部に対して溶媒1~100重量部の量を示す。置換の方法は、三本ロールミル、あるいはホモジナイザー、スリップ粉砕器などの、混練しながら溶媒(B)を溶媒(A)に溶媒置換できるものを用いる。これらの器具を用いて混練することにより、溶媒(B)に分散したカーボンナノチューブの状態を保ちながら、溶媒(A)においても、カーボンナノチューブを適度に切断し、かつカーボンナノチューブを劣化させることなく分散性を上げることができる。こうすることにより、高分散なカーボンナノチューブ分散ペースト1を作製することができる。 Next, the solvent (B) in the carbon nanotube dispersion solution is replaced with a small amount of the solvent (A). Here, the small amount means an amount of 1 to 100 parts by weight of the solvent with respect to 1 part by weight of the carbon nanotube. As the replacement method, a three-roll mill, a homogenizer, a slip pulverizer, or the like that can replace the solvent (B) with the solvent (A) while kneading is used. By kneading using these tools, the carbon nanotubes dispersed in the solvent (B) are maintained, and even in the solvent (A), the carbon nanotubes are appropriately cut and dispersed without deteriorating the carbon nanotubes. Can raise the sex. By doing so, a highly dispersed carbon nanotube dispersion paste 1 can be produced.
 本実施の形態において用いられるカーボンナノチューブ2は、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブと、カーボンナノホーン、カーボンナノホーン集合体、カーボンナノチューブとカーボンナノホーンの少なくとも1つが接合した構造のカーボンナノチューブナノホーン複合体などのカーボンナノ構造体を、含む。 The carbon nanotube 2 used in the present embodiment includes a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanohorn, a carbon nanohorn aggregate, and a carbon nanotube having a structure in which at least one of the carbon nanotube and the carbon nanohorn is joined. Includes carbon nanostructures, such as nanohorn composites.
 これらのカーボンナノ構造体のうち、特に、ラマン分光分析で測定されるD/G比が0.2以下の結晶性が良質のカーボンナノチューブ2は、高い導電性を有している。 Among these carbon nanostructures, in particular, the carbon nanotubes 2 having a good crystallinity with a D / G ratio of 0.2 or less measured by Raman spectroscopic analysis have high conductivity.
 しかし、D/G比が0.2以下のカーボンナノチューブは、分散性が悪い。このため、本実施形態の製造方法を用いることによって、分散性向上の効果が高い。一方、カーボンナノホーンなどのD/G比が0.2より大きい場合、本実施形態の製造方法による分散性向上の効果は、D/G比が0.2以下の時と比べて小さいが、従来の方法と比べると大きい。 However, carbon nanotubes having a D / G ratio of 0.2 or less have poor dispersibility. For this reason, by using the manufacturing method of this embodiment, the effect of improving dispersibility is high. On the other hand, when the D / G ratio of carbon nanohorn or the like is larger than 0.2, the effect of improving the dispersibility by the manufacturing method of the present embodiment is smaller than that when the D / G ratio is 0.2 or less. Larger than the method of.
 上記の方法で作製されたカーボンナノチューブ分散ペースト1は、溶媒置換の際に僅かの溶媒(B)が残留する。このため、沸点が150℃以上である溶媒(A)を全溶媒中90体積%以上99.9999体積%未満と、溶媒(A)よりも沸点が低い溶媒(B)を全溶媒中0.0001体積%以上10体積%未満含有する。 In the carbon nanotube dispersion paste 1 produced by the above method, a slight amount of solvent (B) remains upon solvent substitution. For this reason, the solvent (A) having a boiling point of 150 ° C. or higher is 90% by volume or more and less than 99.9999% by volume in the total solvent, and the solvent (B) having a boiling point lower than that of the solvent (A) is 0.0001 in the total solvent. Containing at least 10% by volume.
 前述のように作製されたカーボンナノチューブ分散ペースト1に、導電性粒子とバインダである硬化性樹脂および硬化剤を加えて導電性ペーストを作製する。 A conductive paste is prepared by adding conductive particles, a curable resin as a binder, and a curing agent to the carbon nanotube dispersion paste 1 prepared as described above.
 図1は、本発明の第一の実施形態における、導電性ペーストの模式図である。
 図1に示すように、導電性ペーストは、カーボンナノチューブ2と導電性粒子3と硬化性樹脂4とが均一に混合されている。このように、カーボンナノチューブ2と導電性粒子3と硬化性樹脂4とが均一に混合されていることは、不均一に混合されている場合と比べて、導電性粒子3の間にカーボンナノチューブ2が電気的ブリッジを形成することができ、導電性ペーストの導電性を向上させるという点でよい。
FIG. 1 is a schematic view of a conductive paste in the first embodiment of the present invention.
As shown in FIG. 1, in the conductive paste, carbon nanotubes 2, conductive particles 3, and curable resin 4 are uniformly mixed. As described above, the carbon nanotubes 2, the conductive particles 3, and the curable resin 4 are uniformly mixed as compared with the case where the carbon nanotubes 2 are mixed between the conductive particles 3. However, it is possible to form an electrical bridge and to improve the conductivity of the conductive paste.
 上記の導電性粒子3としては、銀、銅、金、錫、インジウム、ニッケル、パラジウムからなる群から選ばれるいずれか一種、または複数種の粒子の混合物、もしくは合金で構成される。上記の導電性粒子3の形状は特に限定されるものではなく、種々の形状、例えば、球状、鱗片状、板状、樹枝状、塊状、粒状、棒状、箔状、針状などの粒子を用いることができる。 The conductive particles 3 are composed of one kind selected from the group consisting of silver, copper, gold, tin, indium, nickel and palladium, or a mixture of a plurality of kinds of particles or an alloy. The shape of the conductive particles 3 is not particularly limited, and various shapes such as spherical, scale-like, plate-like, dendritic, massive, granular, rod-like, foil-like, and needle-like particles are used. be able to.
 上記の硬化性樹脂4としては、好適な組み合わせの硬化剤の存在下、熱硬化性樹脂、または光硬化性樹脂等の樹脂を用いることができる。そのような樹脂としては、例えば、エポキシ系樹脂、アクリル系樹脂、フェノール系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリウレタン系樹脂、および不飽和ポリエステル樹脂からなる群から選ばれる1種以上のものを用いることができる。 As the curable resin 4, a resin such as a thermosetting resin or a photocurable resin can be used in the presence of a suitable combination of curing agents. Examples of such resins include one or more selected from the group consisting of epoxy resins, acrylic resins, phenol resins, polyimide resins, silicone resins, polyurethane resins, and unsaturated polyester resins. Can be used.
 上記の硬化剤は硬化性樹脂4に対応する好適な硬化剤成分の組合せが一般に知られており、そのようなものを本実施の形態においても用いることができる。例えば、エポキシ系樹脂を硬化性樹脂4として用いる場合には、硬化剤成分としてチオール、アミン、および酸無水物から選ばれる物質を用いることができる。 The above-mentioned curing agent is generally known as a combination of suitable curing agent components corresponding to the curable resin 4, and such a combination can also be used in this embodiment. For example, when an epoxy resin is used as the curable resin 4, a substance selected from thiol, amine, and acid anhydride can be used as the curing agent component.
 本実施形態のカーボンナノチューブ分散ペースト1は、導電性ペーストの溶媒もしくは構造の近い溶媒(A)中にカーボンナノチューブ2を均一に分散させることができる。このため、導電性粒子3や硬化性樹脂4、硬化剤と混合混練する際に、カーボンナノチューブ2を分散させる溶媒成分が導電性ペーストの材料を分解したり変性させたりする影響を最小限にすることができる。 The carbon nanotube dispersion paste 1 of the present embodiment can uniformly disperse the carbon nanotubes 2 in the solvent of the conductive paste or the solvent (A) having a similar structure. For this reason, when mixing and kneading with the conductive particles 3, the curable resin 4, and the curing agent, the influence of the solvent component that disperses the carbon nanotubes 2 decomposes or denatures the material of the conductive paste is minimized. be able to.
 このように、カーボンナノチューブ分散ペースト1を導電性粒子3や硬化性樹脂4、硬化剤(図示せず)と混合混練することにより、カーボンナノチューブ2が導電性粒子3間に均一に分散された導電性ペーストを得ることができる。 Thus, the carbon nanotube dispersion paste 1 is mixed and kneaded with the conductive particles 3, the curable resin 4, and a curing agent (not shown), whereby the carbon nanotubes 2 are uniformly dispersed between the conductive particles 3. Sex paste can be obtained.
 なお、カーボンナノチューブ分散ペースト1を導電性粒子3や硬化性樹脂4、硬化剤と混練して導電性ペーストを作製する方法は、カーボンナノチューブ分散ペーストを他の導電性ペーストの材料と同時に混合混練して導電性ペーストを作製してもよいし、他の材料を混練済みの導電性ペーストに後からカーボンナノチューブ分散ペースト1を加えて混練して導電性ペーストを作製してもよい。前述の両製造方法のいずれかを用いたとしても、カーボンナノチューブが均一に分散した導電性ペーストを作製することができる。 The method of preparing the conductive paste by kneading the carbon nanotube dispersion paste 1 with the conductive particles 3, the curable resin 4, and the curing agent is to mix and knead the carbon nanotube dispersion paste simultaneously with other conductive paste materials. The conductive paste may be prepared, or the conductive paste may be prepared by adding the carbon nanotube dispersion paste 1 to the conductive paste having already been kneaded with other materials and kneading. Even if either of the above-described production methods is used, a conductive paste in which carbon nanotubes are uniformly dispersed can be produced.
 硬化性樹脂4の硬化を行った際、導電性ペーストは、硬化性樹脂4の全体の体積が収縮するため、各導電性粒子3の間隔は狭くなる。その結果、導電性粒子3の間にあるカーボンナノチューブ2は、導電性粒子3の良導電パスとして働くことができる。 When the curable resin 4 is cured, the conductive paste shrinks the entire volume of the curable resin 4, so that the interval between the conductive particles 3 is narrowed. As a result, the carbon nanotubes 2 between the conductive particles 3 can serve as a good conductive path for the conductive particles 3.
 これに対して、カーボンナノチューブ2が導電性樹脂に均一に分散されていない場合、カーボンナノチューブ2が導電性粒子3の間にない箇所ができてしまうことや、カーボンナノチューブ2の凝集部分では導電性粒子3の間の距離が広がり、導電性が妨げられたりすることが発生する。 On the other hand, when the carbon nanotubes 2 are not uniformly dispersed in the conductive resin, there may be a place where the carbon nanotubes 2 are not between the conductive particles 3, or the carbon nanotubes 2 are conductive at the aggregated portion. It may occur that the distance between the particles 3 increases and the conductivity is hindered.
 本実施形態によるカーボンナノチューブ分散ペースト1を用いた導電性ペーストは、導電性粒子3の間にカーボンナノチューブ2を均一に分散できることで、導電性粒子3の導通接続を形成することができる。このため、従来の導電性ペーストと比べて、本実施形態に係る導電性ペーストは、高い導電性を実現することができる。 The conductive paste using the carbon nanotube dispersion paste 1 according to the present embodiment can form the conductive connection of the conductive particles 3 by uniformly dispersing the carbon nanotubes 2 between the conductive particles 3. For this reason, compared with the conventional electrically conductive paste, the electrically conductive paste which concerns on this embodiment can implement | achieve high electroconductivity.
 以下に実施例、比較例を示し、本実施形態について、さらに具体的に説明する。ただし、以下の例によって発明が限定されることはない。
 以下の実施例、比較例において、試料を調整する各工程(工程1A,工程1A'、工程1B、工程2)は、下記に示す態様を意味している。
 工程1A:カーボンナノチューブと溶媒(B)とを、2種の条件で超音波を照射
 工程1A':カーボンナノチューブと溶媒(A)とを、2種の条件で超音波を照射
 工程1B:カーボンナノチューブと溶媒(B)とを、1種の条件で超音波を照射
 工程2 :カーボンナノチューブ分散溶液における溶媒(B)を溶媒(A)に置換してカーボンナノチューブ分散ペーストを得る
Examples and comparative examples are shown below, and the present embodiment will be described more specifically. However, the invention is not limited by the following examples.
In the following examples and comparative examples, each step of preparing a sample (step 1A, step 1A ′, step 1B, step 2) means an embodiment shown below.
Step 1A: Irradiation of ultrasonic waves with carbon nanotubes and solvent (B) under two conditions Step 1A ': Irradiation of ultrasonic waves with carbon nanotubes and solvent (A) under two conditions Step 1B: Carbon nanotubes And solvent (B) are irradiated with ultrasonic waves under one condition Step 2: The solvent (B) in the carbon nanotube dispersion solution is replaced with the solvent (A) to obtain a carbon nanotube dispersion paste
 〔実施例1〕
 カーボンナノチューブ1重量部をイソプロパノール(沸点82℃)1000重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノチューブ分散溶液を作製した(工程1A)。
[Example 1]
Mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol (boiling point 82 ° C.), and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves, Produced (step 1A).
 このように作製したカーボンナノチューブ分散溶液とブチルカルビトールアセテート(BCA;沸点247℃)10重量部を混合し、三本ロールミルを用いて混練しながら、イソプロパノールを揮発させて溶媒置換し、カーボンナノチューブのBCA分散ペーストを作製した(工程2)。分散ペースト中の溶媒成分はイソプロパノールが約1体積%、BCAは99体積%であった。 The carbon nanotube dispersion solution thus prepared and 10 parts by weight of butyl carbitol acetate (BCA; boiling point 247 ° C.) were mixed, and while kneading using a three-roll mill, the solvent was replaced by volatilizing isopropanol. A BCA dispersion paste was prepared (step 2). The solvent component in the dispersion paste was about 1% by volume of isopropanol and 99% by volume of BCA.
 このように作製したカーボンナノチューブ/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノチューブ1重量部、銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部とで構成される導電性ペーストを製造した(表1中<材料混ぜ>)。この導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。 The carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent. The electroconductive paste comprised by these was manufactured (in Table 1, <mixture of materials>). After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1.
 〔実施例2〕
 カーボンナノチューブ1重量部をイソプロパノール1000重量部に混ぜ、45kHz、100Wのバス型の超音波を照射することにより、カーボンナノチューブ分散溶液を作製した(工程1B)。
[Example 2]
A carbon nanotube dispersion solution was prepared by mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
 このように作製したカーボンナノチューブ分散溶液とBCA10重量部を混合し、三本ロールミルを用いて混練しながら、イソプロパノールを揮発させて溶媒置換し、カーボンナノチューブのBCA分散ペーストを作製した(工程2)。 The carbon nanotube dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three roll mill, isopropanol was volatilized and solvent substitution was performed to prepare a BCA dispersion paste of carbon nanotubes (step 2).
 このように作製したカーボンナノチューブ/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノチューブ1重量部、銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部とで構成される導電性ペーストを製造した。前記導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。実施例1との比較として実施例2は、溶媒(B)への1種類の超音波照射のみを用いている(工程1B)、という点で異なっている。つまり、実施例1のように、二種類の超音波を用いていないが、工程2は同様である。 The carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent. The conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1. As a comparison with Example 1, Example 2 differs in that only one type of ultrasonic irradiation to the solvent (B) is used (Step 1B). That is, unlike the first embodiment, two types of ultrasonic waves are not used, but the process 2 is the same.
 〔実施例3〕
 カーボンナノチューブ1重量部をイソプロパノール1000重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノチューブ分散溶液を作製した(工程1A)。
Example 3
A carbon nanotube dispersion solution was prepared by mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of isopropanol and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A). ).
 このように作製したカーボンナノチューブ分散溶液とBCA10重量部を混合し、三本ロールミルを用いて混練しながら、イソプロパノールを揮発させて溶媒置換し、カーボンナノチューブのBCA分散ペーストを作製した(工程2)。 The carbon nanotube dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three roll mill, isopropanol was volatilized and solvent substitution was performed to prepare a BCA dispersion paste of carbon nanotubes (step 2).
 このように作製したカーボンナノチューブ/BCA分散ペーストを、銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部をあらかじめ三本ロールミルで混練した銀ペーストに、カーボンナノチューブ1重量部として後から加えて三本ロールミルで混練し、導電性ペーストを製造した(表1中<後混ぜ>)。この導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。 After the carbon nanotube / BCA dispersion paste thus prepared was added to a silver paste in which 200 parts by weight of silver particles, 20 parts by weight of an epoxy resin, and 2 parts by weight of a curing agent were previously kneaded by a three-roll mill, And kneaded in a three-roll mill to produce a conductive paste (in Table 1, <after mixing>). After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1.
 〔比較例1〕
 銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部とで構成される導電性ペーストを三本ロールミルで混合混練することによって製造し、150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。実施例1との比較として比較例1は、カーボンナノチューブを用いていない。
[Comparative Example 1]
A conductive paste composed of 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent is manufactured by mixing and kneading with a three-roll mill, and cured at 150 ° C. It was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 1 does not use carbon nanotubes.
 〔比較例2〕
 カーボンナノチューブ1重量部、BCA溶媒10重量部、銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部とで構成される導電性ペーストを三本ロールミルで混合混練することによって製造し、150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。実施例1との比較として比較例2は、導電性ペースト中の成分比は同じであるが、本実施の形態のカーボンナノチューブ分散ペーストおよびその製造方法を用いていない。
[Comparative Example 2]
A conductive paste composed of 1 part by weight of carbon nanotubes, 10 parts by weight of BCA solvent, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent is produced by mixing and kneading with a three-roll mill. After being cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 2 has the same component ratio in the conductive paste, but does not use the carbon nanotube-dispersed paste of the present embodiment and the manufacturing method thereof.
 〔比較例3〕
 カーボンナノチューブ1重量部をBCA10重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノチューブ分散ペーストを作製した(工程1A')。
[Comparative Example 3]
Carbon nanotube dispersion paste was prepared by mixing 1 part by weight of carbon nanotubes with 10 parts by weight of BCA and alternately irradiating 45 kHz, 100 W bath-type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A ′ ).
 このように作製したカーボンナノチューブ/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノチューブ1重量部、銀粒子200重量部、エポキシ樹脂20重量部、および硬化剤2重量部とで構成される導電性ペーストを製造した。前記導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表1に示した。実施例1との比較として比較例3は、溶媒(A)のみを用いており、前述の溶媒置換工程(工程2)を用いていない点で異なっている。 The carbon nanotube / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, and 1 part by weight of carbon nanotubes, 200 parts by weight of silver particles, 20 parts by weight of epoxy resin, and 2 parts by weight of a curing agent. The conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 1. As a comparison with Example 1, Comparative Example 3 is different in that only the solvent (A) is used and the above-described solvent replacement step (Step 2) is not used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔第一の実施形態に係る実施例と比較例との検討結果〕
 表1に示すように、実施例1の導電性ペーストは、比較例1や比較例2の導電性ペーストに比べて比抵抗を低減させる効果が大きい。つまり、カーボンナノチューブを導電性ペーストと混合混練する前に、溶媒(A)に均一に分散させたカーボンナノチューブ分散ペーストを用いた場合、導電性ペーストを混ぜない場合や導電性ペーストと同時に混合して混練を行った場合に比べて、比抵抗を低減することができ、高い導電性を実現することができる。
[Results of Examination of Example and Comparative Example According to First Embodiment]
As shown in Table 1, the conductive paste of Example 1 has a greater effect of reducing the specific resistance than the conductive pastes of Comparative Example 1 and Comparative Example 2. In other words, before the carbon nanotubes are mixed and kneaded with the conductive paste, when the carbon nanotube dispersed paste is uniformly dispersed in the solvent (A), the conductive paste is not mixed or mixed at the same time with the conductive paste. Compared with the case where kneading is performed, the specific resistance can be reduced and high conductivity can be realized.
 また、表1の結果から、比較例3の導電性ペーストは少量の溶媒(A)のみを用いたため、二種類の超音波を照射することによる分散性向上、比抵抗低減の効果はあるが、カーボンナノチューブの分散が均一でないために、比抵抗を低減する効果が実施例1よりも小さい。 Further, from the results of Table 1, since the conductive paste of Comparative Example 3 used only a small amount of solvent (A), there is an effect of improving dispersibility and reducing specific resistance by irradiating two types of ultrasonic waves. Since the dispersion of the carbon nanotubes is not uniform, the effect of reducing the specific resistance is smaller than that of the first embodiment.
 実施例2の導電性ペーストは実施例1の二種類の超音波を一種類の超音波に代えた以外は同条件で作製され、カーボンナノチューブがある程度よく分散している。このため、比抵抗の低減効果は大きい。 The conductive paste of Example 2 was produced under the same conditions except that the two types of ultrasonic waves of Example 1 were replaced with one type of ultrasonic wave, and the carbon nanotubes were well dispersed to some extent. For this reason, the effect of reducing specific resistance is great.
 実施例3の導電性ペーストは実施例1と同条件でナノチューブ分散ペーストを作製し、あらかじめ混練を行った銀ペーストに、後から混練を行うこと以外は実施例1と同条件で作製された。カーボンナノチューブが実施例1と同様に均一に分散されるため、比抵抗を低減することができる。 The conductive paste of Example 3 was produced under the same conditions as in Example 1 except that a nanotube-dispersed paste was produced under the same conditions as in Example 1 and kneaded afterwards into a silver paste that had been previously kneaded. Since the carbon nanotubes are uniformly dispersed in the same manner as in Example 1, the specific resistance can be reduced.
 〔第二の実施形態〕
 次に、第二の実施形態について詳細に説明する。
 〔カーボンナノホーンへの適用〕
 本実施形態は、カーボンナノホーンを用いて分散ペーストおよび導電性ペーストを作製した場合である。
[Second Embodiment]
Next, the second embodiment will be described in detail.
[Application to carbon nanohorn]
In the present embodiment, a dispersion paste and a conductive paste are produced using carbon nanohorns.
 以下に実施例、比較例を示し、本実施形態について、さらに具体的に説明する。ただし、以下の例によって発明が限定されることはない。 Hereinafter, examples and comparative examples will be shown, and this embodiment will be described more specifically. However, the invention is not limited by the following examples.
 〔実施例4〕 
 カーボンナノホーン1重量部を1,2-ジクロロエタン(沸点84℃)1000重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノホーン分散液を作製した(工程1A)。
Example 4
By mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane (boiling point 84 ° C.), and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves, carbon A nanohorn dispersion was prepared (Step 1A).
 このように作製したカーボンナノホーン分散溶液とBCA10重量部を混合し、三本ロールミルを用いて混練しながら、1,2-ジクロロエタンを揮発させて溶媒置換し、カーボンナノホーンのBCA分散ペーストを作製した(工程2)。 The carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
 このように作製したカーボンナノホーン/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノホーン1重量部、銀粒子190重量部、エポキシ樹脂10重量部、および硬化剤1重量部とで構成される導電性ペーストを製造した。この導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。 The carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent. The conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2.
 〔実施例5〕 
 カーボンナノホーン1重量部を1,2-ジクロロエタン1000重量部に混ぜ、45kHz、100Wのバス型の超音波を照射することにより、カーボンナノホーン分散液を作製した(工程1B)。
Example 5
A carbon nanohorn dispersion was prepared by mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
 このように作製したカーボンナノホーン分散溶液とBCA10重量部を混合し、三本ロールミルを用いて混練しながら、1,2-ジクロロエタンを揮発させて溶媒置換し、カーボンナノホーンのBCA分散ペーストを作製した(工程2)。 The carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
 このように作製したカーボンナノホーン/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノホーン1重量部、銀粒子190重量部、エポキシ樹脂10重量部、および硬化剤1重量部とで構成される導電性ペーストを製造した。この導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。実施例4との比較として実施例5は、溶媒(B)への1種類の超音波照射のみを用いている(工程1B)、という点で異なっている。つまり、実施例1のように、二種類の超音波を用いていないが、工程2は同様である。 The carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent. The conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Example 5 differs in that only one type of ultrasonic irradiation to the solvent (B) is used (Step 1B). That is, unlike the first embodiment, two types of ultrasonic waves are not used, but the process 2 is the same.
 〔実施例6〕 
 カーボンナノホーン1重量部を1,2-ジクロロエタン1000重量部に混ぜ、45kHz、100Wのバス型の超音波を照射することにより、カーボンナノホーン分散液を作製した(工程1B)。
Example 6
A carbon nanohorn dispersion was prepared by mixing 1 part by weight of carbon nanohorn with 1000 parts by weight of 1,2-dichloroethane and irradiating bath-type ultrasonic waves of 45 kHz and 100 W (step 1B).
 このように作製したカーボンナノホーン分散溶液とBCA10重量部を混合し、三本ロールミルを用いて混練しながら、1,2-ジクロロエタンを揮発させて溶媒置換し、カーボンナノホーンのBCA分散ペーストを作製した(工程2)。 The carbon nanohorn dispersion solution thus prepared and 10 parts by weight of BCA were mixed, and while kneading using a three-roll mill, 1,2-dichloroethane was volatilized and solvent substitution was performed to prepare a carbon nanohorn BCA dispersion paste ( Step 2).
 このように作製したカーボンナノホーン/BCA分散ペーストを、銀粒子190重量部、エポキシ樹脂10重量部、および硬化剤1重量部をあらかじめ三本ロールミルで混練した銀ペーストに、カーボンナノホーン1重量部として後から加えて三本ロールミルで混練し、導電性ペーストを製造した。この導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。 After the carbon nanohorn / BCA dispersion paste thus prepared was added to a silver paste in which 190 parts by weight of silver particles, 10 parts by weight of an epoxy resin, and 1 part by weight of a curing agent were previously kneaded by a three-roll mill, And kneaded with a three-roll mill to produce a conductive paste. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2.
 〔比較例4〕 
 銀粒子190重量部、BCA溶媒10重量部、エポキシ樹脂10重量部、および硬化剤1重量部とで構成される導電性ペーストを三本ロールミルで混合混練することによって製造し、150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。実施例4との比較として比較例4は、カーボンナノホーンを用いていない。
[Comparative Example 4]
A conductive paste composed of 190 parts by weight of silver particles, 10 parts by weight of a BCA solvent, 10 parts by weight of an epoxy resin, and 1 part by weight of a curing agent is manufactured by mixing and kneading with a three-roll mill, and cured at 150 ° C. Thereafter, the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Comparative Example 4 does not use carbon nanohorns.
 〔比較例5〕 
カーボンナノホーン1重量部、BCA溶媒10重量部、銀粒子190重量部、エポキシ樹脂10重量部、および硬化剤1重量部とで構成される導電性ペーストを三本ロールミルで混合混練することによって製造し、150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。実施例4との比較として比較例5は、導電性ペースト中の成分比は同じであるが、本実施形態のカーボンナノホーン分散ペーストおよびその製造方法を用いていない。
[Comparative Example 5]
A conductive paste composed of 1 part by weight of carbon nanohorn, 10 parts by weight of BCA solvent, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent is produced by mixing and kneading with a three-roll mill. After being cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Comparative Example 5 has the same component ratio in the conductive paste, but does not use the carbon nanohorn dispersion paste of this embodiment and the manufacturing method thereof.
 〔比較例6〕 
 カーボンナノホーン1重量部をBCA10重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノホーン分散ペーストを作製した(工程1A')。
[Comparative Example 6]
Carbon nanohorn dispersion paste was prepared by mixing 1 part by weight of carbon nanohorn with 10 parts by weight of BCA and alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves (step 1A ′ ).
 このように作製したカーボンナノホーン/BCA分散ペーストを、導電性粒子等と三本ロールミルで混合混練し、カーボンナノホーン1重量部、銀粒子190重量部、エポキシ樹脂10重量部、および硬化剤1重量部とで構成される導電性ペーストを製造した。前記導電性ペーストを150℃で硬化させた後、比抵抗を測定した。その結果を表2に示した。実施例4との比較として比較例6は、溶媒(A)のみを用いており、前述の溶媒置換工程(工程2)を用いていない。 The carbon nanohorn / BCA dispersion paste thus prepared is mixed and kneaded with conductive particles and the like by a three roll mill, 1 part by weight of carbon nanohorn, 190 parts by weight of silver particles, 10 parts by weight of epoxy resin, and 1 part by weight of a curing agent. The conductive paste comprised by these was manufactured. After the conductive paste was cured at 150 ° C., the specific resistance was measured. The results are shown in Table 2. As a comparison with Example 4, Comparative Example 6 uses only the solvent (A) and does not use the above-described solvent replacement step (Step 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔第二の実施形態に係る実施例と比較例との検討結果〕
 表2に示すように、実施例4、5および6の導電性ペーストは、比較例4と比較例5の導電性ペーストと比べて比抵抗を低減させる効果が大きい。つまり、カーボンナノホーンを導電性ペーストと混合混練する前に、溶媒(A)に均一に分散させたカーボンナノホーン分散ペーストを用いた場合、導電性ペーストを混ぜない場合や導電性ペーストと同時に混合して混練を行った場合と比べて、比抵抗を低減することができ、かつ高い導電性を実現することができる。
[Results of examination of the example and the comparative example according to the second embodiment]
As shown in Table 2, the conductive pastes of Examples 4, 5 and 6 have a greater effect of reducing the specific resistance than the conductive pastes of Comparative Example 4 and Comparative Example 5. That is, before carbon nanohorn is mixed and kneaded with conductive paste, when carbon nanohorn dispersed paste uniformly dispersed in solvent (A) is used, when conductive paste is not mixed or mixed with conductive paste, Compared with the case where kneading is performed, the specific resistance can be reduced and high conductivity can be realized.
 また、表2の結果から、比較例6の導電性ペーストは少量の溶媒(A)のみを用いたため、二種類の超音波を照射することによる分散性向上、比抵抗低減の効果はあるが、分散が均一でない。このため、比抵抗を低減する効果が実施例4~6よりも小さい。 Further, from the results of Table 2, since the conductive paste of Comparative Example 6 used only a small amount of solvent (A), there is an effect of improving dispersibility and reducing specific resistance by irradiating two types of ultrasonic waves. Dispersion is not uniform. For this reason, the effect of reducing the specific resistance is smaller than those of Examples 4-6.
 実施例5の導電性ペーストは実施例4の二種類の超音波を一種類の超音波に代えた以外は同条件で作製され、カーボンナノホーンはカーボンナノチューブよりも分散性がよい。このため、一種類の超音波処理を行ったとしてもある程度よく分散し、比抵抗の低減効果は大きい。 The conductive paste of Example 5 was produced under the same conditions except that the two types of ultrasonic waves of Example 4 were replaced with one type of ultrasonic wave, and carbon nanohorns are more dispersible than carbon nanotubes. For this reason, even if one kind of ultrasonic treatment is performed, it is dispersed to some extent, and the effect of reducing specific resistance is great.
 実施例6の導電性ペーストは実施例5と同条件でカーボンナノホーン分散ペーストを作製し、あらかじめ混練を行った銀ペーストに後から混練を行うこと以外は、実施例5と同条件で作製された。カーボンナノホーンが実施例5と同様に均一に分散されるため、比抵抗を低減することができる。 The conductive paste of Example 6 was prepared under the same conditions as in Example 5 except that a carbon nanohorn dispersion paste was prepared under the same conditions as in Example 5 and the silver paste was previously kneaded. . Since carbon nanohorns are uniformly dispersed in the same manner as in Example 5, the specific resistance can be reduced.
 〔第三の実施形態〕
 次に、第三の実施形態について詳細に説明する。
 〔回路基板への適用〕
 本実施形態は、第一の実施形態で作製された、カーボンナノチューブ、導電性粒子、および硬化性樹脂とで構成される導電性ペーストを、基板の回路パターン形成や、基板への電子部品の実装に用いた場合である。
[Third embodiment]
Next, the third embodiment will be described in detail.
[Application to circuit boards]
In this embodiment, the conductive paste made of the carbon nanotubes, conductive particles, and curable resin produced in the first embodiment is used to form a circuit pattern on a substrate and mount an electronic component on the substrate. It is a case where it is used for.
 導電性ペーストは、第一の実施形態に示すように、カーボンナノチューブ1重量部を、溶媒1~100重量部に均一に分散させたカーボンナノチューブ分散ペーストを用いて作製されたものである。 As shown in the first embodiment, the conductive paste is prepared using a carbon nanotube dispersion paste in which 1 part by weight of carbon nanotubes are uniformly dispersed in 1 to 100 parts by weight of a solvent.
 回路基板の材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、熱可塑性樹脂、エポキシ、熱硬化性樹脂、アラミド不織布、ガラス織布、およびガラス布織布の群から選ばれる種々の材料を用いることができるが、これに限るものではない。 As the circuit board material, various materials selected from the group of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, thermoplastic resin, epoxy, thermosetting resin, aramid nonwoven fabric, glass woven fabric, and glass fabric woven fabric are used. Although it can be used, it is not limited to this.
 本実施形態に係る導電性ペースト1は、回路基板表面に所定のパターンで配置されており、回路基板上に回路パターンを形成している。回路パターンは、回路基板上に銅箔にて形成した一般的な配線などと同様に、さらに種々の対応する電子部品等を接続することができる。こうすることで、所望する回路基板を形成することができる。また、回路パターン上に電子部品を、電極が対応するような位置関係でとりつけることにより、回路基板に電子部品を実装することができる。 The conductive paste 1 according to the present embodiment is arranged in a predetermined pattern on the surface of the circuit board, and forms a circuit pattern on the circuit board. The circuit pattern can be connected to various corresponding electronic components as well as general wiring formed with copper foil on a circuit board. In this way, a desired circuit board can be formed. In addition, the electronic component can be mounted on the circuit board by mounting the electronic component on the circuit pattern in a positional relationship such that the electrodes correspond to each other.
 〔回路基板の形成方法〕
 次に、導電性ペースト1を回路基板5の表面に形成する方法について説明する。なお、図2は、回路基板5の表面に導電性ペースト1を供給した場合の工程図である。
[Method of forming circuit board]
Next, a method for forming the conductive paste 1 on the surface of the circuit board 5 will be described. FIG. 2 is a process diagram when the conductive paste 1 is supplied to the surface of the circuit board 5.
 まず、図2(a)に示すように、回路基板5を準備する。 First, as shown in FIG. 2A, a circuit board 5 is prepared.
 次に、図2(b)に示すように、回路基板5上に回路パターン7のネガとなるマスク6を載置し、マスク6上に導電性ペースト1を供給する。回路基板5上に導電性ペースト1でパターンを形成する方法としては、例えば、スクリーン印刷、インクジェット、ディスペンサー、含浸やスピンコートなどの各種方法が使用できる。 Next, as shown in FIG. 2B, a mask 6 serving as a negative of the circuit pattern 7 is placed on the circuit board 5, and the conductive paste 1 is supplied onto the mask 6. As a method of forming a pattern with the conductive paste 1 on the circuit board 5, for example, various methods such as screen printing, ink jet, dispenser, impregnation, spin coating and the like can be used.
 導電性ペースト1の各成分であるカーボンナノチューブ2と導電性粒子3は、硬化性樹脂4の中に分散されている。上記の状態において、カーボンナノチューブ2と各導電性粒子3との間には、適度の間隔が開けられているため、カーボンナノチューブ2と導電性粒子3との接触は形成されていない。 The carbon nanotubes 2 and the conductive particles 3 which are each component of the conductive paste 1 are dispersed in the curable resin 4. In the above state, since the carbon nanotubes 2 and the respective conductive particles 3 are spaced at an appropriate interval, the carbon nanotubes 2 and the conductive particles 3 are not in contact with each other.
 次に、図2(c)に示すように、回路基板5上に、導電性ペースト1を形成しマスク6を外した後、導電性ペースト1の回路パターン7に対して熱、光等を作用させ、還元剤を活性化させる。こうすることで導電性ペースト1は、そのパターンにて硬化し、回路基板5上に所望の回路パターン7を形成する。 Next, as shown in FIG. 2 (c), the conductive paste 1 is formed on the circuit board 5 and the mask 6 is removed, and then heat, light, etc. are applied to the circuit pattern 7 of the conductive paste 1. To activate the reducing agent. By doing so, the conductive paste 1 is cured in the pattern, and a desired circuit pattern 7 is formed on the circuit board 5.
 硬化性樹脂4の硬化が進行すると、硬化性樹脂4の全体の体積は収縮する。その結果、カーボンナノチューブ2と各導電性粒子3との間の間隔は小さくなり、狭くなった導電性粒子3の間に、カーボンナノチューブ2が入り込む。こうすることで、導電性粒子3とカーボンナノチューブ2との間に電気的接触を形成することができる。その結果、導通成分を全体として接触させることができるため、カーボンナノチューブ2を介して導電性粒子3の全体にわたって導通接続を形成することができる。 As the curing of the curable resin 4 proceeds, the entire volume of the curable resin 4 contracts. As a result, the interval between the carbon nanotube 2 and each conductive particle 3 becomes small, and the carbon nanotube 2 enters between the narrowed conductive particles 3. By doing so, electrical contact can be formed between the conductive particles 3 and the carbon nanotubes 2. As a result, since the conductive component can be brought into contact as a whole, a conductive connection can be formed over the entire conductive particle 3 via the carbon nanotube 2.
 また、図2(d)に示すように、回路パターン7に、電子部品8の電極(または端子)を対応するような位置関係で、取り付けてもよい。このとき、導電性ペースト1は、必要に応じて、所定の温度まで温度を上昇させ、所定の時間だけ配置する。こうすることで、導電性ペースト1を硬化させ、回路基板5に電子部品8の実装を行うことができる。 2 (d), the electrodes (or terminals) of the electronic component 8 may be attached to the circuit pattern 7 in a positional relationship. At this time, the conductive paste 1 is increased in temperature to a predetermined temperature as necessary, and is disposed for a predetermined time. By doing so, the conductive paste 1 can be cured and the electronic component 8 can be mounted on the circuit board 5.
 〔作用・効果の説明〕
 次に、本実施形態における作用・効果について説明する。本実施形態における導電性ペースト1は、回路基板5表面に供給した後に、熱、光等を作用させる。導電性ペースト1を供給する工程においては、硬化性樹脂4の硬化反応はまだ始まっていないため、導電性ペースト1を供給する操作は、時間、供給操作、供給手段等に関して、比較的高い自由度を有することができる。
[Description of action and effect]
Next, functions and effects in the present embodiment will be described. The conductive paste 1 in the present embodiment is applied with heat, light, etc. after being supplied to the surface of the circuit board 5. In the process of supplying the conductive paste 1, the curing reaction of the curable resin 4 has not yet started. Therefore, the operation of supplying the conductive paste 1 has a relatively high degree of freedom with respect to time, supply operation, supply means, and the like. Can have.
 このため導電性ペースト1は、十分な流動性を保持することができ、一般的な印刷手段によって、回路基板5の表面に所定のパターンで供給することができる。例えば、図2(b)に示すように、導電性ペースト1は、回路基板5上に回路パターン7のネガとなるマスク6を載置し、該マスク6上に供給することができる。 Therefore, the conductive paste 1 can maintain sufficient fluidity and can be supplied in a predetermined pattern on the surface of the circuit board 5 by a general printing means. For example, as shown in FIG. 2B, the conductive paste 1 can be supplied on the mask 6 by placing a mask 6 serving as a negative of the circuit pattern 7 on the circuit board 5.
 本実施形態における導電性ペースト1は、回路基板5の表面に所定のパターンで塗布されており、回路基板5上に回路パターン7を形成している。回路パターン7は、回路基板5上に銅箔にて形成された一般的な配線などと同様に、種々の対応する電子部品8等を接続することで、所望する回路基板5を形成することができる。また回路パターン7上に、電子部品8を電極が対応するような位置関係でとりつけることによって、回路基板5に電子部品8を実装することができる。 The conductive paste 1 in this embodiment is applied in a predetermined pattern on the surface of the circuit board 5, and a circuit pattern 7 is formed on the circuit board 5. The circuit pattern 7 can form a desired circuit board 5 by connecting various corresponding electronic components 8 and the like in the same manner as general wiring formed of copper foil on the circuit board 5. it can. Further, the electronic component 8 can be mounted on the circuit board 5 by mounting the electronic component 8 on the circuit pattern 7 in such a positional relationship that the electrodes correspond to each other.
 本実施形態の導電性ペースト1は、回路パターン7として回路基板5に形成された場合、回路基板5に対して高い接着強度を実現することができる。このため、信頼性の高い回路基板5を形成することができる。 When the conductive paste 1 according to the present embodiment is formed on the circuit board 5 as the circuit pattern 7, high adhesive strength can be realized with respect to the circuit board 5. For this reason, the circuit board 5 with high reliability can be formed.
 また、本実施形態の導電性ペースト1は、回路基板5に回路パターン7を印刷し、その後、電子部品8を配置し所定の温度まで温度を上昇させることによって、電子部品8を実装した場合においても、回路基板5および電子部品8に対して高い接着強度を実現することができる。 Moreover, the conductive paste 1 of this embodiment is printed when the electronic component 8 is mounted by printing the circuit pattern 7 on the circuit board 5 and then placing the electronic component 8 and raising the temperature to a predetermined temperature. In addition, a high adhesive strength can be realized for the circuit board 5 and the electronic component 8.
 〔第四の実施形態〕
 次に、第四の実施形態について詳細に説明する。本実施形態は、第一の実施形態のカーボンナノチューブ分散ペーストを用い、第一の実施形態とは異なる組成の電界放出電極(電子放出源電極)に用いられるペーストおよびその製造方法に関するものである。
[Fourth embodiment]
Next, the fourth embodiment will be described in detail. The present embodiment relates to a paste used for a field emission electrode (electron emission source electrode) having a composition different from that of the first embodiment, using the carbon nanotube-dispersed paste of the first embodiment, and a manufacturing method thereof.
 電子放出源となるカーボンナノチューブは、前述のいずれかのカーボンナノチューブであればよい。特に、ラマン分光分析で測定されるD/G比が0.2以下の結晶性を有するカーボンナノチューブは、電子放出源としての特性が高く、かつ耐久性も高いので好ましい。しかし、良質の結晶性を有するカーボンナノチューブは、欠陥が少なく、表面官能基が少ないため、溶媒への分散性が悪いという欠点がある。 The carbon nanotube serving as the electron emission source may be any of the carbon nanotubes described above. In particular, a carbon nanotube having a crystallinity with a D / G ratio of 0.2 or less measured by Raman spectroscopic analysis is preferable because of its high characteristics as an electron emission source and high durability. However, carbon nanotubes having good crystallinity have a defect that the dispersibility in a solvent is poor because they have few defects and few surface functional groups.
 本発明のカーボンナノチューブ分散ペーストの製造方法では、特に、良質の結晶性を有するカーボンナノチューブの分散性を、界面活性剤などを使用することなく、かつ簡便な方法で飛躍的に向上させることができる。 In the method for producing a carbon nanotube-dispersed paste of the present invention, in particular, the dispersibility of carbon nanotubes having good crystallinity can be dramatically improved by a simple method without using a surfactant or the like. .
 前述のように作製したカーボンナノチューブ分散ペーストを、カソード電極を接着させるためのガラス粉末などの無機物、電極構造の支持部材としての有機物バインダ、有機物バインダを溶解させる溶媒を混合して、電界放出電極に用いられるペーストを作製する。 The carbon nanotube dispersion paste prepared as described above is mixed with an inorganic substance such as glass powder for adhering the cathode electrode, an organic binder as a support member for the electrode structure, and a solvent for dissolving the organic binder to form a field emission electrode. Make the paste to be used.
 無機物としては、例えば、ガラスフリット、アルミナ、ジルコニア、二酸化チタン、シリカなどが挙げられる。また、有機物バインダとしては、例えば、セルロース系樹脂、アクリル系樹脂、エチレン酢酸ビニル共重合体樹脂、ポリビニルブチラール、ポリビニルアルコール、プロピレングリコール、ウレタン系樹脂、メラミン系樹脂、フェノール系樹脂、アルキド系樹脂などが挙げられる。 Examples of the inorganic substance include glass frit, alumina, zirconia, titanium dioxide, and silica. Examples of the organic binder include cellulose resin, acrylic resin, ethylene vinyl acetate copolymer resin, polyvinyl butyral, polyvinyl alcohol, propylene glycol, urethane resin, melamine resin, phenol resin, alkyd resin, and the like. Is mentioned.
 本実施形態のカーボンナノチューブ分散ペーストは、電界放出電極に用いられるペーストの溶媒もしくは構造の近い溶媒(A)中にカーボンナノチューブを均一に分散させることができるため、無機物や有機物バインダと混合混練する際に、カーボンナノチューブを分散させる溶媒成分が電界放出電極に用いられるペーストの材料を分解したり変性させたりする影響を最小限にすることができる。 The carbon nanotube-dispersed paste of the present embodiment can uniformly disperse carbon nanotubes in a solvent (A) having a similar structure or a paste used for a field emission electrode. Therefore, when mixing and kneading with an inorganic or organic binder In addition, it is possible to minimize the influence of the solvent component in which the carbon nanotubes are dispersed decomposing or modifying the paste material used for the field emission electrode.
 カーボンナノチューブ分散ペーストをガラスフリットなどの無機物や有機物のバインダと混合混練することにより、カーボンナノチューブがガラスフリットや有機物バインダ間に均一に分散された電界放出電極に用いられるペーストを得ることができる。上述のペーストを用いて作製した電極は、カーボンナノチューブの分散性が良いため、輝点数が多く、均一であり、かつ高効率な電子放出源として発光する。 By mixing and kneading the carbon nanotube dispersion paste with an inorganic or organic binder such as glass frit, a paste used for a field emission electrode in which the carbon nanotubes are uniformly dispersed between the glass frit and the organic binder can be obtained. An electrode manufactured using the above-described paste has high dispersibility of carbon nanotubes, and thus has a large number of bright spots, is uniform, and emits light as a highly efficient electron emission source.
 図3は、第四の実施形態における、FEDおよびFELのカソード電極の構成の一例を模式的に示す斜視図である。
 図3に示すように、本実施の形態に係る電界放出発光素子9は、アノード基板10と、カソード基板20と、スペーサ30と、を有している。
FIG. 3 is a perspective view schematically showing an example of the configuration of the cathode electrodes of the FED and FEL in the fourth embodiment.
As shown in FIG. 3, the field emission light-emitting device 9 according to the present embodiment includes an anode substrate 10, a cathode substrate 20, and a spacer 30.
 アノード基板10は、透明な基板11と、基板11上に形成されたアノード電極12と、アノード電極12上に形成された蛍光体層13と、を有している。なお、本実施形態では、アノード電極12として透明電極を適用する例を挙げて説明する。 The anode substrate 10 has a transparent substrate 11, an anode electrode 12 formed on the substrate 11, and a phosphor layer 13 formed on the anode electrode 12. In the present embodiment, an example in which a transparent electrode is applied as the anode electrode 12 will be described.
 カソード基板20は、金属、半導体または絶縁体からなる基板21と、カソード電極22と、エミッタ電極と、を有する。カソード電極22は、導電層であり、エミッタ電極は、電子放出層である。スペーサ30は、アノード基板10とカソード基板20との間に設けられている。このため、アノード基板10とカソード基板20との間は真空である。 The cathode substrate 20 includes a substrate 21 made of a metal, a semiconductor, or an insulator, a cathode electrode 22, and an emitter electrode. The cathode electrode 22 is a conductive layer, and the emitter electrode is an electron emission layer. The spacer 30 is provided between the anode substrate 10 and the cathode substrate 20. For this reason, the space between the anode substrate 10 and the cathode substrate 20 is a vacuum.
 アノード電極12とカソード電極22との電極間距離は、アノード基板10及びカソード基板20の間にスペーサ30を挟みこむことで決定する。アノード電極12とカソード電極22との電極間距離が広すぎる場合、構造上電子が放出されるべき場所以外に電子が放出されるため、発光効率の低下や放電が生じてしまう。 The distance between the anode electrode 12 and the cathode electrode 22 is determined by inserting a spacer 30 between the anode substrate 10 and the cathode substrate 20. When the interelectrode distance between the anode electrode 12 and the cathode electrode 22 is too large, electrons are emitted to a place other than where the electrons should be emitted structurally, resulting in a decrease in luminous efficiency and discharge.
 一方、アノード電極12とカソード電極22との電極間距離が短すぎる場合、電子を容易に放出することはできるものの、蛍光体層13を十分に発光させる電圧を得ることができない。以上のことから、アノード電極12とカソード電極22との電極間距離は0.1mm~200mmが好ましく、1mm~10mmであれば、より好ましい。 On the other hand, when the interelectrode distance between the anode electrode 12 and the cathode electrode 22 is too short, electrons can be easily emitted, but a voltage for sufficiently emitting the phosphor layer 13 cannot be obtained. From the above, the distance between the anode electrode 12 and the cathode electrode 22 is preferably 0.1 mm to 200 mm, more preferably 1 mm to 10 mm.
 アノード電極12は、例えば、ITO、ZnO、TiO、カーボンナノチューブ等から構成される透明電極である。蛍光体層13には、CRT(Cathode Ray Tube)に用いられるような蛍光体を適用することができる。例えば、電子線が照射されると蛍光を発する電子線励起蛍光体である硫化物蛍光体、酸化物蛍光体、または窒化物蛍光体等を用いることができる。蛍光体層13は、例えば、スプレー法、スクリーン印刷、手塗り印刷、又は沈降法を用いて形成することが可能である。蛍光体層13の膜厚は、例えば、0.1μm~100μmであることが好ましい。 The anode electrode 12 is a transparent electrode made of, for example, ITO, ZnO, TiO 2 , carbon nanotube, or the like. A phosphor such as that used in CRT (Cathode Ray Tube) can be applied to the phosphor layer 13. For example, a sulfide phosphor, an oxide phosphor, or a nitride phosphor that is an electron beam excited phosphor that emits fluorescence when irradiated with an electron beam can be used. The phosphor layer 13 can be formed by using, for example, a spray method, screen printing, hand coating printing, or sedimentation method. The film thickness of the phosphor layer 13 is preferably, for example, 0.1 μm to 100 μm.
 カソード電極22は、金属や導電性のある金属酸化物等で構成される電極である。カソード電極22として使用される金属は、Ag、Au、Pt、Ti、Al、Cu、Cd、Pd、Zr、C、金属酸化物は、ITO、TiO、ZnOの中から選ばれる単体もしくは合金を用いることができる。 The cathode electrode 22 is an electrode made of metal, conductive metal oxide, or the like. The metal used as the cathode electrode 22 is Ag, Au, Pt, Ti, Al, Cu, Cd, Pd, Zr, C, and the metal oxide is a simple substance or alloy selected from ITO, TiO 2 and ZnO. Can be used.
 エミッタ電極は、カーボンナノチューブ2などのナノカーボン材料で構成される電子放出層である。エミッタ電極を塗布する方法としては、例えば、スクリーン印刷、スプレー法、手塗り印刷、又はインクジェット等を適用することができる。また、エミッタ電極は、第一あるいは第二の実施形態に記載のカーボンナノチューブ分散ペーストを用いることにより、電極中のカーボンナノチューブの分散性が向上し、従来のエミッタ電極と比べて輝点数が多く、均一で、かつ高効率な電子放出源として発光する。 The emitter electrode is an electron emission layer composed of a nanocarbon material such as carbon nanotube 2. As a method for applying the emitter electrode, for example, screen printing, spraying, hand-painting, ink jet, or the like can be applied. Further, the emitter electrode uses the carbon nanotube dispersion paste described in the first or second embodiment to improve the dispersibility of the carbon nanotubes in the electrode, and has a larger number of bright spots than the conventional emitter electrode, It emits light as a uniform and highly efficient electron emission source.
 以下に実施例、比較例を示し、本実施形態についてさらに具体的に説明する。ただし、以下の例によって発明が限定されることはない。 Hereinafter, examples and comparative examples will be shown, and the present embodiment will be described more specifically. However, the invention is not limited by the following examples.
 〔実施例7〕
 カーボンナノチューブ1重量部を1,2-ジクロロエタン(沸点84℃)1000重量部に混ぜ、45kHz、100Wのバス型の超音波と20kHz、300Wのプローブ型の超音波を交互に照射することにより、カーボンナノチューブ分散溶液を作製した(工程1A)。カーボンナノチューブはラマン分光分析で測定されるD/G比が0.2以下の結晶性が良質のカーボンナノチューブを用いた。
Example 7
By mixing 1 part by weight of carbon nanotubes with 1000 parts by weight of 1,2-dichloroethane (boiling point 84 ° C.), carbon is irradiated by alternately irradiating 45 kHz, 100 W bath type ultrasonic waves and 20 kHz, 300 W probe type ultrasonic waves. A nanotube dispersion solution was prepared (Step 1A). As the carbon nanotube, a carbon nanotube with a good crystallinity having a D / G ratio of 0.2 or less as measured by Raman spectroscopy was used.
 次に、カーボンナノチューブ分散溶液とテルピネオール(沸点218℃)10重量部を混合し、三本ロールミルを用いて混練しながら、1,2-ジクロロエタンを揮発させて溶媒置換し、カーボンナノチューブのテルピネオール分散ペーストを作製した(工程2)。 Next, 10 parts by weight of a carbon nanotube dispersion solution and terpineol (boiling point 218 ° C.) are mixed, while kneading using a three-roll mill, 1,2-dichloroethane is volatilized and solvent substitution is performed, and terpineol dispersion paste of carbon nanotubes (Step 2).
 次に、カーボンナノチューブ/テルピネオール分散ペーストを、ガラスフリット、エチルセルロース等と三本ロールミルで混合混練し、カーボンナノチューブ1重量部、ガラスフリット7重量部、エチルセルロース2重量部、テルピネオール溶媒とで構成される電界放出電極に用いられるペーストを製造した。 Next, the carbon nanotube / terpineol dispersion paste is mixed and kneaded with glass frit, ethyl cellulose, etc. by a three roll mill, and an electric field composed of 1 part by weight of carbon nanotubes, 7 parts by weight of glass frit, 2 parts by weight of ethyl cellulose, and a terpineol solvent. A paste used for the emission electrode was produced.
 次に、電界放出電極に用いられるペーストをスクリーン印刷機を用いて、ITO膜を成膜したカソード電極基板上に印刷し、80℃で乾燥し、5×10-3Torrの真空500℃で1時間焼成を行い、電界放出電極を作製した。 Next, the paste used for the field emission electrode is printed on the cathode electrode substrate on which the ITO film is formed by using a screen printer, dried at 80 ° C., and 1 × 5 × 10 −3 Torr in vacuum at 500 ° C. Time firing was performed to produce a field emission electrode.
 アノード基板10の蛍光体層13と、カソード基板20のエミッタ電極23は、スペーサ30で囲まれた空間を挟んで対向して設けられており、蛍光体層13とエミッタ電極23の間は真空である。 The phosphor layer 13 of the anode substrate 10 and the emitter electrode 23 of the cathode substrate 20 are provided opposite to each other with a space surrounded by the spacer 30 interposed therebetween, and the phosphor layer 13 and the emitter electrode 23 are vacuumed. is there.
 カソード電極22からアノード電極12に向かって正の電界をかけると、エミッタ電極23は電子を放出する。放出された電子をカソード電極22とアノード電極12との間の電位差で加速し、蛍光体層13に照射する。その結果、蛍光体層13が発光する。 When a positive electric field is applied from the cathode electrode 22 toward the anode electrode 12, the emitter electrode 23 emits electrons. The emitted electrons are accelerated by the potential difference between the cathode electrode 22 and the anode electrode 12 and irradiated onto the phosphor layer 13. As a result, the phosphor layer 13 emits light.
 アノード電極12は透明電極なので、蛍光体層13の発光を透過する。そのため、蛍光体層13から放射された光は、アノード電極12と透明なガラス基板11を透過して、外部を照射する。上記で作製した電界放出電極を用いて電子放出を行った結果を発光写真として図4に示す。 Since the anode electrode 12 is a transparent electrode, the phosphor layer 13 transmits light. Therefore, the light emitted from the phosphor layer 13 passes through the anode electrode 12 and the transparent glass substrate 11 and irradiates the outside. The result of electron emission using the field emission electrode prepared above is shown in FIG.
 〔比較例7〕
 カーボンナノチューブを、ガラスフリット、エチルセルロース等と三本ロールミルで混合混練し、カーボンナノチューブ1重量部、ガラスフリット7重量部、エチルセルロース2重量部、テルピネオール溶媒とで構成される電界放出電極に用いられるペーストを製造した。カーボンナノチューブなど材料は実施例7と同じものを用いた。
[Comparative Example 7]
Carbon nanotubes are mixed and kneaded with glass frit, ethyl cellulose, etc. in a three-roll mill, and paste used for a field emission electrode composed of 1 part by weight of carbon nanotubes, 7 parts by weight of glass frit, 2 parts by weight of ethyl cellulose, and terpineol solvent. Manufactured. The same materials as in Example 7 were used, such as carbon nanotubes.
 ただし、比較例7は、電界放出電極に用いられるペースト中の溶媒以外の成分比は、実施例7と同じであるが、溶媒(A)のみを用いており、前述の溶媒置換工程(工程2)は行わなかった。 However, in Comparative Example 7, the ratio of components other than the solvent in the paste used for the field emission electrode is the same as that in Example 7, but only the solvent (A) is used, and the above-described solvent replacement step (Step 2). ) Was not performed.
 このように作製した電界放出電極に用いられるペーストをスクリーン印刷機を用いて、ITO膜を成膜したカソード電極基板上に印刷し、80℃で乾燥し、5×10-3Torrの真空500℃で1時間焼成を行い、電界放出電極を作製した。これを用いて電子放出を行った結果を発光写真として図5に示す。 The paste used for the field emission electrode thus prepared was printed on a cathode electrode substrate on which an ITO film was formed using a screen printer, dried at 80 ° C., and vacuum of 5 × 10 −3 Torr at 500 ° C. Was fired for 1 hour to prepare a field emission electrode. The result of electron emission using this is shown as a light emission photograph in FIG.
 〔実施例と比較例との検討結果〕
 図4、図5に示すように、実施例7の電界放出電極は、比較例7の電界放出電極に比べて発光輝点数が著しく多いことが分かる。
[Results of examination between Examples and Comparative Examples]
As shown in FIGS. 4 and 5, it can be seen that the field emission electrode of Example 7 has a significantly larger number of emission bright spots than the field emission electrode of Comparative Example 7.
 つまり、カーボンナノチューブを電界放出電極に用いられるペースト材料と混合混練する前に溶媒(A)に均一に分散させたカーボンナノチューブ分散ペーストを用いた場合、これを同時に混合して混練を行った場合に比べて、カーボンナノチューブをガラスフリットおよび有機物バインダ間に均一に分散することができることによって、電界放出電極の発光輝点を著しく増加させ、発光特性のよい電界放出発光素子を作製することができる。 That is, when carbon nanotube dispersed paste in which carbon nanotubes are uniformly dispersed in the solvent (A) before being mixed and kneaded with the paste material used for the field emission electrode is used, when this is mixed and kneaded at the same time In comparison, since the carbon nanotubes can be uniformly dispersed between the glass frit and the organic binder, the emission luminescent spot of the field emission electrode can be remarkably increased, and a field emission light emitting device with good emission characteristics can be produced.
 本発明は、以下の態様も含む。 The present invention also includes the following aspects.
(1)
 カーボンナノチューブが溶媒に分散されており、
 全溶媒中90体積%以上99.9999体積%未満で沸点が150℃以上である溶媒(A)と、
 前記溶媒(A)の残余の体積%以下で前記溶媒(A)よりも沸点が低い溶媒(B)と、
を含むカーボンナノチューブ分散ペースト。
(2)
 前記カーボンナノチューブ2重量部が、前記溶媒1~100重量部に分散されている、(1)に記載のカーボンナノチューブ分散ペースト。
(3)
 (1)または(2)に記載のカーボンナノチューブ分散ペーストの製造方法であって、
 周波数と強度と印加手法との少なくとも一つが相違する複数種類の超音波を組み合わせて前記カーボンナノチューブを前記溶媒に分散させる工程を有する製造方法。
(4)
 (1)または(2)に記載のカーボンナノチューブ分散ペーストの製造方法であって、
 前記カーボンナノチューブを前記溶媒(B)に分散させてカーボンナノチューブ分散溶液を生成する工程と、
 前記カーボンナノチューブ分散溶液の前記溶媒(B)を沸点150℃以上の前記溶媒(A)に置換する工程と、
を有する製造方法。
(5)
 (1)または(2)に記載のカーボンナノチューブ分散ペーストの製造方法であって、
 周波数と強度と印加手法との少なくとも一つが相違する複数種類の超音波を組み合わせて前記カーボンナノチューブを前記溶媒(B)に分散させてカーボンナノチューブ分散溶液を生成する工程と、
 前記カーボンナノチューブ分散溶液の前記溶媒(B)を沸点150℃以上の前記溶媒(A)に置換する工程と、
を有する製造方法。
(6)
 導電性粒子とバインダとが、さらに分散されている(1)または(2)に記載のカーボンナノチューブ分散ペースト。
(7)
 カーボンナノチューブ分散ペーストの製造方法であって、
 (3)ないし(5)の何れか一つに記載の製造方法により前記カーボンナノチューブ分散ペーストを製造し、
 製造された前記カーボンナノチューブ分散ペーストに導電性粒子と前記バインダとを混合混練して前記カーボンナノチューブとともに分散させる製造方法。
(8)
 カソード電極を接着させるための無機物と、
 電極構造の支持部材としての有機物バインダと、
 前記有機物バインダを溶解させる溶媒とが、
さらに分散されていて電子放出源電極の形成に用いられる(1)または(2)に記載のカーボンナノチューブ分散ペースト。
(9)
 カーボンナノチューブ分散ペーストの製造方法であって、
 (3)ないし(5)の何れか一つに記載の製造方法により前記カーボンナノチューブ分散ペーストを作製し、
 作製された前記カーボンナノチューブ分散ペーストに前記無機物と前記有機物バインダと前記溶媒とを混合混練して前記カーボンナノチューブとともに分散させる製造方法。
(10)
 (6)または(8)のいずれか1つに記載のカーボンナノチューブ分散ペーストを用いたエミッタ電極と、
 前記エミッタ電極に対向して設けられていて前記エミッタから放出された電子が衝突することで発光する蛍光体層と、
を有する電解放出発光素子。
(1)
Carbon nanotubes are dispersed in a solvent,
A solvent (A) having a boiling point of not less than 90% by volume and less than 99.9999% by volume and having a boiling point of not less than 150 ° C. in all the solvents;
A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of the solvent (A);
Carbon nanotube dispersion paste containing.
(2)
The carbon nanotube-dispersed paste according to (1), wherein 2 parts by weight of the carbon nanotubes are dispersed in 1 to 100 parts by weight of the solvent.
(3)
A method for producing a carbon nanotube-dispersed paste according to (1) or (2),
A manufacturing method comprising a step of dispersing the carbon nanotubes in the solvent by combining a plurality of types of ultrasonic waves having at least one of frequency, intensity, and application method being different.
(4)
A method for producing a carbon nanotube-dispersed paste according to (1) or (2),
A step of dispersing the carbon nanotubes in the solvent (B) to form a carbon nanotube dispersion solution;
Replacing the solvent (B) of the carbon nanotube dispersion solution with the solvent (A) having a boiling point of 150 ° C. or higher;
A manufacturing method comprising:
(5)
A method for producing a carbon nanotube-dispersed paste according to (1) or (2),
Combining a plurality of types of ultrasonic waves having different frequencies, intensities, and application methods to disperse the carbon nanotubes in the solvent (B) to produce a carbon nanotube dispersion solution;
Replacing the solvent (B) of the carbon nanotube dispersion solution with the solvent (A) having a boiling point of 150 ° C. or higher;
A manufacturing method comprising:
(6)
The carbon nanotube dispersion paste according to (1) or (2), wherein the conductive particles and the binder are further dispersed.
(7)
A method for producing a carbon nanotube-dispersed paste comprising:
(3) to produce the carbon nanotube-dispersed paste by the production method according to any one of (5),
A production method in which conductive particles and the binder are mixed and kneaded in the produced carbon nanotube dispersion paste and dispersed together with the carbon nanotubes.
(8)
An inorganic material for bonding the cathode electrode;
An organic binder as a support member of the electrode structure;
A solvent for dissolving the organic binder,
The carbon nanotube dispersion paste according to (1) or (2), which is further dispersed and used for forming an electron emission source electrode.
(9)
A method for producing a carbon nanotube-dispersed paste comprising:
(3) to producing the carbon nanotube-dispersed paste by the production method according to any one of (5),
A manufacturing method in which the inorganic substance, the organic binder, and the solvent are mixed and kneaded with the produced carbon nanotube dispersion paste and dispersed together with the carbon nanotubes.
(10)
(6) or an emitter electrode using the carbon nanotube-dispersed paste according to any one of (8),
A phosphor layer that is provided to face the emitter electrode and emits light by collision of electrons emitted from the emitter;
A field emission light emitting device having:
 この出願は、2010年12月20日に出願された日本出願特願2010-282884号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-28284 filed on Dec. 20, 2010, the entire disclosure of which is incorporated herein.

Claims (20)

  1.  カーボンナノチューブが溶媒に分散されており、
     全溶媒中90体積%以上99.9999体積%未満で沸点が150℃以上である溶媒(A)と、
     前記溶媒(A)の残余の体積%以下で前記溶媒(A)よりも沸点が低い溶媒(B)と、
    を含むカーボンナノチューブ分散ペースト。
    Carbon nanotubes are dispersed in a solvent,
    A solvent (A) having a boiling point of not less than 90% by volume and less than 99.9999% by volume and having a boiling point of not less than 150 ° C. in all the solvents;
    A solvent (B) having a boiling point lower than that of the solvent (A) in the remaining volume% or less of the solvent (A);
    Carbon nanotube dispersion paste containing.
  2.  カーボンナノチューブ1重量部が、前記溶媒1~100重量部に分散されている、請求項1に記載のカーボンナノチューブ分散ペースト。 2. The carbon nanotube dispersion paste according to claim 1, wherein 1 part by weight of carbon nanotubes is dispersed in 1 to 100 parts by weight of the solvent.
  3.  前記溶媒(B)の沸点が、前記溶媒(A)の沸点より10℃以上低い請求項1または2に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube-dispersed paste according to claim 1 or 2, wherein the boiling point of the solvent (B) is 10 ° C or more lower than the boiling point of the solvent (A).
  4.  前記カーボンナノチューブは、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノホーン、カーボンナノホーン集合体、およびカーボンナノチューブとカーボンナノホーンが接合した構造のカーボンナノホーン複合体からなる群から選ばれるいずれか一種以上のカーボンナノ構造体を含む請求項1乃至3のいずれか一項に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube is any one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanohorns, carbon nanohorn aggregates, and carbon nanohorn composites having a structure in which carbon nanotubes and carbon nanohorns are joined. The carbon nanotube dispersion paste according to any one of claims 1 to 3, comprising one or more carbon nanostructures.
  5.  導電性粒子とバインダとをさらに含む、請求項1乃至4のいずれか一項に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube dispersion paste according to any one of claims 1 to 4, further comprising conductive particles and a binder.
  6.  前記導電性粒子の材料は、銀、銅、金、錫、インジウム、ニッケル、パラジウムからなる群から選ばれるいずれか一種、または複数種の混合物、もしくは合金である請求項5に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube dispersion according to claim 5, wherein the material of the conductive particles is any one selected from the group consisting of silver, copper, gold, tin, indium, nickel, and palladium, or a mixture or alloy of a plurality of types. paste.
  7.  前記バインダは、硬化性樹脂であり、前記硬化性樹脂は、熱硬化性樹脂または光硬化性樹脂である請求項5または6に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube-dispersed paste according to claim 5 or 6, wherein the binder is a curable resin, and the curable resin is a thermosetting resin or a photocurable resin.
  8.  前記硬化性樹脂は、エポキシ系樹脂、アクリル系樹脂、フェノール系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリウレタン系樹脂、および不飽和ポリエステル樹脂からなる群より選ばれる1種以上のものである請求項7に記載のカーボンナノチューブ分散ペースト。 The curable resin is at least one selected from the group consisting of an epoxy resin, an acrylic resin, a phenol resin, a polyimide resin, a silicone resin, a polyurethane resin, and an unsaturated polyester resin. 7. The carbon nanotube dispersion paste according to 7.
  9.  電界放出電極の形成に用いられる請求項1乃至8のいずれか一項に記載のカーボンナノチューブ分散ペースト。 The carbon nanotube dispersion paste according to any one of claims 1 to 8, which is used for forming a field emission electrode.
  10.  請求項1乃至9のいずれか一項に記載のカーボンナノチューブ分散ペーストを含む導電性ペーストを用いて形成された回路パターンを基板上に有する回路基板。 A circuit board having a circuit pattern formed on a substrate using a conductive paste containing the carbon nanotube-dispersed paste according to any one of claims 1 to 9.
  11.  ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、エポキシ樹脂、アラミド不織布、ガラス織布、およびガラス布織布からなる群から選ばれるいずれか一つ以上の材料で前記基板が形成されている請求項10に記載の回路基板。 11. The substrate is formed of one or more materials selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, epoxy resin, aramid nonwoven fabric, glass woven fabric, and glass fabric woven fabric. Circuit board as described in.
  12.  請求項1乃至9のいずれか一項に記載のカーボンナノチューブ分散ペーストを電子放出源として含むエミッタ電極。 An emitter electrode comprising the carbon nanotube-dispersed paste according to any one of claims 1 to 9 as an electron emission source.
  13.  請求項12に記載のエミッタ電極と、前記エミッタ電極に対向して設けられた、前記エミッタから放出された電子が衝突することで発光する蛍光体層と、を有する電界放出発光素子。 13. A field emission light-emitting device comprising: the emitter electrode according to claim 12; and a phosphor layer provided opposite to the emitter electrode and emitting light when electrons emitted from the emitter collide with each other.
  14.  カーボンナノチューブを沸点が150℃以上である溶媒(A)よりも低い溶媒(B)に分散させてカーボンナノチューブ分散溶液を得る工程と、
     前記カーボンナノチューブ分散溶液を前記溶媒(A)に置換してカーボンナノチューブ分散ペーストを得る工程と、
     を有するカーボンナノチューブ分散ペーストの製造方法。
    A step of dispersing the carbon nanotubes in a solvent (B) lower than the solvent (A) having a boiling point of 150 ° C. or higher to obtain a carbon nanotube dispersion solution;
    Replacing the carbon nanotube dispersion solution with the solvent (A) to obtain a carbon nanotube dispersion paste;
    The manufacturing method of the carbon nanotube dispersion | distribution paste which has this.
  15.  前記カーボンナノチューブ分散溶液を得る工程において、超音波を照射して前記カーボンナノチューブを前記溶媒(B)に分散させる請求項14に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube-dispersed paste according to claim 14, wherein, in the step of obtaining the carbon nanotube dispersion solution, the carbon nanotubes are dispersed in the solvent (B) by irradiating ultrasonic waves.
  16.  前記カーボンナノチューブ分散溶液を得る工程において、周波数および強度のうち、少なくともいずれか一方が異なる2種以上の超音波を交互に照射する請求項14または15に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube-dispersed paste according to claim 14 or 15, wherein in the step of obtaining the carbon nanotube-dispersed solution, two or more kinds of ultrasonic waves having at least one of frequency and intensity are alternately irradiated.
  17.  前記カーボンナノチューブ分散ペーストを得る工程において、混合混練することで、前記溶媒(B)を揮発させる請求項14乃至16のいずれか一項に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube-dispersed paste according to any one of claims 14 to 16, wherein in the step of obtaining the carbon nanotube-dispersed paste, the solvent (B) is volatilized by mixing and kneading.
  18.  前記カーボンナノチューブ分散ペーストを得る工程の後、前記カーボンナノチューブ分散ペースト、導電性粒子、およびバインダを同時に混合混練する工程をさらに含む請求項14乃至17のいずれか一項に記載のカーボンナノチューブ分散ペーストの製造方法。 The carbon nanotube dispersion paste according to any one of claims 14 to 17, further comprising a step of simultaneously mixing and kneading the carbon nanotube dispersion paste, conductive particles, and a binder after the step of obtaining the carbon nanotube dispersion paste. Production method.
  19.  前記カーボンナノチューブ分散ペーストを得る工程の後、導電性粒子およびバインダを混合混練する第一の混合混練工程と、
     前記第一の混合混練工程の後、前記カーボンナノチューブ分散ペーストを添加して混合混練する第二の混合混練工程と、
     をさらに含む請求項14乃至17のいずれか一項に記載のカーボンナノチューブ分散ペーストの製造方法。
    After the step of obtaining the carbon nanotube dispersion paste, a first mixing and kneading step of mixing and kneading the conductive particles and the binder,
    After the first mixing and kneading step, a second mixing and kneading step of adding and mixing and kneading the carbon nanotube dispersion paste,
    The method for producing a carbon nanotube-dispersed paste according to any one of claims 14 to 17, further comprising:
  20.  前記カーボンナノチューブ分散ペーストを得る工程の後、予め混練した銀ペーストに、前記分散ペーストを加えて混練する工程をさらに含む請求項14乃至17のいずれか一項に記載のカーボンナノチューブ分散ペーストの製造方法。 The method for producing a carbon nanotube-dispersed paste according to any one of claims 14 to 17, further comprising, after the step of obtaining the carbon nanotube-dispersed paste, a step of adding the kneaded paste to a pre-kneaded silver paste and kneading. .
PCT/JP2011/007085 2010-12-20 2011-12-19 Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element WO2012086174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549632A JP5861646B2 (en) 2010-12-20 2011-12-19 Method for producing carbon nanotube dispersed paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010282884 2010-12-20
JP2010-282884 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086174A1 true WO2012086174A1 (en) 2012-06-28

Family

ID=46313466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007085 WO2012086174A1 (en) 2010-12-20 2011-12-19 Carbon-nanotube-dispersed paste, method for producing same, circuit board, emitter electrode, and field-emission light-emitting element

Country Status (2)

Country Link
JP (1) JP5861646B2 (en)
WO (1) WO2012086174A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192208A (en) * 2013-03-26 2014-10-06 Shinshu Univ Flexible wiring board and mount structure thereof
JP2016092154A (en) * 2014-10-31 2016-05-23 日本ゼオン株式会社 Conductive composition, electrode for dye-sensitized solar battery and manufacturing method thereof, and dye-sensitized solar battery
JP2019137797A (en) * 2018-02-13 2019-08-22 大研化学工業株式会社 Thermosetting conductive adhesive and manufacturing method therefor
KR20200027507A (en) * 2018-06-20 2020-03-12 후루카와 덴끼고교 가부시키가이샤 Carbon nanotube-containing composition and method for producing thermoset of carbon nanotube-containing composition
WO2020235513A1 (en) * 2019-05-17 2020-11-26 株式会社Uacj製箔 Opening detection sheet, wrapping material, opening detection device, control program, and method for manufacturing opening detection sheet
JP7453487B1 (en) 2022-09-19 2024-03-19 関西ペイント株式会社 Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101923984B1 (en) 2017-07-21 2018-11-30 재단법인 한국탄소융합기술원 Manufacturing method for heating paste with high density
WO2024025084A1 (en) * 2022-07-29 2024-02-01 한국생산기술연구원 Preparation method for carbon material dispersion solution by using multi-frequency dispersion and preparation method for positive electrode comprising carbon material dispersion solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093404A (en) * 1999-07-21 2001-04-06 Sharp Corp Electron source and manufacturing method of the same
JP2008258147A (en) * 2007-03-13 2008-10-23 Tokai Rubber Ind Ltd Paste material
JP2009094033A (en) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material
JP2009215503A (en) * 2008-03-12 2009-09-24 Dowa Electronics Materials Co Ltd Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent
JP2011201933A (en) * 2010-03-24 2011-10-13 Alps Electric Co Ltd Conductive ink, electroconductive film, polymer actuator element, method for manufacturing the conductive ink, and method for manufacturing polymer actuator element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146386A (en) * 2003-11-18 2005-06-09 Mitsui Mining & Smelting Co Ltd Method of producing metal powder slurry, and nickel powder slurry obtained by the production method
JP4989034B2 (en) * 2005-03-28 2012-08-01 パナソニック株式会社 Semiconductor fine particle paste, method for producing the same, and photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093404A (en) * 1999-07-21 2001-04-06 Sharp Corp Electron source and manufacturing method of the same
JP2008258147A (en) * 2007-03-13 2008-10-23 Tokai Rubber Ind Ltd Paste material
JP2009094033A (en) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc Transparent conductive material and manufacturing method thereof, and transparent conductive element using the material
JP2009215503A (en) * 2008-03-12 2009-09-24 Dowa Electronics Materials Co Ltd Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent
JP2011201933A (en) * 2010-03-24 2011-10-13 Alps Electric Co Ltd Conductive ink, electroconductive film, polymer actuator element, method for manufacturing the conductive ink, and method for manufacturing polymer actuator element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192208A (en) * 2013-03-26 2014-10-06 Shinshu Univ Flexible wiring board and mount structure thereof
JP2016092154A (en) * 2014-10-31 2016-05-23 日本ゼオン株式会社 Conductive composition, electrode for dye-sensitized solar battery and manufacturing method thereof, and dye-sensitized solar battery
JP2019137797A (en) * 2018-02-13 2019-08-22 大研化学工業株式会社 Thermosetting conductive adhesive and manufacturing method therefor
JP7148949B2 (en) 2018-02-13 2022-10-06 大研化学工業株式会社 Thermosetting conductive adhesive and its manufacturing method
KR20200027507A (en) * 2018-06-20 2020-03-12 후루카와 덴끼고교 가부시키가이샤 Carbon nanotube-containing composition and method for producing thermoset of carbon nanotube-containing composition
KR102291539B1 (en) 2018-06-20 2021-08-19 후루카와 덴끼고교 가부시키가이샤 Carbon nanotube-containing composition and method for producing a thermosetting product of carbon nanotube-containing composition
WO2020235513A1 (en) * 2019-05-17 2020-11-26 株式会社Uacj製箔 Opening detection sheet, wrapping material, opening detection device, control program, and method for manufacturing opening detection sheet
JP2020189636A (en) * 2019-05-17 2020-11-26 株式会社Uacj製箔 Opening detection sheet, packaging material, opening detection apparatus, control program, method for manufacturing opening detection sheet
CN113825707A (en) * 2019-05-17 2021-12-21 株式会社Uacj制箔 Opening detection sheet, packaging material, opening detection device, control program, and method for manufacturing opening detection sheet
JP7453487B1 (en) 2022-09-19 2024-03-19 関西ペイント株式会社 Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries

Also Published As

Publication number Publication date
JP5861646B2 (en) 2016-02-16
JPWO2012086174A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5861646B2 (en) Method for producing carbon nanotube dispersed paste
Parmee et al. X-ray generation using carbon nanotubes
JP4902666B2 (en) Method for producing highly reliable CNT paste and method for producing CNT emitter
JP5209911B2 (en) Electron field emitter manufacturing paste and use thereof
KR100922399B1 (en) Electron emission source, device adopting the source and fabrication method the source
US7887878B2 (en) Method of manufacturing a fine-patternable, carbon nano-tube emitter with high reliabilty
US20080299298A1 (en) Methods of Manufacturing Carbon Nanotube (Cnt) Paste and Emitter with High Reliability
JP2005520308A (en) Field emission device using modified carbon nanotubes
JP2000036243A (en) Manufacture of electron emitting source
JP5517369B2 (en) Cold cathode electron source, manufacturing method thereof, field emission flat panel display and lamp
US10026584B2 (en) Method for making carbon nanotube slurry
KR20070108829A (en) Producing mathod for carbon nanotube film, field emission display using the same
KR101106121B1 (en) Electron emitter and method for manufacturing the same
JP2005222847A (en) Paste for electron source and flat type image display device using the same
US20070161261A1 (en) Methods for fabricating carbon nano-tube powders and field emission display devices
JP4984130B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device
KR20080047917A (en) A carbon-based material for an electron emission source, an electron emission source comprising the same, an electron emission device comprising the electron emission source and a method for preparing the electron emission source
JP5476751B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device using the same
KR20070084918A (en) A composition for preparing an electron emitter, the electron emitter prepared using the composition, an electron emission device comprising the electron emitter, and a method for preparing the electron emitter
JP2011108530A (en) Method of manufacturing field-emission element, field-emission element, field-emission light-emitting element, and electronic equipment
JP2007087643A (en) Manufacturing method of electron emission source, and electron emission source manufactured by the same
KR20170018175A (en) Manufacturing method of field emitter using carbon nanotubes
KR20070079747A (en) A carbon nanotube having electron donating groups on the surface, a method for preparing the carbon nanotube, an emitter comprising the carbon nanotube and an electron emission device comprising the emitter
KR20070046599A (en) A composition for preparing an electron emitter comprising a carbon nanocoil, the electron emitter prepared using the composition, and an electron emission device comprising the electron emitter
JP2008053177A (en) Nano carbon emitter, its manufacturing method and surface light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850648

Country of ref document: EP

Kind code of ref document: A1