WO2022011961A1 - 基于ptfe膜对风机叶片气动特性影响的数值模拟方法 - Google Patents

基于ptfe膜对风机叶片气动特性影响的数值模拟方法 Download PDF

Info

Publication number
WO2022011961A1
WO2022011961A1 PCT/CN2020/136606 CN2020136606W WO2022011961A1 WO 2022011961 A1 WO2022011961 A1 WO 2022011961A1 CN 2020136606 W CN2020136606 W CN 2020136606W WO 2022011961 A1 WO2022011961 A1 WO 2022011961A1
Authority
WO
WIPO (PCT)
Prior art keywords
airfoil
blade
calculation
aerodynamic
ptfe
Prior art date
Application number
PCT/CN2020/136606
Other languages
English (en)
French (fr)
Inventor
刘建平
向欣
吴建华
孙志禹
朱亚伟
李文伟
李亚静
吴弘
赵景鑫
吴建平
闵宏伟
Original Assignee
中国长江三峡集团有限公司
中国三峡新能源(集团)股份有限公司
南京浩晖高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 中国三峡新能源(集团)股份有限公司, 南京浩晖高科技有限公司 filed Critical 中国长江三峡集团有限公司
Priority to ES202290035A priority Critical patent/ES2956069A1/es
Priority to DE112020004375.4T priority patent/DE112020004375T5/de
Priority to CA3155592A priority patent/CA3155592C/en
Priority to GB2205458.9A priority patent/GB2604759B8/en
Priority to US17/640,738 priority patent/US20230259678A1/en
Priority to JP2022517312A priority patent/JP7212914B2/ja
Publication of WO2022011961A1 publication Critical patent/WO2022011961A1/zh
Priority to DKPA202270179A priority patent/DK202270179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0649Rotors characterised by their aerodynamic shape of the blades of the blade surfaces, e.g. roughened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • F05B2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4005PTFE [PolyTetraFluorEthylene]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of polymer composite materials, in particular to a numerical simulation method based on the influence of a PTFE membrane on the aerodynamic characteristics of a fan blade.
  • Wind power is a clean energy with huge resource potential and basically mature technology. It plays an important role in optimizing the energy structure, reducing greenhouse gas emissions and responding to climate change. As of the end of 2018, my country's installed wind power capacity has reached 210 million kWh. Wind power has obviously become the core content of my country's energy transformation and an important way to deal with climate change. It is an important measure to implement ecological priority and green development. It is an important means to revolutionize energy production and consumption and to promote the prevention and control of air pollution.
  • Fan blades are the key components of wind turbines and play a vital role in capturing wind energy and improving wind power safety and economic benefits.
  • Danish National Laboratory RPJOM van Rooij et al. for three blade airfoils with different thicknesses, proposed a method to analyze the chord length of the blade using the inboard effect method.
  • the influence of surface dust at 10% on the sensitive position of the airfoil; Denmark National Laboratory and WATimmer et al. concluded that the lift coefficient of the blade airfoil increases with the increase of the Reynolds number under different Reynolds numbers; Bao Neng, Tsinghua University Sheng et al.
  • the present invention provides a numerical simulation method based on the influence of PTFE film on the aerodynamic characteristics of wind turbine blades.
  • the numerical simulation calculation of the influence of the aerodynamic characteristics of the blade airfoil and the overall aerodynamic performance includes the following steps:
  • the finite volume method is used to solve the two-dimensional incompressible Navier-Stokes equation.
  • the calculation state is a steady state.
  • the turbulence simulation adopts the SST k- ⁇ model.
  • the calculation grid of the airfoil adopts the C-shaped structure grid.
  • the height of the layer grid satisfies y + ⁇ 1;
  • the action point of the moment is selected at the position of 1/4 chord length of the airfoil, so that the moment of the airfoil rising up is positive, and the moment of bowing the head is negative.
  • the airfoil lift coefficient is
  • the present invention is based on aerodynamics and structural dynamics. After the large-scale wind turbine blade is pasted and covered with a PTFE-based nano-functional composite membrane, the PTFE-based nano-functional composite membrane can improve the aerodynamic characteristics of the blade airfoil and the overall aerodynamic performance of the blade.
  • the numerical simulation calculation of the impact of performance is carried out to provide scientific basis for the application of new materials and new technologies in wind power generation.
  • the finite volume method is used to solve the two-dimensional incompressible Navier-Stokes equation.
  • the calculation state is a steady state.
  • the turbulence simulation adopts the SST k- ⁇ model. To 400 grid points, the height of the first layer of the blade surface is 9.0 ⁇ 10 -6 m, which satisfies y + ⁇ 1 (the first layer is also the bottom layer, y + is the thickness, 1 is the accuracy), and the total number of grids is 300,000 ;
  • the action point of the moment is selected at the position of 1/4 chord length of the airfoil, so that the moment of the airfoil rising up is positive, and the moment of bowing the head is negative.
  • the airfoil lift coefficient is
  • the PTFE nano-functional composite membrane In the linear change region, the PTFE nano-functional composite membrane has basically no effect on the lift, drag and moment coefficients of the airfoil; in the nonlinear change region, the PTFE nano-functional composite membrane has a slight impact on various aerodynamic parameters, resulting in lift coefficient and torque. The reduction of the coefficient, the change percentage of each aerodynamic coefficient is within 1.9%, and the impact is small;
  • the PTFE-based nano-functional composite film can improve the aerodynamic characteristics of the airfoil and the overall aerodynamic performance of the blade after it is pasted and covered on the fan blade.
  • the present invention starts from the basic two-dimensional airfoil, and covers the lift coefficient, drag coefficient and moment of the blade before and after pasting and covering the blade lift coefficient, drag coefficient and moment based on the PTFE nano-functional composite film for two types of large-scale horizontal axis wind turbine blades commonly used in the Reynolds number.
  • the coefficients were numerically calculated and comparatively analyzed, and then the conclusion was drawn that the numerical calculation of the impact on the aerodynamic characteristics and overall aerodynamic performance of the blade airfoil after the PTFE nano-functional composite membrane was pasted and covered on the surface of the large horizontal axis fan blade;
  • the present invention can perform numerical simulation calculation on the aerodynamic characteristics and overall aerodynamic performance of the blade airfoils of all large-scale horizontal axis wind turbines.
  • Figure 1 is a schematic diagram of DU91-W2-250 airfoil and NACA64-418 airfoil;
  • Figure 2 is a schematic diagram of the computational domain of the numerical simulation
  • Figure 3 is a detailed view of the mesh near the DU91-W2-250 airfoil and NACA64418 airfoil;
  • Figure 4 is a schematic diagram of the effect of DU91-W2-250 airfoil pasting cover film (the details of the airfoil trailing edge, the oblique line represents the film, and the film thickness is 0.26mm);
  • Figure 5 is a schematic diagram of airfoil aerodynamics
  • Figure 6 is a schematic diagram of the influence of PTFE nano-functional composite membrane on the lift coefficient of DU91-W2-250 airfoil;
  • Figure 7 is a schematic diagram of the influence of PTFE nano-functional composite membrane on the drag coefficient of DU91-W2-250 airfoil;
  • Figure 8 is a schematic diagram of the influence of the PTFE nano-functional composite membrane on the moment coefficient of the DU91-W2-250 airfoil;
  • Figure 9 is a schematic diagram of the influence of PTFE nano-functional composite membrane on the lift coefficient of NACA64418 airfoil
  • Figure 10 is a schematic diagram of the influence of PTFE nano-functional composite membrane on the lift coefficient of NACA64418 airfoil;
  • Figure 11 is a schematic diagram of the effect of the PTFE nano-functional composite membrane on the lift coefficient of the NACA64418 airfoil.
  • Both airfoils are selected according to their respective spanwise positions and chord length distribution directions.
  • the chord length position selection refers to the 60%R and 85%R of the UP2000-96 fan blade.
  • position, R is the chord length of the airfoil of each section in the radial direction of the blade, which is 1.65m and 1.15m, respectively, and the range of the angle of attack is [-4, 14].
  • the relevant parameters of the airfoil are shown in Table 1, and the megawatt-level wind power is considered.
  • the Reynolds number calculated by the airfoil aerodynamic characteristics is 3.0 ⁇ 10 6 ;
  • the composite membrane based on PTFE nano-functionality is selected, the thickness of the membrane is 0.26mm, the surface roughness of the membrane is 0.18 ⁇ m, and the shape change before and after the blade airfoil is pasted and covered by the composite membrane based on PTFE nano-functionality is small, as shown in Figure 4;
  • the finite volume method is used to solve the two-dimensional incompressible Navier-Stokes equation.
  • the calculation state is a steady state.
  • the SST k- ⁇ model is used for turbulence simulation. Grid point, the height of the first layer of the blade surface is 9.0 ⁇ 10 -6 m, which satisfies y+ ⁇ 1 (the first layer is also the bottom layer, y+ is the thickness, 1 is the precision), the total number of grids is 300,000, and the numerical simulation
  • the computational domain is shown in Figure 2, and the mesh details near the two airfoils are shown in Figure 3;
  • Geometric modeling extending the airfoil boundary by 0.26mm along the normal direction to obtain a new computational geometry
  • the aerodynamic force of the airfoil is shown in Figure 5.
  • the action point of the moment is selected at the position of 1/4 chord length of the airfoil, so that the moment of the airfoil rising up is positive, and the moment of bowing the head is negative.
  • the airfoil lift coefficient is
  • Figure 6-8 shows the comparison of the aerodynamic coefficient before and after the DU91-W2-250 airfoil is pasted and covered with the PTFE nano-functional composite membrane.
  • the specific results of the aerodynamic coefficient in the nonlinear region are shown in Table 2.
  • the functional composite membrane has little effect on the aerodynamic parameters of the wind turbine DU91-W2-250 airfoil:
  • the lift coefficient of the airfoil covered with the PTFE nano-functional composite membrane is slightly lower than the curve of the airfoil covered with the PTFE nano-functional composite membrane, and the lift coefficient CL decreases.
  • the maximum value is 1.611%, and the maximum value of the moment coefficient C M reduction is 1.514%;
  • Figure 9-11 shows the comparison of the aerodynamic coefficient before and after the NACA64418 airfoil is pasted and covered with the PTFE nano-functional composite membrane.
  • the specific results of the aerodynamic coefficient in the nonlinear region are shown in Table 3. It can be seen that:
  • the lift coefficient, drag coefficient and moment coefficient curves of the airfoil after pasting and covering the PTFE nano-functional composite film are slightly lower than those of the airfoil without covering the PTFE nano-functional composite film.
  • the moment coefficient is slightly higher than that of the blade that is not covered with PTFE nano-functional composite membrane, the lift coefficient C L is reduced by 1.247%, the drag coefficient C D is reduced by 1.712%, and the pitching moment coefficient C M is reduced by the largest The percentage is 2.794%;
  • the two typical airfoils of wind turbine blades change the aerodynamic characteristics before and after pasting and covering the composite membrane based on PTFE nano-functionality:
  • the lift, drag and moment coefficients have basically no effect; in the nonlinear change area, the PTFE nano-functional composite membrane has a slight impact on various aerodynamic parameters, resulting in a decrease in the lift coefficient and the moment coefficient, and the percentage change of each aerodynamic coefficient is 1.9. %, the impact is small.
  • the surface roughness of the PTFE nano-functional composite membrane is 0.18um, which is far lower than the surface roughness of the conventional blade surface coating, which is 0.70-0.75, although it has multiple nano- and micro-sized concave-convex geometric ultrastructures.
  • the surface microcosm has better lubricity than the conventional blade surface coating, so from the point of view of surface roughness, the PTFE nano-functional composite film can improve the aerodynamics of the airfoil after it is covered on the fan blade. characteristics and the overall aerodynamic performance of the blade.
  • PTFE-based nano-functional composite membrane is a kind of film that is pasted and covered on the surface of the fan blade, which can improve the aerodynamic characteristics and overall aerodynamic performance of the blade airfoil, improve the efficiency of wind energy utilization, enable the blade to operate in the best state, and increase the overall strength of the blade surface. It is a polymer membrane material that plays an overall fixing role, improves the overall bearing capacity of the blade and resists the erosion of foreign objects, and eliminates hidden dangers such as blade aging and cracking.
  • the invention numerically simulates the influence of the PTFE nano-functional composite membrane on the aerodynamic characteristics and aerodynamic performance of the airfoil of the fan blade, can provide a scientific calculation basis for the wind power industry to use new technologies and new materials to achieve efficient utilization of wind energy resources, and promote new technologies and new technologies. The promotion and application of materials and the improvement of quality and efficiency in the wind power industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了基于PTFE膜对风机叶片气动特性影响的数值模拟方法,涉及高分子复材技术领域,通过选取风电机组、叶片翼型和基于PTFE纳米功能复合膜;设置风能捕捉区域的数值模拟计算网格和计算区域;确定主要计算参数和气动特性计算的雷诺数;建立翼型边界沿法向延展0.26mm(膜厚度)的几何模型,获得新的计算几何;采用流体力学计算方法和有限体积法进行计算;获得影响数值模拟计算结果。以空气动力学和结构动力学为基础,对基于PTFE纳米功能复合膜对叶片翼型气动特性和叶片整体气动性能进行影响数值模拟计算,为新材料、新技术在风力发电应用中提供科学依据。

Description

基于PTFE膜对风机叶片气动特性影响的数值模拟方法 技术领域
本发明涉及高分子复合材料技术领域,特别是涉及一种基于PTFE膜对风机叶片气动特性影响的数值模拟方法。
背景技术
风电是一种资源潜力巨大、技术基本成熟的清洁能源,在优化能源结构、减排温室气体、应对气候变化方面发挥着重要作用。截止2018年底,我国的风电装机容量已经达到2.1亿千瓦时,风电显然已经成为我国推进能源转型的核心内容、应对气候变化的重要途径,是落实生态优先、绿色发展的重要举措,也是我国深入推进能源生产和消费革命、促进大气污染防治的重要手段。随着国务院办公厅《能源发展战略行动计划(2014~2020)》关于风电2020年实现与煤电平价上网的目标要求的落实执行,我国风电的上网电价全部通过了竞争方式,极大地激励了风电产业的规模化发展,促进了公平竞争和优胜劣汰,进一步推动了风电产业健康可持续发展。然而,风电上网电价又是一把双刃剑,上网电价水平的确定,使得上网电价竞争激烈,必然会促进风电企业更加注重风电项目资源状况、装备技术水平和发电成本等因素,只有通过科技创新,才能实现风能资源的高效利用。
风机叶片是风电机组的关键部件,在风电机组的风能捕捉量、提高风电安全与经济效益中起着至关重要的作用。在风电领域,围绕叶片翼型气动性能的相应研究和实验有许多:丹麦国家实验室R.P.J.O.M.van Rooij等,针对3种不同厚度的叶片翼型,提出了一种运用内侧效应方法分析在叶片弦长10%处的表面灰尘对翼型敏感位置的影响;丹麦国家实验室和W.A.Timmer等,在不同雷诺数下得出叶片翼型升力系数随雷诺数增大而增加的规律结论;清华大学包能胜等,在叶片翼型表面局部增加粗糙度并通过风洞实验室分析不同分布位置、不同数值大小粗糙度对叶片气动性能的影响,深入研究了翼型的表面粗糙度形成 原理和普遍理论,得出粗糙度带布置长度为10%弦长时系数变化最明显的结论;兰州理工大学李仁年,根据数值方法研究了DU-95-W2-180叶片翼型的二维粗糙度表面的空气动力性能,得出在叶片翼型尾缘处附近增加粗糙度可提高DU-95-W2-180叶片翼型的升力系数的结论;日本东海学院NAGAISHI Akira等,以水平轴风机叶片为研究对象,进行气动性能风洞实验,得到非对称流在圆翼型边界的转折点位置导致部分升力系数、阻力系数的梯度变化并称之为“粗糙度”,得出粗糙度厚度增大后,最大升力变化量发生在低攻角处,对雷诺数变得更高的结论。
通过对国内外文献的分析可知,目前关于大型风电机组叶片翼型气动性能的研究较为成熟,但都是以叶片表面具有原有的常规涂层表面粗糙度为研究对象和实验基础,得出的结论是叶片翼型在常规涂层下的表征粗糙度的相关概念和实验结果,获得的粗糙度对叶片翼型气动性能的影响结论也不统一。而对于在风机叶片表面粘贴覆盖了基于PTFE纳米功能复合膜后,叶片翼型气动特性和整体气动性能的影响数值计算分析几近空缺。
风机叶片现有的表面涂层技术及其材料,远不能满足提升叶片翼型特性和整体气动性能、提高风能利用系数、风电提质增效的迫切需要。随着科学技术突飞猛进,材料科学的突破必然会涌现出许多先进的功能性新材料。风电上网电价因素的倒逼,同样也将会促进风电行业在实现风能资源高效利用上,运用科技创新开发出的更多新材料、新技术。以空气动力学和结构动力学为基础,紧跟科学发展步伐,及时开展对运用了新材料、新技术的风机叶片翼型气动特性和整体气动性能的影响数值模拟计算和科学研究,为新材料、新技术在风力发电上的运用提供科学依据已迫在眉睫。
发明内容
为了解决以上技术问题,本发明提供一种基于PTFE膜对风机叶片气动特性影响的数值模拟方法,采用流体力学计算方法,对基于PTFE纳米功能复合膜粘 贴覆盖在大型水平轴风力机叶片表面后对叶片翼型气动特性和整体气动性能的影响数值进行模拟计算,包括如下步骤:
(1)选取两种叶片翼型;
(2)确定叶片的风能捕捉区域在叶片的中部和尖部区域,两种翼型均按各自展向位置和弦长分布方向选取弦长位置、攻角范围,同时选取翼型气动特性计算的雷诺数;
(3)选取基于PTFE纳米功能复合膜,膜最大厚度0.26mm,膜表面粗糙度0.18μm;
(4)采用有限体积法对二维不可压Navier-Stokes方程进行求解,计算状态为定常状态,湍流模拟采用SST k-ω模型,翼型的计算网格采用C型结构网格,叶片表面首层网格高度满足y +≈1;
(5)几何建模,将翼型边界沿法向延展膜厚度同等距离,得到新的计算几何;
(6)对影响数值模拟计算,力矩的作用点选取翼型1/4弦长位置,使翼型抬头的力矩为正,低头力矩为负,
翼型升力系数为
Figure PCTCN2020136606-appb-000001
阻力系数为
Figure PCTCN2020136606-appb-000002
俯仰力矩系数为
Figure PCTCN2020136606-appb-000003
(7)对两种风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后的气动力系数变化进行对比分析,得出影响数值模拟计算结论。
技术效果:本发明以空气动力学和结构动力学为基础,在大型风电机组叶片上粘贴覆盖了基于PTFE纳米功能复合膜后,对基于PTFE纳米功能复合膜对叶片翼型气动特性和叶片整体气动性能进行影响数值模拟计算,为新材料、新技术在风力发电应用中提供科学依据。
本发明进一步限定的技术方案是:
进一步的,包括如下步骤:
(1)选取四种不同容量的风电机组:南航1.5MW-H1500风电机组和2.5MW风电机组、美国可再生能源实验室5MW海上风电机组和2MW风电机组,参照四种风电机组叶片设计数据,最终选取荷兰Delft大学DU91-W2-250和航空常用NACA64-418两种基础叶片翼型;
(2)确定叶片的风能捕捉区域在叶片的中部和尖部区域,两种翼型均按各自展向位置和弦长分布方向选取,弦长位置选取参照UP2000-96型风机叶片的60%R和85%R位置,R为叶片径向各剖面翼型的弦长,分别为1.65m和1.15m;攻角范围均为[-4,14],同时选取翼型气动特性计算的雷诺数为3.0×10 6
(3)选取基于PTFE纳米功能复合膜,膜厚度0.26mm,膜表面粗糙度0.18μm;
(4)采用有限体积法对二维不可压Navier-Stokes方程进行求解,计算状态为定常状态,湍流模拟采用SST k-ω模型,翼型的计算网格采用C型结构网格,翼型周向400个网格点,叶片表面首层网格高度为9.0×10 -6m,满足y +≈1(首层也即最底层,y+为厚度,1为精度),网格总数为30万;
(5)几何建模,将翼型边界沿法向延展0.26mm,得到新的计算几何;
(6)对影响数值模拟计算,力矩的作用点选取翼型1/4弦长位置,使翼型抬头的力矩为正,低头力矩为负,
翼型升力系数为
Figure PCTCN2020136606-appb-000004
阻力系数为
Figure PCTCN2020136606-appb-000005
俯仰力矩系数为
Figure PCTCN2020136606-appb-000006
(7)对两种风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后的气动力系数变化进行对比分析,得出影响数值模拟计算结论:
在线性变化区,基于PTFE纳米功能复合膜对翼型的升、阻力及力矩系数基本无影响;在非线性变化区,基于PTFE纳米功能复合膜对各气动参数产生轻微影响,造成升力系数和力矩系数的降低,各气动力系数的变化百分比均在1.9%之内,影响较小;
从表面粗糙度的角度来看,基于PTFE纳米功能复合膜粘贴覆盖在风机叶片上后,可以起到改善翼型的气动特性和叶片整体气动性能作用。
本发明的有益效果是:
(1)本发明从基础的二维翼型出发,对典型雷诺数下两款大型水平轴风电机组叶片常用翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后的叶片升力系数、阻力系数及力矩系数进行了数值计算和对比分析,进而总结得出基于PTFE纳米功能复合膜粘贴覆盖在大型水平轴风机叶片表面后,对叶片翼型气动特性和整体气动性能影响数值计算的结论;
(2)本发明可对所有大型水平轴风电机组叶片翼型的气动特性和整体气动性能进行数值模拟计算。
附图说明
图1为DU91-W2-250翼型和NACA64-418翼型示意图;
图2为数值模拟的计算域示意图;
图3为DU91-W2-250翼型和NACA64418翼型附近网格细节图;
图4为DU91-W2-250翼型粘贴覆盖膜效果示意图(翼型尾缘细节,斜线代表膜,膜厚度0.26mm);
图5为翼型气动力示意图;
图6为基于PTFE纳米功能复合膜对DU91-W2-250翼型升力系数的影响示意图;
图7为基于PTFE纳米功能复合膜对DU91-W2-250翼型阻力系数的影响示意图;
图8为基于PTFE纳米功能复合膜对DU91-W2-250翼型力矩系数的影响示意图;
图9为基于PTFE纳米功能复合膜对NACA64418翼型升力系数的影响示意图;
图10为基于PTFE纳米功能复合膜对NACA64418翼型升力系数的影响示意图;
图11为基于PTFE纳米功能复合膜对NACA64418翼型升力系数的影响示意图。
具体实施方式
本实施例提供的基于PTFE膜对风机叶片气动特性影响的数值模拟方法,包括如下步骤:
选取四种不同容量的风电机组:南航1.5MW-H1500风电机组和2.5MW风电机组、美国可再生能源实验室5MW海上风电机组和2MW风电机组,参照四种风电机组叶片设计数据,最终选取荷兰Delft大学DU91-W2-250和航空常用NACA64-418两种基础叶片翼型,如图1;
确定叶片的风能捕捉区域在叶片的中部和尖部区域,两种翼型均按各自展向位置和弦长分布方向选取,弦长位置选取参照UP2000-96型风机叶片的60%R和85%R位置,R为叶片径向各剖面翼型的弦长,分别为1.65m和1.15m,攻角范围均为[-4,14],翼型相关参数见表1,同时考虑到兆瓦级风力机的运行工况,选取翼型气动特性计算的雷诺数为3.0×10 6
表1翼型和主要计算参数
翼型 DU91-W2-250 NACA64-418
弦长c(m) 1.65 1.15
攻角范围α(°) [-4,14] [-4,14]
复合膜厚度(mm) 0.26 0.26
选取基于PTFE纳米功能复合膜,膜厚度0.26mm,膜表面粗糙度0.18μm,叶片翼型粘贴覆盖了基于PTFE纳米功能复合膜前后的外形变化较小,如图4所示;
采用有限体积法对二维不可压Navier-Stokes方程进行求解,计算状态为定常状态,湍流模拟采用SST k-ω模型,翼型的计算网格采用C型结构网格,翼型周向400个网格点,叶片表面首层网格高度为9.0×10 -6m,满足y+≈1(首层也即最底层,y+为厚度,1为精度),网格总数为30万,数值模拟的计算域如图2所示,两个翼型附近网格细节如图3所示;
几何建模,将翼型边界沿法向延展0.26mm,得到新的计算几何;
翼型气动力如图5所示,对影响数值模拟计算,力矩的作用点选取翼型1/4弦长位置,使翼型抬头的力矩为正,低头力矩为负,
翼型升力系数为
Figure PCTCN2020136606-appb-000007
阻力系数为
Figure PCTCN2020136606-appb-000008
俯仰力矩系数为
Figure PCTCN2020136606-appb-000009
对两种风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后的气动力系数变化进行对比分析,得出影响数值模拟计算结论。
DU91-W2-250翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后气动力系数的变化对比如图6-8所示,非线性区气动系数的具体结果见表2,可以看出基于PTFE纳米功能复合膜对风电机组DU91-W2-250翼型的气动力参数影响较小:
1)粘贴覆盖了基于PTFE纳米功能复合膜前后的升力系数、阻力系数和力矩系数的曲线在线性区即迎角范围[-4°,8°]基本完全重合,仅在非线性区(即大于8°攻角)略有差别;
2)在非线性区,粘贴覆盖了基于PTFE纳米功能复合膜后的翼型的升力系数相较于未粘贴覆盖基于PTFE纳米功能复合膜的翼型的曲线出现轻微下降,升力系数C L减小的最大值为1.611%,力矩系数C M减小的最大值为1.514%;
3)粘贴覆盖了基于PTFE纳米功能复合膜后的翼型的阻力系数和力矩系数曲线相较于原干净翼型的曲线则出现微小幅度增长,阻力系数最大增长百分比为0.45%,低头俯仰力矩系数最大减小2.9077%;
表2 DU91-W2-250翼型粘贴覆盖基于PTFE纳米功能复合膜前后气动力系数对比。
Figure PCTCN2020136606-appb-000010
Figure PCTCN2020136606-appb-000011
NACA64418翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后气动力系数的变化对比如图9-11所示,非线性区气动系数的具体结果见表3,可以看出:
1)基于PTFE纳米功能复合膜对风电机组NACA64418翼型的气动力参数影响与DU91-W2-250翼型结果相似,在线性区,粘贴覆盖了基于PTFE纳米功能复合膜前后升力系数、阻力系数的曲线基本完全重合;
2)在非线性区,粘贴覆盖了基于PTFE纳米功能复合膜后翼型的升力系数、阻力系数及力矩系数曲线相较于未粘贴覆盖基于PTFE纳米功能复合膜的翼型的曲线均出现轻微降低,力矩系数相较于未粘贴覆盖基于PTFE纳米功能复合膜的叶片则略升高,升力系数C L最大降低1.247%,阻力系数C D最大降低1.712%,低头俯仰力矩系数C M减小的最大百分比为2.794%;
表3 NACA64418翼型气动力系数结果对比。
Figure PCTCN2020136606-appb-000012
综上,DU91-W2-250和NACA64418两种典型的风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后气动特性的变化:在线性变化区,基于PTFE纳米功能复合膜对翼型的升、阻力及力矩系数基本无影响;在非线性变化区,基于PTFE纳米功能复合膜则对各气动参数产生轻微影响,造成升力系数和力矩系数的降低,各气动力系数的变化百分比均在1.9%之内,影响较小。基于PTFE纳米功能复合膜的表面粗糙度为0.18um,虽具有多重纳米级和微米级尺寸的凹凸几何状超微结构形貌,仍远低于常规叶片表面涂层表面0.70-0.75的表面粗糙度,表面微观比常规叶片表面涂层具有更好的润滑度,所以如果从表面粗糙度的角度来看,基于PTFE纳米功能复合膜的粘贴覆盖在风机叶片上后,可以起到改善翼型的气动特性和叶片整体气动性能作用。
基于PTFE纳米功能复合膜是一种粘贴覆盖在风机叶片表面,能够改善叶片翼型气动特性和整体气动性能,提高风能利用效率,使叶片能在最佳状态下运行,并具有增加叶片表面整体强度,起到整体固定作用,提高叶片整体承载能力和抵御外物侵蚀能力,消除叶片老化、开裂等安全隐患的高分子膜材料。本发明对基于PTFE纳米功能复合膜对风机叶片翼型气动特性和气动性能的影响数值模拟计算,能够为风电行业运用新技术、新材料实现风能资源高效利用提供科学计算依据,促进新技术、新材料的推广应用和风电行业的提质增效。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (2)

  1. 一种基于PTFE膜对风机叶片气动特性影响的数值模拟方法,其特征在于:采用流体力学计算方法,对基于PTFE纳米功能复合膜粘贴覆盖在大型水平轴风力机叶片表面后对叶片翼型气动特性和整体气动性能的影响数值进行模拟计算,包括如下步骤:
    (1)选取两种叶片翼型;
    (2)确定叶片的风能捕捉区域在叶片的中部和尖部区域,两种翼型均按各自展向位置和弦长分布方向选取弦长位置、攻角范围,同时选取翼型气动特性计算的雷诺数;
    (3)选取基于PTFE纳米功能复合膜,膜最大厚度0.26mm,膜表面粗糙度0.18μm;
    (4)采用有限体积法对二维不可压Navier-Stokes方程进行求解,计算状态为定常状态,湍流模拟采用SST k-ω模型,翼型的计算网格采用C型结构网格,叶片表面首层网格高度满足y +≈1(首层也即最底层,y+为厚度,1为精度);
    (5)几何建模,将翼型边界沿法向延展膜厚度同等距离,得到新的计算几何;
    (6)对影响数值模拟计算,力矩的作用点选取翼型1/4弦长位置,使翼型抬头的力矩为正,低头力矩为负,
    翼型升力系数为
    Figure PCTCN2020136606-appb-100001
    阻力系数为
    Figure PCTCN2020136606-appb-100002
    俯仰力矩系数为
    Figure PCTCN2020136606-appb-100003
    (7)对两种风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前 后的气动力系数变化进行对比分析,得出影响数值模拟计算结论。
  2. 根据权利要求1所述的基于PTFE膜对风机叶片气动特性影响的数值模拟方法,其特征在于:包括如下步骤:
    (1)选取南航NH1500型风电机、美国NRE5000型海上风电机、金风科技GW103-2500型风电机和国电联合动力UP2000-96型风电机这四种不同容量、型号的风电机组,综合四种风电机组叶片设计数据,最终选取DU91-W2-250和NACA64-418两种基础叶片翼型;
    (2)确定叶片的风能捕捉区域在叶片的中部和尖部区域,两种翼型均按各自展向位置和弦长分布方向选取,弦长位置选取参照UP2000-96型风机叶片的60%R和85%R位置,R为叶片径向各剖面翼型的弦长,分别为1.65m和1.15m;攻角范围均为[-4,14],同时选取翼型气动特性计算的雷诺数为3.0×10 6
    (3)选取基于PTFE纳米功能复合膜,膜厚度0.26mm,膜表面粗糙度0.18μm;
    (4)采用有限体积法对二维不可压Navier-Stokes方程进行求解,计算状态为定常状态,湍流模拟采用SST k-ω模型,翼型的计算网格采用C型结构网格,翼型周向400个网格点,叶片表面首层网格高度为9.0×10 -6m,满足y +≈1,网格总数为30万;
    (5)几何建模,将翼型边界沿法向延展0.26mm,得到新的计算几何;
    (6)对影响数值模拟计算,力矩的作用点选取翼型1/4弦长位置,使翼型抬头的力矩为正,低头力矩为负,
    翼型升力系数为
    Figure PCTCN2020136606-appb-100004
    阻力系数为
    Figure PCTCN2020136606-appb-100005
    俯仰力矩系数为
    Figure PCTCN2020136606-appb-100006
    (7)对两种风电机组叶片翼型在粘贴覆盖了基于PTFE纳米功能复合膜前后的气动力系数变化进行对比分析,得出影响数值模拟计算结论:
    在线性变化区,基于PTFE纳米功能复合膜对翼型的升、阻力及力矩系数基本无影响;在非线性变化区,基于PTFE纳米功能复合膜对各气动参数产生轻微影响,造成升力系数和力矩系数的降低,各气动力系数的变化百分比均在1.9%之内,影响较小;
    从表面粗糙度的角度来看,基于PTFE纳米功能复合膜粘贴覆盖在风机叶片上后,可以起到改善翼型的气动特性和叶片整体气动性能作用。
PCT/CN2020/136606 2020-11-05 2020-12-15 基于ptfe膜对风机叶片气动特性影响的数值模拟方法 WO2022011961A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES202290035A ES2956069A1 (es) 2020-11-05 2020-12-15 Procedimiento de simulacion numerica de la influencia de la membrana a base de ptfe en una caracteristica aerodinamica de pala de turbina eolica
DE112020004375.4T DE112020004375T5 (de) 2020-11-05 2020-12-15 Numerisches simulationsverfahren für den einfluss eines auf ptfe basierendenfilms auf die aerodynamischen eigenschaften von windkraftgenerator-flügeln
CA3155592A CA3155592C (en) 2020-11-05 2020-12-15 Numerical simulation method of influence of ptfe-based membrane on aerodynamic characteristic of wind turbine blade
GB2205458.9A GB2604759B8 (en) 2020-11-05 2020-12-15 Numerical simulation method based on influence of PTFE membrane on aerodynamic characteristics of fan blade
US17/640,738 US20230259678A1 (en) 2020-11-05 2020-12-15 Numerical simulation method of influence of ptfe-based membrane on aerodynamic characteristic of wind turbine blade
JP2022517312A JP7212914B2 (ja) 2020-11-05 2020-12-15 Ptfeベース膜の風車用ブレード空力特性への影響の数値シミュレーション方法
DKPA202270179A DK202270179A1 (en) 2020-11-05 2022-04-01 Numerical simulation method of influence of ptfe based membrane on aerodynamic characteristic of wind turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011226779.0A CN112883503B (zh) 2020-11-05 2020-11-05 基于ptfe膜对风机叶片气动特性影响的数值模拟方法
CN202011226779.0 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022011961A1 true WO2022011961A1 (zh) 2022-01-20

Family

ID=76042963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136606 WO2022011961A1 (zh) 2020-11-05 2020-12-15 基于ptfe膜对风机叶片气动特性影响的数值模拟方法

Country Status (9)

Country Link
US (1) US20230259678A1 (zh)
JP (1) JP7212914B2 (zh)
CN (1) CN112883503B (zh)
CA (1) CA3155592C (zh)
DE (1) DE112020004375T5 (zh)
DK (1) DK202270179A1 (zh)
ES (1) ES2956069A1 (zh)
GB (1) GB2604759B8 (zh)
WO (1) WO2022011961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115859480A (zh) * 2023-02-08 2023-03-28 中国空气动力研究与发展中心计算空气动力研究所 基于确定发动机入口边界条件的气动分析方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117436322B (zh) * 2023-12-21 2024-04-19 浙江远算科技有限公司 基于叶素理论的风力机叶片气动弹性仿真方法和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
WO2010031545A2 (en) * 2008-09-19 2010-03-25 Vestas Wind Systems A/S A wind turbine component
CN102680226A (zh) * 2012-06-12 2012-09-19 中国科学院工程热物理研究所 一种水平轴风力机专用翼型性能评估方法
CN104612892A (zh) * 2014-12-30 2015-05-13 中国科学院工程热物理研究所 一种风力机翼型的多学科优化设计方法
CN110110427A (zh) * 2019-04-29 2019-08-09 北京工业大学 一种大功率风力机叶片的气动外形设计方法
CN111173675A (zh) * 2020-02-18 2020-05-19 中材科技风电叶片股份有限公司 一种油漆预制膜、防护结构及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101484659A (zh) * 2006-03-10 2009-07-15 动力管柱系统公司 在地质构造中使用的可扩张管状件
ES2377669T3 (es) * 2008-07-02 2012-03-29 Siemens Aktiengesellschaft Pala de turbina eólica con receptor de rayos y método para proteger la superficie de una pala de turbina eólica
NZ577541A (en) * 2008-07-02 2010-04-30 Siemens Ag Wind turbine blade with lighting receptor and method for protecting the surface of a wind turbine blade
US8186963B2 (en) * 2010-08-31 2012-05-29 General Electric Company Airfoil shape for compressor inlet guide vane
US20140231340A1 (en) * 2013-02-15 2014-08-21 Pall Corporation Composite including ptfe membrane
CN104753396A (zh) * 2013-12-27 2015-07-01 王忠勇 盘式磁动机
US10012399B2 (en) * 2014-11-06 2018-07-03 Lee Wa Wong Window-type air conditioning system with water cooling unit
JP2018021758A (ja) 2014-12-12 2018-02-08 旭硝子株式会社 フッ素樹脂塗料またはフッ素樹脂塗膜の評価方法、評価用情報算出装置、評価用情報提示システム、および端末装置
CN104500445A (zh) * 2014-12-25 2015-04-08 无锡科诺达电子有限公司 新型轴流风机
CN107315911B (zh) * 2017-06-21 2020-05-22 西安理工大学 一种肺动脉瓣膜几何形状数学模型的建立方法
CN107365006A (zh) * 2017-08-09 2017-11-21 上海依科绿色工程有限公司 一种可用于处理汽车制造厂废水的水处理方法和系统
CN108121855B (zh) 2017-12-06 2021-04-09 北京理工大学 基于仿生柔性机翼的小型无人飞行器飞行动力学优化方法
CA3085339A1 (en) * 2017-12-14 2019-06-20 Carl Zeiss Meditec Cataract Technology Inc. Devices and methods for ocular surgery
CN109299532B (zh) * 2018-09-17 2022-12-13 许继集团有限公司 一种风机主机架与后机架连接螺栓强度校核方法及系统
GB201818203D0 (en) * 2018-11-08 2018-12-26 Rolls Royce Plc Blade mounting
CN111255636B (zh) 2018-11-30 2023-07-25 北京金风科创风电设备有限公司 确定风力发电机组的塔架净空的方法和装置
CN110069835B (zh) * 2019-04-03 2022-10-11 西北工业大学 气膜孔多孔干涉的三维编织cmc的应力计算及失效判定方法
CN111430865A (zh) * 2020-04-21 2020-07-17 安方高科电磁安全技术(北京)有限公司 一种基于ptfe材料的太赫兹软波导管及其成型方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031545A2 (en) * 2008-09-19 2010-03-25 Vestas Wind Systems A/S A wind turbine component
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
CN102680226A (zh) * 2012-06-12 2012-09-19 中国科学院工程热物理研究所 一种水平轴风力机专用翼型性能评估方法
CN104612892A (zh) * 2014-12-30 2015-05-13 中国科学院工程热物理研究所 一种风力机翼型的多学科优化设计方法
CN110110427A (zh) * 2019-04-29 2019-08-09 北京工业大学 一种大功率风力机叶片的气动外形设计方法
CN111173675A (zh) * 2020-02-18 2020-05-19 中材科技风电叶片股份有限公司 一种油漆预制膜、防护结构及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115859480A (zh) * 2023-02-08 2023-03-28 中国空气动力研究与发展中心计算空气动力研究所 基于确定发动机入口边界条件的气动分析方法及装置
CN115859480B (zh) * 2023-02-08 2023-05-02 中国空气动力研究与发展中心计算空气动力研究所 基于确定发动机入口边界条件的气动分析方法及装置

Also Published As

Publication number Publication date
CN112883503B (zh) 2021-08-03
DE112020004375T5 (de) 2022-07-14
CA3155592C (en) 2024-01-02
GB2604759B8 (en) 2023-03-15
JP7212914B2 (ja) 2023-01-26
DK202270179A1 (en) 2022-05-16
GB2604759A (en) 2022-09-14
CN112883503A (zh) 2021-06-01
GB2604759B (en) 2023-03-01
JP2022548674A (ja) 2022-11-21
CA3155592A1 (en) 2022-01-20
ES2956069A1 (es) 2023-12-12
US20230259678A1 (en) 2023-08-17
GB2604759A8 (en) 2023-03-15
GB202205458D0 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
Castelli et al. Effect of blade number on a straight-bladed vertical-axis Darreius wind turbine
Sagharichi et al. Variable pitch blades: An approach for improving performance of Darrieus wind turbine
WO2022011961A1 (zh) 基于ptfe膜对风机叶片气动特性影响的数值模拟方法
CN104405596B (zh) 一种风力发电机组低风速翼型族
CN101923584B (zh) 风力机专用翼型设计方法及风力机专用翼型
CN109145506B (zh) 一种高气动性能低噪声水平风力机外侧翼型的优化设计方法
CN101615216B (zh) 对翼型尾缘进行流线形增厚的方法
CN102400847B (zh) 一种风力机叶片翼型
Chen et al. A detailed investigation of a novel vertical axis Darrieus wind rotor with two sets of blades
CN101898644A (zh) 用来设计翼型的系统与方法
CN110298093B (zh) 一种浮式风机缩比模型性能相似叶片设计方法
Siram et al. Blade design considerations of small wind turbines: From classical to emerging bio-inspired profiles/shapes
CN105863954B (zh) 一种基于几何变换的风力机翼型钝尾缘设计方法
CN110110444B (zh) 一种面向大型商船耦合型翼帆优化方法及系统
De Tavernier et al. Vertical-axis wind turbine aerodynamics
Khai et al. Numerical Investigation of the Power Performance of the Vertical-Axis Wind Turbine with Endplates
CN203770019U (zh) 一种100w风力发电机叶片
Zhang et al. Research on the aerodynamic performance of the wind turbine blades with leading-edge protuberances
CN106227985A (zh) 潮流能水平轴水轮机用叶片翼型族设计方法
KR101454258B1 (ko) 두께비 25%의 대용량 풍력터빈 블레이드용 에어포일
Sun et al. Influence of blade maximum thickness on airfoil performance with varied leading edge erosion rate
CN202370744U (zh) 一种风力机叶片翼型
Atique et al. Pitch Angle & Decalage Effect in Biplane Blade Design for Wind Turbines
Su et al. Swept Blade for Performance Improvement on a Vertical Axis Wind Turbine
Su et al. Investigation of Spanwise Wavy Configuration for Performance Improvement of a Vertical Axis Wind Turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517312

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202205458

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201215

ENP Entry into the national phase

Ref document number: 3155592

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 20945184

Country of ref document: EP

Kind code of ref document: A1