WO2022009886A1 - 微細金属線状体 - Google Patents

微細金属線状体 Download PDF

Info

Publication number
WO2022009886A1
WO2022009886A1 PCT/JP2021/025476 JP2021025476W WO2022009886A1 WO 2022009886 A1 WO2022009886 A1 WO 2022009886A1 JP 2021025476 W JP2021025476 W JP 2021025476W WO 2022009886 A1 WO2022009886 A1 WO 2022009886A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine metal
linear body
metal linear
less
acid
Prior art date
Application number
PCT/JP2021/025476
Other languages
English (en)
French (fr)
Inventor
康夫 薦田
泰宏 柴田
良憲 清水
行弘 小澤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202180044418.0A priority Critical patent/CN115943004A/zh
Priority to JP2022535351A priority patent/JPWO2022009886A1/ja
Priority to AU2021303983A priority patent/AU2021303983A1/en
Priority to EP21836790.2A priority patent/EP4180152A4/en
Priority to US17/928,640 priority patent/US20230256506A1/en
Priority to KR1020227042046A priority patent/KR20230036062A/ko
Publication of WO2022009886A1 publication Critical patent/WO2022009886A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a fine metal linear body.
  • Nanowires can exhibit physical and chemical properties (eg, electrical conductivity, thermal conductivity, luminescence properties, catalytic activity, etc.) that conventional materials do not have due to their minute size and high aspect ratio. Be expected.
  • a conventional technique for manufacturing such nanowires those described in Patent Document 1 and Non-Patent Document 1 are known.
  • Patent Document 1 describes a method for producing copper nanowires by an electroless method by adding hydrazine as a reducing agent to an aqueous solution containing ethylenediamine, o-phenylenediamine, and copper nitrate.
  • ethylenediamine and o-phenylenediamine are easily adsorbed on the (001) and (111) planes of copper and are difficult to be adsorbed on the (110) plane, thereby selectively adsorbing on the (110) plane.
  • Non-Patent Document 1 also describes a method for producing copper nanowires by an electroless method.
  • the copper crystals manufactured by the method described in Patent Document 1 due to the formation mechanism, the copper crystals are elongated and large single crystals in which the [110] orientation is preferentially oriented in the longitudinal direction of the wire. It will be. It is known that the temperature at which the metal powder is sintered shifts to the lower temperature side as the crystal size is smaller. However, the crystal size inevitably increases. Copper nanowires produced by the method described in Patent Document 1. It is not easy to lower the sintering temperature.
  • an object of the present invention is to provide a fine metal wire having a lower sintering temperature than the conventional one, or a small electric resistance of the sintered portion after the heat treatment at the same heating temperature. ..
  • the present invention is a fine metal linear body having a length of 0.5 ⁇ m or more and 200 ⁇ m or less and a thickness of 30 nm or more and 10 ⁇ m or less.
  • the metal crystal constituting the fine metal linear body when the length along the extending direction of the fine metal linear body is X and the length along the direction orthogonal to the direction is Y, the fine metal At three points in the boundary region when the length of the linear body is divided into four equal parts along the extending direction, the crystal has an arithmetic average value of X / Y, which is the ratio of X to Y, of 4 or less. It is intended to provide a fine metal linear body.
  • the present invention is a fine metal linear body having a length of 0.5 ⁇ m or more and 200 ⁇ m or less and a thickness of 30 nm or more and 10 ⁇ m or less.
  • the length of the metal crystal constituting the fine metal linear body is Y along the direction orthogonal to the extending direction of the fine metal linear body, the fine metal linear body is extended along the extending direction.
  • the crystal provides a fine metal wire having an arithmetic average value of Y of 10 nm or less.
  • the present invention is a fine metal linear body having a length of 0.5 ⁇ m or more and 200 ⁇ m or less and a thickness of 30 nm or more and 10 ⁇ m or less.
  • the metal crystals constituting the fine metal linear body are the fine metal linear body.
  • the present invention is a method for producing a fine metal linear body using a metal as a base material, which comprises a step of precipitating a metal on a cathode by electrolytic reduction using an electrolytic solution containing a metal element source. It is an object of the present invention to provide a method for producing a fine metal linear body, which is electrolytically reduced in a state where an oily substance is present on the surface of the cathode.
  • FIG. 1 is a scanning electron microscope image of the fine metal linear body obtained in Example 1.
  • FIG. 2 is a scanning electron microscope image of the fine metal linear body obtained in Comparative Example 1.
  • FIG. 3 is a grain map (Grain Map of EBSD) of electron backscatter diffraction of the fine metal striatum obtained in Example 1.
  • FIG. 4 is a grain map (Grain Map of EBSD) of electron backscatter diffraction of the fine metal striatum obtained in Comparative Example 1.
  • the present invention relates to a fine metal linear body.
  • fine metal striatum may refer to an individual striatum or an aggregate of a plurality of striatums, depending on the context.
  • the fine metal linear body of the present invention is made of metal as a constituent material.
  • the fine metal striatum typically extends in one direction.
  • the state in which the striatum extends in one direction varies depending on the state of the striatum at the time of observation. For example, the striatum extends linearly or in one direction while meandering in a curved line. This striatum is characterized by its long length, albeit very thin.
  • the fine metal linear body has a very thin thickness of preferably 30 nm or more and 10 ⁇ m or less, more preferably 30 nm or more and 1000 nm or less, further preferably 40 nm or more and 500 nm or less, and further preferably 45 nm or more and 300 nm or less.
  • the fine metal linear body is preferably as long as 0.5 ⁇ m or more and 200 ⁇ m or less, more preferably 1 ⁇ m or more and 100 ⁇ m or less, and further preferably 2 ⁇ m or more and 70 ⁇ m or less. ..
  • the fine metal linear body has excellent handleability, and can be excellent in filling property when used as a bonding material, for example.
  • the aspect ratio of the fine metal wire is preferably 5 or more and 5000 or less, more preferably 10 or more and 5000. Below, it is more preferably 20 or more and 5000 or less, further preferably 20 or more and 3000 or less, and even more preferably 20 or more and 1500 or less.
  • the thickness of the fine metal striatum is obtained by reading the thickness of 10 or more wires from the electron microscope image and arithmetically averaging them.
  • the length is obtained by reading 20 or more lengths from an electron microscope image and arithmetically averaging them.
  • the fine metal striatum may take a form in which the thickness is substantially uniform over the entire length, or a form in which the thickness is not uniform and is in the form of beads. It is preferable that at least one end of the fine metal linear body has a tapered shape.
  • the "tapered shape” is a shape in which the thickness gradually decreases toward the tip when the end region of the fine metal linear body is observed. Since at least one end of the fine metal linear body has a tapered shape, the direction in which the fine metal linear body extends (hereinafter, when the fine metal linear body is used as a raw material for a wiring material, for example).
  • connection (also referred to as "longitudinal") can be made not on the cross section of the fine metal striatum but on the side surface of the thinned portion thereof. That is, since the side surface has a larger area than the cross section of the linear body, there is an advantage that the contact area of the fine metal linear body can be increased and the resistance at the interface can be reduced. It is also convenient to reduce the resistance from the viewpoint that the gap between the fine metal linear bodies can be reduced. From the viewpoint of further enhancing this advantage, the angle of the tip in the tapered shape is preferably 60 degrees or less, more preferably 50 degrees or less, and even more preferably 45 degrees or less.
  • the "direction in which the fine metal wire extends” means the longitudinal direction of the fine metal wire as described above, and if there is a curved portion, it means the tangential direction thereof.
  • the angle of the tip of the tapered shape is measured by the following procedure. First, as described above, the thickness of the fine metal striatum is measured based on the electron microscope image. Next, an arc having a diameter having the same length as the thickness of the fine metal wire is drawn around the tip of the end of the fine metal wire to obtain two contact points between the arc and the fine metal wire. The angle between the two contacts and the tip of the end of the fine metal wire connected by a straight line is measured as the angle of the tip.
  • the cross section of the end portion of the fine metal linear body is linear or substantially linear, the central portion thereof is defined as the tip of the end portion.
  • fine metal wire is excluded from the measurement. This measurement is performed on 10 or more fine metal linear bodies, and the arithmetic mean value is used as the angle of the tip of the tapered shape.
  • the shape of the fine metal striatum is typically a linear body extending in one direction, but this fine metal linear body is branched from the main chain portion extending in one direction and the middle of the main chain portion. It may or may not have a branched structure. From the viewpoint of imparting sufficient conductivity to the object with a small amount, and from the viewpoint of making it difficult to reduce the conductivity of the object when the object to which the conductivity is imparted is expanded or contracted or bent.
  • the fine metal linear body preferably has a non-branched structure having only a main chain portion. On the other hand, from the viewpoint that the aggregate of the fine metal linear bodies exhibits a bulky structure, the fine metal linear bodies preferably have one or more branched portions.
  • the type of metal constituting the fine metal linear body is not particularly limited, and various metals can be used. Considering the balance between high conductivity and ease of industrial use, it is selected from the group consisting of copper, silver, gold, nickel, lead, palladium, platinum, cobalt, tin, iron, bismuth and zinc. It is preferably at least one kind of metal or an alloy containing the metal. Alternatively, a linear body may be formed in a state where these plurality of types of metal crystals and alloy crystals are mixed. Among these, a linear body made of copper or a copper alloy or zinc or a zinc alloy as a base material is particularly preferable, and a linear body made of copper or a copper alloy as a base material is particularly preferable.
  • using copper or zinc as a base material means that the ratio of copper or zinc to the fine metal linear body is 80% by mass or more.
  • the state in which a plurality of types of metal crystals and alloy crystals are mixed includes, for example, a state in which crystals of different types of metals such as Cu crystal-Zn crystal-Cu crystal-Zn crystal are connected.
  • the fine metal linear body includes a main body portion made of a first metal element or an alloy containing the metal element, and a coating layer of a second metal element other than the first metal element arranged on the surface of the main body portion. It may have a structure having.
  • the first metal element include copper, silver, gold, nickel, lead, palladium, platinum, cobalt, tin, iron, bismuth and zinc as described above.
  • the second metal element includes, for example, silver, cobalt, iron, nickel, zinc, lead, tin, platinum, gold, palladium, copper, bismuth, etc. and these metals, provided that they are different from the first metal element.
  • the second metal element has higher conductivity than the first metal element constituting the main body or the alloy of the metal element is from the viewpoint that the conductivity imparted to the object can be further increased.
  • the first metal element is, for example, copper or zinc
  • the second metal element is preferably silver.
  • a coating layer on the surface of the main body for example, after forming the main body by the method described later, electroplating in an electrolytic solution containing a metal element used for coating, substitution plating or electroless plating is performed. Examples thereof include a method of applying a possible catalyst onto a fine metal linear body and then plating the target metal, or a method of forming by a dry method. Further, the surface of the linear body may be treated with an organic agent.
  • the crystal structure of the fine metal linear body of the present invention is different from that of the fine metal linear bodies known so far.
  • the fine metal linear body of the present invention has a polycrystalline structure in which a plurality of crystals are connected along the extending direction of the linear body.
  • the fine metal wire previously known for example, the fine metal wire produced by the electrolysis-free method described in Patent Document 1
  • the fine metal wire is an extension of the wire. It has a single crystal-like structure with large crystals that are long in the direction.
  • the fine metal linear body of the present invention it is possible to lower the sintering temperature as compared with the conventional case due to its characteristic crystal structure.
  • the electric resistance of the sintered portion after the heat treatment can be made smaller than that of the conventional one.
  • the length along the longitudinal direction of the fine metal wire is defined as X, and the direction and the direction thereof.
  • the length along the orthogonal direction (hereinafter, also referred to as “width direction”) is Y
  • the value of X / Y, which is the ratio of X to Y is preferably 4 or less.
  • the metal crystals constituting the fine metal linear body of the present invention have a substantially isotropic shape without a large difference in length in the longitudinal direction and length in the width direction.
  • the thickness of the fine metal linear body of the present invention is 30 nm or more and 10 ⁇ m or less as described above, it is understood that the metal crystals constituting the fine metal linear body are fine.
  • the fine metal wire of the present invention has a conventional sintering temperature due to the fact that the metal crystals constituting the fine metal wire of the present invention have such a structure. It is possible to lower it than.
  • the electric resistance of the sintered portion after the heat treatment can be made smaller than that of the conventional one. From the viewpoint of making this advantage even more remarkable, the value of X / Y is more preferably 3 or less.
  • X / Y values are calculated by calculating the X / Y values of the crystals at three points in the boundary region when the length of the fine metal wire is divided into four equal parts along the longitudinal direction. Arithmetic mean value. The first decimal place of the arithmetic mean value shall be rounded off.
  • the “crystal” referred to in the present specification is a crystal grain, and its size can be obtained from a grain map obtained by electron backscatter diffraction (hereinafter, also referred to as "EBSD"). It should be noted that the grain is a different concept from the crystallite size obtained from the XRD pattern.
  • EBSD electron backscatter diffraction
  • the crystal referred to in the present specification is a twin crystal, it is defined that each crystal constituting the twin crystal is a different crystal, and the value of X / Y is obtained for each crystal.
  • the X value itself is preferably 10 ⁇ m or less from the viewpoint of being able to lower the sintering temperature as compared with the conventional case. It is more preferably 5 nm or more and 2 ⁇ m or less, and further preferably 10 nm or more and 500 nm or less.
  • the Y value itself is preferably 3 ⁇ m or less, more preferably 5 nm or more and 1 ⁇ m or less, further preferably 10 nm or more and 400 nm or less, and further preferably 10 nm or more and 200 nm or less. More preferred.
  • the fine metal striatum of the present invention is also characterized only by the value of Y described above. That is, the value of Y is preferably 10 nm or less. When Y is 10 nm or less, it means that it is a thin state having a width of 100 or less atoms in terms of the number of metal atoms. This has the same meaning as the fineness of the crystal, as in the design concept of setting the X / Y value to 4 or less. Due to this, according to the fine metal linear body of the present invention, it is possible to lower the sintering temperature as compared with the conventional case.
  • the electric resistance of the sintered portion after the heat treatment can be made smaller than that of the conventional one.
  • Y is 10 nm or less, the value of X / Y does not matter.
  • the above-mentioned Y value is a value obtained by calculating the Y value of crystals at three locations in the boundary region when the length of the fine metal striatum is divided into four equal parts along the longitudinal direction, and arithmetically averaging the values. And. The first decimal place of the arithmetic mean value shall be rounded off.
  • the fine metal striatum of the present invention is also characterized by the orientation of the metal crystals that compose it. Specifically, when focusing on the crystals existing at three places in the boundary region when the length of the fine metal linear body of the present invention is divided into four equal parts along the extending direction, the fine metal linear body of the present invention It is preferable that the abundance ratio of crystal grains in the [110] orientation evaluated by electron diffraction or EBSD of a transmission electron microscope (hereinafter, also referred to as “TEM”) within a range of ⁇ 30 ° in the extending direction is 50% or less. , 45% or less, more preferably 40% or less.
  • TEM transmission electron microscope
  • the [110] orientation of the crystal is not preferentially oriented in the longitudinal direction of the fine metal striatum.
  • the abundance ratio of the crystal grains forming the orientation is a boundary line in which two or more fine metal linear bodies are arbitrarily extracted and the length of each of the fine metal linear bodies is divided into four equal parts along the longitudinal direction. Is subtracted, and the three boundary areas of the boundary are measured and calculated.
  • a total of 6 or more midpoints of the boundary line per boundary region for example, 6 places when two fine metal wires are extracted, fine metal wires are used. It is the percentage of the crystal grains forming the [110] orientation measured at 15 places) when 5 pieces were extracted.
  • the fine metal linear bodies known so far for example, the fine metal linear bodies manufactured by the electrolysis-free method described in Patent Document 1
  • the [110] orientation is preferentially oriented in the longitudinal direction of the linear body.
  • Non-Patent Document 1 also reports on the synthesis of fine metal linear bodies by an electroless method. As described in the comparative example described later, it was found by the experiment of the present inventor that the [110] orientation of the fine metal linear body synthesized by the electrolysis-free method of Non-Patent Document 1 is preferentially oriented in the longitudinal direction. There is. It is described in the same document that the side surface of this fine metal linear body is a (100) plane.
  • the fine metal linear body of the present invention which is a fine metal linear body that does not grow in the [110] direction in the longitudinal direction, has an advantage that it is difficult to be oxidized.
  • the fine metal linear body of the present invention in which the [110] orientation of the crystal is not preferentially oriented in the longitudinal direction it is possible to lower the sintering temperature due to its characteristic crystal structure. It becomes.
  • the electric resistance of the sintered portion after the heat treatment can be made smaller than that of the conventional one.
  • the three crystals existing in the boundary region when the length of the fine metal linear body is divided into four equal parts along the extending direction are the fine metal linear body.
  • the abundance ratio of the crystal grains having the [111] orientation evaluated by electron diffraction of TEM or EBSD in the range of ⁇ 30 ° in the extending direction is preferably 50% or more, more preferably 52% or more, and more preferably 60. % Or more is more preferable, and 70% or more is even more preferable.
  • the abundance ratio of the crystal grains forming the orientation is a boundary line in which two or more fine metal linear bodies are arbitrarily extracted and the length of each of the fine metal linear bodies is divided into four equal parts along the longitudinal direction.
  • Such a relationship means that the [111] orientation is preferentially oriented in the longitudinal direction of the fine metal linear body.
  • the fact that the [111] orientation of the crystal is preferentially oriented in the longitudinal direction is preferable because it means that the (100) plane is not exposed on the side surface thereof in terms of crystallography.
  • the three crystals existing in the boundary region when the length of the fine metal linear body is divided into four equal parts along the extending direction are TEM within the range of ⁇ 30 ° in the extending direction of the fine metal linear body.
  • the abundance ratio of the crystal grains forming the [100] orientation, the [110] orientation and the [111] orientation evaluated by electron diffraction or EBSD is preferably 50% or less, and further preferably 40% or less. preferable. [110], [111], [100]
  • the abundance ratio of the crystal grains forming the orientation is such that two or more fine metal linear bodies are arbitrarily extracted, and the fine metal linear bodies are each length along the longitudinal direction. Draw a boundary line that divides into four equal parts, and measure and calculate for the three boundary areas of that boundary.
  • a total of 6 or more midpoints of the boundary line per boundary region (for example, 6 places when two fine metal wires are extracted, fine metal wires are used. It is the percentage of the crystal grains forming the [110], [111], and [100] orientations measured at 15 places when 5 wires were extracted.
  • a total of 18 or more points (for example, 18 places when two fine metal linear bodies are extracted, fine metal wire) of three points that divide the boundary line into four equal parts per boundary area. When 5 bodies are extracted, the measurement is performed at 45 places). The first decimal place of the percentage shall be rounded off.
  • the random orientation of the metal crystals constituting the fine metal linear body means that the metal crystals constituting the fine metal linear body are polycrystals, and the crystals are small. The small size of the crystals leads to a lower temperature of sintering as described above. Furthermore, "the orientation direction of the crystal is random” means that the (100) plane is not preferentially exposed on the side surface of the linear body, and the oxidation of the side surface of the fine metal linear body is not promoted. Means.
  • the fine metal wire of the present invention is an aggregate containing a plurality of fine metal wires
  • a curved portion having a radius of curvature of 5 times or less the length of the fine metal wire is formed.
  • the number of fine metal wires having is preferably 5% or more, more preferably 20% or more, and more preferably 40% or more of the total number of fine metal wires in the aggregate. It is even more preferable, and it is even more preferable to occupy 60% or more. By doing so, it becomes easy to realize contact across a plurality of fine metal wires along the lateral (width) direction of the fine metal wires, and the aggregate of the fine metal wires has a low resistance. It is preferable from the viewpoint of.
  • the radius of curvature is calculated as follows.
  • a scanning electron microscope (hereinafter, also referred to as "SEM") is observed for a fine metal linear body. Connect both ends of the fine metal striatum with a straight line and measure the length (chord length). Further, an auxiliary line orthogonal to the straight line is drawn from the midpoint of the straight line toward the fine metal linear body side, and the distance (arrow height) between the midpoint and the position where the fine metal linear body intersects is measured. Obtain the radius of curvature from the following formula.
  • r (C ⁇ C) / (8 ⁇ h) + h / 2 (In the equation, r represents the radius of curvature, C represents the chord length, and h represents the arrow height.)
  • the radius of curvature described above is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less.
  • the radius of curvature is obtained from the above formula by approximating the shape of the fine metal wire to have a curved portion.
  • both ends of the fine metal wire are connected by a straight line and the straight line crosses the fine metal wire, the radius of curvature is measured as a different fine metal wire with the crossed portion as a boundary.
  • the fine metal linear body of the present invention is an aggregate containing a plurality of fine metal linear bodies, it is not prevented that the aggregate contains particles having a shape other than the linear body.
  • the proportion of particles having a shape other than the striatum in the aggregate is defined as "deformation rate”
  • the deformity rate is preferably 50% or less, more preferably 40% or less, and more preferably 30%. It is more preferably less than or equal to, more preferably 10% or less, still more preferably 2% or less.
  • the deformation ratio can be easily reduced to 50% or less.
  • the irregular shape ratio is determined by observing the sample to be measured with SEM in a field of view with a length of 5 to 30 times the average length of the fine metal linear body in both vertical and horizontal directions, and [Area of irregular shape / Area of linear body]. It is calculated by calculating the percentage.
  • the "odd shape” refers to a shape other than the striatum (for example, spherical, lumpy, fern-like leaves, etc.).
  • An electrolytic method is preferably used for producing a fine metal linear body.
  • the reason for this is that not only is it easy to control the desired shape according to the electrolytic method, but also the electrolytic solution can be used repeatedly, and the amount of liquid required for producing a fine metal linear body is small, and processing is performed at the same time. This is because the amount of waste liquid to be discharged can be reduced.
  • an anode and a cathode are immersed in a sulfuric acid-acidic electrolytic solution containing a metal element source, and a DC current is passed through the electrolytic solution to perform electrolytic reduction, and the surface of the cathode is subjected to electrolytic reduction.
  • the fine metal wire is precipitated in the water, and the precipitated fine metal wire is scraped off by a mechanical or electrical method and recovered.
  • the recovered fine metal wire is washed with water or an organic solvent, dried, and dried. The step of sieving can be exemplified as needed.
  • the type of metal element used in the present production method is not particularly limited as long as the fine metal linear body can be produced by the present production method. Considering the balance between high conductivity and ease of industrial use, copper, silver, gold, nickel, lead, palladium, platinum, cobalt, tin, iron, bismuth and zinc can be mentioned. Since these metal elements are common in that they can be electrolytically precipitated from an aqueous solution, they can be similarly produced according to the present production method regardless of which metal element is used. Among these, it is particularly preferable to use copper or a copper alloy or zinc or a zinc alloy as a base material.
  • the fine metal linear body obtained by this production method may be composed of only the target metal element excluding unavoidable impurities, or may be composed of an alloy of the target metal element excluding unavoidable impurities. May be. Further, the above-mentioned metal elements may be combined in combination of two or more, excluding unavoidable impurities.
  • the amount of the oily substance adhering to the cathode surface is expressed in terms of thickness on average to be several hundred nm or more, preferably several ⁇ m to several hundred ⁇ m.
  • the thickness of the electrolytic solution fluctuates locally due to fluctuations in the electrolytic solution and the like.
  • a fine metal linear body is formed by electrolysis by the above mechanism, but the detailed shape and structure further change depending on the type of oily substance used. Similar to the electrolytic precipitation of ordinary metals, it changes depending on the composition of the electrolytic solution and the additives.
  • Examples of the method of adhering the oily substance to the surface of the cathode described above include a method of directly applying the oily substance to the surface of the cathode, a method of immersing the cathode in a container containing the oily substance and adhering it, and a method of adhering the cathode on the electrolytic solution. Examples thereof include a method in which an oily substance is floated and the cathode is immersed from above to attach the oily substance to the cathode surface.
  • an oily substance is suspended in an electrolytic solution and the suspended electrolytic solution is agitated so that the suspended oily substance collides with the surface of the cathode and adheres to the surface of the cathode as it is. .. Further, if the oily substance has a property of dissolving in a small amount in the electrolytic solution, the oily substance once dissolved in the electrolytic solution is continuously adsorbed on the electrode surface as a result, even if the suspended oily substance does not directly touch the electrode. It has the same effect as adhering to the surface.
  • the fine metal wire By producing the fine metal wire by the above method, the fine metal wire has a polycrystalline structure in which a plurality of crystals are connected along the longitudinal direction. In addition, it becomes difficult for the [110] orientation of the crystal to be preferentially oriented in the longitudinal direction. Further, in the fine metal linear body, the [111] orientation of the crystal tends to be preferentially oriented in the longitudinal direction, or the orientation direction of the crystal tends to be random. Further, by producing the fine metal linear body by the above method, it is possible to suppress the generation of irregularly shaped particles having a shape other than the linear body as much as possible.
  • oily substance to be attached to the surface of the cathode examples include various organic compounds which are sparingly soluble or insoluble in water and have a viscosity sufficient to be retained on the surface after being attached to the surface of the cathode. Be done.
  • lightly soluble or insoluble in water means that the dissolved amount is 100 g or less with respect to 1 L of water at the temperature at which the fine metal linear body is produced.
  • the oily substance examples include liquid and solid substances. The oily substance may be used by dissolving it in a liquid solvent at room temperature (20 to 30 ° C.). Additives such as benzoic acid, fumaric acid, citric acid, and benzotriazoles may be further used as the oily substance for the purpose of facilitating control of the physical properties of the precipitated fine metal linear body.
  • the organic compounds include aliphatic hydrocarbons, aromatic hydrocarbons, aliphatic alcohols, aromatic alcohols, aliphatic aldehydes, aromatic aldehydes, and aliphatics, provided that they are sparingly soluble or insoluble in water.
  • Aromatic carboxylic acid esters silicones (eg dimethyl silicone), aliphatic amines, aromatic amines, nitrogen-containing heterocyclic compounds, tributyl phosphates, thiols, fluorosolvents, ionic liquids and the like.
  • fatty alcohol as used herein means an alcohol having 5 or more carbon atoms.
  • fatty acids or salts thereof, esters or amides thereof, aromatic carboxylic acids, aliphatic hydrocarbons, fatty alcohols, aliphatic amines, silicones (for example, dimethyl silicone), or these are particularly oily substances. It has been found that the use of a mixture can more successfully produce fine metal filaments.
  • Examples of the fatty acid include lower fatty acid and higher fatty acid.
  • Examples of the lower fatty acid include saturated or unsaturated aliphatic carboxylic acids having 9 or less carbon atoms.
  • Examples of the higher fatty acid include saturated or unsaturated aliphatic carboxylic acids having a carbon atom number of preferably 10 or more and 25 or less, more preferably 10 or more and 22 or less, and further preferably 11 or more and 20 or less.
  • Saturated aliphatic carboxylic acids include, for example, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, undesic acid, lauric acid, tridecyl acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, nonadesyl acid. , Arakidic acid, henicosyl acid, bechenic acid, tricosyl acid, lignoseric acid and the like.
  • Examples of unsaturated aliphatic carboxylic acids include those having one or two or more unsaturated carbon bonds in the molecule.
  • Examples of the unsaturated aliphatic carboxylic acid having one unsaturated carbon bond in the molecule include crotonic acid, myristoleic acid, palmitoleic acid, sapienoic acid, oleic acid, ellagic acid, baxenoic acid, gadrain acid, eicosenoic acid and elca. Acids, carboxylic acids and the like can be mentioned.
  • Examples of the unsaturated aliphatic carboxylic acid having two or more unsaturated carbon bonds in the molecule include linoleic acid, eikosazienoic acid, docosadienoic acid, and linolenic acid.
  • aromatic carboxylic acid examples include benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, hemimeric acid, trimeritic acid, trimesic acid, merophanic acid, pranitoic acid, pyromeritic acid, meritonic acid, diphenic acid, toluic acid and xylyl acid.
  • fatty acids it is preferable to use a saturated aliphatic carboxylic acid or an unsaturated aliphatic carboxylic acid because a fine metal linear body can be produced more successfully.
  • the ester of the fatty acid is preferably an ester with a saturated fatty alcohol or an unsaturated fatty alcohol.
  • the carbon number of this alcohol is preferably 1 or more and 18 or less.
  • the ester of the fatty acid is more preferably an ester with a saturated aliphatic alcohol having 1 or more and 18 or less carbon atoms. Examples of such are ethyl acetate.
  • the amount of oily substance adhered to the surface of the cathode is preferably 0.1 g / m 2 or more and 500 g / m 2 or less per unit surface area of the cathode, and more preferably 1 g / m 2 or more and 500 g / m 2 or less. It is preferably 3 g / m 2 or more and 200 g / m 2 or less, and more preferably 5 g / m 2 or more and 100 g / m 2 or less.
  • anode and the cathode As the material of the anode and the cathode, those known so far can be used without particular limitation.
  • an anode and a cathode made of titanium or copper can be used.
  • An insoluble metal electrode (DSE) can also be used for the anode.
  • DSE insoluble metal electrode
  • the concentration of the ion of the metal element in the electrolytic solution is a concentration capable of supplying the metal ion without excess or deficiency in the reaction rate of the reduction of the metal ion, and from that viewpoint, the concentration of the metal ion.
  • the electrolytic solution may be used in a non-heated state such as room temperature (25 ° C.), or may be used in a heated state.
  • the size of the electrolytic cell, the number of electrodes, the shape of the electrodes (plate-shaped, drum-shaped), the distance between the electrodes, the swing of the electrodes, and the circulation amount of the electrolytic solution are adjusted to perform electrolysis in the vicinity of the electrodes. It is preferable to adjust so that the metal ion concentration of the liquid is always maintained at a high state.
  • the fine metal linear body of the present invention obtained by the above method can be composited with another substance to impart conductivity to the substance.
  • the fine metal linear body of the present invention and a granular body of the same or different metal elements can be combined to form a bonding material.
  • a composition containing the fine metal linear body of the present invention and a dispersion medium can be used as a bonding material.
  • These joining materials can also be sintered to form a sintered body.
  • These bonding materials and sintered bodies are used, for example, as materials for bonding a semiconductor element and a substrate.
  • the joint portion is a fine metal of the present invention. It can be composed of a sintered body of a composition containing a linear body and a dispersion medium.
  • a semiconductor is used as at least one of the first member and the second member.
  • the joint can be composed of a sintered body having a composition containing the fine metal linear body of the present invention and a dispersion medium.
  • an electronic circuit component using the fine metal wire of the present invention.
  • the conductive pattern is obtained from a sintered body of a composition containing the fine metal wire of the present invention and a dispersion medium. Can be configured.
  • organic solvents As the dispersion medium contained in the composition, for example, various organic solvents can be used.
  • organic solvents are monoalcohols, polyhydric alcohols, polyhydric alcohol alkyl ethers, polyhydric alcohol aryl ethers, esters, ketones, nitrogen-containing heterocyclic compounds, amides, amines, saturated hydrocarbons. Examples include hydrogen. These organic solvents may be used alone or in combination of two or more.
  • the fine metal linear body of the present invention may be contained in a resin to obtain the fine metal linear body and a resin composition containing the resin.
  • This resin composition exhibits conductivity by containing a fine metal linear body.
  • a fine metal linear body may be dispersed in the resin.
  • a layer containing a fine metal linear body may be formed on the surface of the base material containing the resin.
  • the resin composition can be molded into various shapes. For example, it can be formed into a one-dimensional shape such as a fibrous shape, a two-dimensional shape such as a film shape, a plate shape and a strip shape, and various three-dimensional shapes.
  • the resin composition exhibits sufficient conductivity by adding a relatively small amount of fine metal linear body.
  • the resin composition is different from the conventional conductive resin composition using copper powder as a filler in that the conductivity thereof is low before and after the resin composition is expanded and contracted and before and after the resin composition is bent. .. From this point of view, when the resin composition is stretchable or bendable, the characteristics of the fine metal linear body of the present invention are effectively exhibited. In the conventional conductive resin composition, when it is expanded or contracted or bent, the conductivity tends to decrease.
  • the fine metal linear body of the present invention can be used in various embodiments.
  • Specific applications of the fine metal linear body of the present invention include applications that require conductivity and are deformed by an external force, for example, wearable devices used by attaching to a living body, flexible displays, and the like.
  • the fine metal wire of the present invention can be used as an electrode catalyst for various electrochemical reactions, a current collector of a power generation element, and the like.
  • Example 1 In this example, a linear body made of copper was produced.
  • An electrolytic solution was prepared from copper sulfate and sulfuric acid so that the concentration of copper ions was 4 g / L and the concentration of free sulfuric acid was 5 g / L. It was put in the electrolytic cell of the above and stirred. The liquid temperature of the electrolytic solution was 40 ° C.
  • An 8 cm ⁇ 8 cm copper plate was used as the cathode. Oleic acid was evenly applied to the surface of the cathode. The coating amount was 7 g / m 2 .
  • An 8 cm ⁇ 8 cm copper plate was used as the anode. Both poles were suspended in an electrolytic cell so that the distance between the cathode and the anode was 8 cm.
  • the current density was adjusted to 160 A / m 2 and electrolysis was carried out for 30 minutes. In this way, copper was electrodeposited on the surface of the cathode. Copper deposited on the surface of the cathode was recovered, and the recovered copper was washed with ethanol. When the obtained electrodeposited material was observed using SEM, a linear body was confirmed. Each end of the striatum had a tapered shape.
  • the SEM image of the linear body obtained in this example is shown in FIG. In the figure, a 30,000 times SEM image is posted to observe the tip shape of the striatum.
  • Example 2 An electrolytic solution was prepared by changing the concentration of copper ions to 1 g / L, and electrolysis was carried out by changing the current density to 63 A / m 2. Except for these, an electrodeposited product was obtained in the same manner as in Example 1. When the obtained electrodeposited material was observed using SEM, a linear body was confirmed. Each end of the striatum had a tapered shape.
  • Example 3 An electrolytic solution was prepared by changing the concentration of copper ions to 7 g / L, and electrolysis was carried out by changing the current density to 63 A / m 2. Except for these, an electrodeposited product was obtained in the same manner as in Example 1. When the obtained electrodeposited material was observed using SEM, a linear body was confirmed. Each end of the striatum had a tapered shape.
  • Example 4 An electrolytic solution was prepared by changing the concentration of copper ions to 10 g / L. Except for this, an electrodeposited product was obtained in the same manner as in Example 1. When the obtained electrodeposited material was observed using SEM, a linear body was confirmed. Each end of the striatum had a tapered shape.
  • Example 5 An electrolytic solution was prepared by changing the concentration of copper ions to 40 g / L, and electrolysis was carried out by changing the current density to 310 A / m 2. Except for these, an electrodeposited product was obtained in the same manner as in Example 1. When the obtained electrodeposited material was observed using SEM, a linear body was confirmed. Each end of the striatum had a tapered shape.
  • This comparative example corresponds to Non-Patent Document 1.
  • 40 mL of a 15 mol / L sodium hydroxide aqueous solution, 0.30 mL of ethylenediamine, and 2.0 mL of a 0.1 mol / L copper nitrate aqueous solution were placed in a 100 mL four-necked flask and stirred with a stirrer.
  • the concentration of ethylenediamine in the aqueous copper salt solution was 137 mmol / L.
  • the heater was set to 40 ° C. and the temperature was raised.
  • 50 ⁇ L of a 35% aqueous hydrazine solution was injected into the flask with a syringe.
  • the SEM image of the striatum obtained in this comparative example is shown in FIG. In the figure, a 30,000 times SEM image is posted to observe the tip shape of the striatum.
  • the thickness of the linear body is a magnification at which the thickness can be sufficiently measured, specifically, from an SEM image of 20000 times in Example 1, an SEM image of 80,000 times in Example 2, and 10000 times in Example 3. From the SEM image of Example 4, from the SEM image of 10000 times in Example 4, from the SEM image of 100 times in Example 5, and from the SEM image of 20000 times in Comparative Example 1, 10 or more thicknesses are read and arithmetically averaged. Obtained.
  • the length is also a magnification at which the length can be sufficiently measured, specifically, from the SEM image of 10000 times in Example 1, the SEM image of 20000 times in Example 2, and the SEM image of 5000 times in Example 3.
  • the deformation rate of the aggregates of the linear bodies obtained in Examples 1 to 5 and Comparative Example 1 was measured by the above-mentioned method.
  • the values of X, Y and X / Y and the orientation of the crystal were measured by the following method. These results are shown in Table 1 below.
  • X, Y and X / Y values for the crystal and the orientation of the crystal were determined by the following method.
  • a fine metal wire is applied on a copper plate with carbon paste, and the cross section is cross-sectioned with an argon ion beam cross-section processing device (Cross-section polisher (CP) manufactured by JEOL Ltd.), and the cross-section is used as an EBSD grain map.
  • CP argon ion beam cross-section processing device
  • CP argon ion beam cross-section processing device
  • the cross-section is used as an EBSD grain map.
  • the carbon paste Colloidal Graphite, (Isopropanol Base) manufactured by Electron Microscopy Sciences was used.
  • EBSD was performed using a Carl Zeiss SEM Crossbeam 540 and an Oxford EBSD detector: Symmetry mounted on the SEM Crossbeam 540.
  • the X and Y values of the crystals existing at the three points of the boundary region when the length of the fine metal striatum is divided into four equal parts along the longitudinal direction are shown in the figure.
  • the X / Y value was calculated by measuring with reference to the scale. This was arithmetically averaged. The first decimal place of the arithmetic mean is rounded off.
  • the grain maps of EBSD measured for the striatum of Example 1 and Comparative Example 1 are shown in FIGS. 3 and 4, respectively.
  • the crystal orientation was determined by the following method.
  • the fine metal wires of Examples 1 to 4 and Comparative Example 1 were sprinkled on a copper grid and supported.
  • the observation was carried out with JEM-ARM200F manufactured by JEOL Ltd.
  • a boundary line that divides the length into four equal parts is drawn on the fine metal linear body along the extending direction, and the shape is observed by TEM at the midpoint of the boundary line in the three boundary areas of the boundary, and electron diffraction is performed. I got a figure.
  • a digital micrograph manufactured by GATAN was used for the analysis of the orientation by electron diffraction.
  • the coating is applied on a copper plate, and the coating film is cross-sectioned by an argon ion beam cross-section processing device (Cross-section polisher (CP) manufactured by JEOL Ltd.). processed. Observations were performed with an SEM Crossbeam 540 and an EBSD detector mounted on it: Symmetry. A boundary line was drawn on the fine metal striatum along the extending direction to divide the length into four equal parts. In the three boundary regions of the boundary, the orientation of the crystal by EBSD was obtained at three points that divide the boundary line into four equal parts. For the analysis of the crystal orientation by EBSD, AZtec Crystal 2.0 manufactured by Oxford University Press was used.
  • Each orientation ([100] orientation, [110] orientation and [111] orientation) evaluated by electronic diffraction of TEM or EBSD is within the range of ⁇ 30 ° in the extending direction of the fine metal linear body or its tangential direction. It was judged whether or not (each direction was judged by the normal line close to the range of ⁇ 30 ° in the longitudinal direction. If two or more directions fall within the range of ⁇ 30 °, the direction closer to 0 ° is used. If the three orientations do not fall within the range of ⁇ 30 °, there is no priority orientation).
  • Example 5 With respect to Examples 1 to 4 and Comparative Example 1, five arbitrarily extracted fine metal linear bodies were evaluated, and each orientation ([100] orientation, [110] orientation and [ 111] The percentage of the crystal grains in which the orientation) is preferentially oriented was calculated. In Example 5, each of the five arbitrarily extracted fine metal linear bodies was evaluated, and each orientation ([100] orientation, [110] orientation, and [111] orientation) was prioritized from a total of 45 evaluation results. The percentage of the crystal grains oriented in the direction was calculated.
  • the specific resistance of the sintered body was measured by a four-probe method using a resistivity measuring device (Mitsubishi Chemical Corporation MCP-T600). Regarding the sintered body obtained by firing at 220 ° C. and 240 ° C. In Comparative Example 1, because it exceeded 10 6 ⁇ ⁇ cm is measured upper limit of the resistance value could not be measured. In Table 1, it is expressed as ">106".
  • the sintered body formed from the linear body obtained in the examples has good low temperature sinterability. Further, it can be seen that the linear body obtained in the example has a smaller electric resistance of the sintered portion after the heat treatment at the same heating temperature as compared with the linear body obtained in the comparative example.
  • a fine metal linear body in which the sintering temperature is lower than before, or when the heating temperature is the same, the electrical resistance of the sintered portion after the heat treatment is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

従来よりも焼結温度が低い微細金属線状体を提供すること。微細金属線状体は、長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である。微細金属線状体を構成する金属の結晶について、該微細金属線状体の延びる方向に沿う長さをXとし、該方向と直交する方向に沿う長さをYとしたとき、該微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、Yに対するXの比であるX/Yの値が4以下である。

Description

微細金属線状体
 本発明は微細金属線状体に関する。
 いわゆるナノワイヤーは、その微小なサイズや高いアスペクト比等により、従来の材料にない物理的、化学的性質(例えば、電気伝導性、熱伝導性、発光特性、触媒活性等)を発現することが期待される。このようなナノワイヤーの製造に関する従来の技術として、特許文献1や非特許文献1に記載のものが知られている。
 特許文献1には、エチレンジアミンと、o-フェニレンジアミンと、硝酸銅とを含む水溶液に、還元剤としてヒドラジンを添加することで、無電解法によって銅ナノワイヤーを製造する方法が記載されている。この方法においては、エチレンジアミン及びo-フェニレンジアミンが銅の(001)面及び(111)面に吸着しやすく、(110)面に吸着しづらいことを利用して、(110)面に選択的に銅を析出させることで、ワイヤー状の形状を形成している。非特許文献1にも無電解法により銅ナノワイヤーを製造する方法が記載されている。
国際公開2015/097808号パンフレット
M. J. Kim, et. al., Journal of the American Chemical Society, 2017, vol139, p277-284
 特許文献1に記載の方法で製造された銅ナノワイヤーにおいては、その生成機構に起因して、銅の結晶は、その[110]方位がワイヤーの長手方向に優先配向した細長い、大きな単結晶様のものとなる。金属粉が焼結する温度は結晶のサイズが小さいほど低温側にシフトすることが知られているところ、結晶のサイズが必然的に大きくなる特許文献1に記載の方法で製造された銅ナノワイヤーは、その焼結する温度を低くすることが容易でない。
 したがって本発明の課題は、従来よりも焼結する温度が低いか、又は同じ加熱温度の場合には加熱処理後の焼結部の電気抵抗が小さくなる微細金属線状体を提供することにある。
 本発明は、長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
 前記微細金属線状体を構成する金属の結晶について、該微細金属線状体の延びる方向に沿う長さをXとし、該方向と直交する方向に沿う長さをYとしたとき、該微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、前記結晶は、Yに対するXの比であるX/Yの値の算術平均値が4以下である、微細金属線状体を提供するものである。
 本発明は、長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
 前記微細金属線状体を構成する金属の結晶について、該微細金属線状体の延びる方向と直交する方向に沿う長さをYとしたとき、該微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、前記結晶は、Yの算術平均値が10nm以下である、微細金属線状体を提供するものである。
 また本発明は、長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
 前記微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、該微細金属線状体を構成する金属の結晶は、該微細金属線状体の延びる方向±30°の範囲において透過型電子顕微鏡の電子回折、又は電子線後方散乱回折によって評価した[110]方位をなす結晶粒の存在割合が50%以下である、微細金属線状体を提供するものである。
 更に本発明は、金属元素源を含む電解液を用い、電解還元によってカソードに金属を析出させる工程を有する、金属を母材とする微細金属線状体の製造方法であって、
 前記カソードの表面に油性物質を存在させた状態下に電解還元を行う、微細金属線状体の製造方法を提供するものである。
図1は、実施例1で得られた微細金属線状体の走査型電子顕微鏡像である。 図2は、比較例1で得られた微細金属線状体の走査型電子顕微鏡像である。 図3は、実施例1で得られた微細金属線状体の電子線後方散乱回折のグレインマップ(EBSDのGrain Map)である。 図4は、比較例1で得られた微細金属線状体の電子線後方散乱回折のグレインマップ(EBSDのGrain Map)である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明は微細金属線状体に係るものである。以下の説明において「微細金属線状体」という場合には、文脈に応じ、一つひとつの線状体を指す場合と、複数の線状体の集合体を指す場合とがある。本発明の微細金属線状体は金属を構成材料とするものである。微細金属線状体は、典型的には一方向に延びている。線状体が一方向に延びる状態は、該線状体の観察時の状態によって様々である。例えば、線状体は、直線状に延びているか、又は曲線状に蛇行しながら一方向に延びている。この線状体は、非常に細いにもかかわらず、その長さが長いことによって特徴付けられるものである。
 微細金属線状体は、その太さが好ましくは30nm以上10μm以下、より好ましくは30nm以上1000nm以下、更に好ましくは40nm以上500nm以下、一層好ましくは45nm以上300nm以下という非常に細いものである。このように非常に細いにもかかわらず、微細金属線状体は、その長さが好ましくは0.5μm以上200μm以下、更に好ましくは1μm以上100μm以下、一層好ましくは2μm以上70μm以下という長いものである。このような太さや長さを兼ね備えることにより、微細金属線状体はその取扱い性に優れるものとなり、例えば接合材料として用いる際の充填性に優れたものとすることができる。
 また微細金属線状体は、そのアスペクト比(微細金属線状体の長さ[m]/微細金属線状体の太さ[m])が好ましくは5以上5000以下、より好ましくは10以上5000以下、更に好ましくは20以上5000以下、一層好ましくは20以上3000以下、更に一層好ましくは20以上1500以下である。
 微細金属線状体の太さは、電子顕微鏡像より10本以上の太さを読み取り算術平均して得る。その長さは、電子顕微鏡像より20本以上の長さを読み取り算術平均して得る。
 微細金属線状体は、太さがその全長にわたりほぼ一様である形態や、太さが一様ではなく数珠状である形態をとり得る。微細金属線状体は、その少なくとも一方の端部が先細形状になっていることが好ましい。「先細形状」とは、微細金属線状体の端部域を観察した場合、先端に向かうに連れて太さが漸減する形状のことである。
 微細金属線状体における少なくとも一方の端部が先細形状になっていることによって、該微細金属線状体を例えば配線材の原料に使用した場合に、該微細金属線状体の延びる方向(以下「長手方向」ともいう。)の接続を、微細金属線状体の断面でなく、その細くなっている部分の側面で行うことができる。つまり、線状体の断面に比べて側面は面積が広いので、微細金属線状体の接触面積を増やすことができ、界面での抵抗を小さくできるという利点がある。また微細金属線状体間の隙間を小さくできる観点からも抵抗を小さくするのに好都合である。
 この利点を一層顕著なものとする観点から、先細形状における先端の角度は60度以下であることが好ましく、50度以下であることが更に好ましく、45度以下であることが一層好ましい。
 なお、「微細金属線状体の延びる方向」とは、上述したように微細金属線状体の長手方向を意味するものであり、湾曲部がある場合はその接線方向をいう。
 先細形状の先端の角度の測定は次の手順で行う。まず上述のように微細金属線状体の太さを電子顕微鏡像に基づき測定しておく。次いで、微細金属線状体の端部先端を中心として微細金属線状体の太さと同じ長さの直径をもつ円弧を引き、当該円弧と微細金属線状体の接点を2つ得る。当該2つの接点と微細金属線状体の端部先端とを直線で結んだ間の角度を先端の角度として測定する。なお、微細金属線状体の端部の断面が直線状又は略直線状となっている場合にはその中心部を端部の先端とする。また、微細金属線状体の端部の断面が直線状又は略直線状となっている場合において、その断面長さが微細金属線状体の太さの二分の一を超える場合には、当該微細金属線状体は測定の対象外とする。この測定を10本以上の微細金属線状体について行い、算術平均値をもって先細形状の先端の角度とする。
 微細金属線状体の形状は、典型的には一方向に延びた線状体であるところ、この微細金属線状体は、一方向に延びる主鎖部と該主鎖部の途中から枝分かれした枝分かれ構造を有していてもよく、あるいは有していなくてもよい。少ない量で対象物に十分な導電性を付与する観点、及び導電性を付与した該対象物を伸縮させたり屈曲させたりしたときに、該対象物の導電性を低下させづらくする観点からは、微細金属線状体は主鎖部のみを有する非分岐構造であることが好ましい。一方、微細金属線状体の集合体が嵩高い構造を呈する観点からは、微細金属線状体は、一又は二以上の枝分かれ部を有していることが好ましい。
 微細金属線状体を構成する金属の種類に特に制限はなく、種々の金属を用いることができる。導電性の高さと、工業的な利用のしやすさとのバランスを考慮すると、銅、銀、金、ニッケル、鉛、パラジウム、白金、コバルト、スズ、鉄、ビスマス及び亜鉛からなる群より選択される少なくとも一種の金属であるか、該金属を含む合金であることが好ましい。あるいは、これら複数種の金属の結晶や合金の結晶が混合した状態で線状体を形成していてもよい。これらの中でも特に銅若しくは銅合金又は亜鉛若しくは亜鉛合金を母材とする線状体が好ましく、とりわけ銅又は銅合金を母材とする線状体が好ましい。なお、「銅又は亜鉛を母材とする」とは、微細金属線状体に占める銅又は亜鉛の割合が80質量%以上であることをいう。なお、複数種の金属の結晶や合金の結晶が混合した状態としては、例えば、Cu結晶-Zn結晶-Cu結晶-Zn結晶のように異なる種類の金属の結晶が連なった状態が挙げられる。
 微細金属線状体は、第1の金属元素又は該金属元素を含む合金からなる本体部と、該本体部の表面に配置された第1の金属元素以外の第2の金属元素の被覆層とを有する構造を有していてもよい。
 第1の金属元素としては、例えば上述のとおり銅、銀、金、ニッケル、鉛、パラジウム、白金、コバルト、スズ、鉄、ビスマス及び亜鉛が挙げられる。第2の金属元素としては、第1の金属元素と異なることを条件として、例えば銀、コバルト、鉄、ニッケル、亜鉛、鉛、スズ、白金、金、パラジウム、銅、ビスマス等及びこれらの金属を一種又は二種以上含む合金(例えば、ニッケル合金、鉄合金等)が挙げられる。特に第2の金属元素は、本体部を構成する第1の金属元素又は該金属元素の合金よりも導電性の高いものであることが、対象物へ付与する導電性を一層高くし得る観点から好ましい。この観点から、第1の金属元素が例えば銅又は亜鉛である場合、第2の金属元素は銀であることが好ましい。
 本体部の表面に被覆層を形成するには、例えば後述する方法で本体部を形成した後に、被覆に用いる金属元素を含む電解液中で電解めっきをする方法、置換めっき法や無電解めっきを可能とする触媒を微細金属線状体上へ塗布した後、目的とする金属をめっきする方法、又は乾式法による形成が挙げられる。また、線状体の表面に有機剤処理をしてもよい。
 本発明の微細金属線状体は、その結晶構造が、これまでに知られている微細金属線状体と異なっている。詳細には、本発明の微細金属線状体は、複数の結晶が該線状体の延在方向に沿って連なった多結晶構造になっている。このこととは対照的に、これまで知られている微細金属線状体、例えば特許文献1に記載されている無電解法によって製造された微細金属線状体は、該線状体の延在方向に長い大きな結晶を有する、単結晶様の構造になっている。そして本発明の微細金属線状体によれば、その特徴的な結晶構造に起因して焼結温度を従来よりも低下させることが可能となる。あるいは、従来の微細金属線状体と同じ加熱温度で加熱処理した場合には、加熱処理後の焼結部の電気抵抗を従来よりも小さくすることが可能となる。
 本発明の微細金属線状体の結晶構造について詳述すると、該微細金属線状体を構成する金属の結晶について、該微細金属線状体の長手方向に沿う長さをXとし、該方向と直交する方向(以下「幅方向」ともいう。)に沿う長さをYとしたとき、Yに対するXの比であるX/Yの値が好ましくは4以下である。
 このように本発明の微細金属線状体を構成する金属の結晶は、長手方向の長さと幅方向の長さに大きな差異がなく、略等方性のある形状をしている。本発明の微細金属線状体の太さは先に述べたとおり30nm以上10μm以下であることから、該微細金属線状体を構成する金属の結晶は微細であることが理解される。本発明の微細金属線状体を構成する金属の結晶がこのような構造を有していることに起因して、上述したとおり、本発明の微細金属線状体は、焼結する温度を従来よりも低下させることが可能となる。あるいは、従来の微細金属線状体と同じ加熱温度で加熱処理した場合には、加熱処理後の焼結部の電気抵抗を従来よりも小さくすることが可能となる。
 この利点を一層顕著なものとする観点から、X/Yの値は更に好ましくは3以下である。
 上述したX/Yの値は、微細金属線状体を長手方向に沿って長さを四等分したときの境界域の三か所にある結晶のX/Yの値を算出し、これを算術平均した値とする。算術平均値の小数第一位は、四捨五入することとする。
 本明細書にいう「結晶」とは、結晶粒のことであり、そのサイズは電子線後方散乱回折(以下、「EBSD」ともいう。)によって得られるグレインマップから取得できる。結晶粒は、XRDパターンから求められる結晶子サイズと異なる概念であることに留意すべきである。本明細書にいう結晶が双晶である場合、該双晶を構成する各結晶は異なる結晶であると定義し、それぞれの結晶についてX/Yの値を求める。
 X/Yの値が4以下の場合においては、X及びYの値に制限はないが、Xの値そのものは、焼結温度を従来よりも低下させ得る観点から、10μm以下であることが好ましく、5nm以上2μm以下であることが更に好ましく、10nm以上500nm以下であることが一層好ましい。同様の観点から、Yの値そのものは、3μm以下であることが好ましく、5nm以上1μm以下であることが更に好ましく、10nm以上400nm以下であることが一層好ましく、10nm以上200nm以下であることが更に一層好ましい。
 本発明の微細金属線状体は、上述したYの値のみによっても特徴付けられる。すなわち、Yの値が好ましくは10nm以下である。
 Yが10nm以下であるということは、金属原子の数で表すと100個以下の原子分の幅しかない細い状態であることになる。このことは、X/Yの値を4以下とする設計思想と同じように、結晶が微細であることと同じ意味である。そのことに起因して、本発明の微細金属線状体によれば、焼結する温度を従来よりも低下させることが可能となる。あるいは、従来の微細金属線状体と同じ加熱温度で加熱処理した場合には、加熱処理後の焼結部の電気抵抗を従来よりも小さくすることが可能となる。なお、Yが10nm以下であれば、X/Yの値は問わない。
 上述したYの値は、微細金属線状体を長手方向に沿って長さを四等分したときの境界域の三か所にある結晶のYの値を算出し、これを算術平均した値とする。算術平均値の小数第一位は、四捨五入することとする。
 本発明の微細金属線状体は、これを構成する金属の結晶の方位によっても特徴付けられる。
 詳細には、本発明の微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所に存在する結晶に着目したとき、該微細金属線状体の延びる方向±30°の範囲において透過型電子顕微鏡(以下「TEM」ともいう。)の電子回折、又はEBSDによって評価した[110]方位をなす結晶粒の存在割合が50%以下であることが好ましく、45%以下であることが更に好ましく、40%以下であることが一層好ましい。このような関係を満たすことは、結晶の[110]方位が、微細金属線状体の長手方向に優先配向していないことを意味する。
 [110]方位をなす結晶粒の存在割合は、微細金属線状体を任意に2本以上抽出し、該微細金属線状体をそれぞれ長手方向に沿って長さを四等分にする境界線を引き、その境界の三つの境界域について計測して算出する。
 TEMの電子回折で評価する場合、一つの境界域につき境界線の中点の計6か所以上(例えば、微細金属線状体を2本抽出した場合は6か所、微細金属線状体を5本抽出した場合は15か所)において測定された[110]方位をなす結晶粒の百分率である。
 EBSDで評価する場合、一つの境界域につき境界線を四等分にする3つの点の計18か所以上(例えば、微細金属線状体を2本抽出した場合は18か所、微細金属線状体を5本抽出した場合は45か所)において測定する。
 百分率の小数第一位は、四捨五入することとする。
 TEMによって[110]方位をなす結晶粒を観察する場合、微細金属線状体に電子を透過させて観察を行う。しかし、該微細金属線状体の太さが200nm以上あると、該微細金属線状体を電子が透過せず、目的とする電子回折図形を得ることができない。そこで、該微細金属線状体の太さが200nm以上ある場合、EBSDで[110]方位をなす結晶粒の存在割合を評価する。
 このこととは対照的に、これまで知られている微細金属線状体、例えば特許文献1に記載されている無電解法によって製造された微細金属線状体は、その製造方法に起因して、該線状体の長手方向に[110]方位が優先配向している。
 また、非特許文献1にも無電解法による微細金属線状体の合成について報告されている。後述する比較例にも記載したとおり本発明者の実験によって非特許文献1の無電解法で合成した微細金属線状体も[110]方位が長手方向に優先配向していることが判明している。同文献には、この微細金属線状体の側面は(100)面となっていることが記載されている。(100)面は他の面に比べ酸化されやすく、表面に酸化膜が形成されていることが同文献には記載されている。つまり、[110]方位が長手方向に優先配向している微細金属線状体の側面は酸化されやすく、そのことは微細金属線状体の幅方向の抵抗を増大化する一因となる。したがって、長手方向に[110]方位で成長しない微細金属線状体である本発明の微細金属線状体は酸化されづらいという利点を有する。
 結晶の[110]方位が長手方向に優先配向していない本発明の微細金属線状体によれば、その特徴的な結晶構造に起因して焼結する温度を従来よりも低下させることが可能となる。あるいは、従来の微細金属線状体と同じ加熱温度で加熱処理した場合には、加熱処理後の焼結部の電気抵抗を従来よりも小さくすることが可能となる。
 焼結温度を従来よりも低下させる観点から、微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域に存在する三か所の結晶は、微細金属線状体の延びる方向±30°の範囲においてTEMの電子回折、又はEBSDによって評価した[111]方位をなす結晶粒の存在割合が50%以上であることが好ましく、52%以上であること更に好ましく、60%以上であることが一層好ましく、70%以上であることが更に一層好ましい。
 [111]方位をなす結晶粒の存在割合は、微細金属線状体を任意に2本以上抽出し、該微細金属線状体をそれぞれ長手方向に沿って長さを四等分にする境界線を引き、その境界の三つの境界域について計測して算出する。
 TEMの電子回折で評価する場合、一つの境界域につき境界線の中点の計6か所以上(例えば、微細金属線状体を2本抽出した場合は6か所、微細金属線状体を5本抽出した場合は15か所)において測定された[111]方位をなす結晶粒の百分率である。
 EBSDで評価する場合、一つの境界域につき境界線を四等分にする3つの点の計18か所以上(例えば、微細金属線状体を2本抽出した場合は18か所、微細金属線状体を5本抽出した場合は45か所)において測定する。
 百分率の小数第一位は、四捨五入することとする。
 このような関係にあることは、その[111]方位が、該微細金属線状体の長手方向に優先配向していることを意味する。結晶の[111]方位が長手方向に優先配向していることは、結晶学的にいって、その側面に(100)面が露出しないことを意味するので好ましい。
 また、微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域に存在する三か所の結晶は、微細金属線状体の延びる方向±30°の範囲においてTEMの電子回折、又はEBSDによって評価した[100]方位、[110]方位及び[111]方位をなす結晶粒の存在割合がいずれも50%以下であることが好ましく、40%以下であることが更に好ましい。
 [110]、[111]、[100]方位をなす結晶粒の存在割合は、微細金属線状体を任意に2本以上抽出し、該微細金属線状体をそれぞれ長手方向に沿って長さを四等分にする境界線を引き、その境界の三つの境界域について計測して算出する。
 TEMの電子回折で評価する場合、一つの境界域につき境界線の中点の計6か所以上(例えば、微細金属線状体を2本抽出した場合は6か所、微細金属線状体を5本抽出した場合は15か所)において測定された[110]、[111]、[100]方位をなす結晶粒の百分率である。
 EBSDで評価する場合、一つの境界域につき境界線を四等分にする3つの点の計18か所以上(例えば、微細金属線状体を2本抽出した場合は18か所、微細金属線状体を5本抽出した場合は45か所)において測定する。
 百分率の小数第一位は、四捨五入することとする。
 このような関係にあることは、微細金属線状体を構成する金属の結晶がランダムに配向していることを意味する。微細金属線状体を構成する金属の結晶の配向方向がランダムであることは、微細金属線状体を構成する金属の結晶が多結晶であることを意味し、結晶が小さいことを意味する。結晶が小さいことは、上述したように焼結の低温化につながる。更に「結晶の配向方向がランダムである」ことは線状体の側面に(100)面が優先的に露出していないことを意味し、微細金属線状体の側面の酸化が促進されないということを意味している。
 本発明の微細金属線状体が、複数の微細金属線状体を含む集合体である場合、該集合体においては、曲率半径が微細金属線状体の長さの5倍以下の湾曲部を有する微細金属線状体の本数が、前記集合体中の全微細金属線状体の本数の5%以上を占めることが好ましく、20%以上を占めることが更に好ましく、40%以上を占めることが一層好ましく、60%以上を占めることが更に一層好ましい。このようにすることで、微細金属線状体の横(幅)方向に沿って複数本の微細金属線状体を横断する接触が実現しやすくなり、微細金属線状体の集合体が低抵抗となる点から好ましい。
 曲率半径は以下のようにして算出する。微細金属線状体について走査型電子顕微鏡(以下「SEM」ともいう。)観察を行う。微細金属線状体の両端を直線で結び、その長さ(弦長)を計測する。更に、その直線の中点から該直線に直交する補助線を微細金属線状体側に向けて引き、該中点と微細金属線状体と交わる位置との距離(矢高)を測る。以下の計算式から曲率半径を求める。
  r=(C×C)/(8×h)+h/2
(式中、rは曲率半径を表し、Cは弦長を表し、hは矢高を表す。)
 上述した曲率半径は、0.5μm以上1000μm以下であることが好ましい。
 なお、微細金属線状体が屈曲している場合は、該微細金属線状体が湾曲部を有する形状であると近似して前記計算式から曲率半径を求める。また、微細金属線状体の両端を直線で結んだとき、その直線が微細金属線状体を横切る場合は、横切った箇所を境として、異なる微細金属線状体として曲率半径を計測する。
 本発明の微細金属線状体が、複数の微細金属線状体を含む集合体である場合、該集合体中に線状体以外の形状を有する粒子が含まれていることは妨げられない。尤も、屈曲や伸縮などの変形を受けても導電性を低下しづらくする観点からは、線状体以外の形状を有する粒子は前記集合体中にできる限り存在しないことが好ましい。
 前記集合体における線状体以外の形状を有する粒子の割合を「異形率」と定義したとき、該異形率は50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが更に好ましく、10%以下であることが一層好ましく、2%以下であることが更に一層好ましい。後述する製造方法によって微細金属線状体を製造すれば異形率を容易に50%以下とすることが可能である。
 異形率は、縦横ともに、微細金属線状体の平均長さの5~30倍の長さの視野において測定対象試料をSEMで観察し、〔異形状のものの面積/線状体の面積〕の百分率を算出することで求められる。「異形状」とは線状体以外の形状(例えば、球状、塊状、シダ状葉等)のことをいう。
 次に、本発明の微細金属線状体の好適な製造方法について説明する。微細金属線状体の製造に好適には電解法が用いられる。この理由は、電解法によれば所望の形状に制御しやすいだけでなく、電解液を繰り返し利用することができ微細金属線状体を製造するにあたり必要となる液体が少なくて済み、同時に処理すべき廃液量を減少させることができるからである。金属粉の他の製造方法としてアトマイズ法があるが、微細金属線状体のような異方性のある形状のものを製造することはできない。また他の方法として湿式還元法(無電解還元法)があるが、同法では溶液を繰り返して使用することができず、また目的とする金属元素の濃度をある一定以上に高くすることが不可能であり、生産性よく微細金属線状体を製造できない。
 電解法によって微細金属線状体を製造する場合には、例えば金属元素源を含む硫酸酸性の電解液にアノードとカソードとを浸漬し、これに直流電流を流して電解還元を行い、カソードの表面に微細金属線状体を析出させ、析出した微細金属線状体を機械的又は電気的方法によって掻き落として回収し、回収した微細金属線状体を水又は有機溶媒で洗浄し、乾燥し、必要に応じて篩別する工程を例示できる。
 本製造方法で用いる金属元素としては、本製造方法によって微細金属線状体の製造が可能である限り、その種類に特に制限はない。導電性の高さと、工業的な利用のしやすさとのバランスを考慮すると、銅、銀、金、ニッケル、鉛、パラジウム、白金、コバルト、スズ、鉄、ビスマス及び亜鉛が挙げられる。これらの金属元素は、水溶液から電解析出できる点で共通するため、どの金属元素を用いたとしても本製造方法に沿って同様に製造することができる。これらの中でも特に銅若しくは銅合金又は亜鉛若しくは亜鉛合金を母材とすることが好ましい。
 本製造方法で得られる微細金属線状体は、例えば不可避不純物を除き、目的とする金属元素のみから構成されていてもよく、あるいは、不可避不純物を除き、目的とする金属元素の合金から構成されていてもよい。更には、不可避不純物を除き、上述した金属元素を2種以上組み合わせた構成としてもよい。
 上述の手順で微細金属線状体を製造するときには、カソードの表面に油性物質を付着させた状態下に電解還元を行うことが有利であることが本発明者の検討の結果判明した。このような状態で金属元素のイオンを還元させることで、還元反応を制御できるという利点がある。詳細には次に述べるとおりである。
 カソード表面に付着させる油性物質はその量を厚みで表すと、平均で数百nm以上、好ましくは数μmから数百μm程度となる。ただし、電解液の揺動等によりその厚みは局所的に変動している。油性物質にはほとんど金属イオンは共存しないが、油性物質に金属イオンを含む電解液が液滴で浮遊したり、又は電気を印加して形成される電場の力によって電解液の極少量が電極近傍まで断続的に吸い寄せられたりする。そういった状況下、カソードの表面で金属の還元反応が起こり、局所的に析出した金属の突起物が生じる。この突起物の直上は他の部分に比べて油性物質の厚みが薄くなるので、その部分での電気抵抗が下がり、そこに電流が集中するようになり更にその突起が線状体となり成長する。こうして金属の微細金属線状体が電解で形成される。
 微細金属線状体の成長が進行するに連れて該線状体は自重によって垂れ下がり湾曲形状になりやすい。あるいは油性物質による電気抵抗によって直線的な成長が妨げられ微細金属線状体は湾曲形状になりやすい。基本的に前記の機構で微細金属線状体が電解で形成されるが、細部にわたる形状や組織については更に使用する油性物質の種類で変化する。通常の金属の電解析出と同じように電解液の組成や添加剤によっても変化する。
 上述したカソードの表面に油性物質を付着させる方法としては、例えばカソードの表面に油性物質を直接塗布する方法、油性物質が入った容器の中にカソードを浸漬し付着させる方法、電解液の上に油性物質を浮かせて上方からカソードを浸漬して油性物質をカソード表面に付着させる方法等が挙げられる。更に、電解液中に油性物質を懸濁させ、その懸濁した電解液を撹拌することで、懸濁した油性物質がカソードの表面に衝突し、そのままカソードの表面に付着するといった方法も挙げられる。また、油性物質が電解液に少量溶解する性質があれば、懸濁した油性物質が直接電極に触れなくとも、電解液に一度溶解した油性物質が電極表面に連続的に吸着して結果的に表面に付着するのと同じ効果を示す。
 以上の方法で微細金属線状体を製造することによって、該微細金属線状体においては、複数の結晶が長手方向に沿って連なった多結晶構造になる。また、結晶の[110]方位が長手方向に優先配向しづらくなる。更に、微細金属線状体においては、結晶の[111]方位が長手方向に優先配向しやすくなるか、又は結晶の配向方向がランダムになりやすくなる。
 更に、以上の方法で微細金属線状体を製造することによって、線状体以外の形状を有する異形の粒子の生成を極力抑制することができる。
 カソードの表面に付着させる油性物質としては、水に対して難溶性ないし不溶性である上に、カソードの表面に付着された後、該表面に保持され得る程度の粘度を有する各種の有機化合物が挙げられる。なお、「水に対して難溶性ないし不溶性」とは、微細金属線状体を製造するときの温度において、水1Lに対し、100g以下の溶解量を示すことをいう。
 油性物質としては液状又は固体状のものが挙げられる。油性物質に関しては、室温(20~30℃)で液状の溶媒に溶解して用いてもよい。
 なお、析出する微細金属線状体の物性を制御しやすくする目的で、前記油性物質に、安息香酸、フマル酸、クエン酸、ベンゾトリアゾール類等の添加剤を更に用いてもよい。
 前記の有機化合物としては、水に対して難溶性ないし不溶性であることを条件として、脂肪族炭化水素、芳香族炭化水素、脂肪族アルコール、芳香族アルコール、脂肪族アルデヒド、芳香族アルデヒド、脂肪族エーテル、芳香族エーテル、脂肪族ケトン、芳香族ケトン、脂肪族カルボン酸及びその塩、芳香族カルボン酸及びその塩、脂肪族カルボン酸のアミド、芳香族カルボン酸のアミド、脂肪族カルボン酸のエステル、芳香族カルボン酸のエステル、シリコーン(例えばジメチルシリコーン)、脂肪族アミン、芳香族アミン、含窒素複素環式化合物、リン酸トリブチル、チオール、フッ素系溶剤、イオン液体などが挙げられる。なお、本明細書でいう「脂肪族アルコール」とは、炭素原子数が5以上のアルコールのことである。
 本発明者の検討の結果、油性物質として特に脂肪酸若しくはその塩、エステル若しくはそのアミド、芳香族カルボン酸、脂肪族炭化水素、脂肪族アルコール、脂肪族アミン、シリコーン(例えばジメチルシリコーン)、又はこれらの混合物を用いると一層首尾よく微細金属線状体を製造できることが判明した。
 前記の脂肪酸としては、低級脂肪酸と高級脂肪酸が挙げられる。低級脂肪酸としては、炭素原子数が好ましくは9以下である飽和又は不飽和の脂肪族カルボン酸が挙げられる。高級脂肪酸としては、炭素原子数が好ましくは10以上25以下、更に好ましくは10以上22以下、一層好ましくは11以上20以下である飽和又は不飽和の脂肪族カルボン酸が挙げられる。
 飽和脂肪族カルボン酸としては、例えばカプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸などが挙げられる。
 不飽和脂肪族カルボン酸としては、分子中に不飽和炭素結合を1個又は2個以上有するものが挙げられる。
 分子中に不飽和炭素結合を1個有する不飽和脂肪族カルボン酸としては、例えばクロトン酸、ミリストレイン酸、パルミトレイン酸、サピエン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸などが挙げられる。
 分子中に不飽和炭素結合を2個以上有する不飽和脂肪族カルボン酸としては、例えばリノール酸、エイコサジエン酸、ドコサジエン酸、リノレン酸などが挙げられる。
 芳香族カルボン酸としては、例えば安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メロファン酸、プレーニト酸、ピロメリト酸、メリト酸、ジフェン酸、トルイル酸、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、β-イソジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、ウビト酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、ケイ皮酸、サリチル酸、アニス酸、クレソチン酸、o-ホモサリチル酸、o-クレソチン酸、m-ホモサリチル酸、m-クレソチン酸、p-ホモサリチル酸、p-クレソチン酸、o-ピロカテク酸、β-レソルシル酸、ゲンチジン酸、γ-レソルシル酸、プロトカテク酸、α-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム、o-ベラトルム酸、オルセリン酸、m-ヘミピン酸、没食子酸、シリング酸、アサロン酸、マンデル酸、バニルマンデル酸、ホモアニス酸、ホモゲンチジン酸、ホモプロトカテク酸、ホモバニリン酸、ホモイソバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、ホモフタル酸、ホモイソフタル酸、ホモテレフタル酸、フタロン酸、イソフタロン酸、テレフタロン酸、ベンジル酸、アトロラクチン酸、トロパ酸、メリロト酸、フロレト酸、ヒドロカフェー酸、ヒドロフェルラ酸、ヒドロイソフェルラ酸、p-クマル酸、ウンベル酸、カフェー酸、フェルラ酸、イソフェルラ酸、シナピン酸、ベンゾイル、フタロイル、イソフタロイル、テレフタロイル、トルオイル、キシロイル、クモイル、α-トルオイル、ヒドロアトロポイル、アトロポイル、ヒドロシンナモイル、シンナモイル、サリチロイル、アニソイル、クレソトイル、o-ピロカテクオイル、β-レソルシロイル、ゲンチソイル、γ-レソルシロイル、プロトカテクオイル、α-レソルシロイル、バニロイル、イソバニロイル、o-ベラトロイル、ベラトロイル、ガロイル、シリンゴイル、マンデロイル、バニルマンデロイル、ホモゲンチソイル、ホモバニロイル、ホモベラトロイル、ベンジロイル、トロポイル、カフェオイル、フェルロイル、過安息香酸、イブプロフェン、ケトプロフェン、フェルビナクが挙げられる。
 前記の脂肪酸のうち、飽和脂肪族カルボン酸や不飽和脂肪族カルボン酸を用いると、一層首尾よく微細金属線状体を製造できるので好ましい。
 前記の脂肪酸のエステルは、飽和脂肪族アルコール又は不飽和脂肪族アルコールとのエステルであることが好ましい。このアルコールの炭素数は1以上18以下であることが好ましい。前記の脂肪酸のエステルは、炭素数1以上18以下の飽和脂肪族アルコールとのエステルであることが一層好ましい。このようなものとして、例えば酢酸エチルが挙げられる。
 カソードの表面に付着させる油性物質の量は、カソードの単位表面積あたり0.1g/m以上500g/m以下とすることが好ましく、1g/m以上500g/m以下とすることがより好ましく、3g/m以上200g/m以下とすることが更に好ましく、5g/m以上100g/m以下とすることが一層好ましい。
 アノード及びカソードの材質としては、これまで知られているものを特に制限なく用いることができる。例えばチタンや銅からなるアノード及びカソードを用いることができる。アノードに関しては不溶性金属電極(DSE)を用いることもできる。
 このことに関連して、還元時の電流密度は、5A/m以上3000A/m以下とすることが好ましく、10A/m以上1000A/m以下とすることが更に好ましく、50A/m以上500A/m以下とすることが一層好ましい。
 通常、電気分解による金属の析出では、電解液からの金属イオンの供給速度よりも遅い還元速度に相当する電気量を通電することで良好な表面形状を得ることができる(例えば、めっきであれば表面に金属光沢が得られる状態)。本発明における電解においても同様に電解液における金属元素のイオンの濃度が、金属イオンの還元の反応速度に過不足なく金属イオンを供給できる濃度であることが好ましく、その観点から、金属イオンの濃度は1g/L以上80g/L以下であることが好ましく、1g/L以上60g/L以下であることが更に好ましい。
 同様の観点から、電解時には電解液を電解槽内で撹拌又は循環させることが好ましい。
 電解液は、室温(25℃)等の非加熱状態で用いてもよく、あるいは加熱状態で用いてもよい。
 更に同様の観点から、電解槽の大きさ、電極の枚数、電極の形状(板状、ドラム状)、電極間距離、電極の揺動、及び電解液の循環量を調整し、電極近傍の電解液の金属イオン濃度が常に高い状態を維持しておくように調整することが好ましい。
 以上の方法によって得られた本発明の微細金属線状体は、これを他の物質と複合化させて当該物質に導電性を付与することができる。例えば、本発明の微細金属線状体と、これと同一又は異なる金属元素の粒状体とを組み合わせて接合材料とすることができる。あるいは、本発明の微細金属線状体と、分散媒とを含む組成物を接合材料として用いることもできる。これらの接合材料を焼結させて焼結体とすることもできる。これら接合材料及び焼結体は例えば半導体素子と基板とを接合する材料として用いられる。
 具体的には、第一の部材、第二の部材、及び該第一の部材と該第二の部材とを接合する接合部を備える接合構造体において、該接合部を、本発明の微細金属線状体と分散媒とを含む組成物の焼結体から構成することができる。あるいは、第一の部材、第二の部材、及び該第一の部材と該第二の部材とを接合する接合部を備える半導体装置において、第一の部材及び第二の部材の少なくとも一方として半導体素子を用い、該接合部を、本発明の微細金属線状体と分散媒とを含む組成物の焼結体から構成することができる。
 本発明の微細金属線状体を用いて電子回路部品を製造することもできる。例えば、基板と、該基板上に形成された導電パターンとを備えてなる電子回路部品において、前記導電パターンを、本発明の微細金属線状体と分散媒とを含む組成物の焼結体から構成することができる。
 前記組成物に含まれる分散媒としては、例えば各種の有機溶媒を用いることができる。そのような有機溶媒の例としては、モノアルコール、多価アルコール、多価アルコールアルキルエーテル、多価アルコールアリールエーテル、エステル類、ケトン類、含窒素複素環式化合物、アミド類、アミン類、飽和炭化水素などが挙げられる。これらの有機溶媒は、一種を単独で又は二種以上を組み合わせて用いることができる。
 本発明の微細金属線状体を樹脂に含有させて、該微細金属線状体及び該樹脂を含む樹脂組成物を得ることもできる。この樹脂組成物は、微細金属線状体を含むことで導電性を発現する。
 樹脂に導電性を付与するには、例えば微細金属線状体を樹脂中に分散させればよい。別法として、樹脂を含む基材の表面に、微細金属線状体を含む層を形成してもよい。いずれの態様であっても、樹脂組成物は様々な形状に成形することができる。例えば繊維状などの一次元形状、フィルム状、板状及び帯状などの二次元形状、及び各種立体形状に成形することができる。いずれの形状であっても、樹脂組成物は比較的少量の微細金属線状体の添加で十分な導電性を発現する。樹脂組成物は、その導電性が、樹脂組成物を伸縮させた前後や、屈曲させた前後での低下が低い点で、従来の銅粉をフィラーとする導電性樹脂組成物と異なるものである。この観点から、樹脂組成物を、伸縮可能であるか又は屈曲可能とした場合に、本発明の微細金属線状体の特性が有効に発揮される。従来の導電性樹脂組成物は、これを伸縮させたり屈曲させたりすると、導電性が低下しやすいものであった。
 以上のとおり、本発明の微細金属線状体は種々の態様で用いることができる。本発明の微細金属線状体の具体的な用途としては、導電性が要求され且つ外力によって変形が生じる用途、例えば生体に貼り付けるなどして使用するウエアラブルデバイス、フレキシブルディスプレイなどが挙げられる。このほか、低線膨張率配線材、異方性導電膜、異方性熱伝膜、リチウム電池のアノード集電体、プリント配線基板のビアの穴埋め材料、センサ類、スイッチ類、吸着分離装置、各種電気化学反応の電極触媒、発電素子の集電体などに本発明の微細金属線状体を用いることができる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 本実施例では銅からなる線状体を製造した。
 硫酸銅と硫酸から、銅イオンの濃度が4g/L、フリーの硫酸の濃度が5g/Lとなるように電解液を調製し、その800mLを10cm×8cm×12cmの大きさ(容量約1000mL)の電解槽内に入れて撹拌した。電解液の液温度は40℃とした。
 カソードとして、8cm×8cmの銅板を用いた。カソードの表面に、オレイン酸を均一に塗布した。塗布量は7g/mとした。アノードとして、8cm×8cmの銅板を用いた。カソードとアノードとの間隔が8cmとなるように両極を電解槽に吊設した。
 電流密度を160A/mに調整して30分電解を実施した。このようにして、カソードの表面に銅を電析させた。
 カソードの表面に電析した銅を回収し、回収した銅をエタノールで洗浄した。得られた電析物を、SEMを用いて観察したところ線状体が確認された。線状体の各端部は先細形状をしていた。
 本実施例で得られた線状体のSEM像を図1に示す。同図中、30000倍のSEM像は、線状体の先端形状を観察するために掲載した。
 〔実施例2〕
 銅イオンの濃度を1g/Lに変更して電解液を調製し、電流密度を63A/mに変更して電解を実施した。これら以外は実施例1と同様にして、電析物を得た。
 得られた電析物を、SEMを用いて観察したところ線状体が確認された。線状体の各端部は先細形状をしていた。
 〔実施例3〕
 銅イオンの濃度を7g/Lに変更して電解液を調製し、電流密度を63A/mに変更して電解を実施した。これら以外は実施例1と同様にして、電析物を得た。
 得られた電析物を、SEMを用いて観察したところ線状体が確認された。線状体の各端部は先細形状をしていた。
 〔実施例4〕
 銅イオンの濃度を10g/Lに変更して電解液を調製した。これ以外は実施例1と同様にして、電析物を得た。
 得られた電析物を、SEMを用いて観察したところ線状体が確認された。線状体の各端部は先細形状をしていた。
 〔実施例5〕
 銅イオンの濃度を40g/Lに変更して電解液を調製し、電流密度を310A/mに変更して電解を実施した。これら以外は実施例1と同様にして、電析物を得た。
 得られた電析物を、SEMを用いて観察したところ線状体が確認された。線状体の各端部は先細形状をしていた。
  〔比較例1〕
 本比較例は、非特許文献1に対応するものである。
 100mLの四つ口フラスコに、15mol/Lの水酸化ナトリウム水溶液40mLと、エチレンジアミン0.30mLと、0.1mol/Lの硝酸銅水溶液2.0mLを入れ、スターラーにて撹拌した。銅塩水溶液中のエチレンジアミンの濃度は137mmol/Lであった。ヒーターを40℃に設定し、昇温した。前記フラスコに35%のヒドラジン水溶液50μLをシリンジで注入した。スターラーで60分間撹拌した後、ヒーター電源をオフにした。その後、ウォーターバスで30℃未満まで冷却して、線状体を得た。濾過分離してそれをエタノールに分散させ超音波分散を実施したのち10分放置して上澄み(浮遊物)と沈殿物を分離した。
 本比較例で得られた線状体のSEM像を図2に示す。同図中、30000倍のSEM像は、線状体の先端形状を観察するために掲載した。
  〔評価1〕
 実施例1ないし5及び比較例1で得られた線状体について、長さ、太さ及び曲率半径を上述の方法で測定した。特に、線状体の太さはその太さが十分計測できる倍率、具体的には実施例1では20000倍のSEM像より、実施例2では80000倍のSEM像より、実施例3では10000倍のSEM像より、実施例4では10000倍のSEM像より、実施例5では100倍のSEM像より、比較例1では20000倍のSEM像より、10本以上の太さを読み取り算術平均して得た。また、長さもその長さが十分計測できる倍率、具体的には実施例1では10000倍のSEM像より、実施例2では20000倍のSEM像より、実施例3では5000倍のSEM像より、実施例4では1000,2000,5000倍のSEM像より、実施例5では100,200,500倍のSEM像より、比較例1では5000倍のSEM像より、20本以上の長さを読み取り算術平均して得た。
 また、実施例1ないし5及び比較例1で得られた線状体の集合体の異形率を上述の方法で測定した。
 更には以下の方法で、結晶についてのX、Y及びX/Yの値並びに結晶の方位を測定した。これらの結果を以下の表1に示す。
  〔結晶についてのX、Y及びX/Yの値並びに結晶の方位〕
 結晶についてのX、Y及びX/Yの値は次の方法で求めた。カーボンペーストにて微細金属線状体を銅板上に塗布し、アルゴンイオンビーム断面加工装置(日本電子社製クロスセクションポリッシャ(CP))によって塗膜を断面加工して、その断面をEBSDのグレインマップを作成して観察した。カーボンペーストはElectron Microscopy Sciences社Colloidal Graphite, (Isopropanol Base)を用いた。EBSDは、Carl Zeiss社製SEM Crossbeam540と、それに搭載されたOxford社製EBSD検出器:Symmetryを用いて行った。得られたグレインマップ中で微細金属線状体を長手方向に沿って長さを四等分したときの境界域の三か所において、その位置に存在する結晶のX及びYの値を図のスケールを参照して計測し、X/Yの値を算出した。これを算術平均した。算術平均値の小数第一位は、四捨五入した。
 実施例1及び比較例1の線状体について測定されたEBSDのグレインマップを図3及び図4にそれぞれ示す。
 結晶の方位は、次の方法で求めた。実施例1ないし4及び比較例1の微細金属線状体においては、微細金属線状体を銅グリッド上に振りかけて担持させた。観察は日本電子社製JEM-ARM200Fで実施した。微細金属線状体にその延びる方向に沿って長さを四等分にする境界線を引き、その境界の三つの境界域における境界線の中点において、TEMによる形状観察を行うとともに、電子回折図形を得た。電子回折による方位の解析はGATAN社製digital micrographを用いた。
 また、実施例5の微細金属線状体においては、カーボンペーストに混錬後、銅板上に塗布し、アルゴンイオンビーム断面加工装置(日本電子社製クロスセクションポリッシャ(CP))によって塗膜を断面加工した。観察は、SEM Crossbeam540と、それに搭載されたEBSD検出器:Symmetryで実施した。微細金属線状体にその延びる方向に沿って長さを四等分にする境界線を引いた。その境界の三つの境界域において、境界線を四等分にする3つの点において、EBSDによる結晶の方位を求めた。EBSDによる結晶の方位の解析は、Oxford社製AZtec Crystal 2.0を用いた。
 微細金属線状体の延びる方向、又はその接線方向の±30°の範囲に、TEMの電子回折又はEBSDによって評価した各方位([100]方位、[110]方位及び[111]方位)が入るか否かを判定した(各方位、長手方向±30°の範囲に近い法線で判断した。二つ以上の方位が±30°の範囲に入る場合は、より0°に近い方の方位とした。また、3つの方位が±30°の範囲に入らない場合は優先配向なし、とした)。
 実施例1ないし4及び比較例1に関しては、任意に抽出した5本の微細金属線状体についてそれぞれ評価し、合計15個の評価結果から各方位([100]方位、[110]方位及び[111]方位)が優先的に配向する結晶粒の百分率を算出した。実施例5に関しては、任意に抽出した5本の微細金属線状体についてそれぞれ評価し、合計45個の評価結果から各方位([100]方位、[110]方位及び[111]方位)が優先的に配向する結晶粒の百分率を算出した。
  〔評価2〕
 実施例1ないし5及び比較例1で得られた線状体及び粒子について、これらから製造された焼結体の比抵抗を以下に述べる方法で測定した。その結果を表1に示す。
  〔比抵抗の測定〕
 実施例1ないし5及び比較例1で得られた線状体及び粒子を、ワニス(ターピネオールとエチルセルロース)と混合し、脱泡し、3本ロールで分散させて組成物を得た。組成物中における固形分の割合は、実施例1では60%、実施例2では55%、実施例3では51%、実施例4では57%、実施例5では39%、比較例1では62%とした。
 この組成物をアルミナ基板上に塗工し、窒素雰囲気中、10℃/分の昇温速度で220℃、240℃、260℃及び300℃までそれぞれ加熱し、目標温度に到達した後、自然放冷して焼結体を得た。この焼結体について、抵抗率測定器(三菱ケミカル株式会社MCP-T600)を用い、4探針法によって焼結体の比抵抗を測定した。
 なお、比較例1において220℃及び240℃で焼成した焼結体に関しては、抵抗値の測定上限値である10Ω・cmを超えたため、測定することができなかった。表1においては「>10」と表記した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、実施例で得られた線状体から形成された焼結体は低温焼結性が良好であることが判る。また実施例で得られた線状体は、比較例で得られた線状体に比して、同じ加熱温度の場合には加熱処理後の焼結部の電気抵抗が小さいことが判る。
 本発明によれば、従来よりも焼結する温度が低いか、又は同じ加熱温度の場合には加熱処理後の焼結部の電気抵抗が小さくなる微細金属線状体が提供される。

Claims (15)

  1.  長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
     前記微細金属線状体を構成する金属の結晶について、該微細金属線状体の延びる方向に沿う長さをXとし、該方向と直交する方向に沿う長さをYとしたとき、該微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、前記結晶は、Yに対するXの比であるX/Yの値の算術平均値が4以下である、微細金属線状体。
  2.  長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
     前記微細金属線状体を構成する金属の結晶について、該微細金属線状体の延びる方向と直交する方向に沿う長さをYとしたとき、該微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、前記結晶は、Yの算術平均値が10nm以下である、微細金属線状体。
  3.  長さが0.5μm以上200μm以下であり、太さが30nm以上10μm以下である微細金属線状体であって、
     前記微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、該微細金属線状体を構成する金属の結晶は、該微細金属線状体の延びる方向±30°の範囲において透過型電子顕微鏡の電子回折、又は電子線後方散乱回折によって評価した[110]方位をなす結晶粒の存在割合が50%以下である、微細金属線状体。
  4.  前記微細金属線状体をその延びる方向に沿って長さを四等分したときの境界域の三か所において、該微細金属線状体を構成する金属の結晶は、
     前記微細金属線状体の延びる方向±30°の範囲において透過型電子顕微鏡の電子回折、又は電子線後方散乱回折によって評価した[111]方位をなす結晶粒の存在割合が50%以上であるか、又は
     前記微細金属線状体の延びる方向±30°の範囲において透過型電子顕微鏡の電子回折、又は電子線後方散乱回折によって評価した[100]方位、[110]方位及び[111]方位をなす結晶粒の存在割合がいずれも50%以下である、請求項1ないし3のいずれか一項に記載の微細金属線状体。
  5.  少なくとも一方の端部が先細形状になっており、該先細形状における先端の角度が60度以下である、請求項1ないし4のいずれか一項に記載の微細金属線状体。
  6.  前記微細金属線状体を構成する金属が、銅、銀、金、ニッケル、鉛、パラジウム、白金、コバルト、スズ、鉄、ビスマス及び亜鉛からなる群より選択される少なくとも一種の金属であるか、又は該金属を含む合金である、請求項1ないし5のいずれか一項に記載の微細金属線状体。
  7.  前記微細金属線状体を構成する金属が銅又は銅合金である、請求項6に記載の微細金属線状体。
  8.  金属元素源を含む電解液を用い、電解還元によってカソードに金属を析出させる工程を有する、金属を母材とする微細金属線状体の製造方法であって、
     前記カソードの表面に油性物質を付着させた状態下に電解還元を行う、微細金属線状体の製造方法。
  9.  前記油性物質が脂肪酸又はその塩、そのエステル若しくはそのアミド、芳香族カルボン酸、脂肪族炭化水素、脂肪族アルコール、脂肪族アミン、シリコーン、又はこれらの混合物である、請求項8に記載の製造方法。
  10.  請求項1ないし7のいずれか一項に記載の微細金属線状体の集合体であって、
     曲率半径が微細金属線状体の長さの5倍以下の湾曲部を有する微細金属線状体の本数が、全微細金属線状体の本数の5%以上を占める、微細金属線状体の集合体。
  11.  請求項1ないし7のいずれか一項に記載の微細金属線状体の集合体であって、
     前記集合体中に占める線状体以外の形状を有する粒子の割合が50%以下である、微細金属線状体の集合体。
  12.  請求項1ないし7のいずれか一項に記載の微細金属線状体と、分散媒とを含んでなる組成物。
  13.  第一の部材、第二の部材、及び該第一の部材と該第二の部材とを接合する接合部を備え、
     前記接合部が、請求項12に記載の組成物の焼結体からなる、接合構造体。
  14.  第一の部材、第二の部材、及び該第一の部材と該第二の部材とを接合する接合部を備え、
     前記接合部が、請求項12に記載の組成物の焼結体からなり、
     前記第一の部材及び前記第二の部材の少なくとも一方が半導体素子である半導体装置。
  15.  基板と、該基板上に形成された導電パターンとを備えてなる電子回路部品であって、
     前記導電パターンが、請求項12に記載の組成物の焼結体からなる、電子回路部品。
PCT/JP2021/025476 2020-07-08 2021-07-06 微細金属線状体 WO2022009886A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180044418.0A CN115943004A (zh) 2020-07-08 2021-07-06 微细金属线状体
JP2022535351A JPWO2022009886A1 (ja) 2020-07-08 2021-07-06
AU2021303983A AU2021303983A1 (en) 2020-07-08 2021-07-06 Fine metal linear body
EP21836790.2A EP4180152A4 (en) 2020-07-08 2021-07-06 LINEAR METALLIC FINE BODY
US17/928,640 US20230256506A1 (en) 2020-07-08 2021-07-06 Fine metal linear body
KR1020227042046A KR20230036062A (ko) 2020-07-08 2021-07-06 미세 금속 선상체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020117661 2020-07-08
JP2020-117661 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022009886A1 true WO2022009886A1 (ja) 2022-01-13

Family

ID=79553150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025476 WO2022009886A1 (ja) 2020-07-08 2021-07-06 微細金属線状体

Country Status (8)

Country Link
US (1) US20230256506A1 (ja)
EP (1) EP4180152A4 (ja)
JP (1) JPWO2022009886A1 (ja)
KR (1) KR20230036062A (ja)
CN (1) CN115943004A (ja)
AU (1) AU2021303983A1 (ja)
TW (1) TW202208085A (ja)
WO (1) WO2022009886A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545881A (ja) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 自立伝導性ナノ複合エレメントの電解製造法
JP2014037602A (ja) * 2012-08-20 2014-02-27 Furukawa Electric Co Ltd:The 銅ナノワイヤー製造方法および銅ナノワイヤーならびにその用途
WO2015097808A1 (ja) 2013-12-26 2015-07-02 古河電気工業株式会社 銅ナノワイヤー製造方法および銅ナノワイヤーならびにその用途
JP2020515712A (ja) * 2017-03-08 2020-05-28 ナノワイヤード ゲーエムベーハー 多数のナノワイヤを提供するための装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441348C (zh) * 2006-05-12 2008-12-10 天津大学 金属纳米镍管及制备方法
CN107579007A (zh) 2013-01-11 2018-01-12 千住金属工业株式会社 将铜球接合于电极的方法以及选择铜球的方法
CN104018189B (zh) * 2014-06-05 2016-05-25 东北大学 一种纳米银线的制备方法
JP2021139045A (ja) * 2020-03-03 2021-09-16 三井金属鉱業株式会社 微細線状体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545881A (ja) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 自立伝導性ナノ複合エレメントの電解製造法
JP2014037602A (ja) * 2012-08-20 2014-02-27 Furukawa Electric Co Ltd:The 銅ナノワイヤー製造方法および銅ナノワイヤーならびにその用途
WO2015097808A1 (ja) 2013-12-26 2015-07-02 古河電気工業株式会社 銅ナノワイヤー製造方法および銅ナノワイヤーならびにその用途
JP2020515712A (ja) * 2017-03-08 2020-05-28 ナノワイヤード ゲーエムベーハー 多数のナノワイヤを提供するための装置および方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. J. KIM, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, 2017, pages 277 - 284
See also references of EP4180152A4

Also Published As

Publication number Publication date
AU2021303983A1 (en) 2023-01-19
EP4180152A1 (en) 2023-05-17
KR20230036062A (ko) 2023-03-14
CN115943004A (zh) 2023-04-07
US20230256506A1 (en) 2023-08-17
TW202208085A (zh) 2022-03-01
EP4180152A4 (en) 2024-01-10
JPWO2022009886A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
Mohanty Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals
Hu et al. Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni-Co alloy microstructures
US9539643B2 (en) Making metal and bimetal nanostructures with controlled morphology
JP2007070689A (ja) ナノカーボン/アルミニウム複合材、その製造方法及びこれに用いるめっき液
JP5876971B2 (ja) 銅粉
EP3162466A1 (en) Copper powder, and copper paste, electrically conductive coating material and electrically conductive sheet each produced using said copper powder
Li et al. Facile preparation of Pd–Au bimetallic nanoparticles via in-situ self-assembly in reverse microemulsion and their electrocatalytic properties
US20180051176A1 (en) Copper powder and copper paste, conductive coating material, and conductive sheet using same
Kim et al. An overview of one-dimensional metal nanostructures for electrocatalysis
JP2014019877A (ja) 銅微粒子の製造方法
JP6181344B1 (ja) デンドライト状銀粉
KR20140125366A (ko) 은 미립자와 그의 제조법, 및 상기 은 미립자를 함유하는 도전성 페이스트, 도전성 막 및 전자 디바이스
KR101999144B1 (ko) 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
JP2007291513A (ja) 銀粒子
WO2022009886A1 (ja) 微細金属線状体
JP2009197317A (ja) 還元析出型球状NiP微小粒子およびその製造方法
JP2021139045A (ja) 微細線状体の製造方法
JP2008007859A (ja) 銀粒子
Xu et al. One-pot synthesis of lotus-shaped Pd–Cu hierarchical superstructure crystals for formic acid oxidation
KR20190038780A (ko) 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
TW201921780A (zh) 具有導電性奈米結構之多孔質導電體及使用該多孔質導電體之蓄電裝置
JP7261946B2 (ja) 銀粉及びその製造方法並びに導電性樹脂組成物
Shiomi et al. Magnetic field strength controlled liquid phase syntheses of ferromagnetic metal nanowire
JP5249642B2 (ja) 超微細金属線状体及びその製造方法
JP2017179555A (ja) 銀コート銅粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535351

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217071185

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021303983

Country of ref document: AU

Date of ref document: 20210706

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021836790

Country of ref document: EP

Effective date: 20230208